
Learning Pseudo-Boolean k-DNF and Submodular Functions

Sofya Raskhodnikova∗

Pennsylvania State University
sofya@cse.psu.edu

Grigory Yaroslavtsev†

Pennsylvania State University
grigory@cse.psu.edu

Abstract

We prove that any submodular function f : {0, 1}n →
{0, 1, ..., k} can be represented as a pseudo-Boolean
2k-DNF formula. Pseudo-Boolean DNFs are a natu-
ral generalization of DNF representation for functions
with integer range. Each term in such a formula has
an associated integral constant. We show that an
analog of H̊astad’s switching lemma holds for pseudo-
Boolean k-DNFs if all constants associated with the
terms of the formula are bounded.

This allows us to generalize Mansour’s PAC-
learning algorithm for k-DNFs to pseudo-Boolean k-
DNFs, and hence gives a PAC-learning algorithm
with membership queries under the uniform distri-
bution for submodular functions of the form
f : {0, 1}n → {0, 1, ..., k}. Our algorithm runs in
time polynomial in n, kO(k log k/ε) and log(1/δ) and
works even in the agnostic setting. The line of pre-
vious work on learning submodular functions [Bal-
can, Harvey (STOC ’11), Gupta, Hardt, Roth, Ull-
man (STOC ’11), Cheraghchi, Klivans, Kothari, Lee
(SODA ’12)] implies only nO(k) query complexity
for learning submodular functions in this setting, for
fixed ε and δ.

Our learning algorithm implies a property tester
for submodularity of functions f : {0, 1}n →
{0, . . . , k} with query complexity polynomial in n for
k = O((log n/ log logn)1/2) and constant proximity
parameter ε.

∗Supported by NSF CAREER award CCF-0845701.
†Supported by College of Engineering Fellowship at Penn-

sylvania State University and NSF CAREER award CCF-
0845701.

1 Introduction

We investigate learning of submodular set functions,
defined on the ground set [n] = {1, . . . , n}. A set
function f : 2[n] → R is submodular if one of the
following equivalent definitions holds:

Definition 1.1. 1. For all S, T ⊆ [n]:

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T).

2. For all S ⊂ T ⊆ [n] and i ∈ [n] \ T :

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T).

3. For all S ⊆ [n] and i, j ∈ [n] \ S:

f(S ∪ {i}) + f(S ∪ {j}) ≥ f(S ∪ {i, j}) + f(S).

Submodular set functions are important and
widely studied, with applications in combinatorial
optimization, economics, algorithmic game theory
and many other disciplines. In many contexts, sub-
modular functions are integral and nonnegative, and
this is the setting we focus on. Examples of such
functions include coverage functions1, matroid rank
functions, functions modeling valuations when the
value of each set is expressed in dollars, cut func-
tions of graphs2, and cardinality-based set functions,
i.e., functions of the form f(S) = g(|S|), where g is
concave.

1Given sets A1, . . . , An in the universe U , a coverage func-
tion is f(S) = | ∪j∈S Aj |.

2Given a graph G on the vertex set [n], the cut func-
tion f(S) of G is the number of edges of G crossing the cut
(S, [n]/S)).

1

We study submodular functions f : 2[n] →
{0, 1, . . . , k}, and give a learning algorithm for this
class. To obtain our result, we use tools from sev-
eral diverse areas, ranging from operations research
to complexity theory.

Structural result. The first ingredient in the de-
sign of our algorithm is a structural result which
shows that every submodular function in this class
can be represented by a narrow pseudo-Boolean dis-
junctive normal form (DNF) formula, which natu-
rally generalizes DNF for pseudo-Boolean functions.
Pseudo-Boolean DNF formulas are well studied. (For
an introduction to pseudo-Boolean functions and nor-
mal forms, see §13 of the book by Crama and Ham-
mer [11].)

In the next definition and the rest of the paper, we
use domains 2[n] and {0, 1}n interchangeably. They
are equivalent because there is a bijection between
sets S ⊆ [n] and strings x1 . . . xn ∈ {0, 1}n, where
the bit xi is mapped to 1 if i ∈ S and to 0 otherwise.

Definition 1.2 (Pseudo-Boolean DNF). Let
x1, . . . , xn be variables taking values in {0, 1}. A
pseudo-boolean DNF of width k and size s (also
called a k-DNF of size s) is an expression of the
form

f(x1, . . . , xn) =
s

max
t=1

(
at

(∧
i∈At

xi

)(∧
j∈Bt

x̄j

))
,

where at are constants, At, Bt ⊆ [n] and |At|+ |Bt| ≤
k for t ∈ [s]. A pseudo-boolean DNF is mono-
tone if it contains no negated variables, i.e., Bt = ∅
for all terms in the max expression. The class of
all functions that have pseudo-Boolean k-DNF rep-
resentations with constants at ∈ {0, . . . r} is denoted
DNFk,r.

It is not hard to see that every set function f :
2[n] → {0, . . . , k} has a pseudo-Boolean DNF repre-
sentation with constants at ∈ {0, . . . , k}, but in gen-
eral there is no bound on the width of the formula.

Our structural result, stated next, shows that every
submodular function f : 2[n] → {0, . . . , k} can be rep-
resented by a pseudo-Boolean 2k-DNF with constants
at ∈ {0, . . . , k}. Our result is stronger for monotone

functions, i.e., functions satisfying f(S) ≤ f(T) for
all S ⊆ T ⊆ [n]. Examples of monotone submodu-
lar functions include coverage functions and matroid
rank functions.

Theorem 1.1 (DNF representation of submodular
functions). Each submodular function f : {0, 1}n →
{0, . . . , k} can be represented by a pseudo-Boolean 2k-
DNF with constants at ∈ {0, . . . , k} for all t ∈ [s].
Moreover, each term of the pseudo-Boolean DNF has
at most k positive and at most k negated variables,
i.e., |At| ≤ k and |Bt| ≤ k. If f is monotone then
its representation is a monotone pseudo-Boolean k-
DNF.

Note that the converse of Theorem 1.1 is false.
E.g., consider the function f(S) that maps S to 0 if
|S| ≤ 1 and to 1 otherwise. It can be represented by
a 2-DNF as follows: f(x1 . . . xn) = maxi,j∈[n] xi ∧xj .
However, it is not submodular, since version 3 of the
definition above is falsified with S = ∅, i = 1 and
j = 2.

Our proof of Theorem 1.1 builds on techniques de-
veloped by Gupta et al. [17] who show how to decom-
pose a given submodular function into Lipschitz sub-
modular functions. We first prove our structural re-
sult for monotone submodular functions. We use the
decomposition from [17] to cover the domain of such
a function by regions where the function is constant
and then capture each region by a monotone term
of width at most k. Then we decompose a general
submodular function f into monotone regions, as in
[17]. For each such region, we construct a monotone
function which coincides with f on that region, does
not exceed f everywhere else, and can be represented
as a narrow pseudo-Boolean k-DNF by invoking our
structural result for monotone submodular functions.
This construction uses a monotone extension of sub-
modular functions defined by Lovasz [21].

Learning. Our main result is a PAC-learning algo-
rithm with membership queries under the uniform
distribution for pseudo-Boolean k-DNF, which by
Theorem 1.1 also applies to submodular functions
f : 2[n] → {0, . . . , k}. We use a (standard) variant
of the PAC-learning definition given by Valiant [29].

2

Definition 1.3 (PAC and agnostic learning under
uniform distribution). Let Un be the uniform distri-
bution on {0, 1}n. A class of functions C is PAC-
learnable under the uniform distribution if there ex-
ists a randomized algorithm A, called a PAC-learner,
which for every function f ∈ C and every ε, δ > 0,
with probability at least 1− δ over the randomness of
A, outputs a hypothesis h, such that

Pr
x∼Un

[h(x) 6= f(x)] ≤ ε.(1)

A learning algorithm A is proper if it always outputs
a hypothesis h from the class C. A learning algorithm
is agnostic if it works even if the input function f is
arbitrary (not necessarily from C), with ε replaced by
opt + ε in (1), where opt is the smallest achievable
error for a hypothesis in C.

Our algorithm accesses its input f via membership
queries, i.e., by requesting f(x) on some x in f ’s do-
main.

Theorem 1.2. The class of pseudo-Boolean k-DNF
formulas on n variables with constants in the range
{0, . . . , r} is PAC-learnable with membership queries
under the uniform distribution with running time
polynomial in n, kO(k log r/ε) and log(1/δ), even in
the agnostic setting.

Our (non-agnostic) learning algorithm is a gener-
alization of Mansour’s PAC-learner for k-DNF [22].
It consists of running the algorithm of Kushilevitz
and Mansour [19] for learning functions that can be
approximated by functions with few non-zero Fourier
coefficients, and thus has the same running time (and
the same low-degree polynomial dependence on n).
To be able to use this algorithm, we prove (in Theo-
rem 4.1) that all functions in DNFk,r have this prop-
erty. The agnostic version of our algorithm follows
from the Fourier concentration result in Theorem 4.1
and the work of Gopalan, Kalai and Klivans [16].

The key ingredient in the proof of Theorem 4.1 (on
Fourier concentration) is a generalization of H̊astad’s
switching lemma [18, 5] for standard DNF formu-
las to pseudo-Boolean DNF. Our generalization (for-
mally stated in Lemma 3.1) asserts that a function
f ∈ DNFk,r, restricted on large random subset of

variables to random Boolean values, with large prob-
ability can be computed by a decision tree of small
depth. (See Section 3 for definitions of random re-
strictions and decision trees.) Crucially, our bound
on the probability that a random restriction of f
has large decision-tree complexity is only a factor
of r larger than the corresponding guarantee for the
Boolean case.

Theorems 1.2 and 1.1 imply the following corollary.

Corollary 1.3. The class of submodular functions
f : {0, 1}n → {0, . . . , k} is PAC-learnable with mem-
bership queries under the uniform distribution in time
polynomial in n, kO(k log k/ε) and log(1/δ), even in the
agnostic setting.

Implications for testing submodularity. Our
results give property testers for submodularity of
functions f : 2[n] → {0, . . . , k}. A property tester
[26, 14] is given oracle access to an object and a
proximity parameter ε ∈ (0, 1). If the object has
the desired property, the tester accepts it with prob-
ability at least 2/3; if the object is ε-far from having
the desired property then the tester rejects it with
probability at least 2/3. Specifically, for properties
of functions, ε-far means that a given function differs
on at least an ε fraction of the domain points from
any function with the property.

As we observe in Proposition A.1, a learner for a
discrete class (e.g., the class of functions f : 2[n] →
{0, . . . , k}) can be converted to a proper learner
with the same query complexity (but huge over-
head in running time). Thus, Corollary 1.3 implies
a tester for submodularity of functions f : 2[n] →
{0, . . . , k} with query complexity polynomial in n and
kO(k log k/ε), making progress on a question posed by
Seshadhri [27].

1.1 Related work

Structural results for Boolean submodular
functions. For the special case of Boolean func-
tions, characterizations of submodular and monotone
submodular functions in terms of simple DNF for-
mulas are known. A Boolean function is monotone
submodular if and only if it can be represented as a

3

monotone 1-DNF (see, e.g., Appendix A in [4]). A
Boolean function is submodular if and only if it can

be represented as

(∨
i∈S

xi

)∧(∨
j∈T

x̄j

)
for S, T ⊆ [n]

[12].

Learning submodular functions. The problem
of learning submodular functions has recently at-
tracted significant interest. The focus on learning-
style guarantees, which allow one to make arbitrary
mistakes on some small portion of the domain, is jus-
tified by a negative results of Goemans et al. [13].
It demonstrates that every algorithm that makes a
polynomial in n number of queries to a monotone
submodular function (more specifically, even a ma-
troid rank function) and tries to approximate it on
all points in the domain, must make an Ω(

√
n/ log n)

multiplicative error on some point.

Using results on concentration of Lipschitz sub-
modular functions [7, 8, 30] and on noise-stability
of submodular functions [10], significant progress on
learning submodular functions was obtained by Bal-
can and Harvey [4, 3], Gupta et al. [17] and Cher-
aghchi et al. [10]. These works obtain learners that
approximate submodular functions, as opposed to
learning them exactly, on an ε fraction of values in the
domain. However, their learning algorithms generally
work with weaker access models and with submodu-
lar functions over more general ranges.

Balcan and Harvey’s algorithms learn a function
within a given multiplicative error on all but ε frac-
tion of the probability mass (according to a specified
distribution on the domain). Their first algorithm
learns monotone nonnegative submodular functions
over 2[n] within a multiplicative factor of

√
n over

arbitrary distributions using only random examples
in polynomial time. For the special case of product
distributions and monotone nonnegative submodular
functions with Lipschitz constant 1, their second al-
gorithm can learn within a constant factor in polyno-
mial time.

Gupta et al. [17] design an algorithm that learns
a submodular function with the range [0, 1] within
a given additive error α on all but ε fraction of
the probability mass (according to a specified prod-

uct distribution on the domain). Their algorithm
requires membership queries, but works even when
these queries are answered with additive error α/4.

It takes nO(log(1/ε)/α2) time.

Cheraghchi et al. [10] also work with additive er-
ror. Their learner is agnostic and only uses statis-
tical queries. It produces a hypothesis which (with
probability at least 1 − δ) has the expected additive
error opt + α with respect to a product distribution,
where opt is the error of the best concept in the class.
Their algorithm runs in time polynomial in nO(1/α)

and log(1/δ).

Observe that the results in [17] and [10] directly im-

ply an nO(log(1/ε)k2) time algorithm for our setting, by
rescaling our input function to be in [0, 1] and setting
the error α = 1/(2r). The techniques in [17] also im-
ply nO(k) time complexity for non-agnostically learn-
ing submodular functions in this setting, for fixed ε
and δ. To the best of our knowledge, this is the best
dependence on n, one can obtain from previous work.

Chakrabarty and Huang [9] gave an exact learning
algorithm for coverage functions, a subclass of mono-
tone submodular functions. Their algorithm makes
O(n|U |) queries, where U is the size of the universe.
(Coverage functions are defined as in Footnote 1 with
additional nonnegative weight for each set, and f(S)
equal to the weight of ∪j∈SAj instead of the cardi-
nality.)

In a related line of work, focused on learning sub-
additive and fractionally subadditive functions with
multiplicative approximation positive results are ob-
tained by Balcan, Constantin, Iwata and Wang [2]
and by Badanidiyuru, Dobzinski, Fu, Kleinberg,
Nisan and Roughgarden [1].

Property testing submodular functions. The
study of submodularity in the context of property
testing was initiated by Parnas, Ron and Rubin-
feld [24]. Seshadhri and Vondrak [28] gave the
first sublinear (in the size of the domain) tester for
submodularity of set functions. Their tester works
for all ranges and has query and time complexity

(1/ε)
O(
√
n logn)

. They also showed a reduction from
testing monotonicity to testing submodularity which,
together with a lower bound for testing monotonicity

4

given by Blais, Brody and Matulef [6], implies a lower
bound of Ω(n) on the query complexity of testing sub-
modularity for an arbitrary range and constant ε > 0.

Given the large gap between known upper and
lower bounds on the complexity of testing submod-
ularity, Seshadhri [27] asked for testers for several
important subclasses of submodular functions. The
exact learner of Chakrabarty and Huang [9] for cov-
erage functions, mentioned above, gives a property
tester for this class with the same query complexity.

For the special case of Boolean functions, in the
light of the structural results mentioned above, one
can test if a function is monotone submodular with
O(1/ε) queries by using the algorithm from [25] (Sec-
tion 4.3) for testing monotone monomials.

2 Structural result

In this section, we prove Theorem 1.1 that shows that
every submodular function over a bounded (nonneg-
ative) integral range can be represented by a nar-
row pseudo-Boolean DNF. After introducing nota-
tion used in the rest of the section (in Definition 2.1),
we prove the theorem for the special case when f is
monotone submodular (restated in Lemma 2.1) and
then present the proof for the general case. In the
proof, we give a recursive algorithm for constructing
pseudo-Boolean DNF representation which has the
same structure of recursive calls as the decomposition
algorithm of Gupta et al. [17] for the monotone case.
Our contribution is in showing how to use these calls
to get a monotone pseudo-Boolean k-DNF represen-
tation of the input function. For the non-monotone
case the structure of recursive calls that we use is
different from that of [17].

Lemma 2.1 (DNF representation of monotone sub-
modular functions). Every monotone submodular
function f : {0, 1}n → {0, . . . , k} can be represented
by a pseudo-Boolean monotone k-DNF with constants
at ∈ {0, . . . , k} for all t ∈ [s].

Proof. Algorithm 1 below, with the initial call
Monotone-DNF(f, ∅), returns the collection C of
terms in a pseudo-boolean DNF representation of f .

Algorithm 1: Monotone-DNF(f, S).

input : Oracle access to f : 2[n] → {0, . . . , k},
argument S ∈ 2[n].

output: Collection C of monotone terms of
width at most k.

1 C ← (f(S) ·
∧
i∈S

xi)

2 for j ∈ [n] \ S do
3 if f(S ∪ {j}) > f(S) then
4 C ← C∪ Monotone-DNF(f, S ∪ {j}).
5 return C

First, note that the invariant f(S) ≥ |S| is main-
tained for every call Monotone-DNF(f, S). Since
the maximum value of f is at most k, there are no
calls with |S| > k. Thus, every term in the collec-
tion returned by Monotone-DNF(f, ∅) has width
at most k. By definition, all terms are monotone.

Next, we show that the resulting formula max
Ci∈C

Ci

exactly represents f . For a clause Ci ∈ C and S ∈ 2[n]

we use an indicator function Ci(S)→ {0, 1} such that
Ci(S) = 1 iff Ci is satisfied by the assignment of val-
ues to its variables according to S. For all Y ∈ 2[n]

we have f(Y) ≥ max
Ci∈C

Ci(Y) by monotonicity of f . To

see that for all Y we have f(Y) ≤ max
Ci∈C

Ci(Y), fix an

arbitrary Y and let T = {Z | Z ⊆ Y, f(Z) = f(Y)}
and T be a set of the smallest size in T . If there
was a recursive call Monotone-DNF(f, T) then the
term added by this recursive call would ensure the
inequality. If T = ∅ then such a call was made.
Otherwise, consider the set U = {T \ {j} | j ∈ T}.
By the choice of T , we have f(Z) < f(T) for all
Z ∈ U . By submodularity of f (see Definition 1.1,
part 2), this implies that the restriction of f on T ↓

is a strictly increasing function. Thus, the recursive
call Monotone-DNF(f, T) was made and the term
added by it guarantees the inequality.

For a collection S of subsets of [n], let fS : S → R
denote the restriction of a function f to the union
of sets in S. We use notation 1S : 2[n] → {0, 1} for
the indicator function defined by 1S(Y) = 1 iff Y ∈

5

⋃
S∈S

S.

Definition 2.1 (S↓ and S↑). For a set S ∈ 2[n], we
denote the collection of all subsets of S by S↓ and the
collection of all supersets of S by S↑.

Proof of Theorem 1.1. For a general submodular
function, the formula can be constructed using Al-
gorithm 2, with the initial call DNF(f, [n]). The al-
gorithm description uses the function fmonS↓ , defined
next.

Definition 2.2 (Function fmonS↓). For a set S ⊆ [n],
define the function fmonS↓ : S↓ → {0, . . . , k} as follows:
fmonS↓ (Y) = minY⊆Z⊆S f(Z).

Note that if f is a submodular function then for
every set S ⊆ [n] the function fS↓ is a submodular
function.

Proposition 2.2 (Proposition 2.1 in [21]). For every
set S ⊆ [n], if fS↓ is a submodular function, then
fmonS↓ is a monotone submodular function.

Algorithm 2: DNF(f, S).

input : Oracle access to f : 2[n] → {0, . . . , k},
argument S ∈ 2[n].

output: Collection C of terms, each containing
at most k positive and at most k
negated variables.

1 Cmon ←Monotone-DNF(fmonS↓ , ∅)
2 C ←

⋃
Ci∈Cmon

(Ci · (
∧

i∈[n]\S
x̄i))

3 for j ∈ S do
4 if f(S \ {j}) > f(S) then
5 C ← C∪ DNF(f, S \ {j}).
6 return C

Let S be the collection of sets S ⊆ [n] for which a
recursive call is made when DNF(f, [n]) is executed.
For a set S ∈ S, let B(S) = {j | f(S \ {j}) ≤ f(S)}
be the set consisting of elements such that if we re-
move them from S, the value of the function does not
increase. Let the monotone region of S be defined by
S≤↓ = {Z | (S \B(S)) ⊆ Z ⊆ S} = S↓ ∩ (S \B(S))↑.

By submodularity of f (Definition 1.1, part 2) the re-
striction fS≤↓ is a monotone nondecreasing function.

Proposition 2.3. Fix S ∈ S. Then f(Y) ≥
fmonS↓ (Y) for all Y ∈ S↓. Moreover, f(Y) = fmonS↓ (Y)
for all Y ∈ S≤↓.

Proof. By the definition of fmonS↓ , we have fmonS↓ (Y) =
minY⊆Z⊆S f(Z) ≤ f(Y) for all Y ∈ S↓. Since
the restriction fS≤↓ is monotone nondecreasing,
fmonS↓ (Y) = minY⊆Z⊆S f(Z) = f(Y) for all Y ∈
S≤↓.

The following proposition is implicit in [17]. We
give a proof for completeness.

Proposition 2.4. For all functions f : 2[n] →
{0, . . . , k}, the collection of all monotone regions of
sets in S forms a cover of the domain, namely,
∪S∈SS≤↓ = 2[n].

Proof. The proof is by induction on the value f([n])
that the function f takes on the largest set in its
domain. The base case of induction is f([n]) = k. In
this case, S consists of a single set S = [n], and the
function f is monotone non-increasing on S↓ = S≤↓.
Now suppose that the statement holds for all f , such
that f([n]) ≥ t. If f([n]) = t − 1 then for every
Y ∈ 2[n] there are two cases:

1. There is no Z of size n − 1 such that f(Z) >
f([n]) and Y ∈ Z↓ then Y ∈ [n]≤↓ and thus Y is
covered by the monotone region of [n].

2. There exists a set Z of size n − 1 such that
f(Z) > f([n]) and Y ∈ Z↓ then there exists a set
S ∈ S, such that Y ∈ S↓ by applying inductive
hypothesis to fZ↓ , so Y is covered by S↓.

Lemma 2.1 and Proposition 2.2 give that the col-
lection of terms Cmon, constructed in Line 1 of Algo-
rithm 2, corresponds to a monotone pseudo-Boolean
k-DNF representation for fmonS↓ . By the same argu-
ment as in the proof of Lemma 2.1, |S| ≥ n − k for
all S ∈ S, since the maximum of f is at most k.
Therefore, Line 2 of Algorithm 2 adds at most n−|S|
negated variables to every term of Cmon, resulting in

6

terms with at most k positive and at most k negated
variables.

It remains to prove that the constructed formula
represents f . For a set S, let CS denote the collec-
tion of terms obtained on Line 2 of Algorithm 2. By
construction, CS(Y) = fmonS↓ ·1S↓(Y) for all Y ∈ 2[n].

For every Y ∈ 2[n], the first part of Proposition 2.3
implies that CS(Y) = fmonS↓ (Y) · 1S↓(Y) ≤ f(Y),
yielding maxS∈S CS(Y) ≤ f(Y). On the other hand,
by Proposition 2.4, for every Y ∈ 2[n] there ex-
ists a set S ∈ S, such that Y ∈ S≤↓. For such
S, the second part of Proposition 2.3 implies that
CS(Y) = fmonS↓ (Y) · 1S↓(Y) = f(Y). Therefore, f is
equivalent to maxS∈S CS .

3 Generalized switching lemma
for pseudo-Boolean DNFs

The following definitions are stated for completeness
and can be found in [23, 22].

Definition 3.1 (Decision tree). A decision tree T
is a representation of a function f : {0, 1}n → R. It
consists of a rooted binary tree in which the internal
nodes are labeled by coordinates i ∈ [n], the outgoing
edges of each internal node are labeled 0 and 1, and
the leaves are labeled by real numbers. We insist that
no coordinate i ∈ [n] appears more than once on any
root-to-leaf path.

Each input x ∈ {0, 1}n corresponds to a computa-
tion path in the tree T from the root to a leaf. When
the computation path reaches an internal node labeled
by a coordinate i ∈ [n], we say that T queries xi. The
computation path then follows the outgoing edge la-
beled by xi. The output of T (and hence f) on input
x is the label of the leaf reached by the computation
path. We identify a tree with the function it com-
putes.

The depth s of a decision tree T is the maximum
length of any root-to-leaf path in T . For a function
f , DT-depth(f) is the minimum depth of a decision
tree computing f .

Definition 3.2 (Random restriction). A restriction
ρ is a mapping of the input variables to {0, 1, ?}. The

function obtained from f(x1, . . . , xn) by applying a
restriction ρ is denoted f |ρ. The inputs of f |ρ are
those xi for which ρ(xi) = ? while all other variables
are set according to ρ.

A variable xi is live with respect to a restriction ρ
if ρ(xi) = ?. The set of live variables with respect
to ρ is denoted live(ρ). A random restriction ρ with
parameter p ∈ (0, 1) is obtained by setting each xi,
independently, to 0, 1 or ?, so that Pr[ρ(xi) = ?] = p
and Pr[ρ(xi) = 1] = Pr[ρ(xi) = 0] = (1− p)/2.

We will prove the following generalization of the
switching lemma [18, 5].

Lemma 3.1 (Switching lemma for pseudo-Boolean
formulas). Let f ∈ DNFk,r and ρ be a random re-
striction with parameter p (i.e., Pr[ρ(xi) = ?] = p).
Then

Pr[DT-depth(f |ρ) ≥ s] < r · (7pk)s.

Proof. We use the exposition of Razborov’s proof of
the switching lemma for Boolean functions, described
in [5], as the basis of our proof and highlight the
modifications we made for non-Boolean functions.

Define R`n to be the set of all restrictions ρ on a
domain of n variables that have exactly ` unset vari-
ables. Fix some function f ∈ DNFk,r, represented by
a formula F , and assume that there is a total order
on the terms of F as well as on the indices of the
variables. A restriction ρ is applied to F in order,
so that Fρ is a pseudo-Boolean DNF formula whose
terms consist of those terms in F that are not falsified
by ρ, each shortened by removing any variables that
are satisfied by ρ, and taken in the order of occur-
rences of the original terms on which they are based.

Definition 3.3 (Canonical labeled decision tree).
The canonical labeled decision tree for F , denoted
T (F), is defined inductively as follows:

1. If F is a constant function then T (F) consists
of a single leaf node labeled by the appropriate
constant.

2. If the first term C1 of F is not empty then let F ′

be the remainder of F so that F = max(C1, F
′).

Let K be the set of variables appearing in C1.

7

The tree T (F) starts with a complete binary tree
for K, which queries the variables in K in the
order of their indices. Each leaf vσ in the tree
is associated with a restriction σ which sets the
variables of K according to the path from the root
to vσ. For each σ, replace the leaf node vσ by the
subtree T (Fσ). For the unique assignment σ sat-
isfying C1, also label the corresponding node by
Lσ equal to the maximum of the labels assigned
to the predecessors of this node in the tree and
the integer constant associated with the term C1.

Note that the above definition is more general than
a canonical decision tree for Boolean DNF formulas
because it uses labels for some of the internal nodes
in the tree to indicate that the paths from the parent
node to these internal nodes restrict the value of the
formula to be at least the value of the label. For
the Boolean DNFs such labels are not needed and
thus if we apply to them the definition above we get
a standard definition of a canonical decision tree, as
in [5]. Formally, for pseudo-Boolean DNF formulas
the label Lσ of the internal node σ represents the
fact that the value of the formula on the leaves in the
subtree of σ is at least Lσ.

Using the terminology introduced above, we can
state the switching lemma as follows.

Lemma 3.2. Let F be a pseudo-Boolean formula,
representing a function f ∈ DNFk,r, s ≥ 0, p ≤ 1/7
and ` = pn. Then

|{ρ ∈ R`n : |T (F |ρ)| ≥ s}|
|R`n|

< r(7pk)s.

Proof. Let stars(k, s) be the set of all sequences β =
(β1, . . . , βt) such that for each j ∈ [t], the coordinate
βj ∈ {?,−}k \ {−}k and such that the total number
of ?’s in all the βj is s.

Let S ⊆ R`n be the set of restrictions ρ such that
|T (F |ρ)| ≥ s. We will define an injective mapping
from S to the cartesian product R`−sn × stars(k, s)×
[2s]× [r].

Let F = maxi Ci. In the exposition below we use
the same notation π to denote both a restriction and a
path in the canonical labeled decision tree, which sets
variables according to π. Suppose that ρ ∈ S and π is

the restriction associated with the lexicographically
first path in T (F |ρ) of length at least s. Trim the last
variables in π along the path π from the root so that
|π| = s. Let c be the maximum label of the node on
π (or zero, if none of the nodes on pπ are labeled).
Partition the set of terms of F into two sets F ′ and
F ′′, where F ′ contains all terms with constants > c
and F ′′ contains all terms with constants ≤ c (for
Boolean formulas, c = 0 and F = F ′). We will use
the subformula F ′ and π to determine the image of ρ.
The image of ρ is defined by following the path π in
the canonical labeled decision tree for Fρ and using
the structure of the tree.

Let Cν1 be the first term of F ′ that is not set to
0 by ρ. Since |π| > 0, such a term must exist and
will not be an empty term (otherwise, the value of
F |ρ is fixed to be > c). Let K be the set of variables
in Cν1 |ρ and let σ1 be the unique restriction of the
variables in K that satisfies Cν1 |ρ. Let π1 be the part
of π that sets the variables in K. We have two cases
based on whether π1 = π.

1. If π1 6= π then by the construction of π, restric-
tion π1 sets all the variables in K. Note that the
restriction ρσ1 satisfies the term Cν1 but since
π1 6= π the restriction ρπ1 does not satisfy term
Cν1 .

2. If π1 = π then it is possible that π does not set
all of the variables in K. In this case we shorten
σ1 to the variables in K that appear in π1.

Define β1 ∈ {?,−}k based on the fixed ordering
of the variables in the term Cν1 by letting the jth
component of β1 be ? if and only if the jth variable
in Cν1 is set by σ1. Since Cν1 |ρ is not the empty
term, β1 has at least one ?. From Cν1 and β1 we can
reconstruct σ1.

Now by the definition of T (F |ρ), the restriction π \
π1 labels a path in the canonical labeled decision tree
T (F |ρπ1). If π1 6= π, we repeat the argument above,
replacing π and ρ with π \ π1 and ρπ1, respectively,
and find a term Cν2 which is the first term of F ′ not
set to 0 by ρπ1. Based on this, we generate π2, σ2
and β2, as before. We repeat this process until the
round t in which π1π2 . . . πt = π.

8

Let σ = σ1σ2 . . . σt. We define ξ ∈ {0, 1}s to
be a vector that indicates for each variable set by
π whether it is set to the same value as σ sets it.
We define the image of ρ in the injective mapping
as a quadruple, 〈ρσ1 . . . σt, (β1, . . . , βt), ξ, c〉. Because
ρσ ∈ R`−sn and (β1, . . . , βt) ∈ stars(k, s) the map-
ping is as described above.

It remains to show that the defined mapping is
indeed injective. We will show how to invert it
by reconstructing ρ from its image. We use c to
construct F ′ from F . The reconstruction proce-
dure is iterative. In one stage of the reconstruc-
tion we recover π1 . . . πi1 , σ1 . . . σi−1 and construct
ρπ1 . . . πi−1σi . . . σt. Recall that for i < t the restric-
tion ρπ1 . . . πi−1σi satisfies the term Cνi , but does not
satisfy terms Cj for all j < νi. This holds if we ex-
tend the restriction by appending σi+1 . . . σt. Thus,
we can recover νi as the index of the first term of
F ′ that is not falsified by ρπ1 . . . πi−1σi . . . σt and the
consant corresponding to this term is at least c.

Now, based on Cν1 and βi, we can determine σi.
Since we know σ1 . . . σi, using the vector ξ we can
determine πi. We can now change ρπ1 . . . πi−1σi . . . σt
to ρπ1 . . . πi−1πiσi+1 . . . σt using the knowledge of πi
and σi. Finally, given all the values of the πi we
reconstruct ρ by removing the variables from π1 . . . πt
from the restriction.

The computation in the following claim completes
the proof of the switching lemma.

Claim 1 ([5]). For p < 1/7 and p = `/n, the follow-
ing holds:

|R`−sn | · |stars(k, s)| · 2s

|R`n|
< (7pk)s.

Proof. We have |R`n| =
(
n
`

)
2n−`, so:

|R`−sn |
|R`n|

≤ (2`)s

(n− `)s
.

We use the following bound on |stars(k, s)|.

Proposition 3.3 (Lemma 2 in [5]). |stars(k, s)| <
(k/ ln 2)s.

Using Proposition 3.3 we get:

|S|
|R`n|

≤ |R
`−s
n |
|R`n|

· |stars(k, s)| · 2s

≤
(

4`k

(n− `) ln 2

)s
=

(
4pk

(1− p) ln 2

)s
.

For p < 1/7, the last expression is at most (7pk)s, as
claimed.

4 Learning pseudo-Boolean
DNFs

In this section, we present our learning results for
pseudo-Boolean k-DNF and prove Theorem 1.2.

Let Rr denote the set of multiples of 2/(r − 1)
in the interval [−1, 1], namely Rr = {−1,−1 +
2/(r − 1), ..., 1 − 2/(r − 1), 1}. First, we apply a
transformation of the range by mapping {0, . . . , r}
to Rr. Formally, in this section instead of func-
tions f : {0, 1}n → {0, . . . , r} we consider functions
f ′ : {−1, 1}d → [−1, 1], such that f ′(x′1, . . . , x

′
n) =

2/(r−1) ·f(x1, . . . , xn)−1, where x′i = 1−2xi. The
mapping is one to one and thus a learning algorithm
for the class of functions that can be represented by
pseudo-Boolean DNF formulas of width k with con-
stants in the range Rr implies Theorem 1.2. Thus,
we will refer to this transformed class also as DNFk,r.

For a set S ⊆ [n], let χS be the standard Fourier

basis vector and let f̂(S) denote the corresponding
Fourier coefficient of a function f .

Definition 4.1. A function g ε-approximates a func-
tion f if E[(f − g)2] ≤ ε. A function is M -sparse if
it has at most M non-zero Fourier coefficients. The
Fourier degree of a function, denoted deg(f), is the

size of the largest set, such that f̂(S) 6= 0.

The following guarantee about approximation of
functions in DNFk,r by sparse functions is the key
lemma in the proof of Theorem 1.2.

Theorem 4.1. Every function f ∈ DNFk,r can be ε-
approximated by an M -sparse function, where M =
kO(k log(r/ε)).

9

Proof of Theorem 4.1. We generalize the proof by
Mansour [22], which relies on multiple applications
of the switching lemma. Our generalization of the
switching lemma allows us to obtain the following
parameters of the key statements in the proof, which
bound the L2-norm of the Fourier coefficients of large
sets in Lemma 4.2 and the L1-norm of the Fourier co-
efficients of small sets in Lemma 4.4.

Lemma 4.2. For every function f ∈ DNFk,r,∑
S : |S|>28k log(2r/ε)

f̂2(S) ≤ ε/2.

Proof. The proof relies on the following result.

Proposition 4.3 ([22, 23]). Let f : {0, 1}n →
{−1, 1} and fρ be a random restriction with parame-
ter p. Then for every t ∈ [n],∑

|S|>t

f̂2(S) ≤ Pr
ρ

[deg(f |ρ) ≥ tp/2].

Because deg(f |ρ) ≤ DT-depth(f |ρ) and thus
Pr[deg(f |ρ) ≥ tp/2] ≤ Pr[DT-depth(f |ρ) ≥ tp/2].
By using Lemma 3.1 and setting p = 1/14k and
t = 28k log(2r/ε), we complete the proof.

The main part of the proof of Theorem 4.1 is
the following lemma, which bounds the L1-norm of
Fourier coefficients, corresponding to sets of bounded
size.

Lemma 4.4. For every function f ∈ DNFk,r and
τ ∈ [n], ∑

S : |S|≤τ

|f̂(S)| ≤ 4r(28k)τ = rkO(τ).

Proof. Let L1,t(f) =
∑
|S|=t |f̂(S)| and L1(f) =∑n

t=0 L1,t(f) =
∑
S |f̂(S)|.

We use the following bound on L1(f) for decision
trees.

Proposition 4.5 ([20, 23]). Consider a function
f : {−1, 1}n → [−1, 1], such that DT-depth(f) ≤ s.
Then L1(f) ≤ 2s.

We show the following generalization of Lemma 5.2
in [22] for DNFk,r.

Proposition 4.6. Let f ∈ DNFk,r and let ρ be a
random restriction of f with parameter p ≤ 1/28k.
Then Eρ [L1(f |ρ)] ≤ 2r.

Proof. By the definition of expectation,

Eρ[L1(f)]

=

n∑
s=0

Pr[DT-depthf |ρ = s]

·Eρ [L1(f |ρ) | DT-depth(f |ρ) = s] .

By Proposition 4.5, for all ρ, such that
DT-depth(f |ρ) = s, it holds that L1(f) ≤ 2s. By
Lemma 3.1, Pr[DT-depth(f |ρ) ≥ s] ≤ r(7pk)s.
Therefore, Eρ[L1(f)] ≤

∑n
s=0 r(7pk)s2s =

r ·
∑n
s=0(14pk)s. For p ≤ 1/28k the lemma

follows.

We use Lemma 5.3 from [22] to bound L1,t(f) by
the value of Eρ [L1,t(f |ρ)]. Because in [22] the lemma
is stated for Boolean functions, we give the proof for
real-valued functions for completeness.

Proposition 4.7 ([22]). For f : {0, 1}n → [−1, 1]
and a random restriction ρ with parameter p,

L1,t(f) ≤
(

1

p

)t
Eρ [L1,t(f)] .

Proof. Consider a random variable L supported on
2[n], such that for each xi independently, Pr[xi ∈
L] = p. The random variable L is the set of live
variables in a random restriction with parameter p.
We can rewrite L1,t as:

L1,t(f) =
∑
|S|=t

|f̂(S)|

=

(
1

p

)t
EL

 ∑
S⊆L,|S|=t

∣∣∣f̂(S)
∣∣∣
 .(2)

For an arbitrary choice of L and a subset S ⊆ L
we have:

|f̂(S)| = |Ex1,...,xn [f(x1, . . . , xn)χS(x1, . . . , xn)]|
≤ Ex/∈L|Ex∈L [f(x1, . . . , xn)χS(x1, . . . , xn)] |

= Eρ
[
|f̂ |ρ(S)| | live(ρ) = L

]
,

10

where the last line follows from the observation that
averaging over xi /∈ L is the same as taking the ex-
pectation of a random restriction whose set of live
variables is restricted to be L. Because the absolute
value of every coefficient S is expected to increase,
this implies that:∑

S⊆L

∣∣∣f̂(S)
∣∣∣

≤Eρ

 ∑
S⊆L,|S|=t

|f̂ |ρ(S)| | live(ρ) = L |

=Eρ [L1,t(fρ)|live(ρ) = L] .

Using this together with (2), we conclude that

L1,t(f)

=

(
1

p

)t
EL

 ∑
S⊆L,|S|=t

∣∣∣f̂(S)
∣∣∣

≤
(

1

p

)t
Eρ [L1,t(f |ρ)] .

Note that
∑
S : |S|≤τ |f̂(S)| =

∑τ
t=0 L1,t(f). By

setting p = 1/28k and using Propositions 4.6 and 4.7,
we get:

L1,t(f) ≤ 2r(28k)t.

Thus,
∑
S : |S|≤τ |f̂(S)| ≤ 4r(28k)τ = rkO(τ), com-

pleting the proof of Lemma 4.4.

Let τ = 28k log(2r/ε) and L =
∑
|S|≤τ |f̂(S)|. Let

G = {S : |f̂(S)| ≥ ε/2L and |S| ≤ τ} and g(x) =∑
S∈G f̂(S)χS(x). We will show that g is M -sparse

and that it ε-approximates f .

By an averaging argument, |G| ≤ 2L2/ε. Thus,
function g is M -sparse, where M ≤ 2L2/ε. By
Lemma 4.4, L = rkO(τ) = kO(k log(r/ε)). Thus,
M = kO(k log(r/ε)), as claimed in the theorem state-
ment.

By the definition of g and by Parseval’s identity,

E[(f − g)2]

=
∑
S/∈G

f̂2(S)

=
∑

S : |S|>τ

f̂2(S) +
∑

S : |S|≤τ,|f̂(S)|≤ε/2L

f̂2(S).

By Lemma 4.2, the first summation is at most ε/2.
For the second summation, we get:∑

S : |S|≤τ,|f̂(S)|≤ε/2L

f̂2(S)

≤

(
max

S : |f̂(S)|≤ε/2L
|f̂(S)|

)∑
|S|≤τ

|f̂(S)|

≤ ε

2L
· L = ε/2.

This implies that E[(f − g)2] ≤ ε and thus g ε-
approximates f .

To get a learning algorithm and prove Theo-
rem 1.2 we can use the sparse approximation guar-
antee of Theorem 4.1 together with Kushilevitz-
Mansour learning algorithm (for PAC-learning) or
the learning algorithm of Gopalan, Kalai and Klivans
(for agnostic learning).

Proof of Theorem 1.2. We will use the learning al-
gorithm of Kushilevitz and Mansour [15, 19], which
gives the following guarantee:

Theorem 4.8 ([19]). Let f be a function that can
be ε-approximated by an M -sparse function. There
exists a randomized algorithm, whose running time
is polynomial in M , n, 1/ε and log(1/δ), that given
oracle access to f and δ > 0, with probability at least
1− δ outputs a function h that O(ε)-approximates f .

Setting the approximation parameter in Theo-
rem 4.8 to be ε′ = ε/Cr2 for large enough constant
C and taking M = kO(k log(r/ε′)) we get an algorithm
which returns a function h that (ε/r2)-approximates
f . The running time of such algorithm is polynomial
in n, kO(k log(r/ε)) and log(1/δ). By Proposition 4.9,

11

if we round the values of h in every point to the near-
est multiple of 2/(r − 1), we will get a function h′,
such that Prx∈Un [h′(x) 6= f(x)] ≤ ε, completing the
proof.

Proposition 4.9. Suppose a function h : 2[n] →
[−1, 1] is an ε-approximation for f : 2[n] → Rr. Let g
be the function defined by g(x) = argminy∈Rr

|h(x)−
y|, breaking ties arbitrarily. Then Prx∈Un [g(x) 6=
f(x)] ≤ ε · (r − 1)2.

Proof of Proposition 4.9. Observe that
|f(x) − h(x)|2 ≥ 1/(r − 1)2 whenever f(x) 6= g(x).
This implies

Pr
x∈Un

[g(x) 6= f(x)] ≤

Pr
x∈Un

[(r − 1)2 · |f(x)− h(x)|2 ≥ 1] ≤

Ex∈Un [(r − 1)2 · |f(x)− h(x)|2] ≤
(r − 1)2 · Ex∈Un [|f(x)− h(x)|2] ≤ ε(r − 1)2.

The last inequality follows from the definition of ε-
approximation.

Extension of our learning algorithm to the agnostic
setting follows from the result of Gopalan, Kalai and
Klivans.

Theorem 4.10 ([16]). If every function f in a class
C has an M -sparse ε-approximation, then there is an
agnostic learning algorithm for C with running time
poly(n,M, 1/ε).

This completes the proof of Theorem 1.2.

Acknowledgments

We are grateful to Jan Vondrak, Vitaly Feldman, Lev
Reyzin, Nick Harvey, Paul Beame, Ryan O’Donnell
and other people for their feedback and comments on
the results in this paper.

References

[1] A. Badanidiyuru, S. Dobzinski, H. Fu, R. Klein-
berg, N. Nisan, and T. Roughgarden. Sketch-
ing valuation functions. In Proceedings of the

Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, pages 1025–
1035. SIAM, 2012.

[2] M.-F. Balcan, F. Constantin, S. Iwata, and
L. Wang. Learning valuation functions. CoRR,
abs/1108.5669, 2011.

[3] M.-F. Balcan and N. J. A. Harvey. Learning sub-
modular functions. CoRR, abs/1008.2159, 2010.

[4] M.-F. Balcan and N. J. A. Harvey. Learning
submodular functions. In STOC, pages 793–802,
2011.

[5] P. Beame. A switching lemma primer. In Un-
published notes: http://www.cs.washington.edu/
homes/beame/papers/primer.ps, 1994.

[6] E. Blais, J. Brody, and K. Matulef. Property
testing lower bounds via communication com-
plexity. In IEEE Conference on Computational
Complexity, pages 210–220, 2011.

[7] S. Boucheron, G. Lugosi, and P. Massart. A
sharp concentration inequality with application.
Random Struct. Algorithms, 16:277–292, May
2000.

[8] S. Boucheron, G. Lugosi, and P. Massart. On
concentration of self-bounding functions. Elec-
tron. J. Probab., 14:1884–1899, 2009.

[9] D. Chakrabarty and Z. Huang. Testing cover-
age functions. CoRR, abs/1205.1587, 2012. Ac-
cepted to ICALP 2012.

[10] M. Cheraghchi, A. Klivans, P. Kothari, and
H. K. Lee. Submodular functions are noise sta-
ble. In SODA, pages 1586–1592, 2012.

[11] Y. Crama and P. L. Hammer. Boolean
Functions—Theory, Algorithms, and Applica-
tions, volume 142 of Encyclopedia of mathemat-
ics and its applications. Cambridge University
Press, 2011.

[12] O. Ekin, P. L. Hammer, and U. N. Peled. Horn
functions and submodular boolean functions.
Theor. Comput. Sci., 175(2):257–270, 1997.

12

[13] M. X. Goemans, N. J. A. Harvey, S. Iwata,
and V. S. Mirrokni. Approximating submodular
functions everywhere. In SODA, pages 535–544,
2009.

[14] O. Goldreich, S. Goldwasser, and D. Ron. Prop-
erty testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998.

[15] O. Goldreich and L. A. Levin. A hard-core pred-
icate for all one-way functions. In STOC, pages
25–32, 1989.

[16] P. Gopalan, A. T. Kalai, and A. R. Klivans.
Agnostically learning decision trees. In STOC,
pages 527–536, 2008.

[17] A. Gupta, M. Hardt, A. Roth, and J. Ullman.
Privately releasing conjunctions and the statis-
tical query barrier. In STOC, pages 803–812,
2011.

[18] J. H̊astad. Almost optimal lower bounds for
small depth circuits. In STOC, pages 6–20, 1986.

[19] E. Kushilevitz and Y. Mansour. Learning deci-
sion trees using the fourier sprectrum (extended
abstract). In STOC, pages 455–464, 1991.

[20] E. Kushilevitz and Y. Mansour. Learning deci-
sion trees using the Fourier spectrum. SIAM J.
Comput., 22(6):1331–1348, 1993.

[21] L. Lovasz. Submodular functions and convexity.
In Mathematical Programming and the State of
the Art, pages 233–257, 1982.

[22] Y. Mansour. An O(nlog logn) learning algorithm
for DNF under the uniform distribution. J.
Comput. Syst. Sci., 50(3):543–550, 1995.

[23] R. O’Donnell. Analysis of Boolean Functions
(http://analysisofbooleanfunctions.org). 2012.

[24] M. Parnas, D. Ron, and R. Rubinfeld. On testing
convexity and submodularity. SIAM J. Comput.,
32(5):1158–1184, 2003.

[25] M. Parnas, D. Ron, and A. Samorodnitsky. Test-
ing basic boolean formulae. SIAM J. Discrete
Math., 16(1):20–46, 2002.

[26] R. Rubinfeld and M. Sudan. Robust character-
ization of polynomials with applications to pro-
gram testing. SIAM J. Comput., 25(2):252–271,
1996.

[27] C. Seshadhri. Question 2: Testing submod-
ularity. In P. Indyk, A. McGregor, I. New-
man, and K. Onak, editors, Open Problems
in Data Streams, Property Testing, and related
topics, Bertinoro Workshop on Sublinear Algo-
rithms (May 2011) and IITK Workshop on Al-
gorithms for Processing Massive Data Sets (De-
cember 2009), page 3, 2011. Downloaded July
2, 2012 from http://people.cs.umass.edu/

~mcgregor/papers/11-openproblems.pdf.

[28] C. Seshadhri and J. Vondrák. Is submodularity
testable? In ICS, pages 195–210, 2011.

[29] L. G. Valiant. A theory of the learnable. Com-
mun. ACM, 27(11):1134–1142, 1984.

[30] J. Vondrák. A note on concentration of submod-
ular functions. CoRR, abs/1005.2791, 2010.

A Converting a learner into a
proper learner

Let C be a class of discrete objects represented by
functions over a domain of “size” n.

Proposition A.1. If there exists a learning algo-
rithm L for a class C with query complexity q(n, ε)
and running time t(n, ε), then there exists a proper
learning algorithm L′ for C with query complexity
q(n, ε/2) and running time t(n, ε/2) + |C|.

Proof. Given parameters n, ε and oracle access to a
function f , the algorithm L′ first runs L with param-
eters n, ε/2 to obtain a hypothesis g. Then it finds
and outputs a function h ∈ C, which is closest to g,
namely h = argminh′∈Cdist(g, h

′). By our assump-
tion that L is a learning algorithm, dist(f, g) ≤ ε/2.
Since f ∈ C, we have dist(g, h) ≤ dist(g, f) ≤ ε/2.
By the triangle inequality, dist(f, h) ≤ dist(f, g) +
dist(g, h) ≤ ε.

13

