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Chapter 1

Introduction

How to render a set of opaque or partially transparent objects in R3 quickly and in
a visually realistic way is a fundamental problem in computer graphics [44, 100]. A
central component of rendering is hidden-surface removal: given a set of objects
(some of which may be moving continuously), a continuously-moving viewpoint, and
an image plane, compute the scene visible from the viewpoint as projected onto the
image plane. Informally, for each point p in the image plane, we would like to compute
the first object that is intersected by a ray originating at the viewpoint and passing
through p.

Typical applications of this problem are architectural walkthroughs, flight sim-
ulation, terrain fly-overs, video games, and CAD design. In such applications, the
visible scene must be computed and rendered as many as 60 times a second in order
to achieve realism. The fundamental difficulty in the problem arises from the fact that
such “frame rates” need to be achieved for input data sets that may contain hundreds
of millions or even billions of objects. Further, the motion of the viewpoint and the
objects is often user-determined and unpredictable. Given these challenges, our aim
in this dissertation is to develop theoretically and practically efficient algorithms for
hidden-surface removal.

In this chapter, we give a brief overview of the hidden-surface removal techniques
developed in computer graphics and in computational geometry, and compare and con-

trast these two classes of algorithms. Next, we discuss how these known algorithms



motivate the framework in which we propose to solve the hidden-surface removal prob-
lem. Finally, we highlight the contributions of this dissertation.

1.1 Perspective on Previous Work

The hidden-surface removal problem has been studied extensively in both the computer
graphics [44] and the computational geometry communities [39]. We now briefly survey
the vast literature on this problem, in order to put the developments of the last 30
years into perspective. In this section, our goal is to highlight the similarities and
the differences between the algorithms developed in the computer graphics and the
computational geometry literature.

Back-face culling and view-frustum culling are classical approaches to hidden-
surface removal. In back-face culling, any triangle whose normal is directed away from
the viewpoint is deemed to be invisible and is not rendered. View-frustum culling is
based on the fact that the visibility is usually restricted to a frustum of directions
around the viewpoint. As the name indicates, view-frustum culling renders only those
triangles that intersect this frustum of directions. Excellent surveys of early techniques
for hidden-surface removal are provided by Sutherland et al. [100] and Foley et al. [44,
Chapter 15]. These approaches are divided into two prototypical classes: object-space
techniques work at the precision with which each object is defined and compute the
visibility of each object, while image-space algorithms work at the precision of the
display device and determine visibility information at each pixel of the display.

In the last 10 years, many sophisticated algorithms for hidden-surface removal of
large data sets have been developed in the computer graphics community. These al-
gorithms are based on the principle of occlusion culling: do not render objects that
are not visible from the viewpoint. Techniques developed by Airey [8], Teller [101],
and Luebke and Georges [65] are effective for architectural environments. Coorg and
Teller [34] and Hudson et al. [58] develop object-space techniques for occlusion culling
in general polygonal models. Greene et al. [53] and Zhang et al. [108] have developed
algorithms that combine object-space and image-space components. We survey these
approaches in more detail in Chapter 3. There has been a lot of research on techniques
orthogonal to occlusion culling that render objects that are far away from the viewpoint
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in simplified form or by replacing them with textures or images. These techniques do
not solve the hidden-surface removal problem directly, but can be used to supplement
algorithms for hidden-surface removal.

Many algorithms have been proposed in the computational geometry literature
to solve the hidden-surface removal problem. These algorithms typically compute
the vistbility map, which is a partition of the image plane into maximally-connected
regions with the property that in each region, at most one triangle is visible. Worst-
case optimal algorithms are presented by Dévai [38] and McKenna [67]. The running
time of more recent algorithms depends on n, the size of the input as well as k,
the scene complerity or the number of edges in the visibility map. Many of these
algorithms are designed to work for specific classes of inputs: rectangles and orthogonal
objects [17, 50, 86}, polyhedral terrains [59, 85, 87], and objects whose unions have small
size [59]. de Berg et al. [36] present a general algorithm for hidden-surface removal that
constructs the visibility map for n triangles in R3 in O(n'*¢v/k) time, for any fixed
€ > 0. Agarwal and Matousek [5] improve this time to O(n2/3+¢k2/3 4 n'*¢), which is
the best-known so far.

Examining the various algorithms mentioned above, we observe some fundamental
differences between those used in computer graphics and those developed in compu-
tational geometry: (i) performance in theory vs. performance in practice, (ii) the
granularity at which visibility is resolved and (iii) assumptions made on the motion of

the viewpoint and input objects. Let us look at these three issues in some more detail.

Theory vs. Practice Computer graphics algorithms perform well in practice for many
classes of inputs since they are typically developed to optimise performance for the “av-
erage” input. However, a fundamental drawback of most of these algorithms is that
their theoretical performance is not analysed. Teller [101] analyses only some compo-
nents of his algorithms while Chamberlain et al. [26] prove bounds on the performance
of their algorithms under rather strong assumptions on the input, assumptions which
seem to be valid only for a small class of input data sets.

On the other hand, algorithms used in computational geometry are proved to be
efficient even in the worst case. Unfortunately, they are often very complicated (since

they are designed to overcome all pathological inputs) and are difficult to implement



as a result. Even when they are implemented, large constant factors in the running
time, which are hidden in the theoretical analysis by the big-oh notation, tend to make
these algorithms impractical.

L1101
)
L

n/2+2

1l

n/2+1

1 2 n/2

Figure 1.1: A set of n rectangles whose visibility map has Q(n?) size.

Visibility Granularity As we mentioned earlier, hidden-surface removal algorithms in
computational geometry compute the visibility map. Informally, the visibility map
encodes exactly which portions of each input object is visible. A major drawback
of this approach is that the size of the visibility map can be Q(n?) for n objects,
e.g., when the viewpoint is at z = 400 and the scene contains n/2 thin rectangles
parallel to the x-axis lying directly above n/2 thin rectangles parallel to the y-axis (see
Figure 1.1). As a result, any algorithm that solves the hidden-surface removal problem
by computing the visibility map takes quadratic time in the worst case to compute and
render the visible scene.

In marked contrast, most computer graphics algorithms only compute which input
objects are visible (an object is deemed to be visible if at least one point on the object
is visible). These algorithms then feed the visible objects to graphics hardware (such
as the z-buffer, which we examine in the next section) to compute the final scene.

Assumptions on Motion Most computational geometry algorithms for hidden-surface
removal have been developed for the static setting, when the viewpoint and input
objects are not moving. It appears that the only way we can extend any of them

to the case when the viewpoint or objects in the input are moving is to periodically



execute the static algorithm from scratch. Clearly, this approach is wasteful since it
does not exploit the continuity of the motion of the viewpoint and input objects. In the
worst-case, we might recompute the entire visibility map only to discover that it has
not changed “combinatorially” (we will define this notion precisely in Chapter 3) since
the previous invocation of the algorithm. A few algorithms for dealing with moving
viewpoints have been developed [18, 64, 71]. However, all these algorithms assume that
the trajectory of the viewpoint is either restricted (along a straight line, for example)
and completely known a priori. Both assumptions are invalid in the vast majority of
practical situations, when viewpoint and object motions are user-defined and not fully
predictable. Pellegrini presents a related algorithm for constructing a data structure
that encodes all possible visibility maps compactly- so that the visibility map for a
query viewpoint can be computed efficiently [83]. However, this algorithm improves
on the fastest static algorithm (by Agarwal and Matousek [5]) only when the visibility
map has small size.

Some computer graphics algorithms take advantage of temporal coherence, the
phenomenon in which the set of visible triangles changes gradually as the viewpoint
and input objects move continuously. The basic idea these algorithms use is to sample
time discretely and to update the set of visible objects at the end of each time step or
Sframe. For example, some algorithms that store the input objects in a data structure
approximate the continuous motion of each object by deleting and reinserting it (or a
suitably chosen bounding volume) in a new position at the beginning of each frame (31,
76, 97, 103]. Such approaches suffer from the fundamental problem that it is very
difficult to know how to choose the correct interval size: if the interval is too small,
then the data structure and the set of visible objects does not in fact change, and
the deletion/re-insertion is just wasted computation; if it is too big, then important
intermediate changes to the data structure can be missed. Other algorithms for hidden-
surface removal [33, 53, 108] exploit temporal coherence to speed up only some steps
of the algorithms; they execute other, possibly time-consuming steps of the algorithm
from scratch at the beginning of each frame.

To summarise, there are three basic differences between hidden-surface removal

algorithms in computer graphics and computational geometry:



1. Computer graphics algorithms work efficiently in practice but their theoretical
performance is not well understood. Techniques described in the computational
geometry literature are analysed theoretically in the worst-case but they have not

been used in practice since they are complicated.

2. Computer graphics algorithms compute just which set of objects are visible and
rely on graphics hardware such as the z-buffer to render the final scene. Com-
putational geometry techniques compute exactly which portion of each object is
visible, and have worst-case running times that are quadratic in the number of

input objects.

3. While computer graphics techniques try to exploit the continuity of viewpoint
and object motion, they do so only indirectly since they approximate continuous
motion by a discrete sampling of time. Algorithms developed in computational
geometry are developed either for static inputs or make very strong assumptions

about the object motions.

1.2 Goals of this Thesis

In this thesis, our goal is to bridge the gap between hidden-surface removal in theory
and in practice. One of our primary goals is to design algorithms that are theoretically
efficient. At the same time, we would like our algorithms to be simple, implementable,
and efficient in practice too. By developing algorithms in realistic and appropriate
models of computation, we hope to ensure that our algorithms have all these desirable
properties. In the rest of this section, we describe the three major themes we use to
develop theoretically- and practically-efficient algorithms for hidden-surface removal.
These themes are motivated by the different advantages and drawbacks of known al-
gorithms for hidden-surface removal that we noted earlier.

Geometric complexity Practically all algorithms in computational geometry are anal-
ysed only in terms of the combinatorial complezity (or size) of the input. As we have
noted already, such a model requires that algorithms be efficient for all possible inputs,

a requirement that often results in the development of algorithms that are complicated



and unimplementable, for all practical purposes. In contrast, we propose to analyse
algorithms in the framework of geometric complezity (in addition to combinatorial
complexity); we use geometric complexity as a catch-all that captures typical character-
istics of input models such as aspect ratio [104], clutter [35], low density [90], and depth
complexity [101]. For example, we say that a set of rectangles has low geometric com-
plexity if the aspect ratio of most rectangles in the set is bounded by a small constant.
Similar ideas have been studied by de Berg et al. [37]. The use of geometric com-
plexity is motivated by the observation that algorithms in computer graphics are fast
in practice since they implicitly (or even explicitly) tune their performance to certain
geometric features of the input, which allows the development of simple solutions to
the hidden-surface removal problem. We aim to develop provably-efficient algorithms
that take advantage of the low geometric complexity of typical input models. As we
demonstrate later in our thesis, since our algorithms exploit such special (yet common)
inputs, they are simple, easy to implement, and efficient in practice too. It is important
to stress that our algorithms will perform correctly for all inputs (irrespective of the
geometric complexity of the input); it is only the analysis and performance of the

algorithms that will depend on the geometric complexity of the input.

Object complexity As we noted earlier, computational geometry algorithms for solv-
ing the hidden-surface removal problem compute the visibility map. In practice, com-
puting the entire visibility map is not necessary. Since the image plane is an abstraction
of a finite-resolution screen, it is enough to compute for each pixel on the image plane,
which object is visible at that pixel. Suppose the input is a set of polygons. The pop-
ular z-buffer algorithm [25, 44] is a simple technique that computes this information
by sequentially processing the input polygons. For each pixel, the algorithm stores the
colour and the distance from the viewpoint of the closest already-processed polygon
that covers that pixel. For a new polygon, the algorithm examines each pixel covered
by the polygon, and updates the information for that pixel if the distance of the new
polygon from the viewpoint is less than the distance stored with the pixel. The run-
ning time of the z-buffer algorithm is O(n + a), where a is the total number of pixels
contained in the projections of the polygons in the input onto the image plane [49].

In the complex and massive data sets we are interested in performing hidden-surface



removal on, most object projections occupy a very small area. Hence, it is reasonable
to approximate the running time of the z-buffer algorithm by the O(n) term.

While the z-buffer can be implemented very efficiently in hardware (for example,
SGI's InfiniteReality system [68] can render 7 million triangles a second), current data
sets containing millions of objects are simply too large to be processed at the rate
of 60 fimes a second even by state-of-the-art hardware z-buffers. Furthermore, recall
that computational geometry algorithms for hidden-surface removal can spend Q(n?)
time to compute the visibility map; in such cases, it is likely that the z-buffer can
process the original n polygons much faster than it can process the Q(n?) faces of
the visibility map. Thus, the O(n) running time of the z-buffer algorithm indicates
that the visibility map is an inappropriate model in which to develop hidden-surface
removal algorithms. Note that the number of visible triangles is a lower bound on
the running time of the z-buffer algorithm, since the z-buffer must process all visible
triangles in order to render the scene correctly.

Motivated by these observations, we propose the object complerity model, in which
we measure the size of a scene in terms of the size of the input and number of visible
objects. Object complexity captures the cost of rendering objects using the z-buffer
more accurately than scene complexity does. In this model, we develop algorithms that
compute the set of objects visible from the viewpoint and then use hardware z-buffers

to render these objects.

Kinetic data structures As we have seen, known hidden-surface removal algorithms
exploit continuous motion only indirectly since they approximate it by sampling time
discretely. We propose to use the notion of kinetic data structures pioneered by
Basch et al. [13]. In this paradigm, an algorithm maintains a discrete attribute of
a set of moving objects (for example, the set of objects that are visible from a view-
point) by animating a proof of correctness through time. The proof consists of a set
of elementary geometric conditions called certificates, which are based on the tests
performed by the algorithm. Certificates that will fail in the future due to the mo-
tion of the objects are stored in an event queue, ordered by time of failure. When a
certificate fails, the algorithm performs the operations necessary to update the proof
and the attribute being maintained. Thus, a kinetic data structure explicitly exploits



the continuous motion of the objects so that its sampling of time is not fixed but is
determined by the instants at which the certificates fail.

Our Thesis

To summarise the above discussion, we aim to develop hidden-surface removal algo-
rithms
1. in the geometric complexity model, so as to exploit the geometric properties and

structure of the input objects and to remove the traditional focus on worst-case

analysis of algorithms,

2. that compute the set of visible objects and render them using the z-buffer, so
that the running time of the algorithms depends on the object complexity of the

input, and

3. that use the kinetic data structure paradigm to exploit the continuity of viewpoint

and object motion comprehensively.

It is our thesis that developing algorithms for hidden-surface removal under these three
criteria will enable us to perform hidden-surface removal efficiently both in theory and

in practice.

1.3 Contributions of this Thesis

In this section, we discuss the significance of the results developed in this thesis and
provide a road-map of how the rest of the thesis is organised. Throughout the thesis,
we assume that our input consists of polyhedral and polygonal objects. In fact, we
assume without loss of generality that our input is a set of triangles in R3. We first
describe an algorithm for automatically removing topclogical and geometric errors from
the input. Next, we present our algorithm for hidden-surface removal. The efficiency
of both techniques depends on an underlying spatial partition called the binary space
partition (BSP). Finally, we discuss our algorithms for constructing BSPs efficiently.
Most commonly available models contain geometric and topological flaws, such as

missing triangles and cracks. Intuitively, “clean” models have continuous boundaries
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with consistently-oriented triangles; such models enable the unambiguous classification
of a point as lying inside the model, outside the model, or on the surface of the
model. Many algorithms for hidden-surface removal do not perform well for models
that contain such errors. For example, an algorithm might expend a lot of time in trying
to resolve visibility through small cracks in the model. Another example is back-face
culling. Recall that back-face culling declares any triangle that is oriented away from
the viewpoint as being invisible. To work correctly, back-face culling requires that all
triangles in the model be consistently oriented (in a sense we will define precisely in
Chapter 2).

In Chapter 2, we describe a technique we have developed for geometric data repair
that automatically corrects such errors and constructs a model that is guaranteed to be
consistent. Our algorithm partitions R3 into regions and uses the novel idea of using
region adjacencies to determine “how solid” a region is. We then use the solid regions
to construct an error-free representation of the input data. We have implemented
and tested our algorithm on various data sets. Our experiments demonstrate that
unlike previously described approaches, our method gives excellent results on many
real models in R3 containing intersecting, overlapping, and unconnected triangles and
is effective for a large class of input models.

In Chapter 3, we present a new object-complexity algorithm for hidden-surface
removal of massive models. We compute a hierarchical spatial decomposition, and
classify cells of this decomposition as visible or invisible by intersecting the cells with
the union of the shadows cast by a few carefully-chosen occluders. Our technique has
several new and attractive features: we use the binary space partition (BSP) to unify
occluder selection, visibility maintenance, and mechanisms for frame-rate control; we
maintain the union of the shadows as a set of rays in R3; we can compute the set of
visible cells exactly, and can also detect when a cell is occluded by multiple, discon-
nected triangles; we explicitly exploit the continuity of the motion of the viewpoint
and the objects in the input by using kinetic data structures [13]: based on the current
motion of the viewpoint and the triangles, we predict the instants when the union of
the shadows and the set of visible cells change, and efficiently update the union of
shadows and the set of visible cells at each such instant.

Both the model repair and hidden-surface removal algorithms use the BSP as an
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underlying spatial data structure. Informally, a BSP B for a set of triangles in R3
is a binary tree, where each node v is associated with a convex polytope R,. The
regions associated with the children of v are obtained by splitting R, with a plane.
The polytopes associated with the leaves of the tree form a convex decomposition
of R3, and the interior of the polytope associated with a leaf does not intersect any
triangle. The faces of the decomposition induced by the leaves intersect the triangles
and divide them into sub-polygons; these sub-polygons are stored at appropriate nodes
of the BSP. The size of the BSP is the sum of the number of nodes in it and the total
number of faces of all dimensions stored at its nodes.

The BSP was introduced by Fuchs et al. [47] (based on preliminary work by Schu-
macker et al. [89]) to implement the “painter’s algorithm” for hidden-surface removal,
which draws the triangles to be displayed on the screen in a back-to-front order (in
which no triangle is occluded by any triangle earlier in the order). In general, it
is not possible to find a back-to-front order from a given viewpoint for an arbitrary
set of triangles. By fragmenting the triangles, the BSP ensures that a back-to-front
order from any viewpoint can be determined for the fragments. BSPs have subse-
quently proven to be versatile, with applications in many problems apart from hidden-
surface removal (8, 101]—global illumination [23], shadow generation [29, 30], solid
modelling (75, 78, 102], ray tracing [74], robotics [12], and approximation algorithms
for network design [66] and surface simplification [7].

The efficiency of our model repair and hidden-surface removal algorithms algo-
rithms as well as the applications mentioned above inherently depends on the size and
height of the BSP. In Chapters 4—6, we describe our algorithms for constructing BSPs
of small size. We show that BSPs of near-linear size can be constructed for orthogonal
rectangles with low geometric complexity, where geometric complexity is measured in
terms of the aspect ratio of the rectangles (see Chapter 4 for details). Our implementa-
tion demonstrates that the algorithm indeed constructs BSPs of linear size in practice
on “real” models. We present these implementation results in Chapter 5, where we
demonstrate that our algorithm performs better in practice than most algorithms pre-
sented in the literature. We also present two algorithms for constructing BSPs for a set
of triangles in R3. One of these algorithms is the first-known algorithm whose running

time is close-to-optimal in the worst case. The other algorithm constructs BSPs of
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near-linear size and polylogarithmic depth for triangles that form a “near”-terrain (we
defer a definition of this aspect of geometric complexity to Chapter 6). Finally, we
present the first-known provably-efficient algorithm for maintaining the BSP for a set
of moving segments in the plane.

In the remaining chapters, we describe each of these techniques in full detail. Our
model repair and hidden-surface removal algorithms in combination with our efficient
algorithms for constructing BSPs provide a powerful set of techniques for solving the
hidden-surface removal problem. In Chapter 7, we examine these issues once again
and propose open problems motivated by our results. We also discuss our framework
of geometric complexity, kinetic data structures, and object complexity. We point out
that the framework is very general and suggest other problem domains in which it can

be put to good use.

1.4 Geometric Preliminaries

Before we proceed to the rest of the thesis, we formaly define the BSP. We assume that
our input is a set S of n triangles. A binary space partition B for a set S of triangles
with pairwise-disjoint interiors in R? is a tree defined as follows: Each node v in B is
associated with a polytope R, and the set of triangles S, ={s N R, | s € S} that intersect
Ryv. The polytope associated with the root is R3 itself. If S, is empty, then node v is a
leaf of B, Otherwise, we partition R, into two convex polytopes by a cutting plane H,.
We refer to the polygon H,NR, as the cut made at v. At v, we store the equation of H,,
and theset {s | s C H,, s € S,}, the subset of triangles in S,, that lie in H,,. If H} denotes
the positive halfspace and H, the negative halfspace bounded by H,, the polytopes
associated with the left and right children of v are R, N H; and R, N HY, respectively.
The left subtree of v is a BSP for the set of triangles Sy ={sNHJ | s € S,} and the
right subtree of v is a BSP for the set of triangles Sf ={s N H} | s € Sy}. The size of B
is the sum of the number of nodes in B and the total number of triangles stored at all

the nodes in B.



Chapter 2

Input Model Repair

In this chapter, we present an algorithm for the automatic correction of polygonal mod-
els that contain topological and geometric error. We start by giving some definitions
to help us formalise the problem. We say that a set S of triangles in R3 is consistent
if the union of the triangles is a closed 2-manifold [72] in which each triangle is ori-
ented with its normal pointing away from the interior of the volume enclosed by the
manifold. We say that a consistent set S of triangles is a correct representation of a
polyhedral solid object in R3? if the manifold formed by the triangles in S is identical
to the boundary of the solid object.

Correct representations of three-dimensional objects are useful and even required
in hidden-surface removal. As we pointed out in Chapter 1.3, the simple and pop-
ular technique of back-face culling performs incorrectly when the input triangles are
inconsistently oriented. In the case of occlusion-culling algorithms, cracks in the in-
put model or triangles missing from S might mislead such algorithms into declaring
actually-invisible portions of the input as visible, thus generating incorrect views of the
scene. Further, the performance of current rendering graphics hardware is optimised
when the triangles to be drawn are presented to the hardware in the form of triangle
strips [43, 44]; consistent representations aid in partitioning the input into triangle
strips, since the triangles in such a representation form a continuous surface with no
cracks, intersections, or missing triangles.

Consistent and correct geometric models are also useful in interactive collision-

detection, where some algorithms first process “free” space, i.e., the complement of the

13
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union of all the obstacles in the environment [55]. Such algorithms require a correct
representation of the boundary of the obstacles so that they can effectively construct
the free space. Similarly, algorithms for lighting simulation process meshes constructed
on the boundaries of the objects being lit or analysed [15]. If the boundaries have
cracks, the mesh is malformed, causing errors and artifacts like spurious shadows in
the result. “Bad” meshes can also produce errors in finite element analysis. Further,
basic CAD/CAM operations like computing the mass or volume of an object, solid
modelling techniques such as Constructive Solid Geometry that perform set operations
on solid objects (75, 78, 102], and rapid prototyping [94], which is used to manufacture
objects from CAD designs, need models with continuous and closed boundaries, with
no cracks or improper intersections. Finally, systems that design and optimise wireless
communication systems for a closed environment like a building require descriptions
of the boundaries of the obstacles in the building [46, 60].

Unfortunately, most commonly available models of solid objects, whether created
by hand or by using automatic tools, contain geometric and topological flaws. Typical

€ITOIS are:
e wrongly-oriented triangles,
e intersecting or overlapping triangles,
e missing triangles,

e cracks (edges that should be connected have distinct endpoints, faces that should

be adjacent have separated edges), and

e T-junctions (the endpoint of one edge lies in the interior of another edge).

For example, in Figure 2.1, there is a crack between segments a and b; segments ¢
and d intersect; and the right endpoint of segment e lies in the interior of d, forming
a T-junction. Such errors may be caused by operational mistakes made by the person
creating the model, may creep in when converting from one file format to another, or
may occur because a particular modeller does not support some features (e.g., a snap
grid).

Motivated by the above applications and model imperfections, we consider the

following solid reconstruction problem:
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Figure 2.1: A non-manifold model.

From an arbitrary set S of triangles in R3, reconstruct a correct represen-

tation of the solid objects modelled by the triangles in S.

We describe an automatic technique to solve the solid reconstruction problem that
works well on many realistic models and is guaranteed to output a consistent set of
triangles. The remainder of this chapter is organised as follows: In the next section, we
discuss previous algorithms to solve the above problem. In Section 2.2, we describe our
solid reconstruction algorithm in detail. Section 2.3 contains experimental results and
a brief discussion of the advantages and limitations of our approach. In Section 2.4, we

conclude by discussing extensions to our algorithm and posing some open problems.

2.1 Previous Work

It has been noted in the literature that there are currently no robust techniques to
solve the solid reconstruction problem [51, 70]. Previous approaches can be divided
info two categories: boundary-based approaches and solid-based approaches.
Boundary-based techniques determine how the input triangles mesh together to
form the boundaries of the objects modelled by them. Typically, these algorithms
merge vertices and edges that are “close” or zip together the boundaries of two faces
by merging pairs of “nearby” vertices, where “close” and “nearby” are defined in terms
of a pre-specified tolerance. Some boundary-based methods assume that either all
the input triangles are consistently oriented or that the orientation of a triangle can
be determined from the order of the vertices on its boundary [15, 21]. Such an as-
sumption is often invalid since many data sets contain inconsistently oriented trian-

gles. Other algorithms require (a lot of) user intervention [41, 61], are inherently
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two-dimensional [60, 63] or are limited to removing parts of zero-volume (like internal
walls) from CAD models [20]. Bghn and Wozny [21] fill cracks or holes by adding tri-
angles; their method can potentially add a lot of triangles to the model. However, the
most common deficiency of many of the previous techniques is that they use model-
relative tolerances to “fill over” cracks and generate connectivity information about
the model [15, 22, 94]. Determining the right tolerance for a given model is a difficult
task, probably requiring input from the user. Moreover, such approaches do not work
well when the size of some error in the input is larger than the smallest feature in the
model. In this case, no suitable tolerance can be chosen that both fills the cracks and
preserves small features.

Solid-based algorithms partition R3 into regions and determine which regions are
solid. Thibault and Naylor [102] classify a region as solid when there is at least one
input triangle lying on the region's boundary whose normal is directed away from the
interior of the region, while Teller [101] declares a region to be solid only if a majority
of the triangles lying on the region’s boundary have such normals. Both techniques
assume that the orientations of the input triangles are correct. As we have pointed out
earlier, this assumption is unwarranted for many data sets. Note that both algorithms
were developed as a means to represent polyhedra; the authors did not set out to
explicitly solve the solid reconstruction problem.

In the computational geometry and solid modelling communities, there has been a
lot of work on the related problem of robust geometric computing [45, 56, 57, 91, 95,
99, 105, 107]. These techniques are not applicable to our problem since they attempt to
avoid errors caused by numerical imprecision and cannot clean-up already incorrect

data.

2.2  Qur Approach

We have adopted a novel solid-based approach that uses region adjacency relationships
to compute which regions are solid and constructs a consistent set of triangles from
the solid regions. In contrast to previous boundary-based approaches that attempt
to stitch and orient boundary triangles directly, we first focus on classifying spatial
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regions as solid or not and then derive a boundary representation from the solid re-
gions. Also, in contrast to previous solid-based approaches that determine whether
regions are solid or not based only on local input triangle orientations, we execute a
global algorithm that focuses on the opacities of boundaries between regions. As a
result, unlike previous approaches, our algorithm is: 1) effective for models containing
intersecting, overlapping, and unconnected triangles, 2) independent of input triangle
orientations, and 3) guaranteed to output a consistent set of triangles.

Our algorithm proceeds in three phases (as show in Figure 2.2): (a) spatial subdi-

vision, (b) determination of solid regions, and (c) model output.

\
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(a) (b) lDetermination of

solid regions

———
Model output

(d) (c)

Figure 2.2: (a) Input model with incorrect orientations (b) Subdivision of space (to
aid clarity, edges of the subdivision are drawn slightly shifted from the triangle edges)
(c) Solid regions (shaded) (d) Output model with correct triangle orientations.

2.2.1 Spatial subdivision

During the spatial subdivision phase, we partition R3 into a set C of polytopes with
the property that the triangles in S do not intersect the interiors of the cells in €. We
then build a graph that explicitly represents the adjacencies between the cells in €. We
represent each cell in C by a node in the graph. If two cells in € are adjacent, i.e., they
share a planar boundary, we add a link between the two corresponding nodes in the



18

graph. Note that any partition of R® (e.g., a tetrahedral decomposition) will satisfy
our purposes, as long as the triangles in S are contained in the faces of the cells in C.
In our implementation, the cells in € correspond to the polytopes associated with the
leaves of a BSP B for S.

We now outline our algorithm for constructing B. Let P be the set of planes
supporting the triangles in S and let k = |P|; k < n if S contains coplanar triangles.
With each plane m € P, we associate the total area of the triangles in S that are
contained in 7t, and sort the planes in P in non-increasing order of area. Let i, 1 < i < k
be the ith plane in the sorted order. We construct BSP in k stages by adding the planes
in P one-by-one in sorted order. Let B; denote the top subtree of B constructed after
i stages; By consists of a single node corresponding to R3 and By is B. In the ith
stage, we use 7; to split all leaves v € Bi_; such that a triangle in S that is contained
in 7t infersects Ry. Similar procedures are described in Section 5.1 and in Teller’s
thesis [101].

We dove-tail the construction of the cell adjacency graph with the construction
of B. Bach node in the graph represents the polytope R, associated with a leafv € B.
Each link represents the convex polygon corresponding to the face common to the
polytopes corresponding to two leaves of B; we augment each link with lists of triangles
describing the link’s opaque portions (those contained in some triangle in S) and the
link’s transparent portions (those not contained in any triangle in S). During the
construction of B, if 7; partitions R, for a leaf v € B;, we delete the node in the graph
corresponding to v, create new nodes in the graph corresponding to the children of v,
and update the links of v's neighbours to reflect the new adjacencies. For each updated
link, we perform two more operations: (i) we subtract from the transparent part of the
link any triangle s € S that is contained in 7; and (ii) we add s to the link’s opaque
part.

