
Approximation Algorithms
for Min-Max Generalization Problems

Piotr Berman and Sofya Raskhodnikova⋆

Pennsylvania State University
{berman, sofya}@cse.psu.edu

Abstract. We provide improved approximation algorithms for the min-
max generalization problems considered by Du, Eppstein, Goodrich, and
Lueker [1]. In min-max generalization problems, the input consists of
data items with weights and a lower bound wlb, and the goal is to parti-
tion individual items into groups of weight at least wlb, while minimizing
the maximum weight of a group. The rules of legal partitioning are spe-
cific to a problem. Du et al. consider several problems in this vein: (1)
partitioning a graph into connected subgraphs, (2) partitioning unstruc-
tured data into arbitrary classes and (3) partitioning a 2-dimensional
array into non-overlapping contiguous rectangles (subarrays) that sat-
isfy the above size requirements.

We significantly improve approximation ratios for all the problems con-
sidered by Du et al., and provide additional motivation for these prob-
lems. Moreover, for the first problem, while Du et al. give approxima-
tion algorithms for specific graph families, namely, 3-connected and 4-
connected planar graphs, no approximation algorithm that works for all
graphs was known prior to this work.

1 Introduction

We provide improved approximation algorithms for the min-max generalization
problems considered by Du, Eppstein, Goodrich, and Lueker [1]. In min-max
generalization problems, the input consists of data items with weights and a
lower bound wlb, and the goal is to partition individual items into groups of
weight at least wlb, while minimizing the maximum weight of a group. The rules
of legal partitioning are specific to a problem. Du et al. consider several problems
in this vein: (1) partitioning a graph into connected subgraphs, (2) partitioning
unstructured data into arbitrary classes and (3) partitioning a 2-dimensional
array into non-overlapping contiguous rectangles (subarrays) that satisfy the
above size requirements. We call these problems (1) Min-Max Graph Partition,
(2) Min-Max Bin Covering and (3) Min-Max Rectangle Tiling.

Du et al. motivate the min-max generalization problems by applications to
privacy-preserving data mining. Generalization is widely used in the data mining

⋆ S.R. was supported by National Science Foundation (NSF/CCF award 0729171 and
NSF/CCF CAREER award 0845701).



2 Piotr Berman and Sofya Raskhodnikova

community as means for achieving k-anonymity (see [2] for a survey). Generaliza-
tion involves replacing a value with a less specific value. To achieve k-anonymity
each record should be generalized to the same value as at least k − 1 other
records. For example, if the records contain geographic information (e.g., GPS
coordinates), and the plane is partitioned into axis-parallel rectangles each con-
taining locations of at least k records, to achieve k-anonymity, the coordinates
of each record can be replaced with the corresponding rectangle. Generalization
can also be viewed as a natural way of compressing a dataset.

We briefly discuss several other applications of generalization. Geographic
Information Systems contain very large data sets that are organized either ac-
cording to the (almost) planar graph of the road network, or according to geo-
graphic coordinates (see, e.g., [3]). These sets have to be partitioned into pages
that can be transmitted to a mobile device or retrieved from secondary storage.
Because of the high overhead of a single transmission/retrieval operation, we
want to assure a minimum size of a single part (page), while controlling the
maximum size. When the process that is exploring a graph needs to investigate
a node whose information it has not retrieved yet, it has to request a new page.
Therefore, pages are more useful if they contain information about connected
subgraphs. Min-Max Graph Partition captures the problem of distributing in-
formation about the graph among pages.

Min-Max Bin Covering is a variant of the classical Bin Covering problem. In
the classical version, the input is a set of items with positive weights and the
goal is to pack items into bins, so that the number of bins that receive items
of total weight at least 1 is maximized (see [4–6] and references therein). Both
variants are natural. For example, when Grandfather Frost1 partitions presents
into bundles for kids, he clearly wants to ensure that each bundle has items of at
least a certain value to make kids happy. Grandfather Frost could try to minimize
the value of the maximum bundle, to avoid jealousy (Min-Max Bin Covering),
or to maximize the number of kids who get presents (classical Bin Covering).
Min-Max Bin Covering can also be viewed as a variant of scheduling on parallel
identical machines where, given n jobs and their processing times, the goal is
to schedule them on m identical parallel machines while minimizing makespan,
that is, the maximum time used by any machine [8]. In our variant, the number
of machines is not given in advance, but instead, there is a lower bound on the
processing time. This requirement is natural, e.g., when “machines” represent
workers that must be hired for at least a certain number of hours.

Rectangle tiling problems with various optimization criteria arise in applica-
tions ranging from databases and data mining to video compression and manu-
facturing, and have been extensively studied [9–16]. The min-max version can be
used to design a Geographic Information System, described above. If the data is
a set of coordinates specifying object positions, as opposed to a road network,
we would like to partition it into pages that correspond to rectangles on the

1 Grandfather Frost is a secular character that played the role of Santa Claus for
Soviet children. The Santa Claus problem [7] is not directly related to our problem.



Approximation Algorithms for Min-Max Generalization Problems 3

plane. As before, we would like to ensure that pages have at least the minimum
size while controlling the maximum size.

1.1 Problems

In each of the problems we consider, the input is an item set I, non-negative
weights wi for all i ∈ I and a non-negative bound wlb. For I ′ ⊆ I, we use w(I ′)
to denote

∑
i∈I′ wi. Each problem below specifies a class of allowed subsets of I.

A valid solution is a partition P of I into allowed subsets such that w(I ′) ≥ wlb

for each I ′ ∈ P . The goal is to minimize the cost of P, defined as maxI′∈P w(I ′).
In Min-Max Graph Partition, I is the vertex set V of an (undirected) graph

(V,E), and a subset of V is allowed if it induces a connected subgraph. In
Min-Max Bin Covering, every subset of I is allowed. A partition of I is called
a packing, and the parts of a partition are called bins. In Min-Max Rectangle
Tiling, I = {1, . . . ,m}×{1, . . . , n}, and the allowed sets are rectangles, i.e., sets
of the form {a, . . . , b} × {c, . . . , d}. A partition of I is called a tiling, and the
parts of a partition are called tiles.

All three min-max problems above are NP-complete. Moreover, if P̸=NP no
polynomial time algorithm can achieve an approximation ratio better than 2 for
Bin Covering (and hence for Graph Partition) or better than 1.33 for Graph
Partition on 3-connected planar graphs and Rectangle Tiling [1].

1.2 Our Results and Techniques

Our main technical contribution is a 3-approximation algorithm for Min-Max
Graph Partition. The remaining algorithms are very simple, even though the
analysis is non-trivial.

Min-Max Graph Partition. We present the first polynomial time approxi-
mation algorithm for Min-Max Graph Partition. Du et al. gave approximation
algorithms for specific graph families, i.e., a 4-approximation for 3-connected and

Min-Max Problem Hardness [1] Ratio in [1] Our ratio

Graph Partition 2 —
3

on 3-connected planar graphs 1.33 4

on 4-connected planar graphs — 3 2.5

Bin Covering 2
2 + ε in time

2
exp in ε−1

Rectangle Tiling 1.33 5 4

with 0-1 entries — — 3

Table 1. Approximation Ratios for Min-Max Generalization Problems. (Note: Graph
Partition generalizes Bin Covering, and hence inherits its inapproximability.)



4 Piotr Berman and Sofya Raskhodnikova

a 3-approximation for 4-connected planar graphs. We give a 3-approximation al-
gorithm for the general case, simultaneously improving the approximation ratio
and applicability of the algorithm. We also improve the approximation ratio for
4-connected planar graphs from 3 to 2.5.

Our 3-approximation algorithm for Min-Max Graph Partition constructs a 2-
tier partition where nodes are partitioned into groups, and groups are partitioned
into supergroups. Intuitively, supergroups represent parts in a legal partition,
while groups represent (nearly) indivisible subparts. The initial 2-tier partition
is obtained greedily and then transformed using 4 carefully designed transforma-
tions until all supergroups of large weight have well-defined central nodes, and
almost all non-central nodes in those supergroups are only connected to central
nodes (possibly of multiple supergroups). Supergroups of small weight are used
as parts in the final solution. The remaining supergroups are more tricky to deal
with. We create one part in the final solution for each supergroup or, more pre-
cisely, for each group with a central node. We redistribute other groups among
supergroups using a scheduling algorithm of Lenstra, Shmoys and Tardos [17],
while leaving all central nodes in separate parts. Roughly, central nodes play a
role of the machines and the groups that we need to redistribute play a role of
jobs to be scheduled on these machines. The final part of the algorithm repairs
parts of insufficient weight to obtain the final partition.

Our use of the scheduling algorithm of Lenstra et al. is gray-box in the follow-
ing sense: our algorithm runs the scheduling algorithm in a black-box manner.
However, in the analysis, we look inside the black box. Namely, we apply the
Rounding Theorem of Lenstra et al. to show that the LP used by their algorithm
yields a good solution for our problem.

For partitioning 4-connected planar graphs, following Du et al., we use the
fact that such graphs have Hamiltonian cycles [18] which can be found in linear
time [19]. Our algorithm is simple and efficient: It goes around the Hamiltonian
cycle and greedily partitions the nodes, starting from the lightest contiguous part
of the cycle that satisfies the weight lower bound. If the last part is too light,
it is combined with the first part. Thus, the algorithm runs in linear time. Our
algorithm and analysis apply to any graph that contains a Hamiltonian cycle
which can be computed efficiently or is given as part of the input.

Min-Max Bin Covering. We present a simple 2-approximation algorithm that
runs in linear time. Du et al. gave a schema with approximation ratio 2+ ε, and
time complexity exponential in ε−1. They also showed that approximation ratio
better than 2 cannot be achieved in polynomial time unless P=NP. Thus, we
completely resolve the approximability of this problem.

Our algorithm greedily places items in the bins in the order of decreasing
weights, and then redistributes items in the first and the last three bins.

Min-Max Rectangle Tiling. We improve the approximation ratio for this
problem from 5 to 4. We can get a better ratio of 3 when the entries in the
matrix are restricted to be 0 or 1. This case covers the scenarios where each



Approximation Algorithms for Min-Max Generalization Problems 5

entry indicates the presence or absence of some object, as in applications with
geographic data, such as GPS coordinate data originally considered by Du et al.

Our algorithm builds on the slicing and dicingmethod introduced by Berman
et al. [15]. The idea is to first partition the rectangle horizontally into slices, and
then partition slices vertically. The straightforward application of slicing and
dicing gives ratio 5. We improve it by doing simple preprocessing. For the case
of 0-1 entries, the preprocessing step is more sophisticated.

Summary and Organization. We summarize our results in Table. 1. The results
on Graph Partition are stated in Theorems 2.1 and 2.2 in Sect. 2, on Bin Cover-
ing, in Theorem 3.1 in Sect. 3, and on Rectangle Tiling, in Theorems 4 and 4.2
in Sect. 4. All omitted proofs are deferred to the full version.

Terminology and Notation. Here we describe terminology and notation common
to all technical sections. We use opt as the cost of an optimal solution.

Definition 1.1. An item (or a set of items) is fat if it has weight at least wlb,
and lean otherwise. We apply this terminology to nodes and sets of nodes in an
instance of Graph Partition, and to elements and rectangles in Rectangle Tiling.

A solution is legal if it obeys theminimum weight constraint, i.e., all parts are fat.

2 Min-Max Graph Partition

We present two approximation algorithms for Min-Max Graph Partition whose
performance is summarized in Theorems 2.1 and 2.2.

Theorem 2.1. Min-Max Graph Partition can be approximated with ratio 3 in
polynomial time.

Theorem 2.2. Min-Max Graph Partition on 4-connected planar graphs can be
approximated with ratio 2.5 in linear time. (The proof is omitted.)

The rest of this section is devoted to the proof of Theorem 2.1.
Recall that an input to Min-Max Graph Partition is a graph (V,E) with

node weights w : V → R+ and a weight lower bound wlb. W.l.o.g. assume that
wlb = 1. (All weights can be divided by wlb to obtain an equivalent instance
with wlb = 1.) For now, we will also assume that all nodes in the graph are lean.
(Recall Definition 1.1 of fat and lean.) We remove this assumption in Sect. 2.4.

As described in Sect. 1.2, our algorithm first constructs a 2-tier partition into
groups and supergroups (Sect. 2.1), then transforms it until all supergroups of
large weight have well-defined central nodes, and nearly all non-central nodes
in those supergroups are only connected to central nodes (Sect. 2.2) and finally
solves an instance of Scheduling on Unrelated Parallel Machines (Sect. 2.5), in-
terprets it as a partition and adjusts it to get the final solution.

2.1 A Preliminary 2-Tier Partition

We start by defining a 2-tier partition. (See illustration in Fig. 1.)



6 Piotr Berman and Sofya Raskhodnikova

Fig. 1. An example of a 2-tier partition.
Shaded background indicates groups;
curved lines indicate supergroups. The
top supergroup has a 4-node central
group and 3 mobile groups. The two
bottom supergroups are group-pairs.

Definition 2.1 (2-tier partition). A 2-tier partition of a graph (V,E,w) con-
taining only lean nodes is a partition of V into lean sets, called groups, together
with a partition of the groups into fat sets, called supergroups. The set of nodes
in a group, or in a supergroup, should induce a connected graph. The set of
groups contained in a supergroup S is denoted by G(S).

Since groups are lean and super-
groups are fat, each supergroup con-
tains at least two groups. We assign
names to some types of groups and su-
pergroups.

Definition 2.2. Group-pair, triangle,
star supergroups; central group
• A supergroup is a group-pair if it
consists of two groups.
• A supergroup is a triangle if it
consists of three groups, pairwise con-
nected by an edge.
• A supergroup S with 3 or more
groups is a star if it forms a star graph
on groups, i.e., it contains a group G,
called central, such that groups in
G(S) − {G} form connected compo-
nents of S −G.

Lemma 2.1 (Initial partition). Given a connected graph on lean nodes, in
polynomial time we can compute a 2-tier partition where
(a) each supergroup is a group-pair, a triangle or a star and
(b) w(G) + w(H) ≥ 1 for all adjacent groups G and H.

Proof. First, form the groups greedily: Make each node a group. While there are
two groups G,H such that G ∪H is lean and connected, merge G and H.

Second, form group-pairs greedily: While there are two adjacent groups G,H
that are not included in a supergroup, form a supergroup G ∪H.

Next, insert remaining groups into supergroups: For each group G still not
included in a supergroup, pick an adjacent groupH. Since the second step halted,
H is in some group-pair created in that step. Insert G into H’s supergroup.

Finally, break down supergroups that are not stars: Consider a group-pair P
created in the second step from groups G and H, and let S be the supergroup
that was formed from P . Suppose S has 4 or more groups, but is not a star.
Since groups in S − P are not connected, and neither G nor H can become the
center of S, there are two different groups G′ and H ′ in S that are adjacent to
G and H, respectively. Let S1 be the the union of G, G′ and all other groups in
S that are not adjacent to H. Replace S with S1 and S − S1. In the resulting
2-tier partition, all supergroups with 4 or more groups are stars, so item (a) of
the lemma holds. Item (b) is guaranteed by the first step of the construction. ⊓⊔



Approximation Algorithms for Min-Max Generalization Problems 7

2.2 Improving the Initial 2-Tier Partition

In this section, we modify the initial 2-tier partition, while maintaining property
(a) and a weaker version of property (b) of Lemma 2.1. As we are working on
our 2-tier partition, we will rearrange groups and supergroups. A group G is
called mobile if it can be removed from its supergroup S while keeping property
(a) of Lemma 2.1. Namely, the modified S has to be a group-pair or a star.

Definition 2.3 (Mobile group). A group is mobile if it is not in a group-pair
and it is not a central group.

The goal of this phase of the algorithm is to separate supergroups into two
types: (i) the ones that will be repartitioned by the scheduling algorithm and
(ii) the ones that will be used in the final partition as they are. Supergroups
of type (i) will be well structured: in such a supergroup, the central group will
have a unique central node, and mobile groups will be connected only to central
nodes (possibly in multiple central groups). Supergroups of type (ii) will have
at most 3 groups, and thus weight at most 3— sufficiently light to form parts
in a 3-approximate solution. Central groups of supergroups of type (i) will be
allocated their own parts in the final partition. Mobile groups will be distributed
among these parts by the scheduling algorithm. To guarantee that the optimal
distribution of central nodes and mobile groups into parts provides a sufficiently
good solution, we require that mobile groups are connected only to central nodes
of the supergroups of type (i). (Non-central nodes of central groups will join
the parts of their central nodes after the scheduling algorithm produces a 2-
approximate solution. Since, by definition, each group is lean, even after adding
central groups, we will still be able to guarantee a 3-approximation.)

We explain this phase of the algorithm by specifying several transformations
of a 2-tier partition (see Figs. 2 and 3). The algorithm applies these transfor-
mations to the initial 2-tier partition from Lemma 2.1. Each transformation is
defined by the trigger and the action. The algorithm performs the action for the
first transformation for which the trigger condition is satisfied for some group(s)
in the current 2-tier partition. This phase terminates when no transformation
can be applied.

The purpose of the first transformation, CombG, is to ensure that w(G) +
w(H) ≥ 1 for all adjacent groups G and H, where one of the groups is mobile.
Even though an even stronger condition, property (b) of Lemma 2.1, holds for
the initial 2-tier partition, it might be violated by other transformations. The
second transformation, ConP, is getting rid of edges between mobile group. The
third transformation, SplitC, is ensuring that each central group has a unique
central node to which mobile groups connect. To accomplish this, while there is a
central group G that violates this condition, SplitC splits G into two parts, each
containing a node to which mobile groups connect. Later, it rearranges resulting
groups and supergroups to ensure that all previously achieved properties of our
2-tier partition are preserved (in some cases, relying on CombG and ConP to
reinstate these properties).



8 Piotr Berman and Sofya Raskhodnikova

Fig. 2. Transformations. (Perform the first one that applies.)

• CombG = Combine groups.

Trigger: Groups G and H are connected by an edge, G ∪H is lean and H is
mobile.

Action: Remove H from its supergroup and merge the two groups.

• ConP = Connect group-pairs.

Trigger: Two mobile groups are connected with an edge, and they belong
either to two different supergroups or to a supergroup with more than three
groups.

Action: Remove them from their supergroup(s) and combine them into a
group-pair.

• SplitC = Split the center.

Trigger: G is the central group of a supergroup S, u and v are two different
nodes in G, and two mobile groups Hu,Hv (not necessarily from G(S)) have
edges to u and v, respectively.

Action: Split G into two connected sets, Gu and Gv, containing u and v,
respectively. Split S into Su and Sv, by attaching each non-central group to
Gu or Gv. If Hu ∈ G(S) attach Hu to Gu. Similarly, if Hv ∈ G(S) attach Hv

to Gv.

[LeanLean case]: If both Su and Sv are lean, we make them groups, and S
becomes a group-pair.

[FatFat case]: If both Su and Sv are fat, they become new supergroups.

Now assume that Su is fat and Sv is lean.

[FatLean-IN case]: If Hv ∈ G(S) then change the partition of S by replacing
G and Hv with Gu and Sv. If S is not a star, but has 4 or more groups, apply
CombG or ConP.

[FatLean-OUT case]: If Hv ̸∈ G(S) then remove Sv from G and S and treat it
like a mobile group in contact with Hv, which triggers CombG or ConP.

• ChainR = Chain Reconnect.

Trigger: An unstructured supergroup S has 4 or more groups.

Action: Since CombG, ConP cannot be applied, we have a chain of super-
groups S = S1, . . . , Sk where Sk is a group-pair, a mobile group of Sk−1 is
adjacent to Sk and for i = 1, . . . , k−2 a mobile group of Si is adjacent to the
central group of Si+1. Then for i = 1, . . . , k − 1, move a mobile group from
Si to Si+1.

If the previously described transformations cannot be applied, star super-
groups in the current 2-tier partition are well structured: they have unique cen-
tral nodes, and all mobile groups connect only to these central nodes, with one
exception—they could still connect to group-pairs. Group-pairs are not guaran-



Approximation Algorithms for Min-Max Generalization Problems 9

H

G

CombG

H

G

ConP
m m m m

m = mobile groups
changing
connections

SplitC

ChainR

mmm mmm

G
uH

u
u

G

v H
v

v G
uH

u
u

G

v H
v

v

Fig. 3. Transformations that improve the initial partition. Solid lines connect groups
of a supergroup, circles indicate groups, unless they are within ovals—then ovals are
groups and circles are fragments of groups. SplitC transformation has four cases: all
split a central group G into two parts and combine them with groups Hu and Hv to
form new groups or supergroups (depending on the weight of the resulting pieces).

teed to have any structure. But they are light enough to be used as parts in
the final partition. The same applies to triangles and stars with 3 groups. All
group-pairs and triangles will be used as parts in the final partition, and thus
will be of type (ii), according to the description after Definition 2.3. Stars with
3 groups could be of type (i) or (ii). As we already explained, it is important for
the success of the next (scheduling) phase of the algorithm that mobile groups
of supergroups of type (i) are adjacent only to the central nodes of supergroups
of type (i). Next, we define structured and unstructured supergroups. After this
phase completes, structured supergroups of the resulting 2-tier partition will be
assigned type (i) and unstructured supergroups will be assigned type (ii). We call
all group-pairs unstructured. Each star whose mobile group is adjacent to an
unstructured supergroup is not ready to become a group of type (i) and is also
called unstructured.

Definition 2.4 (Structured and unstructured supergroups). An unstruc-
tured supergroup is either a group-pair or (recursively) a star that has a mobile
group adjacent to an unstructured supergroup. A structured supergroup is a star
that is not unstructured.

The purpose of ChainR is to ensure that each remaining unstructured su-
pergroup has at most 3 groups. ChainR is triggered if there is an unstructured



10 Piotr Berman and Sofya Raskhodnikova

supergroup S with 4 or more groups. This can happen only if S is connected
by a chain of unstructured supergroups to a group-pair. The mobile nodes along
this chain are reconnected, as explained in Fig. 2 and illustrated in Fig. 3. This
completes the description of transformations and this phase of the algorithm.

