Monotonicity Testing

Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron and Alex Samorodnitsky

Probabilistic Property Tester **can be**

- much faster than an exact algorithm;
- the only option when the exact problem is not decidable;
- used for preprocessing;
- good enough in application where some errors are tolerable.

Problem Statement

• For two *n-*symbol strings *x* and *y* we say $\boxed{x \prec y}$ if

y is formed from *x* by increasing one or more symbols.

- For two *n-*symbol strings *x* and *y* we say $\boxed{x \prec y}$ if *y* is formed from *x* by increasing one or more symbols.
- f is monotone if $f(x) \leq f(y)$ for all $x \prec y$.

conotone if

\n
$$
\leq f(y)
$$
 for all $x \prec y$.\n $\begin{array}{c|ccccc}\n x & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline\n f(x) & 0 & 3 & 7 & 8 & 8 & 9\n \end{array}$ \n

- For two *n-*symbol strings *x* and *y* we say $\boxed{x \prec y}$ if *y* is formed from *x* by increasing one or more symbols.
- $f(x) \leq f(y)$ for all $x \prec y$. • f is monotone if
- *f* is ε-far from monotone if every monotone function disagrees with f on at least an ε -fraction of the domain.

x	0	1	2	3	4	5
$f(x)$	0	3	7	8	8	9

 $f(x)$ 0 3 9 8 7 9 *x* 0 1 2 3 4 5

1/3-far from monotone

Q = Query Complexity of Monotonicity Tests

[GGLR98]
$$
Q = O\left(\frac{n^2}{\varepsilon} \cdot |\Sigma|^2 \cdot |R|\right)
$$

This work

$$
Q = O\left(\frac{n}{\varepsilon} \cdot \log |\Sigma| \cdot \log |R|\right)
$$

Algorithm (Reduction to a simpler case)

- INPUT:
	- $-$ and $f: \Sigma^n \mapsto R$

x y

- Repeat several times:
	- Pick a **line** along the axes of the hyper-grid uniformly at random.
	- Use your favorite algorithm to test if the **line** is monotone [our paper, EKKRV98, Noga Alon] .
- If a pair (x, y) of points on the **line** with $x \prec y$ and $f(x) > f(y)$ is found, then REJECT.

Otherwise, ACCEPT. $f(x) > f(y)$ is found, then REJECT.
-

- Edge $x \rightarrow y$ iff $x \prec y$ and *x* and *y* differ in one coordinate
- Edge $x \rightarrow y$ is a violated edge of f if $f(x) > f(y)$.

$\begin{array}{ll}\n \bigcap_{i=1}^n A_k \big(\text{for } k \in \{0,1\}^n \mapsto R \big) \end{array}$

- INPUT:
	- ε and $f: \{0,1\}^n \mapsto R$

- Repeat *Q*/2 times:
	- Pick an **edge** $x \rightarrow y$ uniformly at random.
	- If $x \rightarrow y$ is violated (i.e. $f(x) > f(y)$), then REJECT.
- Otherwise, ACCEPT.

Intuition for Analysis

- If *f* is monotone, the algorithm always accepts.
- If *f* is not monotone:
	- If *f* has few violated edges, we can make *f* monotone by changing its value at a few points.
	- If *f* has many violated edges, the algorithm succeeds with high probability.

Proof Plan

• BINARY RANGE $(f : \{0,1\}^n \mapsto \{0,1\})$

altered points $\leq 2 \cdot \#$ violated edges

THEOREM: If f is ε -far from monotone, then a random edge is violated with probability

 $2 \cdot n2^{n}$ ^{\leq} 2n 2 $2 \cdot n2$ # altered points 2 # violated edges $\left\downarrow$ # altered points $\left\langle \right\rangle$ $\varepsilon 2^{n}$ $\left\langle \right\rangle$ ε \geq $\ddot{}$ \geq $\ddot{}$ $\geq \frac{\text{\# altered points}}{2n^2} \geq \frac{\varepsilon^2}{2n^2}$ *n* $n2^n$ $2 \cdot n2^n$

violated edges $1 - \theta$

Proof Plan

• BINARY RANGE $(f : \{0,1\}^n \mapsto \{0,1\})$

altered points \leq 2 \cdot # violated edges

THEOREM: If f is ε -far from monotone, then a random edge is violated with probability

 $2 \cdot n2^{n}$ ^{\leq} 2n 2 $2 \cdot n2$ # altered points 2 # violated edges $\left\downarrow$ # altered points $\left\langle \right\rangle$ $\varepsilon 2^{n}$ $\left\langle \right\rangle$ ε \geq $\ddot{}$ \geq $\ddot{}$ $\geq \frac{\text{\# altered points}}{2n^2} \geq \frac{\varepsilon^2}{2n^2}$ *n* $n2^n$ $2 \cdot n2^n$

altered points $\leq 2 \cdot$ # violated edges \cdot log $|R|$

19 THEOREM: If f is ε -far from monotone, then a random edge is violated with probability . $n2^n \cdot 2\log |R|$ 2n log | R | 2 $2^n \cdot 2 \log |R|$ # altered points 2 # violated edges $n2^n$ $\leq n2^n \cdot 2 \log |R|$ $\leq n2^n \cdot 2 \log |R|$ $\leq 2n \log |R|$ *n* $n = \frac{1}{n}$ $\frac{\mathcal{E} \mathcal{L}^{\pi}}{2 \cdot 1} \geq \frac{\mathcal{E}}{2 \cdot 1}$ $\ddot{}$ \geq $\ddot{}$ \geq

violated edges $1 - \theta$

Swap violated edges $1 \rightarrow 0$ **in red dimension to** $0 \rightarrow 1$ **.**

Swap violated edges $1 \rightarrow 0$ **in red dimension to** $0 \rightarrow 1$.

Swap violated edges $1 \rightarrow 0$ **in red dimension to** $0 \rightarrow 1$ **.**

Swap violated edges $1 \rightarrow 0$ **in red dimension to** $0 \rightarrow 1$.

LEMMA. Swapping violated edges in dimension *i*

- 1. repairs all violated edges in dimension *i;*
- 2. does not increase the number of violated edges in dimension *j*, for all $j \neq i$.

Swap violated edges $1 \rightarrow 0$ **in red dimension to** $0 \rightarrow 1$.

LEMMA. Swapping violated edges in dimension *i*

- 1. repairs all violated edges in dimension *i;*
- 2. does not increase the number of violated edges in dimension *j*, for all $j \neq i$.

Back to the Proof Plan

• BINARY RANGE $(f : \{0,1\}^n \mapsto \{0,1\})$

altered points $\leq 2 \cdot$ # violated edges

• RANGE REDUCTION $(f : \{0,1\}^n \mapsto R)$

altered points $\leq 2 \cdot$ # violated edges $\cdot \log |R|$

W.l.g. assume $R = \{0, 1, \ldots, 2^s-1\}.$

Prove $\#$ altered points \leq 2 $\#$ violated edges \cdot s

by induction on *s*.

How can we make f monotone?

Swap violated edges in red dimension?

How can we make f monotone?

Operator CLEAR

3. leaves clear intervals clear.

Making f monotone

Making f monotone

We are proving (by induction on *s*)

that for functions with a range of size 2*^s* ,

Base case [functions with a range of size 2]: # altered points $\leq 2 \cdot$ # violated edges \cdot *S*.
ase case [functions with a range of size 2]:
altered points $\leq 2 \cdot$ # violated edges.

Induction hypothesis [functions with a range of size 2*s-1*]:

altered points $\leq 2 \cdot$ # violated edges \cdot (*s* - 1).

Making f monotone

• BINARY RANGE $(f : \{0,1\}^n \mapsto \{0,1\})$

altered points $\leq 2 \cdot \#$ violated edges

• RANGE REDUCTION $(f : \{0,1\}^n \mapsto R)$

altered points $\leq 2 \cdot$ # violated edges $\cdot \log |R|$

W.l.g. assume $R = \{0, 1, \ldots, 2^s-1\}.$

Proof by induction on *s*.

Conclusions

- SUMMARY OF RESULTS IN THIS TALK
	- Monotonicity test for $f: \{0,1\}^n \mapsto \{0,1\}$ [switching argument].
	- Arr Monotonicity test for $f: \{0,1\}^n \mapsto R$ [SQUASH and CLEAR argument].
- SUMMARY OF RESULTS IN THE PAPER
	- Designed good monotonicity tests for $f : \Sigma \mapsto \{0,1\}$.
	- Reduced testing monotonicity of $f: \Sigma^n \mapsto \{0,1\}$ to the case $n=1$

[sorting argument (a generalization of the switching argument)].

- Reduced testing monotonicity of $f: \Sigma^n \mapsto R$ to the case $f: \Sigma^n \mapsto \{0,1\}$

[SQUASH and CLEAR argument]*.*

- OPEN PROBLEMS
	- Query complexity independent of the size of the range?
	- $f: D \mapsto R$, where *D* is any partially ordered set.
	- Tests for other properties.