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We study the problem of action selection in structured domains. In general, the provided
structural decomposition of the problem is not sufficient to allow tractable computation of
the exact solution. Hence, we concentrate on obtaining near-optimal solutions with some

guaranteed qualities.

In this work, the main intuition we exploit is that the problem of action selection is primarily
a comparison rather than an estimation task. From this point of view, we consider sampling
methods for action selection. We propose methods to reduce the number of samples required
to obtain near-optimal actions. We present results on the number of samples needed to ob-
tain highly probable, near-optimal actions. In addition, we present a comparison-based
sampling method and a heuristic stopping rule that can potentially reduce the total num-

ber of samples.

Although estimation is not a primary task, better estimators lead to better action selection.
We present update rules to adaptively improve the sampling distribution and hence the

resulting estimators.

We present preliminary validation results on both made-up and real models. The results
show the potential of the methods for action selection and improving estimation. Through-

out the document, we present remaining open questions and suggest future work.



Selecting Approximately-optimal Actions

in Complex Structured Domains

by
Luis E. Ortiz
B. S., Univerisity of Minnesota, 1995
Sc. M., Brown University, 1998

A dissertation submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island
May 2002






(© Copyright 2002 by Luis E. Ortiz






This dissertation by Luis E. Ortiz is accepted in its present form by
the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Leslie Pack Kaelbling, Director
Recommended to the Graduate Council
Date
Thomas L. Dean, Reader
Date
Stuart Geman, Reader
Division of Applied Mathematics
Date
Peter Miiller, Reader
Department of Biostatistics
University of Texas M. D. Anderson Cancer Center
Approved by the Graduate Council
Date

Dean of the Graduate School and Research

iii






v



Vita

Luis E. Ortiz was born in Ponce, Puerto Rico, on September 28, 1971. He spent most of his
early years in Juana Diaz, Puerto Rico, where his family lives. His full name is Luis Enrique
Ortiz Franceschi. He obtained a B.S. degree in Computer Science from the Institute of
Technology at the University of Minnesota, and an Sc.M. in Computer Science from Brown
University. He received an NSF Integrative Graduate Education and Research Training
(IGERT) Fellowship (1999-2001), an NSF Minority Graduate Fellowship (1996-1999), a
National Physical Science Consortium (NPSC) Ph.D. Fellowship (1995-1996), a NACME-
IBM corporate Scholarship (1993-1995), a National Hispanic Scholarship (1994-1995), a
Minnesota Hispanic Educational Scholarship (1994-1995), and a NACME Scholarship (1990-
1991). His professional experiences include: (1) research assistant/independent researcher
(1995-2001) and (2) lecturer assistant (2001) in the Department of Computer Science at
Brown University under the advise of Thomas L. Dean and Leslie Pack Kaelbling, (3) mentor
for undergraduate student in the Department of Cognitive Science at Brown University
(work done as part of NSF IGERT Program; 2000), (4) member of research project in
the Department of Computer Science at Brown University under the advise of Eli Upfal
(1998-1999), (5) undergraduate teaching assistant at the Project Technology Power of the
University of Minnesota—Twin Cities Campus (1994), and (6) programmer (Summer Pre-
Professional Program) at IBM, Rochester, MN (1991-1993).



vi



Acknowledgments

I realize that this thesis would have not been possible without the help and support of many
people starting, from my early developments as a student in the public school system in

Juana Diaz, Puerto Rico, to my graduate school years at Brown.

First of all, I would like to thank my advisor Leslie Kaelbling for her patience and
support. Thanks for sharing your knowledge and wisdom on everything from technical
subjects to writing and presenting material. For showing me how to say what I wanted
to say. Also, thanks for keeping a bigger picture when I did not, for giving me the time
to think and pursue my own interests, and for the timely encouragements during my early
years as a graduate student.

I would like to thank my co-advisor Thomas Dean for all his support. Professor Dean
has provided extremely valuable direction during my graduate student career. I will miss
very much his insightfulness and critical thinking, and the many intellectual discussions.
His methodological approach to research has had a great impact on my work as a researcher.

I would like to thank Stuart Geman for the innumerable discussions on mathematical,
statistical, and probabilistic questions. Professor Geman has been a great teacher to me
and I cannot thank him enough for sharing his knowledge with me and being a great source
of inspiration. I will really miss our discussions.

I would like to thank Peter Miiller for accepting to be a reader in my dissertation
committee. Despite the limited interaction, his comments of my proposed work were very
useful then, and I believe will continue to have an effect as I explore future directions of my
work in this area.

Thanks also go to Eugene Charniak, who as my first-year advisor, allowed me to follow
and develop my own interests.

I would also like to thank Peter Miller for suggesting the IctNeo ID and to Concha
Bielza and Manuel Gémez Olmedo for providing it and allowing me to use it in my thesis.
Also, T would like to thank Manuel Gémez Olmedo for all the time he spent helping me

vii



with the model and patiently answering my questions.

I am very grateful I had the opportunity to be a graduate student at Brown. My
graduate student experience was very rewarding. I will miss the academic, intellectual
environment, and the interactions between groups in different areas and departments.

Also, my experience has been made even more rewarding, both from a personal and
professional standpoint, by the interaction with other graduate students. Among the many
of them, I would like to specially acknowledge Kee-Eung Kim, Hagit Shatkay, and the
members of the Al group at Brown, for their friendship, which I will always cherish, and
all the help they provided me during all my years at Brown.

Milos Hauskrecht, as a post-doctorate at Brown (1999-2000), was very influential in my
development as a graduate student and an invaluable resource. I am very grateful to him
for his patience and the long periods of time we spent in innumerable technical discussions.

Also, my officemates during all my years at Brown, Vasiliki Chatzi (Vaso) and Michael
Benjamin (Mike) have been a source of support and inspiration in all aspects of my graduate
experience. I cannot express in words how much I appreciate that they were always there
for me, in both good and bad times, and their understanding. I will forever cherish their
friendship.

To Dimitris Michailidis, whose knowledge and help is unlimited, as many people before
me have already found out. I am really glad I met him.

To Stella Kakavouli, who has been a source of support since I met her and an incredible
friend.

bl

To the “Spanish-connection:” Luis J. Vega, Daniel Acevedo Feliz and their respective
wives, Angela and Maria. They have been a source of support to both my wife and I during
my last years at Brown. My wife and I cherish their friendship. Also, to Dan Keefe, who
along with Luis and Daniel allowed me to play (i.e. “make some noise”) with them. T will
most definitely miss the jam sessions. To Luis and the Gapasutras, please keep writing and
playing such interesting music and I wish you all the luck and success you deserve. Keep
on jamming and having fun!

To my wife, Connie Arline Acosta Lépez, for everything: her love, patience, sacrifice,
understanding and support without bound.

To my mom, Nilsa Franceschi Gonzalez, and my dad, Luis Antonio Ortiz Santiago, for
supporting my decisions through all these years even when they were troubled by them. To
my sisters, Nitza (Nilsita) and Ludian, for being a source of inspiration and support.

To my long-time hometown friends, Javier Antonio Montero Santiago, Antonio Radamés
Alvarez Rodriguez, Angel Ramén Alvarez Rodriguez, Arturo Carlos Martinez, and Orlando

viii



Enrique Zayas, and their respective families.
To my teachers, specially math teachers, from every educational period of my academic
career, from elementary to graduate school.

To all the people who crossed path with me in this long and exciting journey!

ix






Credits

Portions of the work presented in Chapter 2 and 3 have appeared in Ortiz and Kaelbling
[2000b] and Ortiz and Kaelbling [2000a], respectively. Also, this document is an extension
of my thesis proposal [Ortiz, 2000].

The dynamic weighting scheme and the 1/0? recommendation in Section 3.2.1 and
the e-boundary in Section 3.4.2 were independently developed by Jian Cheng and Marek
Druzdzel. Both heuristics are reported in a manuscript that the author saw while he was
working on the paper Ortiz and Kaelbling [2000a].

I would like to thank my advisor Leslie Kaelbling; Constantine Gatsonis for suggesting
the MCB literature; Eli Upfal, Milos Hauskrecht, Kee-Eung Kim, Thomas Dean, Thomas
Hofmann and Gopal Pandurangan for many useful discussions and suggestions. Also, the
implementations of the methods used for the experimental results in this thesis use some
of the functionality of the Bayes Net Toolbox for Matlab [Murphy, 1999], for which I thank
Kevin Murphy.

During my years as a graduate student at Brown leading up to the work in this thesis, I
was supported in part by a National Physical Science Consortium (NPSC) Ph.D. Fellowship,
an NSF Graduate Fellowship and by NSF IGERT award SBR 9870676.

xi



xii



Contents

List of Tables xvii
List of Figures xix
1 Introduction 1
1.1 Decision-theoretic models (in general) . . . ... ... .. ... ....... 2
1.2 Onexact solutions . . . . . ... ... .. e 3
1.3 Motivatingideas . . . . . . . . ... 3
1.4 Notation . . . . . . . . . o e e 4
1.5 Decision-theoretic models: Definitions . . . . . ... ... ... ... .... 4
1.5.1 Bayesian networks . . . . ... ..o L o Lo, 5

1.5.2 Influence diagram . . . . .. ... . ... ... L. 6

1.5.3 Markov decision process . . . . . . ... ..o oo 10

1.6 TImportance sampling . . . . . . . . . ..o L Lo s 10
1.7 General objectives . . . . . . . . L L L e 13
1.8 Overview . . . . . . . 14
1.9 Maintheme . . . . . . . .. L L e 17

2 Action Selection 19
2.1 Useful mathematical results . . . . . . ... ... .. .00 22
2.1.1 Large deviationresults . . . . . . . ... ... ... ... 22

2.1.2  Multiple comparisons with the best (MCB) . . .. ... ... .... 23

2.2  Estimation-based methods . . . . . . . .. ..o oo oL 26
2.2.1 Traditional Method . . . ... ... ... ... ... . ... 28

2.2.2 Two-stage Sequential Method . . . . . . ... ... ... ... .. 30

2.3 Comparison-based Method . . . . . . . ... ... ... L. 36
2.3.1 Formalization and analysis . . . . . ... ... .. ... ... .... 37



2.4 A note on relative approximations . . . . . ... ... oL 52

2.5 Allocating precision and confidence parameters for each observation . ... 56
2.6 Other practical considerations . . . . . . . . ... ... ... ......... 58
2.7 Related Work . . . . . . . . e 59
2.8 Preliminary empirical results . . . . . .. ... oo 61
2.9 Emprical resultson IctNeo ID . . . . . . . . . ... oo 62
2.9.1 Experiment 1: (Partially) solving the fourth decision stage . . . . . 64
2.9.2 Experiment 2: (Partially) solving the first decision stage (assuming
random future action sequences) . . . . ... ... ... ... .. .. 74
2.10 Open questions . . . . . . . o ittt e e e e e e e 82
2.11 Summary and Conclusion . . . . . .. ... ... 85
Adaptive Sampling 87
3.1 On importance-sampling (IS) estimators . . . . . . .. ... .. ... .... 89
3.2 Adaptive importance sampling (AIS) . . . . . .. ... ... 89
3.2.1 Learning criteria and updaterules . . . . ... .. ... ... .. .. 91
3.2.2 Discussion of updaterules . . . . . .. ... ... ... ... .. 96
3.2.3 Minimizing KL-based difference from actual (not approximate) opti-
mal distribution . . ... oL L oL oo 98
3.3 Related work . . . . . . . . .. L 99
3.4 Implementation issues . . . . . . . . . .. Lo Lo 104
34.1 Learningrate . . . . . . . ... L. 104
3.4.2 Avoiding extreme probabilities . . . . .. ... o000 105
3.4.3 Initial importance-sampling distribution . . . . . . ... ... 105
3.4.4 Dealing with parameter constraints . . . . . . . .. ... ... .. .. 106
3.5 Cost for AIS . . . . . . . e 107
3.6 Preliminary empirical results . . . . . ... ... oo 109
3.6.1 Results on computer-mouse ID problem . . .. .. ... ... .. .. 110
3.6.2 Results on QMR-DT-type BN . . . . . ... ... ... .. ..., 112
3.6.3 Preliminary conclusions . . . . ... ... ... ... 0 0L 114
3.7 On AIS with mean-field approximations . . . . . . .. .. ... ... .... 117
3.8 On theoretical properties of AIS . . . . . . ... ... ... .. ....... 118
3.8.1 Canonical (re)parameterization of the ISBN . . . .. ... ... .. 118
3.8.2 How to bound the smallest IS BN probability . . . . . ... .. ... 119
3.8.3 Convergence of AIS estimate . . . ... ... ... ... ....... 122

xiv



3.8.4 On the convergence of AISupdates. . . . . ... ... ... ..... 125

3.8.5 On the optimal IS BN structure . . ... ... .. .......... 126

3.8.6 Theoretically optimal weighting . . . . . ... ... ... ... .... 134

3.9 Summary and conclusions . . . . . . ... .. ..o 139

4 Conclusions 141
4.1 Contributions . . . . . . . . . .. e e e 143
4.2 Future work . . . . . . ... e e 144
4.3 Final remarks . . . . . . . . . .. e e e 145

A Computer-mouse problem 159
B Motivating example for large complex model 163

C Additional experimental results for adaptive importance sampling on
QMR-DT-type BN 167

p. 9%



xvi



List of Tables

2.1 Results on computer-mouse ID . . . . . .. ... oL o oL 62
2.2 Results for IctNeo ID: Experiment 1 (No random numbers shared). . . . . . 67
2.3 Results for IctNeo ID: Experiment 1 (Random numbers shared) . . . . . . . 68
A.1 Probability values for the computer-mouse ID. . . . . . . . ... ... ... 161
A.2 Utility values for the computer-mouse ID. . . . . ... .. ... ... .... 161
A.3 Value of actions and observations for the computer-mouse ID problem. . . . 162

xvil



xviil



List of Figures

1.1
1.2
1.3

21
2.2
2.3
24
2.5

2.6
2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Example of a Bayesian network. . . . . . . . ... ... o Lo

Example of an influence diagram. . . . . . . . ... ... 0oL L. 7
Example of do-operated BN for BN in Figure 1.1. . . . . . .. . ... .. .. 12
General structure of ID considered in Chapter 2. . . . . . ... ... .... 20
Hsu’s single-bound lemma . . . . . . . ... ..o oL 0oL 25
Hsu’s multiple-bound lemma . . . . . .. .. ... ... 0L, 27
The IctNeo ID. . . . . . . . oL o 63
Results for IctNeo ID (Experiment 1): Comparing sampling methods to ran-

dom selection . . . . ... L 70
Continuation of Figure 2.5. . . . . . . .. ... ... o . 71

Results for IctNeo ID (Experiment 1): Efficiency of comparison-based method
relative to traditional method . . . . . . . .. ... 0oL 73
Results for IctNeo ID (Experiment 1): Adaptive allocation and largest MCB-
confidence-interval lower bound . . . . . . ... ... Lo 0oL 74
Results for IctNeo ID (Experiment 1): Quality of selected action using adap-
tive allocation . . . . . . .. Lo 75
Results for IctNeo ID (Experiment 2): Theoretically achieved error vs. num-
berof samples. . . . . . . .. e 7
Results for IctNeo ID (Experiment 2): Effect of maximum number of stages
on number of samples and theoretically achieved error . . . . . .. ... .. 78
Results for IctNeo ID (Experiment 2): Effect of maximum number of stages
on theoretically achieved error and confidence . . . . . .. .. ... .. ... 79
Results for IctNeo ID (Experiment 2): Adaptive allocation and largest MCB-
confidence-interval lower bound . . . . . . .. ... ..o oo 80
Results for IctNeo ID (Experiment 2): Efficiency of comparison-based method

relative to traditional method . . . . . . . . . ... oo, 81



2.15

2.16

2.17

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Al

B.1

C.1

C.2

C.3

C4

C.5

C.6

Results for IctNeo ID (Experiment 2): Efficiency of comparison-based method
with adaptive allocation relative to traditional method . . . . . ... .. ..
Results for IctNeo ID (Experiment 2): Effect of maximum number of stages
in comparison-based method . . . . . ... ... ... 0L,

MDP for optimal adaptive allocation . . . . . . . ... .. ... ... .. ..

Efficiency of AIS estimator for computer-mouse ID problem . . . . . .. ..
Variance of AIS estimator for computer-mouse ID problem . . ... .. ..
ATS results on QMR-DT-type BN . . . . . . ... ... .. ... ... ....
Continuation of Figure 3.3 . . . . . . . .. ... . L L.
Graphical representation of global-mixing IS BN class. . . . . . . ... ...
Graphical representation of local-mixing IS BN class . . . . . ... ... ..
Optimal IS BN structure: BN example . . . . . . .. ... .. .. ......
Continuation of Figure 3.7 . . . . . . . .. ... . o oL
Optimal IS BN structure: ID example . . . . .. ... .. ... ... ...
Continuation of Figure 3.9 . . . . . . . .. ... .o oo,
Optimal IS BN structure: Another ID example . . . . . .. ... ... ...

Continuation of Figure 3.11 . . . . . . .. . ... ... ... ...
Computer-mouse ID . . . . . . . ..ol
Large complex ID . . . . . . . . . ..

Result of AIS using variance error function on QMR-DT-type BN with 1
sample/update . . . .. ... Lo
Results from AIS using variance error function on QMR-DT-type BN with
10 sample/update . . . . . ... Lo
Results from AIS using variance error function on QMR-DT-type BN with
100 sample/update . . . . . ... Lo Lo
Results from AIS using Ly error function on QMR-DT-type BN with 1 sam-
ple/update . . . . ..
Results from AIS using Lo error function on QMR-DT-type BN with 10
sample/update . . . . ... ..o
Results from AIS using Lo error function on QMR-DT-type BN with 100
sample/update . . . .. ... Lo

82

83
85

111
111
115
116
120
121
128
129
130
131
132
133

160

164

168

169

170

171

172



C.7 Results from AIS using KL; error function on QMR-DT-type BN with 1

sample/update . . . .. ...
C.8 Results from AIS using KL; error function on QMR-DT-type BN with 10
sample/update . . . . . ...
C.9 Results from AIS using KL error function on QMR-DT-type BN with 100
sample/update . . . . ... ... Lo
C.10 Results from AIS using KLs error function on QMR-DT-type BN with 1
sample/update . . . .. ...
C.11 Results from AIS using KLs error function on QMR-DT-type BN with 10
sample/update . . . . ... ... L
C.12 Results from AIS using KLs error function on QMR-DT-type BN with 100
sample/update . . . . ... ...
C.13 Results from AIS using KL, error function on QMR-DT-type BN with 1
sample/update . . . ... ... L
C.14 Results from AIS using KL, error function on QMR-DT-type BN with 10
sample/update . . . . ... ..o
C.15 Results for AIS using KL, error function on QMR-DT-type BN with 100
sample/update . . . . ... ... Lo

C.16 Results from AIS using local Ly error function on QMR-DT-type BN with 1
sample/update . . . . ... ... L
C.17 Results from AIS using local Ly error function on QMR-DT-type BN with
10 sample/update . . . . . ... Lo
C.18 Results from AIS using local Ly error function on QMR-DT-type BN with
100 sample/update . . . . . ...
C.19 Results from AIS using local KL; error function on QMR-DT-type BN with
1sample/update . . . . . . .. ...
C.20 Results from AIS using local KL error function on QMR-DT-type BN with
10 sample/update . . . . . ..o oL L
C.21 Results from AIS using local KL, error function on QMR-DT-type BN with
100 sample/update . . . . . . ..o oL oo
C.22 Results from AIS using local KLy error function on QMR-DT-type BN with
1sample/update . . . . .. ... ...
C.23 Results from AIS using local KLy error function on QMR-DT-type BN with
10 sample/update . . . . . ... L

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189



C.24 Results from AIS using local KLs error function on QMR-DT-type BN with
100 sample/update . . . . . ... o Lo Lo
C.25 Results from AIS using local KL, error function on QMR-DT-type BN with
1sample/update . . . . . . ... L Lo
C.26 Results from AIS using local KL; error function on QMR-DT-type BN with
10 sample/update . . . . . ...
C.27 Results from AIS using local KL; error function on QMR-DT-type BN with
100 sample/update . . . . . . ... Lo

xx11

191

192

193



Chapter 1

Introduction

The problem studied in this thesis is the computational equivalent of a decision-maker or
agent trying to make reasonable decisions or behave well in a large, complex, uncertain, but
structured environment. The agent might be a robot, a doctor, a farmer, or a computer-
repair person. The world or environment could be the floor of a building, a patient, a crop
plantation, or a computer system.

Consider the case of a robot as an agent. The robot has available a limited number of
actions it can take; for instance, the robot can move in different directions. It has objectives
that affect its behavior; the robot needs to make deliveries from one office to another. The
robot has some predefined notions of optimality and uses them to evaluate its behavior; it
needs to accomplish its task efficiently, where the notion of efficiency is defined through

characteristics of its behavior such as the time to completion of the task and its safety.

We can think of the coupling of the agent and its environment as a (sometimes dynami-
cal) system. We can characterize the system through its state or the condition it is in. The
robot can be in one corner of the floor facing north with an envelope to deliver. The door

of the office it has to deliver to can be closed.

The sources of uncertainty are multiple. The robot’s actions are nondeterministic; for
example, depending on the condition of the floor, the action of moving forward is not always
successful. The robot typically has limited available information about the true state of the
environment and its own true state at the time of making its decision; detecting a corner is
not enough to distinguish which corner it might be in. Also, the observations can be noisy;
the robot’s sensors sometimes fail to detect a closed door. Also, the compass reading is not

certain; the robot might “observe” that it is facing north while it is really facing north-east.

The (global) state of a system is formed by the relevant (local) variables or features of the
1



system. The number of states grows exponentially with the number of features. Hence, large
environments require a large number of features to be properly described. The complexity
of the system results from the non-trivial (global) interactions among the features forming
the state and the behavior of the system. Although those global interactions are complex,
the systems we consider can be described through local interactions among their features.
Exploiting the local decomposition allows for a more compact representation of the decision
problem. However, it is not always possible to further exploit this local decomposition to
provide efficient computational mechanisms for action selection.

In the following, we will present the decision-theoretic approach (von Neumann and
Morgenstern [1944]; see also Pratt et al. [1995]), which is becoming popular in Al to deal
with problems of decision-making under uncertainty [Boutilier et al., 1999]. Then, we will
discuss how we can obtain exact solutions to the problem of action selection by exploiting
the local decomposition. After describing why it is not always possible to provide efficient
computational mechanisms to solve the action selection problem exactly, we state the mo-
tivating ideas behind this work. A more formal presentation of some of the models and
techniques that we use in this work follows. Then we present a statement of our objectives
in this work. Finally, we present an overview of the chapters to come, including a summary

of our results and conclusions.

1.1 Decision-theoretic models (in general)

In this work, we concentrate on the problem of action selection in decision-theoretic models.
Decision-theoretic models have become the standard framework for modeling problems of
decision-making under uncertainty. Under this framework, we represent our uncertainty
about the state of the system by means of a probability distribution over the states. We
define how useful certain states and actions are by defining a utility function mapping states
and actions into a utility value measuring the degree of usefulness. In this context, our goal
is to select the action with the largest expected utility.

As mentioned earlier, the number of states grows exponentially with the number of
features. Hence, the explicit representation of the probability distribution and the utility
function becomes infeasible quickly. One way to get around this problem is to exploit any
structural characteristics of the system to simplify the description of the decision problem.
In particular, it is sometimes possible to express the probability distribution over the joint
set of features using smaller distributions over combinations of the individual features.

This is possible by exploiting conditional independencies associated with the features of



the particular problem. Also, we can represent the global utility over states and actions
through smaller, more local utility descriptions. Both of these concepts will become clearer

when we present the models used in this work more formally.

1.2 On exact solutions

Researchers have developed many computational methods to solve the problem of action se-
lection exactly by exploiting the available compact representations of the decision problem.
The basis for most of the methods proposed is to exploit the problem structure represen-
tation through dynamic programming [Bellman, 1957, Tatman and Shachter, 1990, Aji and
McEliece, 2000]. Using dynamic programming, the methods decompose the problem into
smaller problems whose solution provide solutions to the global problem of action selection.
However, the local descriptions might not be sufficient for dynamic programming to allow

efficient procedures in general.

1.3 Motivating ideas

Because it is highly intractable, in general, to compute the optimal solution, we are inter-
ested in solutions that are good enough as opposed to optimal. That is, we are interested in
obtaining approximately optimal solutions within a certain confidence level. The approach
we take is to exploit several intuitions about the decision-theoretic problem and model
available, which we will define shortly.

Although the local descriptions and the decompositions of the decision problem may not
allow efficient computation of exact solutions of optimal strategies, they do allow efficient
generation of instances of the system state according to its probability distribution. The
value of a particular action is related to how useful it is expected to be. In evaluating
this value, the most important components are those states that are most likely and/or
those that are very useful or very bad. Furthermore, since action selection is a process
of comparing the values of different action choices, the exact value of each action choice
by itself is not as important as its value with respect to that of the optimal action. By
concentrating on comparing choices, the process of generating possible and useful states
and actions should help us provide approximately optimal actions in those cases where the
exact computation of the optimal action is intractable. Most of these ideas are studied in
Chapter 2.

Several ideas are investigated to further improve on these intuitions. Among them is



to use information about the utility values to improve the generation of instances, an idea

which we study further in the Chapter 3.

1.4 Notation

In this section, we establish notation used throughout this document. We denote one-
dimensional random variables by capital letters and denote multi-dimensional random vari-
ables by bold capital letters. For instance, we denote a multi-dimensional random variable
by X and denote all its components by (X1, ..., X,) where X; is the i one-dimensional
random variable. We use small letters to denote assignments to random variables. For
instance, X = x means that for each component X; of X, X; = x;. We denote the state
space or set of possible values that X; can take by Qx, and the state space set of X by
Qx = [} Qx,. We also denote by capital letters the nodes in a graph. The terms
node and variable are often used interchangeably throughout this document. We denote by

Pa(Y) the parents of node Y in a directed graph.

We now introduce notation that will become useful during the description of the meth-
ods presented in this paper. We denote by the operator >, the sum over the possible
values of the individual variables forming Z, >, >, -+ 2,,+ For any function h with
variables Z and O, the expression h(Z,0)|y_, stands for a function g over variables Z
that results from setting the values of O in h with assignment o while letting the values for
Z remain unassigned. In other words, ¢(Z) = h(Z,0)|p_, = h(Z,0 = o). The notation
X = (Z,0) means that the variable X is formed by all the variables that form Z and O.
That is, X = (X1,...,Xn) = (Z1,-.. ,Zny,01,... ,0n,) = (Z,0), where n = ny + no.
Note that we are assuming that the set of variables forming Z and those forming O are
disjoint. The notation Z ~ f means that the random variable Z is distributed according

to probability distribution f.

1.5 Decision-theoretic models: Definitions

Before describing the decision-theoretic model used in this work, a description of the
Bayesian network probabilistic model is given. This model is commonly used to exploit
the structural characteristics of the system under study and provide a more compact rep-

resentation of the distribution over its states.



Figure 1.1: Example of a Bayesian network.

1.5.1 Bayesian networks

A Bayesian network (BN) is a graphical probabilistic model used to represent uncertainty
in structured domains [Pearl, 1988, Jensen, 1996]. It compactly represents the joint prob-
ability distribution over the relevant variables of the system of interest. It uses a directed
acyclic graph (DAG) to represent the relationship between the relevant variables. A node
in the graph represents a variable. The model defines a local conditional distribution

P(X; | Pa(X;)) for each node or variable X; given its parents Pa(Xj;) in the graph. The

joint distribution is then

n

P(X) = [[ P(X: | Pa(Xy). (1.1)
i=1

The assumption inherent in this model and represented in the graph is that a variable
is (conditionally) independent of (any subset of) its non-descendants in the graph given
(observations of) its parents. Applying the chain rule of probability to the joint distri-
bution using a partial order of the nodes in the graph (where we condition on parents
before children), and simplifying the conditional probability expressions by using the model
assumptions represented by the graph, yields the decomposition of the joint probability
distribution given in Equation 1.1. For instance, we can define a BN on the graph given in

Figure 1.1. Using the structure of the graph, we write the joint distribution as

P(X) = P(X1)P(X2|X1)P(X3| X1, X2)P(Xy | X1, X2, X3) x

P(Xs5 | X1,X2,X3,X4)P(Xe | X1, X2, X3, X4, X5) ¥

e

= P Xl) (X2 | Xl)P(X3 | Xl)P(X4 | X2) X

(
(
(X7 | X1, X2, X3, X4, X5, Xo)
(
P(Xs

| X1, X2)P(Xe | X2)P(X7 | X3, X6)-



The inference problem in BNs is that of computing the posterior probability of an
assignment to a subset of variables given evidence about (i.e., assignments to) another subset
of variables in the system. Assume that the variables are discrete and their sample spaces are
finite. Consider the inference problem of computing P(X7 = z7 | X4 = 24, X5 = x35) in our
example BN. By the definition of conditional probability, we can decompose this problem
into computing the probabilities P(Xy4 = x4, X5 = x5, X7 = x7) and P(X4 = x4, X5 = x5).
Using the decomposition of the joint probability distribution we can compute

P(Xy=24,X5 =25, X7 =27) = >, P(X1)P(Xs | Xi) x

X1,X2,X3,X6
P(X3 | Xl)P(XG | Xz) X

P(X4 = 24 | X2)P(X5 = T5 | Xl,XQ) X
P(X7 = z7| X3, X¢)

Sometimes we can compute this quantity more efficiently by distributing the sums. However,
this is not always feasible. In general, let X = (Z,0) where O is the set of variables of
interest, o is an assignment to it and Z are the remaining variables. For this problem we

want to compute probabilities of the form

P(O=0)=) P(Z,0=o0).
zZ

In the example above, O = (X4, X5, X7), 0 = (24, v5,27), Z = (X1, X2, X3, X¢), and

P(Z,0 =0) = P(X;1)P(X2|X1)P(X3| X1)P(Xe | X2) X
P(X4 = T4 | X2)P(X5 = T5 | Xl,XQ)P(X7 =7 | X3,X6).

Often, the local decomposition of the joint distribution still leads to the evaluation of
sums over a large number of variables. In general, this problem is computationally in-
tractable [Cooper, 1990]. As a matter of fact, although approximation techniques have
been developed, belief inference approximations (both deterministic and randomized) are

also computationally intractable [Dagum and Luby, 1993].

1.5.2 Influence diagram

An influence diagram (ID) is a decision-theoretic model for decision-making under uncer-
tainty [Howard and Matheson, 1981]. It consists of a directed acyclic graph along with a

structural strategy model, a probabilistic model and a utility model. The graph represents



Figure 1.2: Example of an influence diagram.

the decomposition used to compactly define the different models. We can think of an ID
as a BN with decision and utility nodes added. For instance, we can use our example BN
to build an ID as shown in Figure 1.2. The vertices of the graph consist of three types
of nodes: decision nodes, chance nodes and utility nodes. Decision nodes are square and
represent the decisions or action choices in the decision problem. Chance nodes are circular
and represent the variables of the system relevant to the decision problem. Utility nodes
are diamonds and represent the utility associated with actions and states. A state is an

assignment to the variables associated with the chance nodes of the ID.

Structural strategy model The structural strategy model defines locally the form of a
decision rule for each decision node A;. This rule is a function of the information available
at the time of making that decision. The typical assumption is that the actions are ordered
and that previous decisions and the information they are based on is not forgotten at the
time of making a future decision (this is called the no-forgetting assumption). The values
of the parent variables of a decision node will be available at the time of making that
decision (although not all of them might actually be relevant—see Shachter [1998]). Hence,
there is an implicit directed arc from previous decision nodes and their parents to the next
decision node in order. Therefore, the local policy is a mapping from assignments of Pa(A;)
(including its implicit parents) to the set of actions available for A;. For the most part, we
will assume that the ID has a single decision node. We denote a strategy for our example
model by 7, the state space or set of possible assignments for the parents of the action node

by Qp,(4) and the set of possible actions 24. Then, 7 : Qp,4) = Q4.



Probability model The probability model compactly defines the joint probability distri-
bution of the relevant variables given the actions taken using a Bayesian network (BN). We
now have potentially different joint distributions over the variables, for each action choice
available. The joint distribution over the variables, given the action choices a assigned to

the decision variable, is

n
P(Xy,..., X, | A=a) =[] P(X: | Pa(X;))
=1 A=a
Note that in our example ID there is only one decision node. In particular, for our example

ID, the joint distribution is

P(X|A=a) = P(X1)P(X2|X1)P(X3 | X1)P(X4| X2) x
P(X5 | Xg,Xg)P(X(; | XQ,A = CL)P(X7 | X3,X6).

Utility model Finally, the utility model defines the utility associated with actions re-
sulting from the decisions made and states of the variables in the system. Although other
possible definitions exist, in this work we assume that the total utility function U is the
sum of local utility functions associated with each utility node (i.e., additive utilities if more
than one) [Keeney and Raiffa, 1976]. For each utility node Uj;, the utility function provides
a utility value as a function of its parents Pa(U;) in the graph. The total utility can be
expressed as

m
U(X,A) =) U(Pa(ly)). (1.2)
i=1

Note that we are also using the label of the utility node to denote the utility function
associated with it. In our example, there is only one utility node and it is a function of the
variable X7 and the decision A; that is, the value of the utility is U(X7, A), where U is a

function mapping values of X7 and A to a real value.
In this work, we assume that the decisions are discrete and finite. The variables are
discrete and finite, and the local utilities are bounded. Some of these assumptions can be

relaxed.

Value of a strategy Assume that we have a finite number of discrete action choices.
Then, one problem is to select the best strategy or function 7*, mapping each possible value
of the parents of the decision node to an action choice. In our example, A = 7(Xy, X5),

where 7 is a function mapping each combination of values of X4 and X5 to an action choice.



The best strategy is the strategy with highest expected utility. Let X = (Z, 0) where the
variables in O are parents of the decision node and Z are the remaining variables. The
problem of obtaining an optimal strategy can be reduced to obtaining, for each assignment
O = o, the action that maximizes the value associated with the action and the assignment.

The value V™ of a strategy 7 is the expected utility of the strategy:

vt = Y P(X|A=7(0)U(X,A=n(0))
X
= Y > P(Z,0|A=r(0))U(Z,0,A=n(0)).
0O Z

The optimal strategy 7* is that which maximizes V™ over all 7. We denote the value of the
optimal strategy by V*.

Note that we can decompose this maximization into maximizations over the set of actions
for each observation. For each assignment to the observations o, we define the (uncondi-

tional) value of an action a by

Vo(a) = V(o0,a) = ZP(Z,O =o0|A=a)U(Z,0 =0,A =a). (1.3)
z

(As we will see soon, we will be considering V (0, a) for each observation o, so we use the
notation V,(a) often to simplify the expression and make it clear that we are considering a
particular observation. The two notations are equivalent.) Hence, the value of a strategy
is VT =3 5 Vo(n(O)). Note that this is not the traditional definition of the value of an
action. Typically, the value of an action is defined as the conditional expected utility of the
action given an assignment of the observations. If we denote this value by V' (a | 0), we can
express the value of a policy as V™ =), P(O)V(7w(O) | O). We discuss later why we do
not use the traditional definition.

If we denote by a* = 7*(0) the action that maximizes V,(a) over all actions a, then
the value of the optimal strategy is V* = >, Vo(7*(0)) = >_omax, Vo(a). Hence, the
problem of strategy selection can be reduced in this way to that of action selection for each
observation.

For instance, in our example ID, O = (X4, X5), Z = (X1, X2, X3, X4, X7), 0 = (24, 25),

P(Z,O =0 | A= a) == P(Xl)P(X2 | Xl)P(X3 | Xl)P(XG | Xz,A = a) X
P(X7 | X3, X6)P(X4 =24 | X2)P(X5 = x5 | X2, X3),

and U(Z,0 = 0,A = a) = U(X7,A = a). Note once again that computing V,(a) requires
the evaluation of a sum. For the same reasons as in the previous problem of belief inference

in BNs, the exact computation of this value is intractable in general.
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1.5.3 Markov decision process

Markov decision processes (MDPs) and partially observable Markov decision processes
(POMDPs) are popular frameworks for modeling sequential decision-making under un-
certainty. One can think of these models as IDs with multiple (and a possibly infinite
number of) decision nodes and utility nodes (typically called rewards in their context) and
restrictions on the probability model (both on the structure and parameters of the local
probability models). We do not deal directly with these models in this work. However, we

believe that some of the results from our work have potential extensions to problems of this
kind.

1.6 Importance sampling

In this work we present methods based on Monte Carlo estimation (See Rubinstein [1981]
and the references therein). In this section, we describe importance sampling, which is
a general method for estimating integrals and sums in high dimensions (See Kahn and
Marshall [1953] and the references therein). Importance sampling provides an alternative
to the exact methods for evaluating sums in the form of an approximation. Let the quantity
of interest be G = )~ , g(Z) for some real function g, which we call here the target function.

We can turn the sum into an expectation by expressing

_ 9(Z)
G‘;f(z)ﬁ’

where f is a probability distribution over Z satisfying, for all Z, ¢(Z) # 0 = f(Z) # 0
(i.e., f is absolutely continuous with respect to g). We call f the importance-sampling
distribution. We define the weight function w(Z) = g(Z)/f(Z) which allows us to express

G =) f(Z)w(2).
Z

Hence, we can obtain an unbiased estimate of G by obtaining N samples z(1), ... z(V)

from Z ~ f and computing the estimate
| X
Yo @
G = l; w(z'"). (1.4)

Note also that by the central limit theorem (CLT), vV N(G — G) is asymptotically normally
distributed with mean 0 and variance Var;[w(Z)] = Y, f(Z) (w(Z) — G)*.
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We can apply this technique to the problem of belief inference in BNs [Fung and Chang,
1989, Shachter and Peot, 1989]. Typically, we let

g(Z) = P(Z,OZO)
= [Pz |Pa(z) [[ P(O; | Pa(0y))|
=1

=t O=o0
n1
f(Z) = HP(ZZ' | Pa(Z;)) , which implies
i=1 O=o0
na
w(Z) = []PO;]|Pa(0y)
J=1 O=o

For instance, in our example, we can estimate G = P(Xy = x4, X5 = 5, X7 = z7) by
letting Z = (Xl,XQ,Xg,X(;), O = ()(4,)(5,)(7)7 o= (374,505,337),

9(Z) = P(X1)P(Xz2|X1)P(X3 | X1)P(Xe | X2) X

(X4 =z4 | Xo)P(X5 = x5 | X1, X2)P(X7 = z7 | X3, Xs),
(

(

)

f(Z) = P(X1)P(X2 | X1)P(X3 | X1)P(Xe | X2),
X4 = T4 | X2) (X5 = XI5 | Xl,XQ)P(X7 = X7 | X3,X6).

£

N
[
g

Note that, in the example above, we are defining the importance sampling distribution
to be the prior distribution over the hidden variables Z of the BN. In general, the sampling
distribution is that which results from the do-operated BN as defined by Pearl [2000] where
the do operation or intervention is done on the variables that have assignments (in this case,
O). Graphically, we can represent this distribution by removing the arcs into nodes that
have been assigned values (i.e., operated on). Consider the problem of computing P(X3 =
x3, X4 = x4, X5 = x5). The graph of the BN representing the do-operated distribution
P(X | do(X3 = z3,X4 = x4, X5 = x5)) that we would use for this problem is given in
Figure 1.3. We obtain samples from this distribution by sampling the variables in the
(partial) order defined by the DAG of the do-operated BN. We obtain samples from each
variable by traversing the nodes in the graph and sampling the variable corresponding to
nodes that were not assigned by the do-operation, conditioned on the assignments to the
parents of those variables. Note that by the way we are obtaining samples from the hidden
variables, the parent assignments will always be available at the time a node is sampled.
Therefore, the resulting samples will be assignments to those variables that are not in the

evidence set (i.e., the hidden variables) according to the do-operated distribution of the BN.
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P(X | do(Xs = z3, X4 = 24, X5 = x5))

Figure 1.3: Example of do-operated BN for BN in Figure 1.1.

In cases when no variable in O has children in Z (as is the case of the running example from
the previous paragraph), the do-operated distribution corresponds to the prior distribution

given by the original BN.

Consider again the problem of computing P(X3 = z3, X4 = x4, X5 = x5). We would
1. Sample z; ~ P(X3).
2. Sample 25 ~ P(X5 | X1 = x1).
3. Sample z¢ ~ P(Xs | X2 = z2).
4. Sample z7 ~ P(X7 | X3 = z3, X6 = z¢)-

We can extend this procedure beyond this example to perform more general computations
in BNs.

We call the method resulting from this importance-sampling distribution the traditional
method. In the context of belief inference, this method is called likelihood-weighting (LW)
since the weight function is a “local likelihood” and thus each sample is weighted by a

product of “local likelihoods.”

We can similarly apply this technique in the context of action selection in IDs to evaluate
Vo(a) (See Charnes and Shenoy [1999] for an example and previous references). Now the

decision node is also do-operated (A = a). In general, we let

g(Z) = P(Za020|AZG;)U(Z,O:O,A:Q)’

f(z) = [P |Pa(2)) :
i=1

O=0,A=a
w(Z) = []P(O;]|Pa(0,))U(Z,0,4)
j=1

O=0,A=a
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In particular, for our example,

9(Z) = P(X1)P(X2| X1)P(X3| X1)P(Xe | X2,A =0a)P(X7| X3,Xg) X
P(X4 =24 | X2)P(X5 = x5 | X2, X3)U(X7,A = a),

f(Z) = P(X1)P(X2|X1)P(Xs| X1)P(X6 | X2, A =a)P(X7 | X3, Xs),

w(Z) = P(Xs=uz4|Xo)P(X5=1m5]| Xo,X3)U(X7,A=a).

1.7 General objectives

Our primary objective is to assess the properties of the simple importance sampling or
traditional method for the problem of solving IDs, and more specifically, selecting “good”
actions. We look at how, by using simple stopping rules and allocation schedules based
on the idea of multiple comparisons, we can improve over the naive use of this sampling
method based on direct estimation.

There are many different exact methods for solving IDs directly. Also, if we could nor-
malize the utilities (bring the utilities to a 0-1 scale through linear transformations), we can
reduce the problem of solving IDs to the problem of inference in BNs (See Shachter and Peot
[1992] and Zhang [1998], who also refer to Cooper [1988]). Hence, in principle, we can apply
any method (either exact or approximate) for the belief inference in BNs to solving IDs.
There are many methods for exact computation in BNs. Given the general intractability of
exact inference, I believe they will all have problems with some class of models where one
might have to consider a very large number of possible joint outcomes for a subset of the
domain variables. It is this class for which we believe the methods developed in this thesis
can be most effective. In particular, the effectiveness of sampling methods is primarily
tied to the numerical properties of the model, instead of the global structural properties
conveyed in the graph. Therefore, I believe, in general, the properties that make exact
methods efficient are different from those that make sampling methods effective. Whether
exact methods are efficient or not can be determined primarily from the properties of the
graph. (See Appendix B for an example of a model that is computationally problematic for
exact methods.) Thus, which method would be more applicable is mostly problem-domain
dependent. Hence, further analytical and empirical study than that provided in this thesis
is still necessary to compare exact methods to the approximation methods proposed in this
thesis.

Also, other kinds of approximation methods, including deterministic methods, that ex-

ploit or force different particular structural properties of the problem for computing optimal
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strategies have been suggested in the context of IDs [Nilsson and Lauritzen, 2000]. In ad-
dition, approximation techniques have been suggested in the related context of MDPs and
POMDPs[Dearden and Boutilier, 1997, Boutilier et al., 2000, Koller and Parr, 1999, 2000,
Kim and Dean, 2001]. In principle, all of these techniques can be applied to the problem we
consider in this thesis, and in principle, some can be combined with the methods developed
in this work. I believe such approximations, by their nature, will primarily be effective un-
der different conditions, as they are mostly based on exploiting further structural properties
of the model. T also believe that they can be combined with the methods presented here.
However, further analysis and study comparing the methods presented here with other type
of approximation methods is still required.

It has been suggested that the simple importance sampling or traditional importance
sampling method is used most often in practice because of both its simplicity and effective-
ness as compared to other methods (at least for problems in BNs). Hence, I use adaptive
importance sampling (AIS) as a method to update our sampling distribution while remaining
in the simple importance-sampling class of methods. To this degree we study the general
properties of methods of this kind, and how they compare with the simple importance
sampler for the estimation problem. A careful, general comparison study of the methods
presented here with all other sampling methods developed was not performed in this thesis
but will certainly be required in the future.

Finally, our empirical study of the AIS method involves a very special type of model. A
deterministic approximation method based on variational methods in statistical physics [Jor-
dan et al., 1997] has been shown quite successful for this model [Jaakkola and Jordan, 1999].
We do not empirically compare this technique to ours. However, we comment on the con-

nection of variational methods to ours from a theoretical perspective.

1.8 Overview

We will now provide an overview of the chapters forming this document.

e Chapter 2 deals with the problem of action selection in IDs with a single decision.
For the most part, we will concentrate on studying methods for which we can prove
theoretically sound approximations, as opposed to methods based on asymptotic ap-
proximations and/or other heuristics. We will present theoretical results establishing
bounds on the number of samples required to select actions that are near optimal with

high probability. The final objective behind the approximation is the computation of a
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full strategy that is near optimal with high probability. We view the problem of action
selection as a problem of multiple-comparisons and exploit results from the statistical
literature in multiple-comparisons with the best (MCB) [Hsu, 1996] throughout.

We also developed a general class of comparison-based or multi-stage sequential meth-
ods similar to group sequential methods used in the statistical literature on experimen-
tal design and clinical trials. For the most part, comparison-based methods achieve
the theoretical guarantees of other estimation-based methods presented in the chap-
ter. Although we provide stopping rules for which the comparison-based methods
are theoretically valid, we do not present rigorous bounds on the number of sam-
ples. Hence, we will empirically show that comparison-based methods can perform
theoretically-guaranteed, near-optimal action selections with significantly fewer sam-
ples than those needed by estimation-based methods. We also suggest a heuristic
version of the comparison-based method in which we allow adaptive sample-allocation
schedules. The motivation is to reduce the total number of samples for action selection
by reallocating the samples given information from the sample outcomes. We present
a very simple version of this idea. Even in simple formulations, adaptive realloca-
tion of samples presents problems for theoretical analysis. However, we believe this
heuristic method can be very effective in reducing the number of samples needed for
near-optimal action selection. At the end of the chapter we discuss issues of optimality
associated with the adaptive reallocation heuristic method, as well as some potentially
effective (though not necessarily theoretically grounded) practical extensions of our

methods.

Section 2.9 presents an empirical study of the methods in this chapter in a real ID
known as the IctNeo ID [Bielza et al., 2000, Gémez et al., 2000]. This ID was developed
to treat jaundice in newborns and is still under development. At this time, the
model is not amenable to exact methods. Since the ID is technically a multi-stage
ID, we considered several modified versions of it in order to make a single decision
model. Because the ID models much of the background information associated with
the patient, the number of observations potentially available at the time of decision-
making is quite large for this ID. However, the exact methods we tried could not solve
one modified version of this ID used in the experiments, even when considering just a
single observation scenario at a time. Not only were the sampling methods developed
and presented in this chapter very effective in obtaining optimal actions for each

observation (from the set of randomly generated observations that we tried), but also
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they theoretically guarantee very close-to-optimal behavior. Also, an instantiation of
the theoretically-grounded comparison-based methods effectively reduced the number
of samples needed to achieve near-optimal action selection. We evaluated the adaptive-
reallocation heuristic method in this problem and found it to be very effective too.
We also evaluated the methods in another modified version of this ID for which exact
methods were efficient. This was done primarily to provide another version of the

problem in which to compare the importance sampling methods among themselves.

Chapter 3 presents a class of adaptive importance sampling (AIS) methods for estima-
tion in graphical models. Although we believe the methods are more general, we will
concentrate on problems in BNs and IDs. The main motivation for these methods
is to improve the quality of the estimators of the traditional importance sampling
method. We view the problem as a learning or optimization problem. The objective
is to find the best probability distribution to use for sampling over a parameterized
class. We argue that an immediate and useful class for this problem is that of BNs.
This is because BNs allow efficient simulation. We consider particularly relevant error
measures and developed update rules for learning the importance sampling BN from
the samples themselves. We suggest a class of estimators that make more efficient
use of the samples generated. We theoretically study those estimators and show that
some instantiations of the class of estimators have interesting properties, the ability
to be made unbiased, to converge in probability to the true value, and to allow com-
putation of confidence bounds. We also theoretically study the learning process. Our
main objective in doing this is to show that by approaching the update process as a
stochastic gradient problem we can borrow convergence (and other) results from the
theory of stochastic approximation to analyze theoretically the behavior of the AIS

methods presented in this thesis.

We performed a preliminary empirical study on a simple ID problem. We also per-
formed a simple empirical study that involved computing the likelihood of a random
sample on a synthetic BN. The synthetic BN was randomly generated from a class of
BNs known as QMR-DT-type BNs, for their similarity with a large real BN developed
for medical diagnosis. This model has been studied in the community and is still the
subject of current interest. In general, exact computations in this special model are
intractable. Inspired by the empirical results, we theoretically study some properties
of the AIS methods for this class of problems and in doing so we start to establish

the connection between AIS and variational method. We also connect this work to
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additional work on adaptive importance sampling in our field and others.

1.9 Main theme

The main theme behind the arguments in this dissertation is that sampling methods can
be an effective tool for problems in Bayesian networks and influence diagrams when they
exploit particular properties of the model under consideration. In particular, sampling
methods are very effective for selecting approximately optimal actions in influence diagrams.
For instance, in Chapter 2, I exploit the fact that optimal action selection is primarily a
comparison problem to provide more effective sampling methods than those resulting from
more naive application of the sampling process. In Chapter 3, I exploit the fact that one
can simulate Bayesian networks efficiently and use sample information to provide methods
for adapting the sampling distribution that resulted in significantly more accurate estimates
than those produced by naive applications of importance sampling. In conclusion, I believe

this theme applies to models beyond those explicitly considered in this thesis.
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Chapter 2

Action Selection

In this chapter, the problem under study is selecting an optimal strategy in an influence
diagram, concentrating on the case in which there is only one decision to be made. Our
motivation for this focus is that we can decompose the problem of multiple decisions into
many sub-problems involving single decisions (i.e., by using the technique presented by
Charnes and Shenoy [1999]). We believe we can extend methods developed to solve IDs of
this kind to obtain methods to solve finite-horizon Markov decision processes (MDPs) and
partially observable Markov decision processes (POMDPs) expressed as dynamic Bayesian
networks (DBNs) (i.e., by modifying the technique presented by Kearns et al. [1999b]).

Figure 2.1 shows the general structure of the example ID we consider.

The problem of strategy selection involves the sub-problem of selecting an optimal ac-
tion, from the set of action choices available for that decision, for each possible observation
available at the time of making the decision. Therefore, we want to select the action that
maximizes the expected utility for each observation. One way to do action selection is to
compute, exactly or approximately, the probabilities of the sub-states of the system directly
relevant to our utility in order to evaluate the expected utility or value of each action. A
sub-state is formed from the state of a subset of variables in the system. This approach
fails to take advantage of an important intuition: the expected utilities of the actions are
unimportant—it only matters which action is best. Therefore, the problem of action selec-
tion is primarily one of comparing the values of the actions. Hence, we can combine this
with the intuition that actions that are close to optimal are also good. In this chapter,
methods for action selection in IDs are presented that take advantage of these intuitions to

make major gains in efficiency.

Exact methods exist for computing the optimal strategy in an ID (see Charnes and
19
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Figure 2.1: General structure of ID we consider in this chapter.
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Shenoy [1999] and Jensen [1996] for short descriptions and a list of references). However,
this problem is hard in general. In this chapter, we concentrate on obtaining approximations
to the optimal strategy with certain guarantees. Our objective is to find policies that are
close to optimal with high probability. That is, for a given accuracy parameter ¢* and
confidence parameter 6*, we want to obtain a strategy # such that V* — V% < ¢* with
probability at least 1 — §*, where V* is the (true) value of the optimal strategy and V7
is the (true) value of the strategy #. From the decomposition of the value of a strategy
described in the introduction, if we obtain actions for each observation such that their
values are sufficiently close to optimal with sufficiently high probability, then we obtain a
near-optimal strategy with high probability. One simple, albeit naive, way to do this is
as follows. Let [ be the number of possible assignments to the observations. If for each
observation o we select action é such that V,(a*) — Vo(d) < 2e with probability at least
1 — 4, where € = €*/(2l) and ¢ = §*/I, then we obtain a strategy that is within ¢* from the
optimal with probability at least 1 — §*. This approach is naive because it allocates error
and precision parameters equally among observations. A smarter way to do this allocation
is given later in this chapter. Based on the argument just presented, we concentrate on

finding a good action for each observation.

Typically the value of an action is defined as the conditional expected utility of the action
given an assignment of the observations. If we denote this value by V(a | 0), we can express
the value of a policy as V™ = Y, P(O)V(n(O) | O). This definition is not used because
it is harder to obtain estimates for V' (a | 0) with guaranteed confidence bounds than it is
to obtain estimates for V,(a). Let us argue briefly why it is harder to deal with V(a | o).
The main reason is that, in general, obtaining an approximation for V(a | o) requires
obtaining the approximation of a ratio (i.e., Vo(a)/P(O = 0)). In general, to obtain any
kind of approximation (either absolute or relative) of a ratio requires relative approximations
for the numerator and denominator. Relative approximations are in general intractable
computationally, potentially requiring an unreasonable number of samples. We also argue
that we do not need to estimate V' (a | 0) to get absolute approximations as described above.
In general, computing the conditional value of an action given an observation o requires
that we compute the normalizing factor probability P(O = o), as well as the unconditional
value V,(a). However, the normalizing factor is constant for all possible action choices
available given the observation. Hence, to determine the optimal action we do not need to
compute this probability. Also, with respect to the global value of the strategy, this term
will be canceled by the expectation. In addition, if the unconditional value is very small

(in the case that the total utility has range [0, 1], the unconditional value will be smaller
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than the probability of the observation: Vy(a) < P(O = 0)), and if its variance is not
small enough, obtaining relative bounds for it might require an extremely large number
of samples (inversely proportional to how small that value is). To summarize, the type of
approximations considered here are absolute approximations. Relative approximations can

be useful in some cases and we will consider them in Section 2.4.

2.1 Useful mathematical results

In this section, we present some mathematical results from large deviation theory and the
statistical work on multiple comparisons with the best (MCB) that will be useful during the
analysis of the methods presented in this thesis. The results are presented for completeness
and in order to refer back to them during the analysis and proofs.

2.1.1 Large deviation results

We first introduce the following notation and definitions which will be used in the statements

of the results below. For fixed n, let
1. X1, Xs,...,X, be random variables,
2.85=X1+Xo+ -+ X,,
3. X =8/n,
4. —oco < p = E[X] = E[S]/n < oo (finite) and
5. 02 = n'Var[X] = Var[S]/n < oo (finite).

Theorem 1 1. (Hoeffding’s traditional bound [Hoeffding, 1963]) If

(a) X1,Xo,...,X, are independent, and

(b) a; < X; < b;, and a; < b; constants, fori=1,2,... n,

then for t > 0,
n
Pr{X —pu>t} <exp (—2n2t2/ Z(b’ - ai)2) . (2.1)
i=1

2. (Hoeffding’s strengthened bound—See Hoeffding [1963], page 17-18, for a discussion)
The bound given in (2.1) above still holds if condition 1a above is replaced by the

weaker condition
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(a) the sequence S), = Spm — E[Sn],m =1,2,... ,n, is a martingale; that is
E[S,, | S1,-.. .81 =8;,1<j<m<n, (2.2)
with probability one,

Theorem 2 (Bernstein’s inequality—as presented in Devroye et al. [1996] and attributed
to Bernstein [1946]) If

1. X1,Xs,...,X, are independent, and
2. E[X;]=0, and X; <c¢, fori=1,2,... ,n, and ¢ constant,
then for 0 <t <c,
Pr{X >t} <exp (—nt*/(20° + 2ct/3)) . (2.3)

In applying Bernstein’s inequality, typically we have a < X; < bfori=1,2,... ,n, and
constants a,b, such that a < b. Hence, we use the random variables X! = X; — p, with
p = E[X;], such that E[X]] = 0, for ¢ = 1,2,... ,n. This leads to X =X- u/n, and
¢ = b—a. (Note that o2 is as defined above, since Var[X'] = Var[X].) The result is a
statement about the deviation of the sample mean from the true mean (in the case that the
common mean is not necessarily zero, just as in Hoeffding’s bound). Bernstein’s bound is

tighter than Hoeffding’s when 02 < (b — a)? and ¢ is sufficiently small.

Theorem 3 (Bonferroni’s inequality or Union bound) If Ay, As,... be a (countably infi-
nite) sequence of events (or sets), then Pr(Uj2q Ai) < Doy Pr(4;).

2.1.2 Multiple comparisons with the best (MCB)

There are two important results from the field of multiple comparisons and in particular
from the field of multiple comparisons with the best that are used in this work. These
results are based on the work of Hsu [1981] (see Hsu [1996] for more information). Before
presenting the results, let us introduce the following notation: denote z+ = max(x,0) and
—z~ = min(0, z). The first result is known as Hsu’s single-bound lemma, which is presented
as Lemma 1 by Matejcik and Nelson [1995].

Lemma 1 Let p1y < pz) < -+ < py be the (unknown) ordered performance parameters
of k systems, and let i1y, fi(2),--- , fi(x) be any estimators of the parameters. If

Pr{iwy — i) — () — pey) > —wyi=1,... . k—1}=1—a, (2.4)
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then

Pr{p; — max; pj € [—(ji; — maxjy; fi; — w) ™, (f — max;z; fi; +w)*], for all i}
>1—a. (2.5)

If we replace the = in (2.4) with >, then (2.5) still holds.

In the context of the work presented in this chapter, let for each action a, the true value
fta = V,(a) and the estimate fi, = V,(a). Also, the i1 smallest true value corresponds to
f()- That is, if Vo(a1) < Vo(ag) < -+ < Vp(ag), then for all i, u;) = Vo(a;). Note that in
practice, we do not know which action has the largest value. In order to apply Hsu’s single-
bound lemma, we obtain the bound Pr{j; — fi; — (1; — ;) > —w, for all i # j} > 1 —aq,
for each action j, individually. This implies that Pr{u — fiu) — (@) — pe)) > —w,i =
1,...,k—1} > 1— «, which allow us to apply the lemma. Figure 2.2 graphically describes
this practical interpretation of the lemma. For each action 4, individually, the upper bounds
on the true differences, drawn on the left-hand side, V,(i) — Vo (j) < Vo (i) — Vo (j) + w, for
each j # 1, hold simultaneously with probability at least 1 — a. Note that the “lower
bounds” on the left-hand side are —oco. The confidence intervals, drawn on the right-hand
side, Vo (i) — max;z; Vo(j) € [—(Vo(i) — maxjz; Vo(j) — w) ™, (Vo(i) — max;z Vo(j) + w)*],
for each action %, hold simultaneously with probability at least 1 — «.

The second result allows us to assess joint confidence intervals on the difference between
the value of each action from the value of the best action when we have estimates of the
differences between values of each pair of actions with different degrees of accuracy. The
result is known as Hsu’s multiple-bound lemma. It is presented as Lemma 2 by Matejcik
and Nelson [1995], and credited to Chang and Hsu [1992].

Lemma 2 Let pi(1) < p2) < --- < pyry be the (unknown) ordered performance parameters
of k systems. Let T;; be a point estimator of the parameter p; — ;. If for each i individually

Pr{Ti; — (ui — pj) > —wyj,for all j #i} =1 —q, (2.6)
then we can make the joint probability statement
Pr{p; — max;z; u; € [D;, D], for all i} > 1 —q, (2.7)
where D}t = (minj4[T;; + wij])*, G = {l: D' > 0}, and
D;:{O | ifg:{z'}
—(minjeg ji[—Tji — wyi])~  otherwise.

If we replace the = in (2.6) with >, then (2.7) still holds.
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Figure 2.2: Graphical description for practical application of Hsu’s single-bound lemma.
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Figure 2.3 presents a graphical description of this lemma. Let, for all actions 4, D;” and
D}, be as defined in Hsu’s multiple-bound lemma, with u; = V(i) and for all j # i, Tj; =
Vo(i)—Vo(j). For each action i, individually, the upper bounds on the true differences, drawn
on the left-hand side, V(i) — Vo(j) < Tij + wij, for each j # 4, hold simultaneously with
probability at least 1 —«. Note again that the “lower bounds” on the left-hand side are —oc.
The confidence intervals, drawn on the right-hand side, V(i) — max;; Vo(j) € [D;, Di+ ],
for each action ¢, hold simultaneously with probability at least 1 — a. Also, in this example,
G = {1,2}. In the context of the work presented in this proposal, G is the set of all the
actions that could potentially be the best with probability at least 1 — a. That is, for each
action a in G, the upper bound D, on the difference of the true value of action a and the

best of all the other actions, including those in G, is positive.

2.2 Estimation-based methods

The most straightforward approach to selecting the best action is to obtain estimates of
Vo(a) for each a by sampling, using the probability model of the ID conditioned on a, then
select the action with the largest estimated value.

As stated in the introduction, we can apply the idea of importance sampling to this
estimation problem by using the probability distribution defined by the ID as the importance
function or sampling distribution. We now quickly review this method in the context of the
example ID in Figure 2.1.

First, let us present definitions that will allow us to rewrite V,(a) more clearly. First,
let Z = (S,8’) and define the target function (in our case, the weighted utilities)

ga,o(Z) = ga,o(S,Sl)
= P(S)P(S'| 8,0 =0,A=a)x
P(O=0|8)U(S,8,0 =0,4=a).

Note that Vy(a) = >, ga,0(Z). Now, we can define the importance function as
fa0(Z) =P(S)P(S'| S,0 =0,A=a), (2.8)
which lets us define the weight function we,o(Z) = ga,0(Z)/ fa,0(Z). In this case,
wa,o(Z)=P(O=0]8)U(S,S',0 =0,A=na). (2.9)

Finally, we can express Vo(a) = Y 5 f0,0(Z)(90,0(Z)/ fa,0(Z)). The idea of the sampling

methods described in this section is to obtain independent samples according to fg, o, use
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Figure 2.3: Graphical description of Hsu’s multiple-bound lemma.
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those samples to estimate the value of the actions, and finally select an approximately
optimal action by taking the action with largest value estimate. Denote the weight of a
sample 20 from Z ~ fa,0 as w((f,)o = wa,o(z(i)). Then an unbiased estimate of V,(a) is
Vo(a) = 515 Ll wive.

2.2.1 Traditional Method

We can obtain an estimate of V,(a) using the straightforward method presented in Algo-

rithm 1; it requires parameters N, , that will be defined in Theorem 4.

Algorithm 1 Traditional Method

1. Obtain independent samples z(1), ... | z(Ne.0) from Z ~ fa0-
2. Compute the weights wg(),, . ,wg{\g‘”).

3. Output V,(a) = average of the weights.

This is the traditional sampling-based method used for action selection. However, the
author is unaware of any previous result regarding the number of samples needed to obtain
a near-optimal strategy with high probability using this method in this context.

The following small lemma, is useful for the proof of the next theorem.

Lemma 3 Let A and B be two events. If A= B, then Pr{B} > Pr{A}.
Proof: Let A be the complement of event A. From, A = B, Pr{B | A} = 1. Also,

Pr{B} = Pr{B|A}Pr{A}+Pr{B| A} Pr{A}
> Pr{B| A}Pr{A}
= Pr{A}.

a

Theorem 4 If for each possible action i =1,... |k, we estimate Vo(2) using the traditional

method, the weight function satisfies l;.o < wio(Z) < uj o, and the estimate uses

(uio —lio)?, k
Nio = [% In <

samples, then the action with the largest value estimate has a true value that is within

a#a

- (Vo(a) — max Vy(a) 26> _] <2

of the optimal with probability at least 1 — 4.
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Proof sketch. The proof goes in three basic steps. First, we apply Hoeffding’s bounds [Ho-
effding, 1963] to obtain a bound on the probability that each estimate deviates from its true
mean by some amount €. Then, we apply the Bonferroni’s inequality (Union bound) to ob-
tain joint bounds on the probability that the difference of each estimate from all the others
deviates from the true difference by 2¢. Finally, we apply Hsu’s single-bound lemma to

obtain the result.

Proof: By Hoeffding’s bounds, for each i, if we use N; , as defined above, individually,

)

Pr{Vo(i) —Vo(i) > €} < L

and
PH{T,() ~ Voli) < ~¢} < 7.

Using Bonferroni’s inequality (Union bound), we can state for each ¢ individually,

k
Pr {Vo(l) — Vo(i) > €} U {Vo(]) —Vo(j) < —€} | <6
J=1g#i

This implies, for each i, individually,

k
Pr | {Vo(i) = Vol(i) <€} [] {Volj) = Volj) > —¢} | >1—04.
=14
By Lemma 3, for each i, individually,
Pr{Vo(i) — Vo(j) — (Vo(i) — Vo(j)) > —2¢, forall j =1,... ,k,j #i} > 1.
Using Hsu’s single-bound lemma with p; = V, (i), fi; = Vo (i) for all i, we obtain,
Pr{Vo (i) — max Vo(j) € [~(Vo(i) — max Vo(j) —26) 7,
Jj#i j#i

(Vo (3) — mngo(]) +26)t], foralli=1,... ,k} >1-4.
j#i

Let a* = argmax, V,(a), & = argmax, V,(a). From the last statement, V,(a*) — V,(a) <
— [—(Vo(d) — max;j; Vo(j) — 26)*] < 2¢ with probability at least 1 — 4. ]
A simple way to compute /; , and u;, is immediately from information local to each

node in the graph. Assuming that we have non-negative utilities, we can let

n3 m
io = P(O; | Pa(O; U;(Pa(U; . 2.10
Ui.0 jl;[lpgl(%);) ( j | Pa( J))|o:o JZ::IPI&%?) ]( a( J))|o:o,A:1 » ( )
-TL3 T i m T
lio = H min P(O; | Pa(O;))|o_, min) U;j(Pa(Uj)lo=p,a=i| - (2:11)

<
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However, these bounds can be very loose. One can try to improve on those bounds by
applying a two-stage estimation method, similar to that which we will present next, where
we would first estimate the bounds on the weights. This idea was heuristically implemented
by Cheng and Druzdzel [2001] in the context of approximate belief inference in BNs.

It is also important to note that as a result of using Bonferroni’s inequality, the results
allow us to share the random numbers used to generate samples among actions. Sharing
of the random numbers among observations is also possible as well if we use Bonferroni’s
inequality to combine the statements for each observation to form a global bound or state-
ment about the quality of the approximate strategy. Sharing of random numbers can be very
effective for the problem of action selection since it creates (positive) correlations among
the action value estimates yielding better estimates for the pairwise value differences be-
tween actions; that is, the difference estimates will have smaller variance than if completely
independent samples had been used for each action (See Kahn and Marshall [1953] and
Rubinstein [1981] and the references therein). All of this is allowed by the results of The-
orem 4. As a matter of fact, if we obtained strictly independent samples for each action
(and observation), the bounds above can be strictly improved [Hsu, 1996], but we believe
the amount of improvement would be negligable compared to the variance-reduction effect

of the positive correlations.

2.2.2 Two-stage Sequential Method

The sequential method tries to reduce the number of samples needed by the traditional
method, using ideas from sequential analysis. The idea is to first obtain an estimate of the
variance and then use it to compute the number of samples needed to estimate the mean.
The method, presented in Algorithm 2, requires the parameters NC'L,O and the function
N o(s), for s > 0, which will be defined in Theorem 6.

Algorithm 2 Sequential Method

1. Obtain independent samples z(1) . .. ,z(QNfll,o) from Z ~ f, 0.
. 2N
2. Compute the weights wé}),, ... ,wg,o “"’).
3. Forj=1,... ,NC'L,O, let y; = (w((ff,_l) — wg?,],))2/2.
4. Compute 62’0 = average of y;’s.
5. Let Na,O(a-cQL,o) = 2Nclz,o + Nc,z,,o(6c2z,o)'
. ~ . ! ~2
6. Obtain N/ (62 ,) new independent samples 2@Naotl) 2 (Nawlao)) from Z ~ fa,0-
. 2N! _+1 Ng,o(62 ,
7. Compute the new weights wc(l,o aot ), ... ,wg,o’ (6a, )).
8.

Output V,(a) = average of the new weights.
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Note that given the sequential nature of the method, the total number of samples is
now a random variable (a function of the variance estimate). While two-stage sequential
procedures of this kind are commonly used in the statistical literature, they all seem to be
based on restricting assumptions on the distribution of the random variables (i.e., paramet-
ric families like normal and binomial distributions) [Bechhofer et al., 1995, Jennison and
Turnbull, 2000].

The next theorem is the basis of the result on the number of samples needed by the
sequential method. It provides a result on using the two-stage procedure described in Al-
gorithm 2 for non-parametric estimation of the mean of bounded random variables. It
provides distribution-free, absolute-error bounds on the estimates obtained using the se-
quential method. The theorem was originally presented by Ortiz and Kaelbling [2000b] and
the proof by Ortiz [2000]. The statement of the theorem and the proof have been modified

here for clarity.

Theorem 5 Let X ~ f be a random variable such that X € [I,u], p = E[X], 0 = Var[X].
Iffor0<e<u—10,0<d<1

1. N' is defined as
N’ = [ (((w=0)/" /2% In 2/5)]
2. for s >0,
N'(s) = [ (2 (s/€%) +2((w—1)/)/3+ 2/ ((w—1)/** ) In 2/9)
3. for s >0, N(s) = 2N’ + N"(s),

4. fori=1,2,... ,2N', X0 ~ f, i.i.d. (independent identically distributed),

62 = (1/N') Z (X(2z'—1) _ X(zi))z /2.

i=1

5. fori=2N'+1,... ,N6?), X ~ f, i.i.d.,
N(62)
p=/N"@6%) > x@
i=2N'+1

then the following statements hold:

1. Pr{pp—p>€} <90,
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2. Pr{fi —p < —€} <4,
3. with probability at least 1 —§/2,
N(5?) < (2(0’/6)2 +2((w—1)/€)/3 + 5((u— l)/e)4/3/22/3> In(2/6) +3

02 [(u—1\*3 1
== O (ma,X (6—2, (T) lng s

4. the expected total number of samples is

E[N(6%)] < (2(0—/6)2 +2((u—1)/e)/3+3((u—1)/e)*/? /22/3) In(2/6) +3
o2 (u—1\*? 1
= O(max<6—2,( . > )1115).

Proof sketch. Instead of using Hoeffding’s bounds to bound the probability that each

estimate deviates from its true mean, we use a combination of Bernstein’s inequality (as
presented by Devroye et al. [1996] and credited to Bernstein [1946]) and Hoeffding’s bounds
as follows. We first use Hoeffding’s bound to bound the probability that the estimate of
the variance after taking 2N’ samples deviates from the true variance by some amount €.
We then use Bernstein’s inequality to bound the probability that the estimate we obtain
after taking additional N"(42) samples deviates from its true mean by e given that the true
variance is no larger than our estimate of the variance plus €. We then find the value of €
(in terms of €) that minimizes the total number of samples N = N"(52) +2N’. The results
on the number of samples follow by substituting the minimizing ¢’ back into the expressions
for N"(62) and N'.

Proof: In order to simplify proof of the theorem, let us first introduce the following
notation. The parameter ¢; used throughout is related to the accuracy with which we

estimate the variance. Let

1. for 0 < e < (u—1)?/2,

(u—10)*

Ni(a) =
8e?

2
1_
o

be a lower bound on the number of pairs of samples we might use to estimate the
variance as a function of the error parameter €;, Ni(e1) = [N{(el)] be the actual
number of samples we might use (after taking into account that it should be an

integer) as a function of €1, and N¥(e;) = Ni{(e1) +1 > Ny(€1) be an upper bound on
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the number of samples (We need the function N} to define N, which in turn, we need
to remove the discreteness on the “number of samples” so that we have a continuously

differentiable function of €; we can easily minimize);

fors>0,0< e < (u—1)2/2,

25+ 21 +2e(u—1)/3, 2

Ni(s,e1) = 5 lng

€

be the number of samples we might use to estimate the mean (as a function of €;),
Na(s,€1) = [NL(s,€1)] be the (actual number of samples, and N (s, €1) = Ni(s,e1) +
1 > Ns(s,€1) be an upper bound on the number of samples (We need the functions

N} and N¥ for the same reasons as above);

.for s >0,0< e < (u—1)2/2, N(s,e1) = 2Ny (e1) + Na(s, €1) be the total number of

samples used for the variance, and N¥(s,e1) = 2N{'(e1) + N3'(s,€1) > N(s,€1) be an

upper bound on the number.

.fori=1,...,2N1(e1), XD ~ f, independent, be the samples used to estimate the

variance,

LYW = (X(%_l) — X(Zi))2 /2, for i =1,... ,Ni(e1), be a function on the difference of

the individual sample pairs (i.e., a random variable whose expectation is o2)

. 62 = (1/Ny(e1)) Zizll(el) Y be the estimator of the variance,

. fori=2Ni(e1)+1,... ,N(6%,¢), X ~ f, independent, be the samples used for the

mean,

8. i = (1/N2(62,¢€1)) ZN(&2’61) X be the estimator of the mean.

i=2N1(€e1)+1

Note that 0 < Y@ < (u —1)2/2 for i = 1,...,Ni(e1). Also, since the Y, for ; =

1,...

, N1(€1) are independent, and E[Y 9] = o2, E[62] = o2.

By Hoeffding’s bound,

and

)
Pr{&2 — 2> €1} < 2

P1r{62 —a? < —e1} <
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By Bernstein’s inequality,
0
Pr{i—p>e|6?—0®>—a} <2,
and

Pr{fi—p<—€|6’—0>>—a}<

N| S

Now note that, for any e¢; > 0,

Pr{i—pu>e < Pr{i—pu>e|é*>—0?>—€}+Pr{6—0><—e}

< 4,
and

Pr{i—p<—-€ < Pr{p—p<—-€|é6®—0>>—-ea}+Pr{6—0°<—e}
< 6.
Let us select €; which minimizes (an upper bound on) the sum of the “total” number of

samples. That is, let €] = argmin., N*(s,€1). Then, after taking the derivative of N*(s,¢€;)

with respect to €; and setting to 0, we note that €] satisfies the equation

2 (u—10)* (-2
S 42 — ) =o.
€2 + 8 (6{3>

e = G(u - z)4e2>

Since 9> N%(s, €1)/(0e1)? > 0, €} is indeed a minimum of N%(s, €) with respect to €;. Letting

N' = Ny(€}), and N"(62) = No(62, €}) we obtain the first two conclusions of the theorem.

Solving for €] we obtain that

o=

For the last two conclusions of the theorem, note that since

0
Pr{s? —o’<e}>1— 2
from Lemma 3,
2 —
Pr{N;(a—2,q) < (20 e +22€(“ l)/?’) 1n§ + 1} >1-— g.
€

Also, since E[6?] = 02, and because N is linear in its first parameter,

202 + 2¢1 + 2¢(u — l)/3) lng

+ 1.

2 0

BN (6% a)] = ( :

Noting that N(62) = N (62, €}) < N%(56?%,€}) yields the last two conclusions of the theorem.
O
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Note that in the process described in the previous theorem, we are not re-using the
samples from 62 in the estimate for ji. This is because conditioned on knowing 2, the first
set of samples used for 2 become dependent. Hence, Bernstein’s inequality does not hold
anymore, and we would have to use another large-deviation bound to apply for niu. At this
point, I do not know of any bound that would apply in such a case.

We now use the last theorem, combined with Hsu’s single-bound lemma, to show in the
next theorem, that the two-stage sequential method can reduce the total number of samples

taken by the traditional method (both with high probability and in expectation).

Theorem 6 If, for each possible actioni =1,... |k, we estimate Vo(i) using the sequential
method, the weight function satisfies l; o < wio(Z) < uj o, UZ-2’O = Var(w;o(Z)],

r |V(uz',o - li,o)4/3 %-‘

o = 9 92/3¢4/3 5

and

NI(52,) = {(2&20 T 2o —lio)e/3 | 1 )s (o — li,o)4/3> " %" |

o'-
Hho €2 €4/3 0

then the action a with the largest value estimate has a true value that is within

- (Vo(a) — max Vy(a) 2€> _] <2

a#a

of the optimal with probability at least 1 — §. Also,

. 202 + 2(ujo — lio)e/3 5 (uio— )4/3 2%
Mioltio) < ( E— ‘o an |y 3

)
2 Co s )43
_ Y0 (uz,o lz,o) k

with probability at least 1 — §/(2k), and

+3

. 202 + 2(uio — lio)€e/3 3 (uio—1I; )4/3 2%
BIN;o(630)] < ( o 2o Zholef3 | 3 (o —lia?) 1, 28

01'20 (uio_lio)4/3 k
= O <ma.X ( 62 7T lng .

Proof sketch. The only difference from the proof of Theorem 1 is the first step. We use

the result from Theorem 5 for estimating the values of V,(7) for all 7. Steps 2 and 3 are as

in Theorem 4.
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Proof: Using Theorem 5, for each i, if we use in the sequential method N; , and N}’ 0(61-2’ o)

as defined above, individually,

- 0
Pr{Vo(i) — Vo(i) > €} < P
and
o . 0
Pr{V,(i) — Vo(i) < —e} < s
The rest of the proof is as in Theorem 4. O

The sequential method is particularly more effective than the traditional method when
03’ o < (4i,0—li0)? and € is small enough. We will observe this improvement in the empirical
studies.

Note that we can derive similar results bounding the number of samples for methods
that concentrate on estimating pairwise differences V(i) — V,(j), for all 4, 7,7 # j instead of
individual values V, (i) for all i. These bounds can be better if the upper and lower bounds
on the difference in weights is smaller than those on the individual weights. Note that we
have to compute O(k?) difference estimates but we only need to obtain a given number of
samples (batch) for each action since we can reuse those samples to obtain our estimates.
For non-sequential methods like the estimation-based traditional method above, we can
determine before-hand whether a method based on differences requires fewer samples than
one based on individual estimations.

We also note the large-deviation bounds used here are the simplest to work with. For
instance, Hoeffding [1963] presents other tighter but more involved bounds, which typically
require unknown quantities like the mean or the variance. One could try to use an idea sim-
ilar to that used for the two-stage sequential method to estimate the unknown parameters

and use the estimates in the tighter bound but this is left for future study.

2.3 Comparison-based Method

Using the results from MCB, we can compute simultaneous or joint confidence intervals on
the difference between the value of V,(a) and the best of all the others, for all actions a.
Therefore, MCB allows us to select the best action choice or an action with value close to
it, within a confidence level.

The methods presented in the previous section required that we have estimates with the

same precision in order to select a good action. Hsu’s multiple-bound lemma applies when
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we do not have estimates of V,(a) for each a with the same precision. Based on this result,

we propose the method presented in Algorithm 3 for action selection.

Algorithm 3 Comparison-based Method (General description)

1. Obtain an initial number of samples for each action a.
2. Compute MCB confidence intervals on the difference in value of each action from the
best of the other actions using those samples.
while not able to select a good action with high certainty do
3(a). Obtain additional samples.
3(b). Recompute MCB confidence intervals using total samples so far.
end while

Let us briefly expand on the stopping condition used for the while statement in the
algorithm above. Let us assume that we have constructed the MCB confidence intervals
correctly with confidence at least 1 — §. If there is an action choice for which the lower
bound of its corresponding MCB confidence interval is greater or equal to —2¢, then we can
say that should we select that action, its true value will be no less than 2¢ from the optimal
with probability at least 1 — §. Hence, the MCB confidence intervals provides us with the
right information on when to stop to obtain a given approximation guarantee. Following,
we will be more specific about how we can build the MCB confidence intervals, and hence,
turn the description above into an actual method with the same theoretical guarantees on

the quality of the solution as the previous two estimation-based methods presented.

2.3.1 Formalization and analysis

The method above is really a multi-stage group sequential method [Jennison and Turnbull,
2000]. Hence, the analysis below is similar to that presented in the statistical literature
on group sequential methods, now also combined with work on MCB. In what follows, we
index stages by ¢t (¢t = 1,2,...). The discussion is made somewhat general with regard to
the allocation of the confidence parameters 0 < 5%) < 1 and the number of samples per
stage Ni(t), where ¢, j stands for the pair of actions ¢ and j, ¢ # j, and the superscript
denotes the stage (or iteration) ¢. (For the purpose of this discussion, it might help to think
of 6%) as the maximum allowed probability that the estimate of the difference in value of
action 7 to that of j at stage t deviates a large amount from the true value.) We also assume
that the allocation of the confidence parameters is sensible; that is, the resulting confidence
statements have probabilistic meaning—the confidence probabilities all lie between 0 and 1
and preferably are at least larger then 0.5.

To simplify notation, assume we are considering a particular (fixed) observation o, and
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let

1. k be the total number of action choices,
2. u; =V (o,i) be the true (unnormalized) value of action i,

3. X; = V(o,4) be our (importance-sampling) estimate of y; (the average of the sample

weights for action i),
4. p* = max;—1,..  p; be the value of of the best action,

5. NI = Z;:l Ni(l) be the cumulative number of samples at the end of sampling stage

(3
t for action i (and observation o),
() 1:t)y <N ) he val i f action ¢ usi 11 th 1

6. X;" = (1/N;77) X121 w,; be the value estimate of action 7 using all the samples
taken until stage ¢,

7. (51@ = Z?:l, oy 52(;) (for the purpose of this discussion, it might help to think of (52@
as the maximum allowed probability that the estimate of the difference in value of
action ¢ to that of 7 at stage ¢ deviates a large amount from their true value, for any
J#1),

8. ) = max;—1,. k J,Et) (ie., 1 — 51 would be the confidence we have on the MCB

intervals individually for each stage t), and

9. §1it) = Zle 6® < 1 (1—611 would be the confidence we have on the MCB intervals,
jointly, for any stage form 1 to t).

Assume that the sequence Ni(t) is fixed in advance. (We will later discuss the most general
case in which the allocation of the number of samples changes as a function of the outcomes
so far — this is known in the clinical trials community as data dependent timing of analysis.)

For each pair ¢, j. i # j, given 51(;), NZ-(I) and N ](1), by Hoeffding’s traditional bound and
(1)

Bonferroni’s inequality, there exists error widths w;;” > 0 such that individually for each ¢,

(1) =0 .,
Pr {Xz( P X (i) > —wi}) V] # z} >1- 4" (2.12)
(1)
ij
of Ni(l), N ;1), and (51(;) (as well as other quantities based on wg;, but let us ignore that for

holds. Although not directly denoted for the sake of simple notation, the w;.’ are functions

now). From the last statement, by Hsu’s multiple-bound lemma, there exists confidence
bounds D; M) Such that

Pr {m — maxp; € [D;‘”,Di‘”],w} >1- 6. (2.13)
Ve
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Although not explicitly stated, the confidence intervals are a function of the estimators Ygl),
1(]1) (Recall that the precisions are in turn functions of the number of

and the confidence parameters 51(]1)) Note that the last confidence interval

expression is for simultaneous or joint confidence intervals [Hsu, 1996].

and the precisions w

)

samples N i(l

Therefore, if we stop at the end of stage 1 and select action a‘*), then the true value of
(1) (1) (

this action p; i.e., have value

is guaranteed to satisfy the inequality p;q) — p* > D,

(1)

no more than —D; " less than the best value p*), with probability at least 1 — s If we

had to select at the end of this stage and we want to cover for the worst case lost, we would

(1)

select the action for which D; " is largest (over i).

If we are not satisfied with the precisions obtained at the end of the first stage, we take
additional samples during a second stage. Let us ignore for now the fact that we have looked
at the data and realized that it does not guarantee us enough precision to stop after a single
stage. In other words, think that we actually did not have a first stage at all. In that case,
given 52(;), Ni(m), and N](m), by Hoeffding’s (traditional) bound (because all the samples

are independent) and Bonferroni’s inequality, there exists wg) such that, at the end of the

second stage, individually for each ¢,

Pr(X\ — X0 — (i — ) > —w Vi # i) > 1— 60 (2.14)

and by Hsu’s multiple-bound lemma

Pr(p; — maxpyy € [DF @, D P vi) > 1 - max 6 =1-6%. (219)
Ve i=1,...,

(Again D, @ and D} @) are random functions since they will depend on YZ@)). From
the last statement, we would like to infer that if we select action a2 at the end of stage
2, if Dg(z) is sufficiently large, then this action will be good with high probability (i.e.,
M) > p* + D ) @ with probability at least 1 — 6(2)). However this would only be true
if we had decided to sample until the end of second stage right from the start. To make
our statements on the selected action of the multi-stage process independent of when we
stop, we need to correct for the fact that we looked at the data at the end of the first stage
to determine whether we needed to continue to a second stage. This is known in statistics
as the multiple-looks problem (See for instance Anscombe [1954], Armitage et al. [1969],
Jennison and Turnbull [2000] and the references therein) !. We can fix this by making

simultaneous confidence intervals for all stages. We can do that by applying Bonferroni’s

! Actually, Anscombe [1954] informally suggests general conditions under which this problem is and is not
significant (Pages 99-100).



40

inequality to the statements for each stage. In the case of 2 stages, we have

t)

Pr{ui <X XY 4wl Vi At = 1,2} -

Pr {Mz’ —py < txgigfﬁ” — 75-” + wg),Vj £ z} > 1 — ),

(1:2)

This implies, by Hsu’s multiple-bound lemma, that there exist D 12) and Df , for

i=1,... ,k and t = 1,2 (maybe different from the ones used previously), such that
Pr {MZ _ mi.X /,&] c [Di(l:z),D;F(]-Q)],VZ-} Z 1— (5(1:2)-
j#i

We can apply this analysis to any arbitrary final stage ¢ or even to an infinite stage setting,

)

for appropriate allocation of (52(; , as we will soon see. Let us now describe how we really

(1:4) and D;“(lzt) given Ygl), and wg), forl =1,...,t, to take as much advantage

of the theory as we can. (We will see soon how to set wz(;)) Let

compute D,
) _ 5t _ () (t)

be the (confidence) upper bound obtained individually at stage ¢ on the true difference

between the value of action 7 and j,
Y(.lzt) — l_min Y(l) (217)

be the best (confidence) upper bound obtained up to stage at stage ¢ on the true difference

between the value of action i and j 2,
(1:t) AN
p+t (minY.(. - )> (2.18)
be the MCB-confidence-interval upper bound for action % up to stage ¢,
" ={i: 0 * >0} (2.19)

be the set of possible best actions at time ¢ (their corresponding MCB-confidence-interval

upper bound is positive), and

0 ifG® = {4}

— (min#i —Yig.l:t))7 otherwise

p; " = (2.20)

By best here we mean the smallest upper bound of all those obtained up to stage ¢.
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be the MCB-confidence-interval lower bound up to stage t. Typically, Yz.g.t) = —Yz.g.t), but
it need not be in general. We note that the upper bounds on the value differences (Y;g-m))
form a monotonically non-increasing sequence of ¢. From this we can show that the MCB
confidence intervals form a sequence of sets (in this case, the sets are actually intervals
indexed by t) I; = [Dz-_(m), D;'(lzt)] that decreases to (), I; (denoted I; (1, I;; see Wheeden
and Zygmund [1977]). We believe this is interesting because it helps us monitor the behavior
of the MCB confidence intervals in practice. Given the above definitions, if there exists wg-)
(which in this case we can find by Hoeffding’s traditional bound and Bonferrni’s inequality)
such that at each stage t we can guarantee
Pr{ui <X X w i A=, ,t} -
Pr{pi—p <Y§¥j#i} 21409, (221)
then, by Hsu’s multiple-bound lemma, at each stage ¢ we can guarantee
Pr {ui —max p; € [Dz-lit,Di“],w} >1— 60, (2.22)
VES

From this we derive a version of the comparison-based method: continue sampling and
computing the MCB confidence intervals until one of the MCB confidence lower-bounds
jumps above some prescribed precision —2¢ for € > 0. Algorithm 4 describes the general
framework for the comparison-based method. The algorithm requires the error width func-
tion W which we will shortly describe, since it will depend on the particular instantiation
of the general framework.

Now, we can make the following statement about the comparison-based method pre-

sented above.

Theorem 7 Given the respective definitions above, if the wg) are proper (i.e. satisfy con-
dition 2.21 above) and the comparison-based method (as presented in Algorithm /) stops at

some stage (stopping time) T > 1, its output action a is such that
V(a*,0) — V(a,0) < —D{”) < 2¢
with probability at least 1 — §(1:7),
Proof: Refer to the discussion above. O

We are typically interested in the case that (") < § for some prescribed 0 < § < 1/2,
sufficiently small (say ¢ < 0.1). We will now see how to achieve this.
We now consider some example instantiations of the general framework. The instantia-

tions presented here are by no mean exhaustive.



42

Algorithm 4 Comparison-based Method (General algorithmic framework)

Input:
Lfort=1,2,... forallije{l,... k},i#j,0<d) <1 (fixed),
2. fort=1,2,... fori=1,... .k N >0 (fixed),
3. wj,o (weight function),
4. W (error width function), and
5. ¢> 0.

t«0
Vi, 88 0, N® « 0,07 "  —o0, D7 400
Vi, j, i # j, B§J1=t) — 400
Vi, 4,1 # J,
W) WD NI 50 )

We are precomputing the error widths to emphasize that they are fized by the fized number
of samples per stage and precision allocations. There is no need to do this in practice.
a1
while D; ™ < —2¢ do

te—t+1

Vi, obtain Ni(t) new .i.d. samples for each action i

and compute their weights w(l()) for I = (Ni(l:(tfl)) +1),... ,Ni(“).

2

Vi,
¢ N0 1
Si< ) Zl:N.(l:("l))-H w,(,.),’
Si(lzt) (_ S§1:(t71)) +S§t),
S-(t : H
X0 510
Vi, i # 7,

YO X0 X0 400,

Rp————
Vi, Di+(1:t) « min((min;; Bi(;))ﬂ D;.(l:(tfl)))
G « {i: D;.(l:t) > 0}
Vi,

(11 0 ifGY = {i}
Di — max (_ (minjgg(i)yj;éi _B‘;i)> N 7D;(1:(t_1))) otherwise.

a — argmax; Dgl:t)
end while
Output: a, —Di(l't), 1 — sty

a
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Algorithm 5 Comparison-based Method with Adaptive Allocations (General algorithmic
framework): The differences from the comparison-based method in Algorithm 4 are empha-

sized.
Input:

1. fort =1,2,... foralli,j € {1,... ,k},i#7,0< Jg.) < 1 (fixed), Note that now
only Ni(l) is fived.

2 fori=1,....k N >0 (fived),

3. wjo (weight function),

4. W (error width function),

5. M (number-of-samples allocation function), and

6. € > 0.

t+0
vi, S 0, N® « 0,07 "  —00, D7 100
Vi ji # 5, B  +oo

a+1
while D; ™ < —2¢ do
t—t+1
Vi, obtain Ni(t) new i.i.d. samples for each action i and
. . 0] o (1(t-1)) (1:2)
compute their weights w; ;, for [ = N; +1,... N
Vi,
+ Ni(lzt) 1
s 2 ey wz(,t)ﬁ
S-(l:t) - S(l:(t—l)) +S(t)
2 2 i)
- (t 1:t 1:t
X" s N
Vi, j, i # 4,

1: 1:
wz(;) - W(Ni( t)7N]( "5 Wi,0 Wj0)

s Yig o

Note that now we cannot precompute the error widths, since they depend on the
adaptive allocation of the number of samples.

Vi, j,i #
¥ X0 X0 1))

() sy () plt=1)
B;; <—m1n(YZ-j ,Bjj )

; : . o\ +
vi, D} (miny BY)
G {i: D?'(l:t) >0}

Vi,
0 if g = {i}
—(1:t
—\ Mg 2 —Dj otherwise.
@ < argmax; Di_(lzt)
(th),--- ,N,St)) — M(D;(1=f)7D;r(1=t)’w 7D;(1:t)7DIj(1:t)).

end while .
Output: d, 7Dg(1't)’ 1— gtt)
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Finite number of stages and uniform allocation of confidence parameters

Let us say we want to stop on or before considering a maximum of T™2* gstages. One (of
many) alternatives for setting the number of samples per stage for each action while keeping
approximation guarantees results from using the traditional version of Hoeffding’s bounds

to compute w;;(t). Let

61 = 8/((k — 1)T™) (2.23)

li <woi(Z) < uy,

t) (u; — lz')z kTmax
N7 = ’7262Tmax In 5 , (2.24)

1 1 1 k
W (N, Nj, 0ij, Wi 0, Wj0) = ((Ui_lz’) — + (u; — 1) —) - In

N; N; 2 (5Z'j(k -1
1 1 1, kTmax
= ((uz —1;) Fz + (Uj — lj) Fj) 3 In 5 (2.25)

Note that by this definition of the error width function the error widths monotonically
decrease with t as O(1/v/).

Theorem 8 Consider the instantiation of the comparison-based method resulting from ez-
ecuting Algorithm 4 with assignments for input (52(;),Ni(t), and W given by 2.23, 2.24, and
2.25, respectively. This instantiation will stop at some time 7 € {1,... ,T™*}. Further-
more, its output is such that the action & satisfies

V(a*,0) — V(a,0) < D < 2¢

— a —

with probability at least 1 — 607 =1 — 75/T™* > 1 —§.

Proof: Let

and
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By Hoeffding’s traditional bound,
Pr{X{" — s > w0} < 6/ (kTm)
and
Pr{X{" - s <~} <o/ (kT™>),

Now, after some probabilistic manipulations similar to those of the proof in Theorem 4, we

get

X X — (i - ) > —wll), Vi £} > 16T
(®

Therefore, the computed W satisfy, for each i,

k
() ==t .
Pr{XZ( ) —Xg-) — (i — pj) > —wg),‘v’] # z} >1- Z 55).
J=1,j#1
(t)

This, along with Bonferroni’s inequality, implies the condition on the w;; given in Equa-

tion 2.21. Note that by definition w™) < 2. At every time t, there exists a pair

ij
i,7,1 # j, such that Yz(t) — Ygt) > 0. Therefore, for some time 7 € {1,... , 7™} there

") _ %) _ D

i ij

> —2¢. Therefore, this instantiation of the comparison method

exists a pair i, j,i # 7, such that X
(1:7)

> —2¢, and therefore there exists an
action a such that D;
will stop. By Theorem 7, and noting that by the allocation of the confidence parameters
used, 6(1'7) = 7§/T™2% < §, the theorem follows. O

This alternative is interesting because the samples can be dependent between actions.
Hence, we can share random numbers between actions to generate samples, which will
lead to better estimates of the value differences.

We can also get exactly the same approximation guarantees as the instantiation pre-
sented in the previous paragraph if we use another instantiation based on independent

samples for each action. Let

65 = 6/((k — 1)T™) (2.26)

lij Swoi(Z) < uijylij <woj(Z) < uyj

() _ [maxij(uy —li)* | kTS
N _[ |, (2.27)
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1 1 1 1
W (N;, Nj, 6ij, Wio, wjo) = (uij — lz’j)\/i (ﬁ + F) IHF
? J ()

= s — 1) JE (L L o DT
= (u4 lm)\/2 (Ni+Nj>1n 5 (2.28)

Although this can lead to smaller error widths in general, which way is better depends on
the bounds on the weight functions and how much difference in (unnormalized) value there
is between the first and second best action, as well as how much we lose in variance by
not correlating the samples. Other versions can be derived if we also use extra samples for
variance estimation, and/or consider confidence intervals on the difference in value instead

of the values themselves.

Informal analysis on the number of samples A simple analysis shows that, in the
worst case, the number of samples for each action has just increased by a O(IlnT™?) as
compared to the estimation-based bounds. Therefore, in the worst case, asymptotically, by
proceeding in multiple stages versus proceeding in one or two stages as in the estimation
based methods, we will not lose much and have potentially a lot to gain.

We believe, although we do not have proof, that the total number of samples required
by this instantiation of the comparison-based method is smaller than those required by the
traditional method both with high probability and in expectation. Also, the bounds on the
number of samples will depend heavily on the amount of separation between the best and
second best (unnormalized) action values. We will present evidence of this in the empirical
study. We now present an informal analysis leading to this connection.

Assume that the bound on the range of the weight functions is the same for all the
actions. Denote b =u;,a =1[;,forall: =1,... .k, and w; = wg), for all i, j (note that equal
bounds on the ranges gives the same error widths for all the actions). 3 Denote by A the
difference in value between the best action and the second best (i.e., A = p* —max, 24+ fia)-
A good approximation to our stopping condition is the condition: we stop at the first stage

t such that A — w; > —2¢. This assumes that our estimate of the difference is indeed the

difference (this is true in expectation). Note that,

wy 26\/ Tmax/t.

3This implies that at each stage we have almost equally accurate estimates for the action values, something
we wanted to avoid in general. However, the accuracy obtained during the inital stages will be lower
than that implicitly used by the traditional method.
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Hence, a little algebra shows that we “expect” to stop at about

o= ()

Taking into account that ¢* is discrete, we get

| (%ﬂ . (2.20)

Let

9 'max 62

N, = [(b —a)” In(kT™ /5)1

be the number of samples per stage per action (the same for all the actions because of the
equal range bounds). Thus, the “expected” number of samples per action is
2(b—a)?
(A + 2¢)?
(b—a)? (2¢)?
~ In(KT™?*/§ Tmex
[2Tmax62 n(KT™/9)| (A+202) |

where the last expression is to take into account the discreteness of the number of samples

N,t* In(kT™ /§) (2.30)

and the stages. Hence, the larger A, the smaller the “expected” number of samples. A
formalization of this analysis is left for future work.

From this we can get an expression for the ratio of the “expected” number of samples of
this method to that of the traditional method; let NV be the number of samples needed by

the traditional method per action (the same for all the actions because of the equal range
bounds),

ENgt*  N,t*
kN N
(26)2 max
@ oo (L+ @™/ In(k/9))

Q

[%(26)2 ln(kTmaX/é)-‘ y [Tmax (%ﬂ / [ (2;2 ln(k/d)-‘ (2.31)

where the last expression is to take into account the discreteness of the number of sam-
ples and the stages. The comparison-based method with uniform allocations presented in
this Sub-section is more effective than the traditional method if this ratio is smaller than
one. Using this information, we can get an expression involving €, 6, k, T™** and A for

determining when this method will be more effective than the traditional method.
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The expected achieved confidence parameter is
S (2o
(A + 2¢)?
(2¢)®
6 Tmax Tmax .
6/ ) ’V ((A + 2¢)?

The expressions above are useful in analyzing the empirical results for this method which

Q

Q

we present later.

Unbounded number of stages and constant number of samples per stage (per

action)

If we do not impose a bound on the number of stages but would like to guarantee that
when the method stops, it outputs an action with the right requirements, we need to define
a sequence of confidence parameters that (1) converges to zero as the number of stages and
(2) decreases at the right rate. For instance, we can let

8 = 5/((k — 1)t(t + 1)) (2.32)

v

N = pstoge (2.33)

2

where N5%38¢ is a constant number of samples that we take for each action at each stage,

and
1 1 1 k
W (N, Nj, 6ij, Wir0, Wi0) = ((Ui —1;) Nt (uj — 1) E) gln 5ah=1)
1 kt(t+ 1)
= ((uz — l,) + (’U,j — lj)) \/2tNStage In 5 . (2.34)

From this we can see that the process will not go on forever (i.e., it will stop at some
time and select and action), since wg) — 0 as t — +oo, and does this as O(/Int/t).
The shrinking rate is smaller than in the instantiation with bounded stages (O(y/1/t)),
but if there is enough separation between the value of the best and second best action to
compensate for the range in weight function values, there is a chance that we can stop
after taking a smaller total number of samples than if we had used a fixed total number of

samples or a fixed maximum number of stages.

Theorem 9 Consider the instantiation of the comparison-based method resulting from ex-

ecuting Algorithm 4 with assignments for input 5 N-(t), and W given by 2.32, 2.33, and

ij 2tV
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2.8/, respectively. This instantiation of the comparison-based method will stop at some time

7 < 0. Furthermore, its output is such that the action a satisfies

V(a*,0) — V(a,0) < —D; 7 < 2¢

— a
with probability at least 1 — 67 =1 — (1 — (1/(r4+1)))d > 1—4.

Proof sketch: The idea is to realize that the computed error widths will monotonically
decrease at every stage and we have allocated enough precision to allow for every possible

probabilistic event to hold simultaneously with precision no larger than 4.

Proof: The proof follows closely that of Theorem 8 (combined with the discussion just

presented in the last paragraph). Note that now, by Hoeffding’s traditional bound,
Pr{f§t) > w§”} < 6/(kt(t +1))
and
Pr {75“ i < —wgt)} < §/(kt(t +1)).

After some probabilistic manipulations similar to those of the proof in Theorem 4, we get

Pr{X{" =X = (i — ) > —w),vj # i} > 16/t +1)).

Note also that in this case 67 = S°7_ §/(t(t + 1)) = (1 — 1/(7 +1))§ < 4. O

Adaptive sample allocation

Let us revisit the assumption that the number of samples per stage for each action be
scheduled and fixed in advance. Let us now consider removing this constraint to allow
arbitrary adaptive (dynamic) allocation of samples, and making this allocation of samples
at each stage a function of the MCB lower-bounds (and hence of the previous samples).
One problem we have to deal with is that the total number of samples we would have
taken for any action at the the end of any stage but the first is a random variable. Another
problem is that we have introduced dependencies between the previous samples conditioned
on knowledge about the total number of samples taken for an action choice. For instance,
let us say we take 40 (independent) samples for each action during the first stage. Let us
also say at the end of the first stage we found that action a has a larger lower bound on the
MCB confidence interval (D) than all the others and decide to take 40 more samples from

this action and 10 from the others. Consider the sample average computed for an arbitrary
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action 7. This average uses 40 independent samples from the first stage and 40 (if i = a)
or 10 (otherwise) independent samples from the second stage. Although these two sets of
samples are independent among themselves, they are not independent between them. The
reason is that the number of samples we decided to use for a particular action at the second
stage certainly seems to depend on the outcome from the first stage. We believe it is in
general unreasonable to expect that knowing that number of samples used for the second
stage provides no information about the outcomes of the samples from the first stage (i.e.,
it is unreasonable to expect that they are independent). However, Hoeffding’s traditional
bounds, the tool we have been using to get our confidence intervals on the differences in
value between action, from which we then obtained the MCB confidence intervals, requires
the random variables involved in the sum (or average) to be independent. Hence, we can’t
apply that technique.

Unfortunately, the author is not aware of another way of computing distribution-free
confidence intervals that can be applied in this context. Hoeffding’s strengthened bound
allows us to remove the assumptiuon of independence for a weaker assumption of the sum
of the samples weights for each action forming a martingale, for a fized total number of
samples. We would have to show that, conditioned on a fixed total number of samples, the
sum of the weights form a martingale, which is not obviously true. Even if it is, we still have
to deal with the fact that the total number of samples is not fixed, but a random variable.
(I believe this is formally called a stopping time.) Under the assumption that the partial
sums form a martingale, simple analysis does not lead to sufficiently interesting bounds.
Hence, obtaining interesting bounds seems to require a more sophisticated analysis.

The discussion of Jennison and Turnbull [2000] in Chapter 17 also suggests what is
theoretically wrong with the adaptive allocation rule that uses the smallest lower bound on
the MCB confidence intervals: the sample averages are not independent of the information
levels. In our context, we can interpret the information levels to mean the information that
allows the computation of the precisions achieved at each stage. If we fix the information
levels in advance as we are doing when we predefine the allocation schedule, then the sample
averages and the information levels are indeed independent and the confidence intervals
computed hold. This is not true if, for instance, we allocate more samples to one action
than others because its corresponding MCB lower-bound was smallest at the previous stage!
This seems to be a hard issue, even when dealing when very specific distributions like normal
and binomial, which are to some degree ”nicer” to handle theoretically. We do not have an
answer to the distribution-free, finite outcomes, bounded-random-variable needed for the

general ID model considered here, and we are not aware of any results of a similar this kind
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in the probability or statistics community.

In conclusion, the instantiation of the comparison-based method with adaptive allocation
as presented in Algorithm 5 is a heuristic based on the assumptions that (1) the way the
reallocation is done does not introduce dependencies between the samples used to compute
the total averages at the end of each stage and that (2) the total number of samples at the
end of each stage is not a random variable. The distribution-free bounds are so loose in
general that we believe to be unlikely to find a ID model in practice for which using this
assumption will not work well. In the algorithm, the function M is an allocation function
and maps the MCB confidence intervals into the number of samples we will take for each
action at the next stage. We now present a particular version of the comparison-based

method with adaptive allocation.

A heuristic comparison-based method with adaptive allocation

In this section, we present an instantiation of the comparison-based method with adaptive
allocations. In this instantiation, we compute the MCB confidence intervals heuristically.
To do this, we approximate the precisions w;; that satisfy the conditions required by Hsu’s
multiple-bound lemma (Equation 2.6) using Hoeffding’s bounds. Using this approach, for

each pair of actions ¢ and j, and values l;; o, and u;j,0 such that l;; o < wio(Z) < uij,0 and

lijo < wj.o(Z) < uij0, We approximate w;; as

1 1 1 E—1

wij = (Uijo — lij,o) \/5 (Ni,o + Nj,o) In 5 (2.35)
where N;, is the number of samples taken for action ¢ thus far. Note that in computing
the approximate precisions we have ignored the multiple looks issue (We do not allocate
confidence parameters so as to adjust for previous evaluations of the MCB confidence inter-
vals). Note that, because of the way in which we compute w;;, in theory, we cannot share
the random numbers computing the estimates of the different actions. If we want to share
the random numbers we should use

1 1 1.k

But then again, in the global scheme, they are both heuristics anyway. We then use these
approximate precisions and the value-difference estimates to compute the MCB confidence
intervals (as specified by Equation 2.7). There are alternative ways of heuristically approx-

imating the precisions w;; but, in this document, we use the ones above for simplicity.
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The value of initial number of samples (Ni(l) in Algorithm 5) used in the experiments
is 40. When taking additional samples, a sampling schedule (the allocation function M in
Algorithm 5) is used that is somewhat selective in that it takes more samples from more
promising actions as suggested by the MCB confidence intervals. After finding the action
whose corresponding MCB confidence interval has an upper bound greater than 0 (i.e.,
from the set G as defined in Hsu’s multiple-bound lemma) and whose lower bound is the
largest, the method proceeds by taking 40 additional samples from this action and 10 from
all the others. It is understood that these sample sizes are very arbitrary. Potentially, other
setting of these sample sizes could be more effective but they were not optimized for the
experiments. Algorithm 6 presents a detailed description of the particular instantiation of
the general comparison-based method with adaptive allocations presented in Algorithm 5.
Algorithm 6 is the version used in the experiments.

Although this method may seem well-grounded, we know from the previous discussion
on adaptive sample allocation that the bounds might not hold rigorously.

Before we present the related work, in the following three sections, we make an aside to
present some brief notes on relative approximations, allocation of approximation parameters
and other practical considerations. The first deals with an alternative form of approximation
than the one used thus far in this chapter while the other sections deal primarily with general

ways to improve the effectiveness of the methods presented here in practice.

2.4 A note on relative approximations

Thus far, we have only considered absolute approximations, where the accuracy or approxi-
mation error does not depend on the true (unknown) value of the optimal strategy. Relative
approximations offer an alternative form of approximation, where the approximation error
depends on the true value of the optimal strategy. In this section, we consider how we
can extend the estimation-based traditional method presented previously to obtain relative
approximations. We also discuss some of the problems keeping us from similarly extending
the other methods.

First, relative approximations are appealing for several reasons. They do not depend
on the range of the utility functions. The required accuracy is expressed as a percent from
optimal and as such it is a relative factor. The allocation of error for each observation does
not depend on the number of observations, since relative approximations are multiplicative
in nature. Hence to obtain a relative approximation of the optimal (global) strategy, we

can require the same relative approximation on the value of the action selected for each
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Algorithm 6 Algorithmic description of the instance of the comparison-based method used
in the experiments.

for each observation o do
l+1
for each action ¢ =1,... ,k do
Compute u; o and [/; , using equations 2.10 and 2.11, respectively.
D} + —00; N{9 = 40; Ny < 0; V(i) ¢ 0.
end for
for each pair of actions (4, j), i # j do
Uij,o < max(ui,o, Uj,o); lz'j,o — max(li,o, lj,o).
end for
while there is no action 7 such that D;” > —2¢ do
for each action ¢ do o
Obtain Nz(’lg samples z(Niotl) ,z(Ni’°+Ni7°) from Z ~ f; o, as in equation 2.8.
(Nio 1) (Ni ot N{D)
e '
Voli)  (NioVoli) + X505 winee™) /(N o + NLY).
Nio + Nio+ N,
end for
for each pair of actions (1,7), 1 # j do
Tij < Vo(i) — Vo(j); Tji « —Tyy.
Compute w;; using equation 2.35; wj; < w;;.
end for
for each action ¢ do
Compute D;L , G, and D; using Hsu’s multiple-bound lemma.
end for
for each action ¢ do
if D] == maxjeg D then Nt ¢ 40
else Nz.(l;l) + 10.
end for
< 1+1.
end while
7t(0) < argmax; D; .
end for

Compute weights w
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observation.

The problems with relative approximations in this context is that they might not be very
useful if the value is large and we are interested being close to the optimal value in actual unit
terms, not percent terms. Because we do not know the value that we are estimating and the
error terms depend on that value, the number of samples needed to achieve certain quality
also involves this unknown quantity. In particular, the smaller the value we are trying to
estimate, the larger the number of samples required. This seems somewhat counterintuitive
because (1) we are putting as much weight to act well under observations whose value does
not contribute significantly to the (global) value of the strategy as to those observations
whose value does contribute significantly (so we will be doing “equally well” in all cases);
and (2) we will be spending more samples in those cases where the value associated with
actions and observations is not significant than in those where the value is. If the particular
problem requires relative approximations, one way to get around not knowing the exact
value when determining a priori the number of samples to get a certain accuracy is to
lower-bound the value of the weight of the samples used. However, the lower bounds that
can be easily obtained are typically very loose, leading to an unreasonably large number of
samples.

Another way is through the use of sequential estimation. The idea is to derive stopping
rules that allow us to stop when we have reached the accuracy we want based on information
from the sample weights. This is similar to the sequential estimation method presented
previously to guarantee a given absolute approximation. The idea behind an “optimal”
method of computing relative approximations called the AA algorithm [Dagum et al., 2000]
is precisely that (See also Pradhan and Dagum [1996] for an application of this algorithm
to belief inference in BNs). This method is optimal in that no other method that uses
independent identically distributed samples would be able to obtain a relative approximation
using an expected number of samples that is more than a constant amount smaller than
the expected number of samples that the A.4 method takes before it stops. In other words,
it can take a long time if the value we are estimating is very small (and the variance in our
estimates is large), but any other method cannot be much faster.

The basis for the theoretical analysis of the A4 algorithm is the generalized zero-one
estimator theorem [Dagum et al., 2000]. Hence, to apply this algorithm to our context,
as described, we need to bring the value of the weights to be between zero and one. We
can do this by finding upper and lower bounds on the utility functions of the utility nodes
and then performing a simple linear transformation on the weights. Note that the error

parameter need not be transformed as long as the utilities are nonnegative (Recal that the
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error parameter for a relative approximation is given as a percent from optimal). However,
if the lower bound is very large, the actual percent error required from the A.A algorithm
would be smaller than necessary. To see this, consider that we want to estimate yx = E[X]
for some random variable X which has all outcomes in [/, u] for some constants u and [, such
that 0 <[ < u. Define Z = X —[/(u—1). Then Z has all outcomes in [0, 1]. If we obtain an
estimate fiz of uz = E[Z], such that fiz > (1 —€)uz, then ix > (1—€)ux +el > (1—€)px.

We now present how we can use the AA algorithm to obtain relatively near-optimal
strategies with high probability. Let M = |Qg| be the total number of observations. To ob-
tain an (€*, 0*)-relative approximation to the global strategy, where €* is the (percent) error
parameter and 6* the confidence parameter, all we need is to obtain an (e = €*/2,§ = §* /M)-
relative approximation for each observation. The reason for this is as follows. Let pi(0) be
the action selected by the approximate strategy for observation o, ﬁz’*(o) be the optimal
action for the same observation, and V% and V* be the trues values of the approximate

strategy and the optimal, respectively. If, for each observation o,
V(pi(0),0) > (1 —2¢)V (" (0),0)
with probability at least 1 — §, then
VT =>"V(pi(0),0) > (1 - )V*
(0]
with probability at least 1 — §*.
To simplify notation for the discussion that follows, let p; = V' (i,0), f1; = V (i,0) and

©* = max; p;. Using the AA algorithm, for each observation o, and action a, we can obtain

estimates [i, for u, such that for a given e and §, 0 <e<1l,and 0 < § < 1,

. 0
Pr{fia — pa < —€pia} < PR
and

I >

Pr{fia — pta > €pia} <
Hence, we can obtain, for each ¢ individually,
Pr{fi; — ftj — (i — pj) > —e(pi +py),¥j #i} > 1 0.
Since p; + pj < 2p*, we get

Pr{fi; — fij — (s — pj) > —2ep* V5 # i} > Prifi; — fij — (s — pj) > —e(ui + p5),
Vi #i}

v

1-46.
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Using Hsu’s single-bound lemma, we get
Pr {Mi —max u; € [—(f — max fi; — 2ep”) ", (4 — max fi; + 2eu*)+]aVi} >1-4.
J#i J#i J#i
Hence, with probability at least 1—4, for the selected action & = argmax,, fiq, pg > (1—2€)p*.
Therefore, by using the A.A algorithm, we have essentially extended the estimation-based
traditional method (presented previously for absolute approximation) to obtain relative
approximations.

Unfortunately, it is not immediately evident how to extend this approach to the
estimation-based sequential method and/or the comparison-based method. The problem
is that the way the AA algorithm works, it does not provide “intermediate” confidence in-
tervals, but only outputs an estimate with the right accuracy and confidence when it stops.
One can apply the idea of using a lower bound to the possible actions values V (o, a) (for
each observation) to obtain such confidence intervals. However, the reader should be aware
that such lower bounds are typically very loose, leading to unreasonably large confidence

intervals for reasonable sample sizes.

2.5 Allocating precision and confidence parameters for each

observation

In this section, we consider a possible way to handle IDs with large number of observations
by using a smarter allocation of the approximation parameters.

In many cases, we have to deal with models that have a large number of observations. If
we use the estimation-based traditional method to solve our problem, we can try to reduce
the total number of samples taken by allocating the precision and confidence parameters
differently. In this subsection, we describe one way we can do this.

Let (€*,6*) be the parameters defining an approximation with error €* (the accuracy or
error parameter) with probability at least 1 — 6* (hence, §* is the confidence parameter).

Also, let, for observation each o,
1. 7, be the percent used to allocate the error for that observation from the total maxi-
mum error, such that ) ,ro =1, and r, > 0,

2. €0 = €*ry be the amount of error allocated for that observation,

3. R?’O = (Uio — li,o)2 be the range size of the weight functions for action ¢ and that
observation, squared, and Rg = Zle Rf,o be the total sum over all actions of those

squared ranges,
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4. s;0 be the percent used to allocate the confidence parameter for action ¢ and that

observation, such that >, 5 si,0 =1, and s; 0 > 0,

5. ;0 = 0%, be the amount from the confidence parameter allocated for action 7 and
that observation (it might help to think about this value as follows: in some sense,

statements associated with action ¢ and that observation will be made with confidence
1—di0)-

Note that that for each observation, the number of samples needed by the estimation-
based traditional method for each observation o and action a can be written as
[(Rﬁ,o /(2€2))1n (k/0a,0)|. Hence, to reduce the total number of samples, we want to solve

the following optimization problem:

(r*,s*) = argminzz In —

T,8 O i—1 2620 (52',0

subject to the constraints on r and s. Using Lagrange multipliers, we will find that the

solution satisfies the following fixed-point equations

2 E_\i
T* B (ZZ RO ln (552"0 ) 3
o - k 1
02 Rzg,o In m) 8
Rti,o
Sio = - R,

S Yo 2
We can use several methods to try to solve them. For instance, we can just turn them
into an iterative method starting from some assignment for s, get an assignment for r
using the first fix-point equation, then get a new value for s using the second fix-point
equation, and so on and so forth. This process will converge to the global minimum of the
total-number-of-samples function, since this function is convex in r and s.

Note that in the case that we use a uniform allocation of the confidence parameters d; o,

ol B
>o(RH)?
Thus, as intuitively expected,the larger the range size of the weights of the actions associated
with an observation, the larger the precision ¢, we should use. Also, for uniform allocation

of the precision parameters ¢,

*

2
o o Tio
MDY EoRz?,o



58

Hence, the larger the range size of the weight of the action and observation, the larger the
confidence parameter §, we should allocate to it (i.e., the less confidence we should require
for the observation). Unfortunately, note that in the worst case that all the ranges are the
same, this expression reduces to the uniform allocation suggested at the beginning of this
chapter. Hence, another approach needs to be used to deal with models with a large number
of observations. This is something we have partially studied but leave primarily for future

work.

2.6 Other practical considerations

In this section, we briefly state some additional considerations leading to improvements of
the efficiency and effectiveness of the sampling methods presented here in practice.

The theoretical results presented above for the most part allow us to share the random
numbers used to generate the samples used to estimate the value of all the actions and ob-
servations (except in some instantiations of the comparison-based method that specifically
use bounds based on independence of action value estimates). If we allow independence,
we can obtain immediately tighter theoretical results. However, we believe for the problem
of action selection, the improvements on the difference estimates based on the variance-
reduction resulting from the positive correlations created by the random-number sharing
will be more significant that any theoretical improvement based on independent estimates.
This is because, in the particular problem of action selection, we are ultimately most in-
terested in having good estimates of the value differences rather than the individual value
estimates. Also note that sharing random numbers for sampling in IDs will have the fol-
lowing results: (1) those nodes that are not descendants of the decision node will have the
same instantiations for all the samples used to estimate any of the action choices; and (2)
the instantiations of all non-descendants of observation nodes will be the same between
samples used to process each observation. Now, sharing random numbers might require us
to keep an extra storage. This is not required by the instantiation of the method based
on completely independent samples between actions and observations, where we get new
samples of all the nodes for every action. When using completely independent samples, we
just process the weight value and do not store the sample and weight. However, we do not
really need to store the random numbers themselves, since we can just save the random
seed and regenerate the random numbers.

In some cases, if the number of evidence or observation scenarios is not too large, we

can save some time, by considering all the scenarios at once. (This is also true for exact
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methods.) In general, we might need to consider each scenario individually, however, as the
number of observation scenarios can be prohibitive for some IDs.

Finally, although we do not deal with IDs with multiple decision nodes, I would like to
point out some properties we can exploit in this models, which can be useful in extending
our sampling methods to multiple decisions. This problems are typically solved by dynamic
programming. This approach leads to a decomposition of the original ID problem into a
sequence of smaller ID problems (one for each decision variable), which we can construct
from the original ID (See, for instance, Zhang [1998], and Charnes and Shenoy [1999]).
When we are allocating precisions for the different sub-problems, we only need to consider
scenarios constructed from the joint outcomes of observations available at the time of the
decision that have chance nodes as parents in the graph of the sub-problem ID for that
decision. The factor terms for observations that do not have chance nodes in that sub-
problem ID can be moved outside the summation and hence do not play a role in the
estimation (i.e., won’t affect precision).

Before we present the empirical results for the methods, we present related work on
the problem of action selection in IDs, and discuss further connections to the statistical

literature of the methods presented in this chapter.

2.7 Related Work

Charnes and Shenoy [1999] present a Monte Carlo method similar to the “traditional
method” presented here. They estimate the conditional values of each action, instead of
the unconditional value as done here. Also, they use a heuristic stopping rule based on
a normal approximation (i.e., the estimates have an asymptotically normal distribution).
Their method takes samples until all the estimates achieve a required standard error to
provide the correct confidence interval on each conditional value under the assumption that
the estimates are normally distributed and the estimate of the variance is equal to the true
variance. These assumptions are only asymptotically valid in general and are hard to verify.
They do not give bounds on the number of samples needed to obtain a near-optimal action
with the required confidence. We refer the reader to Charnes and Shenoy [1999] for a short
description and references to other similar Monte Carlo methods for IDs.

Bielza et al. [1999] present a method based on Markov chain Monte Carlo (MCMCQC)
for solving IDs. Although their primary motivation is to handle continuous action spaces,
their method also applies to discrete action spaces. Because of the typical complications in

analyzing MCMC methods, they do not provide bounds on the number of samples needed.
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Instead, they use a heuristic stopping rule which does not guarantee the selection of a near-
optimal action. Other MCMC-based methods have been proposed (See Bielza et al. [1999]

for more information).

The general notion of “repeated confidence intervals” in the clinical trials (group se-
quential) literature is the same as that forming the base of the comparison-based method
and its analysis, except that in the work on clinical trials the typical underlying assumption
behind the computation of the intervals and proof of correctness is that the sampled values
(actually, in our case, the weights of the samples) are normally distributed [Jennison and
Turnbull, 2000]. It is certainly possible that there exist distributions-free extensions of that

work of which the author is not aware.

Certainly, if we ignored the fact that the normality assumption does not hold in a general
ID model, we could apply these methods to the problem of action selection considered in
this thesis. It is possible that the direct application of those techniques could be useful
in this context, even if no theoretical guarantees hold for general ID models. Under the
normality assumptions, the confidence bounds will certainly be tighter than presented here.
We do not pursue this approach in this thesis, but for practitioners, it would be interesting

to evaluate them in the future to verify their potentially practical effectiveness.

Also, we can follow a Bayesian approach to compute the confidence intervals necessary
to determine the stopping rules (MCB intervals) for the comparison-based methods.* The

Bayesian approach is not pursued in this thesis, but it is certainly of future interest.

The ideas behind the adaptive allocation schedule used in the heuristic MCB-based
method presented above is in the same spirit (and faces similar issues) as the IE (interval
estimation) method of Kaelbling [1993], developed in the context of reinforcement learning.
In the IE method, actions with higher value upper-bounds are given preference. This
heuristic can also be applied to get another similar MCB-based heuristic method, similar to
the one presented here. That is, instead of taking more samples from actions with largest
MCB confidence lower bound, we can take more samples from actions with largest MCB
confidence upper bounds. Since having a large MCB upper bound means that the difference
of that action from the rest can be at most that large, there is a possibility of that action
being that much better than the rest. Needless to say, there are many other heuristics that

we can be used, depending on how optimistic or pessimistic we want to be.

Also, the idea and analysis of the method of Maron and Moore [1994] called “Hoeffding

“The idea of using a Bayesian approach was suggested to me by Peter Miiller.
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races” for model selection in a machine learning setting is very similar to the comparison-
based methods presented here. In their setting they have a finite set of samples (the dataset)
and the action choices are the finite set of models available. They evaluate the quality of
each model on each sample, one sample at a time. After a model is determined inferior to
any other (i.e., the confidence upper-bound on its true value given by Hoeffding’s bounds
is smaller than the confidence lower-bound of another), they do not evaluate that model
anymore. Hence, their “allocation schedule” is “adaptive.” Therefore, I believe that the
arguments given in the analysis there are only valid if all the models are evaluated on all the
samples, for the reasons given in the discussion regarding the adaptive-allocation schedule

here.

2.8 Preliminary empirical results

In this section, we present the results for running some of the methods described in this
chapter on the computer-mouse problem described in Appendix A. Unless specifically noted
otherwise, in the rest of this section, we refer to the heuristic MCB-based method (with
adaptive allocation and ignoring multiple-looks) presented above as the comparison-based
method.

Table 2.1 presents the results on the effectiveness of the sampling methods for this prob-
lem. We set the final desired accuracy for the output strategy to €* = 5 and confidence level
0* = 0.05. This leads to the individual accuracy 2¢ = 2.5 and confidence level § = 0.025 for
each subproblem. The sequential method and the comparison-based method were executed
100 times. The comparison-based method produces major reductions in the number of
samples. When we observe the mouse pointer not working, the comparison-based method
always selects the optimal action of buying a new mouse. When we observe the mouse
pointer working, the comparison-based method failed to select the optimal action of taking
no action 4 times out of the 100. In those cases, it selected the next-to-optimal action of
upgrading the operating system (A = 2). This action is within the accuracy requirements
since the difference in value with respect to the optimal action is 0.91.

The comparison-based method is highly effective in cases where there is a clear optimal
action to take. For instance, in the computer mouse problem, buying a new mouse when we
observe the mouse not working is clearly the best option. The differences in value between
the optimal action and the rest are not as large as when we observe the mouse working.

In this problem, the results for the sequential method should not fully discourage us

from its use, because the variances are still relatively large. Major reductions have been
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Method

A | MP; | Traditional | Sequential | Comp-based
1 0 2403 3802 (188) 335 (151)
2 0 3007 2266 (142) 115 (37)
3 0 3679 2426 (129) 118 (39)
1] 1 2213 2508 (178) | 521 (216)
2 1 2794 2969 (201) 695 (421)
3 1 3443 3468 (202) 1361 (560)

Total 17539 17438 (434) | 3145 (809)

Table 2.1: Number of samples taken by the different methods for each action and observa-
tion. For the sequential and the comparison-based methods, the table displays the average
number of samples over 100 runs. The values in parentheses are the sample standard devi-
ations.

seen in problems where the variance is significantly smaller than the square of the range
of the variable whose mean we are estimating. We will see an example in the next section

where we deal with a real ID.

2.9 Emprical results on IctNeo ID

In this section, we present empirical results on an ID from a medical domain [Bielza et al.,
2000, Gémez et al., 2000]. The ID is being developed for the treatment of jaundice in
newborns, and is still under development. Figure 2.4 shows a graphical plot of the IctNeo
ID (all arcs point down). This ID has a total of 72 nodes (including 5 decision nodes and
1 utility node). It is important to point out that most of the characteristics of this prob-
lem do not really make it amenable for the type of approximation and model assumptions
considered here. First it is a multi-stage problem: it has five decision nodes. Actually,
only four are really interesting since, due to constraints on the possible set of actions, the
optimal action for the last decision is really a deterministic function of the fourth action.
Hence, we converted this node into a deterministic node in the graph (a node whose con-
ditional probability defines a deterministic function). Because a large number of variables
is necessary to represent historical and/or background information relevant to the patient’s
treatment, there is an extremely large number of possible observations available at the time
the first decision is made. Similarly, due to the no-forgetting assumption, the number of ob-
servations for the fourth decision variable is also extremely large. Therefore, we believe the
main roadblock in solving this problem is not the evaluation of the values for a given action

and observation, since this is easy to compute exactly, but the extremely large number of
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observations that are relevant and are available at the time of the decisions. Thus, for the
most part, exact methods are tractable in this model for solving a particular observation
scenario (conditioned on other decisions being assigned). Approximation methods that try
to provide compact representations of policies have been developed for IDs as well as MDPs
and POMDPs that could be more applicable to this model. However, my objective in trying
the methods in this model is that this is a model for a real domain and has been sufficiently
carefully developed. Therefore, it provides more realistic probabilistic and utility models
that can be produced by generating random models or creating unrealistic models.

We performed our experiments in several modified versions of the IctNeo ID.5. The

discussion of the experiments follows

2.9.1 Experiment 1: (Partially) solving the fourth decision stage

In this experiment, we consider solving the fourth (i.e., last interesting) decision stage. Be-
cause the number of evidence scenarios available for this decision (i.e., relevant observations
and previous actions) is still very large, we only generated a subset of all the evidence
scenarios at random using the following scheme. We first determined all possible three-
action sequences prior to the fourth decision. Taking into account the constraints on those
action sequences, there were 415 action sequences possible. For each action sequence, we
instantiated the three initial decision nodes with the action sequence and simulated the ID
to generate a single observation resulting from that action sequence. These observations
are a sample from the model distribution under a fixed, blind strategy for the first three
decisions (i.e., a strategy on which the action to execute for each decision is determined in
advance and does not depend on the available observation at the time of the decision). The
idea is to make a good decision after having executed those actions and have the available
observations for that decision.

For each action sequence and the corresponding generated observation, we ran the
estimation-based traditional and sequential methods, an instantiation of the comparison-
based method with fixed, uniform allocation presented in Section 2.3.1 which uses a maxi-
mum number of stages equal to 10 and the heuristic instantiation of the comparison-based
method with adaptive allocation. The instantiation of the comparison-based method with
fixed, uniform allocation is given by Equations 2.23, 2.24, and 2.25 or Equations 2.26, 2.27

and 2.28 depending on whether we share random numbers (see Section 2.3.1 for details).

5The modified IDs were further simplified through the typical relevance-based reduction operations in
IDs (see for example Shachter [1998]).
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For a given approximation requirement (e*,6*), the first three methods guarantee to select
an action with the given requirements. We should point out that the number of samples
required for any reasonable guaranteed approximation in this model is huge. (A rough,
yet I believe still informative, analysis based on rough estimates of some of the numerical
quantities in the theoretical bounds suggests that in order to compute a full strategy for this
problem with guarantees that it will be no less than 0.01 from the optimal with probability
at least 0.95 would require approximately 8e¢24 samples in total for the traditional method,
4e23 for the two-stage sequential method, and 3e23 for the comparison-based method with
uniform allocations; tightening the error requirement to 0.001 would require approximately
8e26, 3¢26 and 3e23 for the same methods, respectively.) Nevertheless, we can still test, for
any given value of € and §, how many samples each method took to select an action with
those requirements. In other words, the objective is to study how the methods proposed
that have theoretical guarantees compare to each other in terms of the total number of sam-
ples needed, and the effectiveness of the heuristic method relative to the more theoretically
grounded methods. To both illustrate the looseness of the theoretical bounds behind the
methods and evaluate the quality of the selected actions, we compute the average of the
difference in conditional value between the action selected by each of the sampling meth-
ods and the optimal action computed using an exact method. To establish a baseline for
comparison, we also evaluated a method that just selects actions uniformly at random from
the set of possible action choices. Note also, that if for a given observation and previous
action sequence scenario, the constraint in the action choices of the fourth decision is such
that only one action is possible, we ignore that scenario in our evaluations. Hence, only 348
of the 415 scenarios generated were considered for the evaluations. Hence, the results are

based on just those 384 scenarios.

The results for the case in which we obtain independent samples for each action (and
observation) are summarized in Table 2.2. The column labeled total # samples has the total
number of samples over all the 384 evidence scenarios taken by the methods before they
stopped. The column labeled mean has the sample average of the conditional error based on
the difference between the conditional value of the optimal action and the action selected by
the methods. This quantity is an unbiased estimate of the regret of the randomized policy
resulting from using the different methods. The column labeled std. dev. has the sampled
standard-deviation (the square of this quantity is an unbiased estimate of the variance of
the error of the respective randomized policy associated with each method; note that were
we to compute confidence interval based on the typical normal approximation, we would

take this value, divide it by +/384—the number of evidence cases—multiply it by plus
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or minus the appropriate critial value constant—1.96 for the case of approximately 95%
confidence intervals—and add the emprical mean—the average). The column labeled CI
has 95% bootstrap confidence intervals on the regret, where in the bootstrap method we use
1000 bootstrap-samples. (We computed the bootstrap confidence intervals as follows. First,
we resampled with replacement from the set of error outcomes to generate 1000 resampled
datasets of size 384—the same size as the original set of error outcomes. Then we computed
the average from each new resampled set and order the averages in increasing value—
computed order statistics. Finally, we selected the 50** and 950" element of the ordered
set of averages as the lower and upper bounds, respectively, of the confidence interval.
For a simple introduction to the boostrap method see Cohen [1995]. I should point out
that in this case, should we have used the traditional approach to compute the confidence
intervals based on Normal approximation, there would not have been much difference in the
computed intervals.) The columns labeled maz and median have the empirical maximum
and median of conditional error. (The empirical minimum was always zero.) The row
labeled Random has the results for a method where we select uniformly at random from the
set of possible action choices for each scenario. The rows labeled Traditional, Sequential,
MCB, and MCB heuristic have the results for the estimation-based traditional method, the
estimation-based sequential method, the comparison-based method with uniform allocation
and fixed maximum number of stages (which we set to 7™ = 10 in this case) and the
heuristic comparison-based method with adaptive allocation, respectively. The comparison-
based methods compute the error widths using expressions that assume no random number

sharing.
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An immediate observation is that the sequential method is very effective in reducing the
number of samples for near-optimal selection for this problem, and its effectiveness improves
as € decreases. This suggests that the variance of the weight functions used to estimate the
unnormalized value is significantly smaller than our bound on the range of the weights.

We also tested a method that shares the random bits among actions only (not obser-
vations). Recall that this (and more) is allowed by the theoretical results presented in this
chapter. The results for this variation are in Table 2.3. Because of the positive correlations,
the error is smaller in general, since the estimates of the difference in unnormalized value of
actions have smaller variance. Graphical plots of the data are displayed in Figure 2.5 and
Figure 2.6. The plots on the left are of the conditional error versus the number of samples
for each of the 384 evidence scenarios considered. The results for the random method are
plotted with squares. (They all fall along the y-axis since we do not take any random
samples from the model, just a sample from a uniform distribution over the set of action
choices.) The results for the other method are plotted with an ’x’. The right plots are
paired versions of the plots on the left, pairing the results for each scenario. The negative
slope of the lines indicate the improvement in error over the random method, while the
magnitude of the slope indicates the cost in terms of number of samples for the reduction
(i.e., a small slope magnitude indicate that we used a large number of samples to reduce
the error).

The comparison-based method with uniform allocations did not do well for this problem.
This is because the differences in unnormalized value between the best and second best
actions are not large enough for this problem. The plots in Figure 2.7 illustrate this point.
The plots show the negative ratio of the number of samples taken by the comparison-based
method to the number of samples taken by the estimation-based traditional method as
a function of the difference between the true unnormalized value of the best and second
best actions, for each evidence scenario. We denote this difference by A, where we have
to keep in mind that this is a function of the evidence scenario. The higher the negative
ratio, the better the comparison-based method. A negative ratio equal to —1 means that the
methods used the same amount of samples. On average, the number of samples taken by the
comparison-based method was about 1.6 times that taken by the traditional method, which
corroborates the result for the total number of samples shown in Table 2.3. Note that the
predicted values of the negative ratio resulting from the informal analysis in Section 2.3.1
match fairly well the empirical outcomes. (I believe the remaining discrepancies are due to
variance and the discreteness of the expressions involving the number of samples which are

not matched by the approximations resulting from the informal analysis.) We note that the
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Figure 2.5: Results for IctNeo ID: Experiment 1 (2¢ = 0.02,§ = 0.1, shared random num-
bers). Comparing methods relative to the random method in terms of conditional error and
number of samples.
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informal analysis’ assumption of equal bounds on the range of the weight functions holds
in this problem. For the values of €, § and T™2* used, the informal analysis predicts that
A has to be larger before the comparison-based method can be more effective than the
traditional method.

Finally, the effectiveness of the sequential method for this problem suggests that we
should also use variance information in the comparison-based methods. We have started
to develop versions of the comparison-based method that use variance information, but we
leave the details for future work.

We also studied the effect of the adaptive allocation as compared to uniform allocations
in this problem. For this we consider a single evidence scenario. Arbitrarily, we selected
the evidence scenario for which A was largest. The number of action choices for this
evidence scenario is 6. At each stage, the uniform allocation uses 15 samples/action, while
the adaptive allocation uses 40 samples/action for the action with largest MCB-confidence-
interval lower bound (the value with the potentially smallest regret) and 10 for the rest.
Both take 40 samples/action for the first stage. We ran the methods for 50 stages 40 times.
Figure 2.8 shows the effect on the MCB-confidence-interval lower bound as a function of
the stage. Recall that we use the MCB-confidence-interval lower bound for the stopping
condition of the comparison-based methods. The graph shows individual (approximate)
95% confidence intervals of the expected value of the MCB-confidence-interval lower bound
at stage 10,20, ... ,50. Therefore, under the heuristic assumptions regarding the adaptive
allocation, the adaptive allocation is increasing the MCB-confidence-interval lower bound
faster than the uniform allocation as we wanted, hence, leading to stopping earlier for a fixed
error requirement. This comes at some price however. The results presented in Figure 2.9
show that if we selected the action based on the smallest MCB-confidence-interval lower
bound at each stage the error is larger than that of the uniform. By error or regret here we
mean the difference in unnormalized value between the best action and the one we select.
(We obtain the conditional regret by dividing that value by the probability of the evidence
scenario, which is constant for all the actions in a particular scenario.®) The adaptive
allocation method is willing to trade regret for stopping earlier (reducing the number of
samples). Since the unnormalized values in this case are very small and 5 of the action
choices have values very close to each other, the heuristic adaptive allocation gets fooled

often by the lower bound with regard to the best action. In the case of the uniform allocation

5To be more specific, in this case, we would divide by the conditional probability of the evidence nodes
that have non-evidence nodes as parents, given evidence nodes that do not have non-evidence nodes as
parents.
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Figure 2.7: Results for IctNeo ID: Experiment 1 (6 = 0.1, shared random numbers among
actions). Efficiency of comparison-based method with fixed uniform allocation and maxi-
mum number of stages (77" = 10) relative to estimation-based traditional method. The
dash-dotted lines are the predictions from the informal analysis taking into account dis-
creteness of the number of samples (Top: k& = 6, Bottom: k& = 5). See text for further
details.
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Figure 2.8: Results for IctNeo ID: Experiment 1. Effect of adaptive allocation on the largest
MCB-confidence-interval lower bound for the comparison-based method.

and equal bounds on the ranges of the weight functions, selecting the action with the largest
MCB-confidence-interval lower bound is equivalent to selecting the action with the largest
value estimate. I believe that if we had selected the actions during the adaptive allocation
based on the maximum value estimate instead of the largest MCB-confidence-interval lower
bound, the regret would have been comparable to that for the uniform allocation. Further
analysis of this issue is left for future study.

In summary, the two-stage sequential method produced significant reductions on the
number of samples relative to the traditional method, while keeping about the same quality
on the selected actions. This shows that allocating samples at an initial stage for variance
estimation can be very useful. The comparison-based method did not perform well on this
experiment compared to the estimation-based methods. This was so primarily because
the difference in (unnormalized) value between the first and second best action was not
large enough. In the next experiment, we will see that the comparison-based method can
produce signifcant reductions in the number of samples required for selecting actions that

are provably near-optimal when this difference is sufficiently large.

2.9.2 Experiment 2: (Partially) solving the first decision stage (assuming

random future action sequences)

In this experiment, we consider selecting actions for the first decision stage. We modified the

ID by converting the future decision nodes into chance or variable nodes that depended on
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Figure 2.9: Results for IctNeo ID: Experiment 1. Effect of adaptive allocation on quality
of the selected action for the comparison-based method.

the previous decision node. Because of the constraint on the actions choices, the conditional
probability distribution of each decision node was a uniform distribution over the set of
possible action choices for that decision given each action of its parent (previous) decision.
We were unable to solve this modified version of the IctNeo ID using our implementation
of the exact method, even for a single evidence scenario. This is because performing the
summation over the hidden (non-evidence) nodes now involves, at some point, summing
over a large number of possibilities at once, corresponding to a large number of variables
that become related through the summation process. (The program ran out of space for

this case, as it required at least 1.5Gb bytes of memory, maybe more.)

We generated 100 evidence scenarios from the ID model to consider in this experiment.
As we could not compute the true values exactly, we estimated them by using importance
sampling with 100, 000 samples. We use those estimates as the true value of the actions. For
this experiment, the methods shared the random numbers between both actions and obser-
vations. All the sampling methods tried selected the best action for each of the 100 cases.
The table below shows the total number of samples taken by each method. In this table, the
rows labeled MCB (10), MCB (100), and MCB (1000) corresponds to the comparison-based
method with uniform allocation and maximum number of stages T™?* = 10, 100, and 1000,

respectively. The MCB heuristic is as before.
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2¢ = 0.01,5 = 0.05

Method Total number of samples
Traditional 7,605,561
Sequential 3,509,029
MCB (10) 2,218,671
MCB (100) 2,058, 564
MCB (1000) 2,509,797
MCB heuristic 1,309, 440

The estimation-based sequential method is again superior to the traditional method for
this problem. Now, however, the comparison-based methods are better than the sequential
method. This suggests that the difference in value between the best and second best action
is sufficiently large to compensate for the effect of using variance information to reduce the
number of samples.

Recall that although we ask for a predetermined error and confidence from our approx-
imations, and the sampling methods presented in this chapter, including the comparison-
based method with uniform allocation and fixed maximum number of stages, guarantee
such requirements, they can guarantee a better theoretical error and confidence that asked
for, since those values are random variables for some of these methods. Figure 2.10 shows
plots of the theoretically achieved error for each method as a function of the number of
samples taken. The plot for the MCB heuristic method is not really theoretically guaran-
teed, but the value of the largest (heuristic approximation of) the MCB-confidence-interval
lower bounds when it stopped. The comparison-based methods use as much of the er-
ror allowed as possible in order to reduce the number of samples until stopping. For the
comparison-based method with fixed, uniform allocation and maximum number of stages
T™max the larger T™2* the more of the error allowed it uses, and for this case, up to a point,
the smaller the number of samples. This last point is illustrated in Figure 2.11 where we
present a paired representation of the data for MCB (10) and MCB (100). In this plot, the
results for MCB (10) are plotted with an 'x’ while those for MCB (100) are plotted using
a square. A line connect results for the same evidence scenario. Note that, on average, the
lines have a negative slope. This improvement is only up to some value of T™?* as indicated
by the total number of samples shown in table above. We also see why this is the case in a
following paragraph where we discuss the effectiveness of the comparison-based methods in
this problem.

Figure 2.12 illustrates the effect of the maximum number of stages on the theoretically
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Figure 2.10: Results for IctNeo ID: Experiment 2 (2¢ = 0.01,6 = 0.05, shared random
numbers among actions and observations). Theoretically achieved error versus the number

of samples.
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Figure 2.11: Results for IctNeo ID: Experiment 2 (2¢ = 0.01,6 = 0.05, shared random
numbers among actions and observations). Effect of maximum number of stages (T™2*) on
number of samples and theoretically achieved error.

achieved error and confidence. In the plots, the closer to the left the better the confidence,
and the closer to the bottom the smaller the theoretically achieved error. In this case, the
larger the maximum number of stages, the larger the theoretically achieved error (within

the allowed margin) but the larger the confidence on the error bound.

We evaluated the effect of the adaptive allocation in this problem also. In this case, the
number of action choices is 3. At each stage, the uniform allocation uses 20 sample/action
while the adaptive allocation uses 40 for the action with largest MCB-confidence-interval
lower bound and 10 for the rest. Both methods use 40 samples/action for the first stage.
We ran the methods up to stage 50, 40 times. We considered three cases corresponding
to the sampled evidence scenario with the maximum, median and minimum value for A
(the minimum difference in unnormalized value between the best and second best action).
Figure 2.13 shows the results. The plots show individual (approximate) 95% confidence
intervals at stage 10,20,... ,50. For this model, the adaptive allocation does not seem to
have a large impact in increasing the MCB-confidence-interval lower bound, at least at early
stages. Other factors such as A, the bounds on the range of the weights, and the variances
seem more important in this case. It might be that the difference in number of samples for

the allocations is not large enough.

For this problem, the effectiveness of the comparison-based methods can be explained

by the values of A for the sampled evidence scenarios. Figure 2.14 shows the results. The
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Figure 2.12: Results for IctNeo ID: Experiment 2 (2¢ = 0.01,6 = 0.05, shared random
numbers among actions and observations). Effect of maximum number of stages (7™2*) on
theoretically achieved error and confidence.

plot shows the negative ratio of the number of samples of the comparison-based methods
with uniform allocation and maximum number of stages with respect to the number of
samples of the traditional method. In this case the values of the A of the evidence scenarios
are often relatively large. We note that the informal analysis’s assumption of equal bounds
on the range of the weight functions holds in this problem. Note also that once again,
the predictions from the informal analysis match the outcomes well, suggesting that it is
not very far from being correct. Similar results for the adaptive allocation are shown in
Figure 2.15

To further emphasize the usefulness of the informal analysis in predicting the behavior
of the comparison-based method, we showed the achieved confidence as a function of A
in Figure 2.16. Note that the theoretically achieved confidence is a linear function of the
stopping stage. Again, the predictions from the informal analysis explain the data well.
This suggests that we can use information from the informal analysis, after obtaining a
rough estimate of A to determine which method will be more effective with regard to the

number of samples used. This is left for future work.

In summary, we showed that the comparison-based methods can be very effective for
the problem of action selection and can be significantly more efficient than the traditional
method, specially when the amount of separation between the best and second best action
is sufficiently large. The two-stage sequential method can also be very effective at exploiting

variance information to produce reductions on the total number of samples for near-optimal
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Figure 2.14: Results for IctNeo ID: Experiment 2 (§ = 0.05, shared random numbers
among actions and observations). Efficiency of comparison-based method with fixed uniform
allocation and maximum number of stages (T™?*) relative to estimation-based traditional
method. The dash-dotted lines are the predictions from the informal analysis taking into
account the discreteness of the number of samples. See text for further details.
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Figure 2.15: Results for IctNeo ID: Experiment 2 (6 = 0.05, shared random numbers among
actions and observations). Efficiency of comparison-based method with adaptive allocation
relative to estimation-based traditional method.

action selection compared to the traditional method. We also showed that the “back-of-the-
envelope” analysis given in Section 2.3.1 for the comparison-based method with uniform
allocations and maximum number of stages can describe fairly well the behavior of the
method. I believe this suggests that this analysis is not far from being theoretically correct.
Finally, the general conclusions for the experiments is that the effectiveness of sampling
methods will depend primarily on numerical properties of the model (as opposed to exact
methods, where the dependency is heavily on structural properties of the model).

Before we summarize and conclude this chapter, we discuss some of the open questions

for the problem and methods considered in this chapter.

2.10 Open questions

One big issue with the class of comparison-based methods presented in this chapter is that
we do not provide interesting bounds on the number of samples required until stopping
time. Even in the simpler case of fixed-per-stage sample allocations, for which we have
stopping rules that guarantee certain approximation qualities, we could not derive such
bounds on expected performance (i.e., total number of samples). Actually, there exists
some results of this kind when we assume that the sample weights are normally distributed
(See Jennison and Turnbull [2000] for references). Typically, tables have been pre-computed

from the (typically Monte-Carlo) approximation of integrals involving normal probability
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Effect of maximum number of stages (7™%) in the

among actions and observations).

comparison-based method with fixed uniform allocation and maximum number of stages on
the theoretically achieved confidence. The dash-dotted lines are the predictions from the
informal analysis taking into account the discreteness of the number of samples. See text

for further details.
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density functions. The author is not aware of results of this kind when we are dealing with
somewhat general, distribution-free, bounded random variables as we are in the ID model.

On another subject, let us reconsider the heuristic comparison-based method with adap-
tive allocation presented above. We use an arbitrary allocation strategy: we allocate some
arbitrary number of samples for one action and another arbitrary number for the rest. One
way to remove this arbitrariness is to turn this question into a sequential decision (theo-
retic) problem. One of many alternatives we can think of to define a notion of utility is
that which rewards allocating more samples to actions whose outcome will result in a larger
discrimination between the first and second best actions as soon as possible by penalizing
for each sample we take. We can define the state as a k-dimensional continuous variable
whose i*® dimensional component domain is the range of the weight functions for action
i (recall we are considering a particular observation). We can consider simple actions; for
instance, take a sample for action . In this case, the transition probability is the condi-
tional probability over the possible value of the action given the previous values and the
action taken. Note that given the simple action structure and independence on the samples
for each action, the process has a simple structure: the process governing the estimates in
value for each original action component is marginally independent of the others and each
new action (take a sample from original action i) only affects a single component value
estimate. The reward function should be some empirical function of “the negative of the
difference in value between the first and second best value estimate.” (i.e., the larger the
difference, the larger the reward) and involve some additional cost for each sample and/or
stage. By the desription above, we have essentially defined an MDP. Figure 2.17 displays
this model graphically. Note however that it seems unlikely that we will find expressions for
the transition probabilities for a general model. However, we can always simulate the pro-
cess (generate samples according to the transition distributions). The randomized method
for solving MDPs of Kearns et al. [1999b] is immediately applicable to the type of MDP
we have defined above (continuous state space 7, bounded reward, easy to simulate from
transition probability). (I believe POMDP formulations are also possible.)

Thus, in theory, we have a solution to our MDP. However, it seems like a waste to have
to go through such a high computational overhead just to decide where to allocate our
samples. As presented, it is not clear that we can combine both problems of allocation and
selection and use information from both to solve our original problem of action selection.

Also, note that because of our relaxation regarding the quality of the computed strategy,

" Actually, in the case of discrete spaces and random utilities, the state space will actually be discrete but
grows exponentially with each transition.
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Figure 2.17: Graphical representation of MDP for optimal adaptive allocation.

our main objective is really to determine a near-optimal action as quickly as possible, not
necessarily to select the very best. This new objective simplifies the problem and potentially
reduces the total number of samples needed for selection. Hardwick [1991], in studying a
similar problem, has a nice description of some of the computational issues we have just

discussed in this paragraph, but in a completely different context.

2.11 Summary and Conclusion

The methods presented in this chapter are an alternative to exact methods. While the
running time of exact methods depends on aspects of the structural decomposition of the
ID, the running time of the methods presented in this chapter depends primarily on the
range of the weight functions, the variance of the value estimators and the amount of
separation between the value of the best action and that of the rest (in addition to the
natural dependency on the number of action choices, and the precision and confidence
parameters). In some cases, we can know in advance whether they will be faster or not.
The methods presented in this chapter can be a useful alternative in those cases where
exact methods are intractable. How useful depends on the particular characteristics of the
problem.

Sampling is a promising tool for action selection. The empirical results suggest that

sampling methods for action selection are more effective when they take advantage of the
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intuition that action selection is primarily a comparison task. More experimentation is
necessary with IDs large enough that sampling methods are the only potentially efficient
alternative. Also, a future empirical comparison study is necessary to determine whether
this improvement over the traditional method can make this type of sampling method
superior to other kinds of sampling methods like MCMC and stratified sampling, and under
what conditions. Also, this work leads to the study of adaptive importance sampling as a
way to further improve the effectiveness of sampling methods [Ortiz and Kaelbling, 2000a].

In the next chapter, preliminary work done on adaptive importance sampling is presented.



Chapter 3
Adaptive Sampling

Often, we are interested in computing quantities involving large sums, such as expectations
in uncertain, structured domains. For instance, as presented in the introduction, belief in-
ference in Bayesian networks (BNs) requires that we sum or marginalize over the remaining
variables that are not of interest. Similarly, as presented in the last chapter, in order to
solve the problem of action selection in influence diagrams (IDs), we sum over the variables
that are not observed at the time of the decision in order to compute the value of different

action choices.

We can represent the uncertainty in structured environments using a BN. A BN allows us
to compactly define a joint probability distribution over the relevant variables in a domain.
It provides a graphical representation of the distribution by means of a directed acyclic
graph (DAG). It defines locally a conditional probability distribution for each relevant
variable, represented as a node in the graph, given the state of its parents in the graph.
This decomposition can help in the evaluation of the sums. However, in general, this is not

sufficient to allow an efficient computation of the exact value of the sums of interest.

Sampling provides an alternative tool for approximately computing these sums. Sam-
pling methods have been proposed as an alternative to exact methods for such problems. In
particular, importance sampling (See Kahn and Marshall [1953], Rubinstein [1981], Geweke
[1989], and the references therein) has been applied to the problem of belief inference in
BNs [Fung and Chang, 1989, Shachter and Peot, 1989, Fung and Favero, 1994, Cano et al.,
1996, Herndndez et al., 1998] and action selection in IDs (see Charnes and Shenoy [1999]
and the references therein, and Ortiz and Kaelbling [2000b]). In its simpler form, the
importance-sampling distribution used is the do-operated distribution of the BN result-
ing from setting the value of the evidence (See Introduction). It has been noted early on

87
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that this sampling distribution is far from optimal in the sense that it provides estimates
with larger variance than necessary [Shachter and Peot, 1989]. For instance, the optimal
sampling distribution in the case of belief inference is to sample the unobserved variables
from the posterior distribution over them given the observed evidence. If we knew this

distribution we would know the answer to the belief inference problem.

Several modifications have been proposed to improve the estimation of the simple im-
portance sampling distribution discussed above, based on information obtained from the
samples [Fung and Chang, 1989, Shachter and Peot, 1989, Shwe and Cooper, 1991, Cheng
and Druzdzel, 2000, 2001]. In this chapter, methods to systematically and sequentially
update the importance-sampling distribution are proposed. The idea is to view the up-
dating process as one of learning a separate BN just for sampling. The learning objective
is to minimize some error criterion. A stochastic-gradient method results from the direct
minimization of the variance of the estimator with respect to the importance sampling dis-
tribution as an error function. Other stochastic-gradient methods result from minimizing
error functions based on typical measures of the notion of distance between the current sam-
pling distribution and the optimal, or approximations to the optimal, sampling distribution

approximations.

We also propose estimators that make more efficient use of all the samples generated. We
present some preliminary theoretical analysis of some instantiations of the class of estimators
and update rules. We present preliminary empirical results that show the potential of this
technique to improve sampling-based estimation in graphical models. In the context of belief
inference, we partially study the application of the adaptive importance sampling methods
presented to a particular class of BNs (QMR-DT-type BN) with further special structure
that allows a more compact representation of the local conditional probability distributions.
In particular, inspired by some of the preliminary empirical results, we start to shed some
light on the theoretical connection between some instantiations of the AIS methods and
variational approximations, a type of approximations that has been used effectively for
problems in this special class of BNs by Jaakkola and Jordan [1999], who were primarily
interested in obtaining strict bounds for the likelihoods and posterior marginals in this

model.

We now briefly discuss relevant properties of importance-sampling estimators, before we

present the main work of this chapter.
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3.1 On importance-sampling (IS) estimators

An important property of the importance-sampling estimator G, presented in the introduc-
tion and given in equation 1.4, is the variance of the weights associated with the importance-

sampling distribution. This is
Varlw(Z)] = Y _ f(Z)w(Z)* - G.
z

Recall that G = ) , g(Z) by definition and assume that g is a positive function. From this
we can derive that the optimal or minimum-variance importance-sampling distribution is

proportional to g(Z):

(2) = %- (3.1)

The weights will have zero variance in that case, since the weight function will always output
our value of interest G. Note that the normalizing constant for this distribution is the value
we want to compute, G. We also note that we need to avoid letting f(Z) be too small with
respect to g(Z), since this will increase the variance. As a matter of fact, Var[w(Z)] — oo as
f(Z) — 0 for at least one value of Z. This implies that we should use importance-sampling
distributions with sufficiently “fat tails.”

Note that for general g (i.e., not necessarily positive), such that G # 0, f* « |g|, where
|g| denotes the absolute value of g. (The reader can verify this by solving the optimization
problem using Lagrange multipliers [Kahn and Marshall, 1953].) Therefore, in general,
the optimal variance will not be zero. However, this can be made zero by combining two
different IS distributions: one to deal with the positive part and the other to deal with
the negative part [Owen and Zhou, 1999]. From now on we will assume that the target
function g is positive. This is a reasonable assumption for the problem of belief inference in
BNs. Since, in principle, we can always perform a linear transformation to make the utility
functions positive, this is also a reasonable assumption for the problem of action evaluation
in IDs.

3.2 Adaptive importance sampling (AIS)

The traditional method presented previously in the introduction uses as the importance-
sampling distribution the do-operated distribution of the BN which can be far from optimal
in the sense that it can have higher variance than necessary. In the case of evaluating

actions in IDs, it also completely ignores potentially useful information about the utility
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values. Therefore, the methods proposed try to learn the optimal importance-sampling
distribution by adapting the current sampling distribution as they obtain samples from it.
We view this adaptive process as one of learning a distribution over the variables the sum is
over to use specifically as an importance-sampling distribution. In particular, we will learn
a BNs from the samples just for sampling.

From the expression of the optimal importance-sampling distribution we can deduce
that in order to be able to represent this distribution graphically using a BN we at least
need to add arcs that connect every pair of nodes that are parents of observations and/or
utility nodes, if they are not already connected. (This will become more evident from the
discussion of Section 3.8.5. For now, one way to see this is as follows. First, in a BN,
conditioning on the value of a particular variable, the parent variables become dependent.
Hence, all those parent variables will be dependent among themselves—as a group. With
regard to the utility nodes, note that knowing the output value from a utility function
should give us information about the value of the parents variables of the utility node since
the utility function for that node is a direct function of those variables. A more technical
answer is that, in our context, the optimal importance-sampling distribution is a Gibbs
distribution with respect to an undirected graph where, individually for each observation
and utility node, their parents form a clique in that graph; that is, they are fully connected.)
One problem is that the representation of the distributions local to the observation nodes
and the values of the utility nodes are often compact, hence, not requiring that we have a
value for each possible instance of the parents. Sometimes those representations use smaller
parametric forms (i.e., noisy-or’s, noisy-and’s, etc.) Pearl [1988], Srinivas [1992], Diez [1993].
By connecting them in the traditional (table-like, non-parametric) way, we can significantly
increase the size of the model to a degree that renders the BN impossible to use. If the
original model uses the traditional representation for the observation and utility nodes, then
connecting their parent nodes does not affect the model-size complexity with respect to the
original model.

We will start by concentrating on the problem of learning a BN with the same structure
as the original BN (or ID). We will revisit the issue of an optimal sampling BN structure in a
Section 3.8.5. For now, let us only consider how to update the local conditional probability
distributions as we obtain samples for a given fixed structure. Assume that we use the same
structure as the one used by the traditional IS method; that is, the do-operated distribution
of the BN or ID. We already saw an example in Figure 1.3. We presented another example
in Figure 1.2.

Given a particular structure, we can parameterize the importance-sampling distribution
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using a set of parameters ®. Let Z be those variables not involved in the probabilistic
query (those that we have to sum over). Let Pa(Z;) be the set of parents of Z; in the
importance-sampling BN graph. Let the indicator function I(Z; = k,Pa(Z;) = j | Z) =1
if the condition Z; = k and Pa(Z;) = j agrees with the value assigned to Z; 0 otherwise.

Then, we can express the importance-sampling distribution as

1(z|®©) H 1 II eizbrezo=2), (3.2)
i=1 j€Qpa(z;) kE€Qz,

where for each i, 5, k, 0;;, = P(Z; = k | Pa(Z;) = j,©). Hence, for all 7,5, >, 0;;x = 1, and
for all k, 6;;, > 0. We will refer to this representation as the traditional representation of
the parameters of the BN. Note that this representation uses the assumptions of global and
local parameter independence typically used in BNs (See, for instance, Heckerman [1995]
and Geiger et al. [1996], who refer to Spiegelhalter and Lauritzen [1990]). The weight
function is also parameterized and defined as w(Z | ®) = ¢(Z)/f(Z | ®), where the
definition of the target function g depends on the sum we are evaluating (i.e., the problem
under consideration). Other representations are possible and will be discussed later on in
this document. From now on, we will refer to the BN used as an importance-sampling
distribution the IS BN (importance-sampling BN), and the class of IS BNs that use the

traditional representation as the traditional class of IS BNs.
Now that we have set the BN structure and parameteric representation, it remains to
consider how those parameters will be set or adapted in order to provide good IS distribu-

tions. We now present how we do this.

3.2.1 Learning criteria and update rules

In the following subsections, different methods are presented for updating the sampling
distribution. The update rules are all based on gradient descent. Hence, at each time ¢, we

update the parameters as follows:
00+ ) — o (t)VPe(0M). (3.3)

In the update rule above, a(t) denotes the learning rate or the step size rule and V?e(®)
denotes the gradient of error function e, appropriately projected (if necessary) to satisfy
the constraints on ©. The methods differ in how they define V?e(@®). Let us ignore for
now the issue of how to initialize the parameters (i.e., how to set 0(0)).

In the discussion below we denote the N(t) i.i.d. samples as 25D, ... 2tN(M) drawn
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according to Z ~ f(Z | 81)). If we gather samples to estimate G using many different sam-
pling distributions, how can we combine them to get an unbiased estimate? It is sufficient to
weight them using any weighting function that is independent of the sub-estimates obtained

by using just the samples for one sampling distribution. For instance, the estimator
T
G =>"wwGe"), (3.4)
t=1

where 25:1 W(t) =1 and W(t) > 0, for all ¢, and

N(t)

A 1

G(00) = 55 2= 169, (3.5)
=1

is unbiased as long as W (t) and G(8")) are independent for each t. Letting W (¢) = 1/T will
produce an unbiased estimate. This is the weight we use in the experiments. In general, we
would like to give more weight to importance-sampling distributions with smaller variances.
Assuming that the variance decreases with ¢, we would like W (¢) to be an increasing sequence
of t. Many alternatives are possible.

Note that using W (t) o 1/62, where 67 is the sample variance at time ¢, though ap-
pealing, does not necessarily lead to an unbiased estimator since W (t) and G(8*)) are not
independent [Marshall, 1956]. I will later discuss the issue of how to set the weighting
scheme “optimally,” and how the variance matrix of the sub-estimators comes into play.

Since in our context, 0® results from adapting the IS BN, from now on we will refer to
the class of estimators defined by G(T) on equation (3.4) as the AIS estimators (adaptive-
importance-sampling estimators), and particular estimates as AIS estimates. We present
some theoretical properties of the AIS estimators in Section 3.8.3.

We will consider three general strategies: minimizing variance directly, minimizing dis-
tance to global approzimations of the optimal sampling distribution, and minimizing distance
to the empirical distribution of the optimal sampling distribution based on local approzxima-
tions. (We will see in Section 3.2.3 how we can also minimize distance to the global optimal
sampling distribution without the need of a global approximation.) The expressions are
derived for the traditional class of IS BNs. For the first two strategies, we will find that we
can express the partial derivatives that form the gradient as, for all ¢, 5, k,

de(®) —1(Z; = k,Pa(Z;) = j | Z)
0ijr Zz:f(Z ©) [ Oijk #2.0)]

where ¢(Z,0) is a function that depends on the error functions. Note that this is an

expectation. Then, the methods update the parameters by estimating the value of the
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partial derivatives evaluated at the current setting of the parameters 0 as

—

N() ;
de(8) _ 1 —I(Z;=k,Pa(Z;) =] | Z = Z(t’l))(p(z(t,l)’e(t))
80, N(t) Z: 0"
=1 ijk

Minimizing variance directly As noted above, the optimal importance-sampling distri-
bution for estimating G is that which minimizes the variance of w. Using that as the objec-
tive, we can derive a stochastic-gradient update rule for the parameters of the importance-

sampling distribution. Let the error function be

evar(®) = Var(w(Z | 9))
= > f(Z|®)Ww(Z]|6) -G
Z

The corresponding function for the gradient is
pvar(Z,0) =w(Z | ©)°. (3.6)

Note that using this definition of ¢ yields an unbiased estimate of the gradient. This
is because the gradient is the expectation of a particular function and, in this case, we
can always evaluate the function exactly. Hence, we can obtain an unbiased estimate by
sampling from f(Z | ®).

Minimizing variance indirectly via approximate global minimization Recall the
optimal importance-sampling distribution f* for estimating G given in equation 3.1. The
update rules of the following subsection are all motivated by the idea of reducing some
notion of distance between the current sampling distribution and this optimal sampling
distribution. Note that we cannot really compute the values of the optimal distribution
since that requires knowing the normalizing constant ), ¢g(Z) = G which is exactly the
value we want to estimate. (We will see later how this problem can be avoided for some
of the error functions considered in this section.) We approximate the optimal distribution

using the current estimate of G as follows

it o _ 9(Z)
(z) = O (3.7)

In the following, we will consider four error functions, one based on the sum-squared-error

and three based on versions of the Kullback-Leibler divergence.
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If we use the Ly norm or sum-squared-error function as a notion of distance between

the distributions, then the error function is

e1,(©) = 3 3 (1(Z ] ©) — (2)).

zZ

The corresponding function for the gradient is
¢L,(Z,0) = [Y(Z)—-f(Z]0)
f(Z]0) x
(w(Z 1 @)/GM — 1) , (3.8)

where the approximation results from using f {(Z) as defined in equation 3.7 as an approx-

Q

imation to f*(Z).
An alternative, commonly-used notion of distance between two probability distributions
is given by the Kullback-Leibler (KL) divergence. This measure is not symmetric. One

version of the KL divergence in this context is given by the error function
ex1,(0) = 3 1(2) o6 ("(2)/1(Z | ©).
The corresponding function for the gradient is

vk, (Z,0) = f*(Z)/f(Z]©)
~ w(Z|e)/G". (3.9)

Another version of the K. divergence is given by the error function
ex1,(@) =Y f(Z | ©)log (f(Z | ©)/f*(2)).
z
The corresponding function for the gradient is

YKL, (Z,0) = log(f*(Z)/f(Z]0))—
~ log (w(Z|®)/G<t) ~ 1L (3.10)

In general, the version of KL given by exr, (®) above makes more sense since the error is

an expectation taken with respect to the optimal importance-sampling distribution f*(Z).
A “symmetrized” version of KL, sometimes used is given by the error function

1

—exL,(®).

1
—€KL, (@) + 5

eKL, (©) = 5

We can obtain the partial derivatives for this error function and their approximation ac-

cordingly.
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Heuristic local minimization based on empirical distribution The update methods
in this subsection are motivated by the idea of minimizing different notions of distance
between the current sampling distribution and an empirical distribution of the optimal
importance-sampling distribution that we build from the samples. The hope is that the
empirical distribution is a good approximation of the optimal sampling distribution. Let
the empirical distribution, parameterized by 2) locally be as follows: for all ¢, j, k,

(weighted) average number of times sample z(t!) assigned Z; = k,Pa(Z;) = j )

() _
eijk - t,0)

b

(weighted) average number of times sample z(*!) assigned Pa(Z;) = j

that is, for all ¢, 7, k,

NO I(Z;, = k,Pa(Zi) = j | Z = 20D )w(2®D | 0)
SO 1(Pa(Zy) = j | Z = 260w (2D | 91)

055, = , (3.11)

if Zl]i(f) I((lja(Zi) =j| Z = 200)w(z®) | 91)) £ 0; 91(29 = 91(29 otherwise. The probability
t

ijk
assigned Z; = k when Pa(Z;) = j. We are essentially defining the empirical distribution

estimate 6., is proportional to the (weighted) average number of times that the sample z(t0)
using the samples if there are samples that can be used to define it; otherwise, we revert
to the current distribution. We try to minimize the distance between the current sampling
distribution and the empirical distribution locally.

Similar to the case of the previous strategies, we will find that we can express the partial
derivatives that form the gradient of the error functions discussed in this subsection as, for
all ¢, 4, k,

aeloc(e)

loc/p
- _ O:ir 0
80ijk @ ( ijk> zyk),

where wloc(éijk, 0;;1) is a function that depends on the error functions. Then, the methods
update the parameters by estimating the value of the partial derivatives evaluated at the

current setting of the parameters 0 as

deloc (91

__docipt) p(t)
i =—%0...,6:7).

ik Vijk
We define the local Lo-norm error function as

1 N 2
(@) = 5 2 (Oige — i) (3.12)
2,7,k
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the error function for one version of KL as
) R R
ef, (©) = i log (%k/%k) :
1,3,k

and the other as

eRf,(®) =) Oijxlog (9z'jk/ 9z'jk) :
ik

From this we obtain the corresponding functions for the gradient:

oS (03, Oijk) = Oiji — Oijis
O Bijis Oijk) = Oiji/Oijies

SOigEQ (éijkaez'jk) = log (éijk/eijk) —1.

We can obtain an update rule based on the “symmetrized” version of KL accordingly.

3.2.2 Discussion of update rules

First, note that of all the update rules presented thus far, only the one derived for ey,
clearly uses an unbiased estimate of the gradient. It is not immediately apparent whether
the update rules based on er,, ex1,, and exr,, as presented above, use unbiased estimates.
This is because those update rules use an estimate of the gradient that in turn uses the
current estimate of the value we are trying to compute, G,

Note also that the magnitude of the components of the resulting gradients are different,
as suggested by their respective ¢ functions. The function @y, has magnitude proportional
to the squares of the weights. The magnitudes of ¢1, and k1, are linear in the weights.
However, the magnitude of ¢1, is potentially smaller since it has the probability of the
sample as a factor. The magnitude of k1, is logarithmic in the weights.

Because we assume that g is positive, the weights are positive. Hence, @y, and ¢x1,
are always positive.l The function ¢r, is positive if w(Z | ®)/G > 1. Similarly, the
function ¢kr, is positive if log(w(Z | ®)/G) > 1. If w(Z | ®) > G then the sampling
distribution underestimates the value of g, while if w(Z | @) < G then it overestimates the
value. Therefore, the sign of ¢r, and ¢k1,, depends on whether we under- or over-estimated
the value of g. Similarly, the magnitudes of ¢var, ¢¥L,, YK1,, and k1, are related to the

amount of under- or over-estimation. For ¢var, @1, and ¢ki, the magnitude is larger

'Note that once the gradient is projected to take care of the constraints on the parameters, the components
will not be all positive.
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when the sampling distribution underestimates than when it overestimates. For ki, the
logarithm brings the amount of over- and underestimation to the same scale. Note that
for the approximations of ¢r,, ¢kr,, and @K1, G cannot be zero, and in addition for
YKLy, w(Z | @) cannot be zero. However, these conditions hold from the assumption that
g is positive. Note that using the traditional (tabular) representation, unless we constrain
the importance-sampling distribution, all the functions pvar, ¢1,, ¢k1, and ¢k, will be
unbounded even if g is bounded; we will revisit this issue later.

The local Ly error function, e}f’;, leads to an update rule for which the step size has
a very intuitive interpretation as a weighting between the current importance-sampling
distribution and the empirical distribution. This can help determine an appropriate setting
for the step sizes a(t). In the case of eigil, the update direction is proportional to the ratio
of the empirical distribution with respect to the current importance-sampling distribution.
On the other hand, for e%ﬂ, the update direction is proportional to the logarithm of the
same ratio. Note that ki, is not defined if at least one ég;c = (. We can fix this by letting,
for each i, j, k,

(SN0 1(Zi = k,Pa(Z:) = j | Z = 2E0)w(200) | 80))) + 6

60 —
ik ( l]i(f) I(Pa(Z;) =j | Z = z(t0))w(z®D | a(t))) 1

We can interpret this as imposing a “Dirichlet prior” with parameters equal to the current
probability values on the empirical distribution parameters.

We can interpret the update rules based on local KL-divergence as adding weights to the
elements of the domain of the importance-sampling distribution and renormalizing. For the
version of KL-divergence with respect to the empirical distribution, we are always adding
weights. We add values relative to the amount we underestimated or overestimated the
magnitude of the distribution for a particular state. If we underestimated, we add weights
larger than one. If we overestimated, we add weights smaller than one. For the other
version of KL-divergence, due to the logarithm function, we add weight if we underestimated
while we subtract weight if we overestimated. Therefore, the logarithm brings the amount
of underestimation and overestimation to the same scale and adds or subtracts weight
accordingly.

Note that when approximating the gradients for eva,, er,, exr, and exr,,, we can use
as little as one sample to obtain an estimate of the gradient (i.e., N(¢) = 1). This is not
advisable for the method based on the local heuristic since the empirical distribution of the
optimal sampling distribution will be highly inaccurate. It is also fair to say that using a

single sample to estimate the gradient leads to a larger variance of its estimate. However,
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this will not affect its theoretical properties, as we will see later. Hence, the update rules
based on the empirical distribution will work better when we take a larger number of samples
between updates. Finally, note that when t =1 and N(¢) = 1, ¢, = 0, and therefore, the
parameters will not change in the first iteration.

Note that, through the application of Taylor-expansion approximations we can establish
many relationships between the error measures (i.e., their surfaces), particularly between the
KL-based errors and the others, in a local neighborhood around the optimal IS distribution
(assuming our parametric class of IS BNs can represent it). The most important questions
remain unanswered however: Can we characterize the global relationships between the error
measures? Is one “smoother” than another? Does one have fewer local minima? Under
what conditions one is “better” than the rest? Is one “always better” (in some sense) than
the rest? Answers to these questions are important since they can help us determine online

which one will be more effective for a particular problem.

3.2.3 Minimizing KL-based difference from actual (not approximate) op-

timal distribution

We can actually minimize the KL-based errors between the IS BN distribution and the
optimal distribution without having to approximate the optimal distribution. To see how

this can be done, note that, because G is a constant,

argiin ek, (@) = argmmz 2)/G)log (%>

_ argmmZg )log (%)

Hence minimizing the error function
i 9(Z
i (@) =) " g(Z)log (f(Z( | 19)> (3.13)
z

is equivalent to minimizing the KL error function ekr,. The derivatives of e%fv however
do not require knowledge of the normalizing constant G. The corresponding function of the

gradient expression in equation ( 3.9) is

oL (Z,0) = w(Z,0). (3.14)
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Similarly, for exy,,,

arg(f)nineKh(@) = argmanf (Z | ©)log (W) (3.15)
TG
= argmin 7}”(2 1 ©) —
= argn Zij(z | ©) log( (2 ) —log G (3.16)
= arg(f)ninzZ: f(Z|0) log(%). (3.17)
The equivalent error function is
e lllV Z G)
e (@ Zf Z | ©) log( 7( (;) )). (3.18)

The corresponding function of the gradient expression in equation ( 3.10) is
P (Z,0) = log(w(Z,©)) — 1. (3.19)

Similarly, for exy,,.

equ1v equlv

We should use the equation for ¢y * and g7~ to replace pxr, and kL, presented
previously. This equivalence is 1mportant because now we can evaluate the gradient exactly
for particular assignments to Z and ®. Therefore, we can obtain unbiased estimates of
the gradients to use in our updates for minimizing the KL-based differences to the optimal
distributions as the error measures. Obtaining unbiased estimates of the gradients can
make the theoretical analysis of the convergence of the resulting stochastic-gradient methods
simpler. Except where noted, the versions presented in this subsection are not used in the
empirical experiments but we consider them in the theoretical analysis.

We now present related work for the problem of computing summations (marginals,
posteriors, etc.) in BNs and connect the methods presented in this chapter with AIS

methods for other problems in other fields.

3.3 Related work

Different variations of importance sampling have been used for the problems previously
presented involving the evaluation of sums (See Lin and Druzdzel [1999] and the refer-
ences therein). The methods presented here belong to the class of forward samplers since
they sample from a distribution based on the original structure of the BN. Of these, self-
importance sampling [Shachter and Peot, 1989, Shwe and Cooper, 1991] and a method called
AIS-BN [Cheng and Druzdzel, 2000] are the methods closest to the methods proposed here
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since they also update the sampling distribution as they obtain information from the sam-
ples. The SIS method has an update rule that is very similar to the one derived for e}f;.
It updates the distribution after obtaining the empirical distribution, but the update is a
weighting between the empirical distribution and the first sampling distribution used [Shwe

and Cooper, 1991]. The update rule is

+a(t)ol

oY« (1—a(t)df) i

ijk ijk
6 — a(t) (og; Jalt) — (1 — (1)) /alt) - og.’;) .

In our framework, we can think of this update rule as resulting from the error function

8150, = 5= 3 (0e — (11— a0l + a0 )
ijk

The update rule of AIS-BN is equivalent to ell?;. ATS-BN also uses a BN as the IS distribution
and with the same structure as the original BN. In our framework, their update rules results
from the local Ly error function e}?; (Equation 3.12). Cheng and Druzdzel [2000, 2001] also
suggest estimators similar to the AIS estimator in equation ( 3.4). They present heuristics
for initialization of the parameters, weighting schemes for partial estimates and setting of
step sizes for the gradient update. They showed empirically that the combination of their
update rules with their heuristics had a big impact on the performance of their method over
that of the traditional (non-adaptive) importance-sampling method (likelihood weighting)
when evaluated in three significantly large and complex real BNs. They later suggested
new heuristic methods for setting the step size rules used for the gradients, the number of
samples used from each importance-sampling BN for estimation and updating, the weighting
scheme for combining partial estimators, and for computing relative-approximations using
the resulting estimates [Cheng and Druzdzel, 2001].

Other work in the literature on inference in BNs has attempted to find a different, hope-
fully better, importance-sampling distribution than that used by the traditional likelihood-
weighting method (for instance, see Fung and Favero [1994], Cano et al. [1996], Herndndez
et al. [1998] and the references therein). Typically, a deterministic process is used to find
the distribution and no adaptation is done. Since only one IS function is used, the estimates
are from a singe IS distribution.

In what follows, we discuss work on AIS on other areas. The problem considered in the
literature we present next does not involve problems in BNs or IDs. Also, most (if not all) of
that work is primarily interested in computing integrals of different kinds, not summation,

and do not deal with problems in BNs or IDs. We briefly summarize this work here because
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many of the problems we encounter are, not surprisingly, similar, and it might provide us
with a starting point to deal with the problems faced when applying AIS methods in the

context of the problems studied in this thesis.

Adaptive importance sampling has been developed and studied in the literature on
statistical multiple integration, most particularly, Monte Carlo integration [Flournoy and
Tsutakawa, 1991]. The general idea used is similar to that used here, and the update rules
based on local heuristics presented here, particularly those resulting from e}?;, are similar to
the typical adaptive importance sampling method presented in that literature. The idea is
to use the samples to estimate some important characteristics of the optimal IS distribution
and update the parameters of the IS distribution so as to try to match those estimates (see
Kloek and van Dijk [1978], Oh [1991], Geweke [1991], and Evans [1991], for example). Their
main concern is typically the evaluation of “normalized” integrals as is typically necessary
in the Bayesian setting for evaluating expectation with respect to posterior densities. Oh
[1991] and Evans [1991] also suggest “pooling” the partial estimators as in the AIS estimator
presented here. Oh analyzes the effect of dimensionality on the IS estimators for several
typical importance-sampling densities and finds that the variance of the weights is affected
the most by the dimensionality of the problem (i.e., the dimensionality of the integral, which
in our context translates to the number of variables involved in the summations). Oh found
that the variance of the weights increases exponentially with the dimensionality, but the
increase is only linear in the dimensionality if the IS density matches the target function
well. This serves as another motivation to try to reduce the variance of the weight function.
Rubinstein [1981] also suggests the minimization of the variance and warns about multi-
modality as a potential problem when optimizing the parameters of the IS density as to
minimize the variance. Rubinstein goes on to suggests that any general global optimization
technique can be used, but does not suggest one in particular. In discussing the problem of
trying to find a good importance sampling distribution, Geweke [1991] warns against using
the same samples from the sampling process itself to adapt the IS density. Geweke suggests
as an alternative that one could apply “steepest ascent or other hill-climbing methods to

“ which would seek out a maximum.”

the log-weight function,” (in our case w(Z | @),
Evans [1991] concentrates on the problem of how to find good IS densities. Evans suggests
a method based on setting up a “chain” or sequence of integration problems with the
following properties: (1) the sequence starts with a problem for which is easy to find a good
IS density, from a parameterized family of IS densities, (2) the change from one problem
to the next is small enough that we can adapt the IS distribution well by modifying the

parameters, and (3) the last problem in the “chain” is the original integration problem.
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The idea is to be able to find a good initial IS distribution and control the updates in such
a way that good IS densities could be found up to that for the problem itself. In principle,
all of these ideas can be applied to the problems considered in this thesis. We do not do so
here however, but leave them for future work.

Annealed importance sampling [Neal, 1998, 2001] is a related technique in that it tries to
obtain samples from the optimal sampling distribution. As we understand it, the user sets
up a sequence of distributions, the last distribution being the optimal distribution, typically
defined by Markov chains. We move from one distribution to another as we “anneal” and
the sequence converges to the optimal sampling distribution. The hope is that we can get
an independent sample from that distribution, then we restart the process to try to obtain
another independent sample, and so on. Finally, it uses those independent samples to obtain
an estimate. Notice that each “traversal” of the sequence of distributions (or Markov chains)
produces a single sample. The technique is very general and we are unaware of whether it
has been applied to the problems considered here. There might be connections between the
methods presented here and this technique, which we will leave for future work.

In general, I believe one can also view Markov chain Monte Carlo (MCMC) methods
[Neal, 1993, Tierney, 1994, Gilks et al., 1996] and its common variants like Metropolis-
Hastings [Metropolis et al., 1953, Hastings, 1970] and Gibbs sampling [Geman and Geman,
1984] as sampling methods that “inherently” or “indirectly adapt” the sampling distribution
so as to generate samples from the optimal sampling distribution. It is well known that,
under some mild conditions, typically met by BNs, asymptotically the samples from MCMC
sampling methods will be from the optimal sampling distribution. Many variants of Gibbs
sampling and hybrid methods have been proposed in the literature for problems in graphical
models [Neal, 1993].

Another “branch” in the literature on AIS methods follows back from very recent the-
oretical work of Kollman et al. [1999], and Baggerly et al. [2000], showing some conditions
for exponential convergence of an adaptive IS procedure in some specific models. This work
points back to work in the applied probability theory community from a physics perspec-
tive [Fitzgerald et al., 1999, 2000], work in the nuclear science and engineering community
(presenting empirical evidence of exponential convergence of an AIS procedure in a particu-
lar model) [Booth, 1986, 1989] , and finally, going all the way back to the very “beginnings”
of Monte Carlo methods [Meyer, 1956] (where AIS methods extremely similar to those
presented here are discussed and studied). The same problem of seeking variance reduc-
tion for the traditional IS methods guides all that work. Preliminary review suggests that

most methods in that line of research fall primarily in the heuristic-local approximations,
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in the context of this document. The estimators are similar, if not the same, as the AIS
estimators here in that they reuse samples by combining sub-estimators from the IS distri-
butions found, and they deal with the same problem of how to optimally combine them.
Their solutions are about the same as those suggested here. Finally, Halton [1962] proposes
and studies a particular instantiation of estimators of this kind and theoretically establish

general convergence conditions.

In the chemical-physics community, Alexandrowicz [1971] suggests a method for lattice
problems (Ising models) that uses a simpler distribution that allows efficient exact simu-
lation.2 Such distributions can be seen graphically as a special class of BNs; hence the
connection to some instantiations of the general AIS method suggested here. In that work,
stochastic adaptation is avoided as much as possible and several analytic expressions are
developed. In our context, the error measure corresponds to one of the KL-based global
errors and heuristic local approximation errors for others. He establishes the connection of
its “analytical formulations” to Kikuchi’s approximation [Kikuchi, 1951] (now popularized
in the context of graphical models by Yedidia et al. [2001] in their use for the analysis of a
popular deterministic approximation method for belief inference in BNs and other graphical
models known as belief propagation, which was developed in the context of BNs by Pearl
[1988]). In particular, he tries to differentiate its method by noting that Kikuchi’s “evaluates
the distribution of certain figures formed out of spins alloted to neighboring lattice sites.”
He argued that his method is more applicable by being in a sense more general and states
Kikuchi’s “analytical formulation appears to be limited to the simpler stochastic models
and as such offers fewer possibilities to deal with intricate physical problems than does
the full dress Monte Carlo evaluation of stochastic models.” On another interesting note,
Alexandrowicz also tries to differentiate his method from Metropolis (now the foundation
of most MCMC method), and which he incidentally refers to as “the more sophisticated
“importance sampling” Monte Carlo technique.” Alexandrowicz’s main argument against
Metropolis’ method is a very common one among some researchers in the graphical models
community: it is too slow to converge. He argues that it will be impractical for large lattices,
because although optimal in the limit, “it still requires a very large number of repetitions of
the n [number of variables] step process, and as such permits to describe quite small lattices
only.”

In the communications community, Al-Qaq et al. [1995] present a method for adapting

the IS density that also uses stochastic gradient descent to optimize a given class of IS

*T would like to thank Radford Neal for pointing me to this work.
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densities. In that sense, this method is very close to ours. In their context, the IS density
is a conditional Gaussian and because of special properties of this class, they use standard
stochastic approximation arguments to state that the parameters of the IS density found
during the adaptive process will converge to a global optimum in the class, with probability
one (i.e., a strong convergence result).

We should also point out that there is an immediate connection between our methods
and variational methods [Jordan et al., 1997].> Once we have selected a particular struc-
ture for the IS BN to approximate the optimal IS distribution, and parameterized the IS
BN according to that structure, the parameters can be viewed as variational parameters
that need to be optimized according to some error function. Typically, for problems of
inference in graphical models, the error measure exr,, presented here is used. For some pa-
rameterizations and further approximations, the resulting error surface for the variational
problem has some nice properties (i.e., convexity), making the optimization problem easier.
Also, typically deterministic methods have been used, while here stochastic methods are
used. In principle, there is no reason why stochastic methods could not have been used for
variational problems. Similarly, there is no reason, in principle, that in those cases that
the parameterization makes it amenable, we could not use deterministic methods instead
to minimize the error functions proposed here. We will briefly discuss this connection in
Section 3.7.

Before we present the empirical results, in the following two sections, we discuss some
practical implementation issues and compare the “run-time complexity” of the AIS methods

to the traditional IS method.

3.4 Implementation issues

All of the adaptive importance-sampling methods described above in Section 3.2.1 were
implemented for the experiments. Next, we present some of the implementation issues. We
describe how we dealt with these issues in the implementations of the methods. Neverthe-

less, fully satisfactory solutions remain an open problem.

3.4.1 Learning rate

The learning rate used is a(t) = [/t, where (3 is a value that depends on the updating

method. We need different values of § for the different methods because of the differences

3We would like to acknowledge Nir Friedman for hinting to us the connection between AIS and variational
approximations.
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in magnitude of their gradients.
Cheng and Druzdzel [2000] present alternative heuristics for setting the learning rate.
Work from the literature on learning neural networks, machine learning techniques, and

general nonlinear optimization techniques can be also used in principle.

3.4.2 Avoiding extreme probabilities

An additional constraint is imposed on the parameters which we call the e-boundary. This
constraint requires that for all 4, j,k, 0;;x > € x (|Qx;|) = 7/ [Qx;|, where v is a constant
factor. In the experiments, v = 0.1 is used. This constraint is introduced so that the
sampling distribution avoids extrema in probability and hence the possibility of infinite
variance.

Cheng and Druzdzel [2000] suggests similar heuristics to avoid extrema probabilities in
the sampling BN by imposing a constraint on the smallest conditional probability value of

a node. In Section 3.8.2, we present alternative ways to avoid extreme probabilities.

3.4.3 Initial importance-sampling distribution

The parameters 8(0) are initialized such that the starting importance-sampling distribution
is the do-operated probability distribution of the original BN. However, if one of the local
conditional probability values does not satisfy the e-boundary constraint, we change the
distribution so that it does. In the experiments, we do this by forcing each probability
value that falls outside the constraint to be at the boundary (i.e., if we are dealing with the
conditional probability of variable X;, we set the value to be v/ |{x,|) and subtracting the
total amount required to move those probabilities to the boundary uniformly among all the
probability values that fall inside the constraint space. If after doing so, other values fall
outside the constraint space, we keep moving them until all the probability values satisfy
the e-boundary constraint. (Less ad hoc ways of doing this are possible.) Note that only
probabilities that are strictly greater than zero need to be moved to the constraint space.
This is because assignments to the hidden variables Z that agree with assignments for which
any of the local conditional (or marginal) probabilities has value zero do not contribute to
the sum under consideration (i.e., the value of the target function g for those assignments
is zero!). Hence, those probabilities do not need to be learned, reducing the total number
of parameters needed to be learned for the sampling BN. Such reductions in the number of
parameters are important since, in general, the smaller the search space defined by the class

of sampling BNs, the “nicer” the error surface and the easier the optimization problem.
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There are many other ways to initialize the parameters of the first IS BN for AIS. We
will discuss one of many possible alternatives. For instance, the parameters and structure
of the BN or ID under consideration can help us do this. One idea is to have an IS BN such
that for variables not directly relevant to the utility nodes uses the original local conditional
probability distributions of the ID, while for variables directly relevant to the utility nodes
uses a distribution that is proportional to the weighting of the utility values with the original
local conditional probability distribution associated with those variables. In other words,
in general, one would want those nodes that are hidden nodes parents of evidence and/or
utility nodes to have a conditional distribution defined by their Markov blanket, such that
they could have knowledge of the local probability of the evidence and/or utility values.
However, computing such conditional distribution can be too computationally intensive in
general. One can always obtain simpler (less-computationally intensive), but more naive,
initializations.

Other heuristic initialization techniques have been proposed by Cheng and Druzdzel
[2000] in the context of belief inference in BNs. They showed in some sufficiently large and
complex real BNs that their heuristics provided a significant improvement in quality of the
estimates they produced from the adaptive sampler.

There is no doubt that this is a very important part of the potential success (or failure) of
the adaptive importance sampling as a viable practical technique. Hence, the initialization
problem requires more attention than given in this work. Further study of this problem is

left as future work.

3.4.4 Dealing with parameter constraints

In the implementation used in the experiment, in order to satisfy the constraint that for
all 4,7, >, 0ijx = 1, the approximation of the gradients is projected onto the simplex of
the local conditional probability distribution [Bertsekas, 1995, Binder et al., 1997]. This is
done by letting, for all ¢, j, k,

— — |2

re(9) _ de(6) 1 | de(0)
i iyr  Qz] = i

(3.20)

Note that this is not enough to guarantee that after taking a step in the projected direction,
the parameters will remain in the constraint space. If, when updating a local conditional
probability distribution, its respective parameters do not satisfy the constraint, the mini-
mum step o' that will allow them to remain inside the constraint space is found and a step

of size o/ /2 along the gradient direction (i.e., half the distance between the current position
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of the parameter we are updating in the simplex and the closest point on the e-boundary
along the gradient direction) is taken.

Other potentially better ways of dealing with parameter constraints are possible. In
Section 3.8.1, we will see ways to optimize the error function on an unconstrained space by

making a parameter transformation leading to a parameterization without constraints.

3.5 Cost for AIS

In this section, we will briefly discuss the “run-time complexity” of AIS as compared to the
traditional IS method. The discussion is mainly meant to be an illustrative, rather than
rigorous, account of the complexity of the AIS methods.

We now present the approximate cost per stage for AIS methods. Let N(t) = Ny be
the number of samples per stage. For simplicity, assume it is constant (the same for all
stages). Let n be the total number of nodes in the original ID. Approximately, the basic
units of time used in the discussion below are operations like generating a random number,
basic math like addition, subtraction, multiplication, and division, accessing conditional
distribution probability tables, and evaluating the utility function.

The approximate cost per stage of AIS is:

e Getting samples

N; x (2 x Z #-node-assigments)
adaptive-nodes

Evaluating target

Evaluating IS probability

N x (#-adaptive-nodes)

Computing weights

Evaluating gradient

Z (#-parent-assignments) X (#-node-assignments) x (4N, + 1)
adaptive-nodes
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e Updating IS distribution

Z (#-parent-assignments) x (projection-cost 4+ constraints-cost)
adaptive-nodes

e Computing average

N;
e Total
Ny (2 x Z #-node-assignments + n + #-adaptive-nodes + 2) +
adaptive-nodes
Z (#-parent-assignments) X

adaptive-nodes
((#-node-assignments) x (4N, + 3) +

projection-cost + constraints-cost)

Let N be the total number of samples. The approximate cost of the traditional IS

sampling is:
e Getting samples

N x (2 x Z #-node-assignments)
#-adaptive-nodes

o Getting weights

N X (#-obs-nodes)

e Compute average

e Total

N(2 Z #-node-assignments + #-obs-nodes + 1)
#-adaptive-nodes

Let
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1. Ng = [N/(#-AlS-stages)],
2. m = #-adaptive-nodes,
3. 0 = #-obs-nodes,
4. a = Zadaptive—nodes #-node-assignments,
5. b=>" adaptive-nodes #-parent-assignments,
6. c= Zadaptive_nodes(#—parent—assignments) X (#-node-assignments),
7. d = projection-cost,
8. e = constraints-cost.

The ratio of AIS “complexity” with respect to traditional IS is

2a+n+m+2+4c  3(c+bld+e))
20 +0+1 N;(2a +0+1)

ratio &~ (3.21)

Hence, the “complexity” hit for AIS decreases as one increases the number of samples
per stage.

Unless otherwise noted, we use the number of samples taken instead of CPU times to
compare the different methods. This is to disregard implementation details as a factor in
the comparisons. In general, the reader should be aware of the overhead involved in using
ATS, as suggested by the discussion above. We argue during the discussion of the empirical
results that the improvement of the quality of the estimators as a function of the number

of samples more than compensates for the overhead penalty.

3.6 Preliminary empirical results

The main objective for our empirical evaluation is to illustrate the potential of AIS to
improve the traditional IS method for estimation problems. The empirical results presented
in this section are for two artificial problems. One involved the estimation of action values
on a simple ID. The other involves the estimation of the probability of an observation in a

somewhat complex BN.
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3.6.1 Results on computer-mouse ID problem

The methods were tested on the computer mouse problem, a simple made-up ID shown in
Figure A.1 and described in Appendix A. All the utility values were increased by one unit
to make g positive. The problem considered was to obtain the value Vjsp,(A) for the action
A = 2 and the observation M P, = 1.

Each method was evaluated by computing the mean-squared-error (MSE) between the
true value of the expectation of interest (Vasp,(A)) and the estimate generated using the
adaptive sampling method. The first results show how the methods achieve better MSEs
with fewer samples for this problem. Only results for those methods that were the most
competitive are shown. Let us denote by “Var” the method based on the minimization of the
variance, and by “L2 7, “KL1”7, and “KLS” the methods based on the (approximate) global
minimization of Ly, KL; and KL, respectively. For the update methods we use N(t) = 1
for all . We need to take into account that the update methods have to traverse the graph
once every iteration to update the parameters relevant to the sample taken. To compensate
for this time, the estimate based on LW is allowed to use twice as many samples. Figure 3.1
shows the results. The graph shows the average MSE over 40 runs as a function of the total
number of samples taken (times 2 for LW) by the methods. Note that Var and L2 achieve
better MSEs than LW and converge to them faster. With significance level 0.005 it can be
stated (individually) for each total number of samples N = 50,150,250, that Var and L2
(individually) are better with respect to MSE than LW. Also, for N = 250, KLS is better
than LW.

The methods were also tested with N(¢) = 50, including the local heuristic methods.
They were only competitive after a larger total number of samples (N > 150). Although
further analysis is necessary, some general observations can be conveyed. In general there
seems to be a tradeoff in the setting of N(¢) and 3. We note that, of the updates based on
the two KL versions, KL1 typically performs better than KL2. It is believed this is because
the error function ekp, is defined with respect to the optimal sampling distribution while
€KL, 18 with respect to the current sampling distribution. KLS seems to perform better
than both. L2 is more stable than any of the other methods, suggesting further theoretical
analysis. Several possible reasons for this behavior are (1) the variance of the gradient
might be smaller than in other cases, (2) the error function is bounded, and/or (3) the
error surface might be smoother than in other cases. We conjecture that L2 converges to a

stationary point of er,,.

The second result shows that the update methods indeed lead to importance-sampling
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distributions with smaller variance relatively quickly for this problem. Figure 3.2 shows a
graph of the true variance of the sampling distribution learned using the different update
methods as a function of the total number of samples used. The horizontal line shows
the variance associated with the sampling distribution used by LW (i.e., the do-operated
distribution of the original BN).

In summary, the results show that AIS methods can indeed provide better estimators
than the traditional IS method for this ID problem. We consider a BN problem next.

3.6.2 Results on QMR-DT-type BN

The results in this section are from applying the AIS methods to a randomly generated,
synthetic QMR-DT type BN. The QMR-DT is a well known real, large, multiply-connected
BN that has been studied in the community (see, for example, Shwe and Cooper [1991]
and Jaakkola and Jordan [1999] and the references therein) and has some very particular
structure. As typically presented, the QMR-DT model is a two-layer BN, one layer rep-
resenting diseases and the other findings, with arcs going from diseases to findings and no
arcs among variables at the same layer (another layer representing background information
is sometimes shown but it has no effect on the complexity of the inference problem, since
those background variables are all parents of the disease variables and once instantiated they
defined a prior distribution over each disease.) Hence, the disease variables are marginally
independent, and the findings are conditionally independent given the diseases. However,
in general, given just findings, the diseases become dependent.

The synthetic BN was randomly generated. It has 20 disease nodes and 40 finding
nodes. The average number of parents for each finding node is 16 and at least one has all
the diseases as parents. The large number of parents is possible because this models assumes
a “causally” motivated mode of interaction between the diseases (causes) and the finding
(effects). This model is known as the noisy-or [Pearl, 1988]. It defines the conditional
probability distribution of each finding given its parent diseases such that the probability
of obtaining a negative finding decreases monotonically with the number of potentially
causing diseases (i.e., parents of the finding variable) active. The model requires, for each
causing parent disease, the probability that its child finding will be negative given that
just that disease is active and all the other parent diseases are inactive. The conditional
probability that a finding is negative is then the product, for each active disease parent, of
the probabilities the finding is negative given that that particular disease is the only one

active (recall, this is given as a parameter of the model). Also, the model typically uses
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a leak probability of having a positive finding even in the absence of any cause, maybe as
a result of some other conditions, which are always assumed to be active. Note that the
number of parameters to define the conditional probability distribution for each finding
node using a noisy-or is exactly the number of parents plus one (i.e., linear in the number
of parents, as opposed to being the number of all possible assignments of the parents which
is exponential in the number of parents).

For our synthetic model, the probabilities were generated uniformly at random in (0, 1).
The leak probabilities were generated uniformly at random in (0.9,1). The parents of each
finding node were selected at random. We generated a random evidence case which had 29
positive findings, and its probability was 3.6884716. The probability was computed using
the traditional junction-tree exact method [Lauritzen and Spiegelhalter, 1988, Jensen et al.,
1989]. We used the implementation by Murphy [1999]. There are other exact methods that
exploit the local properties of the QMR-DT model that we could have used to compute the
exact probability. In particular, Heckerman [1989] developed a method called Quickscore
that is exponential on the number of positive findings. Takikawa and D’Ambrosio [1999]
also developed a method based on a local transformation of the noisy-or model, which can
be seen as a generalization of Quickscore in the context of the QMR-DT model, and can
potentially be superior to Quickscore.

Our task was to estimate the probability of the evidence. We tried a variety of AIS
methods with different settings. We tried the traditional IS methods to use as a baseline
comparison. Some of the results for the AIS methods along with the corresponding descrip-
tions are found in Figures 3.3 and 3.4 (See Appendix C for all the results). First, some
basic general descriptions of the graphs. The y-axis in all the figures is in natural-log scale
(for readability purposes). The natural-log of the probability of the random evidence case
considered is —35.5362. The z-axis is the number of samples. The y-axis is the estimates
generated by each estimator (as a function of the number of samples, and in natural-log
scale). Each figure present estimates for each of 10 runs of each method under the particu-
lar settings of the methods’ meta-parameters 3 and N (t) (i.e., the number of samples per
iteration update, was set constant—did not depend on t). The results from the 10 runs of
the traditional (LW) method is displayed in the top-left graph on each figure.

The general observation from the results is that the AIS methods can be very effective
in estimating the marginal quantity—the probability of the random evidence case. They
can obtain significantly better estimates with many fewer samples: the estimates converge
quickly to the answer. The step-function behavior observed in some of the graphs is due

to the relatively sharp changes on the estimates resulting from observing many samples
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with small weights, sporadically followed by a sample with large weight. This behavior
(particularly for LW) suggests that the IS distribution being used is not good (produces

estimates with large variance). The sharp changes are further magnified by the log function.

Although we could not compute the actual variance of the estimators, a visual inspection
of the sample weights suggested that the variance of the estimators was being reduced.
Hence, we believe that the improvement of the AIS methods was indeed produced by a
reduction in the variance of the IS estimators. We cannot really argue that the methods
were faster than LW since our implementations were not good enough to assess running times
in a fair way. However, we believe even though AIS methods have larger overhead than LW
(particularly when the number of samples between updates is small), the improvements in
the quality of the estimate more than compensate for such overhead. (Cheng and Druzdzel
[2000] found that this was the case for a special type of AIS method.) Note that even after
a significantly larger number of samples than those of the AIS methods the LW estimates

are still orders of magnitude away from the true value.

We believe the empirical results for the synthetic QMR-DT model can be explained
through the connection of the IS BN class we use in the experiments and the mean-field
approximations which have been used before for this model [Jaakkola and Jordan, 1999,
Jordan et al., 1997]. We briefly discuss this connection further in the next section. Through
that connection and the results obtained in this experiment, we believe that the prob-
lem considered for this experiment is relatively easy, because the posterior distribution is
probably closely unimodal and therefore, the mean-field approximation provides a good ap-
proximation. It is interesting, however, that the estimate of the probability of evidence
given by LW is not very good. We suspect that the estimates of the posterior marginals for
each “disease” node are if not all good, at least reasonable in that they point us in the right
direction (the “modes” of the estimated posterior marginals fall in the correct side, at least
most of the time). We did not keep the estimates of the posterior marginals generated by

LW however, which would have helped us test this claim.

3.6.3 Preliminary conclusions

These experiments are all carried out on synthetic problems. Although they must clearly be
extended to a variety of larger problems, they indicate that adaptive importance-sampling
methods, particularly those that minimize variance and the Lis norm, can lead to significant

improvements in the efficiency of sampling as a method for computing large expectations.
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Figure 3.3: Results for AIS method based for estimating the probability of a random ev-
idence in the synthetic QMR-DT model. Refer to the text for basic general descriptions.

Continue in Figure 3.4.
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3.7 On AIS with mean-field approximations

In this section, we briefly discuss some properties of AIS when applied with IS BN structure
for a mean-field approximation. Th effectiveness AIS methods showed on the empirical
test for the QMR-DT-type BN, for which we use a what we will call a mean-field IS BN,
motivated the following discusion. (The discussion is presented on a high level and the
details are left for a future document.) The objective is to shed some light into the properties
of running AIS with the special mean-field IS BNs for general BN and ID problems with
binary hidden variables Z, and by doing so, start to establish the connection between AIS
and variational methods.

For simplicity, let us assume that the (hidden) variables Z1,... , Z, are binary valued.
Then, the mean-field IS BN distribution discussed in this section can be more simply ex-

pressed as
n
f(z1e)=[o7 a-0)%, (3.22)
i=1

where, for all 7, the parameter ¢; = f(Z; = 1| ©) = > 5 f(Z-;,Z; = 1| ©) and
Z_; = Z —{Z;}. We refer to this class of IS BNs as the “mean-field” class of IS BNs. It
corresponds to a “degenerate BN” where all the nodes are disconnected (i.e., all the Z; are
marginally independent).

The error function resulting from using this class of IS BN distributions have some
interesting convexity properties. If a function is convex, then it has a single stationary point
which corresponds to the global minimum. In our context, the global minimum of the error
function used is the best IS BN for that error function (i.e., the mean-field IS BN for which
the error function attains its smallest value). In general, results establishing conditions for
the convergence of stochastic-gradient methods similar to those used here would typically
lead to convergence to stationary points only, not necessarily minima. But, if there is a
single stationary point which is a global minimum, then we establish convergence to the
global minimum. Finally, the global and local versions of the respective error functions
become very similar.

In particular, for the mean-field IS BN class, the error function ekr, is convex on
© and for the case of estimating likelihoods of evidence (P(O = 0)) in BNs, the (global)
minimum is attained at the posterior marginals. Hence, if the parameters o resulting from

(®)

the update process converge, each individual parameter 6, will converge to its respective

posterior marginal (P(Z; = 1 | O = 0)), as expected from the nature of the mean-field
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approximation. This is useful since those quantities are often of interest (specially in QMR-
DT-type BN problems) and we obtain an approximation for them as a by-product of the
AITS update process.

The error function ey, is often used in variational methods for belief inference in BNs.
For the special mean-field IS BN, for each ¢, each subfunction resulting from fixing all
parameters but 6; in ek, is convex in 6; (its only parameter). Similarly, for each i, each
subfunction resulting from fixing all parameters but 6; in e1,, is convex and quadratic in 6;.
This suggests that er,, is a “nicer” function than ekr,. Finally, for each ¢, each subfunction
resulting from fixing all parameters but 6; in ey, is convex and has the form a;/60;+b;/(1—6;)
for constants a; and b;.

Note also, that although what we have stated above holds in general for any problem
where we use the mean-field IS BN class, we can exploit further special properties of the
particular problem to provide stronger statements about the characteristics of the resulting
error functions. In particular, I believe this is the case for the QMR-DT-type BN problem.
Also, I believe that the analysis above, combined with the discussion of the empirical results
for the QMR-DT-type BN problem given in the previous section, better explain the stability
of the AIS methods and the rapid convergence of the estimates seen in the empirical results
for that problem.

In the next section, we study theoretical properties of the AIS methods using more

general classes of IS BNs than that considered in this section.

3.8 On theoretical properties of AIS

Given the potential effectiveness of the AIS methods, in this section, we analyze some of the
AIS methods and estimators from a theoretical perspective and present some results. In the
process, we consider some variants of the AIS methods which involve a new parameterization
of the IS BN, and another subclass of IS BN distributions that when used with AIS, are
more amenable to theoretical analysis. The variants are not only of theoretical interest but
can easily be used in practice, and be effective. I also discuss the issue of optimal IS BN

structures and optimal weighting schemes for AIS estimators.

3.8.1 Canonical (re)parameterization of the IS BN

An alternative parameterization that will prove to be useful later when we consider some
theoretical properties of the adaptive sampling process is based on the canonical represen-

tation of the local conditional probability distributions. Let n be the number of variables
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in the IS BN. In this representation 4, we let, for each i € {1,... ,n},j € Qpa(z;), and a new
set of parameters, 7;;; € R, for l =1,...,(Qz| — 1,
eTijk
Oijn(Tij) = — i (3.23)
1Qz;1-1 ..
k=1 €+l
for k=1,...,|Qz| —1, and
1
Oijiaz,|(Tis) = a7 (3.24)

ot Tk 4 1
The expression of the joint distribution can be expresses as in equation ( 3.2), but with @
replaced by ©(7) (and similarly 8;;;, by 0;x(7:;)). Note now that the sampling BNs are
parameterized by 7, which are unconstrained parameters over all R. So any assignment
to 7 produces a setting of @ that satisfy their constraints automatically. This reduces the
optimization problem from a constrained to an unconstrained one.

The partial derivatives of f = f(Z | ©(7)) with respect to T are as follows: for each

i 4,1,
of o Of i
O =t 90k Omijy
M;
= Y (f xI[Z; = k,Pa(Zi) = j1/0ik) (—Oijbi0) +

k=1 .kl
(f x I[Z; = I,Pa(Z;) = j]/0i1) (—0;510:5 + Oi51)

M;
= fxI[Pa(Z;) = j] (Z I[Z; = K)(—0;1) + I Z; = 1])
k=1

— f < I[Pa(Z) = J)(I[Zi = 1] — ;7).

3.8.2 How to bound the smallest IS BN probability

In what follows, I present two ways in which we can define a class of IS BNs for which
we can lower bound the probability of any event, and that will be useful for theoretically

analyzing the behavior of the AIS methods.

Global mixing

This class results from mixing a BN with a uniform distribution globally. That is, the

globally mixing sampling distribution class is the set of all distributions f&™* such that

Nz @) =(1-A)f(Z]|0©)+ A% (3.25)

“This representation was originally suggested to me by Thomas Hofmann.
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Figure 3.5: Graphical representation of global-mixing IS BN class.

where A € (0,1) (presumably less than 1/2), and M = |Qz|. Similarly, for the case where
the actual parameters are 7. We can interpret this sampling BN class as the (global) mixing
of the probability distributions of two BNs (See Figure 3.5). With probability 1 — A we
sample from the original parameterized BN. With probability A we sample from a uniform
BN (a BN with no arcs and uniform probability distributions on each node) which will not

be adapted.

Local mixing

This class results from mixing each local conditional probability distribution of a BN with a
uniform distribution, for each assignment of the parents. That is, the set of all f'™*(Z | @)

such that

n |Qpaczy| M;
flrmx VA | @ H H H (
j=1 =

1
A— 2
i=1 Uk " MZ) (3 6)

where n is the number of nodes in the IS BN, and M; = |Qz,|. Again, similarly for the
case where the parameters are 7. We can interpret this model graphically (See Figure 3.6).
For each node we introduce a new “locally mixing” node as parent. The new mixing
random variable represented by this node is binary: in one state, which is attained with
probability 1 — A, it tells its child node to sample its own state from its “original” IS BN
local (conditional) distribution, considering the value of its other parents (if any); in the
other state, which it attains with probability A, it tells its child node to sample from a

uniform probability distribution, and hence ignoring the values of its other parents. These
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Figure 3.6: Graphical representation of local-mixing IS BN class

nodes need to be marginalized to obtain the joint probability distribution over the original
set of nodes Z. The marginalization is simple, since the “mixing nodes” are all roots in the

“expanded” BN, leading to the expression above for fImix,

If mixing is used, the class of sampling BNs considered during the adaptive sampling
process is different; that is, we need to define our sampling BNs and weight functions using
femix g fImix jngtead of f. The derivatives needed for the update rules with respect to this

class can be as easily obtained as for the previous traditional IS BN class discussed earlier.

Partial derivatives for “local-mixing” sampling BN class

This derivatives will be useful when we discuss the convergence properties of the resulting
update rules. Since everything we say is with respect to each %, j, to simplify notation let

us denote
1. T = Tijls

2. 0y = 051, (recall that © is really a function of 7 if the canonical representation is

used),
3. ¢p = (1—A)G + AMLI.

The partial derivatives of fI™X are

o flmix
00y,

= "™ x (1= A)I[Z; = k,Pa(Z;) = 51/ - (3.27)
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and

aflmix M; 8f1miX%
o Pt 00, 07

= Z Fmi s (1 — )[Zz-=k,Pa(Zi)=j]¢i(—9kel>+

k=1 k£l k

i (1 — A)I[Z; = 1,Pa(Z;) = j]— ( 0,0, + 6;)

P
= X (1 - A)I[Pa(Z;) = j16; (I[Z _l__ZI Zk>
k

_ lmix X - i) =J a l a Mi 9_k o
_ (1 — A)I[Pa(Z;) = 46, (I[Zz =] o kl:Il ((/’)k) .

The expressions for this derivatives will be useful when we study the convergence of the AIS
updates in Section 3.8.4. But before we we consider the convergence of the AIS estimates

to the true value of the summation under consideration (G).

3.8.3 Convergence of AIS estimate

In this section, we study some theoretical properties of the AIS estimator, in particular,
whether the estimates converges to their true value as the number of samples increases (i.e.,
the consistency of the AIS estimator).

If we use a sampling BN class that has a non-zero lower-bound on the smallest probability
assigned to any outcome of Z, then for any possible sampling BN in that class, the weight
function is bounded (recall we have assumed that the target function g is bounded). Now,
for simplicity, assume that we use an equal weighting of the sub-estimator generated for
each stage (i.e., W(t) = 1/T), and that each sub-estimators is the result of a single sample
of the IS BN (i.e,, N(t) =1, N = Zle N(t) = T). This assumption can be relaxed. To
simplify notation, let 4 = G, and X = GT). Under all these conditions, we can apply
Hoeffding’s strengthened bounds to get

Pr(X — p > ¢€) < exp(—2Ne?/(b— a)?) (3.28)
and
Pr(X — pu < —¢) < exp(—2Ne?/(b— a)?) (3.29)

where N is the total number of samples used for estimation, 0 < € < b— a, and a and b are

such that they satisfy w(Z | ®) € [a, b] for all possible Z and © (or 7) in the sampling BN



123

class (recall that we are dealing in the “lower-bounding” sampling BN class; for instance, if
we are using f™* then w(Z | @) = g(Z)/f™*(Z | ®)). The reason we can use Hoeffding’s
strengthened bound is that the sum of the weights in this case form a martingale. The
dependence between the weights of the samples at different time stages is “weak” in the

sense that it does not affect their individual expectation.
Theorem 10 For fized N, and fort=1,... ,N, let

1. Xy = w(z®) | 1),

2. for allm <N, Sy, =>4 X4, S}, = S — E[Sp.].
S/, forms a martingale.

Proof: For allm < N, E[S,,] =E[}"; X; = > 1", E[X¢] = > 1%, u = mu. Hence, for all
m< N, S, =S, —mu. Now, for allm < N,

E[Sh, | Sf.... .S} = E[Sm|Sl... .8 —my
t=j+1
= Si+ Y EXi]—(m—j)u
t=j+1
= Sj+(m—ju—(m—ju

!
S;-
O

From this, we get that, the estimator will converge in probability to the true value
(i.e., a weak law of large numbers (WLLN) for the AIS estimator). We can use the bound
expressions above and apply a Borel-Cantelli lemma (see Lemma 6.1 of Durrett [1996]),
to obtain convergence with probability one (i.e., a strong law of large numbers for the AIS
estimator). Let 0 < € < b — a, and for fixed n, A, = {‘7 — u| > e}. From the expressions
above, Pr(4,) < 2exp(—2ne2/(b— a)?). Let v = 2exp(—2¢2/(b — a)?) < 1. Then, for all
e>0, > Pr(4,) < Y02 17" =1/(1 —v) < <. By the Borel-Cantelli lemma, for all
€ > 0, Pr(A,, infinitely often) = 0. Hence, X — u almost surely (i.e., with probability one)
as N — oo. In other words, the AIS estimate (denoted here by X) is consistent.

Also, the probability that it deviates more than a fixed value e decreases exponentially

with the number of samples. The expression above gives us confidence bounds on the true
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value from our estimates. In principle, we would use those confidence bounds in order to
combine AIS with the methods described in the previous chapter.

Let us consider the case that ¢ is defined for an estimation problem in an ID. (The
expressions can be easily adapted to the case of a BN.) A simple way to compute a and
b from quantities that can be computed almost immediately from the parameters of the

model is as follows: let

1. M, = ‘Qpa( ZT)| be the number of all possible assignments to the parents of Z, in the

original ID,

2. PP = max;, P(Z; = k | Pa(Z;) = j), p™® = min;; P(Z; = k | Pa(Z;) = j) be the
maximum and minumum probability values in the conditional probability distribution

table for node Z, in the original 1D, respectively,

3. uP™ = max; U;(Pa(U;) = j), w™® = min; U;(Pa(U;) = j) be the maximum and
minumum utility values in the utility function for utility node U; in the original ID,

respectively, and

4. "% = max;, 0k, 9§nin = minjj 0;;; be the maximum and minumum probability
values in the conditional probability distribution table for node Z; in the IS BN (recall

that depending on the representation 6;;; can be actually a function of 7;;), and

5. 0 < A < 1/2 define the local mixing parameter for the sampling BN class.

From this we can get

(T R )
b= Mg+ AT (3.30)

([T 2™ (21 ™) (3.31)

a =
[[—1 (L= A)orx + A/M,)
(The “r = 1,...,8” are the indices to the sampling BN nodes, not — necessarily — the

original nodes.) Needless to say, these bounds can be (and typically are) very loose.

It might be possible in special cases to obtain better (even strict) upper and lower
bounds if we spend additional computation time. In general, however, we believe it is
hard to obtain strict bounds (say by a form of dynamic programming). This is because
we believe this problem is equivalent to that of computing maximum and/or minimum
probability assignments in a BN, a problem known to be hard [Shimony, 1994].

In conclusion, we have just presented ways to apply adaptive importance sampling such
that the resulting estimators converge to the true value with probability one. Also, confi-

dence interval (bound) expressions results from bound expressions for the weight functions.
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3.8.4 On the convergence of AIS updates

In the previous section we studied some properties of the AIS estimator, helping us char-
acterize the behavior of the resulting estimates. In this section, we discuss some properties
of the AIS update rules, in particular, whether the changes to the parameters of the IS
BN converge, and if so, in what sense. This will help us characterize the behavior of the
learning process.

Let us consider the variance error function (the analysis for the KL-based error func-
tions is similar). Let the sampling BN class be f = f™*(Z | ®(7)). Recall that for
this class w = w(Z | ©(7)) is bounded. First note all the following partial deriva-
tives are bounded: O8f/d7;, Ow/01 = —w?0f /0T, 00r/0T, O¢/O0T = (1 — A)OG /0T,
8(;5,;1 /om = —(1/ ¢§)a¢k /07 For the variance error function

e=e(® Zf w(Z|O(r wa

the first derivatives

e _ 20
(977 Z 3Tl (3.32)

are bounded. Note that the second partial derivatives of the sampling BN are

o°f Nl oo\ (I1Zi =1 117 = Ko,
or.0m (1= A)I[Pa(Z) = J] ((8_n9l+f8n> < & _ZT+

k=1

—1
fxo (I[ 8¢l ZI (ég‘j’“wkagj ))))

which are also bounded. Hence, the second derivatives of the error function

2 2

37'7« o 8'rr on (3.33)

are also bounded.

According to Bertsekas and Tsitsiklis [1996], the boundedness of the first and second
derivatives of e implies a Lipschitz continuity of Ve. Since also e is non-negative, conditions
(a) and (b) of Assumption 4.2 (Page 140) in their book hold. Also, condition (c¢) and (d) of
the same assumption hold since the estimate of the gradients used in the update rules are
unbiased and have bounded variance (since the gradients themselves are bounded). Hence,
Assumption 4.2 holds. If in addition we let the step sizes ay = a(t) = /¢, > 0, then they
are nonnegative and satisfy the conditions Y i a; = 0o and Y i, a? < oco. Therefore, all
the conditions for Proposition 4.1 (Page 141) in their book hold and therefore, the following
hold with probability 1:
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1. The sequence e(®(7*)) converges,
2. limy_;00 Ve(@ (1)) =0,
3. every limit point of 7(*) is a stationary point of e.

As Bertsekas and Tsitsiklis warns, this does not mean that the sequence of paratemers will
converge. For that the error function has to satisfy additional conditions and I am not sure
it does. What it does mean is that the process will converge in error-function space, and
the gradients will also converge to zero almost surely. We can apply a similar analysis to
get to the same results if we use the KL-based (global) error functions presented earlier.

The immediate problem with obtaining convergence results when the more traditional
parameterization © is used, is the constraints in the parameters. The space defining the
sampling BN class is a constrained space in this case. To do the updates, gradient projec-
tions or other methods to handle the constraints could be used [Bertsekas, 1995]. If gradient
projections are used, there is still the need to correct the step size so that the constraints
are still satisfied. We are aware of results in stochastic approximation for this case [Kushner
and Clark, 1978] but do not know how to apply them.

What we really want is to be able to guarantee convergence to a (at least local) minimum.
In general, such guarantees can be hard to establish theoretically. However, it might be
possible to obtain results for special classes of IS BN, such as mean-field approximations,

considered in Section 3.7. This problem requires further analysis.

3.8.5 On the optimal IS BN structure

In Section 3.2, we made a somewhat arbitrary decision to use the do-operated BN structure
for the IS BN, avoiding the discussion of how to select a BN structure that is optimal in
some sense. In this section, we return to discuss this problem further.

In general, one objective we would like to have is to be able to represent the optimal
sampling distribution using a BN. Recall that in the context of estimating marginal prob-
abilities in a, BN, the optimal sampling distribution is the posterior distribution. Even in
the BN problem, however, we are not familiar with any result that tries to determine the
“optimal” BN that can represent the posterior distribution (where presumably the notion
of optimality is a BN that has no more conditional independencies than that of the poste-
rior and has the minimum possible number of conditional independences in the posterior
missing). We will not go much into the details in the discussion that follows, but refer the

reader to Pearl [1988], Chapter 3, for a rigorous treatment of the concepts discussed below.
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The moral graph of a BN graph is the undirected graph that results from joining all
the parents of a node by adding undirected edges between them to form a clique and
removing the direction of the arcs in the original graph of the BN (See Figure 3.7 (b)
for an example). A BN is a Gibbs distribution with respect to the moral graph. If we
remove the observed nodes from the moral graph, we obtain an undirected graph over the
remaining (hidden) nodes (See Figure 3.7 (d) for an example). This graph provides an
(undirected) graphical representation of a subset of conditional independencies that must
be present in the posterior). Hence, it might have fewer conditional independencies than
the posterior. If we would like to have a BN that can represent the posterior distribution,
we might need to remove conditional independencies from the moral graph by adding edges
to it. This is because undirected and directed-acyclic graphs in general represent different
sets of conditional independences. However, the sets of conditional independencies are the
same in the case of chordal graphs (decomposable models). One way (we are not sure it
is the only way) to move from the undirected to the directed (BN) representation is as
follows. As Pearl states in his book (Section 3.3.3, page 127), “ every chordal graph can
be oriented so that the tails of every pair of converging arrows are adjacent.” This can be
done, for instance, by going through a chordal graph, with the help of another graph called
a join or junction tree (See Figure 3.8 (f) for an example). From a join tree we can build a
Bayesian network that has at most the conditional independencies of the undirected graph.
The process of getting a chordal graph that has at most the conditional independencies
of the moral graph is typically achieved through a graph triangulation process. However,
in general, bear in mind that performing optimal graph triangulation (obtaining a chordal
graph that minimizes some objective function — minimum number of additional edges or
minimum largest clique or minimum largest clique state-space — by possibly adding extra
edges to the graph) is computationally intractable. The triangulated graph is chordal (by
definition). Once we have the graph triangulated, we can get a join tree (there might be
many that are equivalent) by a process that requires the computation of a maximum-weight
spanning tree (which is computationally tractable). Once we have a join tree, there is a
way to direct the edges so as to get a directed-acyclic graph (there might also be many
that are equivalent) to use as our sampling BN structure and which represents the same
dependencies as the chordal graph, and hence at most the conditional independencies of
the the moral graph. In any case, the point is that there is a sufficient way to obtain a
sampling BN that can represent the optimal sampling distribution. (See Figures 3.7 and

3.8for an example of the process.) But is it necessary? We do not know.
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@ @

Orlglnal BN ) Moral graph
Moral graph (d) Undirected graph (Markov network)

with ev1dence instantiated representation of optimal IS (posterlor)

Figure 3.7: How to obtain a BN representation of the optimal IS distribution: Example 1
(Continue in Figure 3.8)
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(e) Triangulated (chordal) graph  (f) Junction (join) tree

X1
X2 X2 X3
X4 Xa Xs
Xe Xe X7

(g) optimal IS BN structure (h) IS BN structure used

Figure 3.8: How to obtain a BN representation of the optimal IS distribution: Example 1
(Continuation of Figure 3.7)
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X1
X5 Xg
X7
X6
(c) Moral graph (d) Undirected graph (Markov network)
with evidence instantiated representation of optimal IS

Figure 3.9: How to obtain a BN representation of the optimal IS distribution: Example 2
(Continue in Figure 3.10)

The discussion above also apply to ID problems, except that we not only remove obser-
vations from the moralized graph, but also actions and utility nodes. Note that the optimal
sampling distribution in this case is not necessarily the posterior, as it depends on both the
action and utility functions. (One could think of it as a posterior if we transform the ID
into a BN as mentioned in the introduction (see also [Shachter and Peot, 1992, Zhang, 1998]
and the references therein) or just a special “unnormalized” posterior.) See Figures 3.9 and
3.11 for examples. Note that when we constructed the moralized graph of the ID graph,
we connected the parents of the utility nodes, not only those of the observations. This is
because the value of the utility functions of which those nodes are parents will in general
create dependecies between the parent nodes (i.e., knowing the value of the utility node gives
information about the value of the parents, since the utility is a function of the parents).
Hence the optimal sampling distribution is Gibbs with respect to the moral graph.

There are several problems with the approach above. One is that we have to do the

triangulation which is in general intractable and typically only simple heuristics are used in
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X1
Xo X3
X7
X6
(e) Triangulated (chordal) graph (f) Junction (join) tree
Z1 (Xl)
Zo (XQ) \ Z3 (X;;)
Z5 (X7)
Z4 (X6)
(g) optimal IS BN structure (h) IS BN structure used

Figure 3.10: How to obtain a BN representation of the posterior: Example 2 (Continuation
of Figure 3.9)

practice. Most importantly, the triangulation can lead to a sampling BN that has a node
with many parents, in particular, many more parents that any node in the original BN.
Hence, the sampling BN will require a very large number of parameters just to represent
this node. As a matter of fact, if we can represent that BN, we could have done the exact
computation of the marginal efficiently. This leads one to believe that the optimal structure
for the sampling BN will be intractable in general. Right now, this is just a conjecture,
since what we have described is a sufficient way to get a sampling BN able to represent the
optimal BN, but it might not be necessary. In the case it were indeed necessary, we believe
the intractability result will follow, connecting the complexity of the sampling BN with

optimal structure (and the process of finding it) to that of performing exact computations.

For now, in our implementations we have just used a sampling BN structure that is
the same as that of the original BN, maybe adding extra arcs between the nodes that
are parents of observation and/or utility nodes, to model the strong dependency typically
imposed among them by the observations and/or the utility values. The discussion on
this section suggests interesting ways in which we can adapt both the structure and the

parameters simultaneously, but we leave the details for future work.
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X2

X4

Xe X6

(b) Moral graph

X1 Xo
Xo
X4 X X3
X, X4 X5
Xe
X7
(c) Moral graph (d) Undirected graph (Markov network)
with evidence instantiated representation of optimal IS

Figure 3.11: How to obtain a BN representation of the optimal IS distribution: Example 3
(Continue in Figure 3.12)



X, Xo
Xo Xs
X. 4 X 5
Xe
X7
(e) Triangulated (chordal) graph
X, Xy
X2 Xa
X4 X5
X6
X7

(g) optimal IS BN structure
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X1, X2, X4

X1, X7, Xo

(f) Junction (join) tree

X, Xo O
X» Xs

X4 X5

Xe X,

(h) IS BN structure used

Figure 3.12: How to obtain a BN representation of the posterior: Example 3 (Continuation

of Figure 3.11)
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3.8.6 Theoretically optimal weighting

In this section, we return to the problem of how to set the weighting for the sub-estimators
originally presented in equation (3.4) in Section 3.2.1. We establish what would be an
optimal weighting scheme in this context (i.e., a weighting yielding estimates with smallest
variance).

Recall that the problem is to select values for weighting the outcome of the estimates
from T separate IS estimators that will be used to get the final AIS estimate. The objective
is to produce a final AIS estimator with smallest error. Assume those weights are constant
and independent of the estimators. The estimators themselves can be dependent. Recall
that the weights need to sum to 1.

We can cast this problem as an optimization problem: find the weighting that produces

a final estimator with the smallest variance. To simplify notation, let
1. X = G be the (global) final estimate at time T,

2w = (W(Q),... ,W(T)) be the vector formed from the weights W (¢) used for the
partial estimate at ¢, for allt =1,... T,

3. g=(GOM),...,G(0D)) be the vector formed from the partial estimators G(8))

at time ¢, and

4. u = G = E[X] be the true value we are estimating. (Recall that the AIS estimator is

unbiased in the case of constant nonnegative weights summing to 1.)

The variance of the AIS estimator in Equation (3.4) is

VaX = EX —(EX)? (3.34)
= EX —pu
= EB(w'y)? -
= E(w'yy"w) — 4
= w’ (E(yy"))w—
= w (2-|—,u21)w—u. (3.35)

We have let E(yy?) = = + ;ﬂi where 1 is the matrix with all its elements being 1; that
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is, the symmetric random matrix, resulting from the expectation of yy’,

B(G(0W)?) B(GOM)GOP®)) - E(GOW)G(6T))
- E(G(6M)G(6®)) E(G(6®)?) -+ B(G(OP)G(8M))
E(yy") = : . - : :
E(G(0M)G(6M)) E(GOP)G(6T)) - B(G(0T))?)
(3.36)
and therefore X is the covariance matrix of the estimators,

Var(G(6()) Cov(G(0M), G(O@)) ... Cov(G(OW),G(M))
Cov(G(0W), G(6?)) Var(G(6?)) . Cov(G(O@),G(0M))
Cov(G(OM),G(0™)) Cov(G(0?®),G(T)) ... Var(G(0™M))

(3.37)

Also note that, Var(G(8®))) = Var(w(Z® | 1)) /N(t) and similarly,
Cov(G(0®)), G(0D)) = Cov(w(Z® | 8D),w(Z2W | 81)))

for i # j. (Recall that Var(w(Z | 8®)) is the variance of the weight function for the IS
distribution defined by 8%, and Cov(w(Z (¥ | ), w(Z7 | 8Y))) is the respective covariance
between IS distributions defined by 0@ and 69 for i # j. We are assuming that both are
bounded for all O(t).) For simplicity, denote M = ¥ +pu2, and 1 = (1,1,...,1)T (the vector

of all ones).> We will soon argue that the optimal weights are given by

. M1
1"mM'1

*

w (3.38)

Before we go into the argument, let us state some immediate properties. One immediate
observation is that the sum of the components of w* is 1 as it should. Let us consider the spe-
cial case that the individual estimators are independent. In this case, ¥ = diag(c?, ... ,a%),

where o7 = Var(G(0®)). If T = 2, the optimal weighting is

Q=

qu| =
+
mqw| =

S Actually, we are defining the matrix M this way to make its connection with the covariance matrix of
the estimators, but we do not believe the dependency on p is strong.
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for i = 1,2. More generally, for arbitrary T, and i = 1,... ,T,

1
2
9i

w; = T 1

1
i=1 57

Q= ™

(3.39)

This is as expected: the smaller the variance of an estimator, the larger its weight should

be. Let us us now see why this is so in the case of independent estimators. A result on

matrix inversions [Roweis, 1999] is, for matrices A, X, B,

(A+XBXT)1=A1-A1XB'+Xx74'X)1XxTA !,

(3.40)

where A and B are square and invertible. Using this result with A = ¥, X = 1, and

B = %, we get,

M1t=x1!l_w 1724+ 1) 11"s L

Now, note that

and

This yields

0'.
=1
[ 1
of
T 1
_ (i I i)—l oto}
2 § :a? :
u =1 ? N
_1
| %o
_ 1 _ 1
(1-%)
_ 1 L1
o103 o3 o3
1 1
o30% o%o?

Q|
. Mqr—\qr—t
V)

0207

(3.41)
-
O'IO'T
1
o307
1
or
(3.42)
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and

Q= Q=

Q |'_\
—~
—_
|
Eﬂ “ee
L
Q-

N——
L

2
L T
e
ot
T -1 T 1
1 1 1 7
- (m2k) (24| 549
(M iz1 7i iz1 7i :
1
| o7 ]
Substituting the last expression in the expression for the optimal weights w* (Equa-
tion (3.38)), we get
F T
of
1
1 | =
w'= ——— 2. (3.44)
T .
Zi:]_ all? .
1
| o7 ]

Now we present the argument leading to the optimal weighting w*. We introduce a
Lagrange multiplier A to deal with the constraint Zszl w; = 1. The derivative with respect

to the weights of the Lagrangian associated with the variance of the estimator is

—9 -T
E(X") - A1 w-1
OEX) =AM w=1) _ opryy— i, (3.45)
ow
Setting the gradient to zero, we get
1 -
w = §AM—11. (3.46)

We have assumed for now that the matrix M is invertible. We will get back to this

assumption soon. Now, since the components of w need to sum to 1 (i.e., TTw= 1),

1_ N L
P (ElTM_11> : (3.47)
Substituting A* into the expression for w above we get the result
M1
w'=———"— (3.48)

iITM1
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Now, we argue that the matrix M is invertible. We know that the matrix M is positive
semi-definite: by definition, ¥ is positive semi-definite and u? is non-negative. Thus, M is
strictly positive-definite if no two estimators are deterministically related and no estimator
has zero variance (i.e., it is perfect in that it gives the answer y all the time). It seems that we
also need for p > 0, but we believe this is just an artifact of the way we have expressed M.
Again, the analysis assumes that the covariance matrix for pairs of individual estimators is
positive-definite. We argue this is true if the sampling distribution for any pair of estimators

is not exactly the same.

Other researchers have previously suggested that we can obtain good results in practice
by using the same samples used for the individual estimators to estimate the variance of
the estimators (See for example Marshall [1956] and Cheng and Druzdzel [2000]). However,
since there is no theoretical guarantee that the estimates of the variances are independent
of those for the estimators themselves, the resulting AIS estimator can be biased in general.
Also, by using only individual variance terms (no covariance terms between estimators),
they are assuming that the estimators themselves are independent. In general, this will
only be true if we estimate the gradients using an independent set of samples from those
used for the actual individual estimators. The expression given above is more general, as it

takes into account potential dependencies between the individual estimators.

Although the expression above is theoretically attractive, in order to use it in practice
it seems that one has to ignore some of the assumptions behind it. In particular, we are
assuming that the weights are constants, not random variables as would be the case if we
use samples to estimate the optimal weighting scheme. I believe one can partially remove
this assumption, by introducing another, looser set of assumptions, (i.e., interchangeabil-
ity of differentiation and expectation for functions of the weights — linear and quadratic),
and the result is an optimal weighting for the expectation of the weights, not the weights
themselves. In practice, it would be a waste not to reuse as many of the samples as we can,
even if no theoretical guarantees hold anymore. The risk of things going terribly wrong
might be smaller than the potential gain in computational speed provided by the heuristic
implementation of the estimator. Also, the bias of the estimator is not bad as long as it
is somewhat controlled, and decreases asymptotically. Hence, in practice, one can estimate

the matrix M from the same samples used to estimate the actual final AIS estimate.
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3.9 Summary and conclusions

In this chapter, we presented adaptive importance sampling methods for problems in
Bayesian networks and influence diagrams. We presented preliminary empirical results on
synthetic Bayesian network and influence diagram problems that suggests that the method
can be a very significantly effective alternative to the traditional importance-sampling
method used for problems in these models. Motivated by the empirical results, we studied
some characteristics of the methods and established some theoretical results. Although
further work remains, I believe that using adaptive importance-sampling methods in the
context of action selection will prove useful and provide an improvement over the sam-
pling methods for action selection in influence diagrams presented in the previous chapter.
In conclusion, AIS can be a very effective, yet still relatively simple sampling method for

handling hard problems in graphical models for complex structured domains.
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Chapter 4

Conclusions

Our objective in this work was to develop methods that attempt to exploit, in an online
fashion, particular characteristics of the models used and the particular problem under
consideration. In particular, we exploited the inherent comparative nature of the problem of
action selection, and used results and ideas already developed for similar problems presented
in the statistical literature and applied them to the problem considered in this thesis.
In proposing the adaptive importance sampling methods, we also exploited the structure
already available in the models for problems of estimating large-dimensional summations
typically required for problems in graphical models. The adaptive nature of the methods is
to gather information about the particular problem being considered, online, as we perform
the estimation, and use that information to improve the solutions we provide (i.e. our

estimates).

We studied methods for action selection in single-decision influence diagrams based on
simple (forward) importance sampling. We provided bounds on the number of samples
needed by the simple estimation-based traditional method to guarantee that the action
selected will be approximately optimal with high probability. In trying to reduce the number
of samples required to make near-optimal action selection with high probability, we proposed
an estimation-based two-stage sequential method and a general framework for comparison-

based methods.

For the estimation-based two-stage sequential method, we gave a result stating that
by allocating a pre-determined initial number of samples to estimate the variance of the
estimators and using the resulting variance estimates to determine the number of samples
to estimate the (unnormalized) value of each action, we can reduce, both in expectation and
with high probability, the total number of samples required to make good action selections.

141
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On the other hand, the comparison-based method are multi-stage or group sequential
methods that try to directly exploit the fact that the problem of action selection is primarily
a comparison problem. We suggested several instantiations of the general framework and
stopping rules, and argued that the resulting methods guarantee the correct approximation
requirement for the action selected. We also considered a heuristic-based framework of the
comparison-based method based on adaptive allocation of samples. We presented prelim-
inary empirical evidence that the comparison-based method can be effective in reducing
the total number of samples needed to make good action selections, as compared to those
needed by the estimation-based methods.

We also studied the problem of reducing the variance of estimators for quantities involv-
ing summations in graphical models such as Bayesian networks and influence diagrams. We
approached this problem as a learning problem; that is, we suggested representing the im-
portance sampling distribution as a BN and learning the BN from information obtained from
the samples generated during the sampling process. We proposed new adaptive-importance-
sampling update rules based on directly relevant error measures. Also, we suggested corre-
sponding estimators that take advantage of the samples resulting from different importance
sampling distribution used during the adