
1

Isoperimetric Inequalities for the Hypercube
with Applications to Monotonicity Testing

Sofya Raskhodnikova
Boston University

Joint work with Hadley Black (UCLA, summer 2020 @ Boston University)

Iden Kalemaj (Boston University)

Based on Iden Kalemaj’s slides

Isoperimetric Inequalities on the Hypercube

2

• A tool in the analysis of Boolean functions 𝑓 ∶ 0,1 𝑑 → {0,1}

• Study the size of the “boundary” between the points 𝑥 on which 𝑓 𝑥 = 0
and on which 𝑓 𝑥 = 1

We generalize these inequalities to real-valued functions: 𝑓: 0,1 𝑑 → ℝ.

Motivation:

• To understand the structure of real-valued functions.

• To improve sublinear algorithms for monotonicity.

Directed

[Chakrabarty, Seshadhri 13]

[Khot, Minzer, Safra 15]

Undirected

[Margulis 74]

[Talagrand 93]

Plan

1. Explain our results on sublinear algorithms for monotonicity.

2. Give some background on the isoperimetric inequalities.

3. Prove our generalized inequalities.

3

The d-Dimensional Hypercube

• Hypercube has 2𝑑 vertices, the points in 0,1 𝑑,

and 𝑑2𝑑−1 edges.

• 𝑥 → 𝑦 is an edge if:

𝑥𝑖 = 0, 𝑦𝑖= 1 for some coordinate 𝑖 ∈ [𝑑]

𝑥𝑗 = 𝑦𝑗 for all 𝑗 ∈ 𝑛 \{𝑖}

 Edge 𝑥 → 𝑦 is influential if 𝑓 𝑥 ≠ 𝑓(𝑦).

 Edge 𝑥 → 𝑦 is decreasing if 𝑓 𝑥 > 𝑓 𝑦 .

4

f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

4

0

1

3

0

02

1

Monotonicity of Functions

5

• A function 𝑓 ∶ 0,1 𝑑 → ℝ is monotone

if increasing a bit of 𝑥 does not decrease 𝑓(𝑥),

that is, there are no decreasing edges.

• Distance to monotonicity of 𝑓, 𝐃𝐢𝐬𝐭(𝒇,𝐌𝐎𝐍𝐎),
is smallest number of 𝑓-values that need to be
changed to make it monotone.

𝑓 is monotone

Dist 𝑓,MONO = 3

0

42

1

1

31

1

4

0

1

3

0

02

1

Algorithmic Tasks for Sublinear-Time Algorithms

• Monotonicity testing [Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98,

Goldreich Goldwasser Lehman Ron Samorodnitsky 00]

• Approximating distance to monotonicity
[Parnas Ron Rubinfeld 06, Fattal Ron 10]

o with multiplicative and additive error with probability ≥ 𝟐/𝟑

6

Algorithm

𝒙
𝒇(𝒙)

𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬

𝒇

Close to YES

Far from

YES

Reject with
probability 2/3

Accept with
probability ≥ 𝟐/𝟑

𝜀
YES

Algorithm is nonadaptive if
it makes all queries before
receiving any answers.

Results on Monotonicity Testing

• Extensively studied problem [Ergun Kannan Kumar Rubinfeld Viswanathan 00, Lehman Ron 01, Fischer 04, Batu Rubinfeld White 05, Ailon Chazelle 06,

Halevy Kushilevitz 08, Bhattacharyya Grigorescu Jung Raskhodnikova Woodruff 12, Briet Chakraborty Soriano Matsliah 12, Berman Raskhodnikova Yaroslavtsev 14, Chakrabarty
Seshadhri '13'14'16'19, Chen Servedio Tan 14, Belovs Blais 16, Pallavoor Raskhodnikova Varma 18, Black Chakrabarty Seshadhri '18'20]

• Functions on the hypercube 0,1 𝑑, 𝒓 = number of distinct values of 𝑓.

7

Boolean Real-Valued (Previous) Real-Valued (Our results)

Upper bounds

෨𝑂 min
𝑑

𝜀2
,
𝑑

𝜀
[Dodis Goldreich Lehman Raskhodnikova

Ron Samorodnitsky 99, Goldreich

Goldwassar Ron Lehman Samorodnitsky 00,

Khot Minzer Safra 15]

𝑂
𝑑

𝜀

[Chakrabarty Seshadhri 13]

෨𝑂 min
𝒓 𝑑

𝜀2
,
𝑑

𝜀

Lower Bounds

Nonadaptive: ෩Ω 𝑑
[Fischer Lehman Newman Raskhodnikova

Rubinfeld 02, Chen De Servedio Tan 15,

Chen Waingarten Xie 17]

Adaptive : ෩Ω(𝑑1/3)
[Chen Waingarten Xie 17]

Ω(min(𝒓2, 𝑑))

[Blais Brody Matulef 12]

Ω(min(𝒓 𝑑, 𝑑))

Nonadaptive, 1-sided error

Results on Approximating the Distance to Monotonicity

• Functions on the hypercube 0,1 𝑑, 𝒓 = number of distinct values of 𝑓.

• All algorithms have query complexity polynomial in 𝑑 and additive error parameter.

8

Boolean
[Pallavoor Raskhodnikova

Waingarten 20]

Real-Valued
[Fattal Ron 10]

Real-Valued

(Our results)

Upper bounds 𝑂 𝑑 log 𝑑 -factor 𝑂 𝑑 log 𝒓 -factor 𝑂 𝑑 log 𝑑 -factor

Lower bounds
෩Ω 𝑑 -factor

nonadaptive

No dependence on 𝒓

Isoperimetric Inequalities for Boolean Functions

• Undirected [Talagrand 93]

𝑥∈ 0,1 𝑑

𝐼𝑓 (𝑥) = Ω var 𝑓 ⋅ 2𝑑

• Directed [Khot Minzer Safra 15, Pallavoor Raskhodnikova Waingarten 20]

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω Dist 𝑓,MONO

9

0 1

0 0

0 0

1 1

0 1

0 0

0 0

1 2

 Edge (𝑥, 𝑦) is influential if 𝑓 𝑥 ≠ 𝑓(𝑦)

 𝐼𝑓 𝑥 = # influential (𝑥, 𝑦) s.t. 𝑓 𝑥 > 𝑓(𝑦)

 𝑝0 = fraction of 𝑓-values that are 0

var 𝑓 = 𝑝0 1 − 𝑝0

 Edge 𝑥 → 𝑦 is decreasing if 𝑓 𝑥 > 𝑓 𝑦

 𝐼𝑓
− 𝑥 = # decreasing edges leaving 𝑥

Our Isoperimetric Inequalities for Functions 𝒇: 𝟎, 𝟏 𝒅 → ℝ

• Undirected

𝑥∈ 0,1 𝑑

𝐼𝑓 (𝑥) = Ω Dist 𝑓, CONSTANT

• Directed

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω Dist 𝑓,MONO

10

0 2

0 0

0 0

1 1

0 2

0 0

0 0

1 1

 Edge (𝑥, 𝑦) is influential if 𝑓 𝑥 ≠ 𝑓(𝑦)

 𝐼𝑓 𝑥 = # influential (𝑥, 𝑦) s.t. 𝑓 𝑥 > 𝑓(𝑦)

 𝑝0 = fraction of 𝑓-values that are 0

var 𝑓 = 𝑝0 1 − 𝑝0

 Edge 𝑥 → 𝑦 is decreasing if 𝑓 𝑥 > 𝑓 𝑦

 𝐼𝑓
− 𝑥 = # decreasing edges leaving 𝑥

Number of values that need to be

changed to make 𝑓 constantFor a Boolean function 𝑓,

var 𝑓 ⋅ 2𝑑 and Dist 𝑓, CONSTANT
are within a factor of 2

No dependence on 𝒓

Main Isoperimetric Inequality (Directed)

• The inequality we use in our applications.

• Implies all other inequalities mentioned in this talk.

• We show how to prove it.

11

Main Inequality

For all functions 𝑓: {0,1}𝑑 → ℝ,

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω Dist 𝑓,MONO

𝐼𝑓
− 𝑥 = # decreasing edges leaving 𝑥

Main Isoperimetric Inequality

12

Main Inequality

For all functions 𝑓: {0,1}𝑑 → ℝ,

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω Dist 𝑓,MONO

Dist 𝑓,MONO = 3

𝑥∼ 0,1 𝑑

𝐼𝑓
−(𝑥)

= 2 + 2 + 1

2 2

2 2

3 1

3 2

2 2

3 1

3 1

3 3

Dist 𝑓,MONO = 4

𝑥∼ 0,1 𝑑

𝐼𝑓
−(𝑥)

= 2 + 2 + 2

𝐼𝑓
− 𝑥 = # decreasing edges leaving 𝑥

Main Isoperimetric Inequality

• We prove it by reducing to the Boolean case, via Boolean Decomposition Theorem.

13

Main Inequality

For all functions 𝑓: {0,1}𝑑 → ℝ,

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω Dist 𝑓,MONO

𝐼𝑓
− 𝑥 = # decreasing edges leaving 𝑥

Boolean Decomposition Theorem

• It holds for every partially ordered domain, which we represent as a DAG 𝐺.

• Monotonicity testing on POsets first studied by [Fischer Lehman Newman Raskhodnikova Rubinfeld 02]

– Is equivalent to several other property testing problems

• Vertices 𝑉 𝐺 , edges 𝐸 𝐺 .

• 𝑥 ≼ 𝑦 iff there is directed path from 𝑥 to 𝑦.

• Edge 𝑥 → 𝑦 is decreasing if 𝑓 𝑥 > 𝑓(𝑦).

14

2

3

5

0

4

6

𝑓: 𝑉 𝐺 → ℝ

Boolean Decomposition Theorem

• DE 𝑓 = set of decreasing edges w.r.t. 𝑓

15

Boolean Decomposition Theorem

Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function.

There exist 𝑘 ≥ 1, Boolean functions 𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1}

and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘 of 𝐺 such that:

1) DE 𝑓𝑖 ⊆ 𝐸 𝐻𝑖 ∩ DE 𝑓

2) σ𝑖∈[𝑘]Dist(𝑓𝑖 , MONO) ≥
1

2
Dist(𝑓,MONO) Boolean functions 𝑓𝑖 capture Dist(𝑓,MONO)

Edges decreasing w.r.t. 𝑓𝑖 are in 𝐻𝑖

and are also decreasing w.r.t. 𝑓

Boolean Decomposition Theorem ⇒ Main Inequality

𝒙∈{𝟎,𝟏}𝒅

𝐼𝑓
−(𝑥) ≥

𝒊∈ 𝒌

𝒙∈𝑽(𝑯𝒊)

𝐼𝑓
− 𝑥

≥

𝑖∈ 𝑘

𝑥∈𝑉(𝐻𝑖)

𝐼𝒇𝒊
− 𝑥

≥

𝑖∈[𝑘]

𝐶 ⋅ Dist 𝒇𝒊,MONO

≥
𝐶

2
⋅ Dist(𝑓,MONO)

16

Main Inequality

For all functions 𝑓: {0,1}𝑑 → ℝ,

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω Dist 𝑓,MONO

𝐼𝑓
− 𝑥 = # decreasing edges leaving 𝑥

Subgraphs 𝐻𝑖 are disjoint

Edges decreasing w.r.t. 𝑓𝑖 are in 𝐻𝑖

and are also decreasing w.r.t. 𝑓

By the Boolean case

Boolean functions 𝑓𝑖 capture Dist(𝑓,MONO)

Boolean Decomposition: Thresholding Intuition

• To reduce from real-valued to Boolean functions, we can consider thresholding:

Decreasing edges w.r.t. ℎ𝑡 are also decreasing w.r.t. 𝑓

17

ℎ𝑡 𝑥 = ቐ
1 if 𝑓 𝑥 ≥ 𝑡

0 otherwise

0

1

41

0

1
2

2

1

11

0

0

1
1

1

𝑡 = 1

Boolean Decomposition: Thresholding Intuition

• To reduce from real-valued to Boolean functions, we can consider thresholding:

Decreasing edges w.r.t. ℎ𝑡 are also decreasing w.r.t. 𝑓

• The undirected version of the Main Inequality can be proved by considering the right 𝑡

• Considering all 𝑡 gives a reduction to the Boolean case for 𝐿1 distance [Berman Raskhodnikova Yaroslavtsev 16]

• But it fails for proving Boolean Decomposition: the same edge could be decreasing w.r.t. different ℎ𝑡
• To prove Boolean Decomposition, we apply different thresholds in disjoint locations of hypercube.

18

ℎ𝑡 𝑥 = ቐ
1 if 𝑓 𝑥 ≥ 𝑡

0 otherwise

0

1

41

0

1
2

2

0

10

0

0

0
1

1

𝑡 = 2

Boolean Decomposition: Importance of Matchings

A vertex pair (𝑥, 𝑦) is decreasing if 𝑥 ≼ 𝑦 and 𝑓 𝑥 > 𝑓(𝑦).

We consider matchings 𝑀:𝑆 → 𝑇 of decreasing pairs.

Main Idea: Construct Boolean functions 𝑓𝑖 such that every decreasing pair in 𝑀
is decreasing w.r.t. exactly one 𝑓𝑖

19

Fact [Fischer Lehman Newman Raskhodnikova Rubinfeld 02]

For every function 𝑓 and maximal matching 𝑀
of pairs decreasing w.r.t. 𝑓,

𝑀 ≤ Dist 𝑓,MONO ≤ 2|𝑀|

𝑆 = lower endpoints,

𝑇 = upper endpoints

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇

Proof of Boolean Decomposition: Plan

1. Explain how to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.

2. Specify a special matching 𝑀.

3. Define Boolean functions 𝑓𝑖 based on subgraphs 𝐻𝑖 obtained from 𝑀.

20

Boolean Decomposition Theorem

Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. There exist 𝑘 ≥ 1, Boolean

functions 𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘 of 𝐺 such that:

(1) DE 𝑓𝑖 ⊆ 𝐸 𝐻𝑖 ∩ DE 𝑓 ; (2) σ𝑖∈[𝑘]Dist(𝑓𝑖 , MONO) ≥
1

2
Dist 𝑓,MONO

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

Definition (Sweeping Graphs) For two disjoint sets 𝑆, 𝑇 ⊆ 𝑉 𝐺 ,

subgraph Sweep 𝑆, 𝑇 = union of all directed paths from vertices in 𝑆 to vertices in 𝑇

21

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇

Useful properties:

• Sweep 𝑆, 𝑇 is an induced subgraph

• A vertex outside Sweep 𝑆, 𝑇 cannot be

both "above" and "below" Sweep 𝑆, 𝑇

Call (𝑆, 𝑇) a set-pair

It has a path from

a vertex in Sweep(𝑆, 𝑇)
It has a path to

a vertex in Sweep(𝑆, 𝑇)

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

22

Merge-Conflicts (Input: matching 𝑀: 𝑆 → 𝑇)

1. Initialize collection of set-pairs
to contain ({𝑠}, {𝑡}) for all 𝑠, 𝑡 ∈ 𝑀

2. Repeat until there are no conflicts:

If two set-pairs 𝑋, 𝑌 and 𝑋′, 𝑌′ conflict

then merge them

\\ replace them with 𝑋 ∪ 𝑋′, 𝑌 ∪ 𝑌′

3. Return collection of set-pairs
Collection = 𝑎 , {𝑥} , 𝑏 , {𝑦} , 𝑐 , {𝑧}

𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇
• Two set-pairs of vertices (𝑋, 𝑌) and 𝑋′, 𝑌′

conflict
if Sweep 𝑋, 𝑌 intersects Sweep 𝑋′, 𝑌′ .

• Sweep 𝑋, 𝑌 = subgraph of paths

from vertices in 𝑋 to vertices in 𝑌

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

23

Merge-Conflicts (Input: matching 𝑀: 𝑆 → 𝑇)

1. Initialize collection of set-pairs
to contain ({𝑠}, {𝑡}) for all 𝑠, 𝑡 ∈ 𝑀

2. Repeat until there are no conflicts:

If two set-pairs 𝑋, 𝑌 and 𝑋′, 𝑌′ conflict

then merge them

\\ replace them with 𝑋 ∪ 𝑋′, 𝑌 ∪ 𝑌′

3. Return collection of set-pairs

𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Collection = 𝑎 , {𝑥} , 𝑏 , {𝑦} , 𝑐 , {𝑧}

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇
• Two set-pairs of vertices (𝑋, 𝑌) and 𝑋′, 𝑌′

conflict
if Sweep 𝑋, 𝑌 intersects Sweep 𝑋′, 𝑌′ .

• Sweep 𝑋, 𝑌 = subgraph of paths

from vertices in 𝑋 to vertices in 𝑌
Sweep 𝑎 , 𝑥

union of paths from 𝑎 𝑡𝑜 {𝑥}

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

24

Merge-Conflicts (Input: matching 𝑀: 𝑆 → 𝑇)

1. Initialize collection of set-pairs
to contain ({𝑠}, {𝑡}) for all 𝑠, 𝑡 ∈ 𝑀

2. Repeat until there are no conflicts:

If two set-pairs 𝑋, 𝑌 and 𝑋′, 𝑌′ conflict

then merge them

\\ replace them with 𝑋 ∪ 𝑋′, 𝑌 ∪ 𝑌′

3. Return collection of set-pairs

𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Collection = 𝑎 , {𝑥} , 𝑏 , {𝑦} , 𝑐 , {𝑧}

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇
• Two set-pairs of vertices (𝑋, 𝑌) and 𝑋′, 𝑌′

conflict
if Sweep 𝑋, 𝑌 intersects Sweep 𝑋′, 𝑌′ .

• Sweep 𝑋, 𝑌 = subgraph of paths

from vertices in 𝑋 to vertices in 𝑌
Sweep 𝑏 , 𝑦

union of paths from 𝑏 𝑡𝑜 {𝑦}

Conflict!

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

25

Merge-Conflicts (Input: matching 𝑀: 𝑆 → 𝑇)

1. Initialize collection of set-pairs
to contain ({𝑠}, {𝑡}) for all 𝑠, 𝑡 ∈ 𝑀

2. Repeat until there are no conflicts:

If two set-pairs 𝑋, 𝑌 and 𝑋′, 𝑌′ conflict

then merge them

\\ replace them with 𝑋 ∪ 𝑋′, 𝑌 ∪ 𝑌′

3. Return collection of set-pairs

𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Collection = 𝑎, 𝑏 , 𝑥, 𝑦 , 𝑐 , {𝑧}

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇
• Two set-pairs of vertices (𝑋, 𝑌) and 𝑋′, 𝑌′

conflict
if Sweep 𝑋, 𝑌 intersects Sweep 𝑋′, 𝑌′ .

• Sweep 𝑋, 𝑌 = subgraph of paths

from vertices in 𝑋 to vertices in 𝑌
Sweep 𝑎, 𝑏 , 𝑥, 𝑦

union of paths from 𝑎, 𝑏 𝑡𝑜 {𝑥, 𝑦}

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

26

Merge-Conflicts (Input: matching 𝑀: 𝑆 → 𝑇)

1. Initialize collection of set-pairs
to contain ({𝑠}, {𝑡}) for all 𝑠, 𝑡 ∈ 𝑀

2. Repeat until there are no conflicts:

If two set-pairs 𝑋, 𝑌 and 𝑋′, 𝑌′ conflict

then merge them

\\ replace them with 𝑋 ∪ 𝑋′, 𝑌 ∪ 𝑌′

3. Return collection of set-pairs

𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Collection = 𝑎, 𝑏 , 𝑥, 𝑦 , 𝑐 , {𝑧}

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇
• Two set-pairs of vertices (𝑋, 𝑌) and 𝑋′, 𝑌′

conflict
if Sweep 𝑋, 𝑌 intersects Sweep 𝑋′, 𝑌′ .

• Sweep 𝑋, 𝑌 = subgraph of paths

from vertices in 𝑋 to vertices in 𝑌
Sweep 𝑐 , 𝑧

union of paths from 𝑐 𝑡𝑜 {𝑧}

No conflict!

Final collection

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

Algorithm Merge-Conflicts, given a matching 𝑀: 𝑆 → 𝑇, returns set-pairs 𝑆1, 𝑇1 , … , (𝑆𝑘 , 𝑇𝑘) such that:

• The sets 𝑆𝑖 partition 𝑆, the sets 𝑇𝑖 partition 𝑇.

• The subgraphs Sweep 𝑆𝑖 , 𝑇𝑖 are vertex-disjoint.

• (Rematching property) For all 𝑠 ∈ 𝑆𝑖 , 𝑡 ∈ 𝑇𝑖 such that 𝑠 ≼ 𝑡:

there exists another matching 𝑀′: 𝑆 → 𝑇 that matches (𝑠, 𝑡).

27

𝑆 𝑇

𝑆1

𝑆2

𝑆3

𝑇1

𝑇2

𝑇3Sweep(𝑆2, 𝑇3)

Sweep(𝑆1, 𝑇1)

Sweep(𝑆2, 𝑇2)

Step 1: Obtaining Disjoint Subgraphs 𝑯𝒊

Algorithm Merge-Conflicts, given a matching 𝑀: 𝑆 → 𝑇, returns set-pairs 𝑆1, 𝑇1 , … , (𝑆𝑘 , 𝑇𝑘) such that:

• The sets 𝑆𝑖 partition 𝑆, the sets 𝑇𝑖 partition 𝑇.

• The subgraphs Sweep 𝑆𝑖 , 𝑇𝑖 are vertex-disjoint.

• (Rematching property) For all 𝑠 ∈ 𝑆𝑖 , 𝑡 ∈ 𝑇𝑖 such that 𝑠 ≼ 𝑡:

there exists another matching 𝑀′: 𝑆 → 𝑇 that matches (𝑠, 𝑡).

28

𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 } 𝑀′ = { 𝑎, 𝑦 , 𝑏, 𝑥 , 𝑐, 𝑧 }

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆1

𝑆2

𝑇1

𝑇2

Proof of Boolean Decomposition: Plan

 Explain how to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.

2. Specify a special matching 𝑀.

3. Define Boolean functions 𝑓𝑖 based on subgraphs 𝐻𝑖 obtained from 𝑀.

29

Boolean Decomposition Theorem

Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. There exist 𝑘 ≥ 1, Boolean

functions 𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘 of 𝐺 such that:

(1) DE 𝑓𝑖 ⊆ 𝐸 𝐻𝑖 ∩ DE 𝑓 ; (2) σ𝑖∈[𝑘]Dist(𝑓𝑖 , MONO) ≥
1

2
Dist 𝑓,MONO

Step 2: Special Matching

Max-weight, min-cardinality matching 𝑀 of pairs 𝑥 ≼ 𝑦

• maximizes weight(𝑴) = σ 𝑥,𝑦 ∈𝑀(𝑓 𝑥 − 𝑓(𝑦)),

• and amongst such matchings has the fewest pairs.

Run algorithm Merge-Conflicts with special matching 𝑀.

30

Violation Lemma

The set-pairs 𝑆1, 𝑇1 , … , (𝑆𝑘 , 𝑇𝑘) obtained from special matching satisfy:

• If 𝑠 ≼ 𝑡 and 𝑠 ∈ 𝑆𝑖 , 𝑡 ∈ 𝑇𝑖 then 𝑓 𝑠 > 𝑓(𝑡).

𝟐

𝟑

𝟏

𝟎

𝟏

𝟎

Weight is 2 + 2 + 1 = 5

𝑀 is a maximal matching of decreasing pairs

Sweep(𝑆𝑖 , 𝑇𝑖) are the subgraphs 𝐻𝑖

With careful thresholding, we will preserve violations of monotonicity

Recall: The set-pairs 𝑆1, 𝑇1 , … , (𝑆𝑘 , 𝑇𝑘) returned by Merge-Conflicts satisfy:

• (Rematching property) For all 𝑠 ∈ 𝑆𝑖 , 𝑡 ∈ 𝑇𝑖 such that 𝑠 ≼ 𝑡:

there exists another matching 𝑀′: 𝑆 → 𝑇 that matches (𝑠, 𝑡).

Proof (by contradiction):

• Suppose that 𝑓 𝑠 ≤ 𝑓 𝑡 for some 𝑠 ∈ 𝑆𝑖, 𝑡 ∈ 𝑇𝑖 with 𝑠 ≼ 𝑡.

• Use Rematching property to get a matching 𝑀′: 𝑆 → 𝑇 that matches (𝑠, 𝑡).

• 𝒘𝒆𝒊𝒈𝒉𝒕 𝑀′ = 𝒘𝒆𝒊𝒈𝒉𝒕 𝑀 , since the endpoints have not changed.

• 𝒘𝒆𝒊𝒈𝒉𝒕(𝑀′ \ { 𝑠, 𝑡 }) ≥ 𝒘𝒆𝒊𝒈𝒉𝒕(𝑀), because 𝑓 𝑠 − 𝑓 𝑡 ≤ 0.

• But 𝑀′ \ { 𝑠, 𝑡 } has fewer pairs than 𝑀. Contradiction.

Step 2: Special Matching

31

Violation Lemma
The set-pairs 𝑆1, 𝑇1 , … , (𝑆𝑘 , 𝑇𝑘) obtained from
special matching satisfy:

• If 𝑠 ≼ 𝑡 and 𝑠 ∈ 𝑆𝑖 , 𝑡 ∈ 𝑇𝑖 then 𝑓 𝑠 > 𝑓(𝑡).

𝟐

𝟏

𝟏

𝟏

𝟎

𝟎

𝒔

𝒕

weight 𝑴

=

𝑥,𝑦 ∈𝑀

(𝑓 𝑥 − 𝑓 𝑦)

Summary of Steps 1-2

• Start with special matching 𝑀: 𝑆 → 𝑇 (max weight, min-cardinality).

• 𝑀 is a maximal matching of decreasing pairs: 𝑀 ≤ Dist 𝑓,MONO ≤ 2|𝑀|.

• Run algorithm Merge-Conflicts to obtain set-pairs 𝑆1, 𝑇1 , 𝑆2, 𝑇2 , … , 𝑆𝑘 , 𝑇𝑘 .

• The subgraphs Sweep 𝑆𝑖 , 𝑇𝑖 are vertex-disjoint.

32

𝑆 𝑇

𝑆1

𝑆2

𝑆3

𝑇1

𝑇2

𝑇3

Sweep(𝑆1, 𝑇1)

Sweep(𝑆2, 𝑇2)

Sweep(𝑆2, 𝑇3)

Violation Lemma

If 𝑠 ≼ 𝑡 and 𝑠 ∈ 𝑆𝑖 , 𝑡 ∈ 𝑇𝑖 then 𝑓 𝑠 > 𝑓(𝑡).

Proof of Boolean Decomposition: Plan

 Explain how to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.

 Specify a special matching 𝑀.

3. Define Boolean functions 𝑓𝑖 based on subgraphs 𝐻𝑖 obtained from 𝑀.

33

Boolean Decomposition Theorem

Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. There exist 𝑘 ≥ 1, Boolean

functions 𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘 of 𝐺 such that:

(1) DE 𝑓𝑖 ⊆ 𝐸 𝐻𝑖 ∩ DE 𝑓 ; (2) σ𝑖∈[𝑘]Dist(𝑓𝑖 , MONO) ≥
1

2
Dist 𝑓,MONO

Step 3: Define Boolean Functions

For all set-pairs (𝑆𝑖 , 𝑇𝑖), define 𝑓𝑖: 𝑉 𝐺 → {0,1}

34

𝑇𝑖

𝑆𝑖

𝑧

in Sweep(𝑆𝑖 , 𝑇𝑖)

not in Sweep(𝑆𝑖 , 𝑇𝑖)

• 𝑓 𝑧 ≤ max
𝑥∈𝑇𝑖: 𝑧≼𝑥

𝑓(𝑥) , then 𝑓𝑖 𝑧 = 0

• else 𝑓𝑖 𝑧 = 1

𝑠

𝑎

𝑏

𝑡
𝑓𝑖 𝑡 = 0

lowest threshold

highest threshold

𝑓𝑖 𝑠 = 1

by Violation Lemma

max 𝑓-value achieved by points in 𝑇𝑖 above 𝑧

individual threshold

An edge inside Sweep(𝑆𝑖 , 𝑇𝑖)
is decreasing w.r.t. 𝑓𝑖 only

if it was decreasing w.r.t. 𝑓

𝑖∈[𝑘]

Dist 𝑓𝑖 , MONO ≥

𝑖∈ 𝑘

𝑀𝑖 = 𝑀 ≥
1

2
Dist(𝑓,MONO)

𝑓𝑖 has matching 𝑀𝑖: 𝑆𝑖 → 𝑇𝑖 of decreasing pairs

Step 3: Define Boolean Functions

For all set-pairs (𝑆𝑖 , 𝑇𝑖), define 𝑓𝑖: 𝑉 𝐺 → {0,1}

35

𝑧

in Sweep(𝑆𝑖 , 𝑇𝑖)

• 𝑓 𝑧 ≤ max
𝑥∈𝑇𝑖,𝑧≼𝑥

𝑓(𝑥) , then 𝑓𝑖 𝑧 = 0

• else 𝑓𝑖 𝑧 = 1

not in Sweep(𝑆𝑖 , 𝑇𝑖)

• above, then 𝑓𝑖 𝑧 = 1

• else 𝑓𝑖 𝑧 = 0

𝑆𝑖

𝑇𝑖

1

0

1

0

0 0

A vertex cannot be both above and below Sweep(𝑆𝑖 , 𝑇𝑖)

All decreasing edges are inside Sweep(𝑆𝑖 , 𝑇𝑖)

Proof of Boolean Decomposition: Plan

 Explain how to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.

 Specify a special matching 𝑀.

 Define Boolean functions 𝑓𝑖 based on subgraphs 𝐻𝑖 obtained from 𝑀.

36

Boolean Decomposition Theorem

Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. There exist 𝑘 ≥ 1, Boolean

functions 𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘 of 𝐺 such that:

(1) DE 𝑓𝑖 ⊆ 𝐸 𝐻𝑖 ∩ DE 𝑓 ; (2) σ𝑖∈[𝑘]Dist(𝑓𝑖 , MONO) ≥
1

2
Dist 𝑓,MONO

Main Isoperimetric Inequality

For all functions 𝑓: {0,1}𝑑 → ℝ,

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω Dist 𝑓,MONO

⇒

Summary

• Improved sublinear algorithms for monotonicity

– Proved tight bounds for nonadaptive algorithms

• Generalized isoperimetric inequalities

• Proved Boolean Decomposition Theorem

• Role of adaptivity?

– for property testing and distance approximation

• Does Talagrand inequality generalize to other domains?

– Specifically, the hypergrid domain 𝑛 𝑑?

– Weaker inequalities (Margulis) generalize [Black Chakrabarty Seshadhri 18]

– It would suffice to show such inequality for the Boolean case and then

use our Boolean Decomposition Theorem to generalize to real-valued functions.

– Would improve algorithms for monotonicity testing on hypergrid. 37

Open Questions

