
Optimization of MPI Collective Communication on
BlueGene/L Systems

George Almási
IBM T. J. Watson Research

Center
Yorktown Heights, NY 10598

gheorghe@us.ibm.com

Charles J. Archer
IBM Systems and Technology

Group
Rochester, MN 55901

archerc@us.ibm.com

C. Chris Erway
Dept. of Comp. Sci.

Brown University
Providence, RI 02912

cce@cs.brown.edu

Philip Heidelberger
IBM T. J. Watson Research

Center
Yorktown Heights, NY 10598

philip@us.ibm.com

Xavier Martorell
Dept. of Comp. Arch.

Universitad Politechnica de
Catalunia

08071 Barcelona (SPAIN)

xavim@ac.upc.es

José E. Moreira
IBM Systems and Technology

Group
Rochester, MN 55901

jmoreira@us.ibm.com

B. Steinmacher-Burow
IBM Germany

Boeblingen 71032
(GERMANY)

steinmac@de.ibm.com

Yili Zheng
School of Elec. & Comp. Engr.

Purdue University
West Lafayette, IN 47907

yzheng@purdue.edu

ABSTRACT
BlueGene/L is currently the world’s fastest supercomputer.

It consists of a large number of low power dual-processor

compute nodes interconnected by high speed torus and col-

lective networks. Because compute nodes do not have shared

memory, MPI is the the natural programming model for

this machine. The BlueGene/L MPI library is a port of

MPICH2.

In this paper we discuss the implementation of MPI col-

lectives on BlueGene/L. The MPICH2 implementation of

MPI collectives is based on point-to-point communication

primitives. This turns out to be suboptimal for a number

of reasons. Machine-optimized MPI collectives are neces-

sary to harness the performance of BlueGene/L. We discuss

these optimized MPI collectives, describing the algorithms

and presenting performance results measured with targeted

micro-benchmarks on real BlueGene/L hardware with up to

4096 compute nodes.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance

of Systems; D.1.3 [Concurrent Programming]: Parallel

Programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’05, June 20-22, 2005, Boston, MA, USA
Copyright 2005 ACM 1-59593-167-8/06/2005 ...$5.00.

General Terms
Algorithms, Design, Measurement, Performance

Keywords
BlueGene, Collective Communication, MPI, Optimization,

Performance

1. INTRODUCTION
BlueGene/L is a new massively parallel computer archi-

tecture developed by IBM in partnership with Lawrence Liv-

ermore National Laboratory (LLNL). BlueGene/L systems

use system-on-a-chip integration [6] and a highly scalable

architecture [2] to assemble an army of low power dual-

processor nodes with high speed interconnects. When oper-

ating at the target frequency of 700 MHz, LLNL’s flagship

64K-node BlueGene/L system will deliver up to 360 Ter-

aflops of peak computing power.

Each BlueGene/L compute node can address only its local

memory, making message passing the natural programming

model for the system. The BlueGene/L MPI implementa-

tion is an optimized port of Argonne National Laboratory’s

MPICH2 library [1]. The challenges of implementing high

performance point-to-point communication in the MPI li-

brary has been described in our previous work [3, 4].

In this paper we describe improvements to BlueGene/L

MPI collective communication. The speed of MPI collec-

tives is, needless to say, often the critical factor determining

the ultimate performance of parallel scientific applications.

It is typical of MPI implementations (such as MPICH2) to

implement collective communication in terms of point-to-

point messages. However, the MPICH2 collective implemen-

tations [16] suffer from low performance on BlueGene/L sys-

253

tems. Our initial analysis concluded that there are at least

three reasons for this:

• Network topology awareness. The MPICH2 col-

lectives are written without specific network hardware

in mind; they tend to perform well on crossbar-type

networks. However, the most important BlueGene/L

network hardware is a 3D torus, and the MPICH2 col-

lective algorithms tend to map poorly onto this net-

work, ending up using the limited cross-section band-

width of the torus network very inefficiently and cre-

ating network hot spots that spoil performance. The

collectives tend to scale poorly with network size.

• Special purpose network hardware. BlueGene/L

features special hardware designed to speed up cer-

tain collective operations. One such feature is the de-
posit bit which lets torus packets deposit a copy on

every node they touch on the way to their final des-

tination. There is also special purpose hardware just

to speed up reductions and barrier operations. The

default MPICH2 collective algorithms do not take ad-

vantage of these features.

• Other hardware properties. Like any computer,

the design process of BlueGene/L has resulted in a

number of architectural compromises that require soft-

ware to deal with. These compromises affect perfor-

mance to a large degree and caused many surprises

during the implementation process. As examples we

can cite the very high cost of memory copies on the

machine and the lack of cache coherence between pro-

cessors in a node.

We implemented of a number of optimized collective op-

erations. Because MPICH2 was designed from the ground

up to be extensible, we were able to add them to MPICH2

as plug-in modules. We did not try to provide better gen-

eral purpose algorithms; instead we concentrated on the

cases when optimization was possible and wrote special pur-

pose algorithms that only get triggered when the conditions

are right. For example, our MPI broadcast implementa-

tion is only triggered when the communicator it is invoked

on is a 1, 2 or 3-dimensional rectangle on the physical net-

work. In our first round of algorithm design we tackled only

the most commonly used collectives such as MPI Alltoall,

MPI Allreduce, MPI Barrier and MPI Bcast. We provide

performance and scaling data for each of our algorithms.

