
SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 793–826

WHAT CAN WE LEARN PRIVATELY?∗

SHIVA PRASAD KASIVISWANATHAN† , HOMIN K. LEE‡ , KOBBI NISSIM§ ,
SOFYA RASKHODNIKOVA¶, AND ADAM SMITH¶

Abstract. Learning problems form an important category of computational tasks that general-
izes many of the computations researchers apply to large real-life data sets. We ask, What concept
classes can be learned privately, namely, by an algorithm whose output does not depend too heavily
on any one input or specific training example? More precisely, we investigate learning algorithms that
satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where
aggregate information is released about a database containing sensitive information about individuals.
Our goal is a broad understanding of the resources required for private learning in terms of sam-
ples, computation time, and interaction. We demonstrate that, ignoring computational constraints,
it is possible to privately agnostically learn any concept class using a sample size approximately
logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable
privately: specifically, if a concept class is learnable by a (nonprivate) algorithm with polynomial
sample complexity and output size, then it can be learned privately using a polynomial number of
samples. We also present a computationally efficient private probabilistically approximately correct
learner for the class of parity functions. This result dispels the similarity between learning with noise
and private learning (both must be robust to small changes in inputs), since parity is thought to
be very hard to learn given random classification noise. Local (or randomized response) algorithms
are a practical class of private algorithms that have received extensive investigation. We provide a
precise characterization of local private learning algorithms. We show that a concept class is learn-
able by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Therefore,
for local private learning algorithms, the similarity to learning with noise is stronger: local learning
is equivalent to SQ learning, and SQ algorithms include most known noise-tolerant learning algo-
rithms. Finally, we present a separation between the power of interactive and noninteractive local
learning algorithms. Because of the equivalence to SQ learning, this result also separates adaptive
and nonadaptive SQ learning.

Key words. data privacy, probabilistically approximately correct learning, statistical query
learning, differential privacy

AMS subject classification. 68Q32

DOI. 10.1137/090756090

1. Introduction. The data privacy problem in modern databases is similar to
that faced by statistical agencies and medical researchers: to learn and publish global
analyses of a population while maintaining the confidentiality of the participants in a
survey. There is a vast body of work on this problem in statistics and computer sci-
ence. However, until recently, most schemes proposed in the literature lacked rigorous
analysis of privacy and utility.

∗Received by the editors April 15, 2009; accepted for publication (in revised form) May 5, 2010;
published electronically June 23, 2011. A preliminary version of this paper appeared in 49th Annual
IEEE Symposium on Foundations of Computer Science [38].

http://www.siam.org/journals/sicomp/40-3/75609.html
†CCS-3, Los Alamos National Laboratory, Los Alamos, NM 87545 (kasivisw@gmail.com). Part of

this work done while this author was a student at Pennsylvania State University and was supported
by NSF award CCF-072891.

‡Department of Computer Science, Columbia University, New York, NY 10027 (hk17@columbia.
edu).

§Department of Computer Science, Ben-Gurion University, Beersheva 84105, Israel (kobbi@cs.
bgu.ac.il). This author’s work was supported in part by the Israel Science Foundation (grant 860/06)
and by the Frankel Center for Computer Science.

¶Department of Computer Science and Engineering, Pennsylvania State University, University
Park, PA 16802 (sofya@cse.psu.edu, asmith@cse.psu.edu). The work of these authors was supported
in part by NSF award CCF-0729171.

793

794 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

A recent line of work [30, 27, 11, 25, 23, 22, 48, 26, 45, 7, 49, 14, 28], initiated
by Dinur and Nissim [21] and called private data analysis, seeks to place data privacy
on firmer theoretical foundations and has been successful at formulating a strong,
yet attainable, privacy definition. The notion of differential privacy [25] that emerged
from this line of work provides rigorous guarantees even in the presence of a malicious
adversary with access to arbitrary auxiliary information. It requires that whether an
individual supplies her actual or fake information has almost no effect on the outcome
of the analysis.

Given this definition, it is natural to ask, What computational tasks can be per-
formed while maintaining privacy? Research on data privacy, to the extent that it
formalizes precise goals, has mostly focused on function evaluation (“what is the value
of f(z)?”); namely, How much privacy is possible if one wishes to release (an approxi-
mation to) a particular function f , evaluated on the database z? (A notable exception
is the recent work of McSherry and Talwar, using differential privacy in the design
of auction mechanisms [45].) Our goal is to expand the utility of private protocols by
examining which other computational tasks can be performed in a privacy-preserving
manner.

Private learning. Learning problems form an important category of computa-
tional tasks that generalizes many of the computations researchers apply to large
real-life data sets. In this work, we ask what can be learned privately, namely, by
an algorithm whose output does not depend too heavily on any one input or specific
training example. Our goal is a broad understanding of the resources required for
private learning in terms of samples, computation time, and interaction. We exam-
ine two basic notions from computational learning theory: Valiant’s probabilistically
approximately correct (PAC) learning [52] model and Kearns’s statistical query (SQ)
model [40].

Informally, a concept is a function from examples to labels, and a class of concepts
is learnable if for any distribution D on examples, one can, given limited access to
examples sampled from D labeled according to some target concept c, find a small
circuit (hypothesis) which predicts c’s labels with high probability over future exam-
ples taken from the same distribution. In the PAC model, a learning algorithm can
access a polynomial number of labeled examples. In the SQ model, instead of access-
ing examples directly, the learner can specify some properties (i.e., predicates) on the
examples, for which he is given an estimate, up to an additive polynomially small
error, of the probability that a random example chosen from D satisfies the property.
PAC learning is strictly stronger than SQ learning [40].

We model a statistical database as a vector z = (z1, . . . , zn), where each entry
has been contributed by an individual. When analyzing how well a private algorithm
learns a concept class, we assume that entries zi of the database are random examples
generated independently and identically (i.i.d.) from the underlying distributionD and
labeled by a target concept c. This is exactly how (not necessarily private) learners are
analyzed. For instance, an example might consist of an individual’s gender, age, and
blood pressure history and the label whether this individual has had a heart attack.
The algorithm has to learn to predict whether an individual has had a heart attack,
based on gender, age, and blood pressure history, generated according to D.

We require a private algorithm to keep entire examples (not only the labels)
confidential. In the scenario above, it translates to not revealing each participant’s
gender, age, blood pressure history, and heart attack incidence. More precisely, the
output of a private learner should not be significantly affected if a particular example

WHAT CAN WE LEARN PRIVATELY? 795

zi is replaced with arbitrary z′i for all zi and z′i. In contrast to correctness or utility,
which is analyzed with respect to distribution D, differential privacy is a worst-case
notion. Hence, when we analyze the privacy of our learners, we do not make any
assumptions on the underlying distribution. Such assumptions are fragile and, in par-
ticular, would fall apart in the presence of auxiliary knowledge (also called background
knowledge or side information) that the adversary might have: conditioned on the ad-
versary’s auxiliary knowledge, the distribution over examples might look very different
from D.

1.1. Our contributions. We introduce and formulate private learning prob-
lems, as discussed above, and develop novel algorithmic tools and bounds on the
sample size required by private learning algorithms. Our results paint a picture of the
classes of learning problems that are solvable subject to privacy constraints. Specifi-
cally, we provide the following.

(1) Private Version of Occam’s Razor. We present a generic private learning al-
gorithm. For any concept class C, we give a distribution-free differentially
private agnostic PAC learner for C that uses a number of samples propor-
tional to log |C|. This is a private analogue of the “cardinality version” of
Occam’s razor, a basic sample complexity bound from (nonprivate) learning
theory. The sample complexity of our version is similar to that of the origi-
nal, although the private algorithm is very different. As in Occam’s razor, the
learning algorithm is not necessarily computationally efficient.

(2) Efficient Private Learner for Parity. We give a computationally efficient, dif-
ferentially private distribution-free PAC learner for the class of parity func-
tions1 over {0, 1}d. The sample and time complexity are comparable to that
of the best nonprivate learner.

(3) Equivalence of Local (“Randomized Response”) and SQ Learning. We pre-
cisely characterize the power of local, or randomized response, private
learning algorithms. Local algorithms are a special (practical) class of pri-
vate algorithms and are popular in the data mining and statistics litera-
ture [54, 2, 1, 3, 53, 30, 46, 37]. They add randomness to each individual’s
data independently before processing the input. We show that a concept class
is learnable by a local differentially private algorithm if and only if it is learn-
able in the SQ model. This equivalence relates notions that were conceived
in very different contexts.

(4) Separation of Interactive and Noninteractive Local Learning. Local algorithms
can be noninteractive, that is, using one round of interaction with individu-
als holding the data, or interactive, that is, using more than one round (and
in each receiving randomized responses from individuals). We construct a
concept class, called masked-parity, that is efficiently learnable by interac-
tive local algorithms under the uniform distribution on examples but requires
an exponential (in the dimension) number of samples to be learned by a
noninteractive local algorithm. The equivalence (3) of local and SQ learning
shows that interaction in local algorithms corresponds to adaptivity in SQ
algorithms. The masked-parity class thus also separates adaptive and non-
adaptive SQ learning.

1While the generic learning result (1) extends easily to “agnostic” learning (defined below), the
learner for parity does not. The limitation is not surprising, since even nonprivate agnostic learning
of parity is at least as hard as learning parity with random noise.

796 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

1.1.1. Implications.
“Anything” learnable is privately learnable using few samples. The generic agnos-

tic learner (1) has an important consequence: if some concept class C is learnable by
any algorithm, not necessarily a private one, whose output length in bits is polyno-
mially bounded, then C is learnable privately using a polynomial number of samples
(possibly in exponential time). This result establishes the basic feasibility of private
learning: it was not clear a priori how severely privacy affects sample complexity, even
ignoring computation time.

Learning with noise is different from private learning. There is an intuitively
appealing similarity between learning from noisy examples and private learning: algo-
rithms for both problems must be robust to small variations in the data. This apparent
similarity is strengthened by a result of Blum et al. [11] showing that any algorithm in
Kearns’s SQ model [40] can be implemented in a differentially private manner. SQ was
introduced to capture a class of noise-resistant learning algorithms. These algorithms
access their input only through a sequence of approximate averaging queries. One can
privately approximate the average of a function with values in [0, 1] over the data set
of n individuals to within additive error O(1/n) (see Dwork and Nissim [27]). Thus,
one can simulate the behavior of an SQ algorithm privately, query by query.

Our efficient private learner for parity (2) dispels the similarity between learning
with noise and private learning. First, SQ algorithms provably require exponentially
many (in the dimension) queries to learn parity [40]. More compellingly, learning
parity with noise is thought to be computationally hard and has been used as the
basis of several cryptographic primitives (e.g., [13, 36, 4, 50]).

Limitations of local (“randomized response”) algorithms. Local algorithms (also
referred to as randomized response, input perturbation, postrandomization method,
and framework for high-accuracy strict-privacy preserving mining) have been studied
extensively in the context of privacy-preserving data mining, both in statistics and
computer science (e.g., [54, 2, 1, 3, 53, 30, 46, 37]). Roughly, a local algorithm accesses
each individual’s data via independent randomization operators. See Figure 1.

Local algorithms were introduced to encourage truthfulness in surveys: respon-
dents who know that their data will be randomized are more likely to answer honestly.
For example, Warner [54] famously considered a survey technique in which respondents
are asked to give the correct answer to a sensitive (true/false) question with proba-
bility 2/3 and the incorrect answer with probability 1/3, in the hopes that the added
uncertainty would encourage them to answer honestly. The proportion of “true” an-
swers in the population is then estimated using a standard, nonprivate deconvolution.

Fig. 1. Two basic models for database privacy: (a) the centralized model, in which data is
collected by a trusted agency that publishes aggregate statistics or answers users’ queries; (b) the
local model, in which users retain their data and run a randomization procedure locally to produce
output which is safe for publication. The dotted arrows from users to data holders indicate that
protocols may be completely noninteractive: in this case there is a single publication, without feedback
from users.

WHAT CAN WE LEARN PRIVATELY? 797

The accepted privacy requirement for local algorithms is equivalent to imposing dif-
ferential privacy on each randomization operator [30]. Local algorithms are popular
because they are easy to understand and implement. In the extreme case, users can
retain their data and apply the randomization operator themselves, using a physical
device [54, 47] or a cryptographic protocol [5].

The equivalence between local and SQ algorithms (3) is a powerful tool that allows
us to apply results from learning theory. In particular, since parity is not learnable
with a small number of SQ queries [40] but is PAC learnable privately (2), we get
that local algorithms require exponentially more data for some learning tasks than do
general private algorithms. Our results also imply that local algorithms are strictly less
powerful than (nonprivate) algorithms for learning with classification noise because
subexponential (nonprivate) algorithms can learn parity with noise [13].

Adaptivity in SQ algorithms is important. Just as local algorithms can be inter-
active, SQ algorithms can be adaptive; that is, the averaging queries they make may
depend on answers to previous queries. The equivalence of SQ and local algorithms (3)
preserves interaction/adaptivity: a concept class is nonadaptively SQ learnable if and
only if it is noninteractively locally learnable. The masked-parity class (4) shows that
interaction (resp., adaptivity) adds considerable power to local (resp., SQ) algorithms.

Most of the reasons that local algorithms are so attractive in practice and have
received such attention apply only to noninteractive algorithms (interaction can be
costly, complicated, or even impossible—for instance, when statistical information is
collected by an interviewer or at a polling booth).

This suggests that further investigating the power of nonadaptive SQ learners is
an important problem. For example, the SQ algorithm for learning conjunctions [43]
is nonadaptive, but SQ formulations of the perceptron and k-means algorithms [11]
seem to rely heavily on adaptivity.

Understanding the “price” of privacy for learning problems. The SQ result of
Blum et al. [11] and our learner for parity (2) provide efficient (i.e., polynomial time)
private learners for essentially all the concept classes known (by us) to have efficient
nonprivate distribution-free learners. Finding a concept class that can be learned
efficiently, but not privately and efficiently, remains an interesting and important
question.