Figure 2.3 shows an example spatial subdivision (in the plane). The input “trian-
gles” are shown in Figure 2.3(a) as thick line segments. The leaf nodes of B (regions
labelled with letters) are conmstructed using splitting “planes” (dashed lines labelled
with numbers) that support input “triangles,” as shown in Figure 2.3(b). Finally, the
cell adjacency graph for this example is shown in Figure 2.3(c) with the opacity of each
link indicated by its line style (solid lines represent the opaque parts of a link, while
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dashed lines represent the transparent parts).

(a) Example input model (b) Binary space partition (c) Cell adjacency graph
with spatial subdivision.

Figure 2.3: Example of a spatial subdivision.

2.2.2 Determination of solid regions

During the solid determination phase, we compute whether each cell in @ is solid or
not, based on the properties of its links and neighbours. This approach is motivated

by the following observations:

1. if two adjacent cells share a mostly transparent boundary, it is likely that they
are both solid or both non-solid,

2. if two adjacent cells share a mostly opaque boundary, it is likely that one is solid

and the other is non-solid, and
3. unbounded cells (like cell E in Figure 2.3(a)) are not solid.

We quantify “how solid” each cell C; € @ is by its solidity, s; € [—1,1]. We
use s; = 1 to denote that C; is solid (i.e., contained in the interior of a solid object),
and s; = —1 to denote that C; is non-solid (i.e., lies in the exterior of all solid objects).
An s; value between —1 and 1 indicates that we are not entirely sure whether C; is
solid or not.

Our solid determination algorithm proceeds as follows. First, we assign a solidity
value of —1 to all unbounded cells since they are in the exterior of all solid objects.
We then compute the solidity s; of each bounded cell C; based on the solidities of its

neighbour cells and the opacities of its links. Formally, let a;;, 0;;, and t;; represent
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the total area, opaque area, and transparent area, respectively, of the link L;; between
cells C; and C;. Note that a;; = 0y; = t;j =0 if and only if C; and C; are not adjacent
(do not share a planar boundary); otherwise, ai; > 0and 0y, t;; > 0. Let the total area
of the boundary of C; be denoted by A; = }_; a; j, where C; ranges over all neighbours
of C;. Now, we can write an expression for the solidity of each bounded cell C; in terms
of the solidities of every other cell C;:

o = 2 (tij —oi4) s

Ai

This formulation for computing cell solidities matches our intuition. We would like

(2.2.1)

the contribution of cell C; to s; to be proportional to a;;, the area of the link L;;.
When the link L;; between two cells C; and C; is entirely transparent (t;; = a;; and
oi; = 0), we expect the solidities s; and s; to be close to each other; hence, we scale
sj by ai; to calculate the contribution of C; to s;. On the other hand, when L;; is
entirely opaque (0;; = aij and t;; =0), we expect s; and s; to have “opposite” values;
hence, we scale s; by —a;; to calculate the contribution of C; to s;. Finally, when L;;
is partially opaque (0 < tij < ai; and 0 < 0;; < ai;j) the contribution from Cj to s;
is a linear interpolation between these two extremes. We divide the total contribution
to s; by A; to normalise the value of s; between —1 and 1.

If there are m bounded cells in €, (2.2.1) leads to a linear system of m equations,
Mx = b, where

e x € R™ is a vector of the (unknown) solidities of the bounded cells,

e b € R™ is a vector representing the contributions from the (known) solidities of
the unbounded cells (b; = >, (0i,x — tix), where k ranges over all unbounded
neighbours of C;),

e and M is an m x m matrix with the following properties (here i and j are integers
with 1 <1,j <m and i#j):
1. Each diagonal element is positive, i.e., Mj; = A; > 0.
2. My = 0i5 —t1j. Thus, M;; > O indicates that L;; is mostly opaque, and
Mi; < 0 indicates that L;; is mostly transparent.

3. M is symmetric, i.e., Myj = Mj ;.



21

4. M has weak diagonal dominance, i.e., Z).J.#IMUI < Miil, for T<i<m
and for some 1 <k <m, Zj,j#k[Mk.il < [Mkkl (for example, if Cy has an
unbounded neighbour or if Cy has at least one link that is not fully opaque
or fully transparent).

We now prove that M has an inverse.

Lemma 2.2.1 If M is a matric with weak diagonal dominance, i.e.,
D Myl < IMil,
J#E
for all i and there is a k such that
Z My ;1 < Mk kl, (2.2.2)
ij#Fk

then M~ exists.

Proof: Assume that M has no inverse. Then the determinant det M = 0. As a result,
there exists a non-zero vector u such that Mu = 0 [106, Theorem 1.4]. Let i be the
index such that |u;] = max; ju;l. Note that [u;| > O since u is not a zero vector. Now,
Mu = 0 implies that
Mgy = — Z M.
jj#
Using the diagonal dominance of M and taking absolute values in the above equa-
tion, we have
(Z M) el < Ml < 3~ Mgl
j il jiA
<{> lMi,-|) hudl,
JiF#l

since {u;| = max; [w;|. As a result, all the inequalities above turn into equalities. Hence,

D> Mylhyl={ > IMﬁI) il

JiFE Ji#E
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But il = max; lu;l. Therefore,
lwil =huzl =--- =unl. (2.2.3)

Solving for ux in Mu = 0, where k is the row of M that causes M to be weakly

diagonally dominant, we have

Mkkuk = — Z Mk,-u,,-.
hiFk

Taking absolute values in the above equation and using (2.2.2), we have

CZ Mgl el < Mbdhed < 3 Ml

hiFk .7k
= <,Z |Mkjl> huel, by (2.2.3).
BESS
Therefore, |uyx| < lux|, which is a contradiction. Hence det M # 0 and M has an

inverse. o

This lemma implies that the linear system Mx = b has a unique solution. It is
not difficult to show that the elements of x have values between —1 and 1. We can
solve the linear system to obtain the cell solidities by computing x = M~'b. However,
inverting M takes O(m?) time, which can be prohibitively costly if B has many leaves,
as is likely to be the case if there are many triangles in S. In such cases, we take
advantage of the fact that most leaves in B are likely to have a small number of
neighbours. Therefore, M is sparse, and we can use an iterative procedure to solve the
linear system efficiently [106].

In our implementation, we use Gauss-Seidel iterations. Each iteration takes time
proportional to the number of links in the adjacency graph. We set the initial values
of the solidities of the bounded cells of the subdivision to be 0. We terminate the
iterations when the change in the solidity of each cell is less than some small pre-
specified tolerance.

After solving the linear system of equations, we classify each cell as solid or not by
looking at the sign of its solidity. A cell whose solidity is positive is determined to be

solid, whereas a cell whose solidity is negative or zero is determined to be non-solid.
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2.2.3 Model output

Finally, in the model output phase, we output consistent descriptions of the objects
represented by the input triangles. To generate a consistent representation, we simply
output a list of triangles describing all links in the adjacency graph that represent
the boundaries between cells that are solid (cells with positive solidity) and cells that
are not solid (cells with zero or negative solidity). We consistently orient all output
triangles away from solid cells (see Figure 2.2(d)).

Another format we support is a solid-based representation that represents the solid
objects by explicitly encoding B as a hierarchical set of cutting planes augmented by
a solidity value for each leaf cell.

2.3 Results and Discussion

We have implemented our solid reconstruction algorithm and run it on a number of
data sets. When the input model is a manifold triangulated surface, the boundary
representation output by our algorithm is identical to the input model, as desired. In
this case, all cells lie entirely in the interior or exterior of the modelled objects, and
the solidity computed by our algorithm is exactly 1 for every cell in the interior of
the solid object and exactly —1 for every cell in the exterior of all solid objects. This
follows from the fact that each link is either fully opaque or fully transparent. Note
that unlike previous boundary-based approaches, our algorithm additionally outputs a
representation of the modelled object as the union of a set of convex polyhedra.

In many complex cases, when the input model contains errors, our algorithm is able
to fix errors automatically and output consistent solid and boundary representations,
even in cases where previous approaches are unsuccessful. For instance, consider the
three-dimensional model of a coffee mug shown in Figure 2.4(a) on page 28. In this
example, triangles are oriented incorrectly (back-facing triangles are drawn in black);
the handle is modelled by several improperly intersecting and disconnected hollow
cylinders (note the gaps along the top silhouette edge of the handle); and the triangles
at both ends of the handle intersect the side of the cup.

All previous approaches known to us fail for this simple example. Boundary-based
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approaches that traverse the surface of the object [61] fail in the areas where triangles
are unconnected (along the handle). Proximity-based approaches [15, 22, 94] that
merge features within some tolerance of each other do not work as no suitable tolerance
can be chosen for the entire model because the size of the largest error (a crack between
triangles on the handle) is larger than the size of the smallest feature (a bevel on the top
of the lip). Finally, solid-based approaches [101, 102] that decide whether each cell is
solid or not based on the orientations of the input triangles along the cell’s boundaries
fail because the input has many wrongly-oriented triangles.

Our algorithm is able to fix the errors in this example and output a correct and
consistent model (see Figures 2.4(b)- 2.4(d)). Figure 2.4(b) shows outlines of the cells
constructed during the spatial subdivision phase, with each cell labelled by its solidity
computed during the solid determination phase. In addition, each cell C; is outlined
with a colour that depends on the value of its solidity s; (the colour ranges from red
when s; = 1 to green when s; = —1). Figure 2.4(c) shows triangles computed during
the model output phase; each triangle is adjacent to one solid and one non-solid cell,
has a normal pointing away from the solid cell, and is drawn with the colour of the solid
cell it is adjacent to. Finally, Figure 2.4(d) shows the boundary representation output
by our algorithm. The reconstructed model is correct: the cracks in the handle have
been filled in; intersections in the handle have been made explicit; and all triangles
have been oriented correctly. This experiment was run on an SGI Indigo2 with a
200MHz R4400 processor. The model of the mug contained 121 triangles. The BSP we
constructed for the mug contained 359 leaves. We needed 61 Gauss-Seidel iterations
to determine the solidities. The experiment took 9.77 seconds to run, with 35% of the
time spent on calculating solidities.

Figures 2.5-2.7 show results derived from experiments with larger models from a
variety of applications. The images on the left side of the last page show the input
models, while the images on the right show different visualisations of the cell solidities
computed for these models with our algorithm. In all these cases, we were able to
construct correct and consistent solid and boundary representations. The three sets of
images demonstrate the importance of appropriate visualisation techniques for viewing
the solid cells of the BSP. For instancé, the text strings drawn in Figure 2.5(b) would
be overlapping if used in Figure 2.6(b) and 2.7(b). Similarly, the opaque boundaries
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drawn in Figure 2.6(b) would be inappropriate for use in Figure 2.7(b) as the outer-
most solid cells (ceilings and floors) would mask the interior non-solid cells. In complex
cases, such as Figure 2.7(b), we simply represent cell solidities by coloured dots drawn
at the cells’ centroids. In all cases, solidity information is drawn with a representative
colour linearly interpolated between red (for s; = 1) and green (for s; = —1). We use
a three-dimensional viewing program to allow the user to select different visualisation
options interactively.

We now present an analysis of the running time of our algorithm for the above
models. In the table below, each row corresponds to the model whose name is specified
in the first column. The second column displays the number of triangles in the model.
The third column contains the number of cells in the spatial subdivision constructed
for that model. The fourth and fifth columns specify the number of Gauss-Seidel it-
erations needed for convergence and the total running time for the model in seconds,
respectively. These experiments were run on SGI Indigo2 with a 200MHz R4400 pro-
cessor. For the mug, about 35% of the total time was spent on calculating solidities,
while for the other models, this time ranged from 10-15%.

Model f#polys | #cells | #iter. time
Mug 121 359 61 9.77
Clutch 420 159 39 8.64
Phone 1228 819 82| 78.64
Building 1687 | 1956 92 | 240.34

Table 2.1: Performance of the model repair algorithm

Our algorithm has several advantages since we use a global approach to classify
regions of space rather than just considering local boundary relationships or feature
proximities. First, our algorithm is effective for models containing intersecting, over-
lapping, or unconnected triangles for which it is difficult to traverse boundaries. Sec-
ond, the output of our algorithm does not depend on the initial orientations of input
triangles. Third, the boundary output by our algorithm is always guaranteed to be
consistent (although it may not be a correct representation of the modelled object)
since it is derived directly from the solid cells of the partition. Finally, we are able to

output a solid representation of the model as well as a boundary representation, which
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may be critical to many applications.

However, our approach does have limitations. Its success depends on the spatial
subdivision constructed. As a result, missing triangles may lead to the creation of cells
that do not correctly model the shape of the solid object. Another limitation of our
technique is that it is based on the assumption that input triangles separate solid and
non-solid regions. Therefore, if the input model contains two solid objects that are
intersecting or separated by a triangle in the input model (e.g., 2 mouse on a table),
the solidities for the cells along the solid-on-solid boundary are driven by each other to
values lower than 1. Intuitively, the triangle separating the solid objects is an “extra”
triangle.

Fortunately, in many cases, cells with intermediate solidity values (i.e., values close
to 0) identify parts of the model containing topological errors and inconsistencies like
missing and extra triangles. This feature is useful for verifying model consistency and
localising model inaccuracies. For example, in Figure 2.4(b) and 2.4(c), cells are red
(solidity close to 1) in areas where the input model has no errors (on the left side of the
cup) and cells are yellow-ish (solidity close to 0) in areas where there are intersecting
or unconnected triangles in the input model. This example demonstrates an important
feature of our algorithm: it not only helps fix up errors, but also identifies where they

are.

2.4 Conclusions

We have described an algorithm that reconstructs consistent solid and boundary rep-
resentations of triangles from error-ridden polygonal data. The algorithm partitions
R3 into a set of cells, computes the solidity of each cell based on cell adjacency rela-
tionships, and utilises computed cell solidities to construct a consistent output repre-
sentation. In contrast to previously described approaches, our method gives excellent
results on many real models in R3 containing intersecting, overlapping, and uncon-
nected polygons.

An important issue that we have not considered in this chapter is how “far away” the
manifold we output is from the original set of solid objects. It would be very interesting

to examine questions of the following kind: let S be a set of triangles obtained by



27

randomly perturbing (by a small amount) the triangles forming a closed 2-manifold M.
Let M’ be the manifold formed by the set of triangles output by our algorithm when it
is given S as input. What is the volume of the symmetric difference of M and M’ as a
fraction of the volume of M? We could use other measures of closeness between M and
M, for example, the number of components in their syﬁmetﬁc difference. We expect
answers to such questions to exploit interesting properties of the BSP.

As regards algorithmic extensions to our work, the limitations of our approach that
we discussed in the last section suggest two directions for future research. One approach
is to determine the location of missing/extra triangles as B is being constructed. Recall
that we construct B in stages. After the ith stage, we can compute the solidities of
the leaves of B;. If the solidity of such a leaf v is close to 0 and there is a plane 7
(not necessarily supporting a triangle in S) that splits R, so that at least one of the
two new nodes has solidity close to —1 or 1, then it is likely that 7t contains a missing
triangle.

Another avenue for future work is to utilise final cell solidity values to recognise
missing/extra triangles. A possible approach is to first define a metric that measures the
“goodness” of the solution. For example, the metric could penalise solutions in which
two cells with markedly different (resp., similar) solidities share a mostly transparent
(resp., opaque) boundary. Once a suitable metric is chosen, we can associate weights
with the transparent and opaque areas of each link and use the metric to drive a
simulated annealing or optimisation process that searches for that set of weights that
maximises the goodness of the solution.

Note that the two ideas outlined above are not restricted to BSPs and can be gen-
eralised to any spatial decomposition. It will also be interesting to combine our solid-
based algorithm with the boundary-based techniques we discussed in Section 2.1. We
expect these extensions to allow our algorithm to adapt dynamically when the model
has missing triangles and solid-on-solid regions, and thus generate correct solutions for

a wider class of input models.
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(b) Subdivision cells labelled and out-
lined with colours based on their so-
lidities

(c) Solid cells: the boundaries of all (d) Output model is a manifold sur-
solid cells are drawn with triangles ori- face.
ented towards the model’s exterior

Figure 2.4: Reconstructing the solid model of a cup.
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(2) Input model (b) Cell solidities indicated by
numerical values

Figure 2.5: CAD/CAM: Automobile clutch with wrongly-oriented triangles (in the
middle) and missing triangles (in the upper-right circular hole).

(2) Input model (b) Opaque links drawn be-
tween solid and free cells.

Figure 2.6: Visualization: Telephone headset containing wrongly-oriented triangles (in
the mouth and ear pieces) and intersecting triangles (along the handle).
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(a) Input model (b) Cell solidities indicated by
coloured dots

Figure 2.7: Architectural CAD: One floor of Soda Hall with numerous topological
inconsistencies and other modelling errors.



Chapter 3

Object Complexity Hidden-Surface

Removal

We present our object-complexity algorithm for hidden-surface removal of a set S of .
triangles in R3 in this chapter. For the sake of completeness, we describe the motivation
for the object complexity model once again. Traditionally, computational geometry
algorithms for hidden-surface removal compute the visibility map, which is a partition
of the image plane into maximally-connected regions, such that in each region, at most
one triangle in S is visible. In the worst case, the size of the visibility map (called the
scene complezity) can be Q(n?), where n is the number of triangles in the input, e.g.,
when the viewpoint is at z = 400 and the scene contains n/2 thin rectangles parallel to
the x-axis lying directly above n/2 thin rectangles parallel to the y-axis. See Figure 3.1.
As a result, any algorithm that computes the visibility map takes Q(n?) time in the
worst case.

On the other hand, we saw in Chapter 1.2 that the simple and popular z-buffer
algorithm solves the hidden-surface removal problem in O(n + a) time, where a is the
total area of the projections of the triangles in S onto the image plane. For the massive
data sets that we are interested in (such as models of aircraft and submarines), the
running time of the z-buffer algorithm can be approximated as O(n); these models
can have hundreds of millions of triangles, and it is reasonable to assume that the
projection of most visible triangles in these models has small area. The popularity of

the z-buffer algorithm stems from its simplicity and the fact that it can be implemented
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n/2+2

n/2+1

1 2 n/2

Figure 3.1: A set of n objects whose object complexity is O(n) and scene complexity
is Q(n?).

very efficiently in hardware. However, even state-of-the-art z-buffers incorporated in
graphics systems like SGI's InfiniteReality [68], which can render 7 million triangles
a second, are not fast enough to do hidden-surface removal on massive data sets at
interactive rates of 60 scenes a second. Note that the z-buffer must process all visible
triangles in order to render the visible scene correctly. Hence, the number of visible
triangles is a lower bound on the running time of the z-buffer algorithm.

Motivated by these observations, we propose the object complexity model, in which
we measure the size of a scene by the number of triangles visible in it. Given a
viewpoint, an object-complexity algorithm for hidden-surface removal determines the
set of triangles that are visible from the viewpoint and renders the visible set using
the z-buffer. The object complexity of a scene is always less than 1, the number of
triangles in S, and can be much less than the scene complexity, which can be Q(n?)
in the worst case. Algorithms that compute the visibility map can be used trivially
to determine visible objects by outputting all the objects that contain edges in the
visibility map. However, in the worst case, this might entail spending Q(n?) time to
output O(n) distinct objects.

In the computer graphics community, a commonly used model that is similar to
object complexity is the conservative visibility model proposed by Teller [101]. In
this model, an algorithm computes a superset of the set of visible triangles and renders
this superset using the z-buffer. The critical observation used in this approach is

that computing a superset is enough to guarantee that the rendered scene is correct.
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The challenge in developing such algorithms lies in ensuring that the superset is not
much larger than the actual set of visible triangles. This technique is also known as
occlusion or vistbility culling, since triangles that are occluded by other triangles are
not rendered in this approach.

In the next section, we survey known occlusion-culling algorithms. We highlight
the features of our algorithm in Section 3.2 before proceeding to describe it in detail
in Section 3.3. In Section 3.3.6, we present some possible extensions to the algorithm.
Finally, we discuss some open problems suggested by our algorithm Section 3.4.

3.1 Occlusion Culling Algorithms

A
O
\| - |A [|O

Figure 3.2: Cell C is not visible from p, so the segments intersecting it are not rendered.

Most occlusion-culling algorithms work on the same general principle. They first
partition R3 into a (hierarchical) set of convex cells €. Typically, these cells form a
uniform grid, octree, or BSP. The crucial observation that these algorithms use is that
if acell C € Cis not visible, then all the triangles in S that are contained in the interior
of C are also invisible. See Figure 3.2. Thus the visibility status of all these triangles is
resolved just by testing the visibility of C. The algorithms render only those triangles
in S that infersect visible cells. The success of these algorithms critically depends on
how efficiently they determine if a cell C € C is visible. To do so, the algorithms use
the “shadows” cast by the triangles in S. ‘A cell C is deemed to be invisible if it is
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contained in the union of the shadows of the triangles. Occlusion-culling algorithms
that have been presented in the literature primarily differ in how they represent and
compute the union of these shadows. We first examine these differences. Then we
discuss how these algorithms handle moving triangles. Finally, we discuss how the

algorithms exploit the continuity of motion of the viewpoint and the input triangles.

fﬂ“ﬁ”?
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Figure 3.3: Marked segments lie in the potentially-visible set of the cell containing p.

In a preprocessing phase, for each cell C € €, Airey [8] and Teller {101] compute
the potentially-visible set for C, which is the set of triangles that are visible from any
point in C. See Figure 3.3. Teller first constructs transparent portals between the cells.
To compute the potentially-visible set for a cell C, he traverses the cells in € starting
at C and uses linear programming to maintain lines of sight between C and other cells.
If there is a line of sight between C and another cell D, the triangles intersecting D are
added to C's potentially-visible set. Given a viewpoint, his algorithm locates the cell
containing it, and uses lines of sight from the viewpoint to cull the potentially-visible set
for the cell in order to generate a set of triangles for rendering. Luebke and Georges [65]
describe a modification of Teller’s algorithm that requires very little pre-processing but
is likely to produce larger sets of triangles for rendering than Teller’s algorithm. Airey’s
and Teller’s techniques use extensive preprocessing time and memory. While all these
algorithms work very well for architectural environments, they do not seem suitable for
other classes of data sets, such as CAD models, terrains, and urban landscapes, that

do not lend themselves to being decomposed into cells and portals.
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Figure 3.4: (a) Cell C is occluded by the shadow of segment s. (b) Cell C’ is jointly
occluded by the shadows of segments s and s’ but not by any single shadow.
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Algorithms have been developed for more general scenes by Coorg and Teller (33, 34]
and Hudson et al. [58]. These approaches manipulate the three-dimensional shadows
cast by visible triangles. For each triangle (or set of connected triangles with a convex
silhouette) in S, these techniques intersect each cell C € C with the triangle’s shadow
to determine whether C is visible. See Figure 3.4(a). Both Coorg and Teller [34] and
Hudson et al. [58] use the interesting idea of dynamically picking a subset of the input
triangles (called occluders) and processing the shadows of only the occluders. The
intuition behind this method is that in densely-occluded scenes, it is likely that most
invisible triangles are occluded by a small subset of the triangles. Since computing
this subset is exactly the same as the hidden-surface removal problem itself, the au-
thors present heuristics to estimate good occluders. A related algorithm of Naylor [77]
processes the triangles in front-to-back order and uses a BSP in the image plane to
represent the projected shadows. The disadvantage with all these algorithms is that
they do not handle the case when a cell is invisible because it is occluded by multiple,
disconnected triangles. See Figure 3.4(b).

In order to handle occlusion caused by disconnected triangles, Greene et al. [53]
represent the union of the shadows by projecting each triangle onto the image plane,
and constructing a quadtree for the set of projected triangles. Each leaf of the quadtree
corresponds to a pixel in the z-buffer; the leaf stores the distance value associated with
that pixel. The distance stored with each interior node in the quadtree is the maximum
of the distances stored at the node's children. Greene et al. call such a quadtree a z-
pyramid. In order to determine if a cell is visible, they use the z-pyramid to check
whether the projection of each face of the cell onto the image plane is visible. While
their algorithm is elegant, fast computation of the z-pyramid is unfortunately not
supported by current graphics hardware. Greene [52] incorporates this technique into
a scheme for fast polygon tiling (the problem of determining which pixels in the image
plane are covered by visible portions of a set of polygons). The main contribution
of this work seems to be the polygon tiling technique itself; if the tiling algorithm
is implemented efficiently in hardware, it could be used to speed up other occlusion-
culling algorithms.

Zhang et al. [108] develop a related approach, where the quadtree has no distance

information stored in it. Instead each node stores an opacity value that is average of the
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opacities stored at the node’s children; the opacity represents the fraction of the node’s
region that is covered by projected triangles. They call such a quadtree a hierarchical
occlusion map. Construction of the occlusion map is supported by current graphics
hardware. Since the occlusion map does not store any distance information, they use
a separate depth-estimation buffer to store information about the distance of the
triangles from the viewpoint. Zhang et al. use both the occlusion map and the depth-
estimation buffer to determine if a triangle is visible.

While these two techniques are general and applicable to arbitrary polygonal mod-
els, they may not perform occlusion culling effectively for all models, since they use a
discrete and approximate representation of the union of the shadows. If the quadtree-
based approximations are not close to the actual union of shadows, these algorithms
might render many invisible triangles. Moreover, in the case of the algorithm developed
by Zhang et al., the fact that the distance information and the image-plane coverage
information are stored in different data structures seems to limit the effectiveness of
the visibility test.

Let us now examine how different authors handle moving triangles. Greene [52]'s
polygon-tiling technique requires that the input triangles be traversed in front-to-back
order. He suggests storing triangles belonging to each moving object in data structures
similar to octrees and BSPs, and merges these data structures to determine the front-to-
back order of the triangles. When the front-to-back order is not easily determined, he
outlines a “lazy z-buffering” approach to resolve visibility. Zhang et al. simply check
the visibility of each moving object in each frame. Sudarsky and Gotsman [97, 98]
extend Naylor’s technique [77] to handle moving objects. They use the interesting
idea of enclosing each moving object in a temporal bounding volume based on known
estimates on the objects’s velocity. The store the temporal bounding volume for each
moving object in a BSP. Their algorithm attempts to process a moving object only
when it becomes visible or when its temporal bounding volume becomes invalid. Their
method is the closest in spirit to the notion of kinetic data structures that we use in
our algorithm for hidden-surface removal, which we discuss in Section 3.3. However,
they still merge BSPs for static objects and visible moving objects in each frame, an
operation that could be costly.

Finally, we turn our attention to how these algorithms exploit temporal coherence.
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Recall that temporal coherence is the phenomenon where the set of visible triangles
changes gradually as the viewpoint and triangles move. As we noted in Chapter 1.1,
most algorithms approximate time by a set of evenly-spaced intervals called frames.
At the end of each frame, Coorg and Teller [34] store visibility information for each
visible cell, and check if this information is still valid at the end of the next frame.
While this procedure performs better than recalculating the information for each cell
(whether the cell is visible or not) at every frame, their method can update visibility
information for many cells whose visibility status does not change. During each frame,
Greene et al. [53] keep track of which cells in € are visible and use the visible cells to
initialise the z-pyramid at the beginning of the next frame. Then they traverse the cells
in € to determine those cells whose visibility status has changed. Zhang et al. [108]
use a feedback mechanism to improve occluder selection if their algorithm detects that
the occluders picked for the current frame do not occlude many triangles. However,
in each frame, they construct the occlusion map and the depth-estimation buffer from
scratch and check each triangle in the input for visibility.

One lacuna these methods exhibit is that they make use of temporal coherence
to speed up only certain portions of the algorithm. Other, possibly time-consuming
steps have to be executed from scratch at every frame. A more serious disadvantage
is (as we pointed out in Chapter 1.1) that these algorithms exploit the continuity of
viewpoint and object motion only indirectly since they approximate continuous motion
by a discrete sampling of time.

The ultimate aim of occlusion culling is to reduce the number of triangles rendered,
while ensuring that all visible triangles are rendered. Simplification is an orthogonal
approach that also tries to reduce the number of triangles rendered but might not
render all visible triangles. In this approach, if a cell C projects onto a small area
on the image plane, the set of triangles that intersect it are rendered in a simplified
form. Erickson surveys some of the literature on simplification [42]. Funkhouser and
Sequin [49] present a framework for combining occlusion culling with simplification
to achieve bounded frame rates. Recent techniques have used images and textures
to represent simplified versions of triangles {10, 93, 88]. Aliaga et al. {9] present a
rendering system that incorporates occlusion culling, simplification, and image-based
techniques.
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3.2 Features of Qur Algorithm

In this section, we discuss the features of our algorithm for the hidden-surface removal
of polygonal models. Like other occlusion-culling algorithms, we (i) compute a hierar-
chical spatial decomposition, (ii) carefully select a small subset of occluders, (iii) process
the union of the shadows cast by the occluders to classify cells of the decomposition as
visible or invisible, and (iv) render triangles in S that intersect visible cells. However,

our technique has several new and attractive features, which we summarise below:

e We represent the union of the shadows of the occluders as a set of rays in R3; these
rays correspond to the edges of the union of the shadows. As a result, we can
compute the set of visible cells exactly, and can also detect when a cell is occluded
by multiple, disconnected triangles. Previous algorithms for occlusion culling do
not possess both these properties. Note that the union of shadows of the occluders
is essentialy the same as the visibility map of the occluders. Nevertheless, our
approach is more powerful and effective than previous algorithms that compute
the visibility map for two reasons. Firstly, the occluders we pick are a small
subset of the input triangles. Hence, the visibility map of these occluders is
much smaller than the number of triangles in S even in the worst case. Secondly,
we pick occluders that are likely to obscure most invisible triangles and we store
non-occluders in a hierarchical spatial partition (the BSP), so we can determine
that large subsets of the triangles in S are invisible with a small number of
visibility tests.

o We explicitly exploit the continuity of the motion of the viewpoint and the tri-
angles by using kinetic data structures [13]: based on the current motion of the
viewpoint and the triangles, we predict the instants when the combinatorial struc-
ture of the set of edges of the union of the shadows (we define the combinatorial
structure later) and the set of visible cells change, and develop techniques to ef-
ficiently update the union of the shadows and the set of visible cells at each such
event. As a result, unlike the techniques we surveyed in the previous section, we
avoid recomputing our data structures from scratch or traversing each cell in the
partition at regular intervals.
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¢ We use the binary space partition (BSP) as a unifying data structure for occluder
selection and for maintaining visibility information. We also use the BSP in a
natural way to balance the time spent by the algorithm in internal processing
with the time spent by the graphics system in rendering triangles input to it
by the algorithm. This mechanism provides a means for controlling the frame
rate (the number of scenes drawn every second) achieved by our algorithm. In
future work, we plan to investigate how we can exploit the properties of the BSP
to perform view-dependent simplification in addition to occlusion culling and
frame-rate control. As Aliaga et al. [9] point out, when rendering large models,
it is crucial to construct a single data structure that supports all the techniques

used to accelerate rendering.

e If we pick all the triangles in S as occluders, our algorithm computes the set of
visible triangles eractly and maintains this set efficiently as the viewpoint and
triangles move. Thus, our algorithm provides a means for comparing different
occlusion-culling techniques: the measure of an algorithm’s performance is the
ratio of the size of the superset of visible triangles output by it and the size of
visible set computed by our algorithm. Previously, algorithms were compared
based on the fraction of input triangles they culled away, a number that may

have no relation to the number of triangles that are actually visible.

e Our algorithm can be easily modified to compute the change in the set of visible
triangles. This property is very useful when our algorithm is running on a server,
and is connected by a slow network to a client that is displaying the scene. In
such situations, our algorithm delivers only updates to the visible set over the

network.

e One of the primary reasons we use the BSP as our primary data structure is
that it supports ray-shooting queries: given a query ray p, determine the first
triangle in S that p intersects. The simple observation we use is that such a
triangle must intersect a leaf node of the BSP that is also intersected by the ray.
Indeed, this observation is the basis of many well-known spatial partitions such

as octrees that are used for answering ray-shooting queries (see the survey by
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Arvo and Kirk [11]). As a result, our algorithm can be modified to use any of

these ray-shooting data structures.

