
Smooth Sensitivity and Sampling in Private Data Analysis
∗

Kobbi Nissim
†

Dept. of Computer Science
Ben-Gurion University of the

Negev.

kobbi@cs.bgu.ac.il

Sofya Raskhodnikova
Dept. of Computer Science

and Engineering
Pennsylvania State University

sofya@cse.psu.edu

Adam Smith
Dept. of Computer Science

and Engineering
Pennsylvania State University

asmith@cse.psu.edu

ABSTRACT

We introduce a new, generic framework for private data
analysis. The goal of private data analysis is to release ag-
gregate information about a data set while protecting the
privacy of the individuals whose information the data set
contains. Our framework allows one to release functions f
of the data with instance-based additive noise. That is, the
noise magnitude is determined not only by the function we
want to release, but also by the database itself. One of
the challenges is to ensure that the noise magnitude does
not leak information about the database. To address that,
we calibrate the noise magnitude to the smooth sensitivity
of f on the database x — a measure of variability of f in
the neighborhood of the instance x. The new framework
greatly expands the applicability of output perturbation, a
technique for protecting individuals’ privacy by adding a
small amount of random noise to the released statistics. To
our knowledge, this is the first formal analysis of the effect
of instance-based noise in the context of data privacy.
Our framework raises many interesting algorithmic ques-

tions. Namely, to apply the framework one must compute or
approximate the smooth sensitivity of f on x. We show how
to do this efficiently for several different functions, including
the median and the cost of the minimum spanning tree. We
also give a generic procedure based on sampling that allows
one to release f(x) accurately on many databases x. This
procedure is applicable even when no efficient algorithm for
approximating smooth sensitivity of f is known or when f is
given as a black box. We illustrate the procedure by apply-
ing it to k-SED (k-means) clustering and learning mixtures
of Gaussians.

∗Part of the work was done while the authors were visiting
the Institute for Pure and Applied Mathematics (ipam) at
ucla and also while S.R. and A.S. were at the Weizmann
Institute of Science. A.S. was supported at Weizmann by
the Louis M. and Anita L. Perlman postdoctoral fellowship.
†Research partially supported by the Israel Science Foun-
dation (grant No. 860/06), and by the Frankel Center for
Computer Science.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

STOC’07, June 11–13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

Categories and Subject Descriptors: F.2.2 Nonnumer-
ical Algorithms and Problems
General Terms: Algorithms, Security, Theory.
Keywords: private data analysis, privacy preserving data
mining, output perturbation, sensitivity, clustering.

1. INTRODUCTION
Data privacy is a fundamental problem of the modern in-

formation infrastructure. Collections of personal and sensi-
tive data, previously the purview of governments and statis-
tical agencies, have become ubiquitous as database systems
have grown larger and cheaper. Increasing volumes of in-
formation are collected and archived by health networks,
financial organizations, search engines, intrusion detection
systems, social networking systems, retailers and other en-
terprizes. The potential social benefits from analyzing these
databases are enormous. The main challenge is to release
aggregate information about the databases while protecting
the privacy of individual contributors.
There is a vast body of work on the data privacy prob-

lem, both in statistics and computer science (for references,
see [16, 1, 6, 13, 17]). However, the schemes proposed in
most of the literature lack analysis that is up to the level of
rigor expected in, for example, cryptography. Typically, the
schemes have either no formal privacy guarantees or ensure
security only against a specific suite of attacks. For ex-
ample, it is widely believed in traditional research on data
privacy that, since data mining algorithms are designed to
reveal only ‘global’ information, it is safe to apply them ’as
they are’ to sensitive data and publish the results. There is
currently no formal substantiation of such an assessment.
This work is part of a newly emerging rigorous study of

data privacy, inspired by research in cryptography, which
acquired the name of private data analysis. This line of
work [7, 12, 11, 3, 4, 5, 8] presents precise mathematical
definitions of data privacy, that give meaningful guarantees
in the presence of a strong, realistic adversary. To provide
protocols satisfying the definitions, these works employ a
technique called output perturbation, according to which the
results of data analysis are released after the addition of a
small amount of random noise. Blum et al. [3] and Dwork et
al. [10] present frameworks for releasing a specified function
f of the data x while preserving privacy. The noise added
to f(x) in these frameworks depends only on f , and not on
the database x. This provides a provably secure method for
releasing many useful functions, such as means, variances,
histograms, contingency tables and the singular value de-
composition.

Instance-Based Noise. We introduce a new generic
framework for private data analysis. Our framework allows
one to release functions f of the data with instance-based
additive noise. That is, the noise magnitude is determined
not only by the function we want to release, but also by
the database itself. One of the challenges is to ensure that
the noise magnitude does not leak information about the
database. To address that, we calibrate the noise magnitude
to the smooth sensitivity of f on the database x — a mea-
sure of variability of f in the neighborhood of the instance x.
The new framework greatly expands the applicability of out-
put perturbation. To our knowledge, this is the first formal
analysis of the effect on privacy of instance-based noise.
Our framework raises many interesting algorithmic ques-

tions. To apply the framework one must compute or approx-
imate the smooth sensitivity of f on x. These computations
are non-trivial and, for some functions f , NP -hard. The
approximation problems are further complicated by the re-
quirement that the approximation must be smooth, that is,
it should not change quickly in any neighborhood of its in-
put space. This requirement prevents the noise magnitude,
which is based on the approximation, from leaking informa-
tion.
Our framework generalizes the results of [3, 10]. Those

works calibrate noise to the global sensitivity, a simple but
often crude upper bound on the smooth sensitivity. For
many functions f and databases x, we can release f(x) with
less noise than in [3, 10]. In particular, there are many
functions for which previous frameworks are not applicable
because they would add so much noise that the output would
be meaningless. We show how to compute or approximate
the smooth sensitivity and apply our framework for a variety
of such functions. One example is the median, for which we
give very efficient algorithms for the smooth sensitivity. The
second example is the cost of the minimum spanning tree of
a graph where individuals correspond to edges. Another
example, the number of triangles in a graph, will appear in
the full version.

Sample and Aggregate. The framework of smooth sen-
sitivity is very powerful. However, in order to use it directly
for releasing a function f , one needs to design an efficient
algorithm for computing or approximating the smooth sen-
sitivity of f . For a given function, such an algorithm might
not exist or might be difficult to design. More importantly,
this step cannot be automated. In the interactive model,
where users of the statistics can specify the function f to
be evaluated on the database, it implies that the smooth
sensitivity for all allowed user requests has to be analyzed
and known in advance.
We present a sample and aggregate framework that cir-

cumvents these difficulties – a generic method that is ef-
ficient for a large class of functions, and can be applied
without an explicit computation of smooth sensitivity. This
method can be fully automated and works even when f is
given as a black box. It allows users to specify their query
function f simply by giving a computer program.
For example, many data mining algorithms perform some

kind of clustering on their data. The global sensitivity frame-
work [10] allows one to release the cost of clustering, but not
cluster centers. In general, we do not know how to compute
or approximate smooth sensitivity of cluster centers. We
illustrate the sample and aggregate framework by applying
it to two clustering problems: k-Squared Error Distortion

clustering (also called k-means) and learning mixtures of
Gaussian distributions. In both cases, we show that on in-
teresting instances we can release the set of centers with very
little noise.
In the following we review some of the prior research, and

state our results. All missing proofs and details, as well as
additional examples, are deferred to the full version.