Our results also lead to questions of optimal sample complexity for learning prob-
lems of practical importance. The private simulation of SQ algorithms due to Blum
et al. [11] uses a factor of approximately

√
t/ε more data points than the näıve non-

private implementation, where t is the number of SQ queries and ε is the parameter
of differential privacy (typically a small constant). In contrast, the generic agnostic
learner (1) uses a factor of at most 1/ε more samples than the corresponding nonpri-
vate learner. For parity, our private learner uses a factor of roughly 1/ε more samples
than, and about the same computation time as, the nonprivate learner. What, then,
is the additional cost of privacy when learning practical concept classes (half-planes,
low-dimensional curves, etc.)? Can the theoretical sample bounds of (1) be matched
by (more) efficient learners?

1.1.2. Techniques. Our generic private learning algorithm (1) adapts the expo-
nential sampling technique of McSherry and Talwar [45], developed in the context of
auction design. Our use of the exponential mechanism inspired an elegant subsequent
result of Blum, Ligett, and Roth [14] on simultaneously approximating many different
functions.

798 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

The efficient private learner for parity (2) uses a very different technique, based on
sampling, running a nonprivate learner, and occasionally refusing to answer based on
delicately calibrated probabilities. Running a nonprivate learner on a random subset
of examples is a very intuitive approach to building private algorithms, but it is not
private in general. The private learner for parity illustrates both why this technique
can leak private information and how the technique can sometimes be modified to
avoid leakage based on special (in this case, algebraic) properties of the problem at
hand.

The interesting direction of the equivalence between SQ and local learners (3) is
proved via a simulation of any local algorithm by a corresponding SQ algorithm. We
found this simulation surprising since local protocols can, in general, have very com-
plex structure (see, e.g., [30]). The SQ algorithm proceeds by a direct simulation of
the output of the randomization operators. For a given input distribution D and any
operator R, one can sample from the corresponding output distribution R(D) via re-
jection sampling. We show that if R is differentially private, the rejection probabilities
can be approximated via low-accuracy SQ queries to D.

Finally, the separation between adaptive and nonadaptive SQ (4) uses a Fourier
analytic argument inspired by Kearns’s SQ lower bound for parity [40].

1.1.3. Classes of private learning algorithms. We can summarize our re-
sults via a complexity-theoretic picture of learnable and privately learnable concept
classes (more precisely, the members of the classes are pairs of concept classes and ex-
ample distributions). In order to make asymptotic statements, we measure complexity
in terms of the length d of the binary description of examples.

We first consider learners that use a polynomial (in d) number of samples and
output a hypothesis that is described using a polynomial number of bits but that
have unlimited computation time. Let PAC∗ denote the set of concept classes that
are learnable by such algorithms ignoring privacy, and let PPAC∗ denote the subset
of PAC∗ learnable by differentially private2 algorithms.

Since we restrict the learner’s output to a polynomial number of bits, the hypoth-
esis classes of the algorithms are de facto limited to have size at most exp(poly(d)).
Thus, the generic private learner (point (1) in the introduction) will use a polynomial
number of samples, and PAC∗ = PPAC∗.

We can similarly interpret the other results above. Within PAC∗, we can consider
subsets of concepts learnable by SQ algorithms (SQ∗), nonadaptive SQ algorithms
(NASQ∗), local interactive algorithms (LI∗) and local noninteractive algorithms (LNI∗).
We obtain the following picture (see Figure 2):

LNI∗ = NASQ∗ � LI∗ = SQ∗ � PPAC∗ = PAC∗.

The equality of LI∗ and SQ∗, and of LNI∗ and NASQ∗, follow from the SQ simulation of
local algorithms (Theorem 5.14). The parity and masked-parity concept classes sepa-
rate PPAC∗ from SQ∗ and SQ∗ from NASQ∗, respectively (Corollaries 5.15 and 5.17).
(Note: The separation of PPAC∗ from SQ∗ holds even for distribution-free learning;
in contrast, the separation of SQ∗ from NASQ∗ holds for learnability under a specific
distribution on examples since the adaptive SQ learner for MASKED-PARITY requires
a uniform distribution on examples.)

2Differential privacy is quantified by a real parameter ε > 0. To make qualitative statements, we
look at algorithms where ε → 0 as d → ∞. Taking ε = 1/dc for any constant c > 0 would yield the
same class.

WHAT CAN WE LEARN PRIVATELY? 799

Fig. 2. Relationships among learning classes taking into account sample complexity, but not
computational efficiency.

When we take computational efficiency into account, the picture changes. The
relation between local and SQ classes remains the same as long as we place a mild
technical restriction on the randomization operators. Efficiently SQ-learnable concept
classes are a strict subset of privately and efficiently PAC-learnable concept classes,
since parity is efficiently learnable privately. However, it is an open question whether
concept classes which can be efficiently learned can also be efficiently learned privately.

1.2. Related work. Prior to this work, the literature on differential privacy
studied function approximation tasks (e.g., [21, 27, 11, 25, 48, 7]), with the exception
of the work of McSherry and Talwar on mechanism design [45]. Nevertheless, several
of these prior results have direct implications to machine learning–related problems.
Blum et al. [11] considered a particular class of learning algorithms (SQ) and showed
that algorithms in the class could be simulated using noisy function evaluations. In
an independent, unpublished work, Chaudhuri, Dwork, and Talwar [18] considered a
version of private learning in which privacy is afforded only to input labels, but not to
examples. Other works considered specific machine learning problems such as mining
frequent itemsets [30], k-means clustering [11, 48], learning decision trees [11], and
learning mixtures of Gaussians [48].

As mentioned above, a subsequent result of Blum, Ligett, and Roth [14] on approx-
imating classes of low-Vapnik–Chervonenkis (VC)-dimension functions was inspired
by our generic agnostic learner. We discuss their result further in section 3.1. Since
the original version of our work, there have also been several results connecting dif-
ferential privacy to more “statistical” notions of utility, such as consistency of point
estimation and density estimation [51, 24, 55, 57].

Our separation of interactive and noninteractive protocols in the local model (3)
also has a precedent: Dwork et al. [25] separated interactive and noninteractive private
protocols in the centralized model, where the user accesses the data via a server that
runs differentially private algorithms on the database and sends back the answers.
That separation has a very different flavor from the one in this work: any example
of a computation that cannot be performed noninteractively in the centralized model
must rely on the fact that the computational task is not defined until after the first
answer from the server is received. (Otherwise, the user can send an algorithm for
that task to the server holding the data, thus obviating the need for interaction.)
In contrast, we present a computational task that is hard for noninteractive local
algorithms—learning masked-parity—yet is defined in advance.

In the machine learning literature, several notions similar to differential privacy
have been explored under the rubric of “algorithmic stability” [20, 41, 16, 44, 29, 9].
The most closely related notion is change-one error stability, which measures how

800 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

much the generalization error changes when an input is changed (see the survey
[44]). In contrast, differential privacy measures how the distribution over the entire
output changes—a more complex measure of stability (in particular, differential pri-
vacy implies change-one error stability). A different notion, stability under resampling
of the data from a given distribution [10, 9], is connected to the sample-and-aggregate
method of [48] but is not directly relevant to the techniques considered here. Finally,
in a different vein, Freund, Mansour, and Schapire [32] used a weighted averaging
technique with the same weights as the sampler in our generic learner to reduce gen-
eralization error (see section 3.1).

2. Preliminaries. We use [n] to denote the set {1, 2, . . . , n}. Logarithms base 2
and base e are denoted by log and ln, respectively. Pr[·] and E[·] denote probability
and expectation, respectively. A(x) is the probability distribution over outputs of a
randomized algorithm A on input x. The statistical difference between distributions
P and Q on a discrete space D is defined as maxS⊂D | P (S)−Q(S)|.

2.1. Differential privacy. A statistical database is a vector z = (z1, . . . , zn)
over a domain D, where each entry zi ∈ D represents information contributed by one
individual. Databases z and z′ are neighbors if zi �= z′i for exactly one i ∈ [n] (i.e., the
Hamming distance between z and z′ is 1). All our algorithms are symmetric; that is,
they do not depend on the order of entries in the database z. Thus, we could define
a database as a multiset in D and use symmetric difference instead of the Hamming
metric to measure distance. We adhere to the vector formulation for consistency with
previous work.

A (randomized) algorithm (in our context, this will usually be a learning algo-
rithm) is private if neighboring databases induce nearby distributions on its outcomes.

Definition 2.1 (ε-differential privacy [25]). A randomized algorithm A is ε-
differentially private if for all neighboring databases z, z′ and for all sets S of outputs,

Pr[A(z) ∈ S] ≤ exp(ε) · Pr[A(z′) ∈ S].
The probability is taken over the random coins of A.

In [25], the notion above was called “indistinguishability.” The name “differential
privacy” was suggested by Schroeder and first appeared in a survey by Dwork [22].
Differential privacy composes well (see, e.g. [23, 48, 45, 39]).

Claim 2.2 (composition and postprocessing). If a randomized algorithm A runs
k algorithms A1, . . . ,Ak, where each Ai is εi-differentially private, and outputs a func-
tion of the results (that is, A(z) = g(A1(z),A2(z), . . . ,Ak(z)) for some probabilistic

algorithm g), then A is (
∑k

i=1 εi)-differentially private.
One method for obtaining efficient differentially private algorithms for approxi-

mating real-valued functions is based on adding Laplace noise to the true answer. Let
Lap(λ) denote the Laplace probability distribution with mean 0, standard deviation√
2λ, and probability density function (PDF) f(x) = 1

2λe
−|x|/λ.

Theorem 2.3 (see Dwork et al. [25]). For a function f : Dn → R, define its global
sensitivity GSf = maxz,z′ |f(z) − f(z′)|, where the maximum is over all neighboring
databases z and z′. Then an algorithm that on input z returns f(z) + η, where η ∼
Lap(GSf/ε), is ε-differentially private.

2.2. Preliminaries from learning theory. A concept is a function that labels
examples taken from the domain X by the elements of the range Y . A concept class
C is a set of concepts. It comes implicitly with a way to represent concepts; size (c) is
the size of the (smallest) representation of c under the given representation scheme.

WHAT CAN WE LEARN PRIVATELY? 801

The domain and the range of the concepts in C are understood to be ensembles
X = {Xd}d∈N and Y = {Yd}d∈N, where the representation of elements in Xd and Yd

is of size at most d. We focus on binary classification problems, in which the label
space Yd is {0, 1} or {+1,−1}; the parameter d thus measures the size of the examples
in Xd. (We use the parameter d to formulate asymptotic complexity notions.) The
concept classes are ensembles C = {Cd}d∈N, where Cd is the class of concepts from Xd

to Yd. When the size parameter is clear from the context or not important, we omit
the subscript in Xd, Yd, and Cd.

Let D be a distribution over labeled examples in Xd × Yd. A learning algorithm
is given access to D (the method for accessing D depends on the type of learning
algorithm). It outputs a hypothesis h : Xd → Yd from a hypothesis classH = {Hd}d∈N.
The goal is to minimize the misclassification error of h on D, defined as

err(h) = Pr
(x,y)∼D

[h(x) �= y] .

The success of a learning algorithm is quantified by parameters α and β, where α is
the desired error and β bounds the probability of failure to output a hypothesis with
this error. Error measures other than misclassification are considered in supervised
learning (e.g., L2

2). We study only misclassification error here, since for binary labels
it is equivalent to the other common error measures.

A learning algorithm is usually given access to an oracle that produces i.i.d.
samples from D. Equivalently, one can view the learning algorithm’s input as a list of n
labeled examples; i.e., z ∈ Dn, whereD = Xd×Yd. PAC learning and agnostic learning
are described in Definitions 2.4 and 2.5, respectively. Another common method of
access to D is via “statistical queries,” which return the approximate average of a
function over the distribution. Algorithms that work in this model can be simulated
given i.i.d. examples. See section 5.

PAC learning algorithms are frequently designed assuming a promise that the
examples are labeled consistently with some target concept c from a class C: namely,
c ∈ Cd and y = c(x) for all (x, y) in the support of D. In that case, we can think of
D as a distribution only over examples Xd. To avoid ambiguity, we use X to denote
a distribution over Xd. In the PAC setting, err(h) = Prx∼X [h(x) �= c(x)].

Definition 2.4 (PAC learning). A concept class C over X is PAC learnable
using hypothesis class H if there exist an algorithm A and a polynomial poly(·, ·, ·)
such that for all d ∈ N, all concepts c ∈ Cd, all distributions X on Xd, and all α, β ∈
(0, 1/2), given inputs α, β and z = (z1, · · · , zn), where n = poly(d, 1/α, log(1/β)),
zi = (xi, c(xi)), and xi are drawn i.i.d. from X for i ∈ [n], algorithm A outputs a
hypothesis h ∈ H satisfying

Pr[err(h) ≤ α] ≥ 1− β.(2.1)

The probability is taken over the random choice of the examples z and the coin tosses
of A.

Class C is (inefficiently) PAC learnable if there exists some hypothesis class H
and a PAC learner A such that A PAC learns C using H. Class C is efficiently PAC
learnable if A runs in time polynomial in d, 1/α, and log(1/β).

Remark. Our definition deviates slightly from the standard one (see, e.g., [43]) in
that we do not take into consideration the size of the concept c. This choice allows us
to treat PAC learners and agnostic learners identically. One can change Definition 2.4
so that the number of samples depends polynomially also on the size of c without
affecting any of our results significantly.

802 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

Agnostic learning [33, 42] is an extension of PAC learning that removes assump-
tions about the target concept. Roughly speaking, the goal of an agnostic learner for
a concept class C is to output a hypothesis h ∈ H whose error with respect to the
distribution is close to the optimal possible by a function from C. In the agnostic
setting, err(h) = Pr(x,y)∼D[h(x) �= y].

Definition 2.5 (agnostic learning). Agnostically learnable (efficiently) is defined
identically to PAC learnable (efficiently) with two exceptions: (i) the data are drawn
from an arbitrary distribution D on Xd × Yd, and (ii) instead of (2.1), the output of
A has to satisfy:

Pr[err(h) ≤ OPT + α] ≥ 1− β,

where OPT = minf∈Cd {err(f)} . As before, the probability is taken over the random
choice of z and the coin tosses of A.

Definitions 2.4 and 2.5 capture distribution-free learning, in that they do not
assume a particular form for the distributions X or D. In section 5.3, we also con-
sider learning algorithms that assume a specific distribution D on examples (but
make no assumption on which concept in C labels the examples). When we discuss
such algorithms, we specify D explicitly; without qualification, “learning” refers to
distribution-free learning.

Efficiency measures. The definitions above are sufficiently detailed to allow for ex-
act complexity statements (e.g., “A learns C using n(α, β) examples and time O(t)”),
and the upper and lower bounds in this paper are all stated in this language. How-
ever, we also focus on two broader measures to allow for qualitative statements: (i)
polynomial sample complexity is the default notion in our definitions. With the novel
restriction of privacy, it is not a priori clear which concept classes can be learned
using few examples even if we ignore computation time. (ii) We use the term efficient
private learning to impose the additional restriction of polynomial computation time
(which implies polynomial sample complexity).

3. Private PAC and agnostic learning. We define private PAC learners as
algorithms that satisfy definitions of both differential privacy and PAC learning. We
emphasize that these are qualitatively different requirements. Learning must succeed
on average over a set of examples drawn i.i.d. from D (often under the additional
promise that D is consistent with a concept from a target class). Differential privacy,
in contrast, must hold in the worst case, with no assumptions on consistency.

Definition 3.1 (private PAC learning). Let d, α, and β be as in Definition 2.4
and ε > 0. Concept class C is (inefficiently) privately PAC learnable using hypothesis
class H if there exists an algorithm A that takes inputs ε, α, β, z, where n, the num-
ber of labeled examples in z, is polynomial in 1/ε, d, 1/α, log(1/β), and satisfies the
following:

a. [Privacy] For all ε > 0, algorithm A(ε, ·, ·, ·) is ε-differentially private (Defini-
tion 2.1);

b. [Utility] Algorithm A PAC learns C using H (Definition 2.4).
C is efficiently privately PAC learnable if A runs in time polynomial in d, 1/ε, 1/α,
and log(1/β).

Definition 3.2 (private agnostic learning). Private (efficient) agnostic learning
is defined analogously to (efficient) private PAC learning with Definition 2.5 replacing
Definition 2.4 in the utility condition.

Evaluating the quality of a particular hypothesis is easy: one can privately com-
pute the fraction of the data it classifies correctly (enabling cross-validation) using

WHAT CAN WE LEARN PRIVATELY? 803

the sum query framework of [11]. The difficulty of constructing private learners lies
in finding a good hypothesis in what is typically an exponentially large space.

3.1. A generic private agnostic learner. In this section, we present a private
analogue of a basic consistent learning result, often called the cardinality version of
Occam’s razor.3 This classical result shows that a PAC learner can weed out all
bad hypotheses given a number of labeled examples that is logarithmic in the size
of the hypothesis class (see [43, p. 35]). Our generic private learner is based on the
exponential mechanism of McSherry and Talwar [45].

Let q : Dn ×Hd → R take a database z and a candidate hypothesis h and assign
it a score q(z, h) = −|{i : xi is misclassified by h, i.e., yi �= h(xi)}| . That is, the
score is minus the number of points in z misclassified by h. The classic Occam’s razor
argument assumes a learner that selects a hypothesis with maximum score (that is,
minimum empirical error). Instead, our private learner Aε

q is defined to sample a
random hypothesis with probability dependent on its score:

Aε
q(z) : output hypothesis h ∈ Hd with probability proportional to exp

(
εq(z,h)

2

)
.

Since the score ranges from −n to 0, hypotheses with low empirical error are expo-
nentially more likely to be selected than ones with high error.

Algorithm Aε
q fits the framework of McSherry and Talwar [45], and so is ε-

differentially private. This follows from the fact that changing one entry zi in the
database z can change the score by at most 1.

Lemma 3.3 (following [45]). The algorithm Aε
q is ε-differentially private.

A similar exponential weighting algorithm was considered by Freund, Mansour,
and Schapire [32] for constructing binary classifiers with good generalization error
bounds. We are not aware of any direct connection between the two results. Also note
that, except for the case where |Hd| is polynomial, the exponential mechanism Aε

q(z)
does not necessarily yield a polynomial time algorithm.

Theorem 3.4 (generic private learner). For all d ∈ N, any concept class Cd whose
cardinality is at most exp(poly(d)) is privately agnostically learnable using Hd = Cd.
More precisely, the learner uses n = O((ln |Hd|+ln 1

β) ·max{ 1
εα ,

1
α2 }) labeled examples

from D, where ε, α, and β are parameters of the private learner. (The learner might
not be efficient.)

Proof. Let Aε
q be as defined above. The privacy condition in Definition 3.1 is

satisfied by Lemma 3.3.
We now show that the utility condition is also satisfied. Consider the following

event: E = {Aε
q(z) = h with err(h) > α + OPT }. We want to prove that Pr[E] ≤ β.

Define the training error of h as

errT (h) =
∣∣{i ∈ [n] |h(xi) �= yi}

∣∣/n = −q(z, h)/n .

By Chernoff–Hoeffding bounds (see Theorem A.2 in Appendix A),

Pr
[|err(h)− errT (h)| ≥ ρ

] ≤ 2 exp(−2nρ2)
for all hypotheses h ∈ Hd. Hence,

Pr
[|err(h)− errT (h)| ≥ ρ for some h ∈ Hd

] ≤ 2|Hd| exp(−2nρ2).
3We discuss the relationship to the “compression version” of Occam’s razor at the end of this

section.

804 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

We now analyze Aε
q(z) conditioned on the event that for all h ∈ Hd, |err(h) −

errT (h)| < ρ. For every h ∈ Hd, the probability that Aε
q(z) = h is

exp(− ε
2 · n · errT (h))∑

h′∈Hd
exp(− ε

2 · n · errT (h′))
≤ exp

(− ε
2 · n · errT (h)

)
maxh′∈Hd

exp(− ε
2 · n · errT (h′))

= exp
(
− ε

2 · n · (errT (h)− min
h′∈Hd

errT (h
′))

)
≤ exp

(− ε
2 · n · (errT (h)− (OPT + ρ))

)
.

Hence, the probability that Aε
q(z) outputs a hypothesis h ∈ Hd such that errT (h) ≥

OPT + 2ρ is at most |Hd| exp(−εnρ/2).
Now set ρ = α/3. If err(h) ≥ OPT+α, then |err(h)−errT (h)| ≥ α/3 or errT (h) ≥

OPT + 2α/3. Thus, Pr[E] ≤ |Hd|(2 exp(−2nα2/9) + exp(−εnα/6)) ≤ β, where the
last inequality holds for n ≥ 6((ln |Hd|+ ln 1

β) ·max{ 1
εα ,

1
α2 }).

Remark. In the nonprivate agnostic case, the standard Occam’s razor bound guar-
antees that O((log |Cd|+ log(1/β))/α2) labeled examples suffice to agnostically learn
a concept class Cd. The bound of Theorem 3.4 differs by a factor of O(αε) if α > ε and
does not differ at all otherwise. For (nonagnostic) PAC learning, the dependence on
α in the sample size for both the private and nonprivate versions improves to 1/α. In
that case the upper bounds for private and nonprivate learners differ by a factor of
O(1/ε). Finally, the theorem can be extended to settings where Hd �= Cd, but in this
case using the same sample complexity the learner outputs a hypothesis whose error
is close to the best error attainable by a function in Hd.

Implications of the private agnostic learner. The private agnostic learner has the
following important consequence: If some concept class Cd is learnable by any algo-
rithm A, not necessarily a private one, and A’s output length in bits is polynomially
bounded, then there is a (possibly exponential time) private algorithm that learns Cd
using a polynomial number of samples. Since A’s output is polynomially long, A’s
hypothesis class Hd must have size at most 2poly(d). Since A learns Cd using Hd, class
Hd must contain a good hypothesis. Thus, our private learner will learn Cd using Hd

with sample complexity linear in log |Hd|.
The “compression version” of Occam’s razor. It is most natural to state our

result as an analogue of the cardinality version of Occam’s razor, which bounds gen-
eralization error in terms of the size of the hypothesis class. However, our result can
be extended to the compression version, which captures the general relationship be-
tween compression and learning (we borrow the “cardinality version” terminology
from [43]). This latter version states that any algorithm which “compresses” the data
set, in the sense that it finds a consistent hypothesis which has a short description
relative to the number of samples seen so far, is a good learner (see [15] and [43,
p. 34]).

Compression by itself does not imply privacy, because the compression algo-
rithm’s output might encode a few examples in the clear (for example, the hyper-
plane output by a support vector machine is defined via a small number of actual
data points). However, Theorem 3.4 can be extended to provide a private analogue
of the compression version of Occam’s razor. If there exists an algorithm that com-
presses, in the sense above, then there also exists a private PAC learner which does
not have fixed sample complexity but uses an expected number of samples similar
to that of the compression algorithm. The private learner proceeds in rounds: at
each round it requests twice as many examples as in the previous round and uses a

WHAT CAN WE LEARN PRIVATELY? 805

restricted hypothesis class consisting of sufficiently concise hypotheses from the orig-
inal class H. We omit the straightforward details.

3.2. Private learning with VC dimension sample bounds. In the non-
private case one can also bound the sample size of a PAC learner in terms of the VC
dimension of the concept class.

Definition 3.5 (VC dimension). A set S ⊆ Xd is shattered by a concept class
Cd if Cd restricted to S contains all 2|S| possible functions from S to {0, 1}. The VC
dimension of Cd, denoted V CDIM(Cd), is the cardinality of a largest set S shattered
by Cd.

We can extend Theorem 3.4 to classes with finite VC dimension, but the result-
ing sample complexity also depends logarithmically on the size of the domain from
which examples are drawn. Recent results of Beimel, Kasiviswanathan, and Nissim [8]
show that for “proper” learning, the dependency is in fact necessary; that is, the VC
dimension alone is not sufficient to bound the sample complexity of proper private
learning. It is unclear if the dependency is necessary in general.

Corollary 3.6. Every concept class Cd is privately agnostically learnable using
hypothesis class Hd = Cd with n = O((V CDIM(Cd) · ln |Xd| + ln 1

β) · max{ 1
εα ,

1
α2 })

labeled examples from D. Here, ε, α, and β are parameters of the private agnostic
learner, and V CDIM(Cd) is the VC dimension of Cd. (The learner is not necessarily
efficient.)

Proof. Sauer’s lemma (see, e.g., [43]) implies that there are O(|Xd|V CDIM(Cd))
different labelings of Xd by functions in Cd. We can thus run the generic learner of
the previous section with a hypothesis class of size |Hd| = O(|Xd|V CDIM(Cd)). The
statement follows directly.

Our original proof of the corollary used a result of Blum, Ligett, and Roth [14]
(which was inspired, in turn, by our generic learning algorithm) on generating syn-
thetic data. The simpler proof above was pointed out to us by an anonymous reviewer.

Remark: Computability issues with generic learners. In their full generality, the
generic learning results of the previous sections (Theorem 3.4 and Corollary 3.6)
produce well-defined randomized maps, but not necessarily “algorithms” in the sense
of “functions uniformly computable by Turing machines.” This is because the concept
class and example domain may themselves not be computable (nor even recognizable)
uniformly (imagine, for example, a concept class indexed by elements of the halting
problem). It is commonly assumed in the learning literature that elements of the
concept class and domain can be computed/recognized by a Turing machine and some
bound on the length of their binary representations is known. In this case, the generic
learners can be implemented by randomized Turing machines with finite expected
running time.

4. An efficient private learner for PARITY. Let PARITY be the class of
parity functions cr : {0, 1}d → {0, 1} indexed by r ∈ {0, 1}d, where cr(x) = r
 x
denotes the inner product modulo 2. In this section, we present an efficient private
PAC learning algorithm for PARITY. The main result is stated in Theorem 4.4.

The standard (nonprivate) PAC learner for PARITY [34, 31] looks for the hidden
vector r by solving a system of linear equations imposed by examples (xi, cr(xi)) that
the algorithm sees. It outputs an arbitrary vector consistent with the examples, i.e.,
in the solution space of the system of linear equations. We want to design a private
algorithm that emulates this behavior. A major difficulty is that the private learner’s
behavior must be specified on all databases z, even those which are not consistent
with any single parity function. The standard PAC learner would simply fail in such

806 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

a situation (we denote failure by the output ⊥). In contrast, the probability that a
private algorithm fails must be similar for all neighbors z and z′.

We first present a private algorithm A for learning PARITY that succeeds only
with constant probability. Later we amplify its success probability and get a private
PAC learner A∗ for PARITY. Intuitively, the reason PARITY can be learned privately
is that when a new example (corresponding to a new linear constraint) is added, the
space of consistent hypotheses shrinks by at most a factor of 2. This holds unless
the new constraint is inconsistent with previous constraints. In the latter case, the
size of the space of consistent hypotheses goes to 0. Thus, the solution space changes
drastically on neighboring inputs only when the algorithm fails (outputs ⊥). The fact
that the algorithm outputs ⊥ on a database z and a valid (non ⊥) hypothesis on a
neighboring database z′ might lead to privacy violations. To avoid this, our algorithm
always outputs ⊥ with probability at least 1/2 on any input (step 1).

A private learner for PARITY, A(z, ε).
1. With probability 1/2, output ⊥ and terminate.
2. Construct a set S by picking each element of [n] independently with

probability p = ε/4.
3. Use Gaussian elimination to solve the system of equations imposed by

examples, indexed by S: namely, {xi
r = cr(xi) : i ∈ S}. Let VS denote
the resulting affine subspace.

4. Pick r∗ ∈ VS uniformly at random and output cr∗ ; if VS = ∅, output ⊥.

The proof of A’s utility follows by considering all the possible situations in which
the algorithm fails to satisfy the error bound and by bounding the probabilities with
which these situations occur.

