
Analyzing Graphs with Node Differential Privacy

Shiva Prasad Kasiviswanathan1?, Kobbi Nissim2, Sofya Raskhodnikova3??, and
Adam Smith3? ? ?

1 General Electric Global Research, USA; kasivisw@gmail.com
2 Ben-Gurion University, Israel; kobbi@cs.bgu.ac.il

3 Pennsylvania State University, USA; {sofya,asmith}@cse.psu.edu

Abstract. We develop algorithms for the private analysis of network data that
provide accurate analysis of realistic networks while satisfying stronger privacy
guarantees than those of previous work. We present several techniques for de-
signing node differentially private algorithms, that is, algorithms whose output
distribution does not change significantly when a node and all its adjacent edges
are added to a graph. We also develop methodology for analyzing the accuracy
of such algorithms on realistic networks.
The main idea behind our techniques is to “project” (in one of several senses) the
input graph onto the set of graphs with maximum degree below a certain thresh-
old. We design projection operators, tailored to specific statistics that have low
sensitivity and preserve information about the original statistic. These operators
can be viewed as giving a fractional (low-degree) graph that is a solution to an
optimization problem described as a maximum flow instance, linear program, or
convex program. In addition, we derive a generic, efficient reduction that allows
us to apply any differentially private algorithm for bounded-degree graphs to an
arbitrary graph. This reduction is based on analyzing the smooth sensitivity of the
“naive” truncation that simply discards nodes of high degree.

1 Introduction

Data from social and communication networks have become a rich source of insights
in the social and information sciences. Gathering, sharing and analyzing these data is
challenging, however, in part because they are often highly sensitive (your Facebook
friends or the set of people you email reveal a tremendous amount of information about
you, as in, e.g., Jernigan and Mistree [1]). This paper develops algorithms for the pri-
vate analysis of network data that provide accurate analysis of realistic networks while
satisfying stronger privacy guarantees than those of previous work.

A recent line of work, starting from Dinur and Nissim [2], investigates rigorous def-
initions of privacy for statistical data analysis. Differential privacy (Dwork et al. [3, 4]),
which emerged from this line of work, has been successfully used in the context of

? Part of this wok was done while the author was a postdoc at Los Alamos National Laboratory
and IBM T.J. Watson Research Center.

?? Supported by NSF CAREER grant CCF-0845701 and NSF grant CDI-0941553
? ? ? Supported by NSF Awards CCF-0747294 and CDI-0941553 as well as Penn State Clinical &

Translational Research Institute, NIH/NCRR Award UL1RR033184.

2 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

“tabular”, or “array” data. Roughly, differential privacy guarantees that changes to one
person’s data will not significantly affect the output distribution of an analysis proce-
dure.

For tabular data, it is clear which data “belong” to a particular individual. In the
context of graph data, two interpretations of this definition have been proposed: edge
and node differential privacy. Intuitively, edge differential privacy ensures that an algo-
rithm’s output does not reveal the inclusion or removal of a particular edge in the graph,
while node differential privacy hides the inclusion or removal of a node together with
all its adjacent edges.

Node privacy is a strictly stronger guarantee, but until now there have been no node-
private algorithms that can provide accurate analysis of the sparse networks that arise
in practice. One challenge is that for many natural statistics, node privacy is impossible
to achieve while getting accurate answers in the worst case. The problem, roughly, is
that node-private algorithms must be robust to the insertion of a new node in the graph,
but the properties of a sparse graph can be altered dramatically by the insertion of a
well-connected node. For example, for common graph statistics – the number of edges,
the frequency of a particular subgraph – the change can overwhelm the value of the
statistic in sparse graphs.

In this paper we develop several techniques for designing differentially node-private
algorithms, as well as a methodology for analyzing their accuracy on realistic networks.
The main idea behind our techniques is to “project” (in one of several senses) the input
graph onto the set of graphs with maximum degree below a certain threshold. The ben-
efits of this approach are two-fold. First, node privacy is easier to achieve in bounded-
degree graphs since the insertion of one node affects only a relatively small part of the
graph. Technically, the sensitivity of a given query function may be much lower when
the function is restricted to graphs of a given degree. Second, for realistic networks this
transformation loses relatively little information when the degree threshold is chosen
carefully.

The difficulty with this approach is that the projection itself may be very sensitive
to a change of a single node in the original graph. We handle this difficulty via two
different techniques. First, for a certain class of statistics, we design tailored projec-
tion operators that have low sensitivity and preserve information about a given statistic.
These operators can be viewed as giving a fractional (low-degree) graph that is a solu-
tion to a convex optimization problem, typically given by a maximum flow instance or
linear program. Using such projections we get algorithms for accurately releasing the
number of edges in a graph, and counts of small subgraphs such as triangles, k-cycles,
and k-stars (used as sufficient statistics for popular graph models) in a graph, and certain
estimators for power law graphs (see Sections 4 and 5).

Our second technique is much more general: we analyze the “naive” projection
that simply discards high-degree nodes in the graph. We give efficient algorithms for
bounding the “local sensitivity” of this projection, which measures how sensitive it is to
changes in a particular input graph. Using this, we derive a generic, efficient reduction
that allows us to apply any differentially private algorithm for bounded-degree graphs
to an arbitrary graph. The reduction’s loss in accuracy depends on how far the input

Analyzing Graphs with Node Differential Privacy 3

graph is from having low degree. We use this to design algorithms for releasing the
entire degree distribution of a graph.

Because worst-case accuracy guarantees are problematic for node-private algorithms,
we analyze the accuracy of our algorithms under a mild assumption on the degree dis-
tribution of the input graph. The simplest guarantees are for the case where a bound D
on the maximum degree of the graph is known, and the guarantees typically relate the
algorithms’s accuracy to how quickly the query function can change when restricted to
graphs of degree D (e.g., Corollary 6.1). However, real-world networks are not well-
modeled by a graphs of a fixed degree, since they often exhibit influential, high-degree
nodes. In our main results, we assume only that tail of the degree distribution decreases
slightly more quickly than what trivially holds for all graphs. (If d̄ is the average degree
in a graph, Markov’s inequality implies that the fraction of nodes with degree above t · d̄
is at most 1/t. We assume that this fraction goes down as 1/tα for a constant α > 1
or α > 2, depending on the result.) Our assumption is satisfied by all the well-studied
social network models we know of, including so-called scale-free graphs [5].

1.1 Related Work

The initial statements of differential privacy [3, 4] considered databases that are arrays
or sets – each individual’s information corresponds to an entry in the database, and this
entry may be changed without affecting other entries. That paper also introduced the
very basic technique for constructing differentially private function approximations, by
the addition of Laplace noise calibrated to the global sensitivity of the function.4 This
notion naturally extends to the case of graph data, where each individual’s information
corresponds to an edge in the graph (edge privacy). The basic technique of Dwork et
al. [3] continues to give a good estimate, e.g., for counting the number of edges in a
graph, but it ceases to provide good analyses even for some of the most basic functions
of graphs (diameter, counting the number of occurrences of a small specified subgraph)
as these functions exhibit high global sensitivity.