The rest of this paper is organized as follows. Section 2

provides an overview of the BlueGene/L system and the

optimized implementation of MPI collectives. Section 3

presents the algorithms and implementation of MPI collec-

tives for torus network. Section 4 describes the collective

operations for BlueGene/L collective and global interrupt

networks. Section 5 compares the performance and scaling

of our implementations. We conclude in section 6.

2. OVERVIEW

2.1 Brief overview of BlueGene/L systems
The BlueGene/L hardware and system software have been

extensively described in other publications [2, 5]. Here we

present a short summary of the BlueGene/L architecture to

serve as the background to the following sections.

Processing core: Each BlueGene/L node ASIC include

two standard PowerPC 440 processing cores. The standard

PowerPC 440 processors are not designed to support multi-

processor architectures. Hence the L1 caches are not cache

coherent. To overcome this limitation, BlueGene/L provides

a variety of custom synchronization devices in the chip such

as the lockbox (a limited number of memory locations for

fast atomic test-and-sets and barriers) and 16KB of shared

SRAM. The L2 and L3 caches are coherent between the two

processors.

Communication networks: The main network used for

point-to-point messages is the torus. Each compute node is

connected to its 6 neighbors through bi-directional links with

154 MBytes/s payload bandwidth in each direction. The 64

racks in the full BlueGene/L system form a 64£32£32 three-

dimensional torus. The network hardware guarantees reli-

able, deadlock free delivery of variable length packets. Torus

packets are routed on an individual basis, using either the

deterministic routing algorithm or the adaptive routing algo-

rithm. Deterministic routing assures in-order packet arrival,

whereas adaptive routing permits better link utilization.

The collective network is a configurable network for high

performance broadcast and reduction operations, with a la-

tency of 2.5 µs for a 65,536-node system. It has reliability

guarantee identical to the torus network and provides point-

to-point capabilities as well. The collective network packet

length is fixed at 256 bytes, all of which can be used for

payload. The payload bandwidth of the collective network

is about 337MBytes/s. The global interrupt (GI) network

provides configurable OR wires to perform full-system hard-

ware barriers in 1.5 µs.

Operating modes: To deal with the non-coherence of

the processors in a node, software allows multiple modes of

operation. The simplest of these is heater mode, in which

one of the two processors is in an idle loop and does no use-

ful computation. In coprocessor mode one of the processors

runs the main thread of the user’s program, while the other

processor helps out with communication and/or computa-

tion tasks. In this case cache coherence has to be managed

by software. In virtual node mode the two processors of a

compute node act as different processes: each has its own

MPI rank, and all hardware resources are equally shared.

2.2 Software architecture of BlueGene/L MPI
We built BlueGene/L MPI by porting MPICH2 [1], an

MPI library designed with scalability and portability in mind.

MPICH2 provides the implementation of point-to-point mes-

sages, intrinsic and user defined datatypes, communicators,

and collective operations, and interfaces with the lower lay-

ers of the implementation through the Abstract Device In-

terface version 3 (ADI3) layer [9].

The ADI Layer is described in terms of MPI requests

(messages) and functions to send, receive, and manipulate

these requests. The ADI3 layer consists of a set of data

structures and functions that need to be provided by the

implementation. In BlueGene/L, the ADI3 layer is imple-

mented using the BlueGene/L Message Layer, which in turn

uses the BlueGene/L Packet Layer.

The BlueGene/L Message Layer is an active mes-

sage system [8, 12, 18, 19] that implements the transport of

arbitrary-sized messages between compute nodes using the

torus network. It consists of four main components: ba-

sic functional support, point-to-point communication primi-

254

tives (or protocols), collective communication primitives and

development utilities. The basic functional component acts

as a support infrastructure for the implementation of all the

communication protocols. The message layer breaks mes-

sages into fixed-size packets and uses the packet layer to

send and receive the individual packets. At the destination

the packets are re-assembled into a message.

The Packet Layer is a very thin stateless layer of soft-

ware that simplifies access to the BlueGene/L network hard-

ware. It provides functions to read and write the torus/collective

network hardware, as well as to poll the state of the network.

2.3 Software design decisions
The performance of MPI collectives tends to be highly

dependent on the circumstances of their invocation. This is

especially true for BlueGene/L because of the peculiarities

of the network hardware. Our mission statement was to en-

able high performance for the subset of invocation scenarios

where hardware or software can help. For all other scenarios

we allow MPICH2 default collectives to take over.

Plug-ins: We added a testing phase to every communi-

cator creation and every collective invocation in MPICH2

(as mentioned before, the library is designed to allow this).

During communicator creation we test for global proper-

ties of the communicator. The two most interesting tests

are (a) whether the communicator is MPI COMM WORLD and

(b) whether the communicator has a contiguous rectangular

shape on the torus network.

During invocation, we eliminate complex situations in-

volving non-contiguous buffers and intercommunicators (we

allow the MPICH2 default implementations in these cases).

Furthermore we discriminate based on message size, since for

certain collectives we have multiple algorithms optimizing

latency (for short messages) or bandwidth (for long ones).