1.1 Privacy Definition
As in [12, 7, 11, 3, 10, 8], we consider a client-server setup,

where clients’ queries are answered by a trusted database ac-
cess mechanism at the server. Each query is a function f to
be evaluated on the database. The database is modeled as a
vector x ∈ Dn, where each entry xi represents information
contributed by one individual. Each entry could be an indi-
vidual’s salary, or the weight of an edge in a network, or any
other arbitrary complex data. The server sends back f(x)
after perturbing the value somewhat, for example by adding
random noise. Our goal is to minimize the noise (and thus
enable the user to learn f as accurately as possible) while
preserving the privacy of individual contributors.
We use the privacy definition from [10, 9], which limits

the incremental information a user might learn in addition
to what he knew before seeing the released statistics. For a
particular query f and a database x, the randomized access
mechanism A defines a distribution on the outputs, denoted
by A(x).
Notation. The Hamming distance d(x, y) between two
databases is the number of entries on which x and y differ,
i.e., d(x, y) = |{i : xi 6= yi}|. Two databases are neighbors
if they differ in a single individual’s data, i.e., d(x, y) =
1. A negligible function δ() is a positive function that is
asymptotically smaller than any inverse polynomial: δ(n) =

1/nω(1).
A mechanism A is private if neighbor databases induce

nearby distributions on the outputs. Our formulation fol-
lows [9].

Definition 1.1 (Indistinguishability [10, 9]). Let
δ = δ(n) be a negligible function of n. A randomized al-
gorithm A is (ε, δ)-indistinguishable if for all x, y ∈ Dn sat-
isfying d(x, y) = 1, and for all sets S of possible outputs

Pr[A(x) ∈ S] ≤ eε Pr[A(y) ∈ S] + δ .

When δ = 0, we say the algorithm is ε-indistinguishable.

Definition 1.1 states that no individual has a pronounced
effect on the statistics published by the server, in the sense
that the output distribution is almost the same whether the
individual supplies his actual data or something irrelevant.
Indistinguishability can be defined analogously for inter-

active protocols where each round consists of the server pub-
lishing one statistics in response to one query f by a user.
This definition composes smoothly: a protocol consisting of
t rounds, each of which is individually ε-indistinguishable, is
itself tε-indistinguishable. We therefore focus on construct-
ing 1-round protocols.

1.2 Calibrating Noise to Sensitivity
Recall that most works in private data analysis [7, 11,

3, 10] use output perturbation, where privacy is achieved by
adding random noise that ‘masks’ the private information.
To release a function f of the database x, the server com-
putes f(x) and publishes A(x) = f(x) +Y for some random

variable Y . Here we assume that f takes values in Rd, and
use the `1 norm on Rd (denoted ‖ · ‖1, or simply ‖ · ‖) as a
distance metric on outcomes of f . This is only for ease of
presentation as the following analysis may be generalized to
any metric space.

Definition 1.2 (Global Sensitivity [10]). For f :
Dn → Rd, the global sensitivity of f is

GSf = max
x,y:d(x,y)=1

‖f(x)− f(y)‖.

Claim 1.3 ([10]). For all f : Dn → Rd, the database
access mechanism Af (x) = f(x)+(Y1, . . . , Yd), where the Zi
are drawn i.i.d. from Lap(GSf/ε), is ε-indistinguishable1.

Claim 1.3 yields two generic approaches to constructing data-
base access mechanisms for functions f . The first approach
[10] is to show that GSf is low, and hence f(x) can be re-
leased with noise Z ∼ Lap(GSf/ε). The second approach [3]
is to express f in terms of functions g1, g2, . . . with low global
sensitivity, and analyze how noisy answers to g1, g2, . . . in-
terfere with the computation of f . 2

These approaches are productive for many functions, such
as sum queries [7, 11]; Principle Component Analysis, the
Perceptron algorithm, k-means, learning ID3 decision trees,
statistical learning [3]; histograms, Singular Value Decom-
position, distance to a property, and functions that can be
estimated on all x using small random samples from x [10].

1.3 Smooth Sensitivity
In the global sensitivity framework of [10] described above,

noise magnitude depends on GSf and the privacy parameter
ε, but not on the instance x. For many functions, such as
the median fmed, this approach yields high noise, that does
not reflect the function’s typical insensitivity to individual
inputs. We propose a local measure of sensitivity:

Definition 1.4 (Local Sensitivity). For f : Dn →
Rd and x ∈ Dn, the local sensitivity of f at x is

LSf (x) = max
y:d(x,y)=1

‖f(x)− f(y)‖.

Observe that the global sensitivity from Definition 1.2 is
GSf = maxx LSf (x). The notion of local sensitivity is a
discrete analogue of the Laplacian (or maximum magnitude
of the partial derivative in different directions). It has ap-
peared before in the (seemingly unrelated) context of con-
centration of measure [19]. The current work is the first to
use it in the context of private data analysis.
Suppose we release fmed(x) with noise magnitude propor-

tional to LSfmed(x), instead of GSfmed . That would allow
us to add significantly less noise for typical inputs. How-
ever, the resulting scheme is too naïve, and would not sat-
isfy Definition 1.1 as the the noise magnitude itself reveals
information about the database (see Section 2.2).
Our goal is hence to add instance-based noise with smaller

magnitude than the worst-case noise GSf/ε, and yet satisfy
Definition 1.1. The reader might be concerned that when
1The probability density function of the Laplace distribution
Lap(λ) is h(y) = 1

2λ
e−|y|/λ. It has zero mean, and standard

deviation
√

2λ.
2For simplicity we omit from our discussion the noise mag-
nitude dependency on number of queries. See [7, 11, 3].

the noise depends on the database, the client will not know
the accuracy of the answer supplied by the database access
mechanism. However, the noise magnitude itself is guaran-
teed to be an insensitive function of the database. Hence,
if the client desires to query the database about the noise
magnitude on the input x, he is guaranteed to get the answer
to this query with very little noise added.
We define a class of smooth upper bounds Sf to LSf such

that adding noise proportional to Sf is safe. We define a
special smooth function S∗f that is optimal, in the sense that
Sf (x) ≥ S∗f (x) for every other smooth Sf , and show how to
compute S∗f as well as smooth approximation to it for the
median, and the cost of a minimum spanning tree (MST).
There are many other functions for which global sensi-

tivity framework yields unacceptably high noise levels while
the smooth sensitivity framework performs well on many in-
stances. For some of them (e.g., the minimum and the max-
imum), computing smooth sensitivity is trivial. (In fact, un-
derstanding the smooth sensitivity of the minimum is needed
for our algorithm for computing the smooth sensitivity of
the MST cost.) For others (e.g., the number of triangles
in a graph), it requires more ingenuity. Finally, there are
very natural classes of functions (e.g., the cluster centers for
various clustering problems and the problem of learning the
mixtures of Gaussians), for which no efficient algorithms for
approximating smooth sensitivity are known. The sample
and aggregate framework circumvents this difficulty by pro-
viding an efficient database access mechanism that treats
the query function as a black box.