The first differentially private computations over graph data appeared in Nissim et
al. [6] where it was shown how to estimate, with differential edge privacy, the cost of
the minimum spanning tree and the number of triangles in a graph. These computations
employed a different noise addition technique, where noise is calibrated to a more lo-
cal variant of sensitivity, called smooth sensitivity. These techniques and results were
further extended by Karwa et al. [7]. Hay et al. [8] showed that the approach of [3] can
still be useful when combined with a post-processing technique for removing some of
the noise. They use this technique for constructing a differentially edge-private algo-
rithm for releasing the degree distribution of a graph. They also proposed the notion of
differential node privacy and highlighted some of the difficulties in achieving it.

A different approach to graph data was suggested by Rastogi et al. [9], where the
privacy is weakened to a notion concerning a Bayesian adversary whose prior distribu-
tion on the database comes from a specified family of distributions. Under this notion
of privacy, and assuming that the adversary’s prior admits mainly negative correlations

4 Informally, global sensitivity of a function measures the largest change in the function outcome
than can result from changing one of its inputs.

4 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

between edges, they give an algorithm for counting the occurrences of a specified sub-
graph. The notion they use, though, is weaker than differential edge privacy. We refer
the reader to [7] for a discussion on how the assumptions about an attacker’s prior limit
the applicability of the privacy definition.

The current work considers databases where nodes correspond to individuals, and
edges correspond to relationships between these individuals. Edge privacy corresponds
in this setting to a requirement that the properties of every relationship (such as its
absence or presence) should be kept hidden, but the overall relationship pattern of an
individual may be revealed. However, each individual’s information corresponds to all
edges adjacent to her node and a more natural extension of differential privacy for this
setting would be that this entire information should be kept hidden. This is what we call
node privacy (in contrast with edge privacy guaranteed in prior work). A crucial devia-
tion from edge privacy is that a change in the information of one individual can affect
the information of all other individuals. We give methods that provide node privacy for
a variety of types of graphs, including very sparse graphs.

Finally, motivated by examples from social networks Gehrke et al. [10] suggest a
stronger notion than differential node privacy – called zero-knowledge privacy – and
demonstrate that this stronger notion can be achieved for several tasks in extremely
dense graphs. Zero-knowledge privacy, as they employ it, can be used to release quan-
tities that can be computed from small, random induced subgraphs of a larger graph.
Their techniques are not directly applicable to sparse graphs (since a random induced
subgraph will contain very few edges, with high probability).

We note that while node privacy gives a very strong guarantee, it may not answer all
privacy concerns in a social network. Kifer and Machanavajjhala [11] criticize differen-
tial privacy in the context of social networks, noting that individuals can have a greater
effect on a social network than just forming their own relationships (their criticism is
directed at edge privacy, but it can also apply to node privacy).

Concurrent Work. In independent work, Blocki et al. [12] also consider node-level
differential private algorithms for analyzing sparse graphs. Both our work and that of
Blocki et al. are motivated by getting good accuracy on sparse graphs, and employ pro-
jections onto the set of low-degree graphs to do so. The two works differ substantially
in the technical details. See Appendix A for a detailed comparison.

Organization. Section 2 defines the basic framework of node and edge privacy and
gives background on sensitivity and noise addition that is needed in the remainder of
the paper. Section 3 introduces a useful, basic class of queries that can be analyzed
with node privacy, namely queries that are linear in the degree distribution. Section 4
gives our first projection technique based on maximum flow and applies it to privately
estimate the number of edges in a graph (Section 4.2). Section 4.3 generalizes the flow
technique to apply it to any concave function on degree. Section 5 provides a private
(small) subgraph counting algorithm via linear programming. Finally, Section 6 de-
scribes our general reduction from privacy on all graphs to the design of algorithms
that are private only on bounded-degree graphs, and applies it to privately release the
(entire) degree distribution. Due to space constraints, all proofs are deferred to the full
version of this paper.

Analyzing Graphs with Node Differential Privacy 5

2 Preliminaries
Notation. We use [n] to denote the set {1, . . . , n}. For a graph, (V,E), d̄(G) = 2|E|/|V |
is the average degree of the graph G and degv(G) denotes the degree of node v ∈ V in
G. When the graph referenced is clear, we drop G in the notation. The asymptotic no-
tation On(·), on(·) is defined with respect to growing n. Other parameters are assumed
to be functions independent of n unless specified otherwise.

Let G denote the set of unweighted, undirected finite labeled graphs, and let Gn
denote the set of graphs on at most n nodes and Gn,D be the set of all graphs in Gn with
maximum degree D.

2.1 Graphs Metrics and Differential Privacy

We consider two metrics on the set of labeled graphs: node and edge distance. The
node distance dnode(G,G

′) (also called rewiring distance) between graphs G and G′ is
the minimum number of nodes in G′ that need to be changed (“rewired”) to obtain G.
Rewiring allows one to add a new node (with an arbitrary set of edges to existing nodes),
remove it entirely, or change its adjacency lists arbitrarily. In particular, a rewiring can
affect the adjacency lists of all other nodes. Equivalently, let k is the number of nodes
in the largest induced subgraph of G which equals the corresponding induced subgraph
of G′. The node distance is dnode(G,G

′) = max{|VG|, |VG′ |} − k . Graphs G,G′ are
node neighbors if their node distance is 1.

The edge distance dedge(G,G
′) is the minimum number of edges in G′ that need

to be changed (i.e., added or deleted) to obtain G. We also count insertion or removal
of an isolated node (to allow for graphs with different number of nodes). In this paper,
distance between graphs refers to the node distance unless specified otherwise.

Definition 2.1 ((ε, δ)-differential Privacy [3, 4, 13]) A randomized algorithmA is (ε, δ)-
node-private (resp. edge-private) if for all events S in the output space of A, and for all
graphs G,G′ at rewiring distance 1 (resp. edge-distance 1) we have:

Pr[A(G) ∈ S] ≤ exp(ε)× Pr[A(G′) ∈ S] + δ .

When δ = 0, the algorithm is ε-differentially private. In this paper, if node or edge
privacy is not specified, we mean node privacy by default.

In this paper, for simplicity of presentation, we assume that n = |V |, the number of
nodes of the input graph G, is publicly known. This assumption is justified since, as we
will see, one can get a very accurate estimate of |V | via a node-private query. Moreover,
given a publicly known value n, one can force the input graph G = (V,E) to have
n nodes without sacrificing differential node privacy: one either pads the graph with
isolated nodes (if |V | < n) or discards the |V |−n “excess” nodes with the largest labels
(if |V | > n) along with all their adjacent edges. Changing one node ofG corresponds to
a change of at most one node in the resulting n-node graph as long as the differentially
private algorithms being run on the data do not depend on the labeling (i.e., they should
be symmetric in the order of the labels).

