
1

Monotonicity Testing

Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya

Raskhodnikova, Dana Ron and Alex Samorodnitsky

2

Probabilistic Property Testing

Probabilistic Algorithm

YES Always accept.

Reject with

probability 1/2.

NO



3

Probabilistic Property Tester

Close to YES

Far from

YES

YES

Reject with

probability 1/2.

Don’t care

Always accept.



Probabilistic Property Testing

Probabilistic Algorithm

YES Always accept.

Reject with

probability 1/2.

NO



4

Probabilistic Property Tester

Algorithm Accept if the object has the property.

Reject with Pr 1/2

if the object is far from any

object with the property.



5

Probabilistic Property Tester

Algorithm Accept if the object has the property.

Reject with Pr 1/2

if the object is far from any

object with the property.



6

Probabilistic Property Tester

Algorithm Accept if the object has the property.

Reject with Pr 1/2

if the object is far from any

object with the property.



7

Express property testing

as testing properties of

functions.

Probabilistic Property Tester

Algorithm Accept if the object has the property.

Reject with Pr 1/2

if the object is far from any

object with the property.



8

Motivation

• much faster than an exact algorithm;

• the only option when the exact problem is not

decidable;

• used for preprocessing;

• good enough in application where some errors are

tolerable.

Probabilistic Property Tester can be

9

Problem Statement

Algorithm

ε

Accept if f is monotone.

Reject with Pr 1/2

if f is -far from monotone.



10

Rf n Σ :

• For two n-symbol strings x and y we

say if

y is formed from x by increasing one

or more symbols.

yx 
001001

011001

011111
100000?

examples

Definitions for

11

 yx  f (x) 0 3 7 8 8 9

x 0 1 2 3 4 5• f is monotone if

f (x) f (y) for all .

Rf n Σ :

• For two n-symbol strings x and y we

say if

y is formed from x by increasing one

or more symbols.

yx 
001001

011001

011111
100000?

examples

Definitions for

12

f (x) 0 3 9 8 7 9

x 0 1 2 3 4 5

1/3-far from monotone

• f is -far from monotone if

every monotone function disagrees

with f on at least an -fraction of the

domain.

 yx  f (x) 0 3 7 8 8 9

x 0 1 2 3 4 5• f is monotone if

f (x) f (y) for all .

Rf n Σ :

• For two n-symbol strings x and y we

say if

y is formed from x by increasing one

or more symbols.

yx 
001001

011001

011111
100000?

examples

Definitions for

13

Results

Q = Query Complexity of Monotonicity Tests











 |||| 2

2

R
nO


Q =









 ||log||log R

nO


Q =

[GGLR98]

This work

14

Algorithm (Reduction to a simpler case)

x y
• INPUT:

–  and

• Repeat several times:

– Pick a line along the axes of the hyper-grid uniformly at

random.

– Use your favorite algorithm to test if the line is

monotone [our paper, EKKRV98, Noga Alon] .

– If a pair (x, y) of points on the line with and

f (x) > f (y) is found, then REJECT.

• Otherwise, ACCEPT.

yx 

Rf n :

15

• Edge xy iff and

x and y differ in one coordinate

• Edge xy is a violated edge of f

if f (x) > f (y).

yx 

f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

Special case: Rf n }1,0{:

16

Algorithm for

x y• INPUT:

–  and

• Repeat Q/2 times:

– Pick an edge xy uniformly at random.

– If xy is violated (i.e. f (x) > f (y)), then REJECT.

• Otherwise, ACCEPT.

Rf n }1,0{:

Rf n }1,0{:

17

Intuition for Analysis

• If f is monotone, the algorithm

always accepts.

• If f is not monotone:

– If f has few violated edges, we can

make f monotone by changing its

value at a few points.

– If f has many violated edges, the

algorithm succeeds with high

probability.

YES

Don’t care

NO

18

Proof Plan

• BINARY RANGE ()

THEOREM: If f is -far from monotone, then a random edge is

violated with probability

}1,0{}1,0{: nf

.
2n2n2

2

22

points altered #

2

edges violated# 








n

n

nn nn

0 0

1

1

1

0

0

0

violated edges 1 0

edges violated# 2 points altered # 

19

• RANGE REDUCTION ()

THEOREM: If f is -far from monotone, then a random edge is

violated with probability

Rf n }1,0{:

||logedges violated# 2 points altered # R

.
||log2n||log22n

2

||log22

points altered #

2

edges violated#

RRRnn n

n

nn










Proof Plan

• BINARY RANGE ()

THEOREM: If f is -far from monotone, then a random edge is

violated with probability

}1,0{}1,0{: nf

.
2n2n2

2

22

points altered #

2

edges violated# 








n

n

nn nn

0 0

1

1

1

0

0

0

violated edges 1 0

edges violated# 2 points altered # 

20

Repairing Violated Edges in One Dimension

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping red

dimension.

