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Abstract. Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-closure-spanner (k-TC-
spanner) of G is a directed graph H = (V,EH) that has (1) the same transitive-closure as G and (2) diameter at
most k. Transitive-closure spanners are a common abstraction for applications in access control, property testing
and data structures.

We show a connection between 2-TC-spanners and local monotonicity filters. A local monotonicity filter, in-
troduced by Saks and Seshadhri (SIAM Journal on Computing, 2010), is a randomized algorithm that, given access
to an oracle for an almost monotone function f : {1, 2, . . . ,m}d → R, can quickly evaluate a related function
g : {1, 2, . . . ,m}d → R which is guaranteed to be monotone. Furthermore, the filter can be implemented in a
distributed manner. We show that an efficient local monotonicity filter implies a sparse 2-TC-spanner of the directed
hypergrid, providing a new technique for proving lower bounds for local monotonicity filters. Our connection is, in
fact, more general: an efficient local monotonicity filter for functions on any partially ordered set (poset) implies a
sparse 2-TC-spanner of the directed acyclic graph corresponding to the poset.

We present nearly tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the directed hyper-
cube and hypergrid. These bounds imply stronger lower bounds for local monotonicity filters that nearly match the
upper bounds of Saks and Seshadhri.
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1. Introduction. We show a connection between transitive-closure spanners and local
filters. Let us start by defining these objects and explaining the context in which they origi-
nally arose.

1.1. Transitive-closure spanners. Graph spanners were introduced by Awerbuch [4]
and Peleg and Schäffer [21] in the context of distributed computing, and since then have
found numerous applications, such as efficient routing [14, 15, 23, 25, 32], simulating syn-
chronized protocols in unsynchronized networks [22], parallel and distributed algorithms for
approximating shortest paths [12, 13, 17], and algorithms for distance oracles [5, 33]. Several
variants of graph spanners have been defined. In this work, we focus on transitive-closure
spanners that were formally introduced by Bhattacharyya et al. [7] as a common abstraction
for applications in access control, property testing and data structures.

For a directed graph G = (V,E) and two vertices u, v ∈ V , let dG(u, v) denote the
smallest number of edges on a path in G from u to v.

DEFINITION 1.1 (TC-spanner). Given a directed graph G = (V,E) and an integer k ≥
1, a k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph H = (V,EH)
with the following properties.

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) <∞, then dH(u, v) ≤ k.
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FIG. 1.1. A property-preserving filter. Given a query x, the filter looks up a few values of the data function f
and outputs g(x), where the reconstructed function g satisfies a desired property.

Thus, a k-TC-spanner is a graph with small diameter1 that preserves the connectivity of
the original graph. In the applications above, the goal is to find the sparsest k-TC-spanner
for a given k and G. The number of edges in the sparsest k-TC-spanner of G is denoted
by Sk(G). We review previous work on bounding Sk(G) for different families of graphs in
Section 1.4. For a detailed description of recent results on TC-spanners, we refer the reader
to the survey by Raskhodnikova [24].

1.2. Local property reconstruction. Property-preserving data reconstruction was in-
troduced by Ailon et al. [1]. In this model, a reconstruction algorithm, called a filter, sits
between a client and a dataset. A dataset is viewed as a function f : D → R. The client
accesses the dataset using queries of the form x ∈ D to the filter. Given a query x, the filter
generates a small number of lookups a ∈ D to the dataset, from which it receives the values
f(a) and then computes a value g(x), where g must satisfy some fixed structural property
P , such as being a monotone function. (See Figure 1.1 for an illustration.) Extending this
notion, Saks and Seshadhri [26] defined local reconstruction. A filter is local if it allows for
a local (or distributed) implementation: namely, if the output function g does not depend on
the order of the queries.

DEFINITION 1.2 (Local filter). A local filter for reconstructing property P is a random-
ized algorithm A that has oracle access to a function f : D → R and to an auxiliary random
string ρ (the “random seed”), and takes as input a query x ∈ D. For fixed f and ρ, algorithm
A runs deterministically on input x and produces an output Af,ρ(x) ∈ R. (Note that a local
filter has no internal state to store previously made queries.) The function g(x) = Af,ρ(x)
output by the filter must obey the following conditions.

• For each f and ρ, the function g must satisfy P .
• If f satisfies P , then g must be identical to f with probability at least 1−δ, for some

error probability δ ≤ 1/3. The probability is taken over ρ.
When answering a query x ∈ D, a filter may look up values of f at domain points of

its choice using its oracle. The lookup complexity of a local filter A is the maximum number
of lookups performed by A for any f and ρ and for any input query x. A local filter is
nonadaptive if its lookups on input query x do not depend on answers given by the oracle.

Saks and Seshadhri actually considered more restrictive filters which required that g be
sufficiently close to f .

DEFINITION 1.3 (Distance-respecting local filter). For a function B : Z+ → Z+,
a distance-respecting local filter with error blowup B(n) is a local filter in the sense of
Definition 1.2 for which the following holds. With high probability (over the choice of ρ),
Dist(g, f) ≤ B(n) ·Dist(f,P), where Dist(g, f) is the number of points in the domain on
which f and g differ and Dist(f,P) is ming∈P Dist(g, f).

1In this work and other papers on transitive-closure spanners, the diameter of a graph is defined to be the
maximum distance from u to v over all nodes u and v, such that there is a path from u to v in the graph.
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FIG. 1.2. Examples of hypergrids: H2
4 (left) and H3 (right). All edges are directed towards vertices with

larger coordinates.

Local monotonicity filters. The most studied property in the local reconstruction mo-
del is monotonicity of functions [26, 1]. To define it, consider an n-element poset Vn and let
Gn = (Vn, E) be the relation graph, i.e., the Hasse diagram, for Vn. A function f : Vn → R is
called monotone if f(x) ≤ f(y) for all (x, y) ∈ E. We focus on posets whose relation graph
is a directed hypergrid. The directed hypergrid, denoted Hdm and illustrated in Figure 1.2,
has vertex set2 [m]d and edge set {(x, y) : ∃ unique i ∈ [d] such that yi− xi = 1 and for j 6=
i, yj = xj}. For the special case m = 2, the hypergridHd2 is called the hypercube and is also
denoted byHd. A monotonicity filter needs to ensure that the output function g is monotone.
For instance, if Gn is a directed line, H1

n, the filter needs to ensure that the output sequence
specified by g is sorted.

To motivate monotonicity filters for hypergrids, consider the scenario of rolling admis-
sions: An admissions office assigns d scores to each application, such as the applicant’s GPA,
SAT results, essay quality, etc. Based on these scores, some complicated (third-party) algo-
rithm outputs the probability that a given applicant should be accepted. The admissions office
wants to make sure “on the fly” that strictly better applicants are given higher probability, that
is, probabilities are monotone in scores. A hypergrid monotonicity filter may be used here.
If it is local, it can be implemented in a distributed manner with an additional guarantee that
every copy of the filter will correct to the same monotone function of the scores. This can be
done by supplying the same random seed to each copy of the filter.

Saks and Seshadhri [26] give a distance-respecting local monotonicity filter for the di-
rected hypergridHdm that makes (logm)O(d) lookups per query for m ≥ 3 (where, as always
in this article, the logarithm has base 2). No nontrivial monotonicity filter for the hypercube
Hd, meaning a filter performing o(2d) lookups per query, is known. One of the monotonic-
ity filters of Ailon et al. [1] is a local filter for the directed line H1

m with O(logm) lookups
per query (but a worse error blowup than in [26]). As observed in [26], this upper bound is
tight. Saks and Seshadhri [26] also present a lower bound of 2βd on the number of lookups
per query for a distance-respecting local monotonicity filter on Hd with error blowup 2βd,
where β is a sufficiently small constant. Notably, all known local monotonicity filters are
nonadaptive.

1.3. Our contributions. The contributions of this work fall into two categories.
1. We show that an efficient local monotonicity filter implies a sparse 2-TC-spanner of

the directed hypergrid, providing a new technique for proving lower bounds for local mono-
tonicity filters.

2. We present nearly tight upper and lower bounds on the size of the sparsest 2-TC-
spanners of the directed hypercube and hypergrid. These bounds imply stronger lower bounds
for local monotonicity filters for these graphs that, for nonadaptive filters and for filters that
lookup function values only on points comparable to x on every query x, nearly match the
upper bounds by Saks and Seshadhri [26]. (Two nodes x, y are called comparable if x is
reachable from y or y is reachable from x; otherwise, they are incomparable.)

2For a positive integer m, we denote {1, 2, . . . ,m} by [m].
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1.3.1. Our lower bounds for local monotonicity reconstruction. We show how to
construct sparse 2-TC-spanners from local monotonicity filters with low lookup complexity.
These constructions, together with our lower bounds on the size of 2-TC-spanners of the
hypergrid and the hypercube, stated in Section 1.3.2, imply lower bounds on lookup com-
plexity of local monotonicity filters for these graphs with arbitrary error blowup. Table 1.1
summarizes our results from this section.

We state the properties of our transformations from nonadaptive and adaptive filters sep-
arately.

THEOREM 1.4 (From nonadaptive filters to 2-TC-spanners). Let Gn = (Vn, En) be a
poset on n nodes. Suppose there is a nonadaptive local monotonicity filter A for Gn that
looks up at most `(n) values on any query and has error probability at most δ. Then there is
a 2-TC-spanner of Gn with O(n`(n) · d logn

log(1/δ)e) edges.
Next theorem applies even to adaptive local monotonicity filters. It takes into account

how many lookups on query x are to nodes that are incomparable to x. In particular, if there
are no such lookups, then the constructed 2-TC-spanner is of the same size as in Theorem 1.4.

