
Title: Testing if an Array Is Sorted
Name: Sofya Raskhodnikova
Affil./Addr. Pennsylvania State University
Keywords: Property testing, sublinear-time algorithms, mono-

tonicity, sorted arrays
SumOriWork: 2000; Ergün, Kannan, Kumar, Rubinfeld, Viswanathan

2014; Berman, Raskhodnikova, Yaroslavtsev

Testing if an Array Is Sorted
Sofya Raskhodnikova

Pennsylvania State University

Years aud Authors of Summarized Original Work

2000; Ergün, Kannan, Kumar, Rubinfeld, Viswanathan
2014; Berman, Raskhodnikova, Yaroslavtsev

Keywords

Property testing, sublinear-time algorithms, monotonicity, sorted arrays

Problem Definition

Suppose we would like to check whether a given array of real numbers is sorted (say,
in nondecreasing order). Performing this task exactly requires reading the entire array.
Here we consider the approximate version of the problem: testing whether an array is
sorted or “far” from sorted. We consider two natural definitions of the distance of a
given array from a sorted array. Intuitively, we would like to measure how much the
input array must change to become sorted. We could measure the change by

1. the number of entries changed;
2. the sum of the absolute values of changes in all entries.

It is not hard to see that looking at the number of entries that must be deleted in an
array to make it sorted is equivalent to the measure in item 1.

To define the two distance measures formally, let a = (a1, . . . , an) be the input
array and S be the set of all sorted arrays of length n. We denote by [n] the set
{1, 2, . . . , n}. The Hamming distance from a to S, denoted dist(a,S), is minb∈S |{i ∈
[n] : ai 6= bi}|. The L1 distance from a to S, denoted dist1(a,S), is minb∈S

∑
i∈[n] |ai−bi|.

Given a parameter ε ∈ (0, 1), an array is ε-far from sorted with respect to the Hamming
distance or, respectively, L1 distance, if the corresponding distance from a to S is at
least εn.

A tester for sortedness is a randomized algorithm that is given parameters
ε ∈ (0, 1) and n, and direct access to an input array a. It is required to accept with
probability at least 2/3 if the array is sorted and reject with probability at least 2/3 if

2

the array is ε-far from sorted. We consider two types of testers, Hamming and L1, cor-
responding to the two distance measures we defined. The query complexity of a tester
is the number of array entries it reads. The goal is to design testers for sortedness with
the smallest possible query complexity and running time.

There are two special cases of testers we will discuss. A tester is nonadaptive if it
makes all queries in advance, before receiving any query answers. A tester has 1-sided
error if it always accepts all sorted arrays.

Bibliographical notes The Hamming testers for sortedness were first studied by
Ergün et al. [7]. The L1-testers (and, more generally, Lp-testers, which use the Lp
distance for some p ≥ 1) were introduced by Berman, Raskhodnikova, and Yaroslavtsev
[2]. The two distance measures we discussed, dist and dist1, are identical for arrays with
0/1 entries, which we call Boolean arrays. The L1-tester in [2] builds on the sortedness
tester for Boolean arrays by Dodis et al. [6].

Observe that an array (a1, a2, . . . , an) of real numbers can be represented by a
function f : [n] → R defined by f(i) = ai for all i ∈ [n]. The formulated problem is
equivalent to testing if a function f over an ordered finite domain is monotone. In fact,
the L1-tester we will discuss can be easily adapted to work for functions over infinite
domains (specifically, bounded intervals), because its complexity is independent of the
domain size. The problem of Hamming testing monotonicity of functions over domain
[n]d was first investigated by Goldreich et al. [11]; general partially ordered domains
were studied by Fischer et al. [10]. These problems are discussed in the encyclopedia
entry “Monotonicity Testing”.

Key Results

Ergün et al. [7] designed two Hamming testers for sortedness that run in time O
(
logn
ε

)
.

Later, Bhattacharyya et al. [3] and Chakrabarty and Seshadhri [5] gave different testers
with the same complexity, with additional features that made them useful as subrou-
tines in testing monotonicity of high-dimensional functions. Fischer [9] proved that the
running time of these testers is optimal. Berman, Raskhodnikova, and Yaroslavtsev [2]
gave an L1-tester for sortedness with running time O(1/ε), which is also optimal.

Here we present two Hamming testers from [7; 3] and the L1-tester from [2].

