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Abstract
We investigate testing of properties of 2-dimensional figures that consist of a black object on a
white background. Given a parameter ε ∈ (0, 1/2), a tester for a specified property has to accept
with probability at least 2/3 if the input figure satisfies the property and reject with probability
at least 2/3 if it does not. In general, property testers can query the color of any point in the
input figure.

We study the power of testers that get access only to uniform samples from the input figure.
We show that for the property of being a half-plane, the uniform testers are as powerful as general
testers: they require only O(1/ε) samples. In contrast, we prove that convexity can be tested
with O(1/ε) queries by testers that can make queries of their choice while uniform testers for this
property require Ω(1/ε5/4) samples. Previously, the fastest known tester for convexity needed
Θ(1/ε4/3) queries.
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1 Introduction

We investigate testing of properties of 2-dimensional figures that consist of a black object
and a white background. Sometimes the correctness of an algorithm depends on whether
its input satisfies a certain property, e.g., it is a half-plane or a convex set. However, for
a very large set, it is infeasable to determine whether it is indeed a half-plane or convex.
How quickly is it possible to determine whether the input approximately satisfies the desired
property? What access to the input is sufficient for this task?

Property testing [24, 14] studies algorithms that quickly determine whether the input
has the desired property or it is far from having it. Many types of objects have been
investigated in the property testing framework, including graphs [14, 12, 1], functions [7, 13,
10], distributions [3, 28], and geometric objects [9, 8]. In this work, we study properties of
2-dimensional figures.

A figure (U,C) consists of a compact convex universe U ⊆ R2 and a measurable subset
C ⊆ U . The set C can be thought of as a black object on a white background U \ C. A
figure (U,C) is a half-plane if there is a line separating C from U \ C. A figure (U,C) is
convex iff C is convex. The relative distance between two figures (U,C) and (U,C ′) over
the same universe is the probability of the symmetric difference between them under the
uniform distribution on U . A figure (U,C) is ε-far from a property (e.g., being a half-plane)
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if the relative distance from (U,C) to every figure (U,C ′) with the property over the same
universe is at least ε.

I Definition 1.1. Given a proximity parameter ε ∈ (0, 1/2) and error probability δ ∈ (0, 1),
an ε-tester for a given property accepts with probability at least 1− δ if the figure has the
desired property and rejects with probability at least 1 − δ if the figure is ε-far from the
desired property1. A tester has 1-sided error if it always accepts inputs with the property.
(Otherwise, it has 2-sided error). A tester is nonadaptive if it makes all of its queries in
advance, before seeing any of the input. A tester is uniform if it accesses its input only
via uniform and independent samples from U , each labeled with a bit indicating whether it
belongs to C.

In particular, a uniform tester is nonadaptive. In general, a tester can query the input at an
arbitrary location. Such a strong assumption about the access model is not always realistic.
Uniform testers, in contrast, rely only on uniform samples from the input. One advantage of
using uniform testers is that they are universal in the following sense: we can collect uniform
samples from the data in advance, before we know what property of the data needs to be
tested.

Uniform testers were first considered by Goldreich, Goldwasser, and Ron [14] and system-
atically studied by Goldreich and Ron [15]. In particular, [15] shows that certain types of
query-based testers yield uniform testers with sublinear (but dependent on size of the input)
sample complexity.

In the context of property testing and sublinear algorithms, visual properties of 2-
dimensional figures and discretized images have been studied in [21, 20, 23, 16, 17, 18, 6, 4, 5].
In [21], adaptive ε-testers for the half-plane property and convexity were obtained. For the
half-plane property, the query complexity2 is O(1/ε) and for convexity the query complexity
is O(1/ε2). Currently, the best ε-tester known for convexity takes O(ε−4/3) samples and is
uniform [4]. This tester has 1-sided error, and every uniform 1-sided error tester for convexity
needs Ω(ε−4/3) samples [4].

This motivates the following question: What is the power of uniform samples? Specifically,
can we test the half-plane property with O(1/ε) uniform samples? Can the best complexity
for testing convexity be achieved by a uniform tester?