Lemma 4.1 (utility of A). Let X be a distribution over X = {0, 1}d. Let z =
(z1, . . . , zn), where for all i ∈ [n], the entry zi = (xi, c(xi)) with xi drawn i.i.d. from
X and c ∈ PARITY. If n ≥ 8

εα (d ln 2 + ln 4), then

Pr[A(z, ε) = h with error (h) ≤ α] ≥ 1

4
.

Proof. By standard arguments in learning theory [43], |S| ≥ 1
α (d ln 2+ln 1

β) labeled
examples are sufficient for learning PARITY with error α and failure probability β.
Since A adds each element of [n] to S independently with probability p = ε/4, the
expected size of S is pn = εn/4. By the Chernoff bound (Theorem A.1), |S| ≥ εn/8
with probability at least 1 − e−εn/16. We set β = 1

4 and pick n such that εn/8 ≥
1
α (d ln 2 + ln 4).

We now bound the overall success probability. A(z, ε) = h with err(h) ≤ α unless
one of the following bad events happens: (i) A terminates in step 1, (ii) A proceeds
to step 2 but does not get enough examples: |S| < 1

α (d ln 2 + ln 4)), or (iii) A gets
enough examples but outputs a hypothesis with error greater than α. The first bad
event occurs with probability 1/2. If the lower bound on the database size n is satisfied,
then the second bad event occurs with probability at most e−εn/16/2 ≤ 1/8. The last
inequality follows from the bound on n and the fact that α ≤ 1/2. Finally, by our
choice of parameters, the last bad event occurs with probability at most β/2 = 1/8.
The claimed bound on the success probability follows.

Lemma 4.2 (privacy of A). Algorithm A is ε-differentially private.

WHAT CAN WE LEARN PRIVATELY? 807

As mentioned above, the key observation in the following proof is that including
any single point in the sample set S increases the probability of a hypothesis being
output by at most 2.

Proof. To show thatA is ε-differentially private, it suffices to prove that any output
of A, either a valid hypothesis or ⊥, appears with roughly the same probability on
neighboring databases z and z′. In the remainder of the proof we fix ε and write A(z)
as shorthand for A(z, ε). We have to show that

Pr[A(z) = h] ≤ eε · Pr[A(z′) = h] for all neighbors z, z′ ∈ Dn(4.1)

and all hypotheses h ∈ PARITY;

Pr[A(z) =⊥] ≤ eε · Pr[A(z′) =⊥] for all neighbors z, z′ ∈ Dn.(4.2)

We prove the correctness of (4.1) first. Let z and z′ be neighboring databases, and let
i denote the entry on which they differ. Recall that A adds i to S with probability p.
Since z and z′ differ only in the ith entry, Pr[A(z) = h | i /∈ S] = Pr[A(z′) = h | i /∈ S].

Note that if Pr[A(z′) = h | i /∈ S] = 0, then also Pr[A(z) = h | i /∈ S] = 0, and
hence, Pr[A(z) = h] = 0 because adding a constraint does not add new vectors to the
space of solutions. Otherwise, Pr[A(z′) = h | i /∈ S] > 0. In this case, we rewrite the
probability on z as follows:

Pr[A(z) = h] = p · Pr[A(z) = h | i ∈ S] + (1− p) · Pr[A(z) = h | i /∈ S].

And we apply the same transformation to the probability on z′. Then

Pr[A(z) = h]

Pr[A(z′) = h]
=

p · Pr[A(z) = h | i ∈ S] + (1− p) · Pr[A(z) = h | i /∈ S]

p · Pr[A(z′) = h | i ∈ S] + (1− p) · Pr[A(z′) = h | i /∈ S]

≤ p · Pr[A(z) = h | i ∈ S] + (1− p) · Pr[A(z) = h | i /∈ S]

p · 0 + (1− p) · Pr[A(z′) = h | i /∈ S]

=
p

1− p
· Pr[A(z) = h | i ∈ S]

Pr[A(z) = h | i /∈ S]
+ 1.(4.3)

We need the following claim.

Claim 4.3.
Pr[A(z)=h | i∈S]
Pr[A(z)=h | i/∈S] ≤ 2, for all z ∈ Dn and all hypotheses h ∈ PARITY.

This claim is proved below. For now, we can plug it into (4.3) to get

Pr[A(z) = h]

Pr[A(z′) = h]
≤ 2p

1− p
+ 1 ≤ ε+ 1 ≤ eε .

The first inequality holds since p = ε/4 and ε ≤ 1/2. This establishes (4.1). The
proof of (4.2) is similar:

Pr[A(z) =⊥]
Pr[A(z′) =⊥] =

p · Pr[A(z) =⊥ | i ∈ S] + (1− p) · Pr[A(z) =⊥ | i /∈ S]

p · Pr[A(z′) =⊥ | i ∈ S] + (1− p) · Pr[A(z′) =⊥ | i /∈ S]

≤ p · 1 + (1 − p) · Pr[A(z) =⊥ | i /∈ S]

p · 0 + (1− p) · Pr[A(z′) =⊥ | i /∈ S]

=
p

(1− p) · Pr[A(z′) =⊥ | i /∈ S]
+ 1 ≤ 2p

1− p
+ 1 ≤ ε+ 1 ≤ eε.

In the last line, the first inequality follows from the fact that on any input, A outputs
⊥ with probability at least 1/2. This completes the proof of the lemma.

808 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

We now establish Claim 4.3, which was used in the preceding proof.
Proof of Claim 4.3. The left-hand side

Pr[A(z) = h | i ∈ S]

Pr[A(z) = h | i /∈ S]

=

∑
T⊆[n]\{i} Pr[A(z) = h | S = T ∪ {i}] · Pr[A selects T from [n] \ {i}]∑

T⊆[n]\{i} Pr[A(z) = h | S = T] · Pr[A selects T from [n] \ {i}] .

To prove the claim, it is enough to show that Pr[A(z)=h | S=T∪{i}]
Pr[A(z)=h | S=T] ≤ 2 for each T ⊆

[n] \ {i}. Recall that VS is the space of solutions to the system of linear equations
{〈xi, r〉 = cr(xi) : i ∈ S}. Recall also that A picks r∗ ∈ VS uniformly at random and
outputs h = cr∗ . Therefore,

Pr[A(z) = cr∗ | S] =
{

1/|VS | if r∗ ∈ VS ,
0 otherwise.

If Pr[A(z) = h | S = T] = 0, then Pr[A(z) = h | S = T ∪ {i}] = 0 because a new
constraint does not add new vectors to the space of solutions. If Pr[A(z) = h | S =
T ∪ {i}] = 0, the required inequality holds. If neither of the two probabilities is 0,
then

Pr[A(z) = h | S = T ∪ {i}]
Pr[A(z) = h | S = T]

=
1/|VT∪{i}|
1/|VT | =

|VT |
|VT∪{i}| ≤ 2.

The last inequality holds because in Z2 (the finite field with 2 elements where arith-
metic is performed modulo 2) adding a consistent linear constraint either reduces the
space of solutions by a factor of 2 (if the constraint is linearly independent from VT)
or does not change the solutions space (if it is linearly dependent on the previous con-
straints). The constraint indexed by i has to be consistent with constraints indexed
by T , since both probabilities are not 0.

It remains to amplify the success probability of A. To do so, we construct a pri-
vate version of the standard (nonprivate) algorithm for amplifying a learner’s success
probability. The standard amplification algorithm generates a set of hypotheses by
invoking A multiple times on independent examples, and then it outputs a hypothesis
from the set with the least training error as evaluated on a fresh test set (see [43]
for details). Our private amplification algorithm differs from the standard algorithm
only in the last step: it adds Laplace noise to the training error to obtain a private
version of the error and then uses the perturbed training error instead of the true
training error to select the best hypothesis from the set.4 Recall that Lap(λ) denotes
the Laplace probability distribution with mean 0, standard deviation

√
2λ, and PDF

f(x) = 1
2λe
−|x|/λ.

4Alternatively, we could use the generic learner from Theorem 3.4 to select among the candidate
hypotheses; the resulting algorithm has the same asymptotic behavior as the algorithm we discuss
here. We chose the algorithm that we felt was simplest.

WHAT CAN WE LEARN PRIVATELY? 809

Amplified private PAC learner for PARITY, A∗(z, ε, α, β).
1. β′ ← β

2 ; α
′ ← α

5 ; k ←
⌈
log 3

4

(
1
β′

)⌉
; n′ ← cd

εα′ ; s ← c′k
α′ε log

(
k
β′

)
(where

c, c′ are constants).
2. If n ≤ kn′ + s, stop and return “insufficient samples.”
3. Divide z = (z1, . . . , zn) into two parts: training set z̄ = (z1, . . . , zkn′) and

test set ẑ = (zkn′+1, . . . , zkn′+s).
4. Divide z̄ into k equal parts each of size n′; let z̄j = (z(j−1)n′+1, . . . , zjn′)

for j ∈ [k].
5. For j ← 1 to k

hj ← A(z̄j , ε);
set perturbed training error of hj to

êrrT (hj) =

∣∣{zi ∈ ẑ : hj(xi) �= c(xi)}
∣∣

s
+ Lap

(
k

sε

)
.

6. Output h∗ = hj∗ , where j∗ = argminj∈[k]{êrrT (hj)}.

Theorem 4.4. Algorithm A∗ efficiently and privately PAC learns PARITY (ac-

cording to Definition 3.1) with O(d log(1/β)
εα) samples.

The theorem follows from Lemmas 4.5 and 4.6 that, respectively, prove privacy
and utility of A∗.

Lemma 4.5 (privacy of A∗). Algorithm A∗ is ε-differentially private.
Proof. We prove that even if A∗ released all hypotheses hj, computed in step 5,

together with the corresponding perturbed error estimates êrrT (hj), it would still
be ε-differentially private. Since the output of A∗ can be computed solely from this
information, Claim 2.2 implies that A∗ is ε-differentially private.

By Lemma 4.2, algorithm A is ε-differentially private. Since A is invoked on
disjoint parts of z to compute hypotheses hj , releasing all these hypotheses would
also be ε-differentially private.

Define the training error of hypothesis hj on ẑ as errT (hj) = |{zi ∈ ẑ : hj(xi) �=
c(xi)}|/s. The global sensitivity of the errT function is 1/s because |errT (z)−errT (z′)| ≤
1/s for every pair of neighboring databases z, z′. Therefore, by Theorem 2.3, releasing
êrrT (hj) for one j, would be ε/k-differentially private, and by Claim 2.2, releasing all
k of them would be ε-differentially private. Since hypotheses hj and their perturbed
errors êrrT (hj) are computed on disjoint parts of the database z, releasing all that
information would still be ε-differentially private.

Lemma 4.6 (utility of A∗). A∗(·, ε, ·, ·) PAC learns PARITY with sample com-

plexity n = O(d log(1/β)
εα).

Proof. Let X be a distribution over X = {0, 1}d. Recall that z = (z1, . . . , zn),
where for all i ∈ [n], the entry zi = (xi, c(xi)) with xi drawn i.i.d. from X and

c ∈ PARITY. Assume that β < 1/4 and n ≥ C d log(1/β)
εα for a constant C to be

determined. We wish to prove that Pr[err(h∗) ≤ α] ≥ 1−β, where h∗ is the hypothesis
output by A∗.

Consider the set of candidate hypotheses {h1, ..., hk} output by the invocations of
A inside of A∗. We call a hypothesis h good if err(h) ≤ α

5 = α′. We call a hypothesis
h bad if err(h) ≥ α = 5α′. Note that good and bad refer to a hypothesis’s true error
rate on the underlying distribution.

We will show the following:
1. With probability at least 1 − β′, one of the invocations of A outputs a good

hypothesis.

810 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

2. Conditioned on any particular outcome {h1, . . . , hk} of the invocations of A,
with probability at least 1− β′, both
(a) every good hypothesis hj in {h1, . . . , hk} has training error errT (hj) ≤

2α′,
(b) every bad hypothesis hj in {h1, . . . , hk} has training error errT (hj) ≥

4α′.
3. Conditioned on any particular hypotheses {h1, . . . , hk} and training errors

errT (h1), . . . , errT (hk), with probability at least 1 − β′, for all j simultane-
ously, |êrrT (hj)− errT (hj)| < α′.

Suppose the events described in the three claims above all occur. Then some
good hypothesis has perturbed training error less than 3α′, yet all bad hypotheses
have perturbed training error greater than 3α′. Thus, the hypothesis hj∗ with minimal
perturbed error êrrT (hj∗) is not bad, that is, has true error at most α. By the claims
above, the probability that all three events occur is at least 1− 3β′ = 1 − β, and so
the lemma holds. We now prove the claims.

First, by the utility guarantee of A, each invocation of A inside A∗ outputs a
good hypothesis with probability at least 1

4 as long as the constant c > 8(ln 2 + ln 4)
(since in that case n′, the size of each z̄j , is large enough to apply Lemma 4.1). The
k invocations of the algorithm A are on independent samples, so the probability that
none of h1, . . . , hk is good is at most (34)

k. Setting k ≥ log 3
4

1
β′ ensures that with

probability at least 1− β′, at least one of h1, . . . , hk has error at most α′.
Second, fix a particular sequence of candidate hypotheses h1, . . . , hk. For each j,

the training error errT (hj) is the average of s Bernoulli trials, each with success prob-
ability err(hj). (Crucially, the training set ẑ is independent of the data z̄ used to find
the candidate hypotheses.) To bound the training error, we apply the multiplicative
Chernoff bound (Theorem A.1) with n = s and p = err(hj). Here, p ≤ α′ if hj is good,
and p ≥ 5α′ if hj is bad.

By the multiplicative Chernoff bound (Theorem A.1), if s ≥ c1
α′ ln

k
β′ (for appro-

priate constant c1), then

Pr
[
errT (hj) ≥ 2α′

∣∣ hj is good
] ≤ Pr[Binomial(s, α′) ≥ 2α′s] ≤ β′

k
,

and

Pr
[
errT (hj) ≤ 4α′

∣∣ hj is bad
] ≤ Pr[Binomial(s, 5α′) ≤ 4α′s] ≤ β′

k
.