2.3 Analysis of Transformations

We analyze the properties of a 2-tier partition to which our transformations
cannot be applied in Lemma 2.2 and bound the running time of this stage of the
algorithm in Lemma 2.3. (The proofs of these lemmas are omitted.)

Lemma 2.2. When transformations CombG, ConP, SplitC and ChainR
cannot be applied, the resulting 2-tier partition satisfies the following:

a. If G is a center group and H is a mobile group of the same supergroup then
w(G) + w(H) ≥ 1.

b. No edges exist between mobile groups except for groups in the same triangle.
c. Each supergroup S with a central group G also has a central node c(S) such

that all edges between G and mobile groups include node c(S).
d. Each supergroup with 4 or more groups is structured.

Lemma 2.3. An algorithm performing transformations defined in Fig. 2 on a
2-tier partition until none of them are applicable runs in polynomial time.

2.4 A 2-Tier Partition on Graphs with Arbitrary Weights

In this section we remove the assumption that all nodes in our input graph are
lean. To obtain a 2-tier partition of a graph with arbitrary node weights, first
allocate a separate supergroup for each fat node. Let Vlean be the set of lean
nodes. Form isolated groups from lean connected components of Vlean. For fat
connected components of Vlean, compute the 2-tier partition using the method
from Sections 2.1 and 2.2.

The next lemma summarizes the main outcome of improving the 2-tier par-
tition using transformations in Fig. 2. It follows directly from Lemma 2.2.

Lemma 2.4 (Main). Consider a 2-tier partition of a graph G = (V,E,w)
obtained by our method. Let C be the set consisting of fat nodes and central
nodes of structured supergroups in that 2-tier partition. Then mobile groups of
structured supergroups are connected components of V − C.

Proof. By definition, each group is connected. It remains to show that a node
in a mobile group cannot be adjacent to nodes of V − C which are in different
groups. Recall that all groups are either central, mobile or in a group-pair. A
node in a mobile group cannot be adjacent to a node in a different mobile group
by Lemma 2.2(b). It cannot be adjacent to a non-central node in a central group
by Lemma 2.2(c). Finally, it cannot be adjacent to a node in a group-pair by
Definition 2.4 and Lemma 2.2(d). ⊓⊔



Approximation Algorithms for Min-Max Generalization Problems 11

2.5 Reduction to Scheduling and the Final Partition

We reduce Min-Max Graph Partition to Scheduling Unrelated Parallel Machines
(SUPM), and use a 2-approximation algorithm of Lenstra et al. for SUPM to
get a 3-approximation for graph partition.

The number of parts in the final partition will be equal to the number of su-
pergroups in the 2-tier partition of Sect. 2.4. We use all unstructured supergroups
and triangles as parts in the final partition. By Lemma 2.2(d), the weight of these
supergroups is below 3. We use central groups of structured supergroups and fat
nodes as seeds of the remaining parts, that is, in the final partition, we create
a part for each central group and each fat node, and partition the remaining
groups among these parts using a reduction to SUMP.

Now we explain our reduction. In SUPM, the input is m parallel machines, n
jobs and processing times pji of job j on machine i. For each job j, we can also
specify a set M(j) of machines on which it can be scheduled. (This is equivalent
to setting pji to infinity for i /∈ M(j)). The starting point of the reduction is the
2-tier partition from Sect. 2.4. We create a machine for every node in C, where
C is the set consisting of fat nodes and central nodes of structured supergroups,
as defined in Lemma 2.4. We create a job for every node in C, and for every
mobile and isolated group. To simplify the notation, we identify the names of
the machines and jobs with the names of the corresponding nodes and groups. A
job corresponding to a node i in C can be scheduled only on machine i, that is,
M(i) = {i}, and we set pii = w(i). A job corresponding to a mobile or isolated
group j can be scheduled on machine mi iff group j is connected to C-node i.
This defines M(j). We set pji = w(j).

We run the algorithm of [17] for SUPM on the instance defined above. The
solution returned by the algorithm is interpreted as a partition of the nodes
of the original graph as follows. If job j is scheduled on machine i then node
(group) j is assigned to part i of the partition. Each central group is assigned to
the same part as the central node of the group.

The final part of the algorithm repairs lean parts in the resulting partition.
While there is a lean part P in the partition, reassign a group as follows. Let S
be the supergroup in the 2-tier partition whose center was a seed for P . (A lean
part cannot have a fat node as a seed.) Let C be the central group of S. Then, by
construction, P contains C. Remove a mobile group of S, say H, from its current
part and insert it into P . Now, by Lemma 2.2(a), w(P ) ≥ w(C) + w(H) ≥ 1
because P contains C and H.