Our results. We show that for the property of being a half-plane, the uniform testers are
as powerful as general testers: they require only O(1/ε) samples. This is not the case for
convexity. We prove that convexity can be tested with O(1/ε) queries by testers that can
make queries of their choice, improving the bound of O(ε−4/3) in [4]. We also show that
uniform testers for convexity, even with 2-sided error, require Ω(ε−5/4) samples.

Connection to learning. An upper bound O( 1
ε log 1

ε ) on the number of uniform samples
for testing the half-plane property can be obtained from a connection between (proper)
PAC-learning and property testing, described in [14]. This bound follows from the fact that
the VC dimension of the half-plane property is constant. Even though our tester has only
slightly better sample complexity, its complexity is tight. Moreover, the running time of our

1 If δ is not specified, it is assumed to be 1/3. By standard arguments, the error probability can be
reduced from 1/3 to an arbitrarily small δ by running the tester O(log 1/δ) times.

2 For any nontrivial property, including being a half-plane, Ω(1/ε) is an easy lower bound on the complexity
of an ε-tester.
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tester is also optimal. (The running time cannot be obtained from the VC-dimension bound.)
For convexity, PAC-learning under the uniform distribution requires Θ(ε−3/2) samples, as
shown by Schmeltz [25]. (VC dimension of convexity is unbounded, so this result is specific
to the uniform distribution.) For this property, however, as shown in [4], testing requires
significantly fewer samples than learning when the object is accessed via uniform samples.
Our tester for convexity can be viewed as an adaptive learner for the property, followed by a
check that the learned convex object corresponds to the input.

Our techniques. Our tester for the half-plane property is the natural one: it checks whether
the convex hull of sampled black points intersects the convex hull of sampled white points and
rejects if it is the case. In other words, it rejects only if it finds a violation of the half-plane
property. To analyze the tester, we use the notion of black-central and white-central points
defined in terms of the Ham Sandwich cut of black (respectively, white) points. (These central
points are related to the well studied centerpoints [11] and Tukey medians [27]. The guarantee
for a centerpoint is that every line that passes through it creates a relatively balanced cut.)
Such cuts have been studied extensively (see, e.g., [11, p. 356] and [19]), for example, in
the context of range queries. Specifically, a black-central (respectively, white-central) point
is the intersection of two lines that partition the figure into four regions, each with black
(respectively, white) area3 at least ε/4. Black-central points were defined in [4] in order to
analyze a tester of convexity of figures. A black-central (respectively, white-central) point is
overwhelmingly likely to end up in the convex hull of sampled black (respectively, white)
points. We show that if the figure is ε-far from being a half-plane, the convex hull of its
black-central points intersects the convex hull of its white-central points. A point in the
intersection, even though is not likely to be sampled, is likely to be in the intersection of the
convex hull of the black samples and the convex hull of the white samples. Thus, there is
likely to be the intersection, and the tester is likely to reject.

Our tester for convexity samples points uniformly at random and constructs a rectangle
R that with high probability contains nearly the entire black area and whose sides include
sampled black points. Then it adaptively queries points of R in order to partition it into the
candidate black and white regions, leaving only a small region unclassified. After completing
this learning stage, it samples points in the classified regions and rejects iff it finds a mistake.

To prove our lower bound, we construct hard instances, for which every uniform tester
needs to get a 2-point witness, with points coming from different specified regions, in order to
distinguish between our hard instances that are convex from hard instances that are far from
convex. The challenge here is to construct a figure with regions that can be manipulated
independently to either keep convexity or to violate it.

2 The Uniform Tester for the Half-Plane Property

In this section, we give a uniform tester for the half-plane property.

I Theorem 2.1. There is a uniform (1-sided error) ε-tester for the half-plane property of
figures with sample and time complexity O(1/ε).