By a union bound, all the training errors are (simultaneously) approximately correct,

with probability at least 1− k · β′
k = 1− β′.

Finally, we prove the third claim. Consider a particular candidate hypothesis hj. If
s ≥ c2k

α′ε ln
k
β′ (for appropriate constant c2), then (by using the cumulative distribution

function5 of the Laplace distribution)

Pr [|errT (hj)− êrrT (hj)| < α′] = Pr

[
Lap

(
k

sε

)
≥ α′

]
≤ β′

k
.

By a union bound, all k perturbed estimates are within α′ of their correct value with

probability at least 1 − k · β′

k = 1 − β′. This probability is taken over the choice of

5The cumulative distribution function of the Laplace distribution Lap(λ) is F (x) = 1
2
exp

(
x
λ

)
if

x < 0 and 1− 1
2
exp

(− x
λ

)
if x ≥ 0.

WHAT CAN WE LEARN PRIVATELY? 811

Laplace noise, and so the bound holds independently of the particular hypotheses or
their training error estimates.

Remark. In the nonprivate case O((d+ln(1/β))/α) labels are sufficient for learning
PARITY. Theorem 4.4 shows that the upper bounds on the sample size of private and
nonprivate learners differ only by a factor of O(ln(1/β)/ε).

5. Local protocols and SQ learning. In this section, we relate private learn-
ing in the local model to the SQ model of Kearns [40]. We first define the two models
precisely. We then prove their equivalence (section 5.1), and discuss the implications
for learning (section 5.2). Finally, we define the concept class MASKED-PARITY and
prove that it separates interactive from noninteractive local learning (section 5.3).

Local model. We start by describing private computation in the local model.
Informally, each individual holds her private information locally and hands it to the
learner after randomizing it. This is modeled by letting the local algorithm access
each entry zi in the input database z = (z1, . . . , zn) ∈ Dn only via local randomizers.

Definition 5.1 (local randomizer). An ε-local randomizer R : D → W is an ε-
differentially private algorithm that takes a database of size n = 1. That is, Pr[R(u) =
w] ≤ eε Pr[R(u′) = w] for all u, u′ ∈ D and all w ∈ W . The probability is taken over
the coins of R (but not over the choice of the input).

Note that since a local randomizer works on a data set of size 1, u and u′ are neigh-
bors for all u, u′ ∈ D. Thus, this definition is consistent with our previous definition
of differential privacy.

Definition 5.2 (LR oracle). Let z = (z1, . . . , zn) ∈ Dn be a database. An LR
oracle LRz(·, ·) gets an index i ∈ [n] and an ε-local randomizer R and outputs a
random value w ∈ W chosen according to the distribution R(zi). The distribution
R(zi) depends only on the entry zi in z.

Definition 5.3 (local algorithm). An algorithm is ε-local if it accesses the
database z via the oracle LRz with the following restriction: for all i ∈ [n], if
LRz(i, R1), . . . , LRz(i, Rk) are the algorithm’s invocations of LRz on index i, where
each Rj is an εj-local randomizer, then ε1 + · · ·+ εk ≤ ε.

Local algorithms that prepare all their queries to LRz before receiving any answers
are called noninteractive; otherwise, they are interactive.

By Claim 2.2, ε-local algorithms are ε-differentially private.
SQ model. In the SQ model, algorithms access statistical properties of a distri-

bution rather than individual examples.
Definition 5.4 (SQ oracle). Let D be a distribution over a domain D. An SQ

oracle SQD takes as input a function g : D → {+1,−1} and a tolerance parameter
τ ∈ (0, 1); it outputs v such that

|v − E
u∼D

[g(u)]| ≤ τ.

The query function g does not have to be Boolean. Bshouty and Feldman [17]
showed that given access to an SQ oracle which accepts only Boolean query functions,
one can simulate an oracle that accepts real-valued functions g : D → [−b, b] and
outputs Eu∼D[g(u)]± τ using O(log(b/τ)) nonadaptive queries to the SQ oracle and
similar processing time.

Definition 5.5 (SQ algorithm). An SQ algorithm accesses the distribution D
via the SQ oracle SQD. SQ algorithms that prepare all their queries to SQD before
receiving any answers are called nonadaptive; otherwise, they are called adaptive.

Note that we do not restrict g() to be efficiently computable. We will distinguish
later those algorithms that only make queries to efficiently computable functions g().

812 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

5.1. Equivalence of local and SQ models. Both the SQ and local models
restrict algorithms to access inputs in a particular manner. There is a significant
difference though: an SQ oracle sees a distribution D, whereas a local algorithm takes
as input a fixed (arbitrary) database z. Nevertheless, we show that if the entries of
z are chosen i.i.d. according to D, then the models are equivalent. Specifically, an
algorithm in one model can simulate an algorithm in the other model. Moreover, the
expected query complexity is preserved up to polynomial factors. We first present
the simulation of SQ algorithms by local algorithms (section 5.1.1). The simulation
in the other direction is more delicate and is presented in section 5.1.2.

5.1.1. Simulation of SQ algorithms by local algorithms. Blum et al. [11]
used the fact that sum queries can be answered privately with little noise to show that
any efficient SQ algorithm can be simulated privately and efficiently. We show that
it can be simulated efficiently even by a local algorithm, albeit with slightly worse
parameters.

Let g : D → [−b, b] be the SQ query we want to simulate. By Theorem 2.3, since
the global sensitivity of g is 2b, the algorithm Rg(u) = g(u)+η, where η ∼ Lap(2b/ε),
is an ε-local randomizer. We construct a local algorithm Ag that, given n and ε
and access to a database z via oracle LRz, invokes LRz for every i ∈ [n] with the
randomizer Rg and outputs the average of the responses.

A local algorithm Ag(n, ε, LRz) simulating an SQ query

g : D → [−b, b].
1. Output 1

n

∑n
i=1 LRz(i, Rg), where Rg(u) = g(u) + η and η ∼ Lap

(
2b
ε

)
.

Note that Ag outputs (1n
∑n

i=1 g(zi)) + (1n
∑n

i=1 ηi), where the ηi are i.i.d. from

Lap(2bε). This algorithm is ε-local (since it applies a single ε-local randomized to each
entry of z) and, therefore, ε-differentially private. The following lemma shows that
when the input database z is large enough, Ag simulates the desired SQ query g with
small error probability.

Lemma 5.6. If, for sufficiently large constant c, database z has n ≥ c · log(1/β)b2ε2τ2

entries sampled i.i.d. from a distribution D on D, then algorithm Ag approximates

Eu∼D[g(u)] within additive error ±τ with probability at least 1− β.
Proof. Let v = Eu∼D[g(u)] denote the true mean. By the Chernoff–Hoeffding

bound for real-valued variables (Theorem A.2),

Pr
[∣∣ 1

n

∑n
i=1 g(ui)− v

∣∣ ≥ τ
2

] ≤ 2 exp
(
− τ2n

8b2

)
.

Therefore, in the absence of additive Laplace random noise, O(ln(1/β)b
2

τ2) examples are
enough to approximate Eu∼D[g(u)] within additive error ± τ

2 with probability at least

1 − β
2 . (Note that the number of examples is smaller than the lower bound on n in

the lemma by a factor of O(ε−2).)
The effect of the Laplace noise can also be bounded via a standard tail inequality:

setting λ = 2b
ε in Lemma A.3, we get that O(ln(1/β)b

2

ε2τ2) samples are sufficient to ensure

that the average of ηi’s lies outside [− τ
2 ,

τ
2] with probability at most β

2 . It follows thatAg estimates Eu∼D[g(u)] within additive error±τ with probability at least 1−β.
Simulation. Lemma 5.6 suggests a simple simulation of a nonadaptive (resp.,

adaptive) SQ algorithm by a noninteractive (resp., interactive) local algorithm as

WHAT CAN WE LEARN PRIVATELY? 813

follows. Assume the SQ algorithm makes at most t queries to an SQ oracle SQD. The
local algorithm simulates each query (g, τ) by running Ag(n

′, ε, LRz) with parameters

β′ = β
t and n′ = c · log(1/β′)b2

ε2τ2 on a previously unused portion of the database z
containing n′ entries.

Theorem 5.7 (local simulation of SQ). Let ASQ be an SQ algorithm that makes at
most t queries to an SQ oracle SQD, each with tolerance of at least τ . The simulation
above is ε-differentially private. If, for sufficiently large constant c, database z has

n ≥ c · t log(t/β)b2ε2τ2 entries sampled i.i.d. from the distribution D, then the simulation
above gives the same output as ASQ with probability at least 1− β.

Furthermore, the simulation is noninteractive if the original SQ algorithm ASQ

is nonadaptive. The simulation is efficient if ASQ is efficient.
Proof. Each query is simulated with a fresh portion of z, and hence, privacy is

preserved as each entry is subjected to a single application of the ε-local randomizer
R. By the union bound, the probability of any of the queries not being approximated
within additive error τ is bounded by β. If ASQ is nonadaptive, all queries to LRz

can be prepared in advance.

5.1.2. Simulation of local algorithms by SQ algorithms. Let z be a
database containing n entries drawn i.i.d. from D. Consider a local algorithm making
t queries to LRz. We show how to simulate any local randomizer invoked by this algo-
rithm by using statistical queries to SQD. Consider one such randomizer R : D →W
applied to database entry zi. To simulate R we need to sample w ∈ W with prob-
ability p(w) = Przi∼D[R(zi) = w] taken over choice of zi ∼ D and random coins
of R. (For interactive algorithms, it is more complicated, as the outputs of different
randomizers applied to the same entry zi have to be correlated.)

A brief outline. The idea behind the simulation is to sample from a distribution
p̃(·) that is within small statistical distance of p(·). We start by applying R to an
arbitrary input (say, 0) in the domain D and obtaining a sample w ∼ R(0). Let
q(w) = Pr[R(0) = w] (where the probability is taken only over randomness in R).
Since R is ε-differentially private, q(w) approximates p(w) within a multiplicative
factor of eε. To sample w from p(·) we use the following rejection sampling algorithm:

(i) sample w according to q(·); (ii) with probability p(w)
q(w)eε , output w; and (iii) with

the remaining probability, repeat from (i).
To carry out this strategy, we must be able to estimate p(w), which depends on

the (unknown) distribution D, using only SQ queries. The rough idea is to express
p(w) as the expectation, taken over z ∼ D, of the function h(z) = Pr[R(z) = w]
(where the probability is taken only over the coins of R). We can use h as the basis
of an SQ query. In fact, to get a sufficiently accurate approximation, we must rescale
the function h somewhat and keep careful track of the error introduced by the SQ
oracle. We present the details in the proof of the following lemma.

Lemma 5.8. Let z be a database with entries drawn i.i.d. from a distribution
D. For every noninteractive (resp., interactive) local algorithm A making t queries
to LRz, there exists a nonadaptive (resp., adaptive) statistical query algorithm B
that in expectation makes O(t · eε) queries to SQD with accuracy τ = Θ(β/(e2εt))
such that the statistical difference between B’s and A’s output distributions is at
most β.

Proof. We split the simulation over Claims 5.9 and 5.10. In the first claim we
simulate noninteractive local algorithms using nonadaptive SQ algorithms. In the
second claim we simulate interactive local algorithms using adaptive SQ algorithms.

814 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

Claim 5.9. For every noninteractive local algorithm A making t nonadaptive
queries to LRz, there exists a nonadaptive statistical query algorithm B that in
expectation makes t · eε queries to SQD with accuracy τ = Θ(β/(e2εt)) such that
the statistical difference between B’s and A’s output distributions is at most β.

Proof. We show how to simulate an ε-local randomizer R using statistical queries
to SQD. Because the local algorithm is noninteractive, we can assume without loss
of generality that it accesses each entry zi only once. (Otherwise, one can combine
different operators, used to access zi, by combining their answers into a vector.) Given
R : D →W , we want to sample w ∈ W with probability as follows:

p(w) = Pr
zi∼D

[R(zi) = w].

Two notes regarding our notation: (i) As zi is drawn i.i.d. from D, we could omit
the index i. We leave the index i in our notation to emphasize that we actually simulate
the application of a local randomizer R to entry i. (ii) The semantics of Pr changes
depending on whether it appears with the subscript zi ∼ D or not. Przi∼D denotes
probability that is taken over the choice of zi ∼ D and the randomness in R; whereas,
when the subscript is dropped, zi is fixed and the probability is taken only over the
randomness in R. Using this notation, Przi∼D[R(zi) = w] = Ezi∼D Pr[R(zi) = w].

We construct an algorithm BR,ε that given t, β, and access to the SQ oracle,
outputs w ∈ W such that the statistical difference between the output probability
distributions of BR,ε and the simulated randomizer R is at most β/t. Because the
local algorithm makes t queries, the overall statistical distance between the output
distribution of the local algorithm and the distribution resulting from the simulation
is at most β, as desired.

An SQ algorithm BR,ε(t, β, SQD) simulating an ε-local randomizer

R.

1. Sample w ∼ R(0). Let q(w) = Pr[R(0) = w].

2. Define g : D → [−1, 1] by g(zi) =
Pr[R(zi) = w] − q(w)

q(w)(eε − e−ε)
, and let τ =

β

3e2εt
.

3. Query the SQ oracle v = SQD(g, τ), and let p̃(w) = vq(w)(eε − e−ε) +
q(w).

4. With probability
p̃(w)

q(w)(1 + β
3t)e

ε
, output w.

With the remaining probability, repeat from step 1.

We now show that the statistical distance between the output of BR,ε(t, β, SQD)
and the distribution p(·) is at most β/t. As mentioned above, our initial approximation
p̃(·) of p(·) in step 1 is obtained by applying R to some arbitrary input (namely,
0) in the domain D and sampling w ∼ R(0). Since R is ε-differentially private,
q(w) = Pr[R(0) = w] approximates p(w) within a multiplicative factor of eε.