Global algorithm decisions: The selection of the ac-

tual algorithm to perform a collective operation is done when

the collective has been invoked. This can lead to undesir-

able situations if the decision is made locally, because MPI

programming errors (such as invoking MPI Bcast with dif-

ferent size arguments across the participating nodes), and

even certain legitimate MPI calls, can lead to individual

nodes choosing different algorithms to implement the same

operation. This usually results in deadlocks.

The only way to insure correct behavior in such cases is

to take the algorithm decision globally across the commu-

nicator (by invoking another collective). This leads to an

increase in latency, and therefore we tend to do this only

when we believe that the resulting gains in bandwidth are

more important.

Unexpected messages: Another decision we made was

not to deal with unexpected (or early) collective packets, i.e.

packets that arrive to a node before that node has entered

the collective implementation. Unexpected messages are

normally dealt with by the point-to-point messaging subsys-

tem. On BlueGene/L this is an expensive proposition be-

cause memory copies cause increased CPU loads and there-

fore performance loss. To keep our optimized algorithms

simple and efficient we do not allocate memory buffers for

early packets. We prevent early packets by prefixing collec-

tives with barrier calls, taking advantage of BlueGene/L’s

dedicated barrier network where we can.

Non-blocking collectives: All collective primitives de-

scribed in this paper are non-blocking, relying on termina-

tion callbacks to announce their completion. This was done

to allow computation/communication overlap and to let the

program service all networks simultaneously. It also allows

us to use the collectives for purposes other than MPI if we

have to.

Preconditions: In the remainder of this paper we will

discuss a number of collective algorithms. For each of these

we will specify the pre-conditions that must exist for the

algorithm to be invoked, why we believe that the algorithm

is better than the default, and of course we will document

everything with numbers.

3. TORUS COLLECTIVES
In this section we deal with algorithms written for rectan-

gular sections of the torus. We first need to clarify what a

rectangular section is. We will denote a booted BlueGene/L

partition is a collection of nodes

Λ = {(x, y, z) ∈ Z3
| 0 · x < xs ∧ 0 · y < ys ∧ 0 · z < zs}

An MPI communicator is any set of nodes Γ ⊂ Λ. The

communicator Γ is rectangular if and only if

∀(x, y, z) ∈ Γ (x0, y0, z0) · (x, y, z) < (x1, y1, z1) ∧

‖Γ‖ = (x1 ¡ x0 + 1) £ (y1 ¡ y0 + 1)

£(z1 ¡ z0 + 1)

A booted BlueGene/L partition is always rectangular, but

MPI COMM WORLD need not be rectangular because an MPI

job start on a subset of the booted partition. Rectangular

communicators are important to us because they are regular

and easy to reason about, but also because of the deposit
bit capability of the torus: packets sent along a line and

deposited on every node they touch. Next we will describe

a number of algorithms that map into rectangular regions.

3.1 Long-message collectives
MPI Bcast: The MPICH2 broadcast implementation

uses two algorithms. For short messages it uses a binary tree

to minimize processor load and latency; for long messages it

performs a binary tree scatter followed by an allgather. On

BlueGene/L the measured performance of these algorithms

is very low, mostly for lack of topology awareness and high

CPU overhead.

The BlueGene/L-optimized algorithm is suitable for long

MPI broadcasts executed on rectangular subsets, meshes

and tori. The implementation of MPI broadcast follows the

general pattern proposed by Watts and van de Geijn [20].

The basic idea is to find a number of non-overlapping span-

ning trees in the rectangular mesh/torus. The broadcast

message is split into components, and each component is

pipelined separately (and simultaneously) along one of the

spanning trees. Thus the theoretical achievable bandwidth

of this algorithm is a multiple of single link bandwidth.

The multiplier cannot be more than the number of in-

coming links on any of the nodes in the communicator (each

node has to get all pieces of the message). Thus, for a mesh

the multiplier is equal to the dimension of the rectangular

region (1, 2 or 3); if the rectangular region is wrapped back

(toroidal), the multiplier doubles. The theoretical maximum

bandwidth for a 3D torus is therefore 2 £ 3 = 6 times the

bandwidth of a single link.

Figure 1(a) shows the structure of one data stream in a

3-dimensional mesh. The other data streams are essentially

rotated versions of the one depicted; Figure 1(b) shows how

255

(a) Single data stream

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

��

���

��

���

		
		
		
		
	

�
�
�
�
���������

���������
�
�
�
�

��
��
��
��
��

���

��

���

���

(b) 3 streams

Figure 1: Optimized broadcast algorithm on a 3D
mesh

three streams can be used at the same time without using

any of the mesh links twice.

The algorithm attempts to exploit long straight lines in

the data streams. Packets traveling along these lines can

have their deposit bit turned on. The processors receiving

these packets don’t have to re-send them, thereby lowering

CPU overhead and improving latency. The only nodes that

have to re-inject packets onto the network are those that

have to “turn” the message by a 90 degree angle. To fur-

ther improve latency, packet re-injection is pipelined: each

incoming packet is immediately sent forward along its data

stream.

The performance of the broadcast algorithm is unfortu-

nately not only limited by the network’s limitations, but by

the CPU load on the individual nodes. The busiest proces-

sors on the network determine performance. Unsurprisingly,

these turn out to be the very nodes that have to re-inject

packets on the network. These nodes limit practical perfor-

mance to no more than two network links worth. A better

algorithm, which uses both processors to ease CPU load, is

in the works.