Proof. Our uniform tester for the half-plane property is Algorithm 1. It takes O(1/ε) uniform
samples and checks if the sampled black and white points are linearly separable. We will

3 For the two properties we consider (being a half-plane and convexity), we assume w.l.o.g. that the input
figure U has unit area. If it is not the case, U can be rescaled. Thus, the area of a region corresponds
to the probability of sampling from it under the uniform distribution.
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show that the expected running time of Algorithm 1 is O(1/ε) and its error probability is
0.3. A tester with worst case running time O(1/ε) and error probability 1/3 can be obtained
from Algorithm 1 by standard arguments.

Algorithm 1: Uniform tester for the half-plane property.
input : parameter ε ∈ (0, 1/2);

access to uniform and independent samples from (U,C).

1 Set s← 18
ε . Sample s points from U uniformly and independently at random.

2 Set U is contained in a rectangle R whose area is at most twice the area of U . Orient
U , so that R is axis-aligned.

3 Bucket sort sampled black pixels by the x-coordinate into s bins to obtain list SB .
Similarly, compute SW for the sampled white pixels.

// Check if the convex hull of SB contains a pixel from SW .
4 Use Andrew’s monotone chain convex hull algorithm [2] to compute UH(SB) and
LH(SB), the upper and the lower hulls of SB , respectively, sorted by the x-coordinate.

5 Merge sorted lists SW ,UH(SB) and LH(SB) to determine for each point w in SW its
left and right neighbors in UH(SB) and LH(SB). If w lies between the corresponding
line segments of the upper and lower hulls, reject.
// Check if the convex hull of SW contains a point from SB.

6 Repeat Steps 4–5 with the roles of SB and SW reversed.

7 Accept.

Consider a half-plane figure (U,C). Let SB and SW be the two lists obtained by
Algorithm 1 in Step 3. It is easy to see that Hull(SB) and Hull(SW ) do not intersect, i.e,
they are linearly separable. Thus, the algorithm accepts the figure.

Now assume that (U,C) is ε-far from being a half-plane. We prove that the algorithm
rejects the figure with probability at least 2/3. We consider two sets of points in U : black-
central and white-central. We show that if the figure is ε-far from being a half-plane, then
the convex hulls of the two sets intersect. In this case, the tester will detect this intersection,
with probability at least 2/3, by only looking at the convex hull of sampled black points and
the convex hull of sampled white points.

Next, we define white-central and black-central points. Black-central points were used
in [4] to analyze a tester for convexity. In that work, they were called central points.

I Definition 2.2 (White-central and black-central points). A point in the figure is white-central
(respectively, black-central) if it is the intersection of two lines such that each of the quadrants
formed by these lines has white (respectively, black) area at least ε/4.

I Lemma 2.3. There is no line that separates white-central points from black-central points
in a figure that is ε-far from being a half-plane.

Proof. Let (U,C) be a figure that is ε-far from being a half-plane. For the sake of contra-
diction, suppose there is a line ` that separates white-central and black-central points in
(U,C), i.e., it partitions the figure into two regions, W` and B` , such that W` contains only
white-central points and B` contains only black-central points (see Figure 2.1). The sum
of the black area in W` and the white area in B` is at least ε since the figure is ε-far from
being a half-plane. W.l.o.g. assume that the black area in W` is at least ε/2. Consider the
line `′ that is parallel to ` and such that the black area in one of the two half-planes defined
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ℓ

white-central points

𝑊ℓ
black-central points

𝐵ℓ

Figure 2.1 An illustration of black-central
and white-central points separated by a line.

𝑊ℓ

𝐵ℓ

ℓℓ′

Figure 2.2 An illustration of the line `′ and
a white-central point on it.

by `′ is equal to ε/2. (See Figure 2.2. Note that the black area in the other half-plane is at
least ε/2.) Clearly, `′ lies in W`. Next, we show that there is a black-central point on `′,
i.e., in W`, thus arriving at a contradiction. Consider the two sets of black points, on either
side of `′. We have argued that each of them has area at least ε/2. By the Ham Sandwich
Theorem, applied to the two sets, there is a line `′′ that bisects the two sets simultaneously,
forming four sets black points of area at least ε/4 each. The intersection point of `′ and
`′′ is black-central and lies in W`. This is a contradiction, since ` is a line that separates
white-central and black-central points. J

𝑤
ℓ1

ℓ2

Figure 2.3 An illustration of a captured
white central point.