1.4 The Sample and Aggregate Framework
Sample and aggregate works by replacing f with a re-

lated function f̄ for which smooth sensitivity is low and ef-
ficiently computable. The function f̄ can be thought of as a
“smoothed” version of f . First, f (restricted to smaller in-
puts) is evaluated on a sublinear number of random samples
from database x. Such evaluations are performed several
times and the results are combined with a novel aggregation
function that we call the center of attention. The output
of this computation, denoted by f̄ , is released using the
smooth sensitivity framework. The released value is close
to the desired answer, f(x), on databases for which f(x) is
approximated well by evaluating f on the random samples.
The intuition is that for such x each entry xi can be changed
without affecting the value of the function significantly, since
this entry is not likely to appear in the sample.
Dwork et al. [10, Lemma 1] proved that if f can be ap-

proximated well from random samples on all inputs then
the global sensitivity of f is low, and consequently f can
be released with a small amount of noise. This result looks
similar to our claim that in the sample and aggregate frame-
work, f(x) will be released accurately on inputs for which
f(x) is approximated well from random samples. However,
our result is qualitatively stronger in two respects. First, our
result is instance-specific: it applies to input x even if for
some other x′ 6= x, evaluating f on a random sample from
x′ does not yield a good approximation to f(x′). Second,
the result of [10] is not algorithmic: since the approxima-
tion guarantee must hold for all instances, it only gives a
proof technique to bound the global sensitivity of f . In con-
trast, sample and aggregate yields efficient database access
mechanisms for all query functions that can be evaluated
efficiently on samples from the database.

Our mechanism releases accurate answers on interesting
inputs. For example, we prove that k-SED (k-means) clus-
ter centers are released accurately when the data is well-
separated, according to the definition proposed by Ostrovsky
et al. [15]. This definition implies that all near-optimal
clusterings of x induce similar partitions of the points of
x. [15] use this fact to show that well-separated data sets
are amenable to heuristics based on Lloyd’s algorithm. Our
techniques also allow one to learn and publish accurate pa-
rameters of a mixture of k spherical Gaussian distributions
when the data x consists of polynomially-many (in the di-
mension and k) i.i.d. samples from the distribution.
Previously, Blum et al. [3] showed that if there is an al-

gorithm for approximating f(x) using “noisy sum queries”,
then f(x) can be released accurately while preserving pri-
vacy. Their framework can also be interpreted as identifying
a “good” class of functions and inputs for which one can add
relatively little noise. Their approach requires a fairly in-
depth understanding of f , as one must be able to express f
in terms of a limited class of queries to the data.
Using their framework, Blum et al. [3] gave a private

version of a specific heuristic for k-SED clustering, called
Lloyd’s algorithm (or the k-means algorithm). They did
not, however, prove guarantees on how close the final out-
put of the algorithm is to the optimal cluster centers for x.
To our knowledge, our algorithms are the first to provide
such guarantees while preserving privacy.

2. INSTANCE-BASED ADDITIVE NOISE
Recall that in the interactive framework, the database

is stored on the trusted server. When the user needs to
obtain f(x), he sends a query f to the server and gets
f(x) + N(x)Z as a reply, where Z is a random variable
drawn from a noise distribution in Rd (fixed in advance and
known to the user) with standard deviation 1 in each co-
ordinate. The sample from the noise distribution is multi-
plied by the scaling factor N(x), which we refer to as the
noise magnitude. As explained in the Introduction, [10] gave
ε-indistinguishable protocols where the noise magnitude is
proportional to global sensitivity (and therefore independent
of database x). In this section, we explain how to safely re-
lease f(x) with potentially much smaller noise magnitude,
tailored to database x.

2.1 Smooth Bounds and Smooth Sensitivity
For a query function f , our goal is to release f(x) with

less noise when the local sensitivity of f at x is lower. This
would allow us to release functions with large global (worst
case) sensitivity, but typically small local sensitivity with
much greater accuracy than allowed in [10].

Example 1. Let fmed(x) = median(x1, . . . , xn) where xi
are real numbers from a bounded interval, say, D = [0,Λ].
For simplicity, assume n is odd and the database entries
are sorted in the nondecreasing order: x1 ≤ · · · ≤ xn. Let
m = n+1

2
be the rank of the median element. Global sen-

sitivity of the median, GSfmed , is Λ, since for x1 = · · · =
xm = 0 and xm+1 = · · · = xn = Λ, fmed(x1, . . . , xn) = 0
and fmed(x1, . . . , xm−1,Λ, xm+1, . . . , xn) = Λ. In this case,
adding noise proportional to GSfmed completely destroys
the information. However, on typical inputs, fmed is not
very sensitive: LSfmed(x) = max(xm − xm−1, xm+1 − xm).
Ideally, we would like to release f(x) with noise magnitude

proportional to LSf (x). However, noise magnitude might
reveal information about the database. For example, in the
case of the median, if the noise magnitude is proportional
to LSfmed(x), then the probability of receiving a non-zero
answer when x1 = · · · = xm+1 = 0, xm+2 = · · · = xn = Λ is
zero whereas the probability of receiving a non-zero answer
when x1 = · · · = xm = 0, xm+1 = · · · = xn = Λ is non-
negligible. Thus, the protocol is not (ε, δ)-indistinguishable
for any negligible δ. ♦

The lesson from this example is that the noise magnitude
has to be an insensitive function. To decide on the noise
magnitude we will use a smooth upper bound on the local
sensitivity, namely, a function S that is an upper bound on
LSf at all points and such that ln(S(·)) has low sensitivity.
We say S is ε-smooth if GSln(S(·)) ≤ ε.

Definition 2.1 (A Smooth Bound). For β > 0, a
function S : Dn → R+ is a β-smooth upper bound on the
local sensitivity of f if it satisfies the following requirements:

∀x ∈ Dn : S(x) ≥ LSf (x) ;

∀x, y ∈ Dn, d(x, y) = 1 : S(x) ≤ eβS(y) .

An example of a function that satisfies Definition 2.1 is
the smooth sensitivity of f :

Definition 2.2 (Smooth sensitivity). For β > 0,
the β-smooth sensitivity of f is

S∗f,β(x) = max
y∈Dn

“
LSf (y) · e−βd(x,y)

”
.

The smooth sensitivity S∗f,β is the smallest function to
satisfy Definition 2.1:

Lemma 2.3. S∗f,β is a β-smooth upper bound on LSf . In
addition, S∗f,β(x) ≤ S(x) for all x ∈ Dn for every β-smooth
upper bound S on LSf .

Note that the constant function S(x) = GSf also meets the
requirements of Definition 2.1, though in general it is a very
conservative upper bound on LSf .

2.2 Calibrating Noise to Smooth Bounds
We now show that adding noise proportional to a smooth

upper bound on the local sensitivity yields a private out-
put perturbation mechanism. We add noise proportional to
Sf (x)/α, where Sf is a β-smooth upper bound on the local
sensitivity of f , and α, β are parameters of the noise distri-
bution. For functions taking values in Rd, the smoothing
parameter β is ∝ ε/d or ∝ ε/

√
d, depending on the exact

choice of the noise distribution.
For a subset S of Rd, we write S + ∆ for the set {z + ∆ :

z ∈ S}́, and eλ · S for the set {eλ · z : z ∈ S} . We also write
a± b for the interval [a− b, a+ b].