3.3 Our Algorithm

In this section, we describe our object complexity algorithm for hidden-surface removal
in detail. In the framework of kinetic data structures that we develop our algorithm,
we assume that we know the instantaneous laws of motion of the viewpoint and the
triangles in S. These laws can be changed at anytime by notifying the kinetic data
structure. As we have pointed out earlier, we do not update our data structures
at fixed intervals. Instead, we do so at instants when certain elementary geometric
conditions called certificates fail. An example of a certificate we use is the fact that
a ray originating at the viewpoint and passing through the vertex of a triangle in S

intersects the interior of a different triangle in S. See Figure 3.5 for an example.

Figure 3.5: Example of a certificate used by our occlusion culling algorithm: the ray
originating at p and passing through q intersects the triangle s. When p moves to p’,
the ray stops intersecting s.

We parametrise the motion of the viewpoint and the triangles in S by time and
use t to denote time. For a given time t, we use t~ and t* to denote the instants t — ¢
and t + ¢, respectively, where € > 0 is a suitably small constant.

In our model of motion, we assume that the trajectory of the viewpoint is specified
as p(t) = (x(t),y(t), z(t)), where x(t),y(t), and z(t) are continuous (usually algebraic)
functions of time t. Similarly, we assume that the trajectory of a triangle s € S is
specified by the frajectory of a fixed point in s (if s is moving rigidly) or by the
trajectories of the vertices of s (if s is not moving rigidly). The certificates we use

will be algebraic functions (linear or quadratic) of the positions of the viewpoint and
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a constant number of vertices of triangles in S. Therefore, we assume that we can
compute the failure time of a certificate and compare the failure times of two certificates

in constant time, under standard models of computation.

3.3.1 Overview of the algorithm

To aid the description of our algorithm, we start with some definitions. Given a

viewpoint p, the shadow o} of a triangle s is
of ={q | the segment pq intersects s},

the set of points q such that the segment joining p and q intersects s; of is an un-
bounded convex polyhedron. See Figure 3.6(a). Given a set of triangles O C S, we
use X3 to denote | J,co 0F, the union of the shadows of the triangles in O; I is an
unbounded polyhedron. See Figure 3.6(b). We say that a point q € B3 is visible if
the segment pq does not intersect any triangle in O. Let @ be a partition of R into
convex polyhedra; we will refer to the polyhedra in € as cells. We say that acell C € €
is visible if C intersects R3 —Z%, ie., if a point q € C is visible. See Figure 3.6(c). We
use Vg C C to denote the subset of cells in € that are visible from p. We will often use
the notation o, ¥, and Vo since the viewpoint will be clear from the context.

Armed with these definitions, we first give a high-level description of our algorithm
and then explain how we implement each of the steps. We now make two assumptions
to help us describe our key ideas clearly: that the triangles in S are static and that the
set O does not change as the viewpoint moves. We relax these assumptions in later
sections.

In a pre-processing phase, we execute the following steps:

1. We pick a set O of occluders (say, by including the walls, ceilings, and floors in
a building in O).

2. We construct a BSP B for O.

3. We set C to be the set of polytopes associated with the leaves of B. For each
cell C € C, we compute Sc, the set of triangles in S that intersect C.
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(2) (b) (c)

Figure 3.6: (a) The shadow of triangle s. (b) The union of shadows of triangles s;
and s3. (c) A visible cell C {point q in C is visible).

Recall that the definition of the BSP (which we gave on 12) implies that no triangle in O
intersects the interior of a cell in C. We will use this property crucially in Section 3.3.4.
As the viewpoint moves, the union of shadows Zg(t) and Sg(t), the set of edges
of Zg(t), changes continuously. However, the combinatorial structure of Eg(t) (we will
define this notion precisely in the next section) changes only at discrete instants. Our
kinetic algorithm and data structures have the property that for any value of t, we
maintain the set E%m of edges of the union of shadows and the set Vg(t) of visible
p(t)
O

cells correctly. We store the events when € and Vg(t) change in a priority queue,

keyed by the time they occur. We repeatedly remove the next event from the queue,
and update 85“) and ng, as required. In order to actually render the visible scene,
we output the set {Sc | C € Vg(t)} of triangles intersecting visible cells to the graphics
system at periodic intervals (say, every 1/60 seconds). This completes the high level
description of the algorithm.

As we will see, our algorithm rests on the efficient implementation of what we call
ray-dragging and segment-dragging queries. Since we will use these queries often in

the next two sections, we define these queries now. The ray-dragging query can be



defined as follows (see Figure 3.7(a)):

Given the ray p(t) originating at the point p(t) and passing through a
given edge of a triangle s; € O and a given edge of a triangle s; € O, and
given the point q(0) at which p(0) first intersects the interior of a triangle
T € O, find the smallest positive value t’ such that the segment p(t’)q(t’)
intersects the boundary of a triangle s € O —{s1, s2} and return t’ and s.

If p(0) does not intersect any triangle, then q(t) is the point at infinity along p(t);
otherwise, q(t) is the intersection of p(t) and T. The triangles s; and s> specified in

the query may be the same triangle. Note that s might be the triangle T itself.

q

(a) (b) ()

Figure 3.7: (a) A ray-dragging query. At t’, the ray defined by edges e; and e; intersects
triangle s. (b) A segment-dragging query of the first type. At t’, the segment p(t')q
starts intersecting the triangle s. (c) A segment-dragging query of the second type.
The segment p(0)q intersects the triangle T. At t’ the segment p(t’)q stops intersecting
the triangle s. Note that s, the triangle returned, is different from .

The segment-dragging gquery can be similarly defined (it has two versions): Given a
point p(t) and a static point q,

1. if the segment p(0)q does not intersect the interior of any triangle in
O, find the smallest positive value t’ such that the segment p(t’)q
intersects the boundary of a triangle s € O and return t’ and s. See
Figure 3.7(b).

2. given the first triangle T € O whose interior the segment p(0)q inter-
sects, find the smallest positive value t’ such that the segment p(t’)q
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does not intersect the boundary of any triangle in O and return t’ and

the last triangle s intersected by p(t)q. See Figure 3.7(c).

In the second case, it is possible that s and T may be different triangles, as in
Figure 3.7(c).

To complete the description of the algorithm, in the next two sections we describe
how we maintain the sets Eg(t) and Vg(t). For each set, we characterise the instants
when the set changes, the certificates we maintain to detect these changes, how we use
ray-dragging and segment-dragging queries to compute when the certificates expire, and
how we process each event. In Section 3.3.4, we describe our technique for answering
ray- and segment-dragging queries. We show how to dynamically modify the set O
as the viewpoints move in Section 3.3.5. In Section 3.3.6, we describe how to handle

moving triangles and present some extensions to our algorithm.

3.3.2 Maintaining edges of the union of shadows

In this section, we describe how we maintain £p, the edges of the union X g of shadows.
Note that some edges of 2o are portions of edges of triangles in O. We do not include
these edges in £n. We first describe the combinatorial structure of the edges in €¢.
BEach edge e of £g is contained in a ray p. originating at the viewpoint; pe intersects
two edges ey and e; of triangles in O. The edge e has two vertices; the vertex farther
from the viewpoint is either the vertex at infinity along p. or the intersection of p.
with the interior of a triangle Te in O; T, is called the stopper of e. The other endpoint
q of e can be of two types:

1. If e; and e; are edges of the same triangle s € O, q is the vertex of s that e;
and e; are incident on; we call e a primary edge and say that q defines e. A

primary edge is illustrated in Figure 3.8(a).

2. If e; and e; are edges of different triangles in O, assume without loss of generality
that e; is farther away from the viewpoint than e;; q is the intersection of pe and
e2. We call e a derived edge and say that the pair (e, e3) defines e. Figure 3.8(b)
displays a derived edge. |
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If e is a primary edge defined by a vertex q, we say that pe is a primary ray defined
by q. We use similar terminology for p. if e is a derived edge. The combinatorial
representation of an edge e € £g is the vertex or pair of edges that define it and the
stopper Te. In order to detect and process changes to £¢, for each edge in €, we store

its combinatorial representation.

(2) (b)

Figure 3.8: (a) A primary ray e defined by the vertex q of triangle s;. The triangle s;
is the stopper of e. (b) A derived edge e defined by edge e; of triangle s; and edge e,
of triangle s;.

We first state a lemma that characterises the conditions that determine the combi-
natorial structure of an edge of £g. The proof of this lemma is easy to derive and we

omit it.

Lemma 3.3.1 Let e be an edge of 8‘6. If e ts a primary edge, let q be the triangle
vertez defining it. If e 1s a derived edge defined by a pair of triangle edges ey and
ez, where ey ts closer than e; to p, let ¢ = pe Nez. The following two conditions

are true:
1. The segment pq does not intersect the intertor of any triangle in O.

2. If the stopper t. ezists, let q' be the intersection of pe and T.; otherwise,
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q’ is the point at infinity along p.. The segment qq’ does not intersect the

interior of any triangle in O — {v.}.

It is also not difficult to see that these conditions are both necessary and sufficient to
define all the set of edges of £p.
This lemma suggests that for each edge e € £, we store the following certificates:

Stopper certificate: pe intersects T, (at the point q’, which is the point at infinity along

pe if T does not exist).

Validity certificate: the segment pq’ does not intersect the interior of any triangle in
O - {Te}.

In addition, we will find it useful to maintain the following invisibility certificates.
We define Jp to be the set of invisible vertices of triangles in O. For each such vertex
q, we maintain an invisibility certificate, which guarantees that q is contained in Zg.
We use 14 to denote the first triangle in O whose interior the segment pq intersects.
A natural question that arises at this point is whether we should also maintain such
invisibility certificates for all pairs of triangle edges that do not define edges of Zg. As
we will see, we do not need such certificates because new derived edges appear only
when one of the above certificates becomes invalid.

As the viewpoint moves, these certificates become invalid if and only if one of the

following two conditions is true:
Triangle vertex event: A vertex q of a triangle s € O intersects the boundary of Lo, or

Triangle edge event: An edge e of a triangle s € O intersects a ray pes, where e’ is an

edge of 2.
We can compute these events by asking appropriate queries:

1. For each edge e € £, we use a ray-dragging query to compute the first time pe

intersects an edge of a triangle in O.

2. For each triangle vertex q € Jo, we use a segment-dragging query of the second
type to compute the first time that the segment pq does not intersect the interior

of any triangle in O.
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Next, we discuss how to process triangle vertex and triangle edge events. We
describe the procedure in detail only when the event corresponds to a vertex or edge
of s leaving the interior of £p. The procedure for the case when a vertex or edge of s

enters the interior of X is symmetrical.

Triangle vertex events Suppose a vertex q of s intersects a face of £ that is defined
by an edge e’ of a triangle in O. Let e; and e, be the edges incident on q. We delete g
from Jo, and add the primary ray defined by q and the derived rays defined by (e’, e1)

and (e’,e3) to &p.

Triangle edge events Suppose edge e of a triangle s € O intersects the ray p.-, for
an edge e’ € £p. If e’ is a primary edge defined by a vertex q of a triangle s’ € O, let
e; and ey be the edges of s’ that are incident on q. Otherwise, let e; and e, be the

pair of edges defining e. We have three cases to consider:

1. If e’ is a primary edge, note that q is closer to p than the point q’ = p.-rNe. We
set Tor = s. We delete the derived edges defined by (e, e) and (e, e) from €.

2. If e’ is a derived edge and e is farther from the viewpoint than both e; and e;,

we set T.» = s add the derived edges (ej, e} and (ez, e) to Ep.

3. Otherwise, we delete the derived edge.(e1, ez) from € and add the derived edge

(ez, e) to €.

Finally, for each edge e we add to £, we compute the next triangle vertex/edge event
it will be involved in by making a ray-dragging query using e and store the event in

the event queue.

Remark: We can modify this algorithm to maintain which triangles in O are visible.
For each triangle s € O, we keep track of which edges of £¢ are (partially) defined by
the vertices and edges of s, and for which edges of £g, s is the stopper. From this
information, we can deduce whether s is visible or not.

We now analyse the time taken to process each event. Clearly, the update proce-

dures take constant time and add a constant number of edges to £o and a constant
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number of vertices to Jo. Adding an edge involves computing its stopper (by invoking
a ray-shooting query) and asking a ray-dragging query for the edge. Similarly, adding
a vertex to Jo involves a ray-shooting query and a segment-dragging query. Further,
each time we process an event, the set £o changes. As a result, the following theorem

1s immediate:

Theorem 3.3.1 Let O be a set of n triangles in R and let p(t) be a point moving
along a continuous trajectory. At every instant that the set of edges of Zg(t)
changes, we can update it in O(k(n)) time, where k(n) is the time taken to answer
a ray-shooting, ray-dragging, or segment-dragging query for a set of n triangles
in R3. If the set of edges of Zg(t) changes m times during the motion, the total

time we spend in maintaining it is O(mk(n)).

3.3.3 Maintaining visible cells

In this section, we describe our technique for maintaining the set Vg of visible cells.

We first prove a lemma that characterises when a cell C € C is visible.

Lemma 3.3.2 A cell C € C is visible from a point p if and only if at least one of

the follownng conditions is true:

1. A vertez q of C is visible, i.e., the segment pq does not intersect any triangle
in O.

2. An edge e of C intersects the boundary of £o.

3. An edge of Lo intersects the interior of C.

Proof: It is clear that C is visible if any of the conditions in the lemma is true.
Suppose C is visible but that each vertex and edge of C is contained in £g. Let T be
a point in C that is visible and let q be a vertex of C. Since q is contained in g,
the segment rq intersects a face f of Zp, say at a point /. Since each edge of C is
contained in Xq, f does not intersect any edge of C. However, the point r’ lies inside
both f and C. Therefore, an edge on the boundary of f must intersect the interior of C,
which completes the proof. m]
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Thus, for each cell C € €, we maintain the following certificates that attest to its
visibility:
1. vertez certificates: the set of visible vertices of C,
2. edge certificates: the set of edges of C that intersect the boundary of X0, and
3. shadow certificates: the set of edges of L intersect the interior of C.

For each edge certificate e, we also maintain the sequence F§ of faces of Zg that e
intersects. If C has no such certificates, it is not visible. As the viewpoint moves, the
certificates become invalid (possibly changing C's v1s1b1hty status) if and only if one
of the following two conditions is true (see Figure 3.9):

Cell vertex event: A vertex q of C intersects the boundary of Zg, or

Cell edge event: An edge e of C intersects an edge of L.

(2) (b)

Figure 3.9: (a) Cell vertex event: the segment joining p and vertex q of cell C intersects
the edge e at q’. (b) Cell edge event: edge e of the cell intersects edge e’ € £5.

Note that these conditions are essentially identical to the conditions that charac-
terise when triangle vertex and triangle edge events happen. We define Qe to be the

set of vertices of the cells in €. We compute cell vertex and cell edge events as follows:

1. For every vertex q € Q¢, we use a segment-dragging query with the segment pq
to compute when q will intersect the boundary of Zo.

2. For every shadow certificate e of a cell C € @, we use a ray-dragging query to

compute when p. will intersect an edge of C.
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We now discuss how we process these events. We describe the procedure in detail
only when the event corresponds to a vertex or edge of C leaving the interior of £g.
The procedure for the case when a vertex or edge of C enters the interior of £g is

symmetrical. Let t be the time the event happens.

Cell vertex events Let vertex q of cell C intersect a face f of Z5.We add q to the list
of vertex certificates of C. For each edge e of C that is incident on v, we insert f at the
beginning of Fg. If F§ was empty at t~, we add e to the list of edge certificates of C.
If C had no certificates at t—, we add C to Vo.

Cell edge events Let edge e of cell C intersect an edge e’ of I and let e’ be incident
on faces f; and f; of £p. Recall that e’ is a shadow certificate for C. Therefore, e’

intersects the interior of C at t~. We have two cases:

1. If e’ is a primary edge, we remove f; and f, from F§. If F§ is now empty, we

remove e from the list of edge certificates of C.

2. If ¢’ is a derived edge, we add f; and f; to F§. If Fg was empty at t—, we add e
to the list of edge certificates of C.

We delete e’ from the list of shadow certificates of C. Note that C is visible at t*. For
each cell C’ incident on e, we add e’ to the list of shadow certificates of C’. If C’ had
no certificates at t~, we add C’ to Vo.

In addition, for each newly added vertex and shadow certificate, we compute when
it expires by asking the appropriate segment- or ray-dragging queries and store the

resulting events in the event queue.

3.3.4 Ray-dragging queries

In this section, we describe how we implement ray-dragging queries. These techniques
can be modified to answer both types of segment-dragging queries. The details are
straightforward and we leave them to the reader. We recapitulate the definition of the
ray-dragging query to refresh the memory of the reader. The ray-dragging query can
be defined as follows (see Figure 3.10):
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Given the ray p(t) originating at the point p(t) and passing through a
given edge of a triangle sy € O and a given edge of a triangle s; € O and
given the point q(0) at which p(0) first intersects the interior of a triangle
Tp € O, find the smallest positive value t’ such that the segment p(t’)q(t’)
intersects the boundary of a triangle s € O —{s1, s3} and return t’ and s.

If p(0) does not intersect any triangle, then q(t) is the point at infinity along p(t);
otherwise, q(t) is the intersection of p(t) and T,. The triangles sy and s, specified in
the query may be the same triangle. Note that s might be the triangle 7, itself. As p(t)
moves continuously, p(t) sweeps out a surface in R3. In particular, if p(t) moves along
a straight line, then the swept surface is a plane if s; and s; are the same triangle and

a quadric if they are not [96].

Figure 3.10: A ray-dragging query. At t’, the ray defined by edges e; and e; intersects
triangle s.

Note that such queries can be answered in sub-linear time by known range-searching
data structures [1, 6]. Unfortunately, these techniques are complicated and difficult to
implement. Our kinetic data structure for ray-dragging queries is simple and can be
implemented easily. While we have been unable to prove any non-trivial bounds on its
performance, there is evidence in the computer graphics literature that our algorithm
is likely to perform efficiently in practice [11, 74].

Let F,(t) be the sequence of faces of cells in € that the initial segment p(t)q(t) of
the ray p(t) intersects. In the rest of the section, we use just p to denote p(t), and
similarly remove the parametrisation in terms of time from all moving objects. We will

find the following lemma useful in developing our technique:

Lemma 3.3.3 If the initial segment pq of the ray p intersects the boundary of a
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triangle s in O, then there is a face f in F, such that sNf #0.

Proof: Each cell in C is the polytope R,, for some leaf v € B, a BSP for O. This implies
that s does not intersect the interior of any cell in €. Therefore, the intersection of p

and s is contained in a face f for some cell in €. Clearly, f is an element of F,. a

For each face f € Fp, let s¢ be the first triangle contained in f that p intersects. The
above lemma implies that the we can answer the ray-dragging query by maintaining
the sequence of intersected faces F, and by computing s¢ for each face f € F,. For each
face f € Fp, let p¢ denote intersection of p and f. We maintain the following certificates

for p:
Stopper certificate: the triangle T, if it exists.

Face certificates: the set of faces F, and a certificate for each face f € F, that pr does

not lie in the interior of any triangle in O that intersects the interior of f.
These certificates become invalid if and only if one of the following conditions is true:
Exit stopper event: If T, exists, p intersects the boundary of 7,.

Face event: For some face f € F,, pr intersects the boundary of f.

Enter stopper event: For some face f € F,, pr intersects the boundary of a triangle

s € O that intersects the interior of f.

We can compute the exit stopper event and each face event in constant time, and
each enter stopper event in time proportional to the number of triangies intersecting a
face. We process each event as follows (let t be the time the event occurs and let f € F,

be the face involved in the event):

Face event: Let e be the edge of f that the ray intersects. We delete f from F,. For
each face f’ of a cell in € that is incident on e, we add f’ to F, if p(t*) intersects

f’ and compute face and enter stopper events for f’.

Enter stopper event: Let s € O be the triangle that p intersects. We set Tp =s. We
delete all faces in F, that are farther away from p than f. We also remove all

events associated with these faces that are stored in the event queue. Finally, we
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return the current time t and the triangle s as the answer to the ray-dragging

query.

Exit stopper event: Let s’ € O be the current value of To. We perform a ray-shooting
query with the portion p’ of p beyond T,. Let s be the first triangle in O
whose interior p’ intersects. We append the faces intersected by p’ to F, and
set T, = s. For each inserted face, we compute face and enter stopper events. We
also compute an exit stopper event for s. Finally, we return the current time t

and the triangle s’ as the answer to the ray-dragging query.

3.3.5 Selecting occluders dynamically

One of the assumptions we made in Section 3.3.1 was that we pick the set O of oc-
cluders in a pre-processing phase. Such a strategy is successful in architectural envi-
ronments, where most invisible triangles are occluded by the walls, floors, and ceilings
in the model. For other classes of models, such as those arising in CAD design, urban
landscapes, or terrains, this technique is not tenable since different viewpoints have
different sets of good occluders. In this section, we show how we can pick occluders
dynamically as the viewpoint moves, thus removing one of the assumptions we made
in Section 3.3.1. The intuition behind picking occluders dynamically is that we should
select those triangles whose projections onto the image plane have large size. For ex-
ample, Coorg and Teller {34] and Hudson et al. [58] estimate the solid angle subtended
by a triangle at the viewpoint and select triangles with large solid angles as occluders.

The intuition behind our method is that good occluders are likely to be close to
the viewpoint. Since the set of cells C used by our algorithm corresponds to the leaves
of a BSP for O, the set of occluders, the partition of R induced by € is likely to
be “fine” near the viewpoint and progressively “coarser” as we move away from the
viewpoint. Informally, the density of the cells in € (the number of cells intersecting
a fixed volume) decreases with increasing distance from the viewpoint. Moreover, as
the viewpoint moves, the sets O and C gradually change, thus changing the induced
partition of R3.

Our novel technique for occluder selection is motivated by these observations. It

is based on the fact that we use a BSP as the underlying data structure to maintain
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visibility information. In a pre-processing phase, we construct a BSP B for all the
triangles in S (in Section 3.3.1, we constructed a BSP only for the set O of occluders).
As the viewpoint moves, we maintain a set M of marked nodes in B with the property
that the set of polytopes corresponding to the nodes in M form a decomposition of R3.

The following conditions are enough to ensure this property:
1. For each leaf v € B, we mark an ancestor of v.
2. If we mark a node v € B, we do not mark any ancestor of v.

Given the set M, we define the set C of cells to be
C={RylveMj

the set of polytopes corresponding to the marked nodes and the set O of occluders to
be
O={s'"|s"=snNdC#0,seS,CeC}

the portions of triangles in S that are contained in the boundaries of the cells in €.
An illustration of marked nodes and the cells and occluders they define is given in
Figure 3.11. We apply our hidden-surface removal algorithm on O and @, as just
defined.

We now describe our technique for marking nodes and for maintaining M and O.
For a node v € B, let d, be the closest distance of R, from the viewpoint p; we define
dy to be 0 if p is contained in R,. Let h, denote the height of v, i.e., the length of the
path from the root of B to v. We define the measure u, of v to be y, = h,d,. We
mark the nodes in B according to the following rule:

(*) For every leaf v € B, mark the ancestor w of v such that p,, > « > 0, where « is
a specified parameter (it can be input by the user). If there are many ancestors
satisfying this inequality, we mark the one with least height. If there is no such

ancestor, we mark v.

It is easy to verify that the nodes in M form a partition of R3. The condition we use
to mark nodes corresponds to our earlier intution. Note that if the viewpoint p is

contained in R,, where v is a leaf of B, then we mark v. If a node v is close to the
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Figure 3.11: (a) BSP for the entire input with marked nodes. (b) Decomposition
induced by leaves of the BSP. Dashed lines are edges of the decomposition. (¢) Decom-
position induced by marked nodes. Occluders are drawn in black and non-occluders in
grey. The viewpoint is contained in R,.
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viewpoint (d, is small), we mark it only if its height is large (i.e., if v is close to a leaf).
If a node v is far away from the viewpoint (d, is large), we mark it when its height is
small (i.e., if v is close to the root).

The set M changes as the viewpoint moves. We use properties of the function ., to
set up a kinetic data structure for maintaining M. If v is a node in B and v; and v, are
its two children, we have dy = min{d,,, dv,}, which implies that p, < py,, 1y,. Thus
the measure of the nodes along any root-to-leaf path in B increases monotonically.
Condition (*) implies that the set M remains unchanged as long as for every node v €
M, py > « and pp(y) < K, where p(v) is the parent of v. Therefore, the set M changes
if and only if one of the following two conditions is true:

1. Foranode ve M, u =«.
2. For the parent p(v) of a node in M, p,) = k.

Thus, in order to detect when M changes, for each node v € M, we compute when ,
Or i,(,) becomes equal to k.

To process such an event, we either add a node to or delete a node from M. We
also have to update the sets C, O, and £g. We now explain in detail how we perform
these modifications. Let t be the time the event happens. Let v be the node to be
added to or deleted from M and let w and z be the children of v. Recall that H, is
the cutting plane at v; let O, be the set of triangles that are contained in H, N R, (the
portion of H, inside R,). At time t, we have p, = k. Clearly, pw, i > k at all instants
in the interval [t—,t¥].

Deleting a node Since u, < x at t*, we have to mark w and z at t¥.
1. We update M by deleting v and adding w and z. We similarly update €.

2. For each shadow certificate e of R,, we execute the following steps:

(a) If the ray p. intersects only R, (resp., only R.), we add e as a shadow
certificate of R,y (resp., R;).

(b) Otherwise, assume without loss of generality that p. intersects R,, first.
We add e as a shadow certificate of R,,. We also check if p. intersects a



58

triangle s € O,. If it does not, we add e as a shadow certificate of R,. If it

does, we handle p, in the next step.
3. We add each triangle s € O, to O, as follows (let O’ =0 U {s}):

Update €0, Jo, and Qe: For each edge e € o such that the ray p. supporting
e intersects s N H,,

(a) If e is a primary edge defined by a vertex q of a triangle in O, we check
if s is closer to the viewpoint than q is. If it is, we delete e from &p
and add q to Jor setting Tq = s. Otherwise, we set the stopper T, =s.

(b) If e is a derived edge defined by two edges e; and e;, we set T, =s if s
is farther away from the viewpoint than both e; and e;. We also delete
all faces in Fp, (the list of faces of cells in C intersected by p.) that lie

beyond s. Otherwise, we delete e from £q.
For each vertex q € Jo U Qe such that pq intersects sN H, before 14, we set
Tq =s. If g € Qe is a vertex of cell C € € and g is visible, we remove q as
a vertex certificate of C.

(a) (b)

Figure 3.12: Discovering new derived edges defined by edge e of triangle s (drawn with
thick edges): The answer to the first ray-dragging query is point q3 and edge e;. The
answer to the second query is point q4 and edge e;. (The viewpoint is at z = +o0
and the image plane is the xy-plane.) (a) Edge e; is behind edge e. The second query
is a ray-dragging query. (b) Edge e; is in front of edge e. The second query is a
segment-dragging query.
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Compute edges of £ defined by s: For each vertex q of s, we check if it is
visible. If it is, we add the primary edge defined by q to £o-. Otherwise,
we add q to Jor. For each edge e = q1q; of s, we discover derived edges
of £Eg+ defined by e (and other triangle edges) by asking repeated ray- and
segment-dragging queries as follows: Suppose q; is visible from p. Let q(u)
be a point parametrised by u such that q(0) = qi, q(1) = q2, and q(u)
lieson e for 0 < u < 1. Let r(u) be a ray passing through q(u) with
origin at p. We invoke a ray-dragging query to compute the first value
u’,0 < u’ < 1 such that r(u’) intersects the boundary of a triangle in O; let

e’ the intersected edge. There are two cases to consider:

(a) Ifr(u’) intersects e before it intersects e’, we add the derived edge (e, e’)
to £os, and find the next derived edge defined by e by asking another
ray-dragging query, this time starting at q(u’). See Figure 3.12(a).

(b) Otherwise, we add the derived edge (e’,e) to £g-. Note that q(u’ +
€) is not visible from p, for any infinitesimally small value of €. See
Figure 3.12(b). To discover the next derived edge defined by e, we
reparametrise q(u) so that q(0) = r(u') Ne and compute the first value
u/,0 < u’ < 1 such that q(u’) is visible from p. We compute u’ by

asking a segment-dragging query of the second type.

In this manner, by asking a series of ray-dragging queries and segment-
dragging queries, we move q(u) along e until we reach q; and discover all
the derived edges of £os defined by e and other triangle edges. If q; is not
visible from p, we start the process with a segment-dragging query of the
second type.

4. We compute visibility certificates for R,, (the steps are similar for R,) as follows:
Vertex certificates: For each vertex q of R,,, we check if it is visible. If it is, we

add g as a vertex certificate for R,,.

