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Tentative Plan

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Testing properties of lists. Sublinear-time 
approximation for graph problems.

Lecture 3. Testing properties of functions. Linearity testing.

Lecture 4. Techniques for proving hardness. Other models for 
sublinear computation.



Testing Linearity



Linear Functions Over Finite Field ��
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A Boolean function �: 0,1 � → {0,1} is linear if 

� �
, … , �� = �
�
 + ⋯+ ���� for some �
, … , �� ∈ {0,1}

• Work in finite field ��
– Other accepted notation for ��: ��� and  ℤ�
– Addition and multiplication is mod 2

– �= �
, … , �� , �= �
, … , �� , that	is,	�, � ∈ 0,1 �
				� + �= �
 + �
, … , �� + ��

no free term

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

001001 

011001  

010000

+

example



Testing if a Boolean function is Linear
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Input: Boolean function �: 0,1 � → {0,1}
Question:

Is the function linear or !-far from linear 

(≥ !2� values need to be changed to make it linear)?

Today: can answer in $ 

% time



Motivation

• Linearity test is one of the most celebrated testing algorithms

– A special case of many important property tests

– Computations over finite fields are used in 

• Cryptography

• Coding Theory

– Originally designed for program checkers and self-correctors

– Low-degree testing is needed in constructions of Probabilistically Checkable 

Proofs (PCPs)

• Used for proving inapproximability

• Main tool in the correctness proof: Fourier analysis of Boolean 

functions

– Powerful and widely used technique in understanding the structure of Boolean 

functions
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Equivalent Definitions of Linear Functions
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Definition. � is linear if � �
, … , �� = �
�
 + ⋯+ ���� for some �
, … , �� ∈ ��
⇕

� �
, … , �� = ∑ �((∈) for some * ⊆ , .

Definition′. � is linear if � � + � = � � + �(�) for all �, � ∈ 0,1 �.

• Definition ⇒ Definition′
� � + � = ∑ � + � ( = ∑ �( +(∈2 ∑ �( = � � + � � .(∈2(∈2

• Definition′ ⇒ Definition 

Let 3( = �((0,… , 0,1,0, … , 0
45

))
Repeatedly apply Definition′: 

� �
, … , �� = � ∑�(6( = ∑�(� 6( = ∑3(�( .

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

[,]	 {1, … ,}[,]	is a shorthand  for {1, … ,}



Linearity Test [Blum Luby Rubinfeld 90]
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1. Pick � and � independently and uniformly at random from 0,1 �.

2. Set 9 = � + � and query �on �, �,	and 9. Accept iff � 9 = � � + � � .
Analysis

If �is linear, BLR always accepts. 

If � is !-far from linear then > ! fraction of pairs � and � fail BLR test.

• Then, by Witness Lemma (Lecture 1), 2/! iterations suffice.

BLR Test (f, ε)

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]



Analysis Technique: 
Fourier Expansion



Representing Functions as Vectors

Stack the 2� values of �(�) and treat it as a vector in {0,1}�<
. 

� =

0
1
1
0
1
⋅
⋅
⋅
1
0
0

�(0000)
�(0001)
�(0010)
�(0011)
�(0100)

⋅
⋅
⋅

�(1101)
�(1110)
�(1111)
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Linear functions

There are 2� linear functions: one for each subset * ⊆ [,]. 

>∅ =

0
00
0
0
⋅
⋅
⋅
0
0
0

	, > 
 =

0
10
1
0
⋅
⋅
⋅
1
0
1

	, ⋯ ⋯, > � =

0
11
0
1
⋅
⋅
⋅
1
0
0
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Parity	on	the	positions	indexed	by	set	*	is	>2 �
, … , �� = J�(
(∈)



Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

• Vectors in 0,1 �< ⟶ Vectors in ℝ�<
.

• 0/False ⟶ 1 1/True ⟶ -1.

• Addition (mod 2)								⟶					 Multiplication in ℝ.

• Boolean function: � ∶ −1, 1 � → {−1,1}.
• Linear function 	>2∶ −1, 1 � → {−1,1} is given by >2 � = ∏ �((∈2 .
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Benefit 1 of New Notation

• The dot product of � and P as vectors in −1,1 �<
:

(# �’s such that � � = P(�)) − (# �’s such that � � ≠ P(�))

= 2� − 2 ⋅	 (# �’s such that � � ≠ P(�))

�, P = 1
2� dot	product	of	�	and	P	as	vectors

= avg
�∈ W
,
 <

� � P � = E�∈ W
,
 <[ � � P � ].

�, P = 1 − 2 ⋅ (fraction	of	disagreements	between	�	and	P)
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Inner product of functions �, P ∶ −1, 1 → {−1, 1}

disagreements between � and P



Benefit 2 of New Notation

• If * ≠ [ then >2 and >\ are orthogonal:  >2, >\ = 0. 

– Let ] be an element on which * and [ differ 

(w.l.o.g. ] ∈ * ∖ [)

– Pair up all ,-bit strings: (�, � ( )
where � ( is � with the ]th bit flipped.

– Each such pair contributes �_ − �_ = 0 to >2, >\ . 

– Since all �’s are paired up, >2, >\ = 0.

• Recall that there are 2� linear functions >2	.
• >2, >2 = 1

– In fact, �, � = 1 for  all � ∶ −1, 1 � → −1, 1 .

– (The  norm of �, denoted � ,	 is  �, � 	)
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�

� (

>2 >\

+1
−1+1
+�
+1
⋅
⋅
⋅

−�
+1
−1
−1

−1
+1
+1
_
+1
⋅
⋅
⋅
_
−1
+1
+1

The functions >2 2⊆ � form an orthonormal basis for ℝ�<
.Claim.



Idea: Work in the basis >2 2⊆ � , so it is easy to see how close a specific 

function � is to each of the linear functions.

Every function � ∶ −1, 1 → 	ℝ is uniquely expressible as a linear combination (over 

ℝ) of the 2� linear functions:

where �a * = 	 �, >2 is the Fourier Coefficient of �	 on set *.

Proof: �	can	be	written	uniquely	as		a	linear	combination	of	basis	vectors:
� = J d2 ⋅ >2

2⊆ �
It remains to prove that d2=�a * for all *.

�a * = 	 �, >2 =	 J d\ ⋅ >\
\⊆[�]

, >2 = J d\ ⋅ >\ , >2
\⊆[�]

= d2

Fourier Expansion Theorem
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Fourier Expansion Theorem

� = J �a * >2,
2⊆ �

⋅,⋅Linearity of ⋅,⋅ >\ , >2 = e	1			if		[ = *
	0			otherwise>\ , >2 = e	1			if		[ = *
	0			otherwiseDefinition of Fourier

coefficients



Examples: Fourier Expansion

f Fourier transform

� � = 1 1
� � = �( �(

AND(�
, ��) 1
2 + 1

2 �
 + 1
2�� − 1

2�
��

MAJORITY(�
, ��, �g) 1
2 �
 + 1

2�� + 1
2�g − 1

2�
���g
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Parseval Equality

Proof: 

�, � = 	 J �a * >2
2⊆ �

, J �a [ >\
\⊆ �

											
				= JJ�a *

\2
�a [ >2, >\

= J�a * �																									
2
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By linearity of inner product

>2By orthonormality of >2’s

Parseval Equality

Let �: −1, 1 � → ℝ. Then

�, � = J �a * �								
2⊆ �

By Fourier Expansion Theorem



Parseval Equality

Proof: 

�, � = E�∈ W
,
 <[� � �]

= 1																
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Parseval Equality for Boolean Functions

Let �: −1, 1 � → −1, 1 . Then

�, � = J �a * �
2⊆ �

= 1

By definition of inner product

�Since � is Boolean



Vector	product	notation:	� ∘ � = (�
�
, ����, … , ����)

Proof: Indicator variable jklm = n	1			if	BLR	accepts		0			otherwise 	⇒ 	 jklm = 

� + 


� � � � � � 9 .

Pr�,�∈ W
,
 < BLR � accepts = Er,s∈ W
,
 < jklm = 1
2 + 1

2	 Er,s∈ W
,
 < � � � � � 9

BLR Test in {-1,1} notation
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BLR Test (f, ε)

1. Pick � and � independently and uniformly at random from −1,1 �.

2. Set 9 = � ∘ � and query � on �, �,	and 9.  Accept iff � � � � � 9 = 1.

Prr,s∈ W
,
 < BLR � accepts = 1
2 + 1

2 J �a * g
2⊆[�]

Sum-Of-Cubes Lemma.

By linearity of expectation



So far: Prr,s∈ W
,
 < BLR � accepts = 

� + 


� Er,s∈ W
,
 < � � � � � 9
Next:

Proof of Sum-Of-Cubes Lemma
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= J �a * �a [ �a t Er,s∈ W
,
 <[>2(�)>\(�)>u(9)
2,\,u⊆[�]

]

= Er,s∈ W
,
 < J �a * �a [ �a t >2(�)>\(�)>u(9)
2,\,u⊆[�]

Er,s∈ W
,
 < � � � � � 9

= Er,s∈ W
,
 < J �a * >2(�)	
2⊆[�]

J �a [ >\(�)	
\⊆[�]

J �a t >u(9)	
u⊆[�]

By Fourier Expansion Theorem

Distributing out the product of sums

By linearity of expectation



Prr,s∈ W
,
 < BLR � accepts

• Let *Δ[denote symmetric difference of sets	* and [

Proof of Sum-Of-Cubes Lemma (Continued)

21

a= Er,s∈ W
,
 < ∏ �((∈2 ∏ �( ∏ �(�((∈u(∈\
a= Er,s∈ W
,
 < ∏ �((∈2wu ∏ �((∈\wu
a= Er∈ W
,
 < ∏ �((∈2wu ⋅ Es∈ W
,
 < ∏ �((∈2wu
a= ∏ Er∈ W
,
 <[�(](∈2wu ⋅ ∏ Es∈ W
,
 <[�(](∈\wu

a Er,s∈ W
,
 <[>2(�)>\(�)>u(9)]

= n	1				when	*Δt = ∅		and	[Δt = ∅	 ⇔ * = [ = t
	0					otherwise

a= Er,s∈ W
,
 < ∏ �((∈2 ∏ �( ∏ y((∈u(∈\

	= 1
2 + 1

2 J �z * �z [ �z t Er,s∈ W
,
 <[>2(�)>\(�)>u(9)
2,\,u⊆[�]

]

�(� = �(� = 1Since �(� = �(� = 1
r s	Since r and s	 are independent

{ = r ∘ sSince { = r ∘ s

r s|s	coordinates
	

Since r and s|s	coordinates
	are independent

a= ∏ E}5∈{W
,
}[�(](∈2wu ⋅ ∏ E~5∈{W
,
}[�(](∈\wu

Er,s∈ W
,
 <[>2(�)>\(�)>u(9)] is 1 if * = [ = t and 0 otherwise.Claim.



Proof of Sum-Of-Cubes Lemma (Done)
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= 1
2 + 1

2 J �a * g
2⊆[�]

Prr,s∈ W
,
 < BLR � accepts = 1
2 + 1

2 J �a * g
2⊆[�]

Sum-Of-Cubes Lemma.

Prr,s∈ W
,
 < BLR � accepts 	= 1
2 + 1

2 J �z * �z [ �z t Er,s∈ W
,
 <[>2(�)>\(�)>u(9)
2,\,u⊆[�]

]



Proof of Correctness Theorem

Proof: Suppose to the contrary that

• Then	max2⊆ � �a * > 1	 − 2!. That	is,	�a [ > 1 − 2! for	some	[ ⊆ , .
• But �a [ = �, >\ = 1 − 2 ⋅ (fraction	of	disagreements	between	�	and	>\)
• � disagrees	with	a	linear	function	>\ on	< ! fraction	of	values.						
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By Sum-Of-Cubes Lemma

� * � ≥ 0Since �a * � ≥ 0

Parseval Equality

Correctness Theorem (restated)

If � is ε-far from linear then Pr BLR � 	accepts ≤ 1 − !. 

= 1
2 + 1

2 J �a * g
2⊆[�]

≤ 1
2 + 1

2 ⋅ max2⊆ � �a * ⋅ J �a * �
2⊆ �

= 1
2 + 1

2 ⋅ max2⊆ � �a *

1 − ! < Prr,s∈ W
,
 < BLR � accepts

⨳⨳⨳⨳



Summary

BLR tests whether a function �: 0,1 � → {0,1} is

linear or !-far from linear 

(≥ !2� values need to be changed to make it linear)

in $ 

% time.
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