Definition 2.4 (Admissible Noise Distribution).
A probability distribution h on Rd is (α, β)-admissible if, for
α = α(ε, δ), β = β(ε, δ), the following two conditions hold for
all ‖∆‖ ≤ α and |λ| ≤ β, and for all subsets S ⊆ Rd:

Sliding Property: Pr
Z∼h

h
Z ∈ S

i
≤ e

ε
2 · Pr

Z∼h

h
Z ∈ S + ∆

i
+ δ

2

Dilation Property: Pr
Z∼h

h
Z ∈ S

i
≤ e

ε
2 · Pr

Z∼h

h
Z ∈ eλ · S

i
+ δ

2

The definition requires the noise distribution to not change
much under translation (sliding) and scaling (dilation). A
distribution satisfying the two properties can be used to add
noise proportional to S(x):

Lemma 2.5. Let h be an (α, β)-admissible noise probabil-
ity density function, and let Z be a fresh random variable
sampled according to h. For a function f : Dn → Rd,
let S : Dn → R be a β-smooth upper bound on the lo-
cal sensitivity of f . Then the database access mechanism
A(x) = f(x) + S(x)

α
· Z is (ε, δ)-indistinguishable.

On two neighbor databases x and y, the output distribution
A(y) is a shifted and scaled version of A(x). The sliding and
dilation properties ensure that Pr[A(x) ∈ S] and Pr[A(y) ∈
S] are close for all sets S of outputs.

Example 2. Let h(z) ∝ 1/(1 + |z|γ) for γ > 1. These
h(x) are (ε/4γ, ε/γ)-admissible, and yield δ = 0. This is a
collection of heavy tail distributions, asymptotically decreas-
ing ∝ 1/|z|γ . For γ > 3 they have well-defined expectations
and variances. In dimension d > 1, one can use a product
of these distributions; the result is (ε/4γ, ε/dγ)- admissible.
A simple observation gives an intuition to why δ = 0 im-

plies an inverse polynomial decrease. Consider a distribution
h(z) that behaves asymptotically as e−f(z) for some f . By
the dilation property, e−f(z)/e−f(eβz) = e−f(z)+f(eβz) < eε

for some fixed ε or, equivalently, f(eβz) − f(z) < ε, for all
z ∈ R. If ε/β is bounded above, the constraint implies that
f(z) > c ln(|z|) for some fixed c. Hence h(z) = Ω(1/zc). ♦

To allow noise distributions that are not heavy tail (such
as Gaussian and Laplace), we take δ > 0, and require the
sliding and dilation properties to hold with high probability.

Example 3. The Laplace distribution, h(z) = 1
2
·e−|z|, is

(α, β)-admissible with α = ε/2, β = ε/2 ln(1/δ). In dimen-
sion d > 1, one can use the product of Laplace distributions,
with β = Ω(ε/

√
d ln(1/δ)).

The Gaussian distribution, h(z) = 1
2π
· e−z

2/2, is (α, β)-
admissible with α = ε/

p
ln(1/δ), β = ε/2 ln(1/δ). In dimen-

sion d > 1, we get β = Ω(ε/
p
d ln(1/δ)). ♦

3. COMPUTING SMOOTH SENSITIVITY
In this section we show how to compute smooth sensitivity

S∗f,ε(x), proposed in Definition 2.2, for two specific functions,
median and the cost of the minimum spanning tree.
First we give some generic observations on computing

smooth sensitivity. We start by defining a function that
describes how much the sensitivity can change when up to
k entries of x are modified. This function has to be well
understood in order to compute the smooth sensitivity of f .

Definition 3.1. The sensitivity of f at distance k is

A(k)(x) = max
y∈Dn: d(x,y)≤k

LSf (y) .

Now smooth sensitivity can be expressed in terms of A(k):

S∗f,ε(x) = max
k=0,1,...,n

e−kε
„

max
y: d(x,y)=k

LSf (y)

«
= max

k=0,1,...,n
e−kεA(k)(x) .

Thus, to compute the smooth sensitivity of f at x, it suffices
to understand A(k)(x).
For functions for which we cannot compute S? efficiently,

we might be able to give an efficient approximation algo-
rithm. We stress that not every approximation to S∗ is
appropriate in our framework: some approximations to S∗

might leak information. The function computed by an ap-
proximation algorithm is acceptable only if it is a smooth up-
per bound on S∗. The next claim provides a general method
for giving smooth upper bounds on local sensitivity.

Claim 3.2. Let S̃f,ε(x) = maxk=0,...,n(Uk(x)·e−εk) where
(1) LS(x) ≤ U0(x) and (2) for x, y such that d(x, y) = 1,
Uk(x) ≤ Uk+1(y). For a given value k0(n), let Ŝf,ε(x) =

max(GSf ·e−εk0 ,maxk=0,...,k0−1 e
−εk·A(k)(x)). Then S̃f,ε(x)

and Ŝf,ε(x) are ε-smooth upper bounds on local sensitivity.

3.1 Median
Let fmed be as in Example 1 and assume the database

elements are in nondecreasing order. Recall that GSfmed =
Λ, and LSfmed = max(xm−xm−1, xm+1−xm) form = n+1

2
.

For notational convenience, define xi = 0 for i ≤ 0 and
xi = Λ for i > n.

Claim 3.3. The smooth sensitivity of the median is

S∗fmed,ε(x) = max
k=0,...,n

(e−kε · max
t=0,...,k+1

(xm+t − xm+t−k−1)).

It can be computed in time O(n2).

Proof. By changing up to k entries in x1, . . . , xn to 0
or Λ, one can shift the median anywhere in the interval
[xm−k, xm+k]. The local sensitivity at distance k is maxi-
mized when the new median is an end point of a large empty
interval. This is achieved when entries xm−k+t, . . . , xm−1+t

for some t = 0, . . . , k + 1 are modified as follows: xi with
i < m are set to 0 and xi with i ≥ m are set to Λ. Thus,

A(k)(x) = max
y: d(x,y)=k

LS(y) = max
0≤t≤k+1

(xm+t − xm+t−k−1) .

As A(k) is computable in time O(k), we get that S∗fmed(x) =

maxk e
−εkA(k)(x) is computable in time O(n2).

For example, consider the instance where xi = (Λi)/n

for all i ∈ [n]. In this case, A(k)(x) = (k + 1)Λ/n, and
e−εA(k)(x) is maximized when k = 1/ε. Then S∗ ≤ Λ/(εn),
and consequently, the magnitude of the noise we add is
Λ/(ε2n). For comparison, the noise magnitude for fmed in
the global sensitivity framework of [10] is Λ/ε, high enough
to destroy all information.
Claim 3.2 leads to approximation algorithms for S∗fmed,ε:

Claim 3.4. There is a smooth upper bound on LSfmed
that is a factor 2 approximation to S∗fmed,ε and is computable
in time O(n). There is smooth upper bound on LSfmed that
approximates S∗fmed,ε within error Λ

poly(n)
and is computable

in time O(log2 n
ε2

).