𝒗

Figure 2.4 An illustration of the point v in
the intersection of two convex hulls.

Consider a white-central point w which is the intersection of two lines `1 and `2, as
shown in Figure 2.3. If four white pixels from four different quadrants determined by `1 and
`2 are sampled by Algorithm 1, we say that the tester captures w. (The tester captures a

FSTTCS 2016
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black-central point analogously.) By Lemma 2.3, the convex hull of all white-central points
and the convex hull of all black-central points intersect. Thus, there is a point v that lies
in both convex hulls (see Figure 2.4). Moreover, there exists a set PW of at most three
white-central points such that point v lies in the convex hull of the points in PW . Analogously,
there exists a set PB of at most three black-central points such that point v lies in the convex
hull of the points in PB . If all points in PW ∪ PB are captured then v simultaneously lies in
the convex hull of black samples and in the convex hull of white samples, i.e., the convex hull
of black samples and the convex hull of white samples intersect, and the tester will reject the
figure. The probability that the tester fails to capture a specific point in PW ∪ PB is, by the
union bound, at most 4 · (1− ε/4)18/ε ≤ 4 · e−18/4. The probability that the tester fails to
capture at least one point in PW ∪ PB is at most 6 · 4 · e−18/4 < 0.3. Therefore, the failure
probability of the tester is at most 0.3.

Sample and time complexity. Algorithm 1 samples s = O(ε−1) points.
Next, we analyze its running time. Conduct the following mental experiment: Suppose

we sample points from the rectangle R (defined in Algorithm 1) uniformly and independently
at random until we collect s points from U ; then we bucket sort sampled points by their
x-coordinate into s bins. Let q be the number of points we sample. Then E[q] ≤ 2s. Since the
x-coordinates of the sampled q points are distributed uniformly in the interval corresponding
to the length of the rectangle R, they can be sorted in expected time O(q) by subdividing
this interval into s subintervals of equal length, and using them as buckets in the bucket sort.
Thus, the expected running time of this algorithm is O(s).

Observe that Algorithm 1 has the same distribution on the s points sampled from U as
the algorithm in the mental experiment. It sorts two (disjoint) subsets of the points sampled
in the mental experiment. Thus, the expected running time of Step 3 of Algorithm 1 is
O(s). Andrew’s monotone chain algorithm finds the convex hull of a set of s sorted points
in time O(s). Merging also takes O(s) time. Overall, Algorithm 1 runs in expected time
O(s) = O(ε−1). By standard arguments, we get a uniform algorithm with the worst case
running time O(ε−1) and with a slightly larger error probability δ than in Algorithm 1,
specifically, with δ = 1/3. J

3 The Adaptive Tester for Convexity

I Theorem 3.1. Given ε ∈ (0, 1/2), convexity of figure (U,C) can be ε-tested (adaptively)
with 1-sided error in time O(ε−1).

Proof. In [4], it was shown that testing convexity of figures (U,C) can be reduced to the
special case when the universe U is an axis-aligned rectangle of unit area. Therefore, we can
assume w.l.o.g. that U is an axis-aligned rectangle of unit area.

Our ε-tester for convexity (Algorithm 2) samples points uniformly at random and con-
structs a rectangle R that with high probability contains nearly the entire black area and
whose sides include sampled black points. (See Figure 3.1.) Then it adaptively queries points
of R in order to partition it into regions B, W and F . (See Figure 3.2.) The “fence” region
F has a small area. If the image is convex, B is entirely black and W is entirely white.
The algorithm queries a small number of random points in B ∪W and rejects if it finds a
misclassified point (i.e., a white point in B or a black point in W ); otherwise, it accepts.