Swap violated edges 10 in red dimension to 01.

21

Repairing Violated Edges in One Dimension

Swap violated edges 10 in red dimension to 01.

Sort
0 0 0 011 0 0 0 110

0 0 0 011

0 0 0 110

22

Repairing Violated Edges in One Dimension

0 0

0

0

1

1

0

1

Swapping red

dimension.

Swap violated edges 10 in red dimension to 01.

23

LEMMA. Swapping violated edges in dimension i

1. repairs all violated edges in dimension i;

2. does not increase the number of violated edges in dimension j, for all .

Repairing Violated Edges in One Dimension

ij 

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swap violated edges 10 in red dimension to 01.

Swapping red

dimension.

24

LEMMA. Swapping violated edges in dimension i

1. repairs all violated edges in dimension i;

2. does not increase the number of violated edges in dimension j, for all .

Repairing Violated Edges in One Dimension

ij 

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swap violated edges 10 in red dimension to 01.

Swapping red

dimension.

25

Back to the Proof Plan

• BINARY RANGE ()

• RANGE REDUCTION ()

W.l.g. assume R={0, 1,…, 2s-1}.

Prove

by induction on s.

}1,0{}1,0{: nf

Rf n }1,0{:

||logedges violated# 2 points altered # R

edges violated# 2 points altered # 

s edges violated# 2 points altered #

26

How can we make f monotone?

0 a b 2s-1

violated edges of f

Swap violated edges in red dimension?

27

How can we make f monotone?

0 a b 2s-1

violated edges of f

Swap violated edges in red dimension?

1

1

0

2

0

1

1

2

28

Operator SQUASH















otherwise

)(if

)(if

)(

)](,,[SQUASH bxf

axf

xf

b

a

xbaf

0 a b 2s-1

violated edges of f

0 a b

violated edges of

SQUASH[f,a,b]

2s-1

PROPERTY: does not introduce new violated edges.

29

PROPERTIES:

1. does not introduce new violated edges.

2. clears interval [a, b].

3. leaves clear intervals clear.

Operator CLEAR

0 a b 2s-1

Squash:

Repair (switch to

closest monotone function

with range {a,...,b}):

Unsquash values not

altered by repair:

0 a b 2s-1

0 a b 2s-1

0 a b 2s-1

30

Making f monotone

f

Clear [2s-1-1, 2s-1]

Clear [0, 2s-1-1]

Clear [2s-1, 2s-1-1]

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

31

Making f monotone

f

Clear [2s-1-1, 2s-1]

Clear [0, 2s-1-1]

Clear [2s-1, 2s-1-1]

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

#violated

edges

2v

2r

0

)(2 rl 

v2

32

Reminder

We are proving (by induction on s)

that for functions with a range of size 2s,

Base case [functions with a range of size 2]:

Induction hypothesis [functions with a range of size 2
s-1]:

edges. violated# 2 points altered # 

.edges violated# 2 points altered # s

).1(edges violated# 2 points altered #  s

33

Making f monotone

f

Clear [2s-1-1, 2s-1]

Clear [0, 2s-1-1]

Clear [2s-1, 2s-1-1]

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

#points

changed

#violated

edges

)1(2  sl

v2

0

)1(2  sr

2v

2r

0

sv  2total

)(2 rl 

v2

34

We are done

• BINARY RANGE ()

• RANGE REDUCTION ()

W.l.g. assume R={0, 1,…, 2s-1}.

Proof by induction on s.

}1,0{}1,0{: nf

Rf n }1,0{:

||logedges violated# 2 points altered # R

edges violated# 2 points altered # 

35

Conclusions

• SUMMARY OF RESULTS IN THIS TALK

– Monotonicity test for f :{0,1}n {0,1} [switching argument].

– Monotonicity test for f :{0,1}n R [SQUASH and CLEAR argument].

• SUMMARY OF RESULTS IN THE PAPER

– Designed good monotonicity tests for .

– Reduced testing monotonicity of to the case n =1

[sorting argument (a generalization of the switching argument)].

– Reduced testing monotonicity of to the case

[SQUASH and CLEAR argument].

• OPEN PROBLEMS

– Query complexity independent of the size of the range?

– , where D is any partially ordered set.

– Tests for other properties.

Rf n :

RDf :

} 1 ,0 {: f

} 1 ,0 {: nf 





} 1 ,0 {: nf 