3.2 The Cost of a Minimum Spanning Tree
Let G = (V,E) be an undirected connected graph with

edge weights w(e) ∈ [0,Λ] for all e ∈ E, where each edge
weight is reported to the database by an individual. Let
fMST(G) be the MST cost in G. Global sensitivity, GSfMST ,
is Λ because for the complete graph with all weights equal

to Λ, the MST cost decreases by Λ when one of the weights
is changed to 0. Here we show how to compute the smooth
sensitivity of fMST in polynomial time.
The main idea in the analysis is to expresses the local sen-

sitivity of fMST in terms of the local sensitivity of the min-
imum function. Let fmin(x) = min(x1, . . . , xn), where 0 ≤
x1 ≤ . . . ≤ xn ≤ Λ. It is not hard to verify that the sensitiv-
ity of fmin at distance k is A(k)(x) = max(xk+1, xk+2 − x1),
where xk = Λ for k > n.
We will show that the local sensitivity of fMST is the max-

imum of the local sensitivities of minimum functions, where
the maximum is taken over all cuts of G. A cut in G is a par-
tition of the vertices V in two nonempty subsets, S and V/S.
With some abuse of terminology, we call S ⊂ V a cut when
we mean partition (S, V/S). We say an edge (i, j) is in the
cut S when i ∈ S and j ∈ V/S. For a cut S ⊂ V , let wt(S)
denote the weight of the t-th lightest edge in the cut, i.e., the
t-th element in the list {w((i, j)) | i ∈ S, j ∈ V/S}, sorted in
non-decreasing order. Let `(S) = |{(i, j) | i ∈ S, j ∈ V/S}|
denote the number of edges crossing the cut.

Lemma 3.5. The local sensitivity of fMST at distance k
is
A

(k)
fMST

(G) = max
S⊂V

A
(k)
fmin

`
w1(S), w2(S), . . . , w`(S)(S)

´
.

SubstituteA(k)
fmin

(w1, . . . , wt) = max(wk+1, wk+2−w1), where
wk = Λ for k > t, into the expression for A(k)

fMST
(G) in

Lemma 3.5 and exchange the order of the maximums to get

A
(k)
fMST

(G) = max(max
S⊂V

wk+1(S),max
S⊂V

(wk+2(S)− w1(S))) (1)

Lemma 3.6. The smooth sensitivity of fMST can be com-
puted in time polynomial in the number of edges.

Our algorithm for computing S∗fMST,ε
(G) is based on re-

peated calls to min-cut on graphs related to G. Here we
only present the main idea on computing maxS wk(S), the
first term in the expression for A(k)

fMST
(G) in Equation 1.

To compute maxS wk(S), we use a procedure that com-
putes the minimum cut of an undirected unweighted graph.
Let Ew = {e ∈ E | w(e) ≤ w}. Let Gw be the graph (V,Ew)
with no weights. Let cw = cost(min-cut(Gw)), i.e., the num-
ber of edges in the minimum cut of Gw. Let 0 ≤ wt1 <
wt2 < . . . < wtt ≤ Λ be the sorted list of distinct weight
values in G. Then t ≤ |E| < n2. We can do a binary
search on the list of weights to find i such that cwti ≥ k
and cwti−1 < k. Then maxS⊂V wk(S) = wti. To summa-
rize, maxS⊂V wk(S) can be computed with O(log t) min-cut
computations on Gwti ’s.

4. SAMPLE-AGGREGATE FRAMEWORK

4.1 A Motivating Example: Clustering
One motivating example for the sample and aggregate

framework is privately releasing k-means cluster centers.
In k-squared-error-distortion (k-SED) clustering (also called
“k-means”), the input is a set of points x1, ..., xn ∈ R` and
the output is a set of k centers c1, ..., ck with minimum
cost. The cost of a set of centers is the sum over i of the
squared Euclidean distance between xi and the nearest cen-
ter: costx(c1, ..., ck) = 1

n

Pn
i=1 minj ‖xi − cj‖22 .

Wasserstein Distance. To apply the sensitivity frame-
work to clustering, we have to be able to compute distances

between sets of cluster centers. To this end, we equip the
output space of a clustering algorithm,M =

`
R`
´k, with a

meaningful metric. L`k2 is not appropriate, since under this
metric, two permutations of the same set of centers can be
very far apart. Instead, we use a variant of the earthmover
metric, called the Wasserstein distance [20]. Given two sets
of candidate centers, we take the L`k2 distance under the best
possible permutation of the centers in each set, that is:

dW

`
{c1, ..., ck} , {ĉ1, ..., ĉk}

´
=
“

min
π∈Sk

kX
j=1

‖cj − ĉπ(j)‖22
” 1

2
.

It is easy to verify that this defines a metric on unordered
sets of points in R`. Computing distances is efficient (one
can reduce it to computing a maximum matching in a bi-
partite graph).
We do not know how to add noise with respect to the

Wasserstein distance. For the purposes of adding noise, we
viewM as Ld2, d = `k. This works because L2 distance is an
upper bound on the Wasserstein distance. To summarize,
we compute sensitivity with respect to Wasserstein, but add
noise with respect to L2.
Sensitivity of Clustering. Let fcc(x) denote the k-SED
cluster centers, where xi are points from a subset of R`
with diameter Λ. (If the set of optimal cluster centers is
not unique, fcc(x) outputs the lexicographically first set of
centers.) The cost of the optimal clustering has global sen-
sitivity at most Λ/n, since moving one point changes its
distance to the closest center by at most Λ. The global sen-
sitivity of fcc is much higher: Ω(Λ). For example, in the
instance depicted in Fig. 1, changing a single point moves
the two optimal centers by Ω(Λ). Thus, adding noise to
fcc(x) according to the global sensitivity essentially erases
all centers completely. In contrast, intuition suggests that in
“well-clustered” instances (where there is a single reasonable
clustering of the data), the local sensitivity should be low
since moving a few data points should not change the centers
significantly. However, we do not know how to approximate
a smooth bound on LSfcc efficiently.
We circumvent this difficulty by relying on a different in-

tuition: in well-clustered instances, random samples from
the data should have approximately the same centers as the
original data set, and this can be verified efficiently. This
section describes a framework for releasing functions which
fit this intuition. The application to fcc appears in Section 5.

Move 1 point

Figure 1: A sensitive 2-sed instance

4.2 Basic Framework
In this section we define the sample and aggregate frame-

work and state the main theorem on its performance. In
what follows, unless specified otherwise, M denotes a met-
ric space with distance function dM(·, ·) and diameter Λ.
Suppose that f is defined on databases of all sizes, so

that it makes sense to apply f to a random sample of the
data points. Further, suppose that for a particular input
x ∈ Dn, the function value f(x) can be approximated well
by evaluating f on a random sample of o(n) points from the

database. We prove below that in such cases one can release
the value f(x) with relatively small expected error.
Sample and aggregate works by replacing f with a re-

lated function f̄ for which smooth sensitivity is low and ef-
ficiently computable. The first step in the framework can
be thought of as randomly partitioning the database x into
m small databases, where m is a parameter in the con-
struction. To simplify the analysis, we construct the small
databases by taking independent random samples from x
instead of actually partitioning x. Let U1, ..., Um be random
subsets of size n/m independently selected from {1, . . . , n}.
Each subset is obtained by taking uniform random sam-
ples without replacement. Let x|U denote the subset of x
with indices in U . We evaluate f on m small databases
x|U1 , . . . , x|Um to obtain values z1, ..., zm in the output space
of f . Finally, we apply a carefully chosen aggregation func-
tion g, called the center of attention and defined in Sec-
tion 4.4, to the values z1, ..., zm. The output of this com-
putation, f̄(x) = g (f(x|U1), . . . , f(x|Um)) , is released using
the smooth sensitivity framework (Figure 2).

x

x
∣∣
Um

x
∣∣
U1

x
∣∣
U2

...
f

g +aggregation function

Noise calibrated
to smooth
sensitivity off f

z1
z2 zm

A(x)

g

f̄(x)

Figure 2: The Sample-Aggregate Framework

We will bound the smooth sensitivity of the function f̄ at
x by the smooth sensitivity of the aggregation function g at
z = (z1, ..., zm). The idea is that changing a single point in
the original database x will change very few small databases,
and hence very few evaluations z1, . . . , zm. This requires a
slight generalization of local sensitivity and related notions
to handle more than one change to the input.
The bulk of the work in the analysis of the sample and

aggregate framework is in carefully choosing the aggregation
function so that (a) if most of the zi’s are close to some
point, then f̄(x) is close to that point, and we can efficiently
compute a smooth, fairly tight upper bound on the local
sensitivity of f̄ .
Sample and aggregate outputs accurate answers on data-

bases x on which f(x) is approximated well by evaluating f
on random samples from the database. The following defi-
nition quantifies what we mean by a good approximation.