MPI Reduce: Reduce can be viewed as broadcast in re-

verse; that is, the same stream used for a broadcast may be

reversed and used for reduction to the same root, as in Fig-

ure 2(a). However, this overlooks an important difference.

Here, each node must apply the specified reduce operation

to combine its own data with each incoming packet, pre-

senting a significant performance bottleneck (especially for

CPU-intensive operations such as floating-point sums). Ad-

ditionally, since each node’s contribution changes the data

it passes on, this prevents the use of the deposit bit.

Like broadcast, the busiest processors on the network de-

termine long-message performance. For Reduce, the busiest

are those that have to combine data from multiple neigh-

bors (that is, those with indegree > 1 in the directed graph

representing the stream). For these nodes, two or three in-

coming packets must be individually received and reduced

before the resultant data may be sent along to the next node,

slowing the overall operation.

Thus, to minimize the number of incoming data sources

(indegree) per node, a Hamiltonian path chaining together

all nodes in the communicator ensures each node receives

data from only one neighbor. Figure 2(b) depicts such a

path; results are collected along the stream in the direction

of the root. As a result, the same per-packet overhead is ex-

perienced at every node in the stream, boosting bandwidth

(a) Reverse broadcast (b) Hamiltonian path

Figure 2: Optimized Reduce algorithm on a 3D mesh

at a severe cost to latency.

For this reason, the Hamiltonian paths are preferred only

for long vectors. Much work has been done to minimize

the per-packet overhead of Reduce; for example, when pos-

sible, the PowerPC floating-point units, which retrieve pack-

ets from the network hardware, apply the reduce operation

(e.g. sum, max) before saving data to memory.

Computation of the routes for a stream are performed

locally. For rectangular meshes where one of the dimen-

sions is even, a Hamiltonian path is constructed, producing

two streams (using opposing directions along the same path)

that may be be used simultaneously.

MPI Allreduce: The long-message Allreduce on torus

is essentially a pipeline connection of long-message Reduce

and long-message broadcast primitives. Two non-overlapping

streams are needed, the first leading to the root (for Reduce)

and the second starting from the root (for broadcast). The

second stream may be, most simply, the reverse of the first

stream; recall that torus links are bi-directional, so the two

streams do not interfere.

As in Reduce, Hamiltonian paths are desirable for long-

message Allreduce. Reduction takes place along a single

Hamiltonian path ending at the root, as in Figure 2(b); that

stream is used in reverse to broadcast the results.

For long-message Allreduce, MPICH2 uses Rabenseifner’s

algorithm [14]. This algorithm implements Allreduce in two

steps: first a Reduce-Scatter, followed by an Allgather.

Pipelining packets and utilizing architectural features help

our Allreduce achieve better bandwidth than the MPICH2

implementation for long messages.

MPI Alltoall and MPI Alltoallv: When designing

BlueGene/L MPI, we did not anticipate having to provide

an improved version of Alltoall. The operation is essen-

tially limited by the cross-section bandwidth of the torus

network. MPICH2 Alltoall is implemented by no less than

four different algorithms. On BlueGene/L these algorithms

suffer from a multiplicity of problems, such as high CPU

overhead, creation of hot spots on the network and poor use

of the compute nodes’ memory subsystems.

The BlueGene/L-optimized Alltoall/Alltoallv algorithm

works well on all communicators and all message sizes. Since

Alltoallv subsumes Alltoall, the implementation of both

is provided by a single function in the message layer. The

algorithm keeps CPU overhead low by not using point-to-

point messaging, and avoids network hotspots by random-

izing torus packet injection. This randomization is done

through a permuted list of destinations (MPI ranks). The

256

algorithm scans through the permuted list and picks a des-

tination to send the next packet to. The permutation list is

the same on each node, because the random number gener-

ator is seeded with the same number everywhere. However,

every node starts from a different offset in the permutation

list.

The permutation list is lazy-allocated and initialized from

the group and communicator connection table when

MPI Alltoall/MPI Alltoallv is first called on a particu-

lar communicator. The ranks list uses a single unsigned

integer for each rank in the system. Thus, the maximum

memory used in a virtual node mode, 64K node system is

2 £ 655356 nodes £4 bytes = 512 KBytes. Lazy allocation

potentially reduces memory requirements for MPI by not

reserving memory for the permuted list unless it is needed.

Alltoallv is inherently unbalanced because there may be

more data to send to some ranks than others. As the algo-

rithm moves forward, the rank permutation list will contain

more and more destinations that the sender has no more

data to send to. To avoid excessive CPU overhead caused

by scanning empty slots in the permutation list, nodes that

have no more data to receive are removed from the permuted

rank array by rearranging the array in place.

Randomization of the send destinations implies random-

ization of both packet receives and packet sends, which can

be up to 240 bytes (8 cache lines) of payload. Rapid switch-

ing between destination strains the local memory subsys-

tem. In order to make the best possible use of intelligent

prefetching in the cache architecture, the algorithm injects

multiple packets (from adjacent cache lines) to each destina-

tion before advancing to the next entry in the permutation

list. This leads to a compromise where more packets per

destination will ease the load on the memory subsystem,

but potentially create more hotspots on the torus network.

Empirically we found two packets per destination to lead to

the best performance.

The Alltoallv algorithm is also small message aware, and

will adjust the torus packet size to minimize latency when

the amount of data exchanged between pairs of MPI ranks

is less than a full packet worth.