Edge certificates: To compute edge certificates for each edge e of R,,, we con-
struct the sequence F§, of faces of £o+ that e intersects. We can do so by
modifying the procedure described above for computing the derived edges
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defined by a triangle edge. The primary difference is that we now ask a series
of segment-dragging queries of both types to compute the edge certificates.
The other details are easy to work out.

Shadow certificates: We have created shadow certificates for R, in Steps 2 and
Step 3.

Adding a node Since we did not mark v at t~, we must have marked both w and z

at t—.

1. We update M by deleting w and z and adding v. We similarly update C by
deleting R,, and R, and adding R,. If R,, or R; is visible (i.e., it is in Vp), we
delete it from Vo and include R, in Vg.

2. For each triangle s € O,, we delete s from O and perform the following operations
(let O’ =0\ {s}):

Extend edges of £, Jo, and Qe: For each edge e € €p such that T, = s, we
shoot p., the ray containing e beyond s, and update T.. For each vertex
q € Jo U Qe such that T, = s, we check if pq intersects any triangle s € O.

If it does, we set T =s’. Otherwise,

(a) If q € Jp, we delete q from Jpo and add a primary ray defined by q to
€o.

(b) If g is a vertex of a cell C € C, we add q as a vertex certificate of C,
and add C to Vg if C has no visibility certificates at t~.

Discover new edges of £o/: Let @ be the set of all rays originating at p and
intersecting s; @ is an infinite polyhedron that contains o, the shadow
of s. The deletion of s causes new edges to appear in £g:. For each such
edge e, pe is contained in ;. We find these edges by using a technique first
described by Overmars and Sharir [79] and later used by other authors. It

is easy to prove that one of the new edges is either

(a) a primary edge defined by a vertex q of a triangle in O’ such that s

occludes q (i.e., € Jo and Tpq =s) at t~, or
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(b) a derived edge defined by an edge e of a triangle in O’ (and an edge
of another triangle in O’) such that there is a derived edge (e,e;) or
(e1,e) in €, where e is an edge of s.

See Figure 3.13 for an illustration of these types of vertices.

Figure 3.13: Types of new edges in £g- that appear when s is deleted (the viewpoint
is at z = 400 and the image plane is the xy-plane). The primary edge q € &g is
occluded by s at t~. The derived edge q; € £p- is defined by edges e and e, and e
(and edge e1) define the derived q; € €.

Note that we have already computed all such invisible vertices in Step 2.
From each such invisible vertex and each edge e of a triangle in O’ such
that e and an edge of s define a derived edge in £p, we perform a series
of ray-dragging queries as described below. In general, we have an edge e
of a triangle in O’, a point q on e, and a direction along e such that if we
traverse e from q along this direction, we follow a visible portion of e inside
@, (visibility is with respect to the triangles in O’). Let q(u) be a point
paramterised by u, such that q(0) = q and q{u) moves along e in the given
direction as u increases. Let r{u) be a ray with origin at the viewpoint p
and passing through q(u). We invoke a ray-dragging procedure with r(u)
to discover one of the following types of points (see Figure 3.14):

(a) a point z on e such that there is a derived edge e; defined by (e’,e) in

€0, where e’ is an edge of s and z = pe, Ne.
(b) a vertex z of e,

(c) a point z on e at which e is hidden by a closer triangle edge e’, or
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(d) a point z on e at which e hides an edge e’ of another triangle lying
farther away from p than z.

In the first two cases, we stop. In each of the last two cases, we find a
new edge of €g, and we repeat the ray-dragging query starting at z and
moving along e’ in the direction that makes it visible (this direction is easy
to compute). In this manner, we find all the new edges in €o- created by

the deletion of s.

Figure 3.14: Different cases that arise when discovering new edges of £g:. The view-
point is at z = +oo and the image plane is the xy-plane.

3. We compute the visibility certificates for R, as follows:

Vertex certificates: For each vertex q of R,, we add q as a vertex certificate of
Ry if q is visible. Note that we update the visibility status of q to reflect
the deletion of the triangles in O, in Step 2.
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Edge certificates: We compute edge certificates as outlined under the corre-
sponding step for adding a node to M.

Shadow certificates: For each edge e € £¢ that intersects the interior of Ry, we
add e as a shadow certificate. Note that we update the set of such edges in
Step 2.

3.3.6 Extensions

In this section, we show how to modify the algorithm described so far to handle mov-
ing triangles and discuss some extensions to our algorithm. We handle a moving

triangle s € S in two different ways:

1. If s € O (this may happen if s is small or far away from the viewpoint), we use
its motion to track the cells in € that s intersects. The details of the kinetic data
structure used to maintain the cells that s intersects are easy to develop. We

render s if it intersects a cell in Vg.

2. If s € O (this may happen in an architectural environment if s is in the same
room as the viewpoint), we have to modify the BSP B as s moves. To this
end, we use the recently-developed technique of Agarwal et al. [2] for efficiently
maintaining BSPs for moving triangles in R3. Their algorithm is an extension
to R3 of a kinetic data structure we present in Chapter 6.3 for maintaining a BSP

for moving segments in the plane.

We now discuss how we can incorporate frame-rate control into our algorithm.
Recall that in our algorithm for marking nodes (see Section 3.3.5), we use a parameter k
to decide which nodes of B to mark. If k is sufficiently small, we mark nodes near the
root of B. As a result, we select a very small subset of the triangles in S as occluders.
Therefore, the time taken by our algorithm to process its internal data structures is
very small, but our occlusion culling is not very efficient, and we output most triangles
in S to the graphics system, which consumes a lot of time to render these triangles. On
the other hand, if k is sufficiently large, we mark most of the leaves in B, thus picking
most triangles in S as occluders. Our kinetic data structure is more time-consuming

but we send very few invisible triangles to the graphics system. Between these two
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extremes, there is a median that balances the time spent by our algorithm in internal
processing and the time spent by the graphics system in rendering.

In future work, we plan to examine various schemes for choosing the value of
dynamically to achieve this balance. One possibility is to modify « based on the
relation between internal processing time and rendering time. We are also considering
more sophisticated techniques that estimate whether it is better to keep a node in B
marked or to unmark it and mark its two children instead. If we mark the children, we
increase the size of O and the processing time but we may also decrease the number of
triangles sent to the graphics system, thus reducing the rendering time.

Our eventual goal is to merge these ideas for frame-rate control with simplification
and image-based rendering. We expect to exploit some of the unique properties of the
BSP to successfully integrate all these techniques.

3.4 Conclusions

In this chapter, we have presented an object complexity algorithm for hidden-surface
removal that computes the exact set of visible triangles and renders them using the z-
buffer. The algorithm can be tuned to compute a small superset of the visible triangles.
While the algorithm is based on well-known principles (if a cell is invisible, then all
triangles intersecting the cell are also invisible), we use several novel algorithmic ideas

to perform hidden-surface removal efficiently:
e maintaining the union of the triangle shadows exactly,
e using kinetic data structures to efficiently maintain the set of visible cells, and

e employing the BSP as an underlying data structure for supporting all our oper-

ations.

We are currently implementing this algorithm and using BSPs constructed by tech-
niques to be presented in the rest of this thesis.

We now discuss some of the important questions that are suggested by our algo-
rithm. A major drawback of our algorithm is that the motion of the viewpoint is

involved in every certificate used in the algorithm. Therefore, when the viewpoint’s
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motion changes, we have to recalculate every certificate, which is very costly. In fact,
this point brings out a drawback of kinetic data structures: they are not ideal for pro-
cessing moving objects whose motions are not independent. One promising avenue that
we are studying in order to solve this problem is to avoid calculating the expiry time
of a certificate exactly; the farther the expiration is in the future, the less accurately
we compute it. As a result, when the viewpoint’s motion changes, we will expend our
effort in recalculating expiration times for a small number of certificates. Interesting
issues arise now regarding what laws the viewpoint motion should follow so that we
can still ensure the correctness of our algorithm.

Our algorithm also raises several other theoretical issues:

1. Under what conditions can we guarantee a bound on the size of the superset of

visible triangles output by our algorithm?

2. Can we prove bounds on the running time of the ray-dragging procedure? This
question is related to the number of cells of B stabbed by a moving ray or segment.
It is possible that examining this problem under a suitable model of geometric

complexity will yield practically-useful solutions.

3. It will also be interesting to extend our algorithm to the situation when the tri-
angles in S reside on disk and we need to minimise the number of input/output
operations to disk. One possible solution is to have two occlusion culling algo-
rithms running in parallel. One algorithm runs on the triangles in memory and
sends visible triangles to the z-buffer. The other algorithm processes the trian-
gles on disk and stores visible triangles in memory. Thus the second algorithm

ensures that all visible triangles are in memory at any given time.

We expect our algorithm to perform efficiently in practice, especially when we
incorporate our ideas for frame-rate control and simplification. The answers to the
open problems we have posed are likely to further strengthen our techniques and make

them applicable to a large class of inputs.



Chapter 4

Binary Space Partitions for Fat

Rectangles

In the last two chapters, we presented our algorithms for model repair and hidden-
surface removal. Since both algorithms use the BSP as an underlying data structure,
their running time inherently depends on properties of the BSP such as size and height.
In fact, the same is true of algorithms that use the BSP in a variety of different
applications: hidden-surface removal itself [8, 101], giobal illumination [23], shadow
generation [29, 30], solid modelling (75, 78, 102], ray tracing [74], robotics [12], and
approximation algorithms for network design [66] and surface simplification [7].

As a result, there has been a lot of effort to construct BSPs of small size. While
several simple heuristics have been developed for constructing BSPs of reasonable
sizes [8, 24, 47, 73, 101, 102], provable bounds were first obtained by Paterson and
Yao. They show that a BSP of size O(nlogn) can be constructed for n disjoint seg-
ments in R?; they also show that a BSP of size O(n?) can be constructed for n disjoint
triangles in R3, which is optimal in the worst case (81]. But in graphics-related appli-
cations, many common environments like buildings are composed largely of orthogonal
rectangles, and non-orthogonal triangles are approximated by their orthogonal bound-
ing boxes [44]. Paterson and Yao [82] prove that a BSP of size O(n) exists for n non-
intersecting, orthogonal segments in R? and of size O(ny/n) for n non-intersecting,
orthogonal rectangles in R3. Both bounds are optimal in the worst case.

In all known lower bound examples of orthogonal rectangles in R3 requiring BSPs

66
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(2) (b)

Figure 4.1: (a) Lower bound construction for orthogonal rectangles. (b) Model of Soda
Hall—85% of the rectangles have aspect ratio at most 25.

of size Q{n+/n), most of the rectangles are “thin.” For example, Paterson and Yao's
lower bound proof uses a configuration of ©(n) orthogonal rectangles, arranged in
a /1 x y/n x /1 grid, for which any BSP has size Q(ny/n) (see Figure 4.1(a)). All
rectangles in their construction have aspect ratio Q(y/n). Such configurations of thin
rectangles rarely occur in practice. Many real databases consist mainly of “fat” rect-
angles, i.e., the aspect ratios of these rectangles are bounded by a constant. An ex-
amination of four data sets containing a few thousand rectangles—the Sitterson Hall,
the Orange United Methodist Church Fellowship Hall, and the Sitterson Hall Lobby
databases from the University of North Carolina at Chapel Hill and the model of Soda
Hall from the University of California at Berkeley (shown in Figure 4.1(b))—shows
that most of the rectangles in these models have aspect ratio less than 30.

It is natural to ask whether BSPs of near-linear size can be constructed if most
of the rectangles are “fat.” We call a rectangle fat if its aspect ratio (the ratio of
the longer side to the shorter side) is bounded by a fixed constant; for specificity, we
use « > 1 to denote this constant. A rectangle is said to be thin if its aspect ratio is

greater than o In this paper, we consider the following problem:

Given a set S of n non-intersecting, orthogonal, two-dimensional rectangles
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in R3, of which m are thin and the remaining n — m are fat, construct a
BSP for S.

We first show how to construct a BSP of size n20(VI98™) for n fat rectangles in R3
(i-e., when m = 0). We then show that if m > 0, a BSP of size n\/ﬁzo(‘ﬂ"g—“) can be
built. We also prove a lower bound of Q(n/m) on the size of such a BSP.

We finally prove two important extensions to these results. If p of the n input
objects are non-orthogonal, we show that an np2°(vIoen)_size BSP exists. Unlike in
the case of orthogonal objects, fatness does not help in reducing the worst-case size
of BSPs for non-orthogonal objects. In particular, we prove that there exists a set
of n fat triangles in R3 for which any BSP has Q(n?) size. However, non-orthogonal
objects can be approximated by orthogonal bounding boxes. The resulting bounding
boxes might intersect each other. Motivated by this observation, we also consider the
problem in which n fat rectangles contain k intersecting pairs of rectangles, and we
show that we can construct a BSP of size (n + k)vk29(VI°e ™) We also prove a lower
bound of Q(n + kv/k) on the size of such a BSP.

In all cases, the constant of proportionality in the big-oh terms is linear in log «,
where « is the maximum aspect ratio of the fat rectangles. Our algorithms to construct
these BSPs run in time proportional to the size of the BSPs they build. In Chapter 5,
we describe experiments that demonstrate that our algorithms work well in practice
and construct BSPs of near-linear size when most of the rectangles are fat, and perform
better than most known algorithms for constructing BSPs for orthogonal rectangles.

As far as we are aware, ours is the first work to consider BSPs for the practical
and common case of (two-dimensional) fat polygons in R3. de Berg considers a weaker
model, the case of (three-dimensional) fat polyhedra in R3 (a polyhedron is said to be
fat if its volume is at least a constant fraction of the volume of the smallest sphere
enclosing it), although his results extend to higher dimensions [35].

One of the main ingredients of our algorithm is the construction of an O(nlogn)-
size BSP for a set of n fat rectangles that are “long” with respect to a box B, i.e.,
none of the vertices of the rectangles lie in the interior of B. We present this algorithm
in Section 4.2. To prove this result, we crucially use the fatness of the rectangles. In

Section 4.3, we use this procedure to construct a BSP of size O(n*/3) for fat rectangles.
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The algorithm repeatedly applies cuts that bisect the set of vertices of rectangles in S
until all sub-problems have long rectangles and the total size of the sub-problems
is O(n#/3), at which point we can invoke the algorithm for long rectangles. We improve
the size of the BSP to n20(VIe€™) by simultaneously simulating the algorithm for
long rectangles and partitioning the vertices of rectangles in S in a clever manner; we
describe the algorithm in Section 4.4 and analyse it in Section 4.5. Finally, we extend
this result in Section 4.6 to construct BSPs in cases when some triangles in the input
are (i) thin, (ii) non-orthogonal, or (iii) intersecting. We conclude in Section 4.7 with

some open problems.

4.1 Geometric Preliminaries

Before we describe our algorithm, we recapitulate the definition of the BSP and give
some other preliminary definitions. In our case, S is a set of orthogonal rectangles
with pairwise-disjoint interiors in R3. A binary space partition B for S is a tree
defined as follows: Each node v in B is associated with a polytope R, and the set
of rectangles S, ={s N Ry | s € S} that intersect R,. The polytope associated with the
root is R3 itself. If S, is empty, then node v is a leaf of B. Otherwise, we partition R,
into two convex polytopes by a cutting plane H,. We refer to the polygon H, N R, as
the cut made at v. At v, we store the equation of H,, and theset {s | s € H,,s € S,}, the
subset of rectangles in S, that lie in H,. If H} denotes the positive halfspace and H
the negative halfspace bounded by H,, the polytopes associated with the left and right
children of v are R, N H and R, N H{, respectively. The left subtree of v is a BSP
for the set of rectangles Sy ={sNHy | s € S,} and the right subtree of v is a BSP for
the set of rectangles S¥ ={sNHY¥ | s € Sy}. The size of B is the sum of the number of
nodes in B and the total number of rectangles stored at all the nodes in B.

In our algorithms, each cutting plane will be orthogonal. Therefore, the region R,
associated with each node v in B is a boz (rectangular parallelepiped). We say that a
rectangle r is long with respect to a box B if none of the vertices of r lie in the interior
of B. Otherwise, T is said to be short. See Figure 4.2. A long rectangle is said to be
free if none of its edges lies in the interior of B; otherwise it is non-free. A free cut

is a cutting plane that does not cross any rectangle in S and that either divides S into
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(2) (b)

Figure 4.2: (a) Long and (b) short rectangles. Heavy dots indicate the vertices of these
rectangles that lie on the boundary of the box. Rectangle s is a free rectangle.

two non-empty sets or contains a rectangle in S, Note that the plane containing a free
rectangle is a free cut.
We will often focus on a box B and construct a BSP for the rectangles intersecting

it. Given a set of rectangles R, let
Rg ={sNB|seR}

be the set of rectangles obtained by clipping the rectangles in R within B. For a set of
points P, let Pg be the subset of P lying in the interior of B.

z-axis Top face

x-axis Front face

Figure 4.3: Different classes of rectangles.

A box B has six faces—top, bottom, front, back, right, and left, as shown in
Figure 4.3. We assume, without loss of generality, that the back, bottom, left corner of
B is the origin (i.e., the back face of B lies on the yz-plane). A rectangle s that is long
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with respect to B belongs to the top class if two parallel edges of sNB are contained in
the top and bottom faces of B. We similarly define the front and right classes. A long
rectangle belongs to at least one of these three classes; a non-free rectangle belongs to
a unique class. See Figure 4.3 for examples of rectangles belonging to different classes.

Although a BSP is a tree, we will often just discuss how to partition the box
represented by a node into two boxes. We will not explicitly detail the associated
construction of the actual tree itself, since the construction is straightforward once we
specify the cutting plane. Sometimes, we will abuse notation and use B to also refer
to the corresponding node in the BSP.

In the rest of this section, we assume that the vertices of the rectangles in S are
sorted by x-, y-, and z-coordinate, and that for each axis, the rectangles perpendicular
to that axis are sorted by intercept. The cost of this sort will not affect the asymptotic
running times of our algorithms.

We now state two preliminary lemmas that we will use below. The first lemma
characterises a set of rectangles that are long with respect to a box and belong to one

class. The second lemma applies to two classes of long rectangles.

face g

(2) (b)

Figure 4.4: (a) Long rectangles in the top class. (b) Projections of the rectangles in
(a) onto the top face g; heavy dots indicate the vertices of these rectangles that lie in
the interior of g. The dashed line is the cut satisfying (4.4.1).

Lemma 4.1.1 Let C be a boz, P a set of points in the interior of C, R a set of

rectangles long with respect to C, and w > 1 a real number. If the rectangles in
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Rc belong to one class, then the following two conditions hold (see Figure 4.4):

(1) There ezists a face g of the boz C that contains ezactly one of the edges of
each rectangle in Rc. Let V be the set of those vertices of the rectangles in

Rc that lie in the interior of g.

(i) We can find a plane that partitions C into two bozes Ci and C, so that
fori=1,2,
[Vi+ w|P|

VA Cil +wiPc| < 2

(4.4.1)

If the rectangles in Rc and the points in P are sorted along each of the three

azes, the partitioning plane can be computed in O(|Rc| + |P|) time.

Proof: (i) follows from the definition of a class. To prove part (ii) of the lemma, let P*
be the set of projections of the points in P onto g. Assume g is the top face of C. If we
associate a weight of 1 with each point in V and a weight w with each point in P*, the
total weight of the points in VUP* is [V|+w|P|. By sweeping g, we can find in O(|V|+{P})
time a line ¢ lying in g and parallel to the x-axis that contains a point in VU P* and
that divides V U P* into two sets, each with weight at most (|V|+ w|P|)/2. We split C
into two boxes C; and C; by drawing the plane containing ¢ that is orthogonal to g.
By construction, C; and C; satisfy (4.4.1). The time bound follows easily. O

Lemma 4.1.2 Let C be a boz, P a set of points in the interior of C, R a set of
rectangles long with respect to C, and w > 1 a real number. If the rectangles
in Rc belong to two classes, then one of the following two conditions holds (see
Figure 4.5):

(i) We can find one free cut that partitions C into two bozes Cy and C; so that

2 (IRcl +wiP))
3

Re;l +wlPc | < (4.4.2)

fori=12.

(iz) We can find two parallel free cuts that divide C into three bozes Ci, Ca,
and C3 such that all rectangles in Rc, belong to the same class and such

that
[Rel + wiP|

IRe,| +wlPc,| > 3

(4.4.3)
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If the rectangles in Rc and the points in P are sorted along each of the three azes,

these free cuts can be computed in O(|Rc| + |P]) time.

(2) (b)

Figure 4.5: (a) Free cut h partitions box C into two boxes C; and C,. (b) Two parallel
free cuts h; and h; partition C into three boxes C;, C;3, and C3.

Proof: We assume without loss of generality that the rectangles in R¢ belong to the
top and right classes. Let T denote the projection of a rectangle r € R¢ onto the x-axis:

T is either a point or an interval. Similarly, let p denote the projection of a point p € P

=17 ()}

U is a set of disjoint intervals, some of which may be single points. Let ; (resp., ;) be

onto the x-axis. Set

a rectangle in Rc belonging to the top (resp., right) class. Since the rectangles in Re
are disjoint, it is easily seen that 7 and v, are also disjoint. Hence, each connected
component of U contains the projections of rectangles belonging to at most one class.

For any connected component I of UL define,
pI)=KreRcIFCH+wifpeP|p I

Set W = [R¢|+w|P|. If U contains a connected component I = [8, y] with u(I) > W/3,
then the two free cuts are x = 3 and x = y. The cuts partition the box C into three
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boxes Cy, Cz, and C3, where C; denotes the middle box. By construction, all rectangles
in Rc, belong to at most one class. Hence, condition (ii) holds.t

If there is no such connected component of U, then let I = [B,v] be the leftmost
connected component of U with ZI,SI u(I’) > W/3 (we say that I’ < I if [’ lies to the
left of I). Since p(I) < W/3 and } , ; u(I’') < W/3,

> w(I') < 2wys.

<t
We partition C into two boxes C; and C; using the cut x =y. In this case, condition (i)
holds.

If the rectangles in Rc and the points in P are sorted along the x-axis, it is clear
that the components in U can be computed and sorted in O(|Rc| + [P|) time. The free
cut(s) used to partition C can be found in the same time by sweeping the components
of U. o

4.2 BSPs for Long Fat Rectangles

Assume that all the rectangles in S are long with respect to a box B. In this section, we
show how to build a BSP for Sg, the set of rectangles clipped within B. This algorithm
will form the basis of our algorithm for the general case, when Sg contains both long
and short rectangles. In general, Sg can have all three classes of rectangles. We first
exploit the fatness of the rectangles in S to prove that whenever all three classes are
present in Sg, a small number of cuts can divide B into boxes each of which has only
two classes of rectangles. Then we describe an algorithm that constructs a BSP when

all the rectangles belong to only two classes.

4.2.1 Reducing three classes to two classes

Assume, without loss of generality, that the longest edge of B is parallel to the x-axis.
The rectangles in Sg that belong to the front class can be partitioned into two subsets:
the set R of rectangles that are vertical (and parallel to the right face of B) and theset T
of rectangles that are horizontal (and parallel to the top face of B). See Figure 4.6(a).

'If B = v, i.e. [ is a point, then C; is regarded as a degenerate box. If [ is the first (resp., last)
connected component of U, then Cy (resp., C3) may be a degenerate box.
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Figure 4.6: (a) Rectangles belonging to the sets R and T. (b) The back face of B;
dashed lines are intersections of the back face with the «-cuts.

Let e be the edge of B that lies on the z-axis and let e’ be the edge of B that lies on
the y-axis. The intersection of each rectangle in R with the back face of B is a segment
parallel to the z-axis. Let T denote the projection of such a segment r onto the z-axis,
and let R ={F|r € R}. Let z; <z < --- < zx_1 be the endpoints of intervals in R that
lie in the interior of e but not in the interior of any interval of R. Note that k — 1 may
be less than 2|R|, as in Figure 4.6(b), if some of the projected segments overlap. If no
two intervals in R share an endpoint, then {z1,25, ... ,zx_1} is the set of vertices of the
union of the intervals in R; otherwise, {z1,23,... ,zx_1} includes endpoints common to
two intervals in R and not lying in the interior of any other interval in R. Similarly,
for each rectangle t in the set T, let t be the projection of t onto the y-axis, and
let T={t|teT} Let y; <yz < --- < yi_1 be the endpoints of intervals in T that lie
in the interior of e’ but not in the interior of any interval of T.

We divide B into kl boxes by drawing the planes z = z; for 1 < i < k and the
planes y =y; for 1 <j < 1. See Figure 4.6(b). This decomposition of B into kl boxes
can easily be constructed in a tree-like fashion by performing (k — 1)}{(1 — 1) cuts. We
refer to these cuts as a-cuts. If any resulting box has a free rectangle, we divide that
box into two boxes by applying the free cut along the free rectangle. Let € be the set

of boxes into which B is partitioned in this manner. We can prove the following lemma
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about the decomposition of B into C.

Lemma 4.2.1 The set C of bozes formed by the above process satisfies the following

properties:
(2) Bach boz C in C has only two classes of rectangles;

(%) there are at most 26| x|*n bozes in C; and

(5%) ¥ ceelScl < 16]afn.

Proof: Let zp and zy, where zy < z, be the endpoints of e, the edge of the box B that
lies on the z-axis. Similarly, define yo and yi, where yo < yi, to be the endpoints of
the edge of B that lies on the y-axis.

(i) Let C be a box in €. If C does not contain a rectangle from T U R, the claim is
obvious since the rectangles in T and R together constitute the frort class. Suppose C
contains rectangles from the set R. Rectangles in R belong to the front class and are
parallel to the right face of B. We claim that C cannot have any rectangles from the
right class. Indeed, consider an edge of C parallel to the z-axis. The endpoints of
this edge have z-coordinates z; and z;i.;, for some 0 < i < k. Since C contains a
rectangle from R, by construction, the interval z;z;,; must be covered by projections
of rectangles in R (onto the z-axis). If C also contains a rectangle r belonging to the
right class, then let z; < z < z;47 be the z-coordinate of a point in TN C. Let v/ be a
rectangle in R whose projection on the z-axis contains z. Since both t and t/ are long
with respect to C, r and v’ intersect, which contradicts the fact that the rectangles in S
are non-intersecting. A similar proof shows that if C contains rectangles from T, then

C does not contain any rectangle in the top class.

(ii) We first show that both k and 1 are at most 2|} + 3. Let a (respectively, b,c)
denote the length of the edges of B parallel to the z-axis (respectively, y-axis, x-
axis). By assumption, a,b < c. Let r € R be a rectangle with dimensions B and v,
where <. Consider T, the projection of r onto the z-axis. Suppose that ¥ C z;z;,1,
for some 0 <i< k—1, ie., T lies in the interior of the edge e of B lying on the z-

axis. Since T is a rectangle in the front class and is parallel to the right face of B, we
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?

Figure 4.7: Projections of  (the dashed rectangle), r =N B (the shaded rectangle),
and the right face of B onto the zx-plane.

have B < a < c =+. If ?, the rectangle supporting  in the set S, has dimensions f and
9, where B <49 < «f, we have B =P (since T C int(e)) and y <%. (IfiisOor k—1,
we cannot claim that B = B; in these cases, it is possible that f <« 3.) See Figure 4.7.
Thus, we obtain

a<c=y<P<af =ap.

It follows that the length of the interval ¥, and hence the length of z;z;,, is at least
a/x. Since every alternate interval z;z;41,0 <1 < k — 1 contains the projection of at
least one rectangle of R, k < 2| x| + 3. In a similar manner, 1 < 2|« + 3.

Hence, the planes z =z;,1 <i<k—1 and the planes y =yj,1 <j <1—1 parti-
tion B into at most kl < (2] x] + 3)% boxes. Each such box C can contain at most n
rectangles. Hence, at most n free cuts can be made inside C. The free cuts can divide C
into at most n. 4+ 1 boxes. This implies that the set € has at most kl{n + 1) < 26| x|?n

boxes.

(iii) Each rectangle r in Sg is cut into at most kl pieces. The edges of these pieces form
an arrangement on r. Each face of the arrangement is one of the at most kl rectangles
that r is partitioned into. Only 2(k+1—2) faces of the arrangement have an edge on the
boundary of r. All other faces can be used as free cuts. Hence, after all possible free cuts
are made in the boxes into which B is divided by the (k—1)(1—1) cuts, only 2(k+1—2)
pieces of each rectangle in Sg survive. This proves that Zcee IScl £ 16| x|n. ]
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Remarks: The only place in the whole algorithm where we use the fatness of the
rectangles in S is in the proof of Lemma 4.2.1. If the rectangles in S are thin, then
Lemma 4.2.1(ii) is not true; both k and 1 can be Q(n).

If Sg contains a short rectangle, the x-cuts partition the short rectangle into a
constant number of pieces. Hence, Lemma 4.2.1(ii) and (iii) hold even when Sg contains

shert rectangles.

4.2.2 BSPs for two classes of long rectangles

Let C be one of the boxes into which B is partitioned by the x-cuts. We now present
an algorithm for constructing a BSP for the set of clipped rectangles Sc, which has
only two classes of long rectangles. We recursively apply the following steps to each of
the boxes produced by the algorithm until no box contains a rectangle.

1. If Sc has a free rectangle, we use the free cut containing that rectangle to split C

into two boxes.

2. If Sc has two classes of rectangles, we use Lemma 4.1.2 (with R =S and P = 0)

to split C into at most three boxes, using at most two parallel free cuts.

3. If Sc has only one class of rectangles, we split C into two by a plane, using
Lemma 4.1.1 (with R =S and P = 0).

We first analyse the algorithm for two classes of long rectangles. The BSP produced
has the following structure: If Step 3 is executed at a node v, then Step 2 is not invoked
at any descendant of v. Note that the cutting planes used in Step 1 and 2 do not
intersect any rectangle of Sc, so only the cuts made in Step 3 increase the number of
rectangles. Hence, repeated execution of Steps 1 or 2 on Sc constructs a top subtree T¢
of the BSP with O(|Scl|) nodes such that each leaf in T'¢ has only one class of rectangles
and the total number of rectangles in all the leaves is at most |S¢]. The operations at
a box D in T¢ involve determining the cuts to be made at D, partitioning D according
to these cuts, identifying the resulting free rectangles and applying free cuts containing
them, and partitioning the rectangles in Sp into the new boxes. Since we assume that

we have sorted the vertices of the rectangles in S at the very beginning, Lemmas 4.1.1
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and 4.1.2 imply that the cuts to be made at D can be determined in O(|Sp|) time. The
free cuts resulting after partitioning D according to these cuts are parallel to each other.
Hence, all free cuts can be applied in O(|Spl) time. Further, the number of rectangles
at each child of D is at most 2[Sp|/3. Hence, T¢ can be constructed in O{|Sc|log|Sc|)
time. At each leaf v of the tree T, recursive invocations of Steps 1 and 3 build a BSP
of size O(|Svllog|Syl) in O(|S,|log{S,|) time (see [81] for details). Since 5, S, < IS¢,
where the sum is taken over all leaves v of T¢, the total size of the BSP constructed
inside C is O(|Sc|log|Scl). It also follows that the BSP inside C can be constructed
in O(|Sc|log|Sc|) time.