Definition 4.1. A function f : D∗ → M is approxi-
mated to within accuracy r on the input x using samples of
size n′ if Pr

U⊂[n],
|U|=n′

h
dM
“
f(x|U), f(x)

”
≤ r
i
≥ 3

4
.

For example, for the clustering application, this definition
says that with probability 3/4, the cluster centers of a small
random sample from the database are within the Wasser-
stein distance r from the centers of the whole database.
Sample and aggregate is applicable for a function with

any output space metricM for which there is an admissible
noise process (see Definition 2.4). The performance of the
framework depends on the parameters of the noise process.

We summarize the performance of sample and aggregate for
the case of M = L1 in Theorem 4.2. The corresponding
statements for L2 and various versions of the Wasserstein
distance have more parameters, and are deferred to the full
version of the paper. Further below, we develop machinery
for general metrics that, combined with results on adding
noise from Section 2.2, yields a proof of Theorem 4.2 and its
analogues for other metric spaces.

Theorem 4.2 (Main). Let f : D∗ → Rd be an effi-
ciently computable function with range of diameter Λ and L1

metric on the output space. Set ε > 2d√
m

and m = ω(log2 n).
The sample-aggregate mechanism A is an ε-indistinguishable
efficient mechanism. Moreover, if f is approximated within
accuracy r on the database x = (x1, . . . , xn) using sam-
ples of size n

m
, then each coordinate of the random variable

A(x)− f(x) has expected magnitude O
`
r
ε

´
+ Λ

ε
e−Ω(

ε
√
m
d

).

This result captures the intuition that if a function f can
be approximated by sampling on a particular input x, then
we can release f(x) with small additive error. In the special
case where ε is constant, we get the following:

Corollary 4.3. Suppose ε is constant. If f is approx-
imated within accuracy r on input x using samples of size
o
“

n
d2 log2 n

”
, then A releases f(x) with expected error O(r)+

Λ · negl
`
n
d

´
in each coordinate.

In many natural settings where privacy is important, the
database itself consists of a random sample taken from some
underlying population. In that case, one can think of f(x)
as an approximation to some statistics about the population
on a sample of size n. Corollary 4.3 states that privacy im-
poses only a slight degradation of the quality of the results:
the server answers queries with accuracy corresponding so a
sample of size Ω̃(n/d2) while ensuring privacy.

Remark 1. A variant of Theorem 4.2 still holds if in Def-
inition 4.1, the values f(x|U) lie near some specific value c,
not necessarily f(x) (that is, assume that dM

“
f(x|U), c

”
≤

r with probability at least 3/4). In that case, the analo-
gous statement is that A(x) − c has expected magnitude

O
`
r
ε

´
+ Λ

ε
e−Ω(

ε
√
m
d

) in each coordinate.
This generality will be useful for both applications of sam-

ple and aggregate discussed in Section 5. For example, for
k-SED clustering, the function f evaluated on each sample
x|U will be a polynomial-time algorithm which outputs a set
of cluster centers of near-optimal cost. In contrast, the value
c is the set of optimal cluster centers, c = fcc(x), which is
NP -hard to compute.

4.3 Aggregation for General Metric Spaces

Good Aggregations. Before defining a valid aggrega-
tion, we generalize local sensitivity and related notions to
handle several changes to the input. It is not hard to prove
that in the sample and aggregate framework, if we indepen-
dently select m small databases of size n/m (each chosen
uniformly without replacement), then with probability at
least 1 − 2−

√
m+logn, no point appears in more than

√
m

small databases. Hence, with high probability, each point in
x affects at most

√
m of the inputs to g. This observation

leads us to a slight generalization of local sensitivity and

smooth bounds, where we consider how changing up to s
points in the input affects the output. For the application
to sample and aggregate, we will set s to

√
m.

Definition 4.4. For g : Dm →M and z ∈ Dm, the local
sensitivity of g at x with step size s is

LS(s)
g (z) = max

z′:d(z,z′)≤s
dM

`
g(z), g(z′)

´
.

For β > 0, a function S : Dm → R+ is a β-smooth upper
bound on the sensitivity of g with step size s if

∀z ∈ Dm : S(z) ≥ LS(s)
g (z) ;

∀z, z′ ∈ Dm , d(z, z′) ≤ s : S(z) ≤ eβS(z′) .

An aggregation function g comes with a corresponding
smooth upper bound S on its sensitivity with step size s.
When most of the input to g is contained in a small ball, (a)
the output of g should be close to the ball and (b) S should
be small. Let B(c, r) denote a ball around c of radius r.

Definition 4.5 (Good Aggregation). In a metric
spaceM with diameter Λ, an (m,β, s)-aggregation is a pair
of functions, an aggregation function g : Mm → M and a
sensitivity function S :Mm → R+, such that

1. S is a β-smooth upper bound on LS(s)
g .

2. If at least 2m
3

entries in z are in some ball B(c, r) then

(a) g(z) ∈ B(c,O(r)) ;

(b) S(z) = O(r) + Λ · e−Ω(βm/s) .

If g and S are computable in time poly(m, 1/β), the aggre-
gation is efficient.

Intuitively, the existence of a good aggregation implies
that given a collection of points, most of which are contained
in a small ball, it is possible to return a representative point
that is not far from the ball, while preserving privacy. This
ensures that the sample and aggregate mechanism returns
a value f̄(x) close to f(x) when at least 2/3 of the values
zi = f(x|Ui) lie close to f(x). Condition (2b) ensures that
not too much noise is added to f̄(x).

Example 4. When f takes values in [0,Λ] ⊆ R, the me-
dian is an efficient good aggregation in the sense of Defi-
nition 4.5. To see why, note that if 2/3 of the points in z
are in an interval B of length 2r, then the median is also
contained in this interval. Condition (2a) is hence satisfied
as the median is within distance r from the center of B.
S(z) = max

k=0,...,n/6
LS(s(k+1))

g (z) ·e−βk is a β-smooth bound

on LS(s)
g for any function g. When g is the median, LS(s)

med

is efficiently computable, using formulas similar to those in
Section 3.1, and so S is also efficiently computable.
For Condition (2b), note that if 2/3 of the points lie in B,

the term LS
(s(k+1))
med (z) is at most 2r for k = 0, ..., m−1

6s
(if

fewer than m/6 points get moved, the median is constrained
to remain in B). For larger k, we bound LS(s(k+1))

med (z) from
above by the diameter Λ. Thus, S(z) ≤ 2r+ Λ · e−

βm
6s when

2/3 of the inputs lie in B. ♦

In general metric spaces, one can define a median to be a
point minimizing the sum of the distances to all points in a
dataset. This satisfies condition (2a) in any space. However,
this median may be difficult to compute (it is NP-hard in,
for example, permutation spaces [2]). Moreover, we must
find a smooth bound on its local sensitivity. We propose an
efficient aggregation that meets Definition 4.5 for arbitrary
metric spaces (as long as computing pairwise distances is
feasible). Our aggregator, the center-of-attention, is related
to the median and is defined and discussed in Section 4.4.

