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Probabilistic Property Testing

Probabilistic Algorithm

YES Always accept.  

Reject with 

probability     1/2. 

NO


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Probabilistic Property Tester

Algorithm Accept if the object has the property.

Reject   with Pr    1/2

if the object is far from any 

object with the property.


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Express property testing 

as testing properties of 

functions.

Probabilistic Property Tester

Algorithm Accept if the object has the property.

Reject   with Pr    1/2

if the object is far from any 

object with the property.


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Motivation

• much faster than an exact algorithm;

• the only option when the exact problem is not 

decidable;

• used for preprocessing; 

• good enough in application where some errors are 

tolerable.

Probabilistic Property Tester can be
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Problem Statement

Algorithm

ε

Accept if  f is monotone.

Reject   with Pr    1/2

if  f is -far from monotone.


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Rf n Σ  :

• For two n-symbol strings x and y we 

say    if  

y is formed from x by increasing one 

or more symbols.

yx 
001001 

011001  

011111
100000?

examples

Definitions for
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 yx  f (x)   0   3   7   8   8   9

x 0   1   2   3   4   5• f is monotone if 

f (x)    f (y)  for all          .
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f (x)   0   3   9   8   7   9

x 0   1   2   3   4   5

1/3-far from monotone

• f is -far from monotone if

every monotone function disagrees

with f on at least an -fraction of the 

domain.
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Results

Q = Query Complexity of Monotonicity Tests 
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[GGLR98]

This work
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Algorithm (Reduction to a simpler case)

x y
• INPUT:

–  and  

• Repeat several times:

– Pick a line along the axes of the hyper-grid uniformly at 

random.

– Use your favorite algorithm to test if the line is 

monotone [our paper, EKKRV98, Noga Alon] .

– If a pair (x, y) of points on the line with           and         

f (x) > f (y) is found, then REJECT.

• Otherwise, ACCEPT.

yx 

Rf n :
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• Edge xy iff               and

x and y differ in one coordinate 

• Edge xy is a violated edge of  f

if  f (x) > f (y).

yx 

f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

Special case:  Rf n }1,0{:
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Algorithm for  

x y• INPUT:

–  and 

• Repeat Q/2 times:

– Pick an edge xy uniformly at random.

– If  xy is violated (i.e. f (x) > f (y)), then REJECT.

• Otherwise, ACCEPT.

Rf n }1,0{:

Rf n }1,0{:
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Intuition for Analysis

• If  f is monotone, the algorithm 

always accepts.

• If  f is not monotone:

– If  f  has few violated edges, we can 

make  f monotone by changing its 

value at a few points.

– If  f  has many violated edges, the 

algorithm succeeds with high 

probability.

YES

Don’t care

NO
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Proof Plan

• BINARY RANGE (                                         )  

THEOREM:  If  f  is -far from monotone, then  a random edge is 

violated with probability

}1,0{}1,0{: nf
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0
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edges  violated# 2  points altered # 
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• RANGE REDUCTION (                                 )

THEOREM:  If  f  is -far from monotone, then  a random edge is 

violated with probability

Rf n }1,0{:

||logedges  violated#  2  points altered # R

.
||log2n||log22n

2

||log22

points altered #

2

edges  violated#

RRRnn n

n

nn










Proof Plan

• BINARY RANGE (                                         )  

THEOREM:  If  f  is -far from monotone, then  a random edge is 

violated with probability

}1,0{}1,0{: nf

.
2n2n2

2

22

points altered #

2

edges  violated# 








n

n

nn nn

0 0

1

1

1

0

0

0

violated edges 1   0

edges  violated# 2  points altered # 



20

Repairing Violated Edges in One Dimension

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping red 

dimension.

Swap violated edges 10 in red dimension to  01. 
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Repairing Violated Edges in One Dimension

Swap violated edges 10 in red dimension to  01. 

Sort
0 0 0 011 0 0 0 110

0 0 0 011

0 0 0 110
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Repairing Violated Edges in One Dimension

0 0

0

0

1

1

0

1

Swapping red 

dimension.