Since the black area outside R and the area of F are small, if the figure is ε-far from
convexity then there will be enough misclassified points in B ∪W , and the algorithm will
detect at least one of them with high probability.
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Algorithm 2: ε-tester for convexity.
input : parameter ε ∈ (0, 1/2); access to a figure (U,C).

1 Query 64
ε points uniformly at random. If all sampled points are white, accept.

2 Let R be the minimum axis-parallel rectangle that contains all sampled black points.
Let p0 (respectively, p1, p2, p3) be a sampled black point on the top (respectively, left,
bottom, right) side of R.

3 for i← 0 to 3 do
4 Let (x, y)← pi and Pi ← ∅.// Investigate the upper right corner of R.
5 while (x, y) is in R do
6 if (x, y) is black or below the line through pi and p(i+3) mod 4 then

x← x+ ε/12. // Move right.
7 else

Pi ← Pi ∪ {(x, y)}; y ← y − ε/12. // Move down.
8 Let Wi ← {(u, v) inside R | ∃(x, y) ∈ Pi such that u ≥ x, v ≥ y with respect to

the rotated coordinates}. Rotate R clockwise by 90 degrees.
// We rotate R to reuse lines 4-8 of the pseudocode for investigating

all four corners.
9 Let B be the convex hull of all black points discovered after Step 3, and W ← ∪3

i=0Wi.
10 Query 8

ε points in B ∪W uniformly and independently. If a white point in B or a
black point in W is detected, reject; otherwise, accept.

We prove that Algorithm 2 satisfies Theorem 3.1. First, we argue that Algorithm 2 always
accepts if its input is a convex figure. If (U,C) has no black points (i.e., C = ∅), Step 1
always accepts. Otherwise, all points in B are black, by convexity of (U,C). We will show
that all points in W are white. For the sake of contradiction, suppose there is a black point
b = (u, v) in W0. By definition of W0, there is a white point w = (x, y) in P0 such that u ≥ x
and v ≥ y. Thus, white point w is inside the triangle p0bp3, formed by three black points,
contradicting convexity of (U,C). Thus, there are no black points in W0. Analogously, there
are no black points in W1,W2 and W3. Since there are no white points in B and no black
points in W = ∪3

i=0Wi, Step 10 of Algorithm 2 always accepts (U,C).
Now assume that (U,C) is ε-far from convexity.

I Lemma 3.2. The probability that the black area outside R is greater than ε
4 after Step 2

of Algorithm 2 is at most 1/9.

Proof. Let L be a horizontal line with the largest y-coordinate such that the black area of
the figure above L is at least ε

16 . The probability that no black points above L are sampled in
Step 1 of Algorithm 2 (and, consequently R lies below L) is at most (1− ε

16 )64/ε ≤ e−4 < 1/36.
Thus, with probability at most 1/36, the black area in the half-plane above R is greater
than ε

16 . The same bound holds for the half-planes to the left, to the right and below R. By
a union bound, the probability that the black area outside R is greater than ε

4 is at most
(1/36) · 4 = 1/9. J

I Lemma 3.3. Let F = R− (B ∪W ). Then the area of F is at most ε
2 .

Proof. Letm = ε/12 and (xi, yi) be pi (as defined in Step 2 of Algorithm 2) for i ∈ {0, 1, 2, 3}.
Call every region that consists of points (x, y) + [0,m]2 a square, where x−xi

m , y−yim ∈ N. Call
squares that contain points from F fence squares. Let r = (x3, y0) and let T = 4p0p3r.

FSTTCS 2016
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𝑝0

𝑝1

𝑝2

𝑝3

𝑅

Figure 3.1 An illustration to Step 2 of Al-
gorithm 2.

fence squares𝑝0

𝑝1

𝑝2

𝐵

W

𝐹

𝐹 𝐹

𝜀/12 

𝑊0
𝑊1

𝑊3
𝑊2

`

𝑝3

Figure 3.2 An illustration to Steps 3–9 of
Algorithm 2.