We now analyse the overall algorithm for long rectangles. The algorithm first ap-
plies the -cuts to the rectangles in Sg, as described in Section 4.2.1. Consider the set of
boxes € produced by the x-cuts. Each of the boxes in € contains only two classes of rect-
angles (by Lemma 4.2.1(i)). In view of the above discussion, for each box C € €, we can
construct a BSP for Sc of size O(|Scllog|Scl) in time O(|Sc|log|Scl|). Lemma 4.2.1(ii)
and 4.2.1(iii) imply that the total size of the BSP is O(n) + }_ce O(IScllogiScl) =
O(nlogn). The time spent in building the BSP is also O(nlogn). We can now state

the following theorem:

Theorem 4.2.2 Let S be a set of n fat rectangles and B a bor so that all rectangles
in S are long with respect to B. Then an O(nlogn)-size BSP for the clipped rect-
angles Sg can be constructed in O(nlogn) time. The constants of proportionality
in the big-oh terms are linear in o2, where « is the mazimum aspect ratio of the

rectangles in S

Remark: We can show that the height of the BSP constructed by the above logarithm
is O(logn). We can also modify our algorithm to construct a BSP of size O(n) for
n long rectangles as follows: If a box C has two classes of long rectangles, we apply
Step 1 or 2 of the previous algorithm. If the rectangles in C belong to one class, we use
the algorithm of Paterson and Yao for constructing BSPs for orthogonal segments in
the plane [82] to construct a BSP of linear size for Sc. However, the height of the BSP
can now be ((n) in the worst case. We will not need this improved result, except in

Section 4.3.
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4.3 BSPs of Size O(n*/3)

In this section, we present a simple algorithm that constructs a BSP of size O(n%/3)
for n fat rectangles. We need a definition before describing the algorithm. A bisecting
cut is an orthogonal cut that partitions those vertices of the rectangles in S that lie
in the interior of B into two halves, i.e., if k vertices lie in the interior of B, then a
bisecting cut divides B into two boxes, each containing at most |k/2] vertices in its
interior.

The algorithm proceeds in phases. A phase is a sequence of three bisecting cuts,
with exactly one cut perpendicular to each of the three orthogonal directions. After
each phase, if a box contains a free rectangle, we use the corresponding free cut to
further divide the box into two. We begin the first phase with a box enclosing all
the rectangles, with at most 4n vertices in its interior, and continue executing phases
of bisecting cuts until each box has no vertex in its interior. At this point, each box
contains only long rectangles. We then invoke the algorithm described in the remark
following Theorem 4.2.2 to construct a BSP in each of these boxes.

The crux of the analysis of the size of the BSP produced by this algorithm is
counting the number of pieces into which one rectangle is split when subjected to a
specified number of phases. To this effect, we use the following result of Paterson and

Yao [82]. We include the proof here for the sake of completeness.

Lemma 4.3.1 (Paterson-Yao) A rectangle that has been subjected to d phases of
cuts (with all available free cuts used at the end of each phase) is divided into
0(29) rectangles.

Proof: A phase of cuts divides a rectangle T into at most four sub-rectangles 1,1 <i <
4. See Figure 4.8. Suppose g edges of 1, for g < 4, lie on the boundary of the rectangle
in S that supports r; each such edge lies in the interior of B. If g = 0, then T is a
free rectangle. Let g; be the corresponding number for r;. If x(g, d) is the number of
rectangles into which r is divided by d phases of cuts, we have the following recurrence

for x(g, d), where g,d > 0:

: 4
X(g) d) < ZX(givd_ ]]’ where Z gi < th
i=1
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Figure 4.8: The shaded region is a rectangle T with one edge lying in the interior of B
(T is shown projected onto a face of B that T is parallel to). A phase divides r into four
pieces s,t,u, and v; s and t are free rectangles.

because each edge of  is split into at most two edges by a phase of cuts (by the cutting
plane orthogonal to the edge). We see that x(g,0) = 1 and x(0, d) = 1, because a free
rectangle at the beginning of a phase will be removed by a free cut. It is easily checked
that the solution to this recurrence is 3g(29 — 1) + 1. 0

We can now bound the size of the BSP constructed by the algorithm.

Theorem 4.3.2 A BSP of size O(n*3) can be constructed for n fat orthogonal
rectangles in R3. The constant of proportionality in the big-oh term 1is linear in

2

o, where  is the mazimum aspect ratio of the input rectangles.

Proof: If a box B has k vertices in its interior, one phase of cuts partitions B into eight
boxes each of which has at most |k/8] vertices in its interior. Since we start with n
rectangles that have at most 4n vertices, the number of phases executed by the above
algorithm is at most [(logn)/3 + 2/3]. Lemma 4.3.1 now implies that the total number
of rectangles formed once all the phases are executed is O(n2{l°8™)/3) = O(n4/3). At
this stage, all boxes have only long rectangles. Hence, Theorem 4.2.2 and the remark
at the end of Section 4.2 imply that we can construct a linear-size BSP in each of these
boxes, which increases the total size of the BSP only by a constant factor. This proves
the theorem. a
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4.4 An Improved Algorithm

We now describe our main algorithm for constructing a BSP for a set S of n fat non-
intersecting rectangles, in which we simultaneously simulate the algorithm for long fat
rectangles presented in Section 4.2 and partition the vertices of the rectangles in S.
The algorithm proceeds in rounds. Each round simulates a few steps of the algorithm
for long rectangles and partitions the vertices of the rectangles in S into a small number
of sets of approximately equal size. At the beginning of the ith round, for i > 0, the
algorithm has a top subtree B; of the BSP for S. Let Q; be the set of boxes associated
with the leaves of B; containing at least one rectangle. The initial tree B; consists
of one node and Q1 consists of one box that contains all the input rectangles. Qur
algorithm maintains the invariant that for each box B € Qi, all long rectangles in
Sg are non-free. If Q; is empty, we are done. Otherwise, in the ith round, for each
box B € Q;, we construct a top subtree Tg of the BSP for the set Sg and attach it to
the corresponding leaf of B;. This gives us the new top subtree Bi,;. Thus, it suffices
to describe how to build the tree Tg on a box B during a round.

The algorithm proceeds in rounds. Each round simulates a few steps of the algo-
rithm for long rectangles and partitions the vertices of the rectangles in S into a small
number of sets of approximately equal size. At the beginning of the ith round, for
i > 0, the algorithm has a top subtree B; of the BSP for S. Let Q; be the set of boxes
associated with the leaves of B; containing at least one rectangle. The initial tree B;
consists of one node and Q1 consists of one box that contains all the input rectangles.
Our algorithm maintains the invariant that for each box B € Qj, all long rectangles in
Sg are non-free. If Q; is empty, we are done. Otherwise, in the ith round, for each
box B € Q;, we construct a top subtree Ty of the BSP for the set Sg and attach it to
the corresponding leaf of B;. This gives us the new top subtree Bi4+1. Thus, it suffices
to describe how to build the tree Jg on a box B during a round.

Let F C Sg be the set of rectangles that are long with respect to B. Set f = |F|,
and let k be the number of vertices of rectangles in Sg that lie in the interior of B
(note that each such vertex is a vertex of an original rectangle in the input set S). By

assumption, all rectangles in F are non-free. We choose a parameter a, which remains
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fixed throughout the round. We pick

a= zy/log(f+k)

to optimise the size of the BSP that the algorithm creates. We now describe the ith
round in detail. See Figure 4.9 for an outline of B’s structure.

B
Bi
Qi
f “ N\ Bis
Separating
Stage

Dividing
Stage

Figure 4.9: Overall structure of B.

If k =0 (i.e., if all rectangles in Sg are long), we use Theorem 4.2.2 to construct a
BSP for Sg. Otherwise, we perform a sequence of cuts in two stages that partition B

as follows:

Separating Stage: We apply the a-cuts, as described in Section 4.2. We make these
cuts with respect to the rectangles in F, i.e., we consider only those rectangles
of Sg that are long with respect to B. Let C be the set of boxes into which B is
partitioned by the x-cuts.

Dividing Stage: We refine each box C in € by applying cuts similar to the ones made
in Section 4.2.2, as described below. Let k¢ denote the number of vertices of
rectangles in S¢ that lie in the interior of C. Recall that Fe is the set of rect-
angles in F that are clipped within C. We recursively invoke the dividing stage
until [Fel + 2ake < (f 4 ak)/a and Sc does not contain any free rectangles.



84

1. If Sc has any free rectangle, we use the free cut containing that rectangle
to split C into two boxes.

2. If the rectangles in F¢ belong to two classes, let Pc denote the set of vertices
of the rectangles in Sc that lie in the interior of C. We apply at most two
parallel free cuts that satisfy Lemma 4.1.2, with R =F,P = P, and w = 2a.

3. If the rectangles in Fc belong to just one class, we apply one cut using
Lemma 4.1.1, with R =F,P = P¢, and w = 2a.

The cuts introduced during the dividing stage can be made in a tree-like fashion.
At the end of the dividing stage, we have a set of boxes so that for each box D in
this set, Sp does not contain any free rectangle and |Fp| + akp < (f + ak)/a. Note
that as we apply cuts in C and in the resulting boxes, rectangles that are short with
respect to C may become long with respect to the new boxes. We ignore these new

long rectangles until the next round, unless they induce a free cut.

4.5 Analysis of the Algorithm

We now analyze the size of the BSP constructed by the algorithm and the time com-
plexity of the algorithm. In a round, the algorithm constructs a top subtree Tg of the
BSP for the set of clipped rectangles Sg. Recall that F is the set of rectangles that
are long with respect to B, f = [F|, and k is the number of vertices of rectangles in Sg
that lie in the interior of B. For a node C in T, recall that k¢ denotes the number of
vertices of rectangles in S¢ that lie in the interior of C.

We now define some more notation that we need for the analysis. For a node C
in Tg, let T¢c be the subtree of Tg rooted at C, Lc be the set of leaves in T¢, ¢¢c
be the number of long rectangles in Fc (recall that Fc is the set of rectangles in F
that intersect C and are clipped within C), and nc be the number of long rectangles
in Sc \ Fc (recall that a rectangle S¢ \ Fc is a portion of a rectangle in Sg that is short
with respect to B). For a box D corresponding to a leaf of T, let fp be the number
of long rectangles in Sp. Note that fp counts both the “old” long rectangles in Fp
(pieces of rectangles that were long with respect to B) and the “new” long rectangles

in Sp \ Fp (pieces of rectangles that were short with respect to B, but became long
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with respect to D due to the cuts made during the round); fp = ¢p + np.

In a round, the separating stage first splits B into a set of boxes €. For each
box C € C, Fc has only two classes of long rectangles. The algorithm then executes the
dividing stage on each such box C. As in the case of the algorithm for long rectangles
(see Section 4.2), the subtree constructed in C has the following property: if Step 3 is
executed at a node v, then Step 2 is not executed at any descendent of v. Let D be a
node in T where Step 3 is invoked. In Lemma 4.5.1, we prove a bound on the total
number of long rectangles at each leaf of Tp. We bound the number of long rectangles
at the leaves of T¢ in Lemmas 4.5.2 and 4.5.3. In Lemma 4.5.4, we prove a bound on
the size of the tree Jg. Finally, we use these lemmas to establish bounds on the size
of the BSP constructed by our algorithm and the running time of our algorithm in
Theorem 4.5.5.

Lemma 4.5.1 For a boz D associated with a leaf of T,

fo + 2akp < ff‘”‘.

Proof: We know that np is at most k (since a rectangle in Sp \ Fp must be a piece
of a rectangle short with respect to B, and there are at most k short rectangles in B).
Since fp +2akp < ¢p + 2akp + np and ¢p + 2akp < (f + ak)/a (by construction),

the lemma follows. a

Lemma 4.5.2 Let C be a boz associated with a node in Tg. If all rectangles in F¢
belong to one class, then
2 k k
Z fp < 2¢c+2ncmax{——(¢C+a C),l} + 4kc (_____Cbc ta C) ,
Delc K H

where 1 = (f + ak)/a.

Proof: Assume, without loss of generality, that all rectangles in F¢ belong to the top
class, and let g be the top face of C. By Lemma 4.1.1(i), g contains an edge of every
rectangle in Fc. Let pc be the number of vertices of the non-free long rectangles in Fc
that lie in the interior of g; obviously, ¢c < pc < 2¢c¢. Set

®(pc,nc,kc) =max )  fp,
DeLce
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where the maximum is taken over all boxes C and over all sets S of rectangles with pc
vertices of rectangles in Fc lying in the interior of the top face of C, n¢ long rectangles

in S¢ \ Fc, and k¢ vertices in the interior of C. We claim that
2ak
® (pc, e, ke) € pe + 2nc max { 95’# 1} + 2ke (%) o (a44)

which implies the lemma, because pc < 2dc¢.

Note that if Sc contains m > 1 free rectangles, we apply the free cuts containing
these rectangles to partition C (by repeatedly invoking Step 1 of the dividing stage)
until the resulting boxes do not contain any free rectangle. The free cuts partition C

into a set € of m + 1 boxes. Since we have created the boxes in € using free cuts,

pe + 2akg < pc + 2akg, for any box E in &, (4.4.5)
Z ng < nc, Z ke < kc, Z pe < pc. (4.4.6)
Ece EeE EcE

These inequalities imply that if (4.4.4) holds for each box in &, then (4.4.4) holds
for C as well. Therefore, we prove (4.4.4) for all boxes C such that Fc contains only
one class of rectangles and Sc does not contain any free rectangle. We proceed by
induction on pc + 2ake.

Base Case: 0 < pc + 2ake < p. Since 0 < pec + 2ake < ¢ and Sc does not contain
any free rectangle, C is a leaf of Tp, i.e., Lc = {C}. We have

@ (pc,nc.ke) = Y fo =fc=dc+nc < pc +nc, (4.4.7)
Delc

which implies (4.4.4).
Induction step: pc + 2akc > p. In this case, C is split into two sub-boxes C; and C;
by a cutting plane h. Since } i fo = ZDeLc, fp + ZDGLCZ fo,

® (pc,nc, ke) = @ (pc,, ney ke ) + @ (pe. ey ke, ) s

where k¢, + k¢, < k¢ and pc, +pc, < pc-
Note that h does not contain a free rectangle. For i = 1,2, each long rectangle
in Sc; \ F¢, is contained either in a long rectangle in Sc \ Fc or in a short rectangle

in Sc. Since h intersects each rectangle in Sc at most once and a short rectangle
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intersected by h is divided into one short and one long rectangle,
ng, +nc, < 2nc + ke. (4.4.8)

By Lemma 4.1.1(ii), we have

pc + 2akc

7 , fori=1,2. (4.4.9)

pc, +2ake, <

Let £; (respectively, £;) be the set of boxes obtained by applying all the free cuts in
Sc, (respectively, Sc,) in Step 1 of the dividing stage. Clearly,

®(pc,nc ke) = Y @(pe,ne,ke) + Y D(pe, ne, ke).
Ee&; Ee€g;

We consider two cases.

Case (i): p< pc+2akc <2p. Foreachi=1,2

As a result, all boxes in £ and &; are leaves of Jg. Using (4.4.5), and (4.4.7), we

obtain

O(pc,nc,ke) < D fe+ ) fe< ) (pe+me)+ ) (pe+mne)

Ec&, E€g; Ee€é&y Eeg,

S Pc, +TLC] + pCz +‘T|.C2.
It now follows from (4.4.8) that

®(pc,nc,ke) < pc +2nc + ke, (4.4.10)

which implies (4.4.4), because pc + 2akc > p.
Case (ii): pc +2akc > 2u. For any box E in €7 U €;, by (4.4.5) and (4.4.9),

ax{pg+2akg,]} Smax{pc-i-Zakc’]} - pc+2akC.
H 2u ATS
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By (4.4.5) and the induction hypothesis,

+ 2ak. + 2ak
®(pc,nc, ke) < z (pg + 2ng (pC_—E> + 2kg (u
Ee&, 2u 2u

pc + 2ake Pc + 2akc
+ Z (pe +2ne ( 2n ) + 2kg <__2LL ))

Ee€€;
pc + 2akc )

<(pc, +Pc,) +2(n¢, +nc,) ( 7

pc + Zakc)

+ 2 (kc,; +kc,) ( o

Using (4.4.8), we obtain

+ 2ak + 2ak.
@(pc,nc, ke) < pc+2(2ne +ke) (__pc__zu C) +2ke (Pc 2n C)

2
— oc +2nc <pc +2akc> +2ke (pc + akc> ,
mn m
which implies (4.4.4). m|

Lemma 4.5.3 Let C be a boz associated with a node in Tg. If all rectangles in Fe

belong to two classes, then

3 3
Z fo S2¢c+5ncmax{(w) ,1}+6kc ((ﬁ;c_j-uszc) '

Delce H

where = (f + ak)/a.

Proof: The proof of this lemma is long and tedious. We first give some intuition
behind the proof. If ¢¢ + 2akc is the weight of box C, the cuts we make inside C in
Step 2 of the dividing stage split it into at most three boxes. For each box C’ that C
is split into, either the number of classes in F¢r is 1 or the weight of C’ is two-thirds
the weight of C. Since we split C into at most three boxes, the total number of long
rectangles intersecting these boxes is roughly three times the number of rectangles
in Sc. Therefore, the total number of long rectangles intersecting the boxes in Lc is

roughly a factor of

31°g3/2(££‘+u£(;) =0 ((d)c +u2akc>3>
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more the number of rectangles in Sc.

We now give the formal proof of the lemma. Let
¥(bc,ne,ke) =max ) fp,

where the maximum is taken over all boxes C and over all sets S of rectangles with ¢
long rectangles in Fc, nc long rectangles in Sc \ Fc, and k¢ vertices in the interior of

C. The rectangles in F¢ belong to at most two classes. We claim that

3 3
W(be,ne, ke) <2bc + 5ne max { (Q’E—fﬂ) , 1} + 6ke (d’c;:c”‘c)(z;.c;.n)

which proves the lemma.

If Sc contains m > 1 free rectangles, we apply the free cuts containing these
rectangles to partition C (by repeatedly invoking Step 1 of the dividing stage) until
the resulting boxes do not contain any free rectangles. Let & be the set of boxes into
which C is so partitioned. Then

b + 2ake < ¢c¢ + 2akc, for any box Ein &, (4.4.12)
D) e <dc Zm—: <nc > ke <ke. (4.4.13)
E€E EcE Ec€

These inequalities imply that if (4.4.11) holds for each box in &, then (4.4.11) holds
for C as well. Therefore, we prove (4.4.11) for all boxes C such that Fc contains at
most two classes of rectangles and S¢ does not contain any free rectangle. We proceed
by induction on ¢¢ + 2ake.

Base case: ¢c + 2akc < p. Since ¢ + 2ake < p and Sc does not contain any free
rectangles, C is a leaf of TJg. We have

¥ (¢c,nc,ke) = Z_ fo =fc =d¢c +nc, (4.4.14)
Delc

which implies (4.4.11).
Induction step: ¢¢ +2akc > p. The cuts made in Step 2 of the dividing stage fall
into one of two categories (see Lemma 4.1.2). Note that none of these cuts contains a

free rectangle.
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Case (i): We divide C into two boxes C; and C; using a plane h that does not cross

any rectangle in Fc. As a result,

bc, +éc, < dc and ke, + ke, < kc.

Since h intersects each rectangle in Sc¢ at most once, (4.4.8) holds in this case too. i.e.,

Lemma 4.1.2 implies that

nc, +ng, < 2nc +ke. (4.4.15)
Lemma 4.1.2 implies that
2 2ak
b, +2ake, < Hdct2ake) o i 1,2. (4.4.16)

3
Let &€ (resp., €2) be the set of boxes obtained by applying all the free cuts in Sc,
(resp., Sc,) in Step 1 of the dividing stage. Clearly,
Y(dc,ne,ke) < D ¥(de,me kel + ) W(de,ne, ke).
Ee&, Ee&,
We consider two cases.
(a) it < dc + 2ake < 3p/2. In this case, by (4.4.12) and (4.4.16),

2(bc + 2akc) <

¢E + ZakE < 3 S,

for each box E in €7 and &;. Since E does not contain a free rectangle, E is a leaf of
Tg. Using (4.4.15), (4.4.13) and (4.4.14), we obtain

Y(bc,me,ke) < ) fe+ ) fe

E€g, Ee&;
< D (be+me)+ ) (de+ng)
E€E, EeE,

< ¢C1 +nC1 + d)Cz +TLC2

< ¢c +2nc¢ +kc,

which implies (4.4.11), because ¢ + 2ake > .
(b) dc +2ake > 3u/2. For a box E in €1 U €3, by (4.4.12) and (4.4.16), we have

e (B2} e (3 2 ) 5 (B
B 3 1 27 1
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By the induction hypothesis, and by using (4.4.13) and (4.4.15),

3

Ee&,

3
ke (28_7 (d:c +u2akc) ))

3
vy (zq,ﬁsne (;;7 (tetakc) )

E€g>

3
+6kE (% (CDC +u2akc) ))

3
<2(dc, +dc,) +5(ne, +nc,) <_8- (d)c-l-_Zakc) )

27 n
8 d)C +20.kc 3
+6(ke, +ke,) (27 (.T_)
2ake\ 3 3
27 m 27 —

k 3 3
< 2bc + 5nc (%S_C) +6ke (@) ,

which implies (4.4.11).

Case (ii): We find two parallel planes h; and h; that divide C into three boxes Cy, C3,
and C3 (in this order) so that all rectangles in F¢, belong to one class. Lemma 4.1.2
implies that the rectangles in Fc are partitioned among C;, C;, and C3. Moreover, hy

and h; partition the vertices in the interior of C. Thus,

bc, +dc, +dc; £ dc and ke, +kc, +kc; < ke

The planes h; and h; can intersect the rectangles in S¢ \ Fc. Each long rectangle
in Sc \ Fc is partitioned into at most three long rectangles. Each short rectangle in Sc¢
is partitioned into at most three rectangles; if two of these rectangles are long, then
one of the long rectangles must be in Sc,, since C; is sandwiched between C; and C3

(see the proof of Lemma 4.1.2). In other words,

ng, +ng; < 2nc + ke and ne, <nc +kc. (4.4.17)
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Lemma 4.1.2 also implies that

2(de + 2ake)

bc, +2akc, < 3 , fori=1,3, and b, + 2akc, < ¢ + 2ake.

(4.4.18)
Let €;,1 <1< 3 be the set of boxes obtained by applying all the free cuts in Sc, in
Step 1 of the dividing stage. Note that for each box E € &, Fg contains only one class

of rectangles. It is clear that
Y(bc,ne, ko) < ) ¥(de,me, ke) + Y @(2¢p,ng, ke) + D (e, ne, ke),
Eeg; E€E; E€&;

where @( ) is as defined in the proof of Lemma 4.5.2. We again consider two cases.
(a) 1 < dc +2ake < 3u/2. By (4.4.18), each box in &; and €3 is a leaf of T5. There-
fore, by (4.4.14),

Y(dc,ne kel € ) fe+ D ©Rbe,meke) + ) fe

Ee€&y Ee€é, E€€3

<) (@e+ne)+ ) (Pe+mne)+ > ©(2de, ne k)

Eeé, E€gs E€&2

< (dc, +dc;) + (e, +nc;)+ > @ (2de, ng ke) .
E€E;

For each box E € €3, ¢ + 2akg < 31/2. Hence, by (4.4.10), we have
© (2dg, ng, ke) < 2¢e + 2ne + ke.
As a result,

Y¥(dc,nc,ke)  (de, +dc;) + (ne, +nc,)+ D (2de +2ne + ke)
Eeg;
< (dc, +dc;) + (ne; +nc,) + (2dc, + 2nc, +kc,)

< 2¢c¢ + 4nc + dkc,

where the last inequality follows from (4.4.17). This inequality implies (4.4.11).
(b) dc +2akec >3u/2. Forabox E € & U &3,

max{(dm-i—lakg)?’,]} Smax{(g <d>c+2akc))3,]} ___i((bc+2akc)3.
38 3 7 27 38
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Similarly, for a box E € &,,

max{Z (‘b_&‘*_'_flﬁ) ,]} SZ(M> )
m m

By the induction hypothesis and (4.4.4),

8 2akc) 3 3
Y(dbe,ne, ke) < 2bE +5- —ng (ME) +6- —8—kp_ (M
EZG = 77 m 7 m

I (s (B o (8522

Eeg,

8 $c +2akc\’ |, 8 [dc+2ake)?
+E§3 (24)5 +5 27TLE< m ) TG'?kE <_—IJ» ) .

Since ¢¢ + 2ake > 3u/2,

dbc + 2ake <41<dbc+2akc)3
B -9 i )

Therefore, using (4.4.17), we have

8 + 2ake\ 3
¥(dc,ne,ke) < 2(dc, +dc, +dc;) +5- 55 (ney +1c;) (d)c B C)
16 bc + 2ake 3 8 be + 2ake 3
+?TLC2( _) +6'ﬁ(kcl+kcs) —p__
1 2ake\ 3
+—6kCz <¢C'+'-_a C)
? n
ke )3 k)3
< 2c +5nc <¢c+_ZGC) +6ke <¢c+2a c) |
H 1
which implies (4.4.11).
a

We can use the previous three lemmas to prove the following lemma about the tree

constructed during a round, which is crucial to the analysis of the algorithm:

Lemma 4.5.4 The tree Ty constructed on boz B in a round has the following prop-

erties:

(i) Z kD S kl

Delg
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() > fo =0(f+a’k), and
Delsg

(#2) |Tgl = O((f + a®k) loga).

B
Separating StageI
C
Dividing Stage
D)
~ LC -
Ls

Figure 4.10: The tree Tg constructed in a round.

Proof: The bound on ZDGL 5 kp follows, since each vertex in the interior of Sg lies in
the interior of at most one box of Lg. Next, we will use Lemma 4.5.3 to prove a bound
on } per, -

Let C be the set of boxes into which B is partitioned by the separating stage.
See Figure 4.10. Obviously, ZDELB fo = 3 cee 2 _pet fD- For each box C € €,
Lemma 4.2.1(i) implies that all rectangles in Fc belong to at most two classes. Hence,

by Lemma 4.5.3,
+2ake\?
> fo<> O <¢c+(nc+kc) (d)C——C) ) -
DeLg cel H

Arguing as in the proof of Lemma 4.2.1(iii), we can show that 3 ~.e dc = O(f) and that
2_ceenc = O(k). We also know that 2 ceekc <k and p = (f + ak)/a. Therefore,

> fo=0 <f+k(f+:°k)3) =0 (f+a’k).

Delg

We now sketch the proof that [Tg| = O((f + a’k)loga). Following the same argu-
ment as in the proof of Lemma 4.2.1(ii), we can show that the separating stage creates a
tree with O(f + k) nodes. We now count the number of nodes in Tp that are created by

the dividing stage. Let D € T'g be such a node. If D is partitioned by a cut containing
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a free rectangle (i.e., Step 1 of the dividing stage is invoked at D), we charge D to its
nearest ancestor C € Jg such that C is not partitioned by a free cut (i.e., Step 2 or 3
of the dividing stage is executed at C). Otherwise, we charge a cost of 1 to D itself.
Let C be a node in Tp that is not partitioned by a free cut. Since a free rectangle can
be created only by partitioning a long rectangle, the cut used to partition C creates
O(é¢c +nc) free rectangles, which implies that C is charged O{dc + nc + 1) times by
the above argument. Hence,

[Tel=0 <Z(¢c +nc+ 1)) ,
Cc

where C ranges over all nodes in Jg where Step 2 or 3 of the dividing stage is executed.
By following an inductive argument similar to the ones used to prove Lemmas 4.5.2
and 4.5.3, we can show that |Tg| = O((f + a®k) log a). Informally, the charging scheme
compresses Jg by collapsing all nodes that are split by free cuts. Lemma 4.1.1 and 4.1.2
imply that the height of the compressed tree is O(log a). We can show that > cldc+
nc + 1) is roughly the product of the height of the tree and 2 p o, the total number
of long rectangles intersecting the leaves of the tree.

a

We now present our main result regarding the performance of our improved algo-
rithm:

Theorem 4.5.5 Given a set S of n rectangles in R® such that the aspect ratio of
each rectangle in S is bounded by a constant « > 1, we can construct a BSP of
size n20WVI8™) for S in time n20(VI8™)  The constants of proportionality in the

big-oh terms are linear in log x.

Proof: We first bound the size of the BSP constructed by the algorithm. Let S(f, k)
denote the maximum size of the BSP produced by the algorithm for a box B that
contains f long rectangles and k vertices in its interior. If k = 0, Theorem 4.2.2 implies
that S(f, k) = O(flogf). For k > 0, by Lemma 4.5.4(iii), we construct the subtree T3
on B of size O((f + a’k)loga) in one round, and recursively construct subtrees for

each box in the set of leaves Lg. Therefore, there exist constants cy,cz,c3 > 0 so that
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the size S(f, k) satisfies the following recurrence:

ciflogf for k=0,
S(f, k) < (4.4.19)
Z S(fo, kp) + ca(f + a3k) loga for k>0,
Delg
where
fo + 2akp < 120K (4.4.20)
for every box D in Lg (by Lemma 4.5.1), and
D) ko <k, > fp<cs(f+a’k) (4.4.21)
D D

(by Lemma 4.5.4(i) and 4.5.4(ii)). We now prove that the solution to the above recur-

rence is

S(f, k) = fzf\/lo—g(?m + kzs\/log(fT‘k),

where T and s are constants linear in log , with s > 2r. It is easy to show that the
solution is correct for k = 0, since ¢iflogf < f2rvIloeT for ¢ > logcy. For k > 0, we
prove the claim by induction on f + 2ak.