3.2 Short-message collectives
The torus Allreduce and Broadcast algorithms described

so far are designed for throughput. They sacrifice latency for

better pipelining of concurrent data streams, and are really

unsuitable for short messages. At the same time we expect

the unprecedented number of processors in BlueGene/L to

cause messages to become shorter, especially in strong scal-

ing applications.

In this section we present an optimized Allreduce/Barrier

algorithm designed for very short (one packet) short mes-

sages on rectangular communicators. The basic insight of

the short message optimized algorithm is that we can trade
bandwidth against latency: instead of the classic store-and-

forward implementation of a reduction operation we broad-

cast all data to all nodes and replicate the necessary pro-

cessing on all nodes. On BlueGene/L this is advantageous

because it is possible to broadcast a packet to a line of nodes

without store-and-forward using the deposit bit feature of

the network.

However, since every node on the line is broadcasting its

packet to everyone else, the line becomes full very quickly.

The latency of this algorithm is determined not by the net-

Phase 1 Phase 2

Figure 3: Two-phase hierarchical Allreduce on a sin-
gle line

work latency, but either by the network’s bandwidth or by

the processing capability of the nodes.

Using this algorithm Barrier can be implemented as a

very simple Allreduce in which each node waits until it

receives all incoming packets. Processing time is very low

in this case, and therefore Barrier latency is determined by

the network bandwidth. For floating point Allreduce the

CPU processing time tends to be higher, so the algorithm

will be limited by CPU overhead. In general the algorithm’s

latency can be expressed as

L = S + (n ¡ 1) £ max(
‖P‖

BW
, Tpkt),

where S is a constant overhead (CPU time spent in mes-

saging library and network link latency), n is the number of

nodes on the line,
‖P‖

BW
is the time necessary for a packet to

traverse a link (packet size divided by link bandwidth) and

Tpkt is the CPU processing time for a received packet. The

formula can be derived by looking at the nodes at one end

of the line: it receives and processes n ¡ 1 packets over a

single link; hence the linear dependence on n.

Linear dependence on n is obviously not good for scaling.

However, we can mitigate bandwidth with store-and-forward

latency by employing a two-phase hierarchical algorithm as

depicted in Figure 3. This algorithm uses broadcast in the

subgroups; the nodes at the ends of the subgroups then be-

come representative for the group and broadcast results to

the other nodes. In the two-phase algorithm depicted in the

figure latency can be calculated as follows:

L = 2 £ S + (m ¡ 1 + n ¡ 1) £ max(
‖P‖

BW
, Tpkt),

where m is the size of a node group and n is the num-

ber of groups. Note that the static overhead S is incurred

twice because partial results have to be re-injected into the

network.

The algorithm can be trivially expanded to rectangular

meshes of arbitrary dimensions by executing multiple rounds,

one for each new dimension. In the first round each proces-

sor performs the algorithm along the first dimension. In

the second round the partial results are combined along the

second dimension; and so on. Figure 3.2 illustrates the al-

gorithm in an 8 £ 8 2D mesh with horizontal and vertical

phases. Since virtual node mode can be thought of as oper-

ating in a 4-dimensional mesh, the algorithm translates to

virtual node mode without modification.

The optimal number of subgroups and group size in the

hierarchical algorithm are determined by both the size of

the message and by the dimensions of the communicator

the algorithm is performed in. Our current implementation

limits the algorithm to messages no longer than a single

torus packet (we intend to address this issue in the future).

We have found through measurement that a group size of

4 is suitable for Allreduce and a group size equal to the

dimension is good for Barrier.

Algorithms for global reduction and barrier synchroniza-

tion have been extensively studied in [15, 7, 13, 10]. MPICH2

uses a recursive doubling algorithm [17] for short Allreduce

type operations and the dissemination algorithm [11] for

257

(a) Horizontal phase (b) Vertical phase

Figure 4: Multi-phase hierarchical Allreduce on 2D
mesh

Barrier. Both algorithms try to optimize the number of

hops that the message data has to traverse. Our algorithm

is superior because it optimizes “software hops” instead of

“network hops” by exploiting special capabilities available

only on the BlueGene/L torus network.

4. COLLECTIVE AND GLOBAL INTERRUPT
NETWORK COLLECTIVES

In this section we describe the MPI collective communica-

tion implemented for the BlueGene/L collective and global
interrupt networks.

MPI Barrier on the global interrupt wires: we have

implemented a non-blocking barrier for MPI using the global

interrupt network. The global interrupt barrier works on 32,

128, 512, and multiples of 512 nodes.

MPI Allreduce and MPI Bcast on the collective net-
work: the collective network routes packets upward to the

root and/or downward to the leaves as desired. It comes

with a fixed point arithmetic unit in every node. The op-

eration performed by the arithmetic unit is determined by

the type of the packet.

For instance, MPI Bcast is implemented by idling the arith-

metic unit. The logical root of the broadcast sends the mes-

sage up to the physical root of the collective network, which

then re-broadcasts the message to everyone else. Collective

network hardware takes care of the proper routing. Pipelin-

ing at a packet level insures minimum latency and maximum

bandwidth.

Fixed point versions of MPI Allreduce operations, such

as addition, maximum search or even MAXLOC, can be imple-

mented by just feeding the collective network with pack-

ets with the correct operation type. The collective net-

work hardware performs combine operations as the packet

streams converge on the route from the leaves to the root.