We will find an upper bound on the number of fence squares inside T . Each point that
Algorithm 2 queries in Step 5 results in at most one (new) fence square in T . The algorithm
queries at most x3−x0+y0−y3

ε/12 + 2 points in the triangle (thus, it discovers at most that many
fence squares), since, in every iteration, it either increases the x-coordinate or decreases
the y-coordinate of the queried point. Therefore, there are at most x3−x0+y0−y3

ε/12 + 2 fence
squares in this triangle. Similarly, we can find an upper bound on the number of discovered
fence squares in the remaining triangles. Since the perimeter of R is at most 4, the sum of
the upper bounds is at most 4

ε/12 + 8 = 48
ε + 8 ≤ 56

ε . The area of a single fence square is
( ε

12 )2 = ε2

144 and thus the total area of F is at most ε2

144 ·
56
ε ≤

ε
2 . J

We call a point misclassified if it is black and is in W or if it is white and in B. (The area
that the set of misclassified points cover is called a misclassified area.) If we make all area in
B black and all area outside of B white, we obtain a convex figure. Thus, by Lemma 3.3,
the misclassified area in B ∪W is at least ε

4 if the black area outside of R is at most ε
4 . If

the latter is the case, the probability that the algorithm will not detect a misclassified point
is at most (1− ε

4 ) 8
ε < e−2 < 2/9. By Lemma 3.2, the probability that the misclassified area

in B ∪W is less than ε
4 is at most 1/9. Therefore, the probability that Algorithm 2 accepts

is at most 2/9 + 1/9 = 1/3, as desired.

Query complexity. The algorithm queries points in Steps 1, 6 and 10. In Steps 1 and 10,
the algorithm makes O( 1

ε ) queries. In Step 6, over all iterations, the algorithm also queries
O( 1

ε ) points. Thus, the overall query complexity of the algorithm is O( 1
ε ).

Running time. The running time of the algorithm in Steps 1 through 7 and Step 10 is
O( 1

ε ). With respect to the points that the tester discovered while constructing the set W ,
there are O(ε−1) horizontal and O(ε−1) vertical slices. Given a sampled point from Step 10,
in O(1) time we identify its vertical and horizontal slices. By at most 4 tests we determine
membership in B ∪W . In the slice where the sampled point lies, there are at most two
lines that determine B and W and we need to find to which half-plane with respect to these
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lines the sampled point belongs. Therefore, the running time of the algorithm is O( 1
ε ), as

claimed. J

4 The Lower Bound for Nonadaptive Convexity Testers

4.1 Preliminaries on Poissonization
The proof of our lower bound uses a technique called Poissonization [26], in which one
modifies a probabilistic experiment to replace a fixed quantity (e.g., the number of samples)
with a variable one that follows a Poisson distribution. This breaks up dependencies between
different events and makes the analysis tractable. The Poisson distribution with parameter
λ ≥ 0, denoted Po(λ), takes each value x ∈ N with probability e−λλx

x! . The expectation and
variance of a random variable distributed according to Po(λ) are both λ.

I Definition 4.1. A Poisson-s tester is a uniform tester that takes a random number of
samples distributed as Po(s).

I Lemma 4.2 (Poissonization Lemma [22, Lemma 5.3] and [4]).
(a) Poisson algorithms can simulate uniform algorithms. Specifically, for every uniform

tester A for property P that uses at most s samples and has error probability δ, there is a
Poisson-2s tester A′ for P with error probability at most δ + 4/s. Moreover,

(b) Let Ω be a sample space from which a Poisson-s algorithm makes uniform draws. Suppose
we partition Ω into sets Ω1, . . . ,Ωk (e.g., these sets can correspond to disjoint areas of the
figure from which points are sampled), where each outcome is in set Ωi with probability
pi for i ∈ [k]. Let Xi be the total number of samples in Ωi seen by the algorithm.
Then Xi is distributed as Po(pi · s). Moreover, random variables Xi are mutually
independent for all i ∈ [k].