4.4 The Center of Attention
To prove Theorem 4.9, we propose an aggregation func-

tion computable in any metric space, called the center of
attention. It depends only on pairwise distances between
the points of the dataset. We start by defining a simpler
unconstrained center of attention, a good aggregation re-
lated to the center of attention, which might not be efficient
in some metric spaces.
Let the input to the aggregation be a set z ⊆ M of m

points in the metric spaceM. For every point c ∈ M (not
necessarily in z) define r(c, t) to be its t-radius with respect
to z, i.e., the distance from c to its t-th nearest neighbor
in z (for t > m, set r(c, t) = Λ). Our aggregation is based
on minimizing the t-radius for different values of t. Adding
noise proportional to the t-radius was used very differently,
but also in the context of data privacy, by Chawla et al. [4].
We are not aware of a direct connection between the two
techniques.
A Good But Inefficient Aggregation. Our first aggre-
gation is good for any metric spaceM, but it might not be
efficiently computable in some spaces.

Definition 4.6. The unconstrained center of attention,
g0(z), of the set z ∈Mm is a point inM with the minimum
t0-radius, where t0 = (m+s

2
+ 1).

In the metric spaces we consider, namely, finite spaces, Lp
metrics, and variants of Wasserstein, the unconstrained cen-
ter of attention always exists by compactness, though it may
not be unique. Consider the ball of the minimum t0-radius
centered at g0(z). The number t0 is chosen so that when
s points are removed from z, a majority of the remaining
points is contained inside the ball. This lets us bound LS(s)

g0 .
Let r(z)(t) be the minimum t-radius of any point in M,

i.e., the minimum over c ∈ M of r(c, t). We define the
sensitivity function corresponding to g0 as

S0(z)
def
= 2 max

k≥0

“
r(z) (t0 + (k + 1)s) e−βk

”
.

Ignoring efficiency, the pair (g0, S0) is a good aggregation.

Claim 4.7. The pair (g0, S0) is an (m,β, s)-aggregation
in any metric.

Proof. First note that for any two sets z and z′ differing
in at most s points, every ball which contains t + s points
in z′ must also contain t points in z. Hence,

r(z)(t) ≤ r(z′)(t+ s) . (2)

Now consider LS(s)
g0 (z). Suppose the set z′ differs from z in

s points, and consider (a) the ball of radius r(z′)(t0) centered
at g0(z′) and (b) the ball of radius r(z)(t0) centered at g0(z).
Note that t0 was chosen so that both balls contain a strict

majority of the points in z ∩ z′. Thus, they intersect in
at least one point. The distance d(g0(z), g0(z′)) is at most
r(z)(t0) + r(z′)(t0). By Eq. (2), this is bounded above by
r(z)(t0) + r(z)(t0 + s) ≤ 2r(z)(t0 + s). This yields:

LS(s)
g0 (z) ≤ 2r(z)(t0 + s).

As right hand side above is the first term in the maximum
defining S0(z), we get that S0 bounds the local sensitivity
correctly. The smoothness of S0 follows from Eq. (2):

S0(z) ≤ 2 max
k≥0

“
r(z′) (t0 + (k + 2)s) e−βk

”
= 2(eβ) max

k′≥1

“
r(z′) `t0 + (k′ + 1)s

´
e−βk

′”
= eβS0(z′).

It remains to prove that when the set z is concentrated in
a ball of radius r, then g0(z) is close to the ball and S0(z)
is close to O(r) (properties 2a and 2b from Definition 4.5).
Suppose that 2m

3
of the inputs lie in B(c, r). Then radii

r(z)(t) are at most r for all t ≤ 2m
3
.

Property 2a: The ball of radius r(z)(t0) which defines
g0(z), must intersect with B(c, r) in at least one database
point. The centers can be at distance at most 2r, and so
g0(z) ∈ B(c, 2r).
Property 2b: In the maximum defining S0(z), the first m

6s
terms are at most r, and the remaining ones are at most Λ.
Therefore, S0(z) ≤ 2 max

“
r , Λ · e−

βm
6s

”
, which satisfies

the requirements of a good aggregation.

An Efficient Aggregation: the Center of Attention.
To get an efficient aggregation, we “approximate” the uncon-
strained center of attention with the best point in the input
z. Recall that the unconstrained center of attention of the
set z is a point inM with the minimum t0-radius.

Definition 4.8. The center of attention, g(z), of the set
z ∈ Mm is a point in z with the minimum t0-radius, where
t0 = (m+s

2
+ 1).

Recall that r(c, t) is the t-radius of a point c ∈ M. Let
r1(t), r2(t), . . . , rm(t) be the sorted {r(c, t)}c∈z (smallest to
largest). We can compute the sorted lists for all t ∈ [m] by
computing all pairwise distances within z (this costs

`
m
2

´
dis-

tance computations). It takes O(m2 logm) time to generate
the sorted list r1(t), r2(t), . . . , rm(t).
As with the unrestricted center of attention, LS(s)

g ≤
2r1(t0 + s). Let a < t0 be a parameter of the construc-
tion. We will later set a ≈ s/β. In order to compute a
smooth bound on the sensitivity, define ρ(t) = 1

a

Pa
i=1 ri(t).

This is an upper bound on r1(t), and smooth enough to be
used as a measure of noise magnitude. Let

S(z) = 2 max
k

“
ρ(t0 + (k + 1)s) · e−βk

”
.

Theorem 4.9. Set β > 2s/m. In every metric space
with efficiently computable pairwise distances, (g, S) is an
efficient (m,β, s)-aggregation. Computing g(z) and S(z) re-
quires O(m2) distance computations and O(m2 logm) time.

This theorem, combined with results on adding noise from
Section 2.2, implies the main Theorem 4.2 and its analogues
for other metric spaces.

5. APPLYING SAMPLE-AGGREGATE
We illustrate the sample and aggregate framework via two

closely related applications: k-SED clustering (also called k-
means), discussed in Section 4.1, and learning mixtures of
spherical Gaussians. In the case of clustering, we show that
instances which are well clustered according to a criterion
of [15] behave well with respect to sampling. In the case
of learning, we show that polynomially-many i.i.d. samples
allow one to release the mixture parameters accurately as
long as the components of the mixture do not overlap too
heavily.

5.1 Clustering Well-Separated Datasets
Recall that fcc(x), defined in Section 4.1, denotes the

k-SED cluster centers, where xi are points from a subset
of R` with diameter Λ. Recall that GSfcc is high and LSfcc
appears difficult to compute or even approximate (though
proving that the computation is hard is an open problem).
We circumvent these difficulties by using the sample and ag-
gregate framework to release relatively accurate answers on
“well-clustered” instances. Ostrovsky et al. [15] introduced
a measure of quality of k-SED instances called separation.
They prove that if x is well-separated, then all near-optimal
k-SED clusterings of x induce similar partitions of the points
of x. They use this to show that well-separated data sets
are amenable to heuristics based on Lloyd’s algorithm. We
prove that sample and aggregate performs well under similar
conditions. In this abstract, we outline the main ideas.