Differential privacy “composes” well, in the sense that privacy is preserved (albeit
with slowly degrading parameters) even when the adversary gets to see the outcome of
multiple differentially private algorithms run on the same data set.

6 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

Lemma 2.1 (Composition, Post-processing [14, 15]). If an algorithm A runs t ran-
domized algorithms A1, . . . ,At, each of which is (ε, δ)-differentially private, and ap-
plies an arbitrary (randomized) algorithm g to their results, i.e.,A(G) = g(A1(G), . . . ,
At(G)), then A is (tε, tδ)-differentially private.

2.2 Calibrating Noise to Sensitivity

Output Perturbation. One common method for obtaining efficient differentially pri-
vate algorithms for approximating real-valued functions is based on adding a small
amount of random noise to the true answer. In this paper, we use two families of ran-
dom distributions to add noise: Laplace and Cauchy. A Laplace random variable with
mean 0 and standard deviation

√
2λ has density h(z) = (1/(2λ))e−|z|/λ. We denote it

by Lap(λ). A Cauchy random variable with median 0 and median absolute deviation λ
has density h(z) = 1/(λπ(1 + (z/λ)2)). We denote it by Cauchy(λ).
Global Sensitivity. The most basic framework for achieving differential privacy, Laplace
noise is scaled according to the global sensitivity of the desired statistic f . This tech-
nique extends directly to graphs as long as we measure sensitivity with respect to the
same metric as differential privacy. Below, we define these (standard) notions in terms
of node distance and node privacy. Recall that Gn is the set of all n-node graphs.

Definition 2.1 (Global Sensitivity [3]). The `1-global node sensitivity of a function
f : Gn → Rp is:

∆f = max
G,G′ node neighbors

‖f(G)− f(G′)‖1 .

For example, the number of edges in a graph has node sensitivity n (when we restrict
our attention to n-node graphs), since rewiring a node can add or remove at most n
nodes. In contrast, the number of nodes in a graph has node sensitivity 1, even when we
consider graphs of all sizes (not just a fixed size n).

Theorem 2.2 (Laplace Mechanism [3]). The algorithmA(G) = f(G)+Lap(∆f/ε)p

(i.e., adds i.i.d. noise Lap(∆f/ε) to each entry of f), is ε-node-private.

Thus, we can release the number of nodes |V | in a graph with noise of expected
magnitude 1/ε while satisfying node differential privacy. Given a public bound n on
the number of nodes, we can release the number of edges |E| with additive noise of
expected magnitude (n− 1)/ε (the global sensitivity for releasing edge count is n− 1).
Local Sensitivity. The magnitude of noise added by the Laplace mechanism depends
on ∆f and the privacy parameter ε, but not on the database G. For many functions, this
approach yields high noise, not reflecting the function’s typical insensitivity to individ-
ual inputs. Nissim et al. [6] proposed a local measure of sensitivity, defined next.

Definition 2.2 (Local Sensitivity [6]). For a function f : Gn → Rp and a graph G ∈
Gn, the local sensitivity of f at G is LSf (G) = max

G′
‖f(G) − f(G′)‖1, where the

maximum is taken over all node neighbors G′ of G.

Analyzing Graphs with Node Differential Privacy 7

Note that, by Definitions 2.1 and 2.2, the global sensitivity ∆f = maxG LSf (G). One
may think of the local sensitivity as a discrete analogue of the magnitude of the gradient
of f .

A straightforward argument shows that every differentially private algorithm must
add distortion at least as large as the local sensitivity on many inputs. However, finding
algorithms whose error matches the local sensitivity is not straightforward: an algorithm
that releases f with noise magnitude proportional to LSf (G) on input G is not, in
general, differentially private [6], since the noise magnitude itself can leak information.
Smooth Bounds on LS. Nissim et al. [6] propose the following approach: instead of
using the local sensitivity, select noise magnitude according to a smooth upper bound on
the local sensitivity, namely, a function S that is an upper bound onLSf at all points and
such that ln(S(·)) has low global sensitivity. The level of smoothness is parameterized
by a number β (where smaller numbers lead to a smoother bound) which depends on ε.

Definition 2.3 (Smooth Bounds [6]). For β > 0, a function S : Gn → R is a β-smooth
upper bound on the local sensitivity of f if it satisfies the following requirements:

for all G ∈ Gn : S(G) ≥ LSf (G);

for all neighbors G,G′ ∈ Gn : S(G) ≤ eβS(G′).

One can add noise proportional to smooth bounds on the local sensitivity using a
variety of distributions. We state here the version based on the Cauchy distribution.

Theorem 2.3 (Calibrating Noise to Smooth Bounds [6]). Let f : Gn → Rp be a
real-valued function and let S be a β-smooth bound on LSf . If β ≤ ε/(

√
2p), the

algorithm A(G) = f(G) + Cauchy(
√

2S(G)/ε)p (adding i.i.d. Cauchy(
√

2S(G)/ε)
to each coordinate of f) is ε-differentially private.

From the properties of Cauchy distribution, the algorithm of the previous theorem
has median absolute error (

√
2S(G))/ε (the median absolute error is the median of the

random variable |A(G) − f(G)|, where A(G) is the released value and f(G) is the
query answer). Note that the expected error of Cauchy noise is not defined. One can get
a similar result with an upper bound on any finite moment of the error using different
heavy-tailed probability distributions [6]. We use Cauchy noise here for simplicity.

To compute smooth bounds efficiently, it is convenient to break the expression defin-
ing it down into tractable components. For every distance t, consider the largest local
sensitivity attained on graphs at distance at most t from G. The local sensitivity of f at
distance t is:

LS(t)(G) = max
G′∈Gn: dnode(G,G′)≤t

LSf (G′) .

Now the smooth sensitivity is: S∗f,β(G) = maxt=0,...,n e
−tβLS(t)(G) . Many smooth

bounds on the local sensitivity have a similar form, with LS(t) being replaced by some
other function C(t)(G) with the property that C(t)(G) ≤ C(t+1)(G′) for all pairs of
neighbors G,G′. For example, our bounds on the sensitivity of naive truncation have
this form (Proposition 6.1, Section 6).

8 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

2.3 Sensitivity and Privacy on Bounded-degree Graphs

A graph is D-bounded if it has maximum degree at most D. The degree bound D can
be a function of the number of nodes in the graph. We can define a variant of differential
privacy that constrains an algorithm only on these bounded-degree graphs.

Definition 2.4 (Bounded-degree (ε, δ)-differential Privacy) A randomized algorithm
A is (ε, δ)D-node-private (resp. (ε, δ)D-edge-private) if for all pairs of D-bounded
graphs G1, G2 ∈ Gn,D that differ in one node (resp. edge), we have Pr[A(G) ∈ S] ≤
eε Pr[A(G′) ∈ S] + δ.

In bounded-degree graphs, the difference between edge privacy and node privacy is
relatively small. For example, an (ε, 0)D-edge-private algorithm is also (εD, 0)D-node-
private (and a similar statement can be made about (ε, δ) privacy, with a messier growth
in δ).

The notion of global sensitivity defined above (from previous work) can also be
refined to consider only how the function may change within Gn,D, and we can ad-
just the Laplace mechanism correspondingly to add less noise while satisfying (ε, 0)D-
differential privacy.

Definition 2.4 (Global Sensitivity on Bounded Graphs). The `1-global node sensi-
tivity on D-bounded graphs of a function f : Gn → Rp is:

∆Df = max
G,G′∈Gn,D: dnode(G,G′)=1

‖f(G)− f(G′)‖1 .

Observation 2.5 (Laplace Mechanism on Bounded Graphs) The algorithmA(G) =
f(G) + Lap (∆Df/ε)

p is (ε, 0)D-node-private.

2.4 Assumptions on Graph Structure

Let pG denote the degree distribution of the graph G, i.e., pG(k) =
∣∣{v : degv(G) =

k}
∣∣/|V |. Similarly, PG denotes the cumulative degree distribution, i.e., PG(k) =

∣∣{v :

degv(G) ≥ k}
∣∣/|V |. Recall that d̄(G) = 2|E|/|V | is the average degree of G.

Assumption 2.6 (α-decay) Fix α ≥ 1. A graph G satisfies α-decay if for all5 real
numbers t > 1, PG(t · d̄) ≤ t−α.

Note that all graphs satisfy 1-decay (by Markov’s inequality). The assumption is
nontrivial for α > 1, but it is nevertheless satisfied by almost all widely studied classes
of graphs. So-called “scale-free” networks (those that exhibit a heavy-tailed degree dis-
tribution) typically satisfy α-decay for α ∈ (1, 2). Random graphs satisfy α-decay for
essentially arbitrarily large α since their degree distributions have tails that decay ex-
ponentially (more precisely, for any α we can find a constant cα such that, with high
probability, α-decay holds when t > cα). Regular graphs satisfy the assumption with
α =∞. Next we consider an implication of α-decay.

5 Our results hold even when this condition is satisfied only for sufficiently large t. For simplic-
ity, we use a stronger assumption in our presentation.

Analyzing Graphs with Node Differential Privacy 9

Lemma 2.2. Consider a graph G on n nodes that satisfies α-decay for α > 1, and
let D > d̄. Then the number of edges in G adjacent to nodes of degree at least D is
O(d̄αn/Dα−1).

3 Linear Queries in the Degree Distribution

The first, and simplest, queries we consider are functions linear in the degree distribu-
tion. In many cases, these can be released directly with node privacy, though they also
highlight why bounding the degree leads to such a drastic reduction in sensitivity. Sup-
pose we are given a function h : N → R≥0 that takes nonnegative real values. We can
extend it to a function on graphs as follows:

Fh(G)
def
=
∑
v∈G

h(degv(G)) ,

where degv is the degree of the node v in G. We will drop the superscript in Fh when
h is clear from the context. The query Fh can also be viewed as the inner product
of h = (h(0), . . . , h(n − 1)) with the degree distribution pG, scaled up by n, i.e.,
Fh(G) = n〈h, pG〉.

Several natural quantities can be expressed as linear queries. The number of edges
in the graph, for example, corresponds to half the identity function, that is, h(i) = i/2
(since the sum of the degrees is twice the number of edges). The number of nodes in
the graph is obtained by choosing the constant function h(i) = 1. The number of nodes
with degrees in a certain range – say above a threshold D – also falls into this category.
Less obviously, certain subgraph counting queries, namely, the number of k-stars for a
given k, can be obtained by taking h(i) =

(
i
k

)
for i ≥ k (and h(i) = 0 for i < k).

The sensitivity of these linear queries depends on the maximum value that h can
take as well as the largest jump in h over the interval {0, . . . , n− 1}. Let

‖h′‖∞
def
= max

0≤i<n−1
|h(i+ 1)− h(i)| .

We refer to ‖h′‖∞ as the maximum slope of h. This quantity depends on n, though we
leave n out of the notation for clarity. Let

‖h‖∞
def
=

(
max

0≤i≤n−1
|h(i)|

)
.

Lemma 3.1. The sensitivity of Fh on Gn is at most ∆Fh ≤ ‖h‖∞ + (n− 1) · ‖h′‖∞ .
If there is a value j ∈ {0, . . . , n−1} such that h(j) = 0, then ∆Fh ≤ 2(n−1)‖h′‖∞ .

This simple rule immediately gives us tight bounds on the sensitivity of several
natural functions, such as the number of nodes, number of edges and the number of
k-stars for a given k). We mention here two functions that come up later in the paper.

(1) Common Estimators for Power Law Coefficients: Many real-world networks ex-
hibit heavy-tailed degree distributions, and a common goal of analysts is to iden-
tify the coefficient of a power law that best fits the data (we note that power laws

10 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

are not the only heavy-tailed distributions, but they are very popular). One well-
studied approach to identifying the power law coefficient is to treat the degrees as
n independent samples from a power law distribution (Clauset et al. [5]). In that
case, the maximum likelihood estimator for the exponent is 1 + n/M(G) where
M(G) =

∑
v∈V ln(degv). Note that M is a linear function of the degree distribu-

tion (as M(G) = Fh(G) with h(i) = ln(i) for i ≥ 1 and h(0) = 0) with maximum
slope ln(2)− ln(1) = ln(2) and maximum value ln(n− 1). The sensitivity of M is
Θ(n). Therefore, applying the Laplace mechanism directly is problematic, since the
noise (of magnitude O(n/ε)) will swamp the value of the query. In Section 4.3, we
propose a different approach (based on convex programming) for privately releasing
these estimators.

(2) Counting Nodes in an Interval: If f = χ[a,b] where χ[a,b](i) = 1 if a ≤ i ≤ b,
and 0 otherwise, then Ff counts the number of nodes of degree between thresholds
a and b. However, the sensitivity ∆Ff = Θ(n), making the answer to this query
useless once Laplace noise has been added.

We can reduce the sensitivity of this query by tapering the characteristic function
of the interval. Given an interval [a, b], consider the tapered step function ft,a,b(i) =
max{0, 1− t ·dist(i, [a, b])}, where dist(i, [a, b]) denotes the distance from i to the
nearest point in the interval [a, b]. The maximum slope of ft,a,b is t, so ∆Fft,a,b =
2tn. Answers to this query may be meaningful for any t = o(1) (since then the
sensitivity will be o(n)). We will find this sort of “smoothed” counting query to be
useful when estimating how many nodes of high degree there are in a graph (see
Proposition 6.1, Section 6).

The linear queries already give us a toolkit for analyzing graphs with node privacy,
much as linear queries (over the data points) give a powerful basic toolkit for the differ-
entially private analysis of conventional data sets (as in the SuLQ framework of Blum et
al. [16]). The difference, of course, is that we need to consider slowly varying functions
in order to keep the sensitivity low.

Graphs of Bounded Degree Notice that the techniques mentioned above for bounding
the sensitivity of a linear query work better in bounded-degree graphs. Specifically, the
sensitivity of Fh on D-bounded graphs is at most

∆Fh ≤ ‖h‖∞ +D‖h′‖∞ . (1)

This motivates the approaches in the remainder of the paper, which seek to first bound
the degree via a projection step.

4 Flow-based Lipschitz Extensions

We now present our flow-based technique. In Section 4.1, we define a flow function and
show that it has low global node sensitivity and, on bounded-degree graphs, it correctly
computes the number of edges in the graph. In Section 4.2, we design a node-private
algorithm for releasing the number of edges in a graph based on this flow function.

Analyzing Graphs with Node Differential Privacy 11

4.1 Flow Graph

Definition 4.1 (Flow graph). Given an (undirected) graph G = (V,E), let V` = {v` |
v ∈ V } and Vr = {vr | v ∈ V } be two copies of V , called the left and the right
copies, respectively. Let D be a natural number less than n. The flow graph of G with
parameter D, a source s and a sink t is a directed graph on nodes V` ∪Vr ∪{s, t} with
the following capacitated edges: edges of capacity D from the source s to all nodes in
V` and from all nodes in Vr to the sink t, and unit-capacity edges (u`, vr) for all edges
{u, v} of G. Let vfl(G) denote the value of the maximum flow in the flow graph of G.

Lemma 4.1. The global node sensitivity ∆vfl ≤ 2D.

Lemma 4.2. For all graphs G, the value vfl(G) ≤ 2fe(G). Moreover, if G is D-
bounded then vfl(G) = 2fe(G).

4.2 Algorithm for Releasing the Number of Edges

In this section, we design a node-private algorithm for releasing the number of edges.
The main challenge in applying the methodology from the previous section is that we
need to select a good threshold D that balances two conflicting goals: keeping the sen-
sitivity low and retaining as large a fraction of the graph as possible.

Given a graph G, let fe(G) be the number of edges in G. Observe that the global
node sensitivity of the edge count,∆fe, is at most n because rewiring (or adding/removing)
a node can change this count by at most n. So releasing fe with Laplace noise of the
magnitude n/ε is ε-node-private. The resulting approximate count is accurate if the
number of edges in the input graph G is large. The following algorithm allows us to re-
lease an accurate count even when this number is low, provided thatG satisfies α-decay,
a natural assumption discussed in Section 2.4.

Algorithm 1 ε-Node-Private Algorithm for Releasing fe(G)

Input: parameters ε,D, n, and graph G on n nodes.
1: Let ê1 = fe(G) + Lap(2n

ε
) and threshold τ = n lnn

ε
.

2: If ê1 ≥ 3τ , return ê1.
3: Else compute the flow value vfl(G) given in Definition 4.1 with D.
4: return ê2 = vfl(G)/2 + Lap(2D

ε
).

Lemma 4.3. Algorithm 1 is an ε-node-private algorithm that takes a graph G and pa-
rameters ε, n,D, and outputs an approximate count for fe(G) (number of edges in G).

1. If fe(G) ≥ (5n lnn)/ε, then with probability at least 1 − 1/ lnn, Algorithm 1
outputs ê1 with

|ê1 − fe(G)| ≤ (2n ln lnn)/ε.

2. If G satisfies α-decay for α > 1, D > d̄, and fe(G) < (n lnn)/ε, then with
probability at least 1− 2/ lnn, Algorithm 1 outputs ê2 and

|ê2 − fe(G)| = O

(
2D ln lnn

ε
+

d̄α

Dα−1

)
.

12 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

The algorithm runs in O(nfe(G)) time.

Using this lemma, and setting D = n1/α, we get the following theorem about privately
releasing edge counts.

Theorem 4.1 (Releasing Edge Counts Privately). There is a node differentially pri-
vate algorithm which, given constants α > 1, ε > 0, and a graph G on n nodes,
computes with probability at least 1− 2/(lnn) an (1± on(1))-approximation to fe(G)
(the number of edges in G) if either of the following holds:

1. If fe(G) ≥ (5n lnn)/ε.
2. If G satisfies α-decay and fe(G) = ω(n1/α(lnn)α+1).

4.3 Extension to Concave Query Functions

The flow-based technique of the previous section can be generalized considerably. In
this section, we look at linear queries in the degree distribution in which the function
h specifying the query is itself concave, meaning that its increments h(i + 1) − h(i)
are non-increasing as i goes from 0 to n − 2. The number of edges in the graph is an
example of such a query, since the increments of h(i) = i/2 are constant.6

For mathematical convenience, we assume that the function h is in fact defined on
the real interval [0, n − 1] and is increasing and concave on that set (meaning that for
all x, y ∈ [0, n − 1], we have h((x + y)/2) ≤ (h(x) + h(y))/2. It is always possible
to extend a (discrete) function on {0, . . . , n − 1} with nonincreasing increments to a
concave function on [0, n − 1] by interpolating linearly between each adjacent pair of
values h(i), h(i+ 1). Note that the maximum of h is preserved by this transformation,
and the largest increment |h(i + 1) − h(i)| equals the Lipschitz constant of the new
function (defined as sup x,y∈[0,n−1]

|h(x)−h(y)|
|x−y|).

Given a graphG on at most n nodes, a concave function h on [0, n−1] and a thresh-
old D, we define an optimization problem as follows: construct the flow graph (Defini-
tion 4.1) as before, but make the objective to maximize objh(Fl) =

∑
v∈V h(Fl(v)),

where Fl(v) is the units of flow passing from s to v` in the flow Fl. Let opth(G) denote
the maximum value of the objective function over all feasible flows. The constraints of
this optimization problem are all linear.

This new optimization problem is no longer a maximum flow problem (nor even
a linear program), but the concavity of h ensures that it still a convex optimization
problem and can be solved in polynomial time using convex programming techniques.
Note that we need h be to concave only for computational efficiency purposes, and one
could define the above flow graph and optimization problem for all h.

Proposition 4.1. For every increasing function h : [0, n− 1]→ R,

1. If G is D-bounded, then opth = Fh(G) (that is, the value of the optimization
problem equals the correct value of the query).

6 There is some possible confusion here: any query of the form Fh described in Section 3 is
linear in the degree distribution of the graph. Our additional requirement here is that the “little”
function h be concave in the degree argument i.

Analyzing Graphs with Node Differential Privacy 13

2. The optimum opth has global sensitivity at most ‖f‖∞ + D‖f ′‖∞ on Gn, where
‖f‖∞ = max0≤x≤D h(x) and ‖f ′‖∞ is the Lipschitz coefficient of h on [0, D]
(that is, the global sensitivity of the optimization problem’s value is at most the
sensitivity of Fh on D-bounded graphs).

3. If h is concave then opth(G) can be computed to arbitrary accuracy in polynomial
(in n) time.

Thus, as with the number of edges, we can ask a query which matches Fh onD-bounded
graphs but whose global sensitivity on the whole space is bounded by its sensitivity of
the set of D-bounded graphs.

The MLE for power laws described in Section 3 is an interesting example where
Proposition 4.1 could be used. There is a natural concave extension for the power law
MLE: set f(x) = x for 0 ≤ x < 1 and f(x) = 1 + ln(x) for x ≥ 1. The sensitivity of
Ff on D-bounded graphs is ∆Df ≤ 1 + ln(D) +D (this follows from (1)). In graphs
with few high-degree nodes of degree greater thanD, this leads to a much better private
approximation to the power-law MLE in low-degree graphs than suggested in Section 3.

5 LP-based Lipschitz Extensions

In this section, we show how to privately release the number of (not necessarily induced
copies) of a specified small template graphH in the input graphG. For example,H can
be a triangle, a k-cycle, a length-k path, a k-star (k nodes connected to a single common
neighbor), or a k-triangle (k nodes connected to a pair of common neighbors that share
an edge). Let fH(G) denote the number of (not necessarily induced) copies of H in G,
where H is a connected graph on k nodes.

5.1 LP-based Function

Definition 5.1 (Function vLP(G)). Given an (undirected) graph G = ([n], E) and a
number D ∈ [n], consider the following LP. The LP has a variable xC for every copy
of the template graph H in G. Let ∆Df denote the global node sensitivity of func-
tion f in D-bounded graphs. Then the LP corresponding to G is specified as follows:

maximize
∑

copies C ofH

xC subject to:

0 ≤ xC ≤ 1 for all variables xC

Sv ≤ ∆DfH for all nodes v ∈ [n], where Sv =
∑

C:v∈V (C)

xC .

We denote the value that maximizes this linear program by vLP(G).

When the variable xC takes values 1 or 0, it signifies the presence or absence of the
corresponding copy of H in G. The first type of constraints restricts these variables to
[0, 1]. The second type of constraints says that every node can participate in at most
∆DfH copies of H . This is the largest number of copies of H in which a node can
participate in a D-bounded graph.

14 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

Observation 5.1 ∆DfH ≤ k ·D · (D − 1)k−2, where k is the number of nodes in H .

Lemma 5.1. The global node sensitivity ∆vLP ≤ ∆DfH ≤ k ·D · (D − 1)k−2.

Lemma 5.2. For all graphs G, the value vLP(G) ≤ fH(G). Moreover, if G is D-
bounded then vLP(G) = fH(G).

5.2 Releasing Counts of Small Subgraphs

The LP-based function from the previous section can be used to privately release small
subgraph counts. If fH(G) is relatively large then the Laplace mechanism will give an
accurate estimate. Using the LP-based function, we can release fH(G) accurately when
fH(G) is much smaller, provided that G satisfies α-decay. In this section, we work out
the details of the algorithm for the special case when H has 3 nodes, i.e., is the triangle
or the 2-star, but the underlying ideas apply even whenH is some other small subgraph.

Algorithm 2 ε-Node-Private Algorithm for Releasing Subgraph Count fH(G)

Input: parameters ε,D, n, template graph H on 3 nodes, and graph G on n nodes.
1: Let f̂1 = fH(G) + Lap(6n

2

ε
) and threshold ζ = n2 lnn

ε
.

2: If f̂1 ≥ 7ζ, return f̂1.
3: Compute the value vLP(G) given in Definition 5.1 using D.
4: return f̂2 = vLP(G) + Lap(6D

2

ε
).

Lemma 5.3. Algorithm 2 is an ε-node-private polynomial time algorithm that takes
a graph G, parameters ε,D, n, and a connected template graph H on 3 nodes, and
outputs an approximate count for fH(G) (the number of copies of H in G).

1. If fH(G) ≥ (13n2 lnn)/ε, then with probability at least 1 − 1/ lnn, Algorithm 2
outputs f̂1 and ∣∣∣f̂1 − fH(G)

∣∣∣ ≤ (6n2 ln lnn)/ε.

2. If G satisfies α-decay for α > 1, D > d̄, and fH(G) < (n2 lnn)/ε, then with
probability at least 1− 2/ lnn, Algorithm 2 outputs f̂2 and

|f̂2 − fH(G)| ≤ 6D2 ln lnn

ε
+ th,

where th =

O
(
d̄αn ·D2−α) if α > 2,

O
(
d̄αn · lnn

)
if α = 2,

O
(
d̄αn · n2−α

)
if 1 < α < 2.

Lemma 5.4. If H has 3 nodes and G satisfies α-decay for α > 1 and D ≥ d̄ then
vLP(G) ≥ fH(G) − th, where th = O

(
d̄αnD2−α) if α > 2, th = O

(
d̄2n lnn

)
if

α = 2, and th = O
(
d̄αnn2−α

)
if 1 < α < 2.

Analyzing Graphs with Node Differential Privacy 15

Using Lemmas 5.3 and 5.4 with a carefully chosen threshold degree D, we get the
following theorem about privately releasing counts of subgraphs on 3 nodes. A private
value of d̄ can be obtained using Theorem 4.1.

Theorem 5.2 (Releasing Subgraph Counts Privately). There is a node differentially
private algorithm which, given constants α > 1, ε > 0, a connected template graph H
on 3 nodes, and a graph G on n nodes, computes with probability at least 1− 2/(lnn)
an (1 ± on(1))-approximation to fH(G) (the number of copies of H in G) if either of
the following holds:

1. If fH(G) ≥ (13n2 lnn)/ε.
2. IfG satisfies α-decay, has average degree at most d̄ > 1, and either of the following

holds: (a) fH(G) = ω(d̄2n2/α lnn) if α > 2, (b) fH(G) = ω(d̄n ln2 n) if α = 2,
or (c) fH(G) = ω(d̄αn3−α lnn) if 1 < α < 2 .

6 Generic Reduction to Node Privacy in Bounded-Degree Graphs

We now turn to another, more general approach to getting more the accurate queries
by looking at bounded degree graphs. Recall that if we had a promise that all degrees
were at most D, then for many natural queries we could add less noise and still satisfy
differential privacy. The question is, how can we enforce such a promise? Given an input
graph G, possibly of large maximum degree, it is tempting to simply answer all queries
with respect to a “truncated” version T (G), in which nodes of very large degree have
been removed. This is delicate, however, since the truncated graph T (G) may change
a lot when a single node of G is changed. That is, it could be that the local sensitivity
of the “truncation” operator (viewed as a map from Gn to Gn,D) is very high, making
queries on the truncated graph also high-sensitivity.

More generally, consider a projection operator T : Gn → Gn,D which takes an arbi-
trary graph and outputs a D-bounded graph. We may define the (local, global, smooth)
sensitivity of T in terms of the node distance dnode(T (G1), T (G2)) where G1 and G2

differ in one node.
Given a query f defined on D-bounded graphs, it is easy to see that the local sensi-

tivity of a composed query f ◦ T is bounded by the product LST (G) · ∆Df (one can
see this as a discrete analogue of the chain rule from calculus). Our main lemma is that
we can bound the smooth sensitivity similarly. We use the definition of β-smooth upper
bound on local sensitivity from 2.3.

Lemma 6.1 (Smooth Bounds on Composed Functions). Let T : Gn → Gn,D. If
ST (G) is a β-smooth upper bound on the local sensitivity of T (measured w.r.t. node
distance), then Sf◦T (G) = ST (G) ·∆DF is a β-smooth bound on the local sensitivity
of f ◦ T .

Given a smooth upper bound on the local sensitivity of Ff ◦T , we can use Theorem 2.3
to obtain a private algorithm for releasing Ff on all graphs in Gn.

Instead of using smooth sensitivity, we can also use a differentially private upper
bound on the local sensitivity, inspired by Dwork and Lei [15] and Karwa et al. [7].
This give a general technique to transform any algorithm that is private on D-bounded
graphs to one which is private for all graphs.

16 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

Lemma 6.2 (Generic Reduction [7]). Let T : Gn → Gn,D. Suppose Lε is an (ε, δ1)-
differentially private algorithm (on all graphs in Gn) that outputs a real value such that
Pr[Lε(G) > LST (G)] ≥ 1− δ2 (where LST is measured w.r.t. node distance).

Suppose that A is a (ε, 0)D-differentially private algorithm. Then the following al-
gorithm is (2ε, eεδ2 + δ1)-differentially private: compute L̂ = Lε(G), then run A on
input T (G) with privacy parameter ε′ = ε/L̂ and finally output the pair L̂, A(T (G)).

Naive Truncation. This is the simplest truncation operator. Consider the operator Tnaive
that deletes all nodes of degree greater than D in G = (V,E). This may have high local
sensitivity (for example, rewiring one node may change the degrees of many nodes from
D toD+1, resulting in a drastic increase in the number of nodes deleted by Tnaive. This
projector is computable inO(n+m) time, where n = |V | andm = |E|. The following
simple lemma analyzes the sensitivity of this truncation operation.

Lemma 6.3. Given a threshold D, the local sensitivity of naive truncation (w.r.t. node
distance) is 1 plus the number of nodes with degree either D or D + 1.

The following proposition bounds the local and smooth sensitivity of naive trun-
cation. The last two parts of this proposition allow us to employ Lemmas 6.1 and 6.2,
respectively.

Proposition 6.1 (Bounding the Sensitivity of Naive Truncation). Given a graph G,
letNk(G) denote the number of nodes inG with degrees in the range [D−k,D+k+1].
Let Ck(G) = 1 + k +Nk(G). Then

1. C0(G) is the local sensitivity of naive truncation at G.
2. For any graph G′ within rewiring distance k+ 1 of G, the local sensitivity of naive

truncation between G and G′ is at most Ck(G).
3. STnaive(G) = maxk≥0 e

−βkCk(G) is a smooth upper bound on the local sensitivity
of naive truncation. Moreover, if Nlnn/β(G) ≤ ` (that is, if there are ` nodes in G
with degrees in the range D ± lnn/β), then

STnaive(G) ≤ `+ 1/β + 1 .

4. Consider the tapered interval query given by the function ft,D,D+1 (defined in Sec-
tion 3, Item (2)) for some t ∈ (1

n , 1]. The algorithm that returns

L(G) = 1 + Fft,D,D+1
(G) +

2tn log(1/δ)

ε
+ Lap

(
2tn

ε

)
is (ε, 0)-node-private and returns a value larger than LSTnaive(G) with probability
at least 1− δ.

6.1 Using Naive Truncation: Deterministic and Randomized Cutoffs

The smooth sensitivity bound of Proposition 6.1 depends on the number of nodes imme-
diately around the cutoff D. Thus, even if a graph G is D-bounded, truncating exactly
at D may lead to a large smooth sensitivity bound. We get a much better bound on
the noise by truncating slightly above the maximum degree. The following corollary
follows by adding Cauchy noise as per Theorem 2.3.

Analyzing Graphs with Node Differential Privacy 17

Corollary 6.1. For every ε > 0, every threshold D >
√

2(lnn)/ε and every real-
valued function f : Gn,D → R, there is a ε-node-private algorithm that outputs f(G)

with median error O(∆D̂f/ε
2), where D̂ = D + 2 ln(n)/ε ≤ 2D.

Randomizing the Degree Threshold One obvious problem with the truncation tech-
nique is that we may not know the maximum degree in the graph, or the maximum
degree may be very large. Indeed, as have seen in the algorithms for counting sub-
graphs, it often makes sense to project to a degree threshold well below the maximum
degree in a graph. In that case, the smooth sensitivity bound of Proposition 6.1 could be
large.

One can get a substantially better bound by randomizing the cutoff. Given a target
thresholdD, consider an algorithm that picks a random threshold in a range of bounded
by a constant multiple of D (say, between 2D and 3D). We show that the smooth
sensitivity of naive truncation is (likely to be) close to the average number of nodes of
a random degree in the range, saving a factor of roughly D in the introduced noise.

Lemma 6.4 (Randomized Cutoff Lemma). Fix β > 0, a graph G on n nodes, and an
integer D > 0. Let PG(D) be the fraction of nodes in G of degree greater than D, and
let D̂ be uniformly random in the range {D+ 1 + lnn/β, . . . , 2D+ lnn/β} . If Tnaive

is the naive truncation at degree D̂, then

Ê
D

[STnaive(G)] ≤ 3
nPG(D)

D
· lnn

β
+

1

β
+ 1 .

6.2 Application of Naive Truncation for Releasing Degree Distribution

For concreteness, we work out one application of the naive truncation idea to releas-
ing an approximation to the entire degree distribution (rather than releasing specific
functions of that distribution). Our goal is to output a vector p̂ that minimizes the `1-
error ‖p̂ − pG‖1, where pG is the (true) degree distribution of the graph. If the error is
o(1), then p̂ provides an estimate with vanishing error for all of the entries of degree
distribution.

We use Lemma 6.1 to get a smooth bound on local sensitivity. The global sensitivity
∆D̂‖p̂− pG‖1 ≤ 2D̂.

Algorithm 3 ε-Node-Private Algorithm for Releasing Degree Distributions
Input: parameters ε,D, n, and a graph G on n nodes.
1: Pick D̂ ∈R {D + lnn

β
+ 1, . . . , 2D + lnn

β
}.

2: Compute the naive truncation Tnaive(G) with threshold D̂ and the smooth bound STnaive(G)
with β = ε/(

√
2(D̂ + 1)) (as in Proposition 6.1).

3: Output p̂ = pTnaive(G) + Cauchy
(

2
√
2D̂
ε

STnaive(G)
)D̂+1

(that is, add i.i.d. Cauchy noise

with median absolute deviation 2
√
2D̂
ε

STnaive(G) to the entries of the degree distribution of
Tnaive(G)).

18 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

Theorem 6.1. Algorithm 3 is an ε-node-private algorithm that takes a graph G and
parameters n,D, ε, and outputs a vector p̂ such that, if G satisfies α-decay for α > 1
and D > 4

ε lnn and D > d̄ where d̄ = d̄(G) is the average degree in G , then with
probability at least 1/2 we have

‖p̂− pG‖1 = O

(
d̄α lnn ln(D)

ε2Dα−2 +
D3 ln(D)

n ε2

)
= Õ

(
1

ε2

(
d̄α

Dα−2 +
D3

n

))
,

and the Õ notation hides constants depending on α and polylogarithmic factors in n.

We note that one can get slightly better bounds on the error by considering an al-
gorithm that uses different noise distributions other than Cauchy. We stick to Cauchy
noise here for simplicity. For the following corollary, we set D = d̄

α
α+1n

1
α+1 in the

previous theorem.

Corollary 6.2 (Releasing Degree Distribution Privately). There is a node differen-
tially private algorithm running inO(|E|) time which, given α > 1, ε > 0, and a graph
G = (V,E) on n nodes, computes an approximate degree distribution with `1 error
(with probability at least 1/2)

‖p̂− pG‖1 = Õ
(
d̄

3α
α+1 /

(
ε2n

α−2
α+1

))
if G satisfies α-decay and has average degree at most d̄ > 1. In particular, this error
goes to 0 for any constant α > 2 when d̄ is polylogarithmic in n.

Acknowledgments

We thank Madhav Jha for pointing out an error in an earlier version of the Randomized
Cutoff Lemma.

References

[1] Jernigan, C., Mistree, B.F.T.: Gaydar: Facebook Friendships Expose Sexual Orientation.
First Monday 14(10) (2009)

[2] Dinur, I., Nissim, K.: Revealing Information While Preserving Privacy. In: PODS, ACM
(2003) 202–210

[3] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. In: TCC. LNCS, Springer (2006) 265–284

[4] Dwork, C.: Differential Privacy. In: ICALP. LNCS, Springer (2006) 1–12
[5] Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data.

SIAM Review 51(4) (2009) 661–703
[6] Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private

data analysis. In: Symp. Theory of Computing (STOC), ACM (2007) 75–84 Full paper:
http://www.cse.psu.edu/˜asmith/pubs/NRS07.

[7] Karwa, V., Raskhodnikova, S., Smith, A., Yaroslavtsev, G.: Private analysis of graph struc-
ture. PVLDB 4(11) (2011) 1146–1157

http://www.cse.psu.edu/~asmith/pubs/NRS07

Analyzing Graphs with Node Differential Privacy 19

[8] Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate Estimation of the Degree Distribution of
Private Networks. In: ICDM. (2009) 169–178

[9] Rastogi, V., Hay, M., Miklau, G., Suciu, D.: Relationship Privacy: Output Perturbation for
Queries with Joins. In: PODS. (2009) 107–116

[10] Gehrke, J., Lui, E., Pass, R.: Towards Privacy for Social Networks: A Zero-Knowledge
Based Definition of Privacy. In: TCC. (2011) 432–449

[11] Kifer, D., Machanavajjhala, A.: No Free Lunch in Data Privacy. In: SIGMOD. (2011)
193–204

[12] Blocki, J., Blum, A., Datta, A., Sheffet, O.: Differentially Private Data Analysis of Social
Networks via Restricted Sensitivity. In: ITCS (To appear). (2013)

[13] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves:
Privacy Via Distributed Noise Generation. In: EUROCRYPT. LNCS, Springer (2006) 486–
503

[14] McSherry, F., Mironov, I.: Differentially Private Recommender Systems: Building Privacy
into the Net. In: KDD, ACM New York, NY, USA (2009) 627–636

[15] Dwork, C., Lei, J.: Differential Privacy and Robust Statistics. In: STOC. (2009) 371–380
[16] Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical Privacy: The SuLQ Framework.

In: PODS, ACM (2005) 128–138
[17] Orlin, J.B.: Max flows in O(nm) time, or better (2012) http://jorlin.scripts.

mit.edu/docs/papersfolder/O(nm)MaxFlow.pdf.

A Comparison to Concurrent Work

Blocki et al. [12] provide algorithm for analyzing graph data with node-level differen-
tial privacy. They proceed from a similar intuition to ours, developing low-sensitivity
projections onto the set of graphs of a given maximum degree. However, the results
of the two papers are not directly comparable. This section discusses the differences
between the two works.

Specifically, Blocki et al.have two main results on node privacy, both of which are
incomparable to our corresponding results.

– First, Blocki et al.show that for every function f : Gn,D → R, there exists an
extension g : Gn → R that agrees with f on Gn,D and that has global sensitivity
∆g = ∆Df . The resulting function need not be computable efficiently.
In contrast, we give explicit, efficient constructions of such extensions for several
families of functions (the number of edges, linear functions of the degree distribu-
tion defined by concave queries, and subgraph counting queries).

– Second, Blocki et al.give a specific projection from arbitrary graphs to graphs of a
particular degree µ : Gn → Gn,D, along with a smooth upper bound on its local
sensitivity. They propose to use this for answering queries which have low node
sensitivity on Gn,D.
We give a similar result for a different projection (naive truncation). As in their
work, we propose to compose this projection with queries that have low sensitivity
when restricted to graphs of bounded degree (Lemma 6.1), though we also observe
that more general types of composition are also possible (Lemma 6.2).
The results for these different projections are similar in that both techniques have
low smooth sensitivity (depending only on ε) when the input graph has degree less
than the input threshold D.

http://jorlin.scripts.mit.edu/docs/papersfolder/O(nm)MaxFlow.pdf
http://jorlin.scripts.mit.edu/docs/papersfolder/O(nm)MaxFlow.pdf

20 Kasiwiswanathan, Nissim, Raskhodnikova, and Smith

To the best of our understanding, the accuracy results are nevertheless incompara-
ble. The Blocki et al.projection has a bicriteria approximation guarantee: on input
D andG, their projection function is guaranteed to output a graph of degree at most
D such that the distance dnode(G,µ(G)) ≤ 4dnode(G,Gn,D/2). (No such guarantee
is possible for naive truncation, which may be arbitrarily worse than the optimal
projection even onto graphs of degree smaller than D.) Nonetheless, the sensitivity
bound for µ can be quite a bit higher than the one we present for naive truncation,
resulting in lower noise added for privacy (similarly, there are graphs for which the
other projection is less sensitive).
Our approach has a considerable efficiency advantage: the naive truncation proce-
dure we propose runs in O(n + m) time for a graph with n vertices and m edges,
whereas the projection of Blocki et al.seems to require solving a linear program
with n+

(
n
2

)
variables and Θ(n2) constraints.

The final accuracy guarantees for our algorithms are stated for graphs that satisfy a
mild tail bound on the degree distribution, called α-decay. In contrast, Blocki et al.only
give accuracy guarantees for graphs with bounded degree.

Finally, Blocki et al.also consider edge privacy, and give a simple, elegant projection
operator that has constant edge sensitivity. There is no analogue of that result in this
paper, which focuses on node privacy.

	Analyzing Graphs with Node Differential Privacy