Packets reaching the root are turned back and re-broadcast

to all leaves.

MPI Barrier can be trivially implemented on the collec-

tive network by each node injecting a combine packet into

the collective network and waiting for the response from the

root. The contents of the packet and the performed opera-

tion do not matter.

The situation is somewhat more complex in the case of

floating-point Allreduce operations. Because the collective

network hardware can only perform fixed-point operations,

Machine Torus Machine Torus

size topology size topology

32 4 £ 4 £ 2 64 8 £ 4 £ 2

128 8 £ 4 £ 4 256 8 £ 8 £ 4

512 8 £ 8 £ 8 (T) 1024 8 £ 8 £ 16 (T)

2048 8 £ 16 £ 16 (T) 4096 8 £ 32 £ 16 (T)

Table 1: Torus topologies of diff. machine sizes

our implementation of floating-point Allreduce must deal

with the complexities of IEEE floating-point representation

in software. This costs CPU cycles, resulting in lower band-

width. The MPI collective operations for BlueGene/L col-

lective network only work on MPI COMM WORLD.

5. PERFORMANCE
To measure the performance of our optimized MPI col-

lectives we wrote a set of micro-benchmarks targeted to-

wards testing performance on the network topologies that

were important to us. Because the type and amount of col-

lective communication vary significantly across the whole

application spectrum, using real application benchmarks is

less straightforward for quantifying the performance of in-

dividual collective operation. Therefore, we used micro-

benchmarks instead of real application benchmarks in our

performance analysis. Our micro-benchmarks measured the

latency and bandwidth of each MPI collective operation in-

dividually. All benchmarks were run on a 4096-node Blue-

Gene/L system installed at IBM’s Rochester site. For scala-

bility measurements we booted smaller partitions inside the

large machine. Table 1 shows all the partition sizes and

topologies we used. Note that partition sizes below 8£8£8

can only be booted in a mesh configuration. All other par-

tition sizes, denoted by a “T” in the table, are torus config-

urations with wrap-around links on all three dimensions.

5.1 Bandwidth of MPI Bcast
The torus broadcast implementation has a target band-

width equivalent to 3 network links on a 3D mesh. In fact,

its performance is bound by CPU overhead and memory

bandwidth, and therefore is limited to less than 2 network

links. The collective network offers performance close to the

full bandwidth of the collective network, 337 MBytes/s, as

shown in Figure 5(a).

One unforeseen aspect of optimizing Bcast was that the

decision whether to apply an optimized algorithm has to be

taken globally, across the whole communicator (in order to

avoid situations in which some nodes in the communicator

decide to use the optimized algorithms but others don’t).

The decision involves a round of short Allreduce that pre-

cedes the actual broadcast, driving latency up for all opti-

mized operations. Figure 5(b) focuses on message lengths

of less than 4 KBytes and shows the default MPICH2 im-

plementation outperforming the optimized ones for message

lengths of up to 2 KBytes. There is obvious room for im-

provement here.

5.2 Bandwidth of MPI Allreduce
We present a separate set of numbers for fixed point and

floating point implementations of MPI Allreduce.

Figure 6(a) compares the bandwidth of three implemen-

tations of MPI Allreduce sum of integers. It is immediately

258

(a) (b)

Figure 5: Bandwidth comparison of MPI Bcast

(a) (b)

Figure 6: Bandwidth comparison of MPI Allreduce(int)

(a) (b)

Figure 7: Bandwidth comparison of MPI Allreduce(double)

259

(a) (b) (c)

Figure 8: Per-node bandwidth comparison of MPI Alltoall

Machine

topology

Aggr. peak

(MB/s)

Message size per node (Bytes) Best %

Peak16 64 256 1024 4096 16384 64KB 256KB 1MB

4x4x2 4928 237 619 1892 3133 3871 4123 4220 4196 4215 86

8x4x2 4928 566 1272 2817 3908 4459 4566 4618 4596 4603 94

8x4x4 9856 1330 2705 5524 7740 8724 9003 9053 9076 9087 92

8x8x4 19712 2727 4354 9905 14458 16538 16802 16935 16954 86

8x8x8(T) 78848 5463 9462 20015 40548 63261 73689 76622 77525 98

8x16x8(T) 78848 8751 12936 26845 47945 58518 61557 62536 79

8x16x16(T) 157696 14155 21867 48745 103111 126053 130628 135465 86

8x32x16(T) 157696 22860 32910 64398 97069 98616 118120 75

Table 2: Aggregate bandwidth of torus MPI Alltoall

(a) (b)

Figure 9: Latency comparison of MPI Allreduce for short messages

260

evident that the collective network achieves a performance

close to the theoretical maximum as in MPI Bcast. The torus

version of Allreduce with Hamiltonian reduction path, de-

noted as Torus(HT), is the next best for long messages, but

suffers from high latency which makes it less advantageous

for short messages. Figure 6(b) highlights the short-message

portion of the performance comparison, in which the Torus

and Torus(HT) cases used the short-message torus allreduce

algorithm with simple multi-packet extension for message

length up to 8 KBytes. It is clear that our optimization

work here is not finished yet.