THEOREM 1.5 (From adaptive filters to 2-TC-spanners). Let Gn = (Vn, En) be a poset
on n nodes. Suppose there is an (adaptive) local monotonicity filter A for Gn that, for every
query x ∈ Vn, looks up at most `1(n) vertices comparable to x and at most `2(n) vertices
incomparable to x, and has error probability at most δ. Then there is a 2-TC-spanner of Gn
with O(n`1(n) · 2`2(n)d logn

log(1/δ)e) edges.
In Theorems 1.4 and 1.5, when δ is sufficiently small, the bounds on the 2-TC-spanner

size become O(n`(n)) and O(n`1(n) · 2`2(n)), respectively. As mentioned earlier, all known
monotonicity filters are nonadaptive. It is an open question whether it is possible to give a
transformation from adaptive local monotonicity filters to 2-TC-spanners without incurring an
exponential dependence on the number of lookups made to points incomparable to the query
point. We do not know whether this dependence is an artifact of the proof or an indication
that lookups to incomparable points might be helpful for adaptive local monotonicity filters.

In Theorems 1.8 and 1.9, stated in Section 1.3.2, we present nearly tight bounds on the
size of the sparsest 2-TC-spanners of the hypercube and the hypergrid. Theorems 1.4 and 1.5,
together with the lower bounds in Theorems 1.8 and 1.9, imply the following lower bounds
on the lookup complexity of local monotonicity filters for these graphs, with arbitrary error
blowup.

COROLLARY 1.6. Consider a nonadaptive local monotonicity filter with constant error
probability δ. If the filter is for functions f : Hdm → R (where 1 < d < 2 logm

log logm ), it must
perform

Ω

(
logd−1m

dd(2 log logm)d−1

)

lookups per query. If the filter is for functions f : Hd → R, it must perform Ω( 2αd

d ) lookups
per query, where α ≥ 0.1620.

COROLLARY 1.7. Consider an (adaptive) local monotonicity filter with constant error
probability δ, that for every query x ∈ Vn, looks up at most `2 vertices incomparable to x. If
the filter is for functions f : Hdm → R (where 1 < d < 2 logm

log logm ), it must perform

Ω

(
logd−1m

2`2dd(2 log logm)d−1

)

lookups to vertices comparable to x per query x. If the filter is for functions f : Hd → R, it
must perform Ω( 2αd−`2

d ) comparable lookups, where α ≥ 0.1620.
Prior to this work, no lower bounds for monotonicity filters on Hdm with dependence

on both m and d were known. Unlike the bound of Saks and Seshadhri [26], our lower
bounds hold for any error blowup and for filters which are not necessarily distance-respecting.

4



Type Lower Bound Blowup B(m, d) Reference

Low-Dimensional
HypergridHdm(

1 < d < 2 logm
log logm

) nonadaptive Ω( logd−1m
dd(2 log logm)d−1 )

arbitrary
Corollary 1.6

adaptive Ω( logd−1m

2`2dd(2 log logm)d−1 ) Corollary 1.7

HypercubeHd
nonadaptive Ω( 2αd

d
) arbitrary Corollary 1.6

adaptive Ω( 2αd−`2
d

) Corollary 1.7

adaptive Ω(2βd) < 2βd [26]

TABLE 1.1
Summary of our lower bounds for lookup complexity of local monotonicity filters. The parameter α ≈ 0.1620

and the parameter β is a sufficiently small constant (see [26]). The only known local filter for monotonicity on
hypergrids (from [26]) is nonadaptive and makes (logm)O(d) lookups for m ≥ 3. In adaptive lower bounds, `2
denotes the maximum number of incomparable elements looked up on a single query (see Theorem 1.5).

Our bounds are tight for nonadaptive filters. Specifically, for the hypergrid Hdm of constant
dimension d and m ≥ 3, the number of lookups is (logm)Θ(d), and for the hypercubeHd, it
is 2Θ(d) for any error blowup.

Testers vs. filters. Bhattacharyya et al. [7] obtained monotonicity testers from 2-TC-
spanners. Unlike in the application to monotonicity testing, here we use lower bounds on
the size of 2-TC-spanners to prove lower bounds on complexity of local monotonicity filters.
Lower bounds on the size of 2-TC-spanners do not imply corresponding lower bounds on
monotonicity testers. E.g., the best monotonicity tester on Hd runs in O(d2) time [18, 16],
while, as shown in Theorem 1.9, every 2-TC-spanner ofHd must have size exponential in d.

1.3.2. Our bounds on the size of 2-TC-spanners of the hypercube and the hypergrid.
Table 1.2 summarizes our results from this section. Our main theorem, proved in Section 4,
gives a set of explicit bounds on S2(Hdm).

THEOREM 1.8 (Hypergrid). Let S2(Hdm) denote the number of edges in the sparsest
2-TC-spanner ofHdm. Then

Ω

(
md logdm

(2d log logm)d−1

)
= S2(Hdm) ≤ md logdm.

The upper bound holds for all m ≥ 3 while the lower bound is interesting (better than naive
bounds, see Table 1.2) for d < 2 logm

log logm .
The upper bound in Theorem 1.8 follows from a general construction of k-TC-spanners

of graph products for arbitrary k ≥ 2, presented in Section 4.1. The lower bound is the
most technically difficult part of our work. It is proved by a reduction of the 2-TC-spanner
construction for [m]d to that for the 2× [m]d−1 grid and then directly analyzing the number
of edges required for a 2-TC-spanner of 2× [m]d−1. We show a tradeoff between the number
of edges in the 2-TC-spanner of the 2 × [m]d−1 grid that stay within the hyperplanes {1} ×
[m]d−1 and {2} × [m]d−1 versus the number of edges that cross from one hyperplane to the
other. The proof proceeds in multiple stages. Assuming an upper bound on the number of
edges staying within the hyperplanes, each stage is shown to contribute a substantial number
of new edges crossing between the hyperplanes. The proof of this tradeoff lemma is already
nontrivial for d = 2 and is presented first in Section 4.2.1. The proof for d > 2 is presented
in Section 4.2.2.

While Theorem 1.8 is most useful when m is large and d is small, in Section 6, we
present bounds on S2(Hdm) which are optimal up to a factor of d2m and thus supersede the
bounds from Theorem 1.8 when m is small. These bounds are stated in Theorem 6.2. In
particular, for constant m, our upper and lower bounds differ only by a factor polynomial in
the dimension d. The general form of these bounds is a somewhat complicated combinatorial
expression, but they can be estimated numerically. Specifically, S2(Hdm) = 2cmd poly(d),
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This Work Naive bounds
Lower Bound Upper Bound Lower Bound Upper Bound

HypergridHdm
Ω
(

md logdm
(2d log logm)d−1

)
if d < logm

2 log logm

md logdm dmd−1(m− 1)
(
m2+m

2

)d
−md

Ω(2cmd) O(d2m2cmd)

HypercubeHd Ω(2cd) O(d32cd) 2d−1d 3d − 2d

TABLE 1.2
Comparison of our results on the size of 2-TC-spanners of the hypergrid and the hypercube with naive bounds.

Constant c ≈ 1.1620 while cm depends on m. No nontrivial bounds were known prior to this work.

where c2 ≈ 1.1620 and c3 ≈ 1.85, both significantly smaller than the exponents correspond-
ing to the transitive closure sizes for appropriate m.

First, we consider the special case of m = 2 (i.e., the hypercube) in Section 5 and then
generalize the arguments to larger m in Section 6. Specifically, we obtain the following
theorem for the hypercube.

THEOREM 1.9 (Hypercube). Let S2(Hd) be the number of edges in the sparsest 2-TC-
spanner ofHd. Then Ω(2cd) = S2(Hd) = O(d32cd), where c ≈ 1.1620.

We prove the theorem by giving nearly matching upper and lower bounds on S2(Hd) in
terms of an expression with binomial coefficients, and later numerically estimating the value
of the expression. We prove the upper bound in Theorem 1.9 by presenting a randomized
construction of a 2-TC-spanner of the directed hypercube. Curiously, even though the upper
and lower bounds above differ by a factor of O(d3), we can show that our construction yields
a 2-TC-spanner ofHd of size within O(d2) of the optimal.

As a comparison point for our bounds, note that the obvious bounds on S2(Hd) are the
number of edges in the d-dimensional hypercube, 2d−1d, and the number of edges in the
transitive closure of Hd, which is 3d − 2d. (An edge in the transitive closure of Hd has
3 possibilities for each coordinate: both endpoints are 0, both endpoints are 1, or the first
endpoint is 0 and the second is 1. This includes self-loops, so we subtract the number of
vertices in Hd to get the desired quantity.) Thus, 2d−1d ≤ S2(Hd) ≤ 3d − 2d. Similarly,
the straightforward bounds on the number of edges in a 2-TC-spanner of Hdm in terms of the
number of edges in the directed hypergrid and in its transitive closure are dmd−1(m− 1) and(
m2+m

2

)d −md, respectively.

1.4. Previous work on bounding Sk for other families of graphs. Thorup [29] con-
sidered a special case of TC-spanners of graphs G that have at most twice as many edges as
G, and conjectured that for all directed graphs G on n nodes there are such k-TC-spanners
with k polylogarithmic in n. He proved this for planar graphs [30], but later Hesse [19] gave
a counterexample to Thorup’s conjecture for general graphs. For all small ε > 0, he con-
structed a family of graphs with n1+ε edges for which all nε-TC-spanners require Ω(n2−ε)
edges.

TC-spanners were also studied, implicitly in [34, 10, 9, 2, 11, 16, 3, 20, 28] and explicitly
in [8, 31], for simple families of graphs, such as directed trees. For the directed line, Chandra,
Fortune and Lipton [10, 9] implicitly (in the context of work on circuit complexity) expressed
Sk(H1

n) in terms of the inverse Ackermann function. (See Section 2.1 for a definition.) The
construction of TC-spanners of the directed line in [10, 9] is implicit; it appears explicitly,
for example, in the survey on TC-spanners by Raskhodnikova [24]. Narasimhan and Smid
[20] and Solomon [28] consider a graph object, related to TC-spanners, called T -monotone
1-spanners, where T is an undirected tree. When T is an undirected path (that is,H1

n without
edge orientations), a T -monotone 1-spanner of diameter k directly corresponds to a k-TC-
spanner of the directed lineH1

n.
LEMMA 1.10 ([10, 9, 2, 20, 24, 28]). Let Sk(H1

n) be the number of edges in the
sparsest k-TC-spanner of the directed line H1

n. Then S2(H1
n) = Θ(n log n), S3(H1

n) =
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Θ(n log log n), S4(H1
n) = Θ(n log∗ n) and, more generally, Sk(H1

n) = Θ(nλk(n)) for all
k ≥ 2, where λk(n) is the inverse Ackermann function.

