Monotonicity Testing

Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron and Alex Samorodnitsky

Probabilistic Property Tester can be

- much faster than an exact algorithm;
- the only option when the exact problem is not decidable;
- used for preprocessing;
- good enough in application where some errors are tolerable.

Problem Statement

Definitions for $f: \Sigma^n \mapsto R$

For two *n*-symbol strings *x* and *y* we say *x* ≺ *y* if
 y is formed from *x* by increasing one

or more symbols.

Definitions for $f: \Sigma^n \mapsto R$

- For two *n*-symbol strings *x* and *y* we say *x* ≺ *y* if
 y is formed from *x* by increasing one or more symbols.
- f is monotone if $f(x) \le f(y)$ for all $x \prec y$.

Definitions for $f: \Sigma^n \mapsto R$

- For two *n*-symbol strings x and y we say x ≺ y if
 y is formed from x by increasing one or more symbols.
- f is monotone if $f(x) \le f(y)$ for all $x \prec y$.
- *f* is ε-far from monotone if
 every monotone function disagrees
 with *f* on at least an ε-fraction of the domain.

examples

1/3-far from monotone

Q = Query Complexity of Monotonicity Tests

$$[\text{GGLR98}] \qquad \mathbf{Q} = O\left(\frac{n^2}{\varepsilon} \cdot |\Sigma|^2 \cdot |R|\right)$$

This work

$$Q = O\left(\frac{n}{\varepsilon} \cdot \log|\Sigma| \cdot \log|R|\right)$$

Algorithm (Reduction to a simpler case)

• INPUT:

```
-\varepsilon and f: \Sigma^n \mapsto R
```

X V

- Repeat several times:
 - Pick a line along the axes of the hyper-grid uniformly at random.
 - Use your favorite algorithm to test if the line is monotone [our paper, EKKRV98, Noga Alon].
 - If a pair (*x*, *y*) of points on the line with $x \prec y$ and f(x) > f(y) is found, then REJECT.
- Otherwise, ACCEPT.

Special case: $f: \{0,1\}^n \mapsto R$

- Edge $x \rightarrow y$ iff $x \prec y$ and x and y differ in one coordinate
- Edge $x \rightarrow y$ is a violated edge of fif f(x) > f(y).

Algorithm for $f: \{0,1\}^n \mapsto R$

- INPUT:
 - $-\varepsilon$ and $f: \{0,1\}^n \mapsto R$

- Repeat *Q*/2 times:
 - Pick an edge $x \rightarrow y$ uniformly at random.
 - If $x \rightarrow y$ is violated (i.e. f(x) > f(y)), then REJECT.
- Otherwise, ACCEPT.

Intuition for Analysis

- If *f* is monotone, the algorithm always accepts.
- If *f* is not monotone:
 - If *f* has few violated edges, we can make *f* monotone by changing its value at a few points.
 - If *f* has many violated edges, the algorithm succeeds with high probability.

Proof Plan

• BINARY RANGE $(f : \{0,1\}^n \mapsto \{0,1\})$

altered points $\leq 2 \cdot \#$ violated edges

THEOREM: If f is ε -far from monotone, then a random edge is violated with probability

 $\frac{\# \text{ violated edges}}{n2^n} \ge \frac{\# \text{ altered points}}{2 \cdot n2^n} \ge \frac{\varepsilon 2^n}{2 \cdot n2^n} \ge \frac{\varepsilon}{2n}.$

violated edges $1 \rightarrow 0$

Proof Plan

• BINARY RANGE $(f: \{0,1\}^n \mapsto \{0,1\})$

altered points $\leq 2 \cdot \#$ violated edges

THEOREM: If f is ε -far from monotone, then a random edge is violated with probability

 $\frac{\text{\# violated edges}}{n2^n} \ge \frac{\text{\# altered points}}{2 \cdot n2^n} \ge \frac{\varepsilon 2^n}{2 \cdot n2^n} \ge \frac{\varepsilon}{2n}.$

altered points $\leq 2 \cdot \#$ violated edges $\cdot \log |R|$

THEOREM: If f is ε -far from monotone, then a random edge is violated with probability $\frac{\# \text{ violated edges}}{n2^{n}} \ge \frac{\# \text{ altered points}}{n2^{n} \cdot 2\log |R|} \ge \frac{\varepsilon 2^{n}}{n2^{n} \cdot 2\log |R|} \ge \frac{\varepsilon}{2n\log |R|} \cdot \frac{\varepsilon}{2n\log$

violated edges 1 - - 0

Swap violated edges $1 \rightarrow 0$ in red dimension to $0 \rightarrow 1$.

Swap violated edges $1 \rightarrow 0$ in red dimension to $0 \rightarrow 1$.

Swap violated edges $1 \rightarrow 0$ in red dimension to $0 \rightarrow 1$.

Swap violated edges $1 \rightarrow 0$ in red dimension to $0 \rightarrow 1$.

LEMMA. Swapping violated edges in dimension *i*

- 1. repairs all violated edges in dimension *i*;
- 2. does not increase the number of violated edges in dimension *j*, for all $j \neq i$.

Swap violated edges $1 \rightarrow 0$ in red dimension to $0 \rightarrow 1$.

LEMMA. Swapping violated edges in dimension *i*

- 1. repairs all violated edges in dimension *i*;
- 2. does not increase the number of violated edges in dimension *j*, for all $j \neq i$.

Back to the Proof Plan

• BINARY RANGE $(f : \{0,1\}^n \mapsto \{0,1\})$

altered points $\leq 2 \cdot \#$ violated edges

• RANGE REDUCTION $(f: \{0,1\}^n \mapsto R)$

altered points $\leq 2 \cdot \#$ violated edges $\cdot \log |R|$

W.l.g. assume $R = \{0, 1, ..., 2^{s} - 1\}.$

Prove # altered points $\leq 2 \cdot \#$ violated edges $\cdot s$

by induction on *s*.

How can we make f monotone?

Swap violated edges in red dimension?

How can we make f monotone?

Operator CLEAR

Making f monotone

Making f monotone

We are proving (by induction on *S*)

that for functions with a range of size 2^{S} ,

altered points $\leq 2 \cdot \#$ violated edges $\cdot s$.

Base case [functions with a range of size 2]:

altered points $\leq 2 \cdot \#$ violated edges.

Induction hypothesis [functions with a range of size 2^{S-1}]:

altered points $\leq 2 \cdot \#$ violated edges $\cdot (S-1)$.

Making f monotone

• BINARY RANGE $(f : \{0,1\}^n \mapsto \{0,1\})$

altered points $\leq 2 \cdot \#$ violated edges

• RANGE REDUCTION $(f: \{0,1\}^n \mapsto R)$

altered points $\leq 2 \cdot \#$ violated edges $\cdot \log |R|$

W.l.g. assume $R = \{0, 1, ..., 2^{s} - 1\}.$

Proof by induction on *s*.

Conclusions

- SUMMARY OF RESULTS IN THIS TALK
 - Monotonicity test for $f: \{0,1\}^n \mapsto \{0,1\}$ [switching argument].
 - Monotonicity test for $f: \{0,1\}^n \mapsto R$ [SQUASH and CLEAR argument].
- SUMMARY OF RESULTS IN THE PAPER
 - Designed good monotonicity tests for $f: \Sigma \mapsto \{0,1\}$.
 - Reduced testing monotonicity of $f: \Sigma^n \mapsto \{0,1\}$ to the case n = 1

[sorting argument (a generalization of the switching argument)].

- Reduced testing monotonicity of $f: \Sigma^n \mapsto R$ to the case $f: \Sigma^n \mapsto \{0,1\}$

[SQUASH and CLEAR argument].

- OPEN PROBLEMS
 - Query complexity independent of the size of the range?
 - $f: D \mapsto R$, where D is any partially ordered set.
 - Tests for other properties.