Base case: f+ 2ak = 5. In this case, it is easily seen that f = k = 1. Then
a = 2VI108{f+k) — 3 The set S consists of one long rectangle and one short rectangle.
In this case, it can be checked (by using Lemma 4.1.1) that our algorithm constructs a
BSP of size at most 10. Hence, S(1,1) <10 < 2"@4-25@, provided that r,s > 3.
Induction step: f+2ak > 5. Since fp+2akp < f+2ak, using the induction hypothesis,

we obtain

S(f,k) < Z szr\/log(fD-i-ZakD) + Z kDZSng‘fD““kD) +ca(floga+ (13k)
D D

Using (4.4.20) and (4.4.21), we have
S(f,k) < c3 (f + a3k) or/log((f+2ak)/a) +kzs,/1og((f+zak)/a) ey (f log a + a3k)

<(cs+ czloga £97/Tog((F+2ak)/a)
2T /log((f+2ak)/a)

3
+ [ cza32(r—s)Viog((F+2ak)/a) 4 1 4 c2a k2sV/leg((f+2ak)/a)
Zs\/log((f+2ak)/a)
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If r > 9, then it can be checked that 2FVI08((f+2ak)/a) > 3 gince q = 2VIce(f+k] by

choosing s > 2r, we obtain

S(f.K) < (¢ + c3)f2r\/log(f+2ak)——\/log(f+k) +(+cq+ c3)kzs\/log(f+2ak)-,/1og(f+k)

— fzr\/log(f-i-Zak)—\ /log(f+k)+log(ca+c3) + K28 \/log(f+2ak)—\/log(f+k)+log(1+cz+c_:, } .

If r >4log(ca +c3), we have

r\/log(f + 2ak) — \/M‘l‘ log{ca+c3)<r (\/log(f + 2ak) — /log(f + k) + :1-)
< rv/log (f + 2ak).
Similarly, since s > 2r,
s/ 10g(f + 2ak) — /Iog(F + K] +1og (1 + 2 + c3) < 5+/Iog(F + Zak).

As a result, we obtain

S(f, k) < fzr,/log(f+2ak) + k251 /log(f+2ak) , (4.4_22)

as desired, provided that r > max{logcq,4log(ca +c3),9} and s > 2r. Lemma 4.2.1
implies c; < 26{«|? and c3 < 16{x|. As a result, both r and s are linear in log cx.
Since f < n and k < 4n at the beginning of the first round, we get from (4.4.22) the
bound n29(VIe™) on the size of the BSP constructed by the algorithm.

We now bound the running time of our algorithm. Recall that we initially sorted
the vertices of the rectangles in S by x-, y-, and z-coordinates. Suppose Sg does not
contain a free rectangle. By Lemmas 4.1.1 and 4.1.2, the cuts to be made at B can be
determined in O(|Sg|) time. Suppose C is a box obtained by partitioning B according
to these cuts; we can easily obtain the sorted order of the vertices of the rectangles
in Sc from the sorted order in B. Let & be the set of boxes obtained by splitting C
using all the free rectangles in Sc. Since the free rectangles in Sc are parallel to each
other, we can partition the rectangles in S¢c among the boxes in &€ in O(|Sc|) time.
Therefore, we can construct the tree representing the partition of B into the set of
boxes E in O(|Sg|) time. Hence, we obtain the same n2°(vVI%6™) bound for the running

time of the algorithm.
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Remark: We can modify our algorithm to prove that the height of the BSP con-
structed is O(logn): if Sg contains free rectangles, we assign appropriate weights to
the free rectangles, and partition B using the weighted median of the free rectangles.
Paterson and Yao [81] use a similar idea to bound the height of the BSP they construct

for segments in the plane.

4.6 Extensions

In this section, we extend the algorithm of Section 4.4 to the following three cases:
(1) some of the input rectangles are thin, (ii) some of the input polygons are triangles,

and (iii) some of the (fat) input rectangles intersect.

4.6.1 Fat and thin rectangles

Let us assume that the input S = FUT has n rectangles, consisting of m > 1
thin rectangles in T and n — m fat rectangles in F. We first describe our algorithm
and then construct a set of rectangles for which any BSP has size Q(ny/m). The
algorithm we use now is very similar to the algorithm for fat rectangles. Given a box
B, let f be the number of long rectangles in Fg, k the number of vertices of rectangles
in Fg that lie in the interior of B, and t the number of rectangles in Tg. We fix the
parameter a = 2V198(f+k) and perform the following steps:

1. If Sg contains a free rectangle, we use the corresponding free cut to split B into

two boxes.

2. If k =t =0, we use the algorithm for long rectangles to construct a BSP for the
set of clipped rectangles Sg.

3. Ift > (f+k), we use the algorithm by Paterson and Yao for orthogonal rectangles
in R? to construct a BSP for Sg [82].

4. If (f + k) > t, we perform one round of the algorithm described in Section 4.4,

with the difference that we also use thin rectangles to make free cuts.

This algorithm is recursively invoked on all the resulting sub-boxes. Let S(f,k, t)
be the maximum size of the BSP produced by this algorithm for a box B with k
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vertices in its interior, f long rectangles in Fg, and t thin rectangles in Tg. Note that
in Section 4.5, during the analysis of a round, we did not use the fact that the short
rectangles were fat. As a result, Lemmas 4.5.2 and 4.5.3 hold for Step 4 above with
nc + ke + tc replacing the term nc + kc. We can similarly extend Lemma 4.5.4 to
obtain the following recurrence for S(f,k,t). Here D ranges over all the boxes that B

is divided into by a round of cuts, as described above in Step 4.

( O(flogf), for k=t=0,

S(f,k,t) = < O(tvt), for t>f+k,

> S(fp,kp,tp) +O(floga+a’k + at), for f+k>t,
D

\

where 3 pkp < k, fp +2akp < (f + 2ak)/aq, Y o fo = O(f + ak), and >pto =
O(a3t).

We can analyse this recurrence as in Section 4.5 and show that its solution is

S(f,k,t) = (f + k) V20V leelf+i )

where the constant of proportionality is linear in log o with q > 2p. The following

theorem is immediate.

Theorem 4.6.1 Let S be a set of n rectangles in R3, of which m. > 1 are thin. A
BSP of size n/m20(Vicgn) for S can be constructed in n/m2C(VI8N) time The
constants of proportionality in the big-oh.terms are linear in log &, where « is the

mazimum aspect ratio of the fat rectangles.

We now show that Theorem 4.6.1 is near-optimal by constructing a set of . rectan-
gles of which m are thin for which any BSP has size Q(n./m). Recall that there exists
a set of m thin rectangles in R3 for which any BSP has size Q(my/m) [82]. To complete
the proof of the lower bound, we now exhibit a set S =TUF of n. rectangles, where T
is a set of m thin rectangles and F is a set of 1. — m fat rectangles, for which any BSP
has size Q((n —m)./m). We first describe the rectangles in T and then the rectangles

in F. We assume without loss of generality that m is an even perfect square and that
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Figure 4.11: Lower bound construction for thin and fat rectangles.

1 is a multiple of m. Consider a unit lattice of size /m x /m in the xz-plane. The
points of the lattice have coordinates (1,0, j), where 0 < i,j < v/m. On each such lat-
tice point, we erect a segment of length n — m + 5(n — m)/(2y/m) + 1 (perpendicular
to the xz-plane) in the +y-direction. These m segments constitute T. We now con-
struct (n — m)/(2\/m) sets, each consisting of 2,/m squares with side length /m + 2
as follows (we specify each square by giving the coordinates of two opposite corners of
the square): Each set consists of /m squares parallel to the xy-plane and /m squares
parallel to the yz-plane. Let § =2,/m +5. For 0 < k < (n —m)/(2/m), the kth set

contains the set of squares
{{(—=1,8k+1—¢,j—¢),(Vm+1,6k+v/m+3—¢,j—e)]0<j< vm)

parallel to the xy-plane and the set of squares
{{i—ebk+vVm+3+e-1),i—¢bk+1)+e,vm+1)]10<i</m}

parallel to the yz-plane, for some sufficiently small ¢ > 0. Note that in a set, each
square parallel to the xy-plane is at a distance of 2¢ from each square parallel to the
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yz-plane. Further, for any square, the closest square in a different set is at a distance
of 1 — 2¢ and the closest thin rectangle is at a distance of €.

We now prove that any BSP B for S has size Q((n —m)y/m). Recall that we have
defined the size of B to be the sum of the number of nodes in B and the total number
of faces of all dimensions of the rectangles stored at the nodes in B. Thus, it suffices
to show that the number of proper intersection points between the cutting planes in
B and edges of the rectangles in S (i.e., the number of points at which a cutting plane

crosses an edge) is Q((n — m)/m).

Figure 4.12: A cube \ and the rectangles in S it intersects. The edges e, es and e;
are drawn in bold.

Consider a cube of side 4¢ centered at each of the following (n — m)/m/2 points:
{(i,6k+vm+3,j) [0<1,j <vm,0< k< (n—m)/(2V/m)}.

These cubes do not intersect each other if € is chosen small enough. Each such cube
intersects a thin rectangle t of T and two squares r and s of F (one of the squares, say T,
is parallel to the xy-plane and the other, s, is parallel to the yz-plane). Define e, to be
the edge of the rectangle rN 1 that lies in the interior of 1. Define e and e similarly
(since t is a segment, e is just the intersection of t with {). See Figure 4.12. We claim
that at least one of e;, es, and e must be crossed by a cutting plane of B, which implies
that the cutting planes in B and the edges of the rectangles in S cross at Q((n—m),/m)
points. Recall that no rectangle in S intersects the interior of the region associated with
a leaf of B. But e, es, and e, are contained in the region corresponding to the root
of B. Hence, there must be a node v € ‘B such that at least one of e, es, and e; is not
contained in the interior of R, and v has least height among all such nodes. Assume

without loss of generality that e, is not contained in the interior of R,. Let u be v's
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parent. If the cutting plane H, at u contains e,, H, must intersect either es or ey,
proving the claim. Therefore, e; does not intersect R,. Now, if H,, contains e, it must
intersect e; (since it does not intersect e ), which also proves the claim. Therefore, H,,
separates e, and es. Since we can bring e, and e arbitrarily close to each other, H,, is

nearly parallel to the y-axis. Therefore, H, intersects e, thus completing the proof.

4.6.2 Fat rectangles and triangles

Suppose that p > 1 polygons in the input S are (non-orthogonal) triangles and that
the rest are fat rectangles. To construct a BSP for S, we use non-orthogonal cutting
planes; hence, each region is a convex polytope and the intersection of a triangle with a
region is a polygon, possibly with more than three edges. We can extend the algorithm
of Section 4.6.1 to this case as foilows: In 1, we check whether we can make free cuts
through the non-orthogonal polygons too. In Step 3, if the number of triangles at a node
is greater than the number of fat rectangles, we use the algorithm of Agarwal et al.
for triangles in R3 to construct a BSP of size quadratic in the number of triangles
in near-quadratic time [4]. Proceeding as in the previous section, we can prove the

following theorem:

Theorem 4.6.2 A BSP of size np2CVIen) con be constructed in np?20(Viegn)
time for n polygons in R3, of which p > 1 are non-orthogonal and the rest are
fat rectangles. The constants of proportionality in the big-oh terms are linear in

log «x, where « is the mazimum aspect ratio of the fat rectangles.

We next show that unlike the case of rectangles, the fatness assumption does not
help for triangles. More specifically, we construct a set of n triangles, each having
bounded aspect ratio, for which any BSP has size Q(n?).

Our construction is similar to that of Paterson and Yao for proving a quadratic
lower bound on the size of a BSP for (thin) triangles in R3 [81]? Consider two fami-
lies of segments lying inside the box [0, + 1] x [0, n + 1] x [0,n2 + 1]: the segments
belonging to one family lie along the lines {x = i,z =iy —¢/2| 1 < 1 < n}, where
0 < & < 1/n?%; these lines lie in the surface z = xy — ¢/2. The segments in the

?Chazelle [27] uses a similar construction to prove a lower bound on the size of convex decomposi-
tions of polyhedra in R3.
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second family are orthogonal to the ones in the first family and lie along the lines
{uy =1i,z=1ix+€/2 |1 <1< n}; the lines lie in the surface z = xy + ¢/2. Figure 4.13
displays these lines. For each segment lying in the surface z = xy — /2, we construct
an equilateral triangle with the segment as base and whose apex lies below the surface.
Similarly, for each segment lying in the surface z = xy + ¢/2, we construct an equilat-
eral triangle with the segment as base and whose apex lies above the surface. The set
S consists of these n. non-intersecting fat triangles. Consider the “square” formed by
two consecutive segments in the top family of segments and two consecutive segments
in the bottom family. We can show that any BSP B for S must cut one of these four
segments, which implies a lower bound of Q(n?) on the size of B.

Figure 4.13: The edges of the notches lying on the hyperbolic paraboloids z = xy —¢e/2
and z=xy + €/2.

4.6.3 Intersecting fat rectangles

We now consider the case in which the n fat rectangles contain k < (f,_‘) intersecting
pairs. We construct the BSP using the following rather naive approach. For each
intersecting pair of rectangles, we partition one of the rectangles in the pair into a
constant number of rectangles such that the “smaller” rectangles do not intersect the
other rectangle in the pair. This process creates a total of n+O(k) rectangles. Some or
all of the “new” O(k) rectangles may be thin. We then use the algorithm of Section 4.6.1
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to construct a BSP for the rectangles. The theorem below follows.

Theorem 4.6.3 A BSP of size (n + k)vk2OWVI%€™) con be constructed in (n+
k)Vk20(VIcen) time for . rectangles in R3, which have k intersecting pairs of
rectangles. The constants of proportionality in the big-oh terms are linear in

log «, where « ts the mazimum aspect ratio of the fat rectangles.

We can construct a set S of O(n) rectangles containing k intersecting pairs of
rectangles so that any BSP for S has size Q(n + kv/k). Consider a set of v3k = O(n)
squares divided into three families of size \/E/_S each as follows: the squares parallel
to the xy-plane belong to the set

{l(0,0,1), (n,n, )] 1 0 < V/k/3}.

The squares parallel to the yz- and xz-planes are defined analogously. Each square
in a family intersects all the squares in the other two families. The total number
of intersecting pairs of rectangles is k. Hence, the total number of vertices in the
arrangement formed by the squares is Q(n + kv’k). By an argument similar to that
used to prove the lower bound in Section 4.6.1, we can show that any BSP for such a
set of squares must contain Q(n + kv'k) leaves. Hence, any BSP for these squares has

size Q(n + kvk). Note that our upper bound is near-optimal when k is small.

4.7 Conclusions

Since worst-case complexities of BSPs are very high (Q(n3/2) for n orthogonal rect-
angles in R3) and all known examples that achieve the worst case use configurations
of thin rectangles that rarely occur in practice, we have made the natural assumption
that rectangles are fat and have shown that this model of geometric complexity allows
smaller worst-case size of BSPs. We believe that the 2V factor in our results is an
artifact of our analysis; it should be possible to replace it by a polylogarithmic factor.

We showed in Section 4.6.2 that quadratic lower bounds hold on the size of BSPs
for fat triangles. The edges of the triangles used in all such constructions have a linear

number of distinct orientations. This observation leads to the question of whether
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sub-quadratic-size BSPs can be constructed for non-orthogonal objects if their edges
have a small number of distinct orientations.

In all lower-bound constructions we have seen, the size of the BSP is roughly the
same as number of points at which the rectangles or triangles in the constructions
come very close to each other. An interesting open problem is to define a measure
of geometric complexity that avoids this kind of uncommon worst-case behaviour and

examine BSP size in this model.



Chapter 5

Binary Space Partitions for

Rectangles in Practice

In the last chapter, we presented and analysed an algorithm for constructing BSPs for
a set of fat and thin rectangles in R3. In this chapter, we describe our implementation
of this algorithm, which we call Rounds, and study its performance on “real” data sets.
In our implementation, we do not differentiate between fat and thin rectangles but do
take advantage of rectangles with small aspect ratio, when such rectangles are part of
the input. Our experiments show that Rounds is indeed practical: it constructs BSPs of
near-linear size on real data sets (the size varies between 1.5 and 1.8 times the number
of input rectangles).

While implementing our algorithm, we found that no systematic comparison of
existing algorithms to construct BSPs has been performed. Therefore, we have imple-
mented many other algorithms described in the literature and conducted a methodical
study of the empirical performance of these algorithms and our algorithm. Instead of
just implementing these algorithms as they appear in the literature, we have modified
them to improve their performance. To compare the different algorithms, we measure
the size of the BSP each algorithm constructs and the time spent in answering various
queries like point location and ray shooting. Our algorithm performs better than not
only theoretical algorithms like Paterson and Yao’s algorithm [82] but also most other
techniques described in the literature [8, 47, 102]. The only algorithm that performs
better than our algorithm on some data sets is Teller's algorithm [101]; even in these

106



107

cases, our algorithm has certain advantages in terms of the trade-off between the size
of the BSP and query times (see Section 5.2).

To compare the performance of the different algorithms, we measure the size of
the BSP each algorithm constructs and the time spent in answering various queries.
The size measures the storage needed for the BSP and the time taken to compute a
back-to-front order using the BSP (when the BSP is used in the painter’s algorithm, for
example). We use queries that are typically made in many BSP-based algorithms (8,
48, 101]:

1. point location: determine the leaf of the BSP that contains a query point. Point
location is a fundamental geometric query and is the basis of many algorithms

for answering other queries.

2. ray shooting: determine the first rectangle intersected by a query ray. Ray
shooting is a very useful query in visibility problems, since it can be used to
determine which object is visible along a given direction. In fact, this query
forms the backbone of the hidden-surface removal algorithm we presented in
Chapter 3.

It is worthwhile to point out the problem of robustness that bedevils geometric
computing in general does not affect us, since we are dealing with orthogonal rectangles;
all calculations (coordinate comparisons, rectangle intersections, etc.) can be carried
out using only the coordinates of the vertices of the input rectangles. A related issue is
that our algorithm mmust be able to handle degeneracy. In fact, the algorithm should
take advantage of co-planar rectangles to reduce the size of the BSP and should not
resort to standard perturbation techniques to remove degeneracies.

The rest of the chapter is organised as follows: We describe the other algorithms
and heuristics that we have implemented in Section 5.1. In Section 5.2, we present the

results of our experiments. We conclude in Section 5.3.

5.1 Other Algorithms

In this section we discuss our implementation of some heuristics described in the lit-

erature for constructing BSPs. Note that some of the heuristics discussed below were
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originally developed to construct BSPs for arbitrarily-oriented polygons in R3. All the
algorithms work on the same basic principle: examine all the planes containing the
rectangles in Sg and determine how “good” each plane is. Split B using the “best”
plane and recurse. Our implementation refines the original descriptions of these heuris-
tics in two respects: (i) At a node B, we first check whether Sg (recall that Sg is the
set of rectangles in S clipped within B) contains a free rectangle; if it does, we apply
the free cut containing that rectangle.! (ii) If there is more than one “best” plane,
we choose one of the planes based on some local criteria. To complete the descrip-
tion of each heuristic, it suffices to describe how the heuristic measures how “good” a
candidate plane is.

For a plane 7, let f, denote the number of rectangles in Sg intersected by m, fi
the number of rectangles in Sg completely lying in the positive halfspace defined by
7, and 7 the number of rectangles in Sg lying completely in the negative halfspace
defined by 7t. We define the occlusion factor o to be the ratio of the total area of the
rectangles in Sg lying in 7t to the area of 7t (when 7 is clipped within B), the balance
B to be the ratio min{f}, f;}/ max{f}, f;} between the number of polygons that lie
completely in each halfspace defined by 7, and o to be the split factor of 7, which
is the fraction of rectangles that 7t intersects, i.e., or = f/|Sgl. We now discuss how

each algorithm measures how good a plane is.

ThibaultNaylor: Thibault and Naylor [102] present three different heuristics (w is a

positive weight that can be changed to tune the performance of the heuristics):

1. Pick a plane the minimises the function |ff —f;|+wf,. This measure tries to
balance the number of rectangles on each side of 7t so that the height of the
BSP is small and also tries to minimise the number of rectangles intersected
by 7.

2. Maximise the measure f}; - f; —wf,. This measure is very similar to the pre-
vious one, except that much more weight is given to constructing a balanced
BSP.

3. Maximise the function ff — wf,. Thibault and Naylor state in their paper

'Only Paterson and Yao’s algorithm [82] originally incorporated the notion of free cuts.
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that this measure is motivated by applications in Constructive Solid Geom-
etry (see their paper for more details). This heuristic performed poorly in
our experiments. We will not discuss it further.

In our experiments, we use w = 8, as suggested by Thibault and Naylor [102].

Airey: In his thesis, Airey (8] proposes to maximise a measure function that is a linear
combination of a plane’s occlusion factor, its balance, and its split factor:
05cr + 0.3 +0.20.

Teller: Let 0 < T < 1 be a real number. Teller [101] chooses the plane with the
maximum occlusion factor o, provided «; > T. If there is no such plane, he
chooses the plane with the minimum value of f;. The intuition behind this
algorithm is that planes that are “well-covered” are unlikely to intersect many
rectangles. Further, if the data set contains many coplanar rectangles, planes
containing such rectangles are likely to be used as cutting planes near the root
of the BSP, thus constructing a BSP with a small number of nodes. We use
the value T = 0.5 (as suggested by Teller [101]) in our implementation. If S has
many coplanar polygons, Teller’'s algorithm is likely to construct a BSP with a
small number of nodes. However, queries like ray shooting might be costly since
such queries involve processing the (large number of) rectangles stored with each

bisecting plane.

PatersonYao: We have implemented a refined version of the algorithm of Paterson and
Yao. For a box B, let s, (resp., sy, sz) denote the number of edges of the rectangles
in Sg that lie in the interior of B and are parallel to the x-axis (resp., y-axis, z-
axis). We define the measure of B to be u(B) = SxSySz. We make a cut that
is perpendicular to the smallest set of segments and divides B into two boxes,
each with measure at most p(B)/4. (Paterson and Yao prove that given any axis,
we can find such a cut perpendicular to that axis [82].) We can show that this
algorithm also produces BSPs of size O(n\/n) for n rectangles, just like Paterson
and Yao's original algorithm [82]. -

Our implementations of these algorithms are efficient in terms of running time

because we exploit the fact that we are constructing BSPs for orthogonal rectangles.
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After an initial sort, we determine the cut at any node in time linear in the number of
the rectangles intersecting that node. If we were processing arbitrarily-oriented objects,
computing a cut can take time quadratic in the number of objects.

Note that the algorithms we have implemented form a representative sample of the
BSP algorithms proposed in the literature. We expect the performance of other known
techniques to be similar to the ones we have implemented. For example, Naylor has
proposed a technique that uses estimates of the costs incurred when the BSP is used to
answer standard queries to control the construction of the BSP [73]. While his idea is
new, the measure functions he uses to choose cutting planes are very similar to the ones
used above. Cassen et al. [24] use genetic algorithms to construct BSPs. We have not
compared our algorithms to theirs since they report that their algorithm takes hours

to run even for data sets containing just a few hundred polygons.

5.2 Experimental Results

We have implemented the above algorithms and run them on the following data sets

containing orthogonal rectangles:?
1. the F1rTH floor of Soda Hall containing 1677 rectangles,
2. the EnTIRE Soda Hall model with 8690 rectangles,
3. the Orange United Methodist CHurcr Fellowship Hall with 29988 rectangles,
4. the Sitterson Hall LoeBY with 12207 rectangles, and
5. Sritrerson Hall containing 6002 rectangles.

We present three sets of results. These experiments were run on a Sun SPARCstation 5
running SunOS 5.5.1 with 64MB of RAM. For each set, we first discuss the experimental

set-up and then present the performance of our algorithms.

2We discarded all non-orthogonal polygons from these data sets. The number of such polygons was
very small.
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5.2.1 Size of the BSP

Recall that in Chapter 4, we defined the size of a BSP to be the sum of the the number
of nodes in the BSP and the total number of rectangles in S stored at all the nodes
of the BSP. In our experiments, we use a slightly different and more realistic measure:
we define the size of the BSP to be the sum of the number of interior nodes in the
BSP and the total number of rectangles stored at all the nodes in the BSP. We use
the number of inferior nodes rather than the number of nodes since all the information
about a leaf is captured by its parent and the cutting plane at the parent. Further, in
the case of rectangles, the total number of faces of all dimensions stored at the nodes
of the BSP is at most nine times the total number of rectangles stored at the nodes of
the BSP. Note that the total number of rectangles stored in the BSP is the sum of the
number of rectangles in the input and the number of times the input rectangles are
fragmented by the BSP. Table 5.1 displays the size of the BSP and the total number
of times the rectangles are fragmented by the cuts made by the BSP.

Data set FIFTH | ENTIRE | CHURCH | LoBBY | SITT.
#rectangles 1677 8690 29988 | 12207 | 6002
Size of the BSP
Rounds 2744 | 14707 45427 | 22225 9060
Teller 2031 14950 | 33518 | 13911 | 7340
PatersonYao 3310 22468 56868 | 30712 | 20600
Airey 3585 24683 41270 | 21753 | 19841

ThibaultNaylorl | 6092 | 32929 65313 | 25051 | 10836
ThibaultNaylor2 | 3235 [ 20089 58175 | 23159 | 12192
Number of Fragments

Rounds 113 741 838 475 312
Teller 301 1458 873 514 153
PatersonYao 449 5545 12517 9642 6428
Airey 675 7001 5494 5350 | 8307

ThibaultNaylorl 1868 10580 13797 3441 1324
ThibaultNaylor2 262 2859 6905 1760 1601

Table 5.1: BSP sizes and number of fragments

Examining Table 5.1, we note that, in general, the number of fragments and size of
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the BSP scale well with the size of the data set. For the Soda Hall data sets (FIFTH and
ENTIRE), algorithm Rounds creates the smallest number of fragments and constructs the
smallest BSP. For the other three sets, algorithm Teller performs best in terms of BSP
size. However, there are some peculiarities in the table. For example, for the CHURCH
data set, algorithm Rounds creates a smaller number of fragments than algorithm Teller
but constructs a larger BSP. We believe that this difference is explained by the fact
that the 29998 rectangles in the CHURCH model lie in a total of only 859 distinct planes.
Visualisation of the CHurch model makes it clear that it contains many rectangles that
lie in a small number of planes, each with large area. Since algorithm Teller makes cuts
based on how much of a plane’s area is covered by rectangles, it is reasonable to expect
that the algorithm will “place” a lot of rectangles in cuts made close to the root of the
BSP, thus leading to a BSP with a small number of nodes.

We further examined the issue of how well the performance of the algorithms scaled
with the size of the data by running the algorithms on increasingly larger subsets of
the data sets. We also “created” new large data sets by making translated and rotated
copies of the original data sets. In Figure 5.1, we display the results of this experiment
for the ENTIRE Soda Hall and the SiTTERSON models. In these graphs, we do not
display the curve for algorithm ThibaultNaylorl since its performance is always worse
than the performance of algorithm ThibaultNaylor2. The graphs show that the size of
the BSP constructed by most algorithms increases linearly with the size of the data.
The performance of algorithms Rounds and Teller is nearly identical for the Entire
data set. However, algorithm Teller constructs a smaller BSP than algorithm Rounds
for the Sitterson data set.

The time taken to construct the BSPs also scaled well with the size of the data
sets. Algorithm Rounds took 11 seconds to construct a BSP for the F1rTH floor of Soda
Hall and about 4.5 minutes for the church data set. Typically, algorithm PatersonYao
took about 15% less time than algorithm Rounds while the heuristics (algorithms Airey,
ThibaultNaylor, and Teller) took 2-4 times as much time as algorithm Rounds to con-
struct a BSP. While the difference in time is negligible for small data sets, it can be
considerable for large data sets. For example, for the data set obtained by placing 9
copies of the Sitterson model in a 3 x 3 array, algorithm Rounds took 13 minutes to

construct a BSP while algorithm Teller took 51 minutes. The results for single copies
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of each data set are summarised in the following table.

FIFTH | ENTIRE | CHURCH | LoBBY | SITT.
F#rectangles 1677 8690 29988 | 12207 | 6002
Rounds 11 58 273 111 57
Teller 16 130 1177 237 101
PatersonYao 9 55 238 82 59
Airey 30 232 1099 337 317
ThibaultNaylorl 28 272 2840 306 149
ThibaultNaylor2 13 a7 1722 176 81

Table 5.2: Time (in seconds) taken to construct the BSP

5.2.2 Point location

In the point location query, we are given a set of random points and are asked to locate
the leaf of the BSP that contains each point. We create the queries by generating
random points that lie in the box B containing all the rectangles in S. We answer such
queries by traversing the path from the root of the BSP that leads to the leaf that
contains the query point.

We summarise the results for point location in Table 5.3. These results were highly
correlated to the average heights of the trees. For example, algorithm Rounds con-
structed BSPs of average height between 11 and 16. The average cost of locating a
random point in the BSP constructed by algorithm Rounds ranged between 10 and 15.
It is worth pointing out that Algorithm ThibaultNaylorl constructed BSPs about twice

as deep as algorithm ThibaultNaylor2, bearing out our earlier intuition.

5.2.3 Ray shooting

Given a ray p oriented in a random direction, we are required to determine the first
rectangle in S that is intersected by p or report that there is no such rectangle. We
first locate the leaf v containing the origin of p. Then we trace p through the leaves
of the BSP as follows: we determine the point p where p intersects the boundary of

v. If p lies inside a rectangle in S (such a rectangle must be stored with the bisecting
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FIFTH | ENTIRE | CHURCH | LOBBY | SITT.

#rectangles 1677 8690 29988 | 12207 | 6002
Rounds 10.77 13.48 14.34 12.49 | 12.37
Teller 11.51 13.75 10.19 7.29 | 15.30
PatersonYao 10.81 13.12 1288 | 1132} 13.23
Airey 10.52 13.62 12.87 8.23 | 14.15

ThibaultNaylorl | 18.42 22.13 18.68 | 20.66 | 21.17
ThibaultNaylor2 | 11.38 14.19 1450 | 13.75 | 13.08

Table 5.3: Random point location costs

plane of an ancestor of v or lie on the boundary of B), we report the rectangle as the
answer to the query. Otherwise, we locate the other node w whose boundary p lies
on by answering a point location query for p. If there is no such node, then p lies
on the boundary of B and p does not intersect any rectangle. Otherwise, we continue
tracing p at w. There are two components to the cost of answering the query with
p: the number of nodes visited and the number of rectangles checked. We report the
two factors separately below in Table 5.4. The actual cost of a ray shooting query is a
linear combination of these two components; the exact form of the linear combination
depends on the implementation.