The same bound holds for directed trees [2, 11, 31, 28]. An O(n log n · λk(n)) bound
on Sk for H-minor-free graph families (e.g., bounded genus and bounded tree-width graphs)
was given in [7].

2. Preliminaries. For x ∈ {0, 1}d, we use |x| to denote the weight of x, that is, the
number of non-zero coordinates in x. A level i in a hypercube contains all vertices of weight
i. The partial order � on the hypergrid Hdm is defined as follows: x � y for two vertices
x, y ∈ [m]d iff xi ≤ yi for all i ∈ [d]. Similarly, x ≺ y if x and y are distinct vertices in [m]d

satisfying x � y. More generally, we identify each poset with its relation graph, and denote
its partial order on the vertices by ≺. Vertices x and y are comparable if either y is above x
(that is, x � y) or y is below x (that is, y � x). We denote a path from v1 to v`, consisting of
edges (v1, v2), (v2, v3), . . . , (v`−1, v`) by (v1, . . . , v`).

2.1. The inverse Ackermann hierarchy. Our definition of inverse Ackermann func-
tions is derived from the discussion in [27]. For a given function f : R≥0 → R≥0, such that
f(x) < x for all x > 2, define the function f∗(x) : R≥0 → R≥0 to be the following:

f∗(x) = min{k ∈ Z≥0 : f (k)(x) ≤ 2}, where f (k) denotes f composed with itself k times.

We note that the solution to the following recursion:

T (n) ≤

{
0 if n ≤ 2

a · n+ n
f(n) · T (f(n)) if n > 2

is T (n) = a · n · f∗(n). This follows from the fact that f∗(f(n)) = f∗(n)− 1 for n > 2.
We define the inverse Ackermann hierarchy to be a sequence of functions λk(·) for k ≥

0. As the base cases, we have λ0(n) = n/2 and λ1(n) =
√
n. For j ≥ 2, we define

λj(n) = λ∗j−2(n). Thus, λ2(n) = Θ(log n), λ3(n) = Θ(log log n) and λ4(n) = Θ(log∗ n).
Note that the λk(·) functions defined here coincide (upto constant additive differences) with
the λ(k, ·) functions in [2] although they were formulated a bit differently there.

Finally, we define the inverse Ackermann function α(·) to be α(n) = min{k ∈ Z≥0 :
λ2k(n) ≤ 3}.

3. From local monotonicity filters to 2-TC-spanners. In this section, we prove Theo-
rems 1.4 and 1.5 that summarize the properties of our transformations from local monotonic-
ity filters to 2-TC-spanners. The main idea in both transformations is to construct a graph
H in which each vertex v is incident to every vertex looked up by the filter on query x and
random string ρ for a small subset of random strings. To prove that H is a 2-TC-spanner, we
show that for every pair of comparable vertices x ≺ y, the associated sets of lookup vertices
must have a nonempty intersection. If this does not hold, we can find a random string ρ and
construct a function h, such that the output function g of the filter on input h and random seed
ρ is not monotone: namely, g(x) = 0 and g(y) = 1.

3.1. From nonadaptive local monotonicity filters to 2-TC-spanners.
THEOREM 1.4 (restated). Let Gn = (Vn, E) be a poset on n nodes. Suppose there is a
nonadaptive local monotonicity filter A for Gn that looks up at most `(n) values on any
query and has error probability at most δ. Then there is a 2-TC-spanner ofGn withO(n`(n) ·
d logn

log(1/δ)e) edges.
Proof. Let A be a local filter given by the statement of the theorem. Let F be the set

of pairs (x, y) with x, y in Vn such that x ≺ y. Then F is of size at most
(
n
2

)
. Given

(x, y) ∈ F , let cube(x, y) be the set {z ∈ Vn : x � z � y}. Define function f (x,y)(v) to be
1 on all v � x, and 0 everywhere else. Also, define function f (x,y)(v), which is identical to
f (x,y)(v) for all v /∈ cube(x, y) and 0 for v ∈ cube(x, y). Functions f (x,y) and f (x,y) are
illustrated in Figure 3.1. For all (x, y) ∈ F , both functions are monotone.
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FIG. 3.1. Functions defined in the proof of Theorem 1.4: f (x,y), f (x,y) and h. Observe that f (x,y)(x) =
f (x,y)(y) = 1; f (x,y)(x) = f (x,y)(y) = 0; h(x) = 1 and h(y) = 0.

Let Aρ be the deterministic algorithm which runs A with the random seed fixed to ρ. We
say a string ρ is good for (x, y) ∈ F if the filter Aρ on input f (x,y) returns g = f (x,y) and on
input f (x,y) returns g = f (x,y).

Now we show that there exists a set S of size s = d 2 logn
log(1/2δ)e, consisting of stringsA uses

as random seeds, such that for every (x, y) ∈ F , some string ρ ∈ S is good for (x, y). We
choose S by picking strings used as random seeds uniformly and independently at random.
Since A has error probability at most δ, we know that for every monotone f , with probability
at least 1− δ (with respect to the choice of ρ), the function Af,ρ is identical to f . Then for a
fixed pair (x, y) ∈ F and a uniformly random string ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤ (2δ)s. For
s = d 2 logn

log(1/2δ)e, this expression is equal to 1
n2 <

1
|F| . By a union bound over F ,

Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1.

Thus, there exists a set S with the required properties.
We construct our 2-TC-spanner H = (Vn, EH) of Gn using the set S described above.

Let Nρ(x) be the set consisting of x and all vertices looked up by Aρ on query x. (Note that,
given x and ρ, the lookups made by the algorithm are the same for all input functions f , since
A is nonadaptive.) For each string ρ ∈ S and each vertex x ∈ Vn, connect x to all comparable
vertices in Nρ(x) (other than itself) and orient these edges according to the partial order of
Gn: that is, from smaller to larger elements. (Recall that we identify poset elements with the
corresponding vertices of the relation graph.)

We prove H is a 2-TC-spanner of Gn as follows. Suppose not, i.e., there exists (x, y) ∈
F with no path of length at most 2 in H from x to y. Then we will show that for some input
function h(v) and some random seed ρ, the output functionAh,ρ(v) is not monotone, reaching
a contradiction. Consider ρ ∈ S which is good for (x, y). Define function h by setting
h(v) = f (x,y)(v) for all v /∈ cube(x, y). Then h(v) = f (x,y)(v) for all v /∈ cube(x, y), by
the definition of f (x,y). For a vertex v ∈ cube(x, y), set h(v) to 1 if v ∈ Nρ(x) and to 0 if
v ∈ Nρ(y). All unassigned values are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y)
does not contain any vertices in cube(x, y). Therefore, h is well-defined. See the third item
in Figure 3.1 for an illustration of h. Since ρ is good for (x, y) and h is identical to f (x,y)

for all lookups performed by Aρ on query x, the output Aρ(x) = h(x) = 1. Similarly, h is
identical to f (x,y) for all lookups performed by Aρ on query y and, consequently, Aρ(y) =

8



h(y) = 0. But x ≺ y, so Ah,ρ(v) is not monotone, which contradicts the fact that A is a local
monotonicity filter.

The number of edges in H is at most∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · `(n) · s = n`(n) ·
⌈

2 log n

log(1/2δ)

⌉
.

3.2. From adaptive local monotonicity filters to 2-TC-spanners. The complication
in the transformation from an adaptive filter is that the set of vertices looked up by the filter
depends on the oracle that the filter is invoked on.

THEOREM 1.5 (restated). Let Gn = (Vn, E) be a poset on n nodes. Suppose there is an
(adaptive) local monotonicity filter A for Gn that, for every query x ∈ Vn, looks up at most
`1(n) vertices comparable to x and at most `2(n) vertices incomparable to x, and has error
probability at most δ. Then there is a 2-TC-spanner of Gn with O(n`1(n) · 2`2(n)d logn

log(1/δ)e)
edges.

Proof. Define F , f (x,y), f (x,y), Aρ and S as in the proof of Theorem 1.4. As before,
for each x ∈ Vn, we define sets Nρ(x), and construct the 2-TC-spanner H by connecting
each x to comparable elements in Nρ(x) for all ρ ∈ S and orienting the edges according to
the partial order of Gn: from smaller to larger elements. However, now Nρ(x) is a union
of several sets N b,w

ρ (x), indexed by b ∈ {0, 1} and w ∈ {0, 1}`2(n). For each x ∈ Vn,

b ∈ {0, 1} and w ∈ {0, 1}`2(n), let N b,w
ρ (x) ⊆ Vn be the set consisting of x and all vertices

looked up by Aρ on query x, assuming that the oracle answers all lookups as follows. When
a lookup y is comparable to x, it answers 0 if y ≺ x, b if y = x, and 1 if x ≺ y. Otherwise, if
y is the i’th lookup made to an incomparable vertex for some i ∈ [`2], it answers w[i]. As we
mentioned, Nρ(x) is the union of the sets N b,w

ρ (x) over all b ∈ {0, 1} and w ∈ {0, 1}`2(n).
This completes the description of Nρ(x) and the construction of H .

We demonstrate that H is a 2-TC-spanner as in the proof of Theorem 1.4. In particular,
the pair of vertices x ≺ y, the string ρ and the function h are defined as before, and the
contradiction is reached by demonstrating that Ah,ρ(x) = h(x) = 1 and Ah,ρ(y) = h(y) =
0. The only difference is in the argument that h is identical to f (x,y) for all lookups performed
by Aρ on query x, and to f (x,y) for all lookups on query y. The caveat is that an adaptive
local filter might choose lookups based on the answers to previous lookups.

