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1 Introduction

Micro-architectural side-channel attacks exploit contention on internal components of the processor to leak infor-
mation between processes. While in theory such attacks are straightforward, practical implementations tend to be
finicky and require significant understanding of poorly documented processor features and other domain-specific ar-
cane knowledge. Consequently, there is a barrier to entry into work on micro-architectural side-channel attacks, which
hinders the development of the area and the analysis of the resilience of existing software against such attacks.

This document introduces Mastik, a toolkit for experimenting with micro-architectural side-channel attacks. Mastik
aims to provide implementations of published attack and analysis techniques. At the time of writing this document,
Mastik is at a very early stage of development. Version 0.02 codename “Aye Aye Cap’n” has been released.

The release includes implementation of six cache-based attacks on the Intel x86-64 architecture. These include the
Prime+Probe attack on the L1 data cache [9, 10], Prime+Probe on the L1 instruction cache [1, 2], Prime+Probe on the
Last Level Cache [7, 8], Flush+Reload [11], Flush+Flush [6] and a performance degradation attack [3].

In addition to the implementation of the attacks, Mastik provides several tools that facilitate the attacks. These
include functionality for handling symbolic code references, such as loader symbol names or debug information, and
functions that simplify some system features that are commonly used in side-channel attacks. New in version 0.02 is
the utility FR-trace, which supports mounting the Flush+Reload attack from the command line.

We now proceed with a motivating example of the benefits of Mastik (Section 2), followed by a more detailed
description of the interface (Section 3).

2 Mastik Examples

To demonstrate the power of Mastik we now show how to reproduce the Flush+Reload attack on GnuPG 1.4.13 [11].
GnuPG 1.4.13 uses the square-and-multiply algorithm [4] for perfomring the modular exponentiation step of the

RSA decryption and signature. Yarom and Falkner [11] demonstrate that this implementation is vulnerable to the
Flush+Reload side-channel attack. They use Flush+Reload to trace the victim’s use of the multiply, square and modular
reduction operations. From the traced operations, the attacker can recover the bits of the exponent, which correspond
to the victim’s private key.

While the core of the Flush+Reload attack is relatively straightforward, an implementation of the attack needs
to repeatedly probe the memory at a fixed interval. It should further be able to re-synchronise with the victim when
interrupted by the operating system. Additionally, the attacker needs to be able to convert source code locations to
memory adresses. Mastik takes care of most of these operations. It hides the complexity and provides the user with a
simple interface for mounting the attack.

Listing 1 shows the implementation of the attack. (A similar implementation is available in
demo/FR-gnupg-1.4.13.c in the Mastik distribution.) Mastik uses the opaque handle type fr_t to abstract
the attack. The attack handle is instantiated using a call to fr_prepare() (Line 9).

Lines 11 to 18 set up the memory locations the attack monitors. Like Yarom and Falkner [11] we set the attack
to monitor locations within the code that computes the multiply, square and modular reduction operations. To specify
these locations we use references to victim source lines (Line 5). The sym_getsymboloffset() uses the debugging
information in the GnuPG binary to convert these references into offsets in the binary. We use the map_offset()
function to map these offsets into the address space of the spy program and fr_monitor() sets the Flush+Reload
attack to monitor these location.
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Listing 1. Flush Reload attack on GnuPG 1.4.13

1 #define SAMPLES 100000
2 #define SLOT 2000
3 #define THRESHOLD 100
4
5 char *monitor[] = { "mpih−mul.c:85", "mpih−mul.c:271", "mpih−div.c:356" };
6 int nmonitor = sizeof (monitor )/ sizeof (monitor [0]);
7
8 int main(int ac , char **av) {
9 fr_t fr = fr_prepare ();

10
11 for ( int i = 0; i < nmonitor; i++) {
12 uint64_t offset = sym_getsymboloffset(av [1], monitor[ i ]);
13 if ( offset == ~0ULL) {
14 fprintf ( stderr , "Cannot find %s in %s\n", monitor[i], av [1]);
15 exit (1);
16 }
17 fr_monitor ( fr , map_offset(av [1], offset ));
18 }
19
20 uint16_t *res = malloc(SAMPLES * nmonitor * sizeof(uint16_t));
21 bzero( res , SAMPLES * nmonitor * sizeof(uint16_t));
22 fr_probe ( fr , res );
23
24 int l = fr_trace ( fr , SAMPLES, res, SLOT, THRESHOLD, 500);
25 for ( int i = 0; i < l ; i++) {
26 for ( int j = 0; j < nmonitor; j++)
27 printf ("%d ", res[ i * nmonitor + j ]);
28 putchar ( ' \n ' );
29 }
30 }

The attack itself is carried out in Line 24. The fr_trace() function waits for activity in any of the memory
locations it monitors. It then colllects activity records at fixed intervals. Collection stops when a long enough period
of inactivity is detected or when the function runs out of space to store the results. The activity records measure the
time it takes to read data from the monitored locations. Short access times indicate that the locations cached and is
therefore active.

Before terminating, the program outputs the results. A segment of the program output is shown in Figure 1. As
the figure shows, there are clear areas of activity for each of the monitored locations. From these, the adversary can
reconstruct the sequence of operations the victim executes and infer the exponent.

As we can see, Mastik provides an easy-to-use interface to the attack. It hides most of the attack implementation
details, exposing only those parameters that are needed for targetting a specific victim.

We now proceed to describe some of the patterns Mastik employs when abstracting over the various attacks.

3 API Design

One of the challenges of designing an API for side-channel attacks is striking a balance between three conflicting aims.
We would like the intertface to be simple and uniform. At the same time, we would like to expose the unique strengths
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Fig. 1. Results of the Flush+Reload attack on GnuPG 1.4.13. Values below 100 cycles indicate that the monitored line was active
during the sample.

of each of the attacks. In addition we want the implementation to be as optimised as possible so as to minimise the
attack footprint.