For MPI Allreduce with double precision floating-point

numbers, the collective network implementation has a much

lower bandwidth. This is because the network does not pro-

vide operations on floating point numbers. We implemented

a two-phase algorithm instead which parses the exponents

first, calculates maximums, shifts mantissas into position,

performs fixed-point allreduce on the mantissas and finally

re-arranges the results into IEEE compliant double preci-

sion floating point representation. This requires a lot of

CPU overhead, resulting in low performance.

In contrast, both torus versions (with and without Hamil-

tonian path) perform much better than in the integer case

because of a design quirk in the network that allows network

to floating point number transfers at a much higher rate.

These performance changes are obvious in figures 7(a) and

7(b). The MPICH2 implementation behaves similarly for

integer and double numbers because it does not utilize the

network tricks we employed for the optimized Allreduce.

5.3 Bandwidth of MPI Alltoall
Personalized communication is bandwidth intensive. Per-

formance is ultimately limited by the shape of the network.

For a mesh of size m£n£p the theoretical maximum network

Alltoall bandwidth is
4L

max(m,n,p)
(where L is the band-

width of a single link). For a torus the formula is
8L

max(m,n,p)
.

The formula is based on cross-section bandwidth: in any

dimension of the mesh half the nodes will want to commu-

nicate to the other half. In the first dimension this amounts

to sending
m×n×p

2
messages over the total available cross-

section bandwidth of 2 £ n £ p £ L. Tori have twice the

number of links, hence the cross-section bandwidth doubles.

Figures 8(a), 8(b) and 8(c) compare the per-node band-

width of the default (MPICH2) and optimized MPI All2all

implementations for three machine sizes. The straight lines

at the top denote theoretical peak bandwidth, taking into

consideration all factors like packet payload. The graphs

show up the deficiencies of the MPICH2 implementation

on this network. MPICH2 switches between algorithms at

256 Bytes and again at 32 KBytes. Figure 8(c) shows the

switch from a store-and-forward algorithm to an all-post-

and-receive algorithm. Performance drops because of the

MPI overhead involved in posting so many messages. Fig-

ures 8(a) and 8(b) show the second switch, from all-post to a

pairwise send/receive algorithm. Performance then depends

on how the order of sends and receives interacts with the

physical network topology.

Table 2 shows how peak Alltoall bandwidth of the opti-

mized algorithm scales with machine size. The best achieved

bandwidth is highlighted. In all cases we achieve more than

75% of peak bandwidth, and the ratio seems better for ma-

chine topologies that are closest to cubic. Also note the low

message size (less than 1 KBytes) for which half of the peak

Figure 10: Latency comparison of MPI Barrier

bandwidth is achieved. This makes the algorithm suitable

for short messages.

5.4 Latency of short-message MPI Allreduce
Figure 9(a) displays scaling properties of multiple imple-

mentations of short-message MPI Allreduce. We compare

the optimized implementations using the collective and torus

networks with the default MPICH2 implementation. The

message length is 8 bytes. Figure 9(b) shows the same three

algorithms running on a fixed size partition but with vari-

able message size (up to 232 bytes). The torus optimized

version of MPI Allreduce is faster then the MPICH2 version

and scales better. The collective network implementation of

MPI Allreduce always has the lowest latency and the best

scalability for short messages.

5.5 Latency of MPI Barrier
Figure 10 compares the latency of four implementations of

MPI Barrier. Similar to the latency comparison of Allreduce,

the torus implementation performs much better than the de-

fault MPICH2 implementation in terms of both latency and

scalability. The collective network Barrier implementation

scales even better than the torus Barrier and the execution

time is less than 5 µs for up to 4096 nodes. The GI Barrier

implementation has the lowest latency of around 1 µs. Be-

cause the collective and GI Barrier are not applicable to

all machine configurations they have fewer data points than

the torus and MPICH2 Barrier.

6. CONCLUSION AND FUTURE WORK
Tables 3 and 4 summarize the performance of the MPI

collectives discussed in this paper.
B

2
denotes the message

size where half of the maximum bandwidth is achieved.

Our optimized MPI collective implementations are supe-

rior to the default ones because they exploit knowledge of

the physical network topology and are tuned to use perfor-

mance features of the hardware and to avoid things that

carry heavy performance penalty (like memory copies). We

spent a lot of time optimizing the collectives, and we are a

long way from being done. The extreme scale of the Blue-

Gene/L and the inherent cost of operating it make it worth-

while to develop these algorithms even if they were applica-

ble only to this machine. Time will tell whether the lessons

we learned will be applicable to other systems. We suspect

that it will – more and more large machines are built to

261

Collectives
MPICH2 Torus Tree

BW
B

2
BW

B

2
BW

B

2

MPI Allreduce(i) 40.0 4KB 79.6 512KB 336.7 2KB

MPI Allreduce(d) 40.5 4KB 119.4 1MB 25.5 256B

MPI Alltoall(/n) 58.3 8KB 151.6 1KB - -

MPI Bcast 66.0 16KB 243.8 65KB 336.1 16KB

Table 3: Bandwidth (MB/s) summary of MPI col-
lectives on a 512-node BlueGene/L system

Collectives
MPICH2 Torus Tree

GI
16B 256B 16B 256B 16B 256B

MPI Allreduce 42.3 78.4 19.7 52.8 4.22 4.75 -

MPI Bcast 15.9 24.0 73.8 78.5 45.2 45.7 -

MPI Barrier 40.0 8.72 4.04 0.82

Table 4: Latency (µs) summary of MPI collectives
on a 512-node BlueGene/L system

compensate for the slowdown in increase of individual CPU

performance.