First, consider the behavior ofAρ on query x. Since h(v) may be different from f (x,y)(v)
only for vertices v in cube(x, y), but not in Nρ(x), the filter Aρ can detect a difference be-
tween the two functions only if it looks up such a vertex. Suppose, for the sake of contradic-
tion, that Aρ looks up a vertex like that on query x, and let v be the the first such lookup. The
filter receives the following answers to the lookups preceding v from the oracle for function
h: 1 if the lookup is x or above x, and 0 if the lookup is below x or incomparable to x. Let w
be a string of `2 zeros. Then v ∈ N 1,w

ρ (x) ⊆ Nρ(x), a contradiction.
Second, consider the behavior of Aρ on query y. Suppose, for the sake of contradiction,

that Aρ on query y looks up a vertex cube(x, y), but not in Nρ(y), and let v be the first such
lookup. The filter receives the following answers to the lookups preceding v from the oracle
for function h: 1 if the lookup is above y, 0 if the lookup is y or below y, and either 1 or 0 if
it is incomparable to y (depending on whether it is above x or incomparable to x). Consider
a binary string recording the answers on lookups to vertices incomparable to y, prior to the
lookup v. Append zeros at the end of that string to obtain a string of length `2(n). Call the
resulting string w. Then v ∈ N 0,w

ρ (y) ⊆ Nρ(x), a contradiction.
We proved that Ah,ρ(x) = h(x) = 1 and Ah,ρ(y) = h(y) = 0. Therefore, Ah,ρ(v) is

not monotone, which contradicts the fact that A is a local monotonicity filter. We conclude
that H is a 2-TC-spanner of Gn.

We proceed to bound the number of edgesEH inH . For each ρ ∈ S, x ∈ Vn, b ∈ {0, 1},
and w ∈ {0, 1}`2(n), the number of vertices in Nρ

b,w(x) comparable to x is at most `1(n).
Therefore,
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x  =  

o  =  

FIG. 4.1. Graph products: Cartesian (top) and strong (bottom).

|EH | ≤ n · `1(n) · 2 · 2`2(n) · |S| ≤ O
(
n · `1(n) · 2`2(n)

⌈
log n

log(1/δ)

⌉)
.

4. 2-TC-spanners of low-dimensional hypergrids. In this section, we describe the
proof of Theorem 1.8 which gives explicit bounds on the size of the sparsest 2-TC-spanner
of Hdm. The upper bound in Theorem 1.8 is proved in Section 4.1 and the lower bound, in
Section 4.2.

4.1. An upper bound for low-dimensional hypergrids. The upper bound in Theo-
rem 1.8 is a straightforward consequence of a more general statement about TC-spanners of
product graphs presented in Section 4.1.1. The upper bound in Theorem 1.8 is derived in
Section 4.1.2.

4.1.1. A k-TC-spanner construction for product graphs. This section explains how
to construct a TC-spanner of the Cartesian product of graphs G1 and G2 from TC-spanners
of G1 and G2. Since the directed hypergrid is the Cartesian product of directed lines, and
an optimal TC-spanner construction is known for the directed line, our construction yields a
sparse TC-spanner of the grid (Corollary 4.3).

We start by defining two graph products: Cartesian and strong. See Figure 4.1.
DEFINITION 4.1 (Graph products). Given graphs G1 = (V1, E1) and G2 = (V2, E2), a

product of G1 and G2 is a new graph G with the vertex set V1 × V2. For the Cartesian graph
product, denoted by G1×G2, graph G contains an edge from (u1, u2) to (v1, v2) if and only
if u1 = v1 and (u2, v2) ∈ E2, or (u1, v1) ∈ E1 and u2 = v2. For the strong graph product,
denoted by G1 ◦ G2, graph G contains an edge from (u1, u2) to (v1, v2) if and only if the
rules for the Cartesian product are satisfied, or (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

For example, H2
m = H1

m × H1
m and TC(H2

m) = TC(H1
m) ◦ TC(H1

m), where TC(G)
denotes the transitive closure of G. Now, observe the following:

LEMMA 4.2. Let G1 and G2 be directed graphs with k-TC-spanners H1 and H2, re-
spectively. Then H1 ◦H2 is a k-TC-spanner of G = G1 ×G2.

Proof. Suppose (u, v) and (u′, v′) are comparable vertices in G1 × G2. Then by the
definition of the Cartesian product, u � u′ in G1 and v � v′ in G2. Let (u1, u2, . . . , u`) be
the shortest path inH1 from u = u1 to u′ = u`, and (v1, v2, . . . , vt) be the shortest path inH2

from v = v1 to v′ = vt. Then ` ≤ k and t ≤ k, by the definition of a k-TC-spanner. Assume
10



without loss of generality that ` ≤ t. Then ((u1, v1), (u2, v2), . . . , (u`, v`) . . . , (u`, vt)) is a
path in H1 ◦ H2 of length at most k from (u, v) to (u′, v′). Therefore, H1 ◦ H2 is a k-TC-
spanner of G = G1 ×G2.

4.1.2. A k-TC-spanner construction for the directed hypergrids. Lemma 4.2 to-
gether with the previous results on the size of k-TC-spanners of the line H1

m, summarized
in Lemma 1.10, implies an upper bound on the size of a k-TC-spanner of the directed hyper-
gridHdm.

COROLLARY 4.3. Let Sk(Hdm) denote the number of edges in the sparsest k-TC-spanner
of the directed d-dimensional hypergridHdm.

(i) Then Sk(Hdm) = O(mdλk(m)dcd) for an appropriate constant c.
(ii) More precisely, S2(Hdm) ≤ md logdm for m ≥ 3.

Proof. Let H = ([m], E) be a k-TC-spanner of the line H1
m with O(mλk(m)) edges,

given by Lemma 1.10. By Lemma 4.2, the graph H ◦ · · · ◦H , where the strong graph product
is applied d times, is a k-TC-spanner of the directed hypergrid Hdm. By the definition of
the strong graph product, the number of edges in this k-TC-spanner is (|E| + m)d −md =
O(mdλk(m)dcd) for an appropriate constant c, as claimed in part (1) of the corollary.

The more precise statement for k = 2 in part (ii) follows from Claim 4.1 below which
gives a more careful analysis of the size of the sparsest 2-TC-spanner of the line. Specifically,
it shows that S2(H1

m) ≤ m logm−m for m ≥ 3.
CLAIM 4.1. For all m ≥ 3, the directed line H1

m has a 2-TC-spanner with at most
m logm−m edges.

Proof. Construct a graph H on the vertex set [m] recursively. First, define the middle
node vmid = dm2 e. Add edges (v, vmid) for all nodes v < vmid and edges (vmid, v) for all
nodes v > vmid. Then recurse on the two line segments resulting from removing vmid from
the current line. Proceed until each line segment contains exactly one node.

H is a 2-TC-spanner of the lineH1
m, since every pair of nodes u, v ∈ [m] is connected by

a path of length at most 2 via a middle node. This happens in the stage of the recursion where
u and v are separated into different line segments, or one of these two nodes is removed.

There are t = blogmc stages of the recursion, and in each stage i ∈ [t] each node that
is not removed by the end of the this stage connects to the middle node in its current line
segment. Since 2i−1 nodes are removed in the ith stage, exactlym−(2i−1) edges are added
in that stage. Thus, the total number of edges in H is m · t− (2t+1− t− 2) ≤ m logm−m.
The last inequality holds for m ≥ 3.

4.2. A lower bound for low-dimensional hypergrids. In this section, we show the
lower bound on S2(Hdm) stated in Theorem 1.8. We first treat the special case of this lower
bound for d = 2, since it captures many ideas needed to prove the general bound and is
significantly easier to understand. The extension to arbitrary dimension is presented in the
subsequent section.

4.2.1. A lower bound for d = 2. In this section, we prove a lower bound on the size of
a 2-TC-spanner of the 2-dimensional directed grid, stated in Theorem 4.4. This is a special
case of the lower bound in Theorem 1.8.

THEOREM 4.4. The number of edges in a 2-TC-spanner of the 2-dimensional grid H2
m

is

Ω

(
m2 log2m

log logm

)
.

One way to prove the Ω(m logm) lower bound on the size of a 2-TC-spanner of the
directed line H1

m, stated in Lemma 1.10, is to observe that at least bm2 c edges are cut when
the line is halved: namely, at least one per vertex pair (v,m − v + 1) for all v ∈

[
bm2 c

]
.

This is depicted in Figure 4.2. Continuing to halve the line recursively, we obtain the desired
bound.
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FIG. 4.2. An illustration to the proof of the lower bound on the size of a 2-TC-spanner for the line.

FIG. 4.3. A 2-TC-spanner of the grid with O(m2) edges connecting vertices in different quarters. In addition
to the depicted edges, it contains a transitive closure of each quarter and an edge from each vertex in the lower left
quarter to the smallest vertex of the upper right quarter.

A natural extension of this approach to proving a lower bound for the grid is to recursively
halve the grid along both dimensions, hoping that each such operation on an m × m grid
cuts Ω(m2 logm) edges. This would imply that the size S(m) of a 2-TC-spanner of the
m × m grid satisfies the recurrence S(m) = 4S(m/2) + Ω(m2 logm); that is, S(m) =
Ω(m2 log2m), matching the upper bound in Theorem 1.8.

An immediate problem with this approach, as shown in Figure 4.3, is that in some 2-TC-
spanners of the grid, only O(m2) edges connect vertices in different quarters. One example
of such a 2-TC-spanner is the graph containing the transitive closure of each quarter and only
at most 3m2 edges crossing from one quarter to another: namely, for each node u and each
quarter q with vertices above u, this graph contains an edge (u, vq), where vq is the smallest
node above u in q.

The TC-spanner in the example above is not optimal because it has too many edges inside
the quarters. The first step in our proof of Theorem 4.4 is understanding the tradeoff between
the number of edges crossing the cut and the number of edges internal to the subgrids, result-
ing from halving the grid along some dimension. The simplest manifestation of this tradeoff
occurs when a 2 ×m grid is halved into two lines. (In the case of one line, there is no trade
off: the Ω(m) bound on the number of crossing edges holds even if each half-line contains
all edges of its transitive closure.) Lemma 4.5 formulates the tradeoff for the two-line case,
while taking into account only edges needed to connect comparable vertices on different lines
by paths of length at most 2.