However, to carry out the rejection sampling strategy, we need to get a much
better estimate of p(w). Steps 2 and 3 compute such an estimate, p̃(w), satisfying
(with probability 1)

(5.1) p̃(w) ∈ (1± φ) p(w), where φ = β
3t .

WHAT CAN WE LEARN PRIVATELY? 815

We establish the inclusion (5.1) below. For now, assume it holds on every itera-
tion. Step 4 is a rejection sampling step which ensures that the output will follow a

distribution close to p̃(·). Inclusion (5.1) guarantees that p̃(w)

q(w)(1+ β
3t)e

ε
is at most 1, so

the probability in step 4 is well defined. The difficulty is that the quantity p̃(w) is not
a well-defined function of w: it depends on the SQ oracle and may vary, for the same
w, from iteration to iteration.

Nevertheless, p̃ is fixed for any given iteration of the algorithm. In the given it-

eration, any particular element w gets output with probability q(w) × p̃(w)
q(w)(1+φ)eε =

p̃(w)
(1+φ)eε . The probability that the given iteration terminates (i.e., outputs some w)

is then pterminate =
∑

w
p̃(w)

(1+φ)eε . By (5.1), this probability is in 1±φ
(1+φ)eε . Thus,

conditioned on the iteration terminating, element w is output with probability
p̃(w)

(1+φ)·eε·pteminate
∈ 1±φ

1±φ · p(w). Since φ ≤ 1/3, we can simplify this to get

Pr
[
w output in a given iteration

∣∣iteration produces output
] ∈ (1 ± 3φ)p(w) .

This implies that no matter which iteration produces output, the statistical difference
between the distribution of w and p(·) will be at most 3φ = β

t , as desired.

Moreover, since each iteration terminates with probability at least 1−φ
1+φ · e−ε, the

expected number of iterations is at most 1+φ
1−φ · eε ≤ 2eε. Thus, the total expected SQ

query complexity of the simulation is O(t · eε).
It remains to prove the correctness of (5.1). To estimate p(w) given w, we set up

the statistical query g(zi). This is a valid query since Pr[R(zi) = w] is a function of
zi, and furthermore, g(zi) ∈ [−1, 1] for all zi as Pr[R(zi) = w]/Pr[R(0) = w] ∈ e±ε.
The SQ query result v lies within Ezi∼D[g(zi)]±τ , where τ is the tolerance parameter
for the statistical query, and so

E
zi∼D

[g(zi)] =
Ezi∼D Pr[R(zi) = w]− q(w)

q(w)(eε − e−ε)
=

p(w) − q(w)

q(w)(eε − e−ε)
.

Plugging in the bounds for v and q(w), we get that p̃(w) ∈ (1 ± τ ′)p(w), where
τ ′ = e2ετ = β

3t . This establishes (5.1) and concludes the proof.
Claim 5.10. For every interactive local algorithm A making t queries to LRz,

there exists an adaptive statistical query algorithm B that in expectation makes O(t·eε)
queries SQD with accuracy τ = Θ(β/(e2εt)) such that the statistical difference between
B’s and A’s output distributions is at most β.

Proof. As in the previous claim, we show how to simulate the output of the
local randomizers during the run of the local algorithm. A difference, however, is that
because an entry zi may be accessed multiple times, we have to condition our sampling
on the outcomes of previous (simulated) applications of local randomizers to zi.

More concretely, let R1, R2, . . . be the sequence of randomizers that access the
entry zi. To simulate Rk(zi), we must take into account the answers a1, . . . , ak−1 given
by the simulations of R1(zi), . . . , Rk−1(zi). We show how to do this using adaptive
statistical queries to SQD. The notation is the same as in Claim 5.9. We want to
output w ∈W with probability

p(w) = Pr
zi∼D

[Rk(zi) = w |Rk−1(zi) = ak−1, Rk−2(zi) = ak−2, . . . , R1(zi) = a1],

where Rj (1 ≤ j ≤ k − 1) denotes the jth randomizer applied to zi.

816 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

As before, we start by sampling w ∼ R(0). Let q(w) = Pr[Rk(0) = w]. Note that
q(w) approximates p(w) within a multiplicative factor of eε because R1, . . . , Rk are,
respectively, ε1-, . . . , εk-differentially private and ε1 + · · ·+ εk ≤ ε. Hence, we can use
the rejection sampling algorithm as in Claim 5.9. Rewrite p(w) as follows:

p(w) =
Przi∼D[Rk(zi) = w ∧Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]

Przi∼D[Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]

=
Ezi∼D[Pr[Rk(zi) = w ∧Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]]

Ezi∼D[Pr[Rk−1(zi) = ak−1 ∧ · · · ∧R1(zi) = a1]]
.

Conditioned on a particular value of zi, the probabilities in the last expression depend
only on the coins of the randomizers. The outputs of the randomizers are indepen-
dently conditioned on zi, and therefore, we can simplify the expression above:

p(w) =
Ezi∼D

[
Pr[Rk(zi) = w] ·∏k−1

j=1 Pr[Rj(zi) = aj]
]

Ezi∼D
[∏k−1

j=1 Pr[Rj(zi) = aj]
] .

Let p1 and p2 denote the numerator and denominator, respectively, in the right-
hand side of the equation above. Let r1(zi) and r2(zi) denote the values inside the
expectations that define p1 and p2, respectively. Namely,

r1(zi) = Pr[Rk(zi) = w] ·
k−1∏
j=1

Pr[Rj(zi) = aj] and r2(zi) =
k−1∏
j=1

Pr[Rj(zi) = aj] .

For estimating p1 = Ezi∼D[r1(zi)], we use the statistical query g1(zi), and for esti-
mating p2 = Ezi∼D[r2(zi)], we use the statistical query g2(zi) defined as follows:

g1(zi) =
r1(zi)− r1(0)

r1(0)(eε − e−ε)
and g2(zi) =

r2(zi)− r2(0)

r2(0)(eε − e−ε)
.

As in Claim 5.9, one can estimate p1 and p2 to within a multiplicative factor of
(1± τ ′), where τ ′ = e2ετ and τ is the accuracy of the statistical queries. The ratio of
the estimates for p1 and p2 gives an estimate p̃(w), for p(w) to within a multiplicative
factor (1±3τ ′) for τ ′ ≤ 1

3 . The estimate p̃(w) can then be used with rejection sampling
to sample an output of the randomizer.

Let t be the number of queries made by A. Setting τ ′ ≤ β
3t guarantees that

the statistical difference between distributions p and p̃ is at most β
t , and hence, the

statistical difference between B’s and A’s output distributions is at most β. As in
Claim 5.9, the expected number of SQ queries for rejection sampling is O(t · eε).

Claims 5.9 and 5.10 imply Lemma 5.8.
Note that the efficiency of the constructions in Lemma 5.8 depends on the effi-

ciency of computing the functions submitted to the SQ oracle, e.g., the efficiency of
computing the probability Pr[R(zi) = w]. We discuss this issue in the next section.

5.2. Implications for local learning. In this section, we define learning in the
local and SQ models. The equivalence of the two models follows from the simulations
described in the previous sections. An immediate but important corollary is that local
learners are strictly less powerful than general private learners.

Definition 5.11 (local learning). Locally learnable is defined identically to
privately PAC learnable (Definition 3.1), except for the additional requirement

WHAT CAN WE LEARN PRIVATELY? 817

that for all ε > 0, algorithm A(ε, ·, ·, ·) is ε-local and invokes LRz at most
poly(d, size(c), 1/ε, 1/α, log(1/β)) times. Class C is efficiently locally learnable if both
(i) the running time of A and (ii) the time to evaluate each query that A makes are
bounded by some polynomial in d, size(c), 1/ε, 1/α, and log(1/β).

Let X be a distribution over an input domain X . Let SQc,X denote the statistical
query oracle that takes as input a function g : X × {+1,−1} → {+1,−1} and a
tolerance parameter τ ∈ (0, 1) and outputs v such that |v − Ex∼X [g(x, c(x))]| ≤ τ .

Definition 5.12 (SQ learning6). SQ learnable is defined identically to PAC
learnable (Definition 2.4), except that instead of having access to examples z, an SQ
learner A can make poly(d, size(c), 1/α, log(1/β)) queries to oracle SQc,X with toler-
ance τ ≥ 1/poly(d, size(c), 1/α, log(1/β)). Class C is efficiently SQ learnable if both
(i) the running time of A and (ii) the time to evaluate each query that A makes are
bounded by some polynomial in d, 1/α, and log(1/β).

In order to state the equivalence between SQ and local learning, we require the
following efficiency condition for a local randomizer.

Definition 5.13 (transparent local randomizer). Let R : D → W be an ε-local
randomizer. The randomizer is transparent if both (i) for all inputs u ∈ D, the time
needed to evaluate R, and (ii) for all inputs u ∈ D and outputs w ∈W , the time taken
to compute the probability Pr[R(u) = w] are polynomially bounded in the size of the
input and 1/ε.

As stated, this definition requires exact computation of probabilities. This may
not make sense on a finite-precision machine, since for many natural randomizers the
transition probabilities are irrational. One can relax the requirement to insist that
relevant probabilities are computable with additive error at most φ in time polynomial
in log(1φ).

All local protocols that have appeared in the literature [30, 3, 2, 1, 30, 46, 37] are
transparent, at least in this relaxed sense.

In the equivalences of the previous sections, transparency of local randomizers
corresponds directly to efficient computability of the function g in an SQ query. To see
why, consider first the simulation of SQ algorithms by local algorithms: if the original
SQ algorithm is efficient (that is, query g can be evaluated in polynomial time), then
the local randomizer R(u) = g(u) + η can also be evaluated in polynomial time for
all u ∈ D. Furthermore, it is simple to estimate for all inputs u ∈ D and outputs
w ∈ W the probability Pr[R(u) = w] since R(u) is a Laplace random variable with
known parameters. Second, in the SQ simulation of a local algorithm, the functions

g(zi) = Pr[R(zi)=w]−q(w)
q(w)(eε−e−ε) that are constructed can be evaluated efficiently precisely

when the local randomizers are transparent.
We can now state the main result of this section, which follows from Lemmas 5.6

and 5.8, along with the correspondence between transparent randomizers and efficient
SQ queries.

Theorem 5.14. Let C be a concept class over X. Let X be a distribution over X.
Let z = (z1, . . . , zn) denote a database where every zi = (xi, c(xi)), with xi drawn i.i.d.
from X and c ∈ C. Concept class C is locally learnable using H by an interactive local

6The standard definition of SQ learning does not allow for any probability of error in the learning
algorithm (that is, β = 0). Our definition allows for a small failure probability β. This enables
cleaner equivalence statements and clean modeling of randomized SQ algorithms. One can show that
differentially private algorithms must have some nonzero probability of error, so a relaxation along
these lines is necessary for our results.

818 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

learner with inputs α and β and with access to LRz if and only if C is SQ learnable
using H by an adaptive SQ learner with inputs α and β and access to SQc,X .

Furthermore, the simulations guarantee the following additional properties: (i) an
efficient SQ learner is simulatable by an efficient local learner that uses only transpar-
ent randomizers; (ii) an efficient local learner that uses only transparent randomizers
is simulatable by an efficient SQ learner; and (iii) a nonadaptive SQ (resp., noninter-
active local) learner is simulatable by a noninteractive local (resp., nonadaptive SQ)
learner.

Now we can use lower bounds for SQ learners for PARITY (see, e.g., [40, 12, 56])
to demonstrate limitations of local learners. The lower bound of [12] rules out SQ
learners for PARITY that use at most 2d/3 queries of tolerance at least 2−d/3, even
(i) allowing for unlimited computing time, (ii) under the restriction that examples be
drawn from the uniform distribution, and (iii) allowing a small probability of error
(see footnote 6). Since PARITY is (efficiently) privately learnable (Theorem 4.4), and
since local learning is equivalent to SQ learning, we obtain the following.

Corollary 5.15. Concept classes learnable by local learners are a strict subset
of concept classes PAC learnable privately. This holds both with and without compu-
tational restrictions.

5.3. The power of interaction in local protocols. To complete the picture
of locally learnable concept classes, we consider how interaction changes the power
of local learners (and, equivalently, how adaptivity changes SQ learning). As men-
tioned in the introduction, interaction is very costly in typical applications of local
algorithms. We show that this cost is sometimes necessary by giving a concept class
that an interactive algorithm can learn efficiently with a polynomial number of exam-
ples drawn from the uniform distribution, but for which any noninteractive algorithm
requires an exponential number of examples under the same distribution.

Let MASKED-PARITY be the class of functions cr,a : {0, 1}d×{0, 1}logd×{0, 1} →
{+1,−1} indexed by r ∈ {0, 1}d and a ∈ {0, 1}:

cr,a(x, i, b) =

{
(−1)r
x+a if b = 0,

(−1)ri if b = 1,

where r
 x denotes the inner product of r and x modulo 2, and ri is the ith bit of
r. This concept class divides the domain into two parts (according to the last bit, b).
When b = 0, the concept cr,a behaves either like the PARITY concept indexed by r
or like its negation, according to the bit a (the “mask”). When b = 1, the concept
essentially ignores the input example and outputs some bit of the parity vector r.

Below we consider the learnability of MASKED-PARITY = {cr,a} when the ex-
amples are drawn from the uniform distribution over the domain {0, 1}d+logd+1. In
section 5.3.1, we give an adaptive SQ learner for MASKED-PARITY under the uniform
distribution. The adaptive learner uses two rounds of communication with the SQ
oracle: the first, to learn r from the b = 1 half of the input, and the second, to retrieve
the bit a from the b = 0 half of the input via queries that depend on r.

In section 5.3.2, we show that no nonadaptive SQ learner which uses 2o(d) exam-
ples can consistently produce a hypothesis that labels significantly more than 3/4 of
the domain correctly. The intuition is that as the queries are prepared nonadaptively,
any information about r gained from the b = 1 half of the inputs cannot be used
to prepare queries to the b = 0 half. Since information about a is contained only in
the b = 0 half, in order to extract a, the SQ algorithm is forced to learn PARITY,

WHAT CAN WE LEARN PRIVATELY? 819

which it cannot do with only a few examples. Our separation in the SQ model directly
translates to a separation in the local model (using Theorem 5.14).