There is an interesting tradeoff between these two costs. This tradeoff is most
sharply noticeable for the CHURCH data set. Note that the average number of nodes
visited to answer ray shooting queries in the BSP constructed by algorithm Teller
is about a third the number visited in the BSP built by algorithm Rounds but the
number of rectangles checked in the BSP constructed by algorithm Teller is about 10
times higher! This apparent discrepancy actually ties in with our earlier conclusion
that algorithm Teller is able to construct a BSP with a small number of nodes for the
CuurcH model because the rectangles in this model lie on a small number of distinct
planes, as noted earlier. As a result, a ray shooting query does not visit too many
nodes. However, whenever a point is checked to see if it lies in an input rectangle,
a large number of rectangles are checked because each plane contains a large number
of rectangles. This cost can be brought down by using an efficient data structure for

range searching among rectangles. However, this change will increase the size of the
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Data set FIFTH | ENTIRE | CHURCH | LoBBY | SITT.
#rectangles 1677 8690 29988 | 12207 6002
#nodes visited
Rounds 4471 12,567 | 326.40 89.68 | 55.92
Teller 17.19 13.74 96.64 13.04 | 37.30
PatersonYao 40.06 11.85{ 531.47 | 49.83 | 83.12
Airey 24 .02 13.31 170.26 10.59 | 129.99

ThibaultNaylorl | 44.10 31.34 | 256.81 | 102.61 | 69.14
ThibaultNaylor2 | 44.56 1420 | 298.54 | 78.40 | 59.85
#rectangles checked

Rounds 5.78 3.03 49.60 2.02 | 19.24
Teller 12.08 11.02 | 4828.28 | 2047 | 44.18
PatersonYao 4.05 5.71 | 5461.23 | 84.24 | 114.09
Airey 5.51 410 | 475791 | 1194} 27.55

ThibaultNaylorl 4.60 14.63 20.77 2.19 | 38.56
ThibaultNaylor2 5.14 7.59 28.54 2.67 7.33

Table 5.4: Ray shooting costs

BSP itself. Determining the right combination needs further investigation.

5.3 Conclusions

Our experiments indicate that algorithms Rounds and Teller are the best techniques
for constructing BSPs for orthogonal rectangles in R3. Algorithm Teller is best for
applications like painter’s algorithm in which the entire BSP is traversed. On the
other hand, for queries such as ray shooting, it might be advisable to use algorithm
Rounds since the size of the BSP constructed by this algorithm is not much more than
the size for algorithm Teller but the query costs are better. It is possible that a better
solution might be a combination of both algorithms. For example, one possibility is
that we take rectangle areas into account while making cuts in the dividing stage of
algorithm Rounds.

Note that we can change the performance of algorithms Teller, Airey and Thibault-
Naylor by changing the internal weights used by these algorithms. It is possible to use
a technique like simulated annealing to determine the best set of weights. However, it
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is likely that the time taken by such procedures will be prohibitive.

Clearly, there is a tradeoff between the amount of time spent on constructing the
BSP and the size of the resulting BSP. Our experience suggests that while algorithm
Teller constructs the smallest BSPs, algorithm Rounds will build BSPs that are not
much larger, is likely to be fast in terms of execution, and will build compact BSPs

that answer queries efficiently.
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Chapter 6

Binary Space Partitions for

Triangles

In this chapter, we study the problem of computing a BSP for a set S of n triangles
with pairwise-disjoint interiors in R3. Paterson and Yao [81] describe a randomised
incremental algorithm that constructs a BSP of size O(n?) in expected time O(n3).
They also show how to derandomise their algorithm without affecting its asymptotic
running time. Their bound on the size of the BSP is optimal in the worst-case. It
has been an open problem whether a BSP for n triangles in R3 can be constructed in
near-quadratic {ime. Sub-quadratic bounds are known for special cases: Paterson and
Yao’s algorithm for orthogonal rectangles [82], our results for fat orthogonal rectangles
(see Chapter 4), and de Berg’s result for fat polyhedra [35]. However, none of these
approaches lead to a near-quadratic algorithm for triangles in RB3. The bottleneck in
analyzing the expected running time of the Paterson-Yao algorithm is that no nontrivial
bound is known on the number of vertices in the convex subdivision of B3 induced by
the BSP constructed by the algorithm. Known techniques for analyzing randomised
algorithms, such as the Clarkson-Shor framework [32] or backwards analysis [92], cannot
be used to obtain a near-quadratic bound on this quantity, since the BSP constructed
by the algorithm depends on the order in which triangles are processed.

In Section 6.1, we present a randomised algorithm that constructs a BSP for S of
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size O(n?) in O(n?log?n) expected time. Our algorithm is a variant of the Paterson-
Yao algorithm. We construct the BSP for S in such a way that there is a close relation-
ship between the BSP and the planar arrangement of lines supporting the edges of the
xy-projections of the triangles in S. We use results on e-nets [54] and on arrangements
of lines [40] to bound the expected number of vertices in the convex subdivision of R3
induced by the BSP and the expected running time of the algorithm.

In Section 6.2, we consider the problem of whether we can use a suitable measure
of geometric complexity to construct a BSP of size o(n?) for a set S of n triangles with
pairwise-disjoint interiors in R3 (of course, the size of the BSP will depend on the mea-
sure of geometric complexity and will be Q(n?) in the worst-case). The construction
that achieves the Q(n?) lower bound (we have already seen it in Chapter 4.6.2) uses
two families of segments lying inside the box [0,n+ 1] x [0, + 1] x [0,nZ + 1]: the
segments belonging to one family lie along the lines {x =i,z =iy —¢/2 |1 < i< n},
where 0 < & < 1/n?; these lines lie in the surface z = xy — £/2. The segments in
the second family are orthogonal to the ones in the first family and lie along the lines
{y=1iz=1ix+¢€/2]1 < i< n} the lines lie in the surface z = xy + ¢/2. Intu-
itively, we can show that any BSP for this set of segments has Q(n?) size because
these n segments come very “close” to each other at Q(n?) points. In particular, the
xy-projections of the segments contain Q(n?) intersection points. Such configurations
are very uncommon in practice. For example, urban landscapes and terrains have very
few pairs of triangles with intersecting xy-projections.

Motivated by these observations, we measure the geometric complexity of a set S of
triangles with pairwise-disjoint interiors in R by the number of intersections between
the xy-projections of the triangles in S. If the number of intersections is k, we present
a deterministic algorithm for constructing a BSP for S of size O{(n + k) log2 n) in
time O((n + k) log®n); if k <« n?2, the deterministic algorithm constructs a BSP whose
size is much smaller than the BSPs constructed by Paterson and Yao’s and our ran-
domised algorithms. Another nice property of our deterministic algorithm is that the
height of the BSP it constructs is O(log> n), which is useful for ray-shooting queries,
for example. It was an open problem whether BSPs of near-quadratic size and poly-
logarithmic height could be constructed for n triangles in R3. The height of the BSP
constructed by the randomized algorithms (both ours and Paterson and Yao's) can be
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Q(n), e.g., if S is the set of faces of a convex polytope.

Finally, we study the problem of maintaining the BSP for a set of moving segments
in the plane in Section 6.3. The problem can be formulated as follows: Let S be a
set of n interior-disjoint segments in the plane, each moving along a continuous path.
We want fo maintain the BSP for S as the segments in S move. We assume that
the segments move in such a way that they never intersect, except possibly at their
endpoints. Most of the work to date deals with constructing a BSP for a set of “static”
segments, which do not move. Paterson and Yao propose a randomized algorithm that
constructs a BSP of O(nlogn) size for a set of n segments in the plane [81]. They
also propose a deterministic algorithm, based on a divide-and-conquer approach, that
constructs a BSP of size O(nlogn) in O(nlogn) time [81]. Both of these algorithms
are not “robust,” in the sense that a small motion of one of the segments may cause
many changes in the tree, or may cause non-local changes. Therefore, they are ill-suited
for maintaining a BSP for a set of moving segments.

There have been a few attempts to update BSPs when the objects defining them
move. Naylor describes a method to implement dynamic changes in a BSP, where the
static objects are represented by a balanced BSP (computed in a preprocessing stage),
and then the moving objects are inserted at each time step into the static tree [76].
Using the same assumption that moving objects are known a priors, Torres proposes
the augmentation of BSPs with additional separating planes, which may localise the
updates needed for deletion and re-insertion of moving objects in a BSP [103]. This
approach tries to exploit the spatial coherence of the dynamic changes in the tree by
introducing additional cutting planes. Chrysanthou suggests a more general approach,
which does not make any distinction between static and moving objects [31]. By
keeping additional information about topological adjacencies in the tree, the algorithm
performs insertions and deletions of a node in a more localised way. But all these prior
efforts boil down to deleting moving objects from their earlier positions and re-inserting
them in their current positions after some time interval has elapsed. Such approaches
suffer from the fundamental problem that it is very difficult to know how to choose
the correct time interval size: if the interval is too small, then the BSP does not in
fact change combinatorially, and the deletion/re-insertion is just wasted computation;

if it is too big, then important intermediate changes to the BSP can be missed, which
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affect applications that use the tree.

Our algorithm, instead, treats the BSP as a kinetic data structure, a paradigm
defined by Basch et al. [13]. We view the equations of the cuts made at the nodes of the
BSP and the edges and faces of the subdivision induced by the BSP as functions of time.
The cuts and the edges and faces of the subdivision change continuously with time.
However, “combinatorial” changes in the BSP and in the subdivision (we precisely
define this notion later) occur only at certain times. We explicitly take advantage of
the continuity of the motion of the objects involved so as to generate updates to the
BSP only when actual events cause the BSP to change combinatorially.

In Section 6.3, we describe a randomised kinetic algorithm for maintaining a BSP
for moving segments in the plane, whose interiors remain disjoint at all the times during
the motion. We also assume that the motions are oblivious to the random bits used
by the algorithm; our algorithm chooses a random permutation of the segments at the
beginning of time, and we assume that this permutation remains random irrespective of
the segment motions. Following Basch et al. [13], we assume that each moving segment
has a posted flight plan that gives full or partial information about the segment’s
current motion. Whenever a flight plan changes (possibly due to an external agent), our
algorithm is notified and it updates a global event queue to reflect the change. We first
derive a randomised algorithm for computing a BSP for a set of static segments, which
combines ideas from Paterson and Yao’s randomised and deterministic algorithms, but
is also robust, in the sense described earlier. The “combinatorial structure” of the BSP
constructed by this algorithm changes only when the x-coordinates of a pair of segment
endpoints, among a certain subset of O(n) pairs, become equal. We show that under
the above assumption on the segment motions, the BSP can be updated in O(logn)
expected time at each such event. We also show that if k of the segments of S move
along “pseudo-algebraic” paths, and the remaining segments of S are stationary, then
the expected number of changes in the BSP is O(knlogn). As far as we know, this is
the first nontrivial algorithm for maintaining a BSP for moving segments in the plane.

A feature of the BSPs constructed by our algorithm is that the region R, associated
with each node v is a “cylindrical” cell in the sense that R,, may contain top and bottom
faces that are contained in objects belonging to S, but all other faces are vertical (i.e.,
faces parallel to the z-axis). In particular, for each node v in the BSP constructed by
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the deterministic algorithm for triangles in R3, R, has four vertical faces and two of
these faces are perpendicular to the x-axis.

Before proceeding further, we recapitulate the definition of the BSP. A binary
space partition B for a set S of triangles with pairwise-disjoint interiors in R3 is a tree
defined as follows: Each node v in B is associated with a polytope R, and the set of
triangles Sy, ={s N R, | s € S} that intersect R,. The polytope associated with the root
is R3 itself. If S, is empty, then node v is a leaf of B- Otherwise, we partition R, into
two convex polytopes by a cutting plane H,. We refer to the polygon H, N R, as the
cut made at v. At v, we store the equation of H, and the set {s| s C H,,s € S,}, the
subset of triangles in S, that lie in H,. If H denotes the positive halfspace and HJ
the negative halfspace bounded by Hy, the polytopes associated with the left and right
children of v are R, N HJ and R, N H], respectively. The left subtree of v is a BSP
for the set of triangles S; ={s N H; | s € S,} and the right subtree of v is a BSP for
the set of triangles ST ={sNH} [ s € S,}. The size of B is the sum of the number of
nodes in B and the total number of triangles stored at all the nodes in B. Note that
we can modify this definition easily if S is a set of n segments with pairwise-disjoint
interiors in the plane.

At a node v of B, the cutting plane H, may not intersect any triangles in S, and
(i) may support a triangle s € S, such that the portion of H, that lies in the interior
of R, is contained in s, i.e,, H, N R, = s or (ii) partition S, into two non-empty (and
disjoint) sets. We refer to such a cutting plane H, as a free cut; the triangle s is said
to be free with respect to R,. Free cuts play a critical role in preventing excessive

fragmentation of the triangle in S, and thus in keeping the size of B small.

6.1 BSPs for Triangles: A Randomised Algorithm

In this section we describe a randomized algorithm for constructing a BSP B of ex-
pected size O(n?) for a set of n triangles with pairwise-disjoint interiors in R3. The
expected running time of the algorithm is O(n?log?n). We describe the algorithm in

Section 6.1.1 and analyze its performance in Section 6.1.2.
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6.1.1 OQur algorithm

We start with some definitions. For an object s in R3, let s* denote the xy-projection
of s. Let E be the set of edges of the triangles in S, and let E* denote the set {e* | e € E}.
Let £ be the set of lines in the xy-plane supporting the edges in E*. We choose a
random permutation (£1,¢;,...,03n) of £, and add the lines one by one in this order
to compute B. Let L' ={¢;,¢,,...¢]}. The algorithm works in 3n stages. In the ith
stage, we add ¢; and construct a top subtree B* of B by refining the leaves of Bi—'; B
consists of one node (corresponding to R3) and B3" is B. As usual, we associate a
convex polytope R, with each node v of B'~!. If v is a leaf of B! and no triangle
in S intersects the interior of R,, i.e., S, =0, then v is a leaf of B and we do not refine
it further. Otherwise, we partition R, into two cells; these two cells are leaves of Bit!.

Before describing the ith stage of the algorithm in detail, we explain the structure
of Bl. We need a few definitions first. At a node v of B, the cutting plane H, may
support a triangle s € S such that H, N R, C s, i.e., the portion of H, that lies in the
interior of R, is contained in s. Such a cutting plane is referred to as a free cut and s is
called a free triangle. We say that a leaf v of B* (or the cell R,) is active if a triangle
in S intersects the interior of R, (i.e. S, # 0); similarly, we say that a face f in the line
arrangement A(L') is active if a segment in E* intersects the interior of f. For each

active leaf v in B, the algorithm ensures that R, satisfies the following properties:

(P1) If a triangle s € S intersects the interior of R,, then the boundary of s also

intersects the interior of R,.

(P2) The cell R, is a vertical section of the cylinder {(p,z) | p € f,z € R}, for exactly
one active face f of A(L%); the vertical section may be truncated by triangles of

S at the top and bottom. See Figure 6.1.

In order to execute each stage efficiently, we maintain the following additional infor-

mation:
(i) For each active cell A € B, we store the subset Sy C S of triangles that intersect

the interior of A.

(i) We maintain the arrangement A(L') as a planar graph [40]. For each active
face f € A(L'), we maintain the set A(f) of those active cells in B! that lie
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Figure 6.1: An active face f and an active cell R, € A(f) that is a vertical section of
the cylinder erected on f. The boundary of triangle s intersects R, and the boundary
of s* intersects f.

inside the cylinder {(p,z) | p € f,z € R}. Note that by Properties (P1) and (P2),
a face f € A(L') is active if and only if A(f) # 0.

We now describe the ith stage in detail. In this stage, we make a vertical cut along
the vertical plane H; supporting ¢;, followed by a number of free cuts as follows: Let H{"
(resp., H) be the positive (resp., negative) halfspace supported by H;.

1. We trace ¢; through the faces of A(LY"'). For each face f € A(L™Y) intersected
by ¢;, we use {; to split f into two faces f+ and f~. See Figure 6.2(a). Next, we
partition each active cell A € A(f) into two cells AT = ANH{ and A~ =ANH]
(see Figure 6.2(b)) and execute the following two steps on A:

2. We compute the set Sp+ C Sp of triangles that intersect the interior of A*. We
also compute the set Fo+ C Sa+ of triangles whose boundaries do not cross A™.

Similarly, we compute the sets Sp,— and Fpo— for A™.

3. We split At into a set W of [Fp+| + 1 cells by making free cuts along each of
the triangles in Fa+. The cells in ¥ can be ordered by z-coordinate. Since the
triangles in S are pairwise-disjoint, each triangle s € Sp+ \Fa+ intersects a unique

cell A’ € ¥. We compute A’ by performing a binary search, and add s to Sa:.
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(2) (b) (c)

Figure 6.2: (a) Tracing {4 (the thick line) through the faces of A(L3). The face f is
shaded. (b) Splitting cell A € A(f) by the vertical plane containing &4. (c) The free
cuts in Fpo+ are ordered by z-coordinate.

For each cell A’ € ¥, we add A’ to the set A(f*) if Sar # 0. Next, we repeat the

same procedure for A™.

Whenever we split a three-dimensional cell into two, we add two children to the cor-
responding node in B*~! and store the necessary information with the newly created
nodes. The resulting tree is B'. The cuts made in Step 3 ensure that B! satisfies
property (P1). B! satisfies property (P2) since the cuts made in Step 1 are vertical.
Note that a triangle s € S does not intersect the interior of any cell after the three

lines supporting the edges of s* have been processed.

Remark: The free cuts made in Step 3 are crucial in keeping the size of the BSP
quadratic. Instead, if we simply erect vertical planes as we do in the algorithm, and
make cuts along a triangle s € S only when all three lines supporting the xy-projections
of the edges of s have been added, then there are instances of input triangles for which
our algorithm will construct a BSP of Q(n3) size regardless of the initial random

permutation.
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6.1.2 Analysis of the algorithm

We first bound the expected size of B. A similar proof is used by Paterson and Yao [81]
to analyse their randomised algorithm for constructing BSPs for triangles in R3. The
cuts made by the algorithm partition each triangle in S into a number of sub-polygons;
each such sub-polygon is contained in the cutting plane of some node in B and is stored
at that node. Let v(S) be the total number of polygons stored at the nodes of B. The

following lemma bounds the size of B in terms of v(S).
Lemma 6.1.1 The size of B s at most 17v(S).

Proof: Recall that the size of B is defined to be the sum of the number of nodes in
B and the total number of triangles stored at all the nodes in B. To bound the sizeof
B, we count the number of nodes in B and then add v(S). Let v(E) be the number of
segments into which the edges of the triangles in S are partitioned by the cuts in B.
We first bound the number of leaves in B in terms of v(S) and v(E). Let v be the
parent of a leaf in B. Either a free cut or a vertical cut through an edge of a triangle in S
is made at v. This implies that the number of leaves in B is at most 2(v(S)+~v(E)). To
bound this quantity, for each triangle s € S, consider the arrangement A on s formed
by the intersection of s and the cutting planes in B. Let es be the number of edges in
As that are portions of the edges of s and let f; be the number of faces in A,. Since
at most three edges of the boundary of a face in A are also portions of the edges of
s, we have es < 3f;. Summing over all triangles s € S, we have v(E) < 3v(S). Hence,
the number of leaves in B is at most 8v(S), which implies that the number of nodes

in B is at most 16v(S), thus proving the lemma. ]

Thus, it suffices to bound the expectation E [v(S)] to bound the expected size of
B. To that end, we count the expected number of new sub-polygons created in the ith
stage, and sum the result over all stages. We bound the number vt of new sub-polygons
into which a triangle s € S is partitioned by the cuts made in the ith stage, and sum
the resulting bound over all triangles in S. Note that the vertical cuts made in the ith
stage are contained in the vertical plane H; containing ¢;.

Fix a triangle s € S. For 1 <k <1, let Ax = Hx N's and let A be the set of
resulting segments. Note that the endpoints of each Ay lie on the boundary of s. To
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Figure 6.3: The arrangement A({A1, A2, A3,A4}) on triangle s (the shaded triangle). The
face f; is a boundary face and the face f, is an interior face. The segment A5 does not
partition fs.

calculate E [vi], consider the segment arrangement A(A) on s. We call a face of A(A)
a boundary face if it is adjacent to an edge of s; otherwise, it is an interior face.
See Figure 6.3. Recall that for a leaf v € B*~!, we partition the cell R, only if R, is
active. Property (P1) implies that the cuts made in the (i — 1)th stage do not cross
the interior of any interior face of .A(A), since such a face cannot intersect the interior
of any active cell R,. Hence, v} is the number of boundary faces of A(A) that are
intersected by A;. (If property (P1) did not hold, vi would be all the regions of A(Al)
that are intersected by A;.)

For 1 < k < i, let u(A, k) denote the number of boundary faces in the arrange-
ment A(A \ {Ac}) that are intersected by Ax. Observe that the sum leksi (A, k)
equals the total number of edges bounding the boundary faces of A(A). By a result
of Bern et al. [19], the total number of edges of the boundary faces of A(A) is O(i).

Hence,

Z (A, k) = O(i).

1<k<i
Since ¢; is chosen randomly from the set L', A; can be any of the lines A1, Az, ..., A
with equal probability. Therefore,

E[v{] =% 3 wAK) =0(1).
1<k<i

Hence, the total number of pieces created in the ith stage is O(n). Summing over

i, we find that the total number of sub-polygons into which the triangles in S are
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partitioned into over the course of the entire algorithm is O(n?). The following lemma

is immediate:

Lemma 6.1.Z The ezpected size of the BSP constructed by the algorithm is O(n?2).

Remark: Since each cell R, € B is cylindrical, each vertex p of R, is contained in one
of the triangles s that contains the non-vertical faces of R,. In fact, p is a vertex of the
arrangement A({A1,A2, ... ,A3n}). Thus, the above argument implies that the expected
value of the total number of vertices of the nodes of B is also O(n?). However, the
height of B can be Q(n), e.g., if the triangles in S form a convex polytope.

Before analysing the running time of the algorithm, we establish a relation between
the projected edges intersecting an active face f € A(L~') and the triangles intersect-
ing the cells in A(f). For such an active face f, let k¢ be the number of projected edges
in E* that intersect the interior of f. By Property (P1), if a triangle s € S intersects
the interior of a cell A € A(f), i.e., s € Sp, then the boundary of s also intersects the
interior of A. Therefore, an edge of s* intersects the interior of f. Since s intersects

the interior of only one cell in A(f), we obtain

D Isal <k (6.6.1)

AEA(f)

We now analyze the expected running time of the algorithm. We count the time
spent during the ith stage in inserting the line ¢; and then add this time over all
stages of the algorithm. The zone theoreom [28, 40] implies that in Step 1 of the
algorithm, we spend O(i) time in tracing ¢; through A(L'~'). While processing an
active face f of A(LY1) that intersects ¢;, for each cell A € A(f), we spend O(1) time
in Step 1 and O(|Sal) time in Step 2. In Step 3, for each triangle s € Sp+ \ Fa+, we
spend Of(log|Fa+[) time in the binary search used to find the cell in the set W that
intersects s. Hence, the total time spent in Step 3 for the face f is O(|Sallog|Sal).
Thus, (6.6.1) implies that the total time spent in processing f is

D O(ISallogISal) = O(kelogke).
AEA(T)
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Let Z be the set of all active faces of A(L'') that are intersected by ;. The total time
spent in the ith stage is

D O(klogke).
feZ

We now bound this sum. If we denote the number of vertices on the boundary of a
face f by [fl, then by the result of Bern et al. [19], we have ) ;. If| = O(i). Consider
the vertical decomposition AN(LY) of A(LV'). Each face f € A(L¥1) is decom-
posed into O(|f]) trapezoids in Al(L*'). By standard random-sampling arguments,
the expected number of edges in E* that intersect the interior of any such trapezoid
is O((nlogi)/i). This implies that for a face f € A(LY!), the expected value of k¢
is O(ifl(nlogi)/1i). Hence, the expected time spent in the ith stage is
Y O(kelogks) =3 O ([f[ (“1°g i) log n> = O(nlog?n),

fez fez t

which implies the following theorem:

Theorem 6.1.1 Let S be a set of n mon-intersecting triangles in R3. We can

compute a BSP for S of ezpected size O(n?) in ezpected time O(n2log®n).

6.2 BSPs for Triangles: A Deterministic Algorithm

In this section, we describe a deterministic algorithm for computing a BSP for a set S of
n triangles in R3. As in the previous section, let E demote the set of edges of triangles
in S, and let E* = {e* | e € E} be the set of xy-projections of the edges in E. Let k
be the number of intersections between the edges in E*. Our algorithm constructs a
BSP B of size O((n + k)logZn) in O((n + k) log3 n) time.

As in the previous section, each node v of B is associated with a cylindrical cell R,,
but the top and bottom faces of R, are now trapezoids. Let R denote the xy-projection
of the top (or bottom) face of R,; two of the edges of R} are parallel to the y-axis.
Before presenting our algorithm, we give some definitions.

Let E} be the set of segments in E* that intersect the interior of R} and are clipped
within RY. A segment vy € Ej, is called anchored if its endpoints lie on the two parallel
edges of Ry and if it does not intersect any other segment of E. Figure 6.4 shows
an illustration. The anchored segments in E} can be linearly ordered by y-coordinate
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AN

Figure 6.4: Anchored segments in E} (these segments are drawn thick).

(since they are disjoint). Let A, be the set of anchored segments in E* and let P, be
the set of intersection points between the segments of EZ.

Let F, C S, the set of all free triangles in S,. Recall that a triangle s € S,, is free
with respect to R, if no edge of s intersects the interior of R,; s partitions R, into two
cylindrical cells. Since R, is a cylindrical cell, the triangles in F, can be sorted by their

z-coordinates.

6.2.1 Our algorithm

Our algorithm constructs B in a top-down fashion by maintaining a top subtree of B.
A leaf v of the subtree is active if S, # 0. Note that v is active even if S, contains free
triangles; in Section 6.1, if a leaf v is active, S, does contain any free triangles. We
store the set of all active leaves of the current subtree in a list. For each active leaf v,
we maintain the sets P,, Ay, F,, and S,. Note that we can easily compute the set EJ
from S,. Before we begin constructing B, we compute all k intersection points of E*
in O((n + k)logn) time using the Bentley-Ottman sweep-line algorithm [16, 84].

At each step of the algorithm, we choose an active leaf v, compute the cutting plane
H,, and use H, to split R, into two cells R,, and R,. If S,, (resp., S.) is nonempty, we
mark w (resp., z) as being active. Before describing how we compute H,, we specify

how we determine the sets P, F,,, Sy, and A,, (the procedure is symmetric for z):

Pw: Let p € P, be the intersection point of e1* and e;*, where e; and e; are triangle

edges; p € P,y if both e; and e; intersect R,, and p is contained in R%,.

Fw: Let s be a triangle in S,. If s intersects R,, but none of the edges of s intersects
the interior of R,,, then s € F,,,.



131

Sw: Let s be a triangle in S,. If an edge of s intersects the interior of R, then s € Sw-

A,: Let e* € Ej, where e is an edge of a triangle in S,. There are two cases to consider:
(i) If e* € A, and e intersects R,,, then e* € A,,. (ii) If e* € A,, e intersects Rw,
and e* NP, =0, then e* € A,,. To detect the second case, for each edge e* € EJ,
we store the set of points e* N P, that are formed by the intersection of e* and

other segments in EJ.

It is clear that these sets can be computed for both w and z in O(|P,|+ [Fu|+[Sy|+|AL])
time.

z-axis h

ZIN AN

(i1) (iif)

c-axis ()

Figure 6.5: Cuts made in the deterministic algorithm: (i) Free cut, (ii) Cut parallel to
the z-axis through an anchored segment, and (iii) Cut parallel to the yz-plane through
a vertex of A(E}).

Our algorithm uses three kinds of cuts: A point cut is a plane perpendicular to
the x-axis passing through a vertex of the arrangement A(E}), an edge cut is a vertical
plane erected on an anchored segment in A,, and a face cut is a plane containing a
triangle in S (all face cuts will be free cuts). See Figure 6.5. We choose the cutting

plane H, as follows:

1. Fy # 0: Recall that the triangles in F, are totally ordered by z-coordinate. We set
H, to be the face cut containing the median triangle s of F,. See Figure 6.5(i).

Since s does not intersect any triangle of S,, each triangle of S,, \ {s} belongs to
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either S,, or S;. The free triangles in F, and the anchored segments in A, can be
similarly partitioned.

2. Fy =0 and A, # 0: Recall that the anchored segments are totally ordered by
y-coordinate. We set H, to be the edge cut induced by the median anchored
segment in A,. See Figure 6.5(ii). Note that the anchored segments of A, can
be partitioned between A,, and A, since do not intersect H,.

3. F, =0,A, =0: We set H, to be the point cut through the vertex in P, with the
median y-coordinate. See Figure 6.5(iii).

6.2.2 Analysis of our algorithm

We now analyse the algorithm. We first bound the size of B, then the running time of
the algorithm, and finally the height of B.

Let v be a node in B such that P, contains p intersection points, A, contains a
anchored segments, and F, contains f free triangles; clearly S, contains at most O(p +

a + f) triangles. Let B, denote the subtree of B rooted at v. Set
S(p,a,f) = max|B,|,

where the maximum is taken over all nodes v with |Py| = p,[A\| = q, and |F,| = f.
We bound S(p, a, f) by setting up a recurrence for it. Suppose H,, the cutting plane
at v, partitions R, into two cells R,, and R,,. Let p,, = |[Pwl, aw = |Ayl, and f,, =
[Fwl; define p;,a., and f, similarly. Note that P, and P, are disjoint subsets of P,;

therefore, pw + p, < p.! We consider three cases:

f#0: H, is a free cut containing the median free triangle in F,. Since H, is a free
cut, it does not intersect any triangles in S,. Hence, we have a,, + a, = a,
and f,,f, < f/2.

f=0,a #0: H, is an edge cut erected on the median anchored segment in A,; there-
fore ay,a; < a/2. Since H, is an edge cut, it may intersect triangles in S,,
creating free triangles in F,, and F,. However, there are O(p + a) triangles in S,;

therefore, f,, +f, = O(p + a).