LEMMA 4.5 (Two-Lines Lemma). Let U be a graph with the vertex set [2] × [m] that
contains a path of length at most 2 from u = (u1, u2) to v = (v1, v2) for every u ∈ {1}× [m]
and v ∈ {2} × [m], where u � v. An edge (u, v) in U is called internal if u1 = v1, and
crossing otherwise. If U contains at most m log2m

32 internal edges, it must contain at least
m logm

16 log logm crossing edges. Note that if the number of internal edges is unrestricted, a 2-TC-
12
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FIG. 4.4. An illustration of the first stage in the proof of Lemma 4.5.

spanner ofH2
m may have only m crossing edges.

Proof. The proof proceeds in logm
2 log logm stages dealing with pairwise disjoint sets of

crossing edges. In each stage, we show that U contains at least m
8 crossing edges in the

prescribed set.
In the first stage, divide U into log2m blocks, each of length m

log2m
: namely, a node

(v1, v2) is in block i if

v2 ∈
[

(i− 1) ·m
log2m

+ 1,
i ·m

log2m

]
.

Call an edge long if it starts and ends in different blocks, and short otherwise. Assume, for
contradiction, that U contains fewer than m

8 long crossing edges.
Call a node (v1, v2) low if v1 = 1 (high if v1 = 2), and left if v2 ∈

[
m
2

]
(right otherwise).

Also, call an edge (u, v) low-internal if u1 = v1 = 1 and high-internal if u1 = v1 = 2. Let
L be the set of low left nodes that are not incident to long crossing edges. Similarly, let R be
the set of high right nodes that are not incident to long crossing edges. Since there are fewer
than m

8 long crossing edges, |L| > m
4 and |R| > m

4 .
A node u ∈ L can connect to a node v ∈ R via a path of length at most 2 only by using

a long internal edge. Observe that each long low-internal edge can be used by at most m
log2m

such pairs (u, v): one low node u and high nodes v from one block. This is illustrated in
Figure 4.4. Analogously, every long high-internal edge can be used by at most m

log2m
such

pairs. Since |L| · |R| > m2

16 pairs in L×R connect via paths of length at most 2, the graph U

contains more than m2

16 /
m

log2m
= m log2m

16 long internal edges, which is a contradiction.
In each subsequent stage, call blocks used in the previous stage megablocks, and denote

their length by B. Subdivide each megablock into log2m blocks of equal size. Call an edge
long if it starts and ends in different blocks, but stays within one megablock. Assume, for
contradiction, that U contains fewer than m

8 long crossing edges.
Call a node (v1, v2) left if it is in the left half of its megablock, that is, if v2 ≤ `+r

2
whenever (v1, v2) is in a megablock [2] × {`, . . . , r}. (Call it right otherwise). Consider
megablocks containing fewer than B

4 long crossing edges each. By an averaging argument,
at least m

2B megablocks are of this type. (Recall that there are m
B megablocks overall). Within

each such megablock more than B
4 low left nodes and more than B

4 high right nodes have no
incident long crossing edges. By the argument from the first stage, each such megablock con-
tributes more than B2

16b long internal edges, where b = B
log2m

is the size of the blocks. Hence,

there must be more than B2

16b ·
m
2B = m log2m

32 long internal edges, which is a contradiction to

the fact that U contains at most m log2m
32 internal edges.

We proceed to the next stage until each block is of length 1. Therefore, the number of
stages, t, satisfies m

log2tm
= 1. That is, t = logm

2 log logm , and each stage contributes m
8 new

crossing edges, as desired.
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H H’ 
FIG. 4.5. An illustration to the proof of Lemma 4.6: an example transformation from H to H′. Green arches

connect matched lines.

Next we generalize Lemma 4.5 to understand the tradeoff between the number of internal
edges and crossing edges resulting from halving a 2-TC-spanner of a 2` ×m grid with the
usual partial order.

LEMMA 4.6. Let H be a 2-TC-spanner of the directed [2`]× [m] grid. An edge (u, v) in
H is called internal if u1, v1 ∈ [`] or u1, v1 ∈ {`+ 1, . . . , 2`}, and crossing otherwise. If H
contains at most `m log2m

64 internal edges, it must contain at least `m logm
32 log logm crossing edges.

Proof. For each i ∈ [`], we match the lines {i} × [m] and {2`− i+ 1} × [m]. Observe
that a path of length at most 2 between the matched lines cannot use any edges with both
endpoints in {i+ 1, . . . , 2`− i} × [m]. We modify H to ensure that there are no edges with
only one endpoint in {i + 1, . . . , 2` − i} × [m] for all i ∈ [`], and then apply Lemma 4.5 to
the matched pairs of lines.

Call the [`] × [m] subgrid and all vertices and edges it contains low, and the remaining
{` + 1, . . . , 2`} × [m] subgrid and its vertices and edges high. Transform H into H ′ as
follows: change each low internal edge (u, v) to (u, (u1, v2)), change each high internal edge
(u, v) to ((v1, u2), v), and finally change each crossing edge ((i1, j1), (2` − i2 + 1, j2)) to
((i, j1), (2` − i + 1, j2)), where i = min(i1, i2). Intuitively, we are projecting the edges in
H to be fully contained in one of the matched pairs of lines, while preserving whether the
edge is internal or crossing. Crossing edges are projected onto the outer matched pair of lines
chosen from the two pairs that contain the endpoints of a given edge. See Figure 4.5 for an
illustration of the transformation.

The new graph H ′ has several important properties:
• H ′ contains at most as many internal (respectively, crossing) edges as H .
• H ′ contains a path of length at most 2 from u to v for every comparable pair (u, v)

where u is low, v is high, and u and v belong to the same pair of matched lines. In-
deed, sinceH is a 2-TC-spanner, it contains either the edge (u, v) or a path (u,w, v).
In the first case, H ′ also contains (u, v). In the second case, if (u,w) is a crossing
edge thenH ′ contains the path (u, (v1, w2), v), and if (u,w) is an internal edge then
H ′ contains the path (u, (u1, w2), v).

• For each edge inH ′, both endpoints belong either to the same line or to two matched
lines. This implies that a path between two vertices that belong to the same pair of
matched lines can use only vertices from these two lines as intermediate points,
enabling us to apply the Two-Lines Lemma (Lemma 4.5) to each matched pair of
lines independently.

Finally, we apply Lemma 4.5. If H contains at most `m log2m
64 internal edges, then so

does H ′, and so at least half
(
i.e., `2

)
of the matched line pairs each contain at most m log2m

32

internal edges. By Lemma 4.5, each of these pairs contributes at least m logm
16 log logm crossing

edges. Thus, H ′ must contain at least `m logm
32 log logm crossing edges. Since H contains at least as

many crossing edges as H ′, the lemma follows.
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Now we prove Theorem 4.4 by recursively halving H2
m along the horizontal dimension.

We show that either at one of the recursive steps at least half of the resulting subgrids have
many internal edges or at each recursive step at least half the subgrids have few internal edges.
In the second case, we apply Lemma 4.6 to such subgrids, concluding that they contribute
large, pairwise disjoint sets of crossing edges.

Proof of Theorem 4.4 Assume m is a power of 2 for simplicity.
For each step i ∈ [ 1

2 logm], partition H2
m into the following 2i−1 equal-sized subgrids:

{1, . . . , li} ×[m], {li + 1, . . . , 2li} × [m], . . . , {m− li + 1, . . . ,m}× [m] where li = m
2i−1 .

For each of these subgrids, define internal and crossing edges as in Lemma 4.6.
First, consider the case when for some step i, at least half of the 2i−1 subgrids have more

than lim log2m
64 internal edges. Since at a fixed step i, the subgrids are pairwise disjoint, there

are 2i−1 · Ω(lim log2m) = Ω(m2 log2m) edges in H , proving the theorem.
If the case above does not hold then for every i ∈ [ 1

2 logm], at least half of the 2i−1

subgrids have at most lim log2m
64 internal edges. Then by Lemma 4.6, the number of crossing

edges in each such subgrid is at least lim logm
32 log logm . Observe that the sets of crossing edges in

different steps are pairwise disjoint. Counting over all steps i and for all appropriate subgrids
from those steps, the number of edges in H is bounded by

Ω

(
m2 logm

logm

log logm

)
= Ω

(
m2 log2m

log logm

)
.

4.2.2. A lower bound for general d. In this section, we extend the above proof to
establish lower bounds on S2(Hdm) for arbitrary d ≥ 2. The following theorem implies the
lower bound expression in Theorem 1.8.

THEOREM 4.7. The number of edges in a 2-TC-spanner of the d-dimensional hypergrid
Hdm (where d < 2 logm

log logm ) is at least

md

64

logdm

(2d log logm)d−1
.

The main ingredient in the proof is the Two-Hyperplanes Lemma, an analogue of the
Two-Lines Lemma (Lemma 4.5) for d dimensions. The difficulty in extending the proof of
the Two-Lines Lemma to work for two hyperplanes is in generalizing the definitions of blocks
and megablocks, so that, on one hand, each stage in the proof contributes a substantial number
of crossing edges and, on the other hand, the crossing edges contributed in separate stages are
pairwise disjoint.

LEMMA 4.8 (Two-Hyperplanes Lemma). Let U be a graph with the vertex set [2] ×
[m]d−1 that contains a path of length at most 2 from u to v for every u ∈ {1} × [m]d−1 and
v ∈ {2} × [m]d−1, where u � v. As in Lemma 4.5, an edge (u, v) in U is called internal if
u1 = v1, and crossing otherwise. Then if U contains less than md−1 logdm

(d−1)22d+3 internal edges, it
must contain at least

md−1

8

(
logm

2d log logm

)d−1

crossing edges.
Proof. As for Lemma 4.5, the proof proceeds in several stages. The stages are indexed

by (d− 1)-tuples i in {0, 1, . . . , logm
d log logm − 1}d−1. Consequently, the number of stages is

(
logm

d log logm

)d−1

.

We will show that each stage contributes at least m
d−1

2d+2 separate edges to the set of crossing
edges, thus proving our lemma.
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As in the proof of Lemma 4.5, at each stage vertices are partitioned into megablocks and
blocks. In stage i = (i1, . . . , id−1), we partition U into (logm)d(i1+···+id−1) equal-sized
megablocks indexed by b = (b1, . . . , bd−1), where bj ∈ [logd·ij m] for all j ∈ [d− 1].

A vertex v is in a megablock b if

vj+1 ∈
[
(bj − 1)

m

logdij m
+ 1, bj

m

logdij m

]
for each j ∈ [d − 1]. So, initially when i = ~0, there is only one megablock, and each time i
increases by 1 in one coordinate, the volume of the megablocks shrinks by a factor of logdm.
(The volume of a megablock is equal to the number of vertices it contains.)

Each megablock b is further partitioned into (logm)d(d−1) equal-sized blocks indexed
by c ∈ [logdm]d−1.

A vertex v in a megablock b lies in block c if for each j ∈ [d− 1],

(v − bmin)j+1 ∈
[
(cj − 1)

`j

logdm
+ 1, cj

`j

logdm

]
,

where bmin denotes the smallest vertex in megablock b and `j denotes the length of b in the
the j’th dimension. Note that vertices (1, v2, . . . , vd) and (2, v2, . . . , vd) belong to the same
(mega)block. At the last stage, each block contains only two vertices (differing by the first
coordinate).

Next, we specify the set of crossing edges contributed at each stage. A crossing edge
(u, v) in U is said to be long in stage i if:

(i) u and v lie in the same megablock, and
(ii) If u lies in block (c1, . . . , cd−1) and v lies in block (c′1, . . . , c

′
d−1), then cj < c′j for

all j ∈ [d− 1].
We claim that if i 6= i′, the sets of long crossing edges in stages i and i′ are disjoint. To
see this, let j be an index such that ij 6= i′j ; suppose without loss of generality that ij < i′j .
Then the length of the megablocks in the j’th dimension for stage i′ is at most the length of
the blocks in the j’th dimension for stage i. Hence, condition (ii) above implies that long
crossing edges in stage i must have endpoints in different megablocks of stage i′, and so
violate condition (i) for being a long crossing edge in stage i′.

It remains to show that every stage contributes at least m
d−1

2d+2 long crossing edges. For
the sake of contradiction, suppose that the number of long crossing edges at some stage i is
less than md−1

2d+2 . Let

B =
md−1

(logm)d(i1+···+id−1)

be the volume of the megablocks restricted to one of the two hyperplanes. By an averaging
argument, at least m

d−1

2B megablocks contain less than B
2d+1 long crossing edges (otherwise,

there would be at least md−1

2d+2 long crossing edges). But we show next that if a megablock

contains less than B
2d+1 long crossing edges, then there are at least B logdm

(d−1)22d+2 internal edges
with both endpoints inside the megablock. This would imply that the total number of internal
edges is at least

md−1

2B
· B logdm

(d− 1)22d+2
=
md−1 logdm

(d− 1)22d+3
,

a contradiction.
Suppose then that a megablock contains less than B

2d+1 long crossing edges. Let Low be
the set of vertices in the megablock with each coordinate at most the average value of that
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coordinate in the megablock, and High the set of vertices with each coordinate greater than
the average value of that coordinate. Then

|Low| ≥ B

2d
and |High| ≥ B

2d
,

and each vertex in Low is comparable to each vertex in High. By the bound on the number
of long crossing edges, there must exist a set L of at least B

2d+1 vertices in Low not incident to
any long crossing edge, and a set R of at least B

2d+1 vertices in High not incident to any long
crossing edges. L lies in the lower hyperplane, R in the upper hyperplane, and each vertex
in L is comparable to each vertex in R. Call a crossing edge short if it satisfies condition
(i), but violates condition (ii) above. A path in U of length at most 2 from a vertex in L to
a vertex in R must consist of one internal edge and one short crossing edge. The number of
short crossing edges incident to a given vertex v is at most (d − 1) B

logdm
, by counting, for

each of the d− 1 block indices, the number of vertices in the megablock that share the value
of that block index with v. So, each internal edge helps connect at most (d − 1) B

logdm
pairs

of vertices. Since B2

22d+2 pairs of vertices need to be connected by a path, there must exist at
least

B2

22d+2
· logdm

(d− 1)B
=

B logdm

(d− 1)22d+2

internal edges.
The analogue of Lemma 4.6 in d dimensions (Lemma 4.9) and the rest of the proof of

Theorem 4.7 are straightforward generalizations of the 2-dimensional case.
LEMMA 4.9. LetH be a 2-TC-spanner of the directed [2`]×[m]d−1 grid. An edge (u, v)

in H is called internal if u1, v1 ∈ [`] or u1, v1 ∈ {`+ 1, . . . , 2`}, and crossing otherwise. If
H contains less than `md−1 logdm

(d−1)22d+4 internal edges, it must contain at least

`

16

(
m logm

2d log logm

)d−1

crossing edges.
Proof. We can generalize the proof of Lemma 4.6 in a straightforward way. For each

i ∈ [`], instead of matching the lines, we match the hyperplanes {i} × [m]d−1 and {2` −
i + 1} × [m]d−1. The rest of the proof follows an identical argument with the one in the
proof of Lemma 4.6. Still, we repeat the argument here for the sake of completion. For
this proof, we define some additional notation. Given vertex v = (v1, . . . , vd) ∈ [m]d, let
v2 denote (v2, v3, . . . , vd). Further, for v2 = (v2, v3, . . . , vd) let (v1,v2) denote the vertex
v = (v1, . . . , vd).

Now, observe that a path of length at most 2 between the matched hyperplanes cannot
use any edges with both endpoints in {i+ 1, . . . , 2`− i} × [m]d−1. We modify H to ensure
that there are no edges with only one endpoint in {i+ 1, . . . , 2`− i}× [m]d−1 for all i ∈ [`],
and then apply Lemma 4.8 to the matched pairs of hyperplanes.

Call the [`]×[m]d−1 subgrid and all vertices and edges it contains low, and the remaining
{` + 1, . . . , 2`} × [m]d−1 subgrid and its vertices and edges high. Transform H into H ′ as
follows: change each low internal edge (u, v) to (u, (u1,v2)), change each high internal edge
(u, v) to ((v1,u2), v), and finally change each crossing edge ((u1,u2), (2` − v1 + 1,v2))
to ((t1,u2), (2` − t1 + 1,v2)), where t1 = min(u1, v1). Intuitively, we are projecting the
edges in H to be fully contained in one of the matched pairs of hyperplanes, while preserving
whether the edge is internal or crossing. Crossing edges are projected onto the outer matched
pair of hyperplanes chosen from the two pairs that contain the endpoints of a given edge. See
Figure 4.5 for an illustration of the transformation for the case when d = 2.

The new graph H ′ has several important properties:
• H ′ contains at most as many internal (respectively, crossing) edges as H .
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• H ′ contains a path of length at most 2 from u to v for every comparable pair (u, v)
where u is low, v is high, and u and v belong to the same pair of matched hyper-
planes. Indeed, sinceH is a 2-TC-spanner, it contains either the edge (u, v) or a path
(u,w, v). In the first case, H ′ also contains (u, v). In the second case, if (u,w) is a
crossing edge then H ′ contains the path (u, (v1,w2), v), and if (u,w) is an internal
edge then H ′ contains the path (u, (u1,w2), v).

• For each edge in H ′, both endpoints belong either to the same hyperplane or to two
matched hyperplanes. This implies that a path between two vertices that belong to
the same pair of matched hyperplanes can use only vertices from these two hyper-
planes as intermediate points, enabling us to apply the Two-Hyperplanes Lemma
(Lemma 4.8) to each matched pair of hyperplanes independently.

Finally, we apply Lemma 4.8. If H contains at most m
d−1 logdm

(d−1)22d+4 internal edges, then so

does H ′, and so at least half
(
i.e., `2

)
of the matched hyperplane pairs each contain at most

md−1 logdm
(d−1)22d+3 internal edges. By Lemma 4.8, each of these pairs contributes at least

md−1

8

(
logm

2d log logm

)d−1

crossing edges. Thus, H ′ must contain at least

`

16

(
m logm

2d log logm

)d−1

crossing edges. Since H contains at least as many crossing edges as H ′, the lemma follows.

Proof of Theorem 4.7. For simplicity, assume m is a power of 2.
For each step i ∈ [ 1

2 logm], partition Hdm into the following 2i−1 equal-sized subgrids:
{1, . . . , li} ×[m]d−1, {li + 1, . . . , 2li} × [m]d−1, . . . , {m − li + 1, . . . ,m} × [m]d where
li = m

2i−1 . For each of these subgrids, define internal and crossing edges as in Lemma 4.9.
Now, suppose that there exists a step i such that at least half of the 2i−1 subgrids have at
least lim

d−1 logdm
(d−1)22d+3 internal edges. Since at a fixed step i, the subgrids are pairwise disjoint,

there are at least 2i−2 lim
d−1 logdm

(d−1)22d+3 = md logdm
(d−1)22d+4 edges in H , which is enough to prove the

theorem. On the other hand, suppose that for every i ∈ [ 1
2 logm], at least half of the 2i−1

subgrids have less than lim
d−1 logdm

(d−1)22d+3 internal edges. Then by Lemma 4.9, the number of
crossing edges in each such subgrid is at least

lim
d−1

16

(
logm

2d log logm

)d−1

.

Counting over all steps i and for all appropriate subgrids from those steps, the number of
edges in H is at least

logm

2
· 2i−2 · lim

d−1

16

(
logm

2d log logm

)d−1

=
md

64

logdm

(2d log logm)d−1
.

5. 2-TC-spanners of the hypercube. In this section, we prove Theorem 1.9, that is, we
analyze the size of the sparsest 2-TC-spanner of the d-dimensional hypercubeHd. Lemma 5.1
presents the upper bound on S2(Hd). Lemma 5.2 presents the lower bound. The upper and
lower bounds differ only by a factor of O(d3), and are dominated by the same combinatorial
expression. A numerical approximation to this expression is given in Lemma 5.3. Remark 5.1
at the end of the section explains why our randomized construction in Lemma 5.1 yields a
2-TC-spanner ofHd of size within O(d2) of the optimal.
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5.1. Upper bound.

LEMMA 5.1. There is a 2-TC-spanner ofHd with

O

(
d3 max

i,j:i<j
min

k:i≤k≤j

(
d
k

)(
j−i
k−i
) max

{(
k

i

)
,

(
d− k
d− j

)})
edges.

Proof. Consider the following probabilistic construction that connects all comparable
vertices in levels i and j ofHd by paths of length at most 2.

Given levels i, j ∈ {0, 1, ..., d}, i < j,
1. Initialize the set Ei,j to ∅.

2. Let ki,j = argmin
k:i≤k≤j

(
(dk)

(j−ik−i)
max

{(
k
i

)
,
(
d−k
d−j
)})

.

3. Let Si,j be a set of 3d
(dk)

(j−ik−i)
vertices chosen uniformly at random from the(

d
k

)
vertices in level k = ki,j .

4. For each vertex v ∈ Si,j , set Ei,j to Ei,j ∪ {(x, v) : |x| = i ∧ x ≺
v} ∪ {(v, y) : |y| = j ∧ v ≺ y}. That is, connect v to all comparable vertices in levels
i and j.

5. Output Ei,j .

CLAIM 5.1. For all 0 ≤ i < j ≤ d, with probability at least 1
2 , the edge setEi,j contains

a path of length at most 2 between every pair of vertices (x, y), such that x ≺ y, |x| = i, and
|y| = j.

Proof. Consider a pair of vertices (x, y) with x ≺ y, such that |x| = i and |y| = j. The
number of vertices in level k that are above x and below y is exactly

(
j−i
k−i
)
. Therefore, the

probability that Si,j does not contain such a vertex is

(
1−

(
j − i
k − i

)
/

(
d

k

))3d
(dk)

(j−ik−i) ≤ e−3d.

The number of comparable pairs (x, y) is
(
d
i

)(
d−i
d−j
)
. By a union bound, the probability

that there exists an (x, y), such that no vertex v ∈ Si,j satisfies x ≺ v ≺ y is at most(
d
i

)(
d−i
d−j
)
e−3d ≤ 22de−3d < 1

2 .
Claim 5.1 implies that for every i and j, there exists a set Si,j , such that all comparable

pairs from the levels i and j are connected by a path of length at most 2 via a vertex in
Si,j . Let E∗i,j be the set of edges returned by the algorithm when this Si,j is chosen. We set
E =

⋃
0≤i<j≤dE

∗
i,j . Then the graph ({0, 1}d, E) is a 2-TC-spanner ofHd.

Now, we show that the size of E is as claimed in the lemma statement. The main obser-
vation is that in Step 4, for every v ∈ Si,j , the set

{(x, v) : |x| = i ∧ x ≺ v} ∪ {(v, y) : |y| = j ∧ v ≺ y}

has size
(
ki,j
i

)
+
(
d−ki,j
d−j

)
≤ 2 max

{(
ki,j
i

)
,
(
d−ki,j
d−j

)}
. Therefore, for all 0 ≤ i < j ≤ d,

|E∗i,j | ≤ 3d · 2

(
d
ki,j

)(
j−i
ki,j−i

) max

{(
ki,j
i

)
,

(
d− ki,j
d− j

)}

= 6d min
k:i≤k≤j

(
d
k

)(
j−i
k−i
) max

{(
k

i

)
,

(
d− k
d− j

)}
.

Since |E| =
∑

0≤i<j≤d

|E∗i,j |, where the sum has O(d2) terms, the claimed bound follows.
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5.2. Lower bound.

LEMMA 5.2. Any 2-TC-spanner of the directed hypercubeHd has

Ω

(
max
i,j:i<j

min
k:i≤k≤j

(
d
k

)(
j−i
k−i
) max

{(
k

i

)
,

(
d− k
d− j

)})
edges.

Proof. Let H be a 2-TC-spanner of Hd. We will count the edges in H that occur on
paths connecting two particular levels ofHd. Let Pi,j be the pairs {(v1, v2) : |v1| = i, |v2| =
j, v1 ≺ v2}. We will lower bound e∗i,j , the number of edges in the paths of length at most 2 in
H that connect the pairs Pi,j . Let ek,` denote the number of edges in H that connect vertices
in level k to vertices in level `. Then e∗i,j = ei,j +

∑j−1
k=i+1(ei,k + ek,j).

We say that a vertex v covers a pair of vertices (v1, v2) if H contains the edges (v1, v)

and (v, v2) or, for the special case v = v1, if H contains (v1, v2). Let V (k)
i,j be the set of

vertices of weight k that cover pairs in Pi,j . Let αk be the fraction of pairs in Pi,j that are
covered by a vertex in V (k)

i,j . Since each pair in Pi,j must be covered by a vertex in levels i to
j − 1,

j−1∑
k=i

αk ≥ 1.

For every vertex v ∈ V
(k)
i,j , let inv be the number of incoming edges from vertices of

weight i incident to v and let outv be the number of outgoing edges to vertices of weight j
incident to v. For each k ∈ {i + 1, ..., j − 1}, since each vertex v ∈ V (k)

i,j covers inv · outv
pairs, ∑

v∈V (k)
i,j

inv · outv ≥ αk|Pi,j | = αk

(
d

i

)(
d− i
d− j

)
. (5.1)

We upper bound
∑
v∈V (k)

i,j
inv · outv as a function of ei,k + ek,j , and then use (5.1) to lower

bound ei,k + ek,j .
For all k ∈ {i+ 1, ..., j − 1}, variables inv and outv satisfy the following constraints:∑

v∈V (k)
i,j

inv ≤ ei,k + ek,j ,
∑

v∈V (k)
i,j

outv ≤ ei,k + ek,j .

inv ≤
(
k

i

)
∀v ∈ V (k)

i,j , outv ≤
(
d− k
d− j

)
∀v ∈ V (k)

i,j .

The last two constraints hold because inv and outv count the number of edges to a vertex
of weight k from vertices of weight i and from a vertex of weight k to vertices of weight j,
respectively. Using these bounds we obtain∑

v∈V (k)
i,j

inv · outv ≤
∑

v∈V (k)
i,j

(
k

i

)
· outv =

(
k

i

)
·
∑

v∈V (k)
i,j

outv ≤
(
k

i

)
· (ei,k + ek,j).

Similarly,
∑
v∈V (k)

i,j
inv · outv ≤

(
d−k
d−j
)
·(ei,k+ek,j). Therefore, for all k ∈ {i+1, ..., j−1}:

∑
v∈V (k)

i,j

inv · outv ≤ (ei,k + ek,j) min

{(
k

i

)
,

(
d− k
d− j

)}
.
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Let si,k,j =
(di)(

d−i
d−j)

min{(ki),(d−kd−j)}
. Then (5.1) implies that ei,k + ek,j ≥ αksi,k,j for all

k ∈ {i+ 1, ..., j − 1}. Therefore,

e∗i,j = ei,j +

j−1∑
k=i+1

(ei,k + ek,j) ≥ αi
(
d

i

)(
d− i
d− j

)
+

j−1∑
k=i+1

αksi,k,j ≥
j−1∑
k=i

αksi,k,j

≥ min
k:i≤k≤j

si,k,j

Since this holds for arbitrary i and j, the number of edges in the 2-TC-spanner H is at least

max
i,j:i<j

min
k:i≤k≤j

si,k,j .

Finally, a simple algebraic manipulation finishes the proof.

CLAIM 5.2. si,k,j =
(dk)

(j−ik−i)
max

{(
k
i

)
,
(
d−k
d−j
)}

.

Proof. Take the ratio of the two sides:

si,k,j
(dk)

(j−ik−i)
max

{(
k
i

)
,
(
d−k
d−j
)} =

(
d
i

)(
d−i
d−j
)(
j−i
k−i
)(

d
k

)(
k
i

)(
d−k
d−j
) =

(
d
i

)(
d−i
j−i
)(
j−i
k−i
)(

d
k

)(
k
i

)(
d−k
j−k
) = 1.

The first equality follows from the fact that max(x, y) ·min(x, y) = x · y. The last equality
can be proved either by expanding the binomial coefficients into factorials, or by realizing
that both

(
d
i

)(
d−i
j−i
)(
j−i
k−i
)

and
(
d
k

)(
k
i

)(
d−k
j−k
)

count the number of ways i red balls, j − k blue
balls, and k − i green balls can be placed into d slots, each of which can hold at most one
ball. This completes the proof of the claim.

This completes the proof of the lemma.
The following lemma gives a handle on the expression capturing the size of a 2-TC-

spanner.

LEMMA 5.3. Let s = max
i,j:i<j

min
k:i≤k≤j

(dk)
(j−ik−i)

max
{(

k
i

)
,
(
d−k
d−j
)}

. Then s = 2cd, where

c ≈ 1.1620.
Proof. We use the fact that

(
n
cn

)
= 2(Hb(c)−on(1))n, where “on(1)” is a function of n that

tends to zero as n tends to infinity, and Hb(p) = −p log p− (1− p) log(1− p) is the binary
entropy function. Substituting i = αd, j = βd and k = γd in the resulting expression for s,
and taking the logarithm of both sides, we get

log2 s = max
0≤α<β≤1

min
α≤γ≤β

[
Hb(γ)−Hb

(γ − α
β − α

)
(β − α)

+ max
(
Hb

(α
γ

)
γ,Hb

(1− β
1− γ

)
(1− γ)

)]
d.

In other words, log2 s = cd where c is a constant. We can check numerically that c ≈ 1.1620.

REMARK 5.1. We note that if the first maximum in the expression for s in Lemma 5.3 is
replaced with the sum then Lemma 5.1 holds forO(d ·s) instead ofO(d3 ·s) while Lemma 5.2
holds for Ω( sd ) instead of Ω(s). The proofs of these modified statements are similar. (We do
not have an analogue of Lemma 5.3 for the modified expression for s.) Observe that the
modified bounds differ by a factor of O(d2) instead of O(d3). This demonstrates that our
randomized construction yields a 2-TC-spanner ofHd of size within O(d2) of the optimal. ♦

6. 2-TC-spanners of high-dimensional hypergrids. In this section, we generalize the
arguments for the hypercube from Section 5 to the directed hypergrid, Hdm, to find the size
of the sparsest 2-TC-spanner of Hdm to within poly(d) factors. This result supersedes the
results of Section 4 when, for instance, m is constant and d is growing. The expression we
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obtain can be evaluated numerically for small m using standard approximations of binomial
coefficients. For example, this was done in Lemma 5.3 for the case m = 2.