Our ongoing research effort to further optimize BlueGene/L

MPI collective communication is threefold: (a) to support a

more complete set of MPI collectives; (b) to optimize per-

formance for a larger subset of topologies, i.e. other than

MPI COMM WORLD and rectangular communicators, and (c) to

address the performance deficiencies of the current imple-

mentations by e.g. deploying the second processor to help

with CPU intensive tasks in our collective implementations.

7. ACKNOWLEDGMENTS
We would like to thank Gabor Dozsa and the anonymous

reviewers for their helpful comments.

8. REFERENCES
[1] The MPICH and MPICH2 homepage.

http://www-unix.mcs.anl.gov/mpi/mpich.

[2] N. R. Adiga et al. An overview of the BlueGene/L

supercomputer. In SC2002 – High Performance
Networking and Computing, Baltimore, MD,

November 2002.

[3] G. Almasi, C. Archer, J. G. Castaños, C. C. Erway,

P. Heidelberger, X. Martorell, J. E. Moreira,

K. Pinnow, J. Rattermann, N. Smeds,

B. Steimacher-burow, W. Gropp, and B. Toonen.

Implementing MPI on the BlueGene/L

supercomputer. In Proceedings of Euro-Par 2004
Conference, Lecture Notes in Computer Science, Pisa,

Italy, August 2004. Springer-Verlag.

[4] G. Alm¶asi, C. Archer, J. Gunnels, P. Heidelberger,

X. Martorell, and J. E. Moreira. Architecture and

performance of the BlueGene/L Message Layer. In

Proceedings of the 11th EuroPVM/MPI conference,
Lecture Notes in Computer Science. Springer-Verlag,

September 2004.

[5] G. Alm¶asi, R. Bellofatto, J. Brunheroto, C. Cascaval,

J. G. Castaños, L. Ceze, P. Crumley, C. Erway,

J. Gagliano, D. Lieber, X. Martorell, J. E. Moreira,

A. Sanomiya, and K. Strauss. An overview of the

BlueGene/L system software organization. In

Proceedings of Euro-Par 2003 Conference, Lecture

Notes in Computer Science, Klagenfurt, Austria,

August 2003. Springer-Verlag.

[6] G. Almasi et al. Cellular supercomputing with

system-on-a-chip. In IEEE International Solid-state
Circuits Conference ISSCC, 2001.

[7] M. Barnett, R. J. Littlefield, D. G. Payne, and R. A.

van de Geijn. Global combine on mesh architectures

with wormhole routing. In International Parallel
Processing Symposium, pages 156–162, 1993.

[8] G. Chiola and G. Ciaccio. Gamma: a low cost network

of workstations based on active messages. In Proc.
Euromicro PDP’97, London, UK, January 1997,
IEEE Computer Society., 1997.

[9] W. Gropp, E. Lusk, D. Ashton, R. Ross, R. Thakur,

and B. Toonen. MPICH Abstract Device Interface

Version 3.4 Reference Manual: Draft of May 20, 2003.

http://www-unix.mcs.anl.gov/mpi/mpich/

adi3/adi3man.pdf.

[10] S. K. S. Gupta and D. K. Panda. Barrier

synchronization in distributed-memory

multiprocessors using rendezvous primitives. In

Proceedings of the 7th IEEE International Parallel
Processing Symposium – IPPS’93. IEEE Press, 1993.

[11] D. Hensgen, R. Finkel, and U. Manbet. Two

algorithms for barrier synchronizatio. International
Journal of Parallel Programming, 17(1):1–17,

February 1998.

[12] S. Pakin, M. Lauria, and A. Chien. High performance

messaging on workstations: Illinois Fast Messages

(FM) for Myrinet. In Supercomputing ’95, San Diego,
CA, December 1995, 1995.

[13] D. K. Panda. Global reduction in wormhole k-ary

n-cube networks with multidestination exchange

worms. In IPPS: 9th International Parallel Processing
Symposium. IEEE Computer Society Press, 1995.

[14] R. Rabenseifne. A new optimized mpi reduce

algorithm. High-Performance Computing-Center,

University of Stuttgart, November 1997.

http://www.hlrs.de/mpi/myreduce.html.

[15] R. Rabenseifner. Optimization of collective reduction

operations. In International Conference on
Computational Science, June 2004.

[16] R. Thakur and W. Gropp. Improving the performance

of collective operations in mpich. In Proceedings of the
11th EuroPVM/MPI conference. Springer-Verlag,

September 2003.

[17] R. Thakur, R. Rabenseifner, and W. Gropp.

Optimization of collective communication operations

in mpich. International Journal of High Performance
Computing Applications, 2005.

[18] T. von Eicken, A. Basu, V. Buch, and W. Vogels.

U-net: A user-level network interface for parallel and

distributed computing. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
Copper Mountain, Colorado, December 1995.

[19] T. von Eicken, D. E. Culler, S. C. Goldstein, and

K. E. Schauser. Active Messages: a mechanism for

integrated communication and computation. In

Proceedings of the 19th International Symposium on
Computer Architecture, May 1992.

[20] J. Watts and R. Van De Geijn. A pipelined broadcast

for multidimensional meshes. Parallel Processing
Letters, 5(2):281–292, 1995.

262