This repair process will terminate because each part is repaired at most once.
Since we repair P using a mobile group from the supergroup corresponding to P
(that is, the supergroup from the 2-tier partition whose center is C), the future
repairs of other parts will not remove H from part P . Later, even if P looses
a mobile group when we repair some other part P ′, the weight of P will still
satisfy: w(P ) ≥ w(C) + w(H) ≥ 1. Thus, after a number of steps which is at
most the number of parts, all parts will be fat.

Theorem 2.1 follows from the following lemma whose proof is omitted.



12 Piotr Berman and Sofya Raskhodnikova

Lemma 2.5. The final partition returned by the algorithm above has parts of
weight at most opt+ 2.

3 Min-Max Bin Covering

In this section, we present our algorithm for Min-Max Bin Covering.

Theorem 3.1. Min-Max Bin Covering can be approximated with ratio 2 in time
O(n).

Proof. W.l.o.g. assume that wlb = 1, I = {1, . . . , n} and w1 ≥ w2 ≥ . . . ≥ wn.
We also assume that wi < 1 for all items i, since items of larger weight can be
placed in their own bins without affecting the quality of the solution. (Each such
bin has weight at least 1 and at most opt.)

If w(I) < 3, a legal packing consists of ≤ 2 bins. Therefore, opt ≥ w(I)/2.
Thus, w(I) ≤ 2opt, and we get a 2-approximation by returning one bin B1 = I.
Theorem 3.1 follows from Lemma 3.1, dealing with instances with w(I) ≥ 3. ⊓⊔

Lemma 3.1. Given a Min-Max Bin Covering instance I with n items and
w(I) ≥ 3, a solution with cost at most opt+ 1 can be found in time O (n).

Proof. We compute a preliminary packing greedily, filling successive bins with
items in order (of decreasing weights), and moving to a new bin when the weight
of the current bin reaches or exceeds 1. Let B1, . . . , Bk be the resulting bins.

Definition 3.1. A bin B is good if w(B) ∈ [1, 2]. A packing where all bins are
good is called good.

All bins in the preliminary packing, excluding Bk, are good. If w(Bk) ≥ 1,
the preliminary packing is good. However, Bk can have weight less than 1. If
w(Bk−1) + w(Bk) ≤ 2, we obtain a good packing by combining Bk−1 and Bk.
In the remainder of the proof, we show how to rearrange items in Bk when

w(Bk) < 1; (1)

w(Bk−1) + w(Bk) > 2 (2)

to obtain a legal packing with cost at most opt+ 1.

Observation 3.2 If i ∈ Bj then w(Bj) < 1 + wi. Thus, w(Bj)− wi < 1.

Definition 3.2. An item i is called small if wi ≤ 1/2, and large otherwise.

Since w(Bk) < 1, w(Bk−1) < 2 and w(I) ≥ 3, the number of bins k ≥ 3.
We repack bins B1, Bk−2, Bk−1 and Bk to ensure that the last bin satisfies the
weight lower bound. The remaining proof (omitted) is broken down into cases,
depending on how many bins contain small items. ⊓⊔



Approximation Algorithms for Min-Max Generalization Problems 13

4 Min-Max Rectangle Tiling

We present two approximation algorithms for Min-Max Rectangle Tiling whose
performance is summarized in Theorems 4.1 and 4.2.

Theorem 4.1. Min-Max Rectangle Tiling can be approximated with ratio 4 in
time O(mn).

Proof. Our algorithm first preprocesses the array to ensure that the last row is
fat. (Recall that fat and lean were defined in Definition 1.1.) Then it greedily
slices the array, that is, partitions it using horizontal lines. The resulting groups
of consecutive rows are called slices. Finally, each slice is greedily diced using
vertical lines into sub-rectangles, called chunks.

Let Ri denote the ith row of A. While Rm is thin, we perform a step of
preprocessing that replaces the last two rows, Rm−1 and Rm, with row Rm−1 +
Rm (and decrements m by 1). When Rm is thin, every subset of Rm is thin, and
cannot be a valid tile. Thus, every element of Rm has to be in the same tile as
the element directly above it. Therefore, a preprocessing step does not change
the set of valid tilings of A.