Before stating Theorem 6.2, we introduce some notation.
DEFINITION 6.1. For the hypergrid Hdm , define a level to be a set of vertices, indexed

by vector i ∈ [d]m with i1 + · · ·+ im = d, that consists of vertices x = (x1, . . . , xd) ∈ [m]d

containing i1 positions of value 1, i2 positions of value 2, . . . , and im positions of value m.
Notice that the number of vertices in level i = (i1, i2, . . . , im) is the multinomial coeffi-

cient (
d

i

)
=

(
d

i1, ..., id

)
=

(
d

i1

)(
d− i1
i2

)(
d− i1 − i2

i3

)
. . .

(
d−

∑m−1
l=1 il
im

)
.

Indeed, there are
(
d
i1

)
choices for the coordinates of value 1. For each such choice there are(

d−i1
i2

)
choices for the coordinates of value 2, and repeating this argument one obtains the

above expression.
For levels i, j ∈ [d]m, say j majorizes i, denoted j � i, if level j contains a vertex which

is above some vertex in level i, i.e., , if
m∑
`=t

j` ≥
m∑
`=t

i` for all t ∈ {m,m− 1, ..., 1}.

For j � i, the number of vertices y in level i comparable to a fixed vertex x in level j is
M(i, j):

(
jm
im

)(
jm + jm−1 − im

im−1

)(
jm + jm−1 + jm−2 − im − im−1

im−2

)
. . .

( m∑
l=1

jl −
m∑
l=2

il

i1

)
.

Indeed, there are
(
jm
im

)
choices for the coordinates of value m in y. For each such choice,

there are
(
jm+jm−1−im

im−1

)
choices for the coordinates of value m− 1 in y, and one can repeat

this argument to obtain the claimed expression.
For j � i, the number of vertices y in level j comparable to a fixed vertex x in level i is

N (i, j) =
M(i, j)

(
d
j

)(
d
i

) .

Indeed, there areM(i, j)
(
d
j

)
comparable pairs of vertices in levels i and j, and level i contains(

d
i

)
vertices. Since, by symmetry, each vertex in level i is comparable to the same number of

vertices in level j, we get the desired expression.
THEOREM 6.2. Let

B(m, d) = max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(
d
j

)
M(i,k)N (k, j)

max {M(i,k),N (k, j)} .

Then the number of edges in the sparsest 2-TC-spanner of the directed hypergrid Hdm is
O
(
d2mB(m, d)

)
and Ω (B(m, d)).

The bounds stated in Theorem 6.2 are presented separately as Lemma 6.3 (the upper
bound) and Lemma 6.4 (the lower bound) below.

6.1. Upper bound.

LEMMA 6.3. There is a 2-TC-spanner of Hdm with O
(
d2mB(m, d)

)
edges, where

B(m, d) is defined as in Theorem 6.2.
Proof. Let v ∈ i denote that vertex v belongs to level i. Consider the following prob-

abilistic construction that connects comparable vertices in levels i and j of Hdm by paths of
length at most 2.
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Given levels i, j ∈ [d]m, j � i,
1. Initialize the set Ei,j to ∅.

2. Let ki,j = argmin
k:i≺k≺j

(
M(i,j)(dj)
M(i,k)N (k,j) max {M(i,k),N (k, j)}

)
.

3. Let Si,j be a set of dm
M(i,j)(dj)
M(i,k)N (k,j) vertices chosen uniformly at random

from the
(
d
k

)
vertices in level k = ki,j.

4. For each vertex v ∈ Si,j, setEi,j toEi,j∪{(x, v) : x ∈ i∧x ≺ v}∪{(v, y) :
y ∈ j ∧ v ≺ y}. That is, connect v to all comparable vertices in levels i and j.

5. Output Ei,j.

CLAIM 6.1. For all i ≺ j, with probability at least 1
2 , the edge set Ei,j contains a path

of length at most 2 between every pair of vertices (x, y), such that x ≺ y, x ∈ i, and y ∈ j.
Proof. Fix a pair of vertices (x, y) with x ≺ y, such that x ∈ i and y ∈ j. We will first

show that Prv∈k[x ≺ v ≺ y] ≥ p, where p = M(i,k)N (k,j)

M(i,j)(dj)
.

Toward that end, notice that there areM(i, j)
(
d
j

)
pairs of comparable vertices (u,w) with

u ∈ i and w ∈ j. Each vertex in Si,j connects exactlyM(i,k)N (k, j) pairs of nodes from
levels i and j. It is enough to show that for any such pair (u,w), the number of vertices in level
k that are comparable to both u and v is independent of u,w, i.e., that number only depends
on the levels i,k, j, and thus is the same for all such pairs. To see that, for a vertex u ∈ z,
denote by Tl(u) the set of positions of value l in u. Notice that |Tl(u)| = zl. For x ≺ v ≺ y,
it holds that Tm(x) ⊆ Tm(v) ⊆ Tm(y). Hence, there are

(
jm−im
km−im

)
choices for the m-values

in the vector v. Similarly, we must have Tm−1(x) ⊆ Tm−1(v) ⊆ Tm(y) ∪ Tm−1(y). Hence,
there are

(
jm+jm−1−km−im−1

km−1−im−1

)
choices for the values m− 1 in v. Repeating this process, we

obtain that the number of possible v’s does not depend on the particular choice of x and y.
Thus, the probability that Si,j does not contain such a vertex v with x ≺ v ≺ y is

(1− p)dm/p ≤ e−dm .
The number of comparable pairs (x, y) is at most m2d, and by a union bound, the prob-

ability that there exists (x, y), such that there is no v ∈ Si,j with x ≺ v ≺ y, is at most
m2de−d

m

< 1/2.
By Claim 6.1, for every i and j, there exists a set Si,j, such that comparable pairs from

the levels i and j are connected by a path of length at most 2 via a vertex in Si,j. Let E∗i,j be
the set of edges returned by the algorithm when this Si,j is chosen. We set E =

⋃
j�iE

∗
i,j.

Then the graph ([m]d, E) is a 2-TC-spanner ofHdm.
Now, we show that the size of E is as claimed in the lemma statement. The main obser-

vation is that in Step 4, for every v ∈ Si,j, the set

{(x, v) : x ∈ i ∧ x ≺ v} ∪ {(v, y) : y ∈ j ∧ v ≺ y}

has sizeM(i,k) +N (k, j).
The claimed bound follows since |E| =

∑
j�i |E∗i,j|, where the sum has dm terms.

6.2. Lower bound.

LEMMA 6.4. Every 2-TC-spanner of Hdm has Ω(B(m, d)) edges, where B(m, d) is
defined as in Theorem 6.2.

Proof. Let H be a 2-TC-spanner of Hdm. We count the edges in H that occur on paths
connecting two particular levels of Hdm. Let Pi,j = {(v1, v2) : v1 ∈ i, v2 ∈ j, v1 ≺ v2}. We
will lower bound e∗i,j, the number of edges in the paths of length at most 2 in H that connect
the pairs Pi,j. Notice that |Pi,j| =

(
d
j

)
M(i, j).

Let ek,` denote the number of edges in H that connect vertices in level k to vertices in
level `. Then

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j). (6.1)
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We say that a vertex v covers a pair of vertices (v1, v2) if H contains the edges (v1, v)

and (v, v2) or, for the special case v = v1, if H contains (v1, v2). Let V (k)
i,j be the set of

vertices in level k that cover pairs in Pi,j. Let αk be the fraction of pairs in Pi,j that are
covered by the vertices in V (k)

i,j . Since each pair in Pi,j must be covered by a vertex in levels
k with i ≺ k ≺ j, we have ∑

i≺k≺j

αk ≥ 1.

For any vertex v ∈ V (k)
i,j , let inv be the number of incoming edges from vertices of level

i incident to v and let outv be the number of outgoing edges to vertices of level j incident to
v. For each level k with i ≺ k ≺ j, since each vertex v ∈ V (k)

i,j covers inv · outv pairs,

∑
v∈V (k)

i,j

inv · outv ≥ αk|Pi,j| ≥ αkM(i, j)

(
d

j

)
. (6.2)

We upper bound
∑
v∈V (k)

i,j

inv · outv as a function of ei,k + ek,j, and then use (6.2) to

lower bound ei,k+ek,j. For all k with i ≺ k ≺ j, variables inv and outv satisfy the following
constraints: ∑

v∈V (k)
i,j

inv ≤ ei,k ≤ ei,k + ek,j,
∑

v∈V (k)
i,j

outv ≤ ek,j ≤ ei,k + ek,j,

inv ≤M(i,k) ∀v ∈ V (k)
i,j , outv ≤ N (k, j) ∀v ∈ V (k)

i,j .

The last two constraints hold because inv and outv count the number of edges to a vertex of
level k from vertices of level i, and from a vertex of level k to vertices of level j, respectively.
These bounds imply that∑
v∈V (k)

i,j

inv · outv ≤
∑

v∈V (k)
i,j

M(i,k) · outv =M(i,k) ·
∑

v∈V (k)
i,j

outv ≤M(i,k) · (ei,k + ek,j).

Similarly,
∑
v∈V (k)

i,j

inv · outv ≤ N (k, j) · (ei,k + ek,j). Therefore,∑
v∈V (k)

i,j

inv · outv ≤ (ei,k + ek,j) min {M(i,k),N (k, j)} .

Then (6.2) implies that

ei,k + ek,j ≥ αkM(i, j)

(
d

j

)
1

min {M(i,k),N (k, j)}
for all i ≺ k ≺ j.

Applying (6.1) and the fact that
∑

i≺k≺j αk ≥ 1, we get

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j) ≥
∑
k

αk
1

min {M(i,k),N (k, j)}
M(i, j)

(
d

j

)

≥ min
k

1

min {M(i,k),N (k, j)}
M(i, j)

(
d

j

)
= min

k

1

M(i,k)N (k, j)
M(i, j)

(
d

j

)
max {M(i,k),N (k, j)}.

Since this holds for arbitrary i and j, the size of the 2-TC-spanner H is at least B(m, d).
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