Hamming Testers for Sortedness

A Tester Based on Binary Search [7] We present and analyze the first tester
for sortedness (Algorithm 1) with the assumption that all entries in the array a are
distinct. This assumption can be removed by treating element ai as 〈ai, i〉 for all i ∈ [n].

Algorithm 1: Hamming Tester for Sortedness Based on Binary Search
input : parameters n and ε; direct access to array a.

1 repeat
⌈
ln 3
ε

⌉
times:

2 pick i ∈ [n] uniformly at random;
3 perform a binary search for the value ai in the array a;
4 if ai is not located by the binary search, // it leads to another position

5 reject;
6 accept

3

Analysis of the First Tester The tester always accepts all sorted arrays. Now
consider an array that is ε-far from sorted (in Hamming distance). We say that a
position i ∈ [n] is searchable if ai can be found by a binary search in Step 3, and
not searchable otherwise. If positions i and j such that i < j are both searchable then
ai < aj, because both ai and aj are in the correct position with respect to their common
ancestor in the binary search tree. Thus, all numbers in searchable positions are sorted.
Since the array is ε-far from sorted, at least εn positions must be unsearchable. If the
tester picks an unserachable position in Step 2, it rejects. The probability that it
happens in one trial is at least ε. Therefore, the probability that it fails to happen in⌈
ln 3
ε

⌉
trials is at most

(1− ε)
⌈

ln 3
ε

⌉
≤ exp(−ε · ln 3

ε
) = 1/3. (1)

Thus, the tester rejects an array that is ε-far from sorted with probability at least 2/3.

A Tester Based on Graph Spanners [3] The next tester we discuss is based on
graph spanners. We can represent the requirement that the array is sorted as a directed
graph G, where nodes are positions in [n], and there is an edge (i, j) for all i < j. That
is, an edge (i, j) represents that ai ≤ aj. A 2-spanner of G is a subgraph H of G with
vertex set [n] such that for every edge (i, j) in G, there is a path of length at most
2 from i to j in H. It is not hard to construct a 2-spanner of G with at most n log n
edges[3; 12]. (For example, it can be done using divide-and-conquer as follows: connect
all nodes to the one in the middle, orienting the edges towards the nodes with larger
indices, remove the middle node, and recurse on the two resulting sublists.)

The tester simply repeats the following step
⌈
(2 ln 3) logn

ε

⌉
times: pick a uniformly

random edge (i, j) of the 2-spanner H and reject if this edge is violated, namely, if
ai > aj. If the tester does not find a violated edge, it accepts.

Analysis of the Second Tester If the input array is sorted, it does not have any
violated edges, and the tester always accepts. Now consider an array that is ε-far from
sorted (in Hamming distance). We call a position i ∈ [n] bad if node i is an endpoint
of a violated edge in the 2-spanner H; otherwise, i is good. Note that any two good
positions i, j such that i < j are connected by a path of length at most 2 of non-violated
edges in H. If this path is (i, j), it implies that ai ≤ aj. If this path is (i, k, j) for some
node k, it implies that ai ≤ ak ≤ aj. Consequently, for any two good positions i, j such
that i < j, the numbers ai and aj are in the correct order. That is, all numbers in good
positions are sorted. As in the analysis of Algorithm 1, we can conclude that there are
at least εn bad positions. But each bad position is adjacent to a violated edge. Each
violated edge can contribute at most two new bad positions. Thus, there are at least
εn/2 violated edges. By a simple calculation similar to (1), the second algorithm rejects
an array that is ε-far from sorted with probability at least 2/3.

L1-Tester for Sortedness

The L1-tester for sortedness [2] requires only a uniform sample from the input (as op-
posed to the ability to query an arbitrary position). It picks

⌈
2 ln 6
ε

⌉
positions uniformly

and independently at random and accepts iff the numbers in these positions are sorted.
The main ingredient in the analysis of the tester is a reduction to the case of

Boolean arrays. It states that if the tester is nonadaptive and has 1-sided error, it
suffices to show that it works for Boolean arrays. We omit the proof of the reduction.

Clearly, the L1-tester is nonadaptive and always accepts sorted arrays. Now
consider a Boolean array a which is ε-far from sorted. It remains to show that it is

4

rejected with probability at least 2/3. Let X0 be the set of the εn/2 largest indices i
for which ai = 0. Similarly, let X1 be the set of the εn/2 smallest indices i for which
ai = 1. It is easy to show that i < j for all i ∈ X1 and j ∈ X0, because a is ε-far from
sorted. The L1-tester samples no index from X0 with probability at most 1/6. The
same holds for X1. Thus, by a union bound, with probability at least 2/3, it samples
an index from X0 and an index from X1, and detects a violation.