In a step of slicing, we start at the top (that is, go through the rows in the
increasing order of indices). Let j be the smallest index such that remaining (not
yet sliced) top rows up to row Rj form a fat rectangle. Then we cut horizontally
between rows Rj and Rj+1, and call the top set of rows a slice. Continue on
the matrix formed by the bottom rows. Since the preprocessing ensured that the
last row is fat, all resulting slices are fat.

In a step of dicing, analogously to the slicing step, we cut up a slice vertically,
dicing away chunks, minimal fat sets of leftmost columns, unless the remaining
columns form a lean rectangle.

chunks

lean lean lean

lean

Rj

sliceC1 . . . Ci−1
wi

Ci+1 . . . Ct

Consider a
tile/chunk pro-
duced by our
algorithm. The
rectangle formed
by all rows of
the tile, ex-
cluding the bottom row, is lean because it is obtained by partitioning a valid
slice. Thus, the weight of this rectangle is less than wlb, and consequently, less
than opt. Let C1, . . . , Ct be the columns of the tile (partial columns of the orig-
inal matrix), and w1, . . . , wt be the entries in the bottom row of the slice. Let
i be the smallest index such that C1, · · · , Ci form a fat rectangle. (If this tile
is the last chunk in its slice, then i might be less than t.) By the choice of i,
the rectangle formed by C1, . . . , Ci−1 is lean, and so is the rectangle formed by
Ci+1, . . . , Ct. Ci without wi is also lean, because it is a subset of the lean part
of the slice. Finally, since wi has to participate in a tile, wi ≥ opt. Consequently,
the weight of the tile is smaller than opt+ 3wlb ≤ 4opt.

It is easy to implement the algorithm so that each step performs a constant
number of operations per matrix entry, and the algorithm takes time O(mn). ⊓⊔



14 Piotr Berman and Sofya Raskhodnikova

We can get a better approximation ratio when the entries in the matrix are
restricted to be 0 or 1. This case covers the scenarios where each entry indicates
the presence or absence of some object.

Theorem 4.2. Min-Max Rectangle Tiling with 0-1 entries can be approximated
with ratio 3 in time O(mn). (The proof is omitted.)

References

1. Du, W., Eppstein, D., Goodrich, M.T., Lueker, G.S.: On the approximability of
geometric and geographic generalization and the min-max bin covering problem.
In: WADS. (2009) 242–253

2. Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymous data
mining: A survey. In Aggarwal, C.C., Yu, P.S., eds.: Privacy-Preserving Data
Mining: Models and Algorithms. Springer (2008)

3. Garcia, Y.J., Lopez, M.A., Leutenegger, S.T.: A greedy algorithm for bulk loading
r-trees. In: GIS ’98: Proceedings of the 1998 ACM Int. Symp. on Advances in
Geographic Information Systems, ACM (1998) 163–164

4. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.T.: On a dual version
of the one-dimensional bin packing problem. J. Algorithms 5 (1984) 502–525

5. Csirik, J., Johnson, D.S., Kenyon, C.: Better approximation algorithms for bin
covering. In: SODA. (2001) 557–566

6. Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation
scheme for bin covering. Theor. Comput. Sci. 306 (2003) 543–551

7. Bansal, N., Sviridenko, M.: The santa claus problem. In: STOC ’06: Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing, New York,
NY, USA, ACM (2006) 31–40

8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of
Discrete Mathematics 5 (1979) 287–326

9. Manne, F.: Load Balancing in Parallel Sparse Matrix Computation. PhD thesis,
University of Bergen, Norway (1993)

10. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling
and packing. In: SODA. (1998) 384–393

11. Sharp, J.P.: Tiling multi-dimensional arrays. In: FCT. (1999) 500–511
12. Smith, A., Suri, S.: Rectangular tiling in multi-dimensional arrays. In: SODA.

(1999) 786–794
13. Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two

dimensions: Algorithms, complexity, and applications. In: ICDT. (1999) 236–256
14. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Improved approx-

imation algorithms for rectangle tiling and packing. In: SODA. (2001) 427–436
15. Berman, P., DasGupta, B., Muthukrishnan, S.: Slice and dice: A simple, improved

approximate tiling recipe. In: SODA. (2002) 455–464
16. Berman, P., DasGupta, B., Muthukrishnan, S.: Approximation algorithms for

max-min tiling. J. Algorithms 47 (2003) 122–134
17. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling

unrelated parallel machines. Math. Program. 46 (1990) 259–271
18. Tutte, W.T.: A theorem on planar graphs. Trans. Amer. Math. Soc. 82 (1956)

99–116
19. Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for

4-connected planar graphs. J. Algorithms 10 (1989) 187–211