Swap violated edges 10 in red dimension to  01. 
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LEMMA. Swapping violated edges in dimension i

1. repairs all violated edges in dimension i;

2. does not increase the number of violated edges in dimension j, for all           .

Repairing Violated Edges in One Dimension
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Swap violated edges 10 in red dimension to  01. 

Swapping red 

dimension.



24

LEMMA. Swapping violated edges in dimension i

1. repairs all violated edges in dimension i;

2. does not increase the number of violated edges in dimension j, for all           .

Repairing Violated Edges in One Dimension

ij 

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swap violated edges 10 in red dimension to  01. 

Swapping red 

dimension.



25

Back to the Proof Plan

• BINARY RANGE (                                         )  

• RANGE REDUCTION (                                 )

W.l.g. assume R={0, 1,…, 2s-1}.

Prove                                                         

by induction on s.

}1,0{}1,0{: nf

Rf n }1,0{:

||logedges  violated# 2  points altered # R

edges  violated# 2  points altered # 

s edges  violated# 2  points altered #
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How can we make f monotone? 

0 a b 2s-1

violated edges of f 

Swap violated edges in red dimension? 
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How can we make f monotone? 

0 a b 2s-1

violated edges of f 

Swap violated edges in red dimension? 

1

1

0

2

0

1

1

2



28

Operator SQUASH















otherwise

)( if

)( if

)(

)](,,[SQUASH bxf

axf

xf

b

a

xbaf

0 a b 2s-1

violated edges of f 

0 a b

violated edges of 

SQUASH[f,a,b] 

2s-1

PROPERTY:     does not introduce new violated edges.
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PROPERTIES: 

1. does not introduce new violated edges.

2. clears interval [a, b].

3. leaves clear intervals clear.

Operator CLEAR

0 a b 2s-1

Squash:

Repair  (switch to 

closest monotone function 

with range {a,...,b}):

Unsquash values not 

altered by repair:

0 a b 2s-1

0 a b 2s-1

0 a b 2s-1
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Making f monotone

f

Clear [2s-1-1, 2s-1]

Clear [0, 2s-1-1]

Clear [2s-1, 2s-1-1]

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1
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Making f monotone

f

Clear [2s-1-1, 2s-1]

Clear [0, 2s-1-1]

Clear [2s-1, 2s-1-1]

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

#violated 

edges

2v

2r

0

)(2 rl 

v2
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Reminder

We are proving (by induction on s)

that for functions with a range of size 2s,

Base case [functions with a range of size 2]:

Induction hypothesis [functions with a range of size 2
s-1]:

edges.  violated# 2  points altered # 

.edges  violated# 2  points altered # s

).1(edges  violated# 2  points altered #  s
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Making f monotone

f

Clear [2s-1-1, 2s-1]

Clear [0, 2s-1-1]

Clear [2s-1, 2s-1-1]

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

0 2s-12s-1-1 2s-1

#points 

changed

#violated 

edges

)1(2  sl

v2

0

)1(2  sr

2v

2r

0

sv  2total

)(2 rl 

v2
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We are done

• BINARY RANGE (                                         )  

• RANGE REDUCTION (                                 )

W.l.g. assume R={0, 1,…, 2s-1}.

Proof by induction on s.

}1,0{}1,0{: nf

Rf n }1,0{:

||logedges  violated# 2  points altered # R

edges  violated# 2  points altered # 



35

Conclusions

• SUMMARY OF RESULTS IN THIS TALK

– Monotonicity test for   f :{0,1}n {0,1}  [switching argument].

– Monotonicity test for   f :{0,1}n R   [SQUASH and CLEAR argument].

• SUMMARY OF RESULTS IN THE PAPER

– Designed good monotonicity tests for .

– Reduced testing monotonicity of                            to the case n =1

[sorting argument (a generalization of the switching argument)].

– Reduced testing monotonicity of                       to the case                          

[SQUASH and CLEAR argument].

• OPEN PROBLEMS

– Query complexity independent of the size of the range?

– , where D is any partially ordered set.

– Tests for other properties.

Rf n :

RDf :

} 1 ,0 {: f

} 1 ,0 {: nf 





} 1 ,0 {: nf 