Running time We explained why the algorithm that samples
⌈
2 ln 6
ε

⌉
positions uni-

formly and independently at random is an L1-tester for sortedness. Now we analyze
its running time for the case of general arrays. The L1-tester makes O(1/ε) queries. To
determine whether the elements in these positions are sorted, the tester can use bucket
sort to sort the sampled positions, and then simply check if the sequence of queried
elements is nondecreasing. Since the positions are sampled uniformly at random, the
bucket sort can be implemented to run in expected time O(1/ε), where the expectation
is taken over the choice of the samples. By standard methods, the algorithm can be
modified to run in O(1/ε) time in the worst case. Observe that the running time does
not depend on the length of the input. This is impossible for Hamming testers for
sortedness, which, as we mentioned, must query Ω(log n) positions [9].

Applications

Testers for sortedness are used as subroutines in other property testers, e.g., for mono-
tonicity of high-dimensional functions [6; 5; 2] and for the property that given points
represent ordered vertices of a convex polygon [7]. They are also used to construct fast
approximate probabilistically checkable proofs for different optimization problems [8].
Ben-Moshe et al. [1] employed sortedness testers (with additional features) to speed up
query evaluation in databases.

Open Problems

Consider the case when all numbers in the input array lie in some specified small set
such as [r] for some integer r. As we discussed, for Boolean arrays, testing sortedness
can be done in O(1/ε) time [6; 2]. It is not hard to see that for larger ranges, it can be
done in O(r/ε) time. When r � n, can one test sortedness it time polylogarithmic in
r? Is O

(
log r
ε

)
running time achievable?

Fischer’s lower bound for testing sortedness [9] applies only to n� r. The best
known lower bound that takes into account both parameters is Ω(min(log r, log n)),
due to [4], but it applies only to nonadaptive testers.

Cross-References

Monotonicity Testing.

Acknowledgements

The author was supported in part by NSF CAREER award CCF-0845701 and Boston
University’s Hariri Institute for Computing and Center for Reliable Information Sys-
tems and Cyber Security.

5

Recommended Reading

1. Ben-Moshe S, Kanza Y, Fischer E, Matsliah A, Fischer M, Staelin C (2011) Detecting and ex-
ploiting near-sortedness for efficient relational query evaluation. In: ICDT, pp 256–267

2. Berman P, Raskhodnikova S, Yaroslavtsev G (2014) Lp-testing. In: Shmoys DB (ed) STOC, ACM,
pp 164–173

3. Bhattacharyya A, Grigorescu E, Jung K, Raskhodnikova S, Woodruff DP (2012) Transitive-closure
spanners. SIAM J Comput 41(6):1380–1425

4. Blais E, Raskhodnikova S, Yaroslavtsev G (2014) Lower bounds for testing properties of functions
over hypergrid domains. In: IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pp 309–320

5. Chakrabarty D, Seshadhri C (2013) Optimal bounds for monotonicity and Lipschitz testing over
hypercubes and hypergrids. In: STOC, pp 419–428

6. Dodis Y, Goldreich O, Lehman E, Raskhodnikova S, Ron D, Samorodnitsky A (1999) Improved
testing algorithms for monotonicity. In: RANDOM, pp 97–108

7. Ergün F, Kannan S, Kumar R, Rubinfeld R, Viswanathan M (2000) Spot-checkers. J Comput
Syst Sci 60(3):717–751

8. Ergün F, Kumar R, Rubinfeld R (2004) Fast approximate probabilistically checkable proofs. Inf
Comput 189(2):135–159

9. Fischer E (2004) On the strength of comparisons in property testing. Inf Comput 189(1):107–116
10. Fischer E, Lehman E, Newman I, Raskhodnikova S, Rubinfeld R, Samorodnitsky A (2002) Mono-

tonicity testing over general poset domains. In: STOC, pp 474–483
11. Goldreich O, Goldwasser S, Lehman E, Ron D, Samorodnitsky A (2000) Testing monotonicity.

Combinatorica 20(3):301–337
12. Raskhodnikova S (2010) Transitive-closure spanners: A survey. In: Goldreich O (ed) Property

Testing, Springer, Lecture Notes in Computer Science, vol 6390, pp 167–196