4.2 The Lower Bound
I Theorem 4.3. Every 2-sided error uniform ε-tester for convexity needs Ω(ε−5/4) samples.

Proof. By the Poissonization Lemma (Lemma 4.2), it is enough to prove the lower bound
for Poisson algorithms. For sufficiently small ε, we define distributions P and N on figures,
where P is supported only on convex figures whereas N is supported only on figures which
are ε-far from convexity. We show that every uniform Poisson-s tester, where s = o(ε−5/4),
fails to distinguish P from N with sufficient probability.

Let k = d 1
2 · ε

−1/2e and the universe U = [0, 1]2. Consider two regular convex k-gons G1
and G2, centered at (1/2, 1/2), such that G1 has side length sin(πk ) and the vertices of G2
are the midpoints of the sides of G1 (see Figure 4.1). Call triangular regions inside G1 but
outside G2 teeth (one such triangular region is a tooth). Let T be a tooth and b be its vertex
which is also a vertex of G1. Let the other two vertices of T be d and d′ and let b0 be a
point on dd′ such that bb0 is the height of T from b to its base dd′. Call 4bb0d and 4bb0d

′

half-teeth (see Figure 4.2). Distributions P and N are defined next.

1. For all figures from both distributions, points outside G1 are white and points in G2 are
black.

2. For a figure in P , every tooth is independently colored white or black, each with probability
1/2, as shown in Figure 4.1.

FSTTCS 2016
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Tooth

𝑈

𝐺1
𝑏

𝑑

𝑑′

𝐺2

Figure 4.1 A figure from P for k = 6.

𝑈

Half-
Tooth

𝑏

𝑑

𝑏0

𝑏′

𝑑′

Figure 4.2 A figure from N for k = 6.

3. For a figure in N , every tooth is independently colored as follows: one half-tooth is colored
black or white, each with probability 1/2, and the other half-tooth gets the opposite
color, as shown in Figure 4.2.

Note that every figure in the support of P is convex.

I Lemma 4.4. For all ε ≤ 3 · 10−3, every figure in the support of N is ε-far from convexity.

Proof. Let A4 denote the area of a tooth. Consider a figure (U,C) in the support of N .
Let 4bdd′ be a tooth of (U,C). Consider point b′ that is symmetric to b with respect to the
line dd′, as shown in Figure 4.2. Call the quadrilateral bb′dd′ a block. Observe that there are
k disjoint blocks. Let (U,C ′) be a convex figure that is closest to (U,C).

𝑏

𝑏′

𝑑′𝑑 𝑏0

𝑏2

𝑑2

𝑏1

𝑑1

Figure 4.3 An illustration of a block.

I Claim 4.5. In every block of C, area at least A4
16 must be modified to obtain C ′ from C.

Proof. For a region R, let A(R) denote the area of R.
Consider the block bdb′d′ illustrated in Figure 4.3. Let b1 and d1 be the midpoints of bb0

and db0, respectively. Let the line b1d1 intersect bb′ and dd′ at b2 and d2, respectively.
Consider the white triangle 4b1b0d1 and the three black triangles 4dd1d2,4bb1b2, and

4b0b
′d′. If there is a point in each of these four triangles that has not changed color, then

we have a white point in the convex hull of three black points, i.e., the figure is not convex.
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Therefore, in at least one of these four triangles, all points must change color in order to
make the figure convex. Since the areas of the triangles are

A(4b0b
′d′) = A4

2 , A(4b1b0d1) = A4
8 , A(4dd1d2) = A(4bb1b2) = A4

16 ,

the claim holds. J

I Claim 4.6. 5.6 · 1
k3 < A4 ≤ 8 · 1

k3 .

Proof. By simple geometric reasoning,

A4 = 1
2 ·

1
4 · sin

2
(π
k

)
· sin

(
2π
k

)
.

Since 0.9x ≤ sin x ≤ x for x ∈ [0, 0.78], we obtain that, for sufficiently large k (i.e., for
ε ≤ 3 · 10−3),

A4 ≥
1
8 ·

(
0.9 · π

k

)2
·
(

0.9 · 2π
k

)
> 5.6 · 1

k3 ;

A4 ≤
(

1
8

)
·
(π
k

)2
·
(

2π
k

)
≤ 8
k3 .