Definition 5.1 (Separation, [15]). Given a dataset
x, let ∆2

k(x) be the cost of the optimal k-SED clustering of
x. We say x is φ2-separated if ∆2

k ≤ φ2∆2
k−1.

An immediate concern is that φ2-separation discusses the
cost of the optimal solution to the clustering problem. It
is NP-hard, in general, to find the optimal clustering of a
data set but there exist efficient O(1) approximation algo-
rithms (e.g., [14]). Let f be an A-approximation algorithm
that outputs cluster centers of near optimal cost, for some
constant A. The sample and aggregate mechanism cannot
evaluate fcc efficiently, but f is a reasonable query to the
server. Recall that to compare two sets of cluster centers we
use the Wasserstein distance, dW, defined in Section 4.1. The
following lemma states that for a well-separated instance x,
distance dW

“
f(x|U), fcc(x)

”
is small with probability 3

4
over

the choice of a random subset U of size n/m.

Lemma 5.2. For some constants C1, C2, if x ∈ (R`)n

is φ2-separated, where n′ > C2(Λ2

∆2
k−1

)2A2k` ln
`
`Λ2

∆2
k−1

´
and

φ2 < C1
A+1

, then

Pr
U⊂[n],
|U|=n′

h
dM
“
f̂cc(x|U), fcc(x)

”
≤ 60Λφ2

√
k
i
≥ 3

4
.

The variant of Theorem 4.2 corresponding to Wasserstein
distance, together with this lemma, implies that the sam-
ple and aggregate mechanism will release a clustering of x
with additive noise of magnitude O(Λφ2

√
k/ε) in each coor-

dinate. We conjecture that the actual noise is much lower,
but proving the conjecture seems to require a much more
refined understanding of the clustering problem.

5.2 Learning Mixtures of Gaussians
Consider estimating and releasing the parameters of a

uniform mixture of spherical Gaussian distributions. We
say a density function h over R` is a mixture of k spheri-
cal Gaussians if we can express it as a convex combination
h(x) =

Pk
i=1

1
k
h0(x−µi) where h0 is the density function of

a spherical Gaussian distribution with variance σ2 in each
coordinate. The centers µi are the parameters of h (assum-
ing σ2 is known).
Given n i.i.d. samples x1..., xn drawn according to h, our

goal is to estimate and release the µi’s as accurately as pos-
sible while protecting the privacy of x = (x1, ..., xn). This
is related to, but different from, the k-SED clustering prob-
lem (the optimal k-SED cluster centers form the maximum
likelihood estimate for the µi’s, but the optimal centers are
hard to compute exactly and it is not clear that centers with
nearly optimal cost will yield a good estimate of the µi’s).
We apply the sample and aggregate framework. Since the

points of x are drawn i.i.d., each of the subsets x|U1 , ..., x|Um
will also consist of i.i.d. samples. Thus, it is sufficient to
show that given n/m i.i.d. samples from h, we can compute
a set of centers that is “close” to the real centers. As above,
we use the Wasserstein distance (Sec. 4.1) to measure the
distance between different sets of centers. To get a good
estimate of the centers from each of the samples, we use a
slight modification of the learning algorithm of Vempala and
Wang [18], whose properties are summarized here:

Lemma 5.3. A modification of the Vempala-Wang clus-
tering algorithm [18], given n′ samples from a mixture of k
spherical Gaussians, outputs a set of centers within Wasser-
stein distance O(σk

q
`
n′) of the real centers, with probability

1− o(1) as long as the distance between any pair of centers
is ω

“
σk1/4 log1/2(`k)

”
and n′ ≥ `3k polylog(`).

When n′ = ω
“√

` log(1/δ)
ε

log(nk
σ

)
”
, the sample and aggre-

gate mechanism is (ε, δ)-indistinguishable; it releases a set
of centers {µ̂i} where the expected error ‖µ̂i − µi‖ in each

of the estimates is O
„
σ`3/2k log(1/δ)

ε
√
n′

«
. For large n (poly-

nomial in k and `), we get an estimate h′ of the mixture dis-
tribution, which converges to h (that is, the KL-divergence
between the distributions tends to 0). Details are deferred
to the full version.

Acknowledgements. We are grateful to Cynthia Dwork,
Piotr Indyk, Frank McSherry, Nina Mishra, Moni Naor, Gil
Segev, and Enav Weinreb for discussions about various as-
pects of this work. A significant part of this research was
performed while the authors were visiting ucla’s ipam. We
thank Rafi Ostrovsky and the ipam staff for making our stay
there pleasant and productive.

6. REFERENCES

[1] N. R. Adam and J. C. Wortmann. Security-control
methods for statistical databases: a comparative
study. ACM Computing Surveys, 25(4), 1989.

[2] N. Ailon, M. Charikar, and A. Newman. Aggregating
inconsistent information: ranking and clustering. In
STOC 2005, pages 684–693, 2005.

[3] A. Blum, C. Dwork, F. McSherry, and K. Nissim.
Practical privacy: The SuLQ framework. In PODS,
2005.

[4] S. Chawla, C. Dwork, F. McSherry, A. Smith, and
H. Wee. Toward privacy in public databases. In
Theory of Cryptography Conference (TCC), pages
363–385, 2005.

[5] S. Chawla, C. Dwork, F. McSherry, and K. Talwar.
On the utility of privacy-preserving histograms. In
21st Conference on Uncertainty in Artificial
Intelligence (UAI), 2005.

[6] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and
M. Y. Zhu. Tools for privacy preserving data mining.
SIGKDD Explorations, 4(2):28–34, 2002.

[7] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[8] C. Dwork. Differential privacy. In ICALP, pages 1–12,
2006.

[9] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In EUROCRYPT, pages
486–503, 2006.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In TCC, pages 265–284, 2006.

[11] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases. In
CRYPTO, pages 528–544, 2004.

[12] A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting
privacy breaches in privacy preserving data mining. In
PODS, pages 211–222, 2003.

[13] J. Gehrke. Models and methods for privacy-preserving
data publishing and analysis (tutorial slides). In
Twelfth Annual SIGKDD International Conference on
Knowledge Discovery and Data Mining (SIGKDD
2006), 2006.

[14] R. R. Mettu and C. G. Plaxton. Optimal time bounds
for approximate clustering. Machine Learning,
56(1-3):35–60, 2004.

[15] R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swamy.
The effectiveness of Lloyd-type methods for the
k-means problem. In 47th IEEE Symposium on the
Foundations of Computer Science (FOCS), 2006.

[16] A. Slavkovic. Statistical Disclosure Limitation Beyond
the Margins: Characterization of Joint Distributions
for Contingency Tables. Ph.D. Thesis, Department of
Statistics, Carnegie Mellon University, 2004.

[17] L. Sweeney. Privacy-enhanced linking. SIGKDD
Explorations, 7(2):72–75, 2005.

[18] S. Vempala and G. Wang. A spectral algorithm for
learning mixture models. J. Comput. Syst. Sci.,
68(4):841–860, 2004.

[19] V. H. Vu. On the concentration of multi-variate
polynomials with small expectation. Random
Structures and Algorithms, 16(4):344–363, 2000.

[20] L. N. Wasserstein. Markov processes over denumerable
products of spaces describing large systems of
automata. Probl. Inform. Transmission, 5:47–52, 1969.