The following theorem summarizes our results on MASKED-PARITY.
Theorem 5.16.

1. There exists an efficient adaptive SQ learner for MASKED-PARITY over the
uniform distribution.

2. No nonadaptive SQ learner can learn MASKED-PARITY (with a polynomial
number of queries) even under the uniform distribution on examples. Specif-
ically, there is an SQ oracle O such that any nonadaptive SQ learner that
makes t queries to O over the uniform distribution, all with tolerance at least
2−d/3, satisfies the following: if the concept cr̄,ā is drawn uniformly at ran-
dom from the set of MASKED-PARITY concepts, then, with probability at least
1
2− t

2d/3+2 over cr̄,ā, the output hypothesis h of the learner has err(cr̄,ā, h) ≥ 1
4 .

Corollary 5.17. The concept classes learnable by nonadaptive SQ learners
(resp., noninteractive local learners) under the uniform distribution are a strict subset
of the concept classes learnable by adaptive SQ learners (resp., interactive local learn-
ers) under the uniform distribution. This holds both with and without computational
restrictions.

Weak vs. strong learning. The learning theory literature distinguishes between
strong learning, in which the learning algorithm is required to produce hypotheses with
arbitrarily low error (as in Definition 2.4, where the parameter α can be arbitrarily
small), and weak learning, in which the learner is only required to produce a hypothesis
with error bounded below 1/2 by a polynomially small margin. The separation proved
in this section (Theorem 5.16) applies only to strong learning: although no nonadaptive
SQ learner can produce a hypothesis with error much better than 1/4, it is simple
to design a nonadaptive weak SQ learner for MASKED-PARITY under the uniform
distribution with error exactly 1/4.

In fact, it is impossible to obtain an analogue of our separation for weak learning.
The characterization of SQ learnable classes in terms of “SQ dimension” by Blum et
al. [12] implies that adaptive and nonadaptive SQ algorithms are equivalent for weak
learning. This is not explicit in [12], but it follows from the fact that the weak learner
constructed for classes with low SQ dimension is nonadaptive. (Roughly, the learner
works by checking if the concept at hand is approximately equal to one of a polynomial
number of alternatives; these alternatives depend on the input distribution and the
concept class, but not on the particular concept at hand.)

Distribution-free vs. distribution-specific learning. The results of this section
concern the learnability of MASKED-PARITY under the uniform distribution. The
class MASKED-PARITY does not separate adaptive from nonadaptive distribution-free
learners, since MASKED-PARITY cannot be learned by any SQ learner under the
distribution which is uniform over examples with b = 0 (in that case, learning
MASKED-PARITY is equivalent to learning PARITY under the uniform distribution).
Separating adaptive from nonadaptive distribution-free SQ learning remains an open
problem.

5.3.1. An adaptive strong SQ learner for MASKED-PARITY over the
uniform distribution. Our adaptive learner for MASKED-PARITY uses two rounds
of communication with the SQ oracle: first, to learn r from the b = 1 half of the input,
and second, to retrieve the bit a from the b = 0 half of the input via queries that
depend on r. Theorem 5.16, part (1), follows from the proposition below.

820 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

Adaptive SQ learner AMP for MASKED-PARITY over uniform.

1. For j = 1, . . . , d (in parallel):
(a) Define gj : D → {0, 1} by

gj(x, i, b, y) = (i = j) ∧ (b = 1) ∧ (y = −1) , where

x ∈ {0, 1}d, i ∈ {0, 1}logd, b ∈ {0, 1}, and y = cr,a(x, i, b) ∈
{+1,−1}.

(b) answerj ← SQD(gj , τ), where

τ = 1
4d+1 , and r̂j ←

{
1 if answerj >

1
4d ;

0 otherwise.

2. (a) r̂← r̂1 . . . r̂d ∈ {0, 1}d.
(b) Define gd+1 : D → {0, 1} by

gd+1(x, i, b, y) = (b = 0) ∧ (y �= (−1)r̂
x) , where

x ∈ {0, 1}d, i ∈ {0, 1}logd, b ∈ {0, 1}, and y = cr,a(x, i, b) ∈
{+1,−1}.

(c) answerd+1 ← SQD(gd+1,
1
5), and â←

{
1 if answerd+1 > 1

4 ;

0 otherwise.

(d) Output cr̂,â.

Proposition 5.18 (Theorem 5.16, part (1), in detail). The algorithm AMP ef-
ficiently learns MASKED-PARITY (with probability 1) in two rounds using d + 1 SQ
queries computed over the uniform distribution with minimum tolerance 1

4d+1 .
Proof. Consider the d queries in the first round. If rj = 1, then

E
(x,i,b,y)←D

[gj(x, i, b, y)] = Pr
i∈u{0,1}log d,b∈u{0,1}

[(i = j) ∧ (b = 1)] =
1

2d
.

If rj = 0, then E[gj(x, i, b, y)] = 0. Since the tolerance τ is less than 1
4d , each query gj

reveals the jth bit of r exactly. Thus, the estimate r̂j is exactly rj , and r̂ = r.
Given that r̂ is correct, the second round query gd+1 is always 0 if a = 0. If a = 1,

then gd+1 is 1 exactly when b = 0. Thus, E[gd+1(x, i, b, y)] =
a
2 (where a ∈ {0, 1}).

Since the tolerance is less than 1
4 , querying gd+1 reveals a; that is, â = a, and so the

algorithm outputs the target concept.
Note that the functions g1, . . . , gd+1 are all computable in time O(d), and the

computations performed by AMP can be done in time O(d), so the SQ learner is
efficient.

5.3.2. Impossibility of nonadaptive SQ learning for MASKED-PARITY.
The impossibility result (Theorem 5.16, part (2)) for nonadaptive learners uses ideas
from SQ lower bounds (see, e.g., [40, 12, 56]).

Proof of Theorem 5.16, part (2). Recall that the distribution D is uniform over
D = {0, 1}d+log(d)+1. For functions f, h : {0, 1}d+logd+1 → {+1,−1}, recall that
err(f, h) = Prx∼D[f(x) �= h(x)]. Define the inner product of f and h as

〈f, h〉 = 1

|D|
∑
x∈D

f(x)h(x) = E
x∼D

[f(x)h(x)].

WHAT CAN WE LEARN PRIVATELY? 821

The quantity 〈f, h〉 = Prx∼D[f(x) = h(x)] − Prx∼D[f(x) �= h(x)] = 1 − 2 · err(f, h)
measures the correlation between f and h when x is drawn from the uniform distri-
bution D.

Let the target function cr̄,ā be chosen uniformly at random from the set {cr,a}.
Consider a nonadaptive SQ algorithm that makes t queries g1, . . . , gt. The queries
g1, . . . , gt must be independent of r̄ and ā since the learner is nonadaptive. The only
information about ā is in the outputs associated with the b = 0 half of the inputs
(recall that cr̄,ā(x, i, b) = (−1)ri when b = 1).

The main technical part of the proof follows the lower bound on SQ learning
of PARITY. Using Fourier analysis, we split the true answer to a query into three
components: a component that depends on the query g (but not the pair (r̄, ā)), a
component that depends on g and r̄ (but not ā), and a component that depends on
g, r̄, and ā (see (5.3) below). We show that for most target concepts cr̄,ā, the last
component can be ignored by the SQ oracle. That is, a very close approximation to
the correct output to the SQ queries made by the learner can be computed solely
based on g and r̄. Consequently, for most target concepts cr̄,ā, the SQ oracle can
return answers that are independent of ā, and hence, ā cannot be learned.

Consider a statistical query g : {0, 1}d × {0, 1}logd × {0, 1} × {+1,−1} →
{+1,−1}. For some (x, i, b) ∈ D, the value of g(x, i, b, ·) depends on the label (i.e.,
(g(x, i, b,+1) �= g(x, i, b,−1))), and otherwise, g(x, i, b, ·) is insensitive to the label (i.e.,
(g(x, i, b,+1) = g(x, i, b,−1))). Every statistical query g(·, ·, ·, ·) can be decomposed
into a label-independent and a label-dependent part. This fact was first implicitly
noted by Blum et al. [12] and made explicit by Bshouty and Feldman [17, Lemma 30].
We adapt the proof presented in [17] for our purpose.

Let

fg(x, i, b) =
g(x, i, b, 1)− g(x, i, b,−1)

2
and Cg =

1

2
E[g(x, i, b, 1) + g(x, i, b,−1)] .

We can rewrite the expectation of g on any concept cr̄,ā in terms of these quantities:

E[g(x, i, b, cr̄,ā(x, i, b))] = Cg + 〈fg, cr̄,ā〉 .

Note that Cg depends on the statistical query g, but not on the target function. We
now wish to analyze the second term, 〈fg, cr̄,ā〉, more precisely. To this end, we define
the following functions parameterized by s ∈ {0, 1}:

csr̄,ā(x, i, b) =

{
0 if b �= s,
cr̄,ā(x, i, b) if b = s,

and(5.2)

f s
g (x, i, b) =

{
0 if b �= s,
fg(x, i, b) if b = s.

Recall that 〈fg, cr̄,ā〉 is a sum over tuples (x, i, b). We can separate the sum into
two pieces: one with tuples where b = 0 and the other with tuples where b = 1. Using
the functions csr̄,ā, f

s
g just defined, we can write 〈fg, cr̄,ā〉 = 〈f0

g , c
0
r̄,ā〉 + 〈f1

g , c
1
r̄,ā〉.

Hence,

(5.3) E[g(x, i, b, cr̄,ā(x, i, b))] = Cg + 〈f0
g , c

0
r̄,ā〉+ 〈f1

g , c
1
r̄,ā〉.

The inner product 〈f1
g , c

1
r̄,ā〉 depends on the statistical query g and on r̄, but not

on ā. Thus, only the middle term on the right-hand side of (5.3) depends on ā.

822 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

Consider an SQ oracle O = Ocr̄,ā,D that responds to every query (g, τ) as follows
(recall that D is the uniform distribution):

Ocr̄,ā,D(g, τ) =
{

Cg + 〈f1
g , c

1
r̄,ā〉 if |〈f0

g , c
0
r̄,ā〉| < τ,

E[g(x, i, b, cr̄,ā(x, i, b))] otherwise.

If the condition |〈f0
g , c

0
r̄,ā〉| < τ is met for all the queries (g, τ) made by the learner,

then the SQ oracle O never replies with a quantity that depends on ā. We now show
that this is typically the case.

Extend the definition of csr̄,ā (5.2) to any (r, a) ∈ {0, 1}d × {0, 1} by defining

c0r,a(x, i, b) =

{
0 if b = 1,

cr,a(x, i, b)
(
= (−1)〈r,x〉+a

)
if b = 0.

Note that for r, r′ ∈ {0, 1}d and a ∈ {0, 1},

〈c0r,a, c0r′,a〉 =
{

1/2 if r = r′,
0 if r �= r′.

We get that {c0r,0}r∈{0,1}d is an orthogonal set of functions and similarly with

{c0r,1}r∈{0,1}d . The
2 norm of c0r,0 is ‖c0r,0‖ =
√

〈c0r,0, c0r,0〉 = 1/
√
2, so the set

{√2 · c0r,0}r∈{0,1}d is orthonormal. A similar argument holds for {√2 · c0r,1}r∈{0,1}d .
Expanding the function f0

g in the orthonormal set {√2 · c0r,0}r∈{0,1}d , we get:∑
r∈{0,1}d

〈f0
g ,
√
2 · c0r,0〉2 ≤ ‖f0

g ‖2 = 〈f0
g , f

0
g 〉 ≤ 1/2 .

(The first inequality is loose in general because the set {√2 · c0r,0}r∈{0,1}d spans a

subset of dimension 2d, whereas f0
g is taken from a space of dimension 2d+log d+1.)

Similarly, ∑
r∈{0,1}d

〈f0
g ,
√
2 · c0r,1〉2 ≤ ‖f0

g ‖2 = 〈f0
g , f

0
g 〉 ≤ 1/2.

Summing the two previous equations, we get∑
(r,a)∈{0,1}d×{0,1}

2 · 〈f0
g , c

0
r,a〉2 ≤ 1 .

Hence, at most 22d/3−1 functions cr,a can have |〈f0
g , c

0
r,a〉| ≥ 1/2d/3. Since r̄, ā

was chosen uniformly at random, we can restate this as follows: for any particular
query g, the probability that c0r̄,ā has inner product more than 1/2d/3 with f0

g is

at most 22d/3−1/2d+1 = 2−d/3. This is true regardless of a; since c0r,0 = −c0r,0, we
have |〈f0

g , c
0
r,0〉| = |〈f0

g , c
0
r,1〉|, so the event that |〈f0

g , c
0
r̄,ā〉| ≥ 1/2d/3 happens with

probability at most 2−d/3 over r̄ for ā = 0, 1.
Recall that the learner makes t queries, g1, . . . , gt. Let Good be the event that

|〈f0
gi , cr̄,ā〉| ≤ 1/2d/3 for all i ∈ [t] (i.e., the oracle can answer each of the queries

independently of ā). Taking a union bound over queries, we have Pr[Good] ≥ 1 −
t/2d/3+2 (where the probability is taken only over r̄).

WHAT CAN WE LEARN PRIVATELY? 823

We argued above that there is a valid SQ oracle which, conditioned on Good,
can be simulated using r̄ but without knowledge of ā as long as all queries are made
with tolerance τ ≥ 1/2d/3 (as in the theorem statement). To conclude the proof, we
now argue that no nonadaptive strong learner exists for MASKED-PARITY over the
uniform distribution. For that we concentrate on the b = 0 half of the inputs, where the
outcome of cr̄,ā(·) depends on a. Let h be the output hypothesis of the learner. For any
input (x, i, 0), we have cr̄,0(x, i, 0) = −cr̄,1(x, i, 0). Thus, either cr̄,0(x, i, 0) �= h(x, i, 0)
or cr̄,1(x, i, 0) �= h(x, i, 0), and so some choice of ā causes the error of h to be at
least 1/4.