It is possible that a point p € P, is not an element of either Py, or P,. This happens, for example,
when p is the intersection of two projected triangle edges €1 and e, but only e; intersects Rw,.
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f=0,a=0: H, is a point cut defined by the vertex in P, with median y-coordinate,
which implies that pw, pz < p/2. Since H, may intersect triangles in S,,, both R,
and R, can contain anchored segments and free triangles. Since there are O(p)

edges in Ej and O(p) triangles in S,,, we have a,,, az, fw, fz = O(p).

In the first case, the size of node v is 2, since the free triangle inducing H, is stored
at v. In the other two cases, the size of node v is 1. The above discussion implies that

we can write the following recurrence for S(p, a, f):
S(p,a,f) = S(pw, aw, fw) + S(p2, az, f2) + O(1), (6.6.2)

where pw +p, < p, and

1. aw+a,=aq, and fy,f, < /2, if f #0;

2. ay,a;<a/2,and f, + f, =0(p+a),if f=0,a #0;

3. PwPz £ P/2, and ay,az, i, f2=0(p),if f=0,a=0.
Using mathematical induction, we can prove that the solution to this recurrence is

S(p,a,f) =O(plog?p + (p + a)log a + f).

Since the root node v of B has n + k intersection points, no anchored segments, and
no free triangles, we obtain the following lemma:
Lemma 6.2.1 The size of B is O((n + k) log®n).

We now analyse the running time of the algorithm. As we have noted earlier, at
each node v, we can choose H, and perform the operations to split vin O(p + a + f)
time. If T(p, a, f) denotes the maximum time taken by our algorithm to construct the
subtree of B rooted at a node v with |Py| = p,|A,| = q, and |[F,| = f (the maximum is

taken over all such nodes v), we have
T(p) a: f) = T(va aW) fw) + T(pz, az: fz) + O(p + a + f)) (6~6'3)

where pw, Gw, fw, Pz, az, f; satisfy the same conditions as in (6.6.2). Using mathemat-

ical induction, we can prove that the solution to the above recurrence is
T(p,qa,f)=O(plog’p + (p + a)log(p + a)log a + (p + a + f)log f).

Thus, we obtain the following lemma:
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Lemma 6.2.2 The time taken by our algorithm to construct B is O({n+k)log> n).

We complete the analysis by bounding the height of B. Since we always make the
median point cut, along any root-to-leaf path 7t in B, there are O(log n) nodes where
a point cut is made. Let u be a node in 7t where a point cut is made and let v be the
next node in 7t where a point cut is made. Since we always make the median edge cut,
there are O(log n) nodes in 7 between u and w where an edge cut is made. Similarly,
if u’ is a node in 7t where an edge cut is made and w' is the next node in 7t where an
edge cut is made, there are O(logn) nodes in 7 between u’ and w’ (a free cut is made
at all such nodes). Hence, the length of 7t is O(log®n), which implies that the height
of B is O(log3 n).

Lemma 6.2.3 The height of B is O(log®n).

Combining the last three lemmas, we state the main result of this section:

Theorem 6.2.1 Let S be a set of n triangles n R3, and let k be the number of
intersection points of the xy-projections of the edges of S. We can compute a
BSP of size O((n +k)log?n) and height O(log®n) for S in O((n +k)logn) time.

6.3 Kinetic Algorithm for Segments

In this section, we develop a technique for maintaining a BSP for a set S of n non-
intersecting segments in the plane. We first describe a randomised algorithm for com-
puting a BSP B for S assuming that the segments in S are stationary, and then explain
how to maintain B as each segment in S moves along a continuous path, under the

assumption that the segments remain non-intersecting during the motion.

6.3.1 The static algorithm

Our algorithm makes two types of cuts: a point cut is a vertical cut through an
endpoint of a segment and an edge cut is a cut along a segment. Edge cuts are always
contained totally within input segments; therefore, they do not cross any other input

segment. For each node v € B, the corresponding polygon R, is a trapezoid; the left
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and right boundaries of the trapezoid are bounded by point cuts, and the top and
bottom boundaries are bounded by edge cuts.

We now describe our static algorithm. We start by choosing a random permuta-
tion (s1,s2,...,sn) of S. We say that s; has a higher priority than s; if i <j. We
add the segments in decreasing order of priority and maintain a BSP for the segments
added so far. Let S* = {s1,s2,... ,s;} be the set of the first i segments in the permuta-
tion. Our algorithm works in n stages. At the beginning of the ith stage, where i > 0,
we have a BSP B! for S*; B° consists of a single node v, where R, is the entire

plane. In the ith stage, we add s; and compute a BSP B! for St as follows:

1. Suppose p and q are the left and right endpoints of s;, respectively. Let v be the
leaf of B! such that R, contains p. We partition R, into two trapezoids R and
RY using a point cut defined by p, where R lies to the left of the cut. We create
two children w and z of v, with w being the left child of v. We set R,, = R and
R, =R} and store p at v. We then perform a similar step for q.

2. For each trapezoid Ry that intersects s;, we store s; at x, and split R, into two
trapezoids by making an edge cut along s;. We again create two children w and z
of v, with w being the left child. We set R, to be the sub-trapezoid of R, lying
below the cut and R, to be the sub-trapezoid of R, lying above the cut.

The resulting tree is the BSP B for S*. See Figure 6.6 for an example of constructing B!
from B,

This completes the description of our algorithm. Note that once we fix the permu-
tation, the algorithm is deterministic and constructs a unique BSP. In order to analyse
the algorithm, we need a few definitions. The vertical segment drawn upwards (resp.,
downwards) from an endpoint p is referred to as the upper (resp., lower) thread of p.
The segment containing the other endpoint of a thread is called the stopper of that
thread. Note that the priority of the stopper of a thread of p is higher than that of the

segment containing p. We can prove the following lemma about each thread:

Lemma 6.3.1 Let p be an endpoint of a segment in S. The ezpected number of

segments crossed by each of p’s threads is O(logn).
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Figure 6.6: The BSP B~!, the sequence of cuts made in the ith stage, and the BSP Bt.
At each step, the shaded trapezoids are split. Portions of s; that lie in the interior of a
trapezoid are drawn using thick lines. The label next to a node signifies the cut made
at that node.

Proof: Let 01,03,... be the sequence of segments in S that intersect the top thread p
of p, sorted in increasing order of the y-coordinates of their intersection with p; clearly,
there are at most n segments in this sequence. The segment o; is crossed by p if
and only if s has greater priority than all the segments o7,032,...,0;—1. Since B is
constructed by inserting the segments of S in random order, the probability that p
crosses o3 is 1/(i + 1). Therefore the expected number of segments crossing p is at
most ) - ;1/(i+1) =O(logn). We can similarly show that the expected number of

segments crossing p’s lower thread is O(logn). a
We can use the above lemma to bound the size and height of B.

Theorem 6.3.1 The ezpected size of the BSP constructed by the above algorithm
1s O(nlogn), and the height of the BSP is O(logn) with high probability.

Proof: In order to bound the size of B, the BSP constructed by the algorithm, it
is enough to count the total number of cuts made in B, since a cut is made at each
interior node of B. There are at most 2n point cuts made in B. If an edge cut e is

made at a node v, we charge e to the right endpoint of e. Suppose s is the segment
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in S containing e. The right endpoint of e is either the right endpoint of s or the
intersection point of s with a thread of a segment whose priority is higher than s. In
this way, we charge each endpoint and the intersection point of a segment and a thread
at most once. As a result, Lemma 6.3.1 implies that the expected total number of edge
cuts is O(nlog n}), which proves that the expected size of B is O(nlogn).

To bound B’s height, we first bound the depth of an arbitrary point p in the plane,
i.e., the number of nodes in the path from the root of B to the leaf v € B such that R,
contains p. We bound the number of nodes on this path that are split by edge cuts
and point cuts separately.

Let 07,02, ... be the ordered sequence of segments in S intersected by a vertical ray
starting at p and pointing in the (+y)-direction. An ancestor of v is split by an edge
cut through o7 if and only if oy has higher priority than ¢y, 03,...,0;—;. This event
bhappens with probability 1/i. Hence, the expected value of X, the number of ancestors
of v that are split by edge cuts, is H, = O(logn). We can actually prove that this
bound on X holds with high probability. Since X is the sum of independent 0-1 random
variables, using Chernoff’s bound [69, p. 68], we have that for any constant & > 1,

a—13\ Hn
PI[X > O(.Hn] < (e(x—a-) — O(.n_—oclnoc—i-oc—‘l )

In particular for any constant ¢ > 3, we can choose « so that Pr[X > a«H,] < 1/n¢.
We can similarly prove that the number of ancestors of v that are split by point
cuts is O(log n) with high probability. The segments in S and the vertical lines passing
through every segment endpoint decompose the plane into O(n?) trapezoids. Any two
points in one of these trapezoids will be contained in the same leaf of any BSP that our
algorithm constructs, independent of the permutation we choose at the beginning of the
algorithm. Hence, the height of BSP is the maximum depth of O(n?) points, one in each
such trapezoid. Since the depth of each point is O(logn) with probability 1 — 1/n¢,
where ¢ > 3, the height of B is also O(logn) with probability 1 — 1/n2. This

completes the proof of the lemma. O
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6.3.2 The kinetic algorithm

We now describe how to maintain the static BSP as the segments in S move contin-
uously, under the assumption that their interiors remain pairwise disjoint throughout
the motion. We parameterise the motion of the segments by time and use t to denote
time. For a given time instant t, we will use t~ and t* to denote the time instants t—¢
and t + ¢, respectively, where ¢ > 0 is a sufficiently small constant.

Let s; € S be a segment with endpoints p and q. We assume that the position
of p at time t is p(t) = (xp(t), yp(t)), where x;(t) and y,(t) are continuous functions
of time; q(t) is specified similarly. The position of s; at time t is si(t) = (p(t), q(t));
if s; is moving rigidly, then the equations for its endpoints are not independent. Qur
algorithm and the analysis work even if s;'s endpoints move independently. Let S(t)
denote the set S at time t. We assume that we choose a random permutation 7t of S
once in the very beginning (at t =0), and that 7t does not change with time. Let B(t)
denote the BSP of S(t) constructed by the static algorithm, using 7t as the permutation
to decide the priority of the segments. We describe an algorithm that updates the BSP

under the following assumption:

(%) There is no correlation between the motion of the segments in S and
their priorities. Therefore, the chosen permutation m always behaves
like a random permutation, and Lemma 6.3.1 and Theorem 6.3.1 hold

at all times.

We first give an important definition. The combinatorial structure of B is a binary
tree, each of whose nodes v is associated with the set of segments S,. We will use the

combinatorial structure of the BSP crucially in our algorithm.

Critical events

As the segments in S move continuously, the equations of the cuts associated with the
nodes of B also change. At the same time, the edges and vertices of the trapezoids
in the subdivision of the plane induced by B also move. However, the combinatorial
structure of B changes only when the set S,, changes for some node v € B. Since the

segments in S are interior-disjoint and they move continuously, the set S, changes only
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when the endpoint of a segment in S, lies on the left or right edge of R,. See Figure 6.7
for an example of such an event. We formalise this idea in the following lemma, which
is not difficult to prove:

At t

Figure 6.7: Endpoint p lies on the left edge of R, (the shaded trapezoid) at t. The set
Sy changes at time instant t.

Lemma 6.3.2 For any time instant t, B(t~) and B(t*) have different combinato-
rial structures if and only if there exists a j > 0 such that either s; rotates through
a vertical line at time t or there is a leaf v € B/~ (t7) such that an endpoint of s;

lies on the left or right edge of R, at tzme t.

Figure 6.8: The shaded trapezoid R, is transient.

The above lemma implies that the combinatorial structure of B(t) changes if and
only if for a node v € B(t), R, shrinks to a vertical segment; we refer to these instants
of time as critical events. This observation motivates us to call a node v in B(t)
transient if R, does not contain any endpoiﬁt in its interior and a point cut is made at
the parent p(v) of v; we call R, a transient trapezoid. See Figure 6.8. Note that only
edge cuts are made at v and its descendants. The following corollary to Lemma 6.3.2

is immediate:
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Lemma 6.3.3 For any time instant t, B(t~) and B(t") have different combinato-

rial structures if and only if there exists a transient node v in B(t™) so that R,

becomes a vertical segment at time t.

Transient nodes have some useful properties that are summarised in the following

lemma:

Lemma 6.3.4 At any instant t, the set of transient nodes in B(t) have the follow-

ing properties. Let v be a transient node in B(t).

1.

2.

3.

4.

No proper ancestor of v is transient.

Only edge cuts are made at the descendants of v (including v itself). The
left (resp., right) edge of the trapezoid associated with each descendant of v
1S a portion of the left (resp., right) edge of R..

The ezpected number of descendants of v is O(logn).

The number of transient nodes in B(t) s at most 4n.

Proof: Let p be the endpoint of a segment in S through which the point cut at p(v)

is made.

No proper ancestor w of v can be transient since R,, contains p.

Since R, does not contain any endpoints, only edge cuts are made at all the
descendants of v. Each segment that intersects R, crosses the left and right
boundaries of v. Hence, the left (resp., right) edge of the trapezoids associated

with each descendant of v is a portion of the left (resp., right) edge of R,,.

Each segment that induces an edge cut made at a descendant of v intersects one
of p’s threads. Hence, by Lemma 6.3.1, the expected number of descendants of v
is O(logn).

A point cut is made at the parent of each transient node. There are 2n nodes in
B that are split by point cuts; each such node has at most two children.
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Intuitively, transient nodes are the highest nodes in B(t) that can shrink to a
vertical segment, causing a change in the combinatorial structure of B(t). If a trapezoid
contains an endpoint in its interior, it cannot shrink to a segment; and if an edge cut is
made at the parent p(v) of a node v and R, does not contain an endpoint, then Row)
also shrinks to a segment whenever R, shrinks to a segment. Hence, it suffices to keep
track of transient nodes to determine all the instants when the combinatorial structure
of B(t) changes. In the rest of the section, we present our kinetic algorithm motivated

by this observation.

Our algorithm

For anode v in B, let A, (resp., py) denote the endpoint of a segment in S that induces
the point cut containing the left (resp., right) edge of R,. To detect critical events, we

maintain the set
r(t)={(Av,pv) | vis a transient node at time t}

of endpoint pairs inducing the point cuts that bound the left and right edges of each
transient node; Lemma 6.3.4 implies that [[(t)| = O(n). The elements of '(t) are
certificates that prove that the combinatorial structure of B(t) is valid. For each
pair (A, py) in I'(t), we use the known flight paths of A, and p, to compute the time at
which the x-coordinates of A, and p, coincide, and store these time values in a global
priority queue. In order to expedite the updating of B at each critical event, we store

some additional information with the nodes in B and the segments in S:

1. At each node v of B, we store the number c, of segment endpoints lying in the

interior of R, (c, helps us to determine the new transient trapezoids at an event).

2. For each endpoint p of a segment in S, we maintain the list T, (resp., Bp) of
segments that the upper (resp., lower) thread of p crosses, sorted in the (+y)-
direction (resp., (—y)-direction). As the segments move, we will use these lists
to update the stoppers of the threads issuing from the segment endpoints.

We first construct B(0) using the static algorithm presented in Section 6.3.1. Next,

we compute the set I'(0) and insert the corresponding critical events in the priority
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queue. Then we repeatedly remove the next event from the priority queue and up-
date B, I', and the priority queue as required. In the rest of the section, we will prove
that if the combinatorial structure of B changes at time t, then we can obtain B(t+)
from B(t™) in O(logn) expected time. We will also show that at each event point, the
expected time to update the global event queue is O(logn).

We now describe the procedure for updating the tree at each critical event. Recall
that at each such instant t, (i) there is a segment s; € S such that either s; becomes
vertical or (ii) there is a leaf w € B*~'(t™) such that an endpoint p of s; lies on the
left or right edge of R,,. If s; is vertical, v is a transient node in B(t~) with the
property that the left and right edges of R, are contained in point cuts induced by the
endpoints of s;. In the second case, at time t~, a point cut made through p divides
R, into two trapezoids. One of these trapezoids is R,, which is transient at time t—.
Let B~ = B(t™) and B* = B(t*). For a node z € B, let B, denote the subtree of

B~ rooted at z; define B} similarly. There are two cases to consider.

Case (i): A, and p, are both endpoints of s;. The segment s; is vertical at time t. See
Figure 6.9. Let u be V's grandparent in B™; the trapezoid R, contains s;. Suppose v
is in the right subfree of u in B~. Let v; be the left child of v and let v, be the sibling
of vin B~. To obtain B*, we create a new node v; and attach it as the left child of u.
The left and right child of v; are vy and v, respectively. We delete the right child of u
and replace it with vs.

At time t— At time t*

Figure 6.9: The case when A, and p, belong to the same segment.
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Case (ii): Ay and p, are endpoints of different segments. Assume that p, =p (resp.,
Av = q) is the right endpoint of the segment s; (resp., sj), that s; lies above s;, that
the priority of s; is higher than that of s; (i.e,, i < j), and that the x-coordinate of
q is less than the x-coordinate of p at t~; see Figure 6.10. We now describe how we
update B(t) for this case. We will show later how to relax these assumptions. Let u
and w be the leaves of B'~'(t~) and BI~'(t~), respectively, at which the point cuts
through p and q, respectively, are made. Then, by our assumptions about the event, v
is the right child of w, and w lies in the left subtree of u. Let u; be the left child of
u, and let wr be the left child of w. Let x be the leaf of Bi~'(t~) that contains q at
time t*; x lies in the right subtree of u. Since the combinatorial structures of Bi—!(¢t)
and BI~1(t*) are identical, x is a leaf of BI~1(t*) too. Let s, € S be the segment
containing the top edge of Ry; clearly, k > i. At time t*, as q leaves the trapezoid
Rw and enters Ry, Ry, expands to R, R, disappears, and R, is split at t* into two
trapezoids: a new trapezoid R,: and the portion of R, lying to the right of the cut
through q. At time t~, R,, is split by a point cut through q and R, is split by an
edge cut along s;, while at time t*, R,, is split by an edge cut along s;. Therefore B,
is the same as By, . To obtain B*, we execute the following steps:

At time t~ At time t*

Figure 6.10: The case when A, and p, are endpoints of different segments. Arrows
mark the horizontal extents of the trapezoids.

1. We search in the right subtree of u to locate the leaf x of Bi~!(t~) such that R,
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contains q at time t*.

2. We delete the node w from B~, and if w was a left (resp., right) child of its
parent p(w), we make wy the new left (resp., right) child of p(w).

At time t— At time t+

Figure 6.11: The edge cuts made in By and B},. Segments crossing R, and R, are
labelled with their priorities. The label next to a node is the priority of the segment
containing the edge cut made at that node.

3. We construct the subtree B, by determining the set C of segments that inter-
sect Ry (at time t*) and by making edge cuts through the segments in C in

decreasing order of priority. There are two cases to consider:

(a) sk contains the top edge of R,: See Figure 6.11. The set C consists of s; and
the set of segments intersecting R, (at time t~). We find these segments by

traversing all the nodes of B .

At time t™ At time t*
Ru

mw RK

Figure 6.12: The case when the top edges of R,, and R, are contained in different
segments. The segment e is intersected by the top thread of q at t* but not at t—.

(b) si contains the top edge of v: See Figure 6.12. We set si to be the stopper
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of the upper thread of q. As in the previous case, we include s; and the
segments inducing the edge cuts made in By in C. In addition, C contains
all segments that appear before sy in the upper thread of p. We determine
these segments by traversing Ty, the list of segments that cross the upper

thread of p. Note that these segments also cross the upper thread of q at
tt.

Finally, we insert s; into By, the list of segments in S crossed by the lower thread
of p, and update T,.

4. We attach BY, to a descendant of p(x), the parent of x in B—, as follows: We
create a node y and associate the point cut through q with it. The left and right
subtrees of y in B* are BY, and B, respectively. If x is the left (resp., right)
child of p(x), then we add y as the new left (resp., right) child of p(x).

5. We update the set I'(t*). For a node z, the number c, of endpoints lying in
the interior of R;, changes only if z lies along the paths in B* from u to the
nodes p(w) and y. For such a node z, if c, = 0 at t* and if Ry(z) is split by a
point cut, we add (A;, p;) to the list '(t*). On the other hand, if c, #£ 0 at t*
but z is transient at t~ (z must be an ancestor of x in B~), we delete (A, p;)
from (t¥). We also update the priority queue to reflect the changes to I'(t*).

Other cases: We now show how we relax the assumptions we made earlier about the
relative positions of s; and s; and their priorities. For each case, we show how a simple

transformation reduces it to one of the earlier cases.

(2) (b)

Figure 6.13: Some other cases that arise when different segments interact in a critical
event.



146

1. If q is the left endpoint of s;, the update procedure is the same, except that at
time t* we do not make an edge cut through s; in BY,. See Figure 6.13(a).

2. If the x-coordinate of q is greater than the x-coordinate of p at time t—, we “go
back in time.” Figure 6.13(b). The node x is again the leaf of Bi—'(t~) such
that R, contains q at t*. We can reconstruct :Bj', as before: if the same segment
contains the top edge of R, and Ry, the same set of segments intersects B, and
BY, (except that s; does not intersect BY,); otherwise, among the segments that
intersect B, only segments with priority at most 1 intersect Bj,. In the second
case, we also update T4 accordingly. The other changes to B are similar to the
cases we have handled; the details are not difficult to work out.

3. If p is the left endpoint of s;, we reflect S about the y-axis.
4. If s; lies below s;, we reflect S about the x-axis.
5. If the priority of s; is less than the priority of s;, we swap the roles of s; and S5-

This completes the description of our procedure for processing critical events. We
now analyse the running time of the update procedure. Assumption (x) implies that
Lemma 6.3.1 and Theorem 6.3.1 hold at times t—, ¢, and t*. We spend O(logn) time

in Step 1, since we traverse a path in B to find the node x. It is clear that Step 2

-+
V,

takes O(1) time. In Step 3, we find the segments crossing R, and construct BZ, in
O(logn) expected time, since the expected size of B} is O(logn) (by Lemma 6.3.4)
and the expected number of segments in T, is O(logn) (by Lemma 6.3.1). It is clear
that Step 4 takes O(1) time. Finally, in Step 5, we process O(logn) nodes lying in
two paths in the tree. By Lemma 6.3.4, each of the two paths contains at most one
transient node. Hence, we insert or delete at most two events from the priority queue,
which implies that Step 5 takes O(logn) time. We thus obtain the main result of this

section:

Theorem 6.3.2 At each critical event, we can update B(t) in O(logn) ezpected

time.

Note that this theorem makes our BSP a kinetic data structure that is responsive,
efficient, local, and compact, in the sense defined by Basch et al. [13].
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We say that the trajectories followed by a set of segments are pseudo-algebraic
if the segments move so that each pair of endpoints exchanges y-order only O(1)
times. A special case of pseudo-algebraic trajectories is when the trajectories of all the
endpoints are constant-degree polynomials. If the trajectories of k of the segments in S
are pseudo-algebraic and the remaining segments are stationary, then the total number
of event points is O(kn). We spend O(logn) expected time to maintain B(t) at each

event point. Hence, we obtain the following corollary to Theorem 6.3.2:

Corollary 6.3.3 Let S be a set of n segments in the plane, and let G C S be a
set of k segments. Suppose each segment of G moves along a pseudo-algebraic
trajectory and the remaining segments of S are stationary, the total expected time

spent in maintaining B is O(knlogn).

6.4 Conclusions

We have presented algorithms for constructing BSPs for triangles in R3. The ran-
domised algorithm coastructs a BSP of optimal size runs in near-optimal time in the
worst case. The deterministic algorithm is near-optimal in the worst-case. However,
we have shown that it is likely to construct BSPs of near-linear size for inputs that
actually arise in practice.

An attractive feature of the BSP constructed by the deterministic algorithm is
that for each node v in the BSP, R, is a cylindrical cell with four vertical faces and
two faces contained in triangles in S. In current work, we are using this property
to robustly implement our deterministic BSP algorithm. We reduce all computations
needed to construct the BSP to comparisons between xy-projections of the triangles in
S or between the z-coordinates of the triangles in S. Another advantage of the constant
size of the BSP cells is that any operation on a node v (e.g., checking if a point lies
in the interior of R, or intersecting a ray with R,) takes only O(1) time. In BSPs
constructed by other known algorithms [8, 101, 102, 73}, the number of faces of R, can
be as large as the height of v in the BSP; thus these operation take time proportional
to the height of v.
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We have also presented an efficient algorithm to maintain the BSP of moving seg-
ments in the plane. Currently, we do not know any non-trivial lower bounds for this
problem. Recently, Agarwal et al. [2] have extended our result and developed an algo-
rithm to maintain BSPs for moving triangles in R3. Note that such BSPs can be used in
our hidden-surface removal algorithm when occluders are moving (see Chapter 3.3.6).

There are many very interesting open questions regarding BSPs. First of all, our
model of geometric complexity (the number of intersections between xy-projections of
triangle edges) is ideal for terrains and urban landscapes but might not be very good
for data sets in other domains (CAD design, for example). Proving near-linear bounds
on BSP size in new (and more general) models of geometric complexity will be very
useful. Secondly, all our algorithms for triangles in R3 construct BSPs of Q(n?) size
even if an O(n) size BSP exists. This raises the question of constructing a BSP of

optimal or near-optimal size for triangles in R3.



Chapter 7

Conclusions

In this dissertation, we have studied the fundamental computer graphics problem of
hidden-surface removal. There is a vast gap between the techniques developed for this
problem in the computer graphics and computational geometry communities. A careful
examination of the differences between these two classes of algorithms motivated us to

study hidden-surface removal in the framework of

o geometric complezrity, where we analyse algorithms in terms of the geometric
structure present in the input, and develop techniques that are provably efficient

for data sets that typically arise in practice,

e object complezity, a model inspired by the performance characteristics of current
graphics hardware, in which we develop hidden-surface removal algorithms that
simply determine which objects are visible rather than compute exactly which

portions of each object are visible, and

e kinetic data structures, a mechanism for efficiently processing continuously-
moving objects that avoids the pitfalls of approximating continuous motion by a

uniform discretisation of time.

We first described a technique we have developed for geometric data repair for
automatic correction of geometric and topological flaws in the input. Our algorithm
partitioned R3 into regions and used the novel idea of using region adjacencies to de-
termine “how solid” a region is. Our experiments demonstrated that unlike previously

described approaches, our method is effective for a large class of input models.

149
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Next, we presented a new object-complexity algorithm for the hidden-surface re-
moval of massive models. The basic principles we used in the algorithm were to com-
pute a hierarchical spatial decomposition, and classify cells of this decomposition as
visible or invisible by intersecting the cells with the union of the shadows cast by a few
carefully-chosen occluders. Our technique had several new and attractive features: we
maintained the union of the shadows as a set of rays in R3; we were able to compute
the set of visible cells exactly, and could also detect when a cell was occluded by multi-
ple, disconnected triangles; we explicitly exploited the continuity of the motion of the
viewpoint and the objects in the input by using kinetic data structures [13]; we used
the binary space partition (BSP) to unify occluder selection, visibility maintenance,
and mechanisms for frame-rate control.

Both the model repair and hidden-surface removal algorithms used the BSP as an
underlying spatial data structure, and their running time depended on the size of the
BSP. Inspired by this fact, we described several algorithms for constructing BSPs of
small size. We showed that BSPs of near-linear size can be constructed for orthogonal
rectangles with low geometric complexity, where geometric complexity is measured in
terms of the aspect ratio of the rectangles. Our implementation demonstrated that
our algorithm indeed constructs BSPs of linear size in practice on “real” models and
performs better in practice than most algorithms presented in the literature. We also
presented two algorithms for constructing BSPs for a set of triangles in R®. One of these
algorithms was the first-known algorithm with near-optimal running time in the worst
case. The other algorithm constructed BSPs of near-linear size and polylogarithmic
depth for triangles that form a “near”-terrain. Finally, we presented the first-known
provably-efficient algorithm for maintaining the BSP for a set of moving segments in
the plane.

Our model repair and occlusion-culling algorithms in combination with our efficient
algorithms for constructing BSPs provide a powerful set of techniques for solving the
hidden-surface removal problem. The success of our approach is a direct result of our
exploiting the three themes that form the core of our research: geometric complexity,
object complexity, and kinetic data structures.

We now discuss the wider applicability of this framework and give evidence to
suggest that these three notions are powerful and can be used to develop theoretically-
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and practically-efficient algorithms for problems in many other domains.

While the object complexity model is specific to the hidden-surface removal prob-
lem, the principle that motivated it is more widely applicable: develop algorithms that
exploit the properties of the hardware available on current and future machines. Keep-
ing algorithm creation in tune with developments in hardware also raises the intriguing
question of influencing hardware design to support certain classes of algorithms. In the
context of hidden-surface removal itself, algorithms that fully leverage the rapid devel-
opments in parallel graphics hardware and PC-based graphics accelerators are likely
to find wide acceptance. Another problem that will benefit from a close connection
between algorithms and hardware is volume rendering. So far, there has not been much
theoretical work on efficient algorithms for volume rendering.

Geometric complexity is useful in any scenario where worst-case inputs do not usu-
ally arise in practice. For example, other authors have used similar ideas to develop
efficient algorithms for motion planning [104] and point location and range search-
ing [80]. The challenge in using geometric complexity effectively is in coming up with
a measure that accurately captures the geometric characteristics of typical inputs. We
believe this framework will be useful for other problems in computer graphics like global
illumination and volume rendering, as well as in domains such as computer vision and
multi-media indexing.

Apart from computer graphics, kinetic data structures are applicable in any domain
with moving objects, such as robotics and computer vision. In fact, in addition to the
kinetic data structures we have mentioned earlier in the thesis, there has already been
a lot of research on using kinetic data structures to solve various geometric problems |3,
13, 14, 62]. Kinetic data structures promise to significantly impact any problem areas
that deal with moving objects or continuous change.

In this thesis, we have applied the themes of object complexity, geometric complex-
ity, and kinetic data structures to develop a set of efficient algorithms for hidden-surface
removal. These three powerful paradigms hold the promise of stimulating the devel-
opment of theoretically interesting and practically useful algorithms for problems in
computer graphics, robotics, computer vision, and other fundamental areas of computer

science.
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