Mastik achieves this balance by presenting similar interfaces for all of the attacks, without providing shared im-
plementations of the underlying operations. Thus, attack interfaces share the same look-and-feel, but there are attack-
specific variations in the interface and the types it uses for similar purposes across different attacks do not share
common supertypes.

Attack Descriptor Prefix
L1-D Prime+Probe [9, 10] l1pp_t l1_
L1-I Prime+Probe [1, 2] l1ipp_t l1i_
LLC Prime+Probe [7, 8] l3pp_t l3_
Flush+Reload [11] fr_t fr_
Flush+Flush [6] ff_t ff_
Performance degradation [3] pda_t pda_

Table 1. Implemented Attacks

Every attack in Mastik is encapsulated using an attack descriptor, which is an opaque pointer to a structure describ-
ing information about the attack, and a set of functions that manage the structure and implement the attack. Table 1
summarises the implemented attacks and specify their descriptor type and the prefix used for the attack functions.
In the future we expect some attacks to share descriptors. For example, the Evict+Reload [5] could use the LLC
Prime+Probe descriptor (l3pp_t). For each attack Mastik provides three types of functions: descriptor management,
attack set-up and attacks.

Descriptor Management The initialisation function XX_prepare() (where XX is the attack prefix) initialises a
descriptor. For some descriptors types it may take an argument that provides parameters for the initialisation routine.
Currently, only the LLC Prime+Probe takes an argument. Passing NULL chooses the default behaviour.

The XX_release() function releases the descriptor and all of the resources allocated by it.

Attack Set Up Each attack defines an attack space that consists of a set of points that the attack can operate on. For
most of the attacks, the operation is to monitor activity at the point.

The nature of the points is attack-dependent. In the Flush+Reload attack, a point is an address in the virtual address
space of the process running the attack. For the Prime+Probe attacks the points identify sets in the targeted cache. For
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each attack Mastik provides several functions for managing the set of points which an attack which uses the descriptor
would probe. The functions are:

XX_monitor() Adds a point to the set of points the descriptor monitors.
XX_unmonitor() Removes a point from the set of points the descriptor monitors.
XX_monitorall() Adds all possible points to the set of points the descriptor monitors. Only supported for the L1

attacks.
XX_unmonitorall() Removes all points from the set of points the descriptor monitors.
XX_getmonitoredset() Returns the set of points the descriptor monitors.
XX_randomise() Uses a non-secure pseudo-random generator to reorder the set of monitored points.

The L1 attack descriptors are initialised to monitor all of the points (cache sets) in a random order. Other descriptors
are initialised to monitor no point.

Attack An attack round, implemented by XX_probe(), consists of probing each of the monitored points to determine
activity. The typical result is a set of timing data, measuring the number of cycles to probe each point. The results match
the order of probes returned by XX_getmonitoredset(). The meaning of the results differ between attacks. See the
original publications for further information.

Attack Variations The Prime+Probe attacks often benefit from a bidirectional probing. For the L1 Data and LLC
Prime+Probe attacks, Mastik provides the function XX_bprobe(), which preforms the probe at the reverse direction.
For the LLC attack, it is often useful to count the number of cache misses rather than the total time to probe the cache
set. The functions l3_probecount() and l3_bprobecount() performs this operation.

Repeated Attacks A single probe often provides too little information. The function XX_repeatedprobe() per-
forms a sequence of probes, alternating between XX_probe() and XX_bprobe() if the latter is supported. The slot
parameter to the function regulates the probes to perform one probe per slot cycles. If a slot is missed, the timing
result for the points in that slot is set to 0. (For the probecount version the result is set to ∼0.)

Traces The Flush+Reload and the Flush+Flush attacks support an extended version of repeated attack. This version,
XX_trace(), waits for activity in the monitored cache lines. Collection of data starts when activty is sensed and stops
when activity is no longer sensed or when the space for storing the results is exhausted.

Performance Degradation Attack Unlike the other attacks, the performance degradation attack does not monitor
the victim. Instead, it targets cache lines that the victim uses frequently and evicts them from the cache. To reflect
the different use, the functions that set the attack up use target instead of monitor. For example, the function
pda_target() adds a targe to the target list of a performance degradation attack. The functions pda_activate()
and pda_deactivate() start and stop the attack. pda_activate() spawns a subprocess that executes the attack.
pda_deactivate() kills the subprocess.

Symbol Management Mastik provides three functions for converting symbols to file offsets.
sym_loadersymboloffset() finds a symbol in the loader symbol table. sym_debuglineoffset() finds the
machine code that corresponds to a specific source line. In Linux, these functions rely on libbfd, libdwarf and
libelf. To use make sure that libdwarf-devel and binutils-devel (or libdwarf-dev, binutils-dev and
libelf-dev) are installed.

sym_getsymboloffset() provides a generic interface for converting symbolic references to file offsets. It recog-
nises four input formats: file offset, virtual addresse, loader symbol and line number. It can further recognises simple
arithmetic operations that allow shifting the offset. For example, the input "main+0x40" refers to the location 64 bytes
after the start of the function main.

Utility functions map_offset() maps a file to the virtual address of the process and returns a pointer to the data at
a specified offset in the file. Only the page containing the offset is mapped. unmap_offset() removes the mapping.

delayloop() performs a busy-loop for a number of cycles. It can be used between probes, if
XX_repeatedprobe() does not provide the desired functionality. Another use of delayloop() is to generate enough
activity to avoid CPU frequency scaling. In our experience, delayloop(3000000000U) always achieves the desired
result. Your mileage may vary.
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