Let A be the event that err(h, cr̄,ā) ≥ 1/4. Because Good depends only on r̄, we
can think of ā as being selected after the learner’s hypothesis h whenever Good occurs.
Thus, Pr[A |Good] ≥ 1/2. Using Good to denote the complement of the event Good,
we get

Pr[A] = Pr[A ∧Good] + Pr[A ∧Good]

≥ Pr[A |Good] Pr[Good] + 0 ≥ 1/2(1− t/2d/3+2).

Therefore, Pr[err(h, cr̄,ā) ≥ 1/4] ≥ 1/2(1− t/2d/3+2), as desired.

Appendix A. Concentration bounds. We need several standard tail bounds
in this paper.

Theorem A.1 (multiplicative Chernoff bounds (e.g., [19, 6])). Let X1, . . . , Xn

be i.i.d. Bernoulli random variables with Pr[Xi = 1] = μ. Then for every φ ∈ (0, 1],

Pr

[∑
iXi

n
≥ (1 + φ)μ

]
≤ exp

(
−φ2μn

3

)
and

Pr

[∑
iXi

n
≤ (1− φ)μ

]
≤ exp

(
−φ2μn

2

)
.

Theorem A.2 (real-valued additive Chernoff–Hoeffding bound [35]). Let
X1, . . . , Xn be i.i.d. random variables with E[Xi] = μ and a ≤ Xi ≤ b for all i.
Then for every δ > 0,

Pr

[∣∣∣∣∑i Xi

n
− μ

∣∣∣∣ ≥ δ

]
≤ 2 exp

(−2δ2n
(b− a)2

)
.

Lemma A.3 (sums of Laplace random variables). Let X1, . . . , Xn be i.i.d. random

variables drawn from Lap(λ) (i.e., with probability density h(x) = 1
2λ exp(− |x|λ)). Then

for every δ > 0,

Pr

[∣∣∣∣∑n
i=1 Xi

n

∣∣∣∣ ≥ δ

]
= exp

(
−δ2n

4λ2

)
.

The proof of this lemma is standard; we include it here since we were unable to
find an appropriate reference.

Proof. Let S =
∑n

i=1 Xi. By the Markov inequality, for all t > 0,

Pr[S > δn] = Pr[etS > etδn] ≤ E[etS]

etδn
=

mS(t)

etδn
,

824 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

wheremS(t) = E[etS] is the moment generating function of S. To computemS(t), note
that the moment generating function of X ∼ Lap(λ) is mX(t) = E[etX] = 1

1−(λt)2 ,
defined for 0 < t < 1

λ . Hence,mS(t) = (mX(t))n = (1−(λt)2)−n < exp(n(λt)2), where
the last inequality holds for (λt)2 < 1

2 . We get that Pr[S > δn] ≤ exp(n((λt)2−tδ)). To
complete the proof, set t = δ

2λ
2 (note that if δ < 1 and λ > 1, then (λt)2 = (δ2λ)

2 < 1
2).

We get that Pr[S > δn] ≤ exp(n((δ2λ)
2 − δ2

2 λ)) = exp(−n δ2

4 λ
2), as desired.

Acknowledgments. We thank Enav Weinreb for many discussions related to
the local model, Avrim Blum and Rocco Servedio for discussions about related work
in learning theory, and Katrina Ligett and Aaron Roth for discussions about [14].
We also thank an anonymous reviewer for useful comments on the paper and, in
particular, for the simple proof of Corollary 3.6.

REFERENCES

[1] D. Agrawal and C. C. Aggarwal, On the design and quantification of privacy preserving
data mining algorithms, in Proceedings of PODS ’01, P. Buneman, ed., ACM, New York,
2001, pp. 247–255.

[2] R. Agrawal and R. Srikant, Privacy-preserving data mining, SIGMOD Rec., 29 (2000),
pp. 439–450.

[3] S. Agrawal and J. R. Haritsa, A framework for high-accuracy privacy-preserving mining, in
Proceedings of ICDE ’05, K. Aberer, M. Franklin, and S. Nishio, eds., IEEE, Washington,
DC, 2005, pp. 193–204.

[4] M. Alekhnovich, More on average case vs approximation complexity, in Proceedings of FOCS,
P. Beame, ed., IEEE, Washington, DC, 2003, pp. 298–307.

[5] A. Ambainis, M. Jakobsson, and H. Lipmaa, Cryptographic randomized response techniques,
in PKC, Lecture Notes in Comput. Sci. 2947, Springer, Berlin, 2004, pp. 425–438.

[6] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for hamiltonian circuits and
matchings, J. Comput. System Sci., 18 (1979), pp. 155–193.

[7] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar, Privacy, ac-
curacy, and consistency too: A holistic solution to contingency table release, in Proceedings
of PODS ’05, P. Kolaitis and L. Libkin, eds., ACM, New York, 2007, pp. 273–282.

[8] A. Beimel, S. P. Kasiviswanathan, and K. Nissim, Bounds on the sample complexity for
private learning and private data release, in Theory of Cryptography Conference (TCC),
Lecture Notes in Comput. Sci. 5978, Daniele Micciancio, ed., Springer, Berlin, 2010,
pp. 437–454.

[9] S. Ben-David, D. Pál, and H.-U. Simon, Stability of k-means clustering, in COLT ’07:
Proceedings of the 20th Annual Conference on Learning Theory, N. H. Bshouty and C.
Gentile, eds., Springer, Berlin, 2007, pp. 20–34.

[10] S. Ben-David, U. von Luxburg, and D. Pál, A sober look at clustering stability, in Learning
Theory, Lecture Notes in Comput. Sci. 4005, Springer, Berlin, 2006, pp. 5–19.

[11] A. Blum, C. Dwork, F. McSherry, and K. Nissim, Practical privacy: The SuLQ framework,
in Proceedings of PODS ’05, G. Gottlob and F. Afrati, eds., ACM, New York, 2005, pp. 128–
138.

[12] A. Blum, M. L. Furst, J. Jackson, M. J. Kearns, Y. Mansour, and S. Rudich, Weakly
learning DNF and characterizing statistical query learning using Fourier analysis, in Pro-
ceedings of STOC ’94, F. T. Leighton and M. Goodrich, eds., ACM, New York, 1994,
pp. 253–262.

[13] A. Blum, A. Kalai, and H. Wasserman, Noise-tolerant learning, the parity problem, and the
statistical query model, J. ACM, 50 (2003), pp. 506–519.

[14] A. Blum, K. Ligett, and A Roth, A learning theory approach to non-interactive database
privacy, in Proceedings of STOC ’08, R. Ladner and C. Dwork, eds., ACM, New York,
2008, pp. 609–618.

[15] A. Blumer, A. Ehrenfeucht, D. Haussler, and K. M. Warmuth, Occam’s razor, Inform.
Process. Lett., 24 (1987), pp. 377–380.

[16] O. Bousquet and A. Elisseeff, Stability and generalization, J. Mach. Learn. Res., 2 (2002),
pp. 499–526.

[17] N. H. Bshouty and V. Feldman, On using extended statistical queries to avoid membership
queries, J. Mach. Learn. Res., 2 (2002), pp. 359–395.

WHAT CAN WE LEARN PRIVATELY? 825

[18] K. Chaudhuri, C. Dwork, and K. Talwar, private communication, 2008.
[19] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum

of observations, Ann. Math. Statist., 23 (1952), pp. 493–507.
[20] L. Devroye and T. Wagner, Distribution-free performance bounds for potential function

rules, IEEE Trans. Inform. Theory, 25 (1979), pp. 601–604.
[21] I. Dinur and K. Nissim, Revealing information while preserving privacy, in Proceedings of

PODS ’03, F. Neven, C. Beeri, and T. Milo, eds., ACM, New York, 2003, pp. 202–210.
[22] C. Dwork, Differential privacy, in Automata, Languages, and Programming, Lecture Notes in

Comput. Sci. 4052, Springer, Berlin, 2006, pp. 1–12.
[23] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, Our data, ourselves:

Privacy via distributed noise generation, in Advances in Cryptology, Lecture Notes in
Comput. Sci. 4004, Springer, Berlin, 2006, pp. 486–503.

[24] C. Dwork and J. Lei, Differential privacy and robust statistics, in Proceedings of STOC ’09,
M. Mitzenmacher, ed., ACM, New York, 2009, pp. 371–380.

[25] C. Dwork, F. McSherry, K. Nissim, and A. Smith, Calibrating noise to sensitivity in private
data analysis, in Theory of Cryptology, Lecture Notes in Comput. Sci. 3876, Springer,
Berlin, 2006, pp. 265–284.

[26] C. Dwork, F. McSherry, and K. Talwar, The price of privacy and the limits of LP decoding,
in Proceedings of STOC ’07, R. Ladner and U. Feige, eds., ACM, New York, 2007, pp. 85–
94.

[27] C. Dwork and K. Nissim, Privacy-preserving datamining on vertically partitioned databases,
in Advances in Cryptography, Lecture Notes in Comput. Sci. 3152, Springer, Berlin, 2004,
pp. 528–544.

[28] C. Dwork and S. Yekahnin,New efficient attacks on statistical disclosure control, in Advances
in Cryptology, Lecture Notes in Comput. Sci. 5157, Springer, Berlin, 2008, pp. 469–480.

[29] A. Elisseeff, T. Evgeniou, and M. Pontil, Stability of randomized learning algorithms, J.
Mach. Learn. Res., 6 (2005), pp. 55–79.

[30] A. Evfimievski, J. Gehrke, and R. Srikant, Limiting privacy breaches in privacy preserving
data mining, in Proceedings of PODS ’03, ACM, New York, 2003, pp. 211–222.

[31] P. Fischer and H.-U. Simon, On learning ring-sum-expansions, SIAM J. Comput., 21 (1992),
pp. 181–192.

[32] Y. Freund, Y. Mansour, and R. E. Schapire, Generalization bounds for averaged classifiers,
Ann. Statist., 32 (2004), pp. 1698–1722.

[33] D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other
learning applications, Inform. and Comput., 100 (1992), pp. 78–150.

[34] D. Helmbold, R. Sloan, and M. K. Warmuth, Learning integer lattices, SIAM J. Comput.,
21 (1992), pp. 240–266.

[35] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13–30.

[36] N. J. Hopper and M. Blum, Secure human identification protocols, in Advances in Cryptology,
Lecture Notes in Comput. Sci. 2248, Springer, Berlin, 2001, pp. 52–66.

[37] W. Jank and G. Shmueli, Statistical Methods in eCommerce Research, Wiley & Sons, New
York, 2008.

[38] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, What can
we learn privately?, in Proceedings of FOCS, R. Ravi, ed., IEEE, Washington, DC, 2008,
pp. 559–569.

[39] S. P. Kasiviswanathan and A. Smith, A Note on Differential Privacy: Defining Resistance
to Arbitrary Side Information, Preprint arXiv:0803.39461 [cs.CR], 2008.

[40] M. Kearns, Efficient noise-tolerant learning from statistical queries, J. ACM, 45 (1998),
pp. 983–1006.

[41] M. Kearns and D. Ron, Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation, Neural Comput., 11 (1999), pp. 1427–1453.

[42] M. J. Kearns, R. E. Schapire, and L. M. Sellie, Toward efficient agnostic learning, Mach.
Learn., 17 (1994), pp. 115–141.

[43] M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learning Theory, MIT
Press, Cambridge, MA, 1994.

[44] S. Kutin and P. Niyogi, Almost-everywhere algorithmic stability and generalization error, in
Proceedings of UAI, Association for Uncertainty in Artificial Intelligence, 2002, pp. 275–
282.

[45] F. McSherry and K. Talwar, Mechanism design via differential privacy, in Proceedings of
FOCS, A. Sinclair, ed., IEEE, Washington, DC, 2007, pp. 94–103.

826 KASIVISWANATHAN, LEE, NISSIM, RASKHODNIKOVA, SMITH

[46] N. Mishra and M. Sandler, Privacy via pseudorandom sketches, in Proceedings of PODS
’06, S. Vansummeren, ed., ACM, New York, 2006, pp. 143–152.

[47] T. Moran and M. Naor, Polling with physical envelopes: A rigorous analysis of a human-
centric protocol, in Advances in Cryptology, Lecture Notes in Comput. Sci. 4004, Springer,
Berlin, 2006, pp. 88–108.

[48] K. Nissim, S. Raskhodnikova, and A. Smith, Smooth sensitivity and sampling in private data
analysis, in Proceedings of STOC ’07, R. Ladner and U. Feige, eds., ACM, New York, 2007,
pp. 75–84.

[49] V. Rastogi, S. Hong, and D. Suciu, The boundary between privacy and utility in data publish-
ing, in Proceedings of VLDB ’07, VLDB Endowment, Vienna, Austria, 2007, pp. 531–542.

[50] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM,
56 (2009), pp. 1–40.

[51] A. Smith, Efficient, Differentially Private Point Estimators, Preprint arXiv:0809.4794v1
[cs.CR], 2008.

[52] L. G. Valiant, A theory of the learnable, Commun. of the ACM, 27 (1984), pp. 1134–1142.
[53] A. van den Hout and P. G. M. van der Heijden, Randomized response, statistical disclosure

control and misclassification: A review, Internat. Statist. Rev., 70 (2002), pp. 269–288.
[54] S. L. Warner, Randomized response: A survey technique for eliminating evasive answer bias,

J. Amer. Statist. Assoc., 60 (1965), pp. 63–69.
[55] L. Wasserman and S. Zhou, A statistical framework for differential privacy, J. Amer. Statist.

Assoc., 105 (2010), pp. 375–389.
[56] K. Yang, New lower bounds for statistical query learning, J. Comput. System Sci., 70 (2005),

pp. 485–509.
[57] S. Zhou, K. Ligett, and L. Wasserman, Differential privacy with compression, in IEEE In-

ternational Symposium on Information Theory, R. Calderbank, H. Chung, and A. Orlitsky,
eds., IEEE, Washington, DC, 2009, pp. 2718–2722.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

