Monotonicity Testing

Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya
Raskhodnikova, Dana Ron and Alex Samorodnitsky

Probabilistic Property Testing

Probabilistic Algorithm

£\

YES |:> Always accept.

NO _ .
|:> Reject with
U probability > 1/2.

Probabilistic Property Testing

Probabilistic Algorithm Probabilistic Property Tester
YES |:> Always accept. YES |:> Always accept.

Close to YES |:> Don’t care

NO
|:> Reject with Far from |:> Reject with
probability > 1/2. YES probability >1/2.

Probabilistic Property Tester

Algorithm :) Accept|if the object has the property.
Reject | with Pr> 1/2

If the object Is far from any
object with the property.

Probabilistic Property Tester

4

Algorithm :) Accept|if the object has the property.
Reject | with Pr> 1/2

If the object Is far from any
object with the property.

Probabilistic Property Tester

Algorithm

s
?&

-

Accept

Reject

If the object has the property.
with Pr> 1/2

If the object is far from any
object with the property.

Probabilistic Property Tester

+
&

Algorithm

-

Accept

Reject

Express property testing
as testing properties of
functions.

If the object has the property.
with Pr> 1/2

If the object is far from any
object with the property.

Motivation

Probabilistic Property Tester can be

* much faster than an exact algorithm;

* the only option when the exact problem is not
decidable;

* used for preprocessing;

* good enough in application where some etrors are
tolerable.

Problem Statement

+
&

Algorithm

-

Accept

Reject

If f 1S monotone.
with Pr> 1/2
If f i1s e-far from monotone.

Definitionsfor f - X" > R

 For two n-symbol strings x and y we

say

X<Yy

If

y 1s formed from x by increasing one
or more symbols.

examples
001001
011001 | ? | 100000

011111

10

Definitionsfor f - X" > R

examples
 For two n-symbol strings x and y we 01001
say (X < Y|if 011001 | ? | 100000
y is formed from x by increasing one 011111
or more symbols.
« fis monotone if x |01 2345

F(x)<t(y) forall x<y. f)0|0 37 8 8 9

Definitionsfor f - X" > R

For two n-symbol strings x and y we

say (X < Vy|if
y 1s formed from x by increasing one
or more symbols.

f i1s monotone If
f(x)<f(y) forall x=<y.

f 1s e-far from monotone if

every monotone function disagrees
with f on at least an e-fraction of the
domain.

examples

001001

011001 | ? | 100000

011111

X|012345

f)[0 378809

X |012345

f(x)‘039879

1/3-far from monotone

12

Results

Q = Query Complexity of Monotonicity Tests

[GGLRI8] Q = O(2 R ‘]

This work Q= O(ZJOQ\ZHOQ\R\)

13

Algorithm (Reduction to a simpler case)

X S L 7
. INPUT: ol i Pe
—¢and f:2"—R A
///
_ v
* Repeat several times:

— Pick a along the axes of the hyper-grid uniformly at
random.

— Use your favorite algorithm to test if the IS
mMonotone [our paper, EKKRV98, Noga Alon] .

— If a pair (x, y) of points on the with X<y and
f (x) >f (y) is found, then REJECT.

« Otherwise, ACCEPT.

Special case: f :{0,1}" — R

f(011) _ f(111)

A

Y

f(010)

-

{ f(110)

f(001)

f(101)

=

£(000) £(100)

« Edge x—y iff X<y and
X and y differ in one coordinate

« Edge x—V is a violated edge of f
it f(x)>f(y).

15

Algorithmfor f :{0,1}" —» R

- INPUT: X |
— ¢ and f:{0,1}" —» R

Y

Y

* Repeat Q/2 times:
— Pick an X—Y uniformly at random.
— If x>y isviolated (i.e. f (x) > f (y)), then REJECT.

e Otherwise, ACCEPT.

16

Intuition for Analysis

 |f fis monotone, the algorithm
always accepts.

e If fis not monotone:

— If f has few violated edges, we can
make f monotone by changing its
value at a few points.

— If f has many violated edges, the
algorithm succeeds with high
probability.

YES

Don’t care

NO

17

Proof Plan

« BINARY RANGE (f :{O,l}n — 40,1} 0 /)AO
g |
altered points < 2 - # violated edges 1 \4/1 _ _Q/ |
|
|
THEOREM: If f is e-far from monotone, then a random edge is 0 /I 1
. . ‘- /
violated with probability 4/
violated edges S # altered points S g2" - ! 0

&
n2" N 2.n2" ~2-n2" 2N violated edges 1 - -0

18

Proof Plan

- BINARY RANGE (f :{0,1}" — {0,1}) 0 0

4 |

altered points < 2 - # violated edges 1 \4/1 - _Q/ :

I
THEOREM: If f is e-far from monotone, then a random edge is /0 /I 1

violated with probability 4/
violated edges S # altered points S g2" o ! 0

n2" N 2.n2" ~2-n2" 2N violated edges 1 - -0

. RANGE REDUCTION (f :{0,1}" —> R)
altered points <2 - # violated edges-log | R |

THEOREM: If f is e-far from monotone, then a random edge is

_violated with probability

violated edges S # altered points S g2 S g

n2" ~ n2"-2log|R| n2"-2log|R| 2nlog|R| *

Repairing Violated Edges in One Dimension

Swap violated edges 1 -0 in red dimension to 0—1.

0
e\ I I
) // O/T Sw_appin_g red 0 1 //
Z — —> | dimension.

A

20

Repairing Violated Edges in One Dimension

Swap violated edges 1 -0 in red dimension to 0—1.

Sort

—>

e O
[
¢ O
¢ O
®
e O
e O
® O
¢ O
¢ O
o
o

e O
=
o
o
=
o

e O
o
o
o
=
=

21

Repairing Violated Edges in One Dimension

Swap violated edges 1 -0 in red dimension to 0—1.

0 0
> A /)I\
a4 Swapping red 1 // |
pd % dimension. 0 L ¢ I
e |
Ve I
P /; | > 0 1
% /
0 1

22

Repairing Violated Edges in One Dimension

Swap violated edges 1 -0 in red dimension to 0—1.

0
A I 1)?
1 // O/T Swapping red . 1 //
pal—— ——> | dimension.

LEMMA. Swapping violated edges in dimension i
1. repairs all violated edges in dimension i;

2. does not increase the number of violated edges in dimension j, for all | #1.

23

Repairing Violated Edges in One Dimension

Swap violated edges 1 -0 in red dimension to 0—1.

0
// / / /)
Swapping red
1 4/ Q ppIng 0 ,1//

————— dimension.

LEMMA. Swapping violated edges in dimension i
1. repairs all violated edges in dimension i;

2. does not increase the number of violated edges in dimension j, for all | #1.

24

Back to the Proof Plan

+ BINARY RANGE (f :{0,1}" > {0,1})

altered points < 2 - # violated edges @

. RANGE REDUCTION (f :{0,1}" —» R)

altered points < 2- # violated edges-log | R | -

W.l.g. assume R={0, 1,..., 25-1}.
Prove| # altered points < 2- # violated edges - S
by induction on S.

25

How can we make f monotone?

o a b
violated edges of f

Swap violated edges in red dimension?

26

How can we make f monotone?

o a b
violated edges of f

Miolated edges in red dimension?

27

Operator SQUASH

o

violated ed

SQUASH [f,a,b](x) = -

ges of f

[a if f(xX)<a
b if f(x)>b

| f(x) otherwise

b 25-1

violated edges of

SQUASH

[f,a,b]

PROPERTY: does not introduce new vi

olated edges.

28

Operator CLEAR

Squash:

Repair (switch to
closest monotone function
with range {a,...,.b}):

Unsquash values not
altered by repair:

PROPERTIES:

1. does not introduce new violated edges.

2.[Clears interval [a, b].

3. leaves clear intervals clear.

29

Making f monotone

0 2511 951 25-1
Clear [2571-1, 25 m
0 25711 o1 251

Clear [0, 25°1-1] / ; ; S \
-1 ps-1 25-1

U

Clear [25°1, 251.1]
0 I

30

Making f monotone

D O\

0 2511 951 25_1
Clear [2571-1, 25711 m
0 2511 os-1 25_1

Clear [0, 25°1-1] / ; ; S \
-1 o5l 25-1

U

Clear [25°1, 251.1]

0 2511 os- 25-1

%

#violated
edges

2V
2(1+r)

<2V

2r

31

Reminder

We are proving (by induction on S)

that for functions with a range of size 2°,

altered points < 2 - # violated edges - S.

Base case [functions with a range of size 2]

altered points < 2 - # violated edges.

Induction hypothesis [functions with a range of size 2

altered points < 2- # violated edges - (S —1).

/|

S-]_]:

32

Making f monotone

D O\

0 2511 951 25_1
Clear [2571-1, 25711 m
@ 0 2511 951 25-1
Clear [0, 25°1-1]
-1 g5l 25-1
Clear [25°1, 251.1]
0 2511 o5 251

%

#violated #points
edges changed

2\ 0
2(1+7)
<2V
<2v

2r <2l(s—1)

0 <or(s-))

total <2v-S

33

We are done

+ BINARY RANGE (f :{0,1}" > {0,1})

altered points < 2 - # violated edges

. RANGE RepucTIioN (T :{0,1}" — Ry

altered points < 2-# violated edges-log | R |

W.l.g. assume R={0, 1,..., 2°-1}.
Proof by induction on S.

vj

34

Conclusions

« SUMMARY OF RESULTS IN THIS TALK

— Monotonicity test for f:{0,1}" > {0,1} [switching argument].

— Monotonicity test for f:{0,1}" > R [SQUASH and CLEAR argument].
« SUMMARY OF RESULTS IN THE PAPER

— Designed good monotonicity tests for f:Y — {0,1}.

— Reduced testing monotonicity of f : %" - {0,1} to the case n =1
[sorting argument (a generalization of the switching argument)].
— Reduced testing monotonicity of f:X" - R tothecase f:X" - {0,1}
[SQUASH and CLEAR argument].
« OPEN PROBLEMS
— Query complexity independent of the size of the range?
— f:D > R, where D is any partially ordered set.

— Tests for other properties.
35