J

There are k blocks and by Claim 4.5 at least

k · A416 > k · 5.6
16 ·

1
k3 = 7

20 ·
1
k2 ≥ ε

area needs to be modified to make C convex. (Recall that k = d 1
2 · ε

−1/2e.) J

Consider a Poisson-s algorithm A with s = c0 · ε−5/4. We will show that when c0 is
sufficiently small then A fails on P or N with probability greater than 1/3.

I Definition 4.7. A pair of points (p1, p2) is called a red-flag pair if p1 and p2 belong to
different half-teeth of the same tooth.

Let BAD denote the event that no red-flag pair is sampled by the algorithm A.

I Claim 4.8. If c0 is sufficiently small, Pr[BAD] < 1/10.

Proof. Let LT and RT be the random variables that count the number of points sampled by
the tester in the left half-tooth and in the right half-tooth of a tooth T , respectively. Let XT

and X be the random variables that count the number of sampled red-flag pairs in a tooth
T and in all teeth, respectively. By the Poissonization Lemma (Lemma 4.2), LT and RT are
independent Poisson random variables with expectation (A4/2) · s. Note that XT = LT ·RT
and, therefore,

E[XT ] = E[LT ] · E[RT ] = (A4/2)2 · s2 ≤ 16s2

k6 ,

by Claim 4.6. Since all teeth are disjoint, then for sufficiently small c0,

E[X] = k · E[XT ] ≤ k · 16s2

k6 ≤ 16 · c2
0 < 1/10.

By Markov’s inequality, Pr[BAD] = Pr[X ≥ 1] ≤ E[X] < 1/10. J
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Conditioned on BAD, the distribution on the answers to the queries made by A is the
same whether the input is sampled from P or N . Therefore,

Pr
x∼P

[A accepts x | BAD] = Pr
x∼N

[A accepts x | BAD] = 1− Pr
x∼N

[A rejects x | BAD].

Consequently,

min( Pr
x∼P

[A accepts x | BAD], Pr
x∼N

[A rejects x | BAD]) ≤ 1/2.

Assume w.l.o.g. that Prx∼P [A accepts x | BAD] ≤ 1/2. Then,

Pr
x∼P

[A accepts x]

= Pr
x∼P

[A accepts x | BAD] · Pr[BAD] + Pr
x∼P

[A accepts x | BAD] · Pr[BAD]

< 1 · 1
10 + Pr

x∼P
[A accepts x | BAD] · 1

≤ 1
10 + 1

2 <
2
3 .

Thus, a uniform algorithm needs Ω(ε−5/4) samples to test convexity with error probability
at most 1/3. J

5 Conclusion and Open Problems

We showed that uniform testers are as powerful as adaptive testers in the case of the half-plane
property. Specifically, our uniform half-plane tester has 1-sided error and optimal running
time. For convexity, the best previously known tester was uniform. However, we designed an
adaptive tester with better (optimal) query complexity and showed that every uniform tester
must have a significantly larger query complexity than our adaptive tester.

One remaining open problem is to resolve the sample complexity of an optimal (2-sided
error) uniform tester for convexity. Our lower bound on this quantity is Ω(ε−5/4), while the
best upper bound is O(ε−4/3) [4]. Another direction for research is to investigate the power of
uniform samples in the context of tolerant property testing. Tolerant testing of 2-dimensional
figures was investigated in [5]. The tolerant testers for half-plane and convexity in that work
are uniform and have nearly optimal query complexity (as compared to any, even adaptive
testers). However, it is open whether uniform samples are sufficient for achieving the optimal
running time for tolerantly testing these properties. It is interesting to investigate the power
of other restricted classes of testers, such as nonadaptive testers, in the context of testing
of properties of geometric figures. Finally, this work only looks at 2-dimensional figures.
Generalizing this study to higher dimensions is an intriguing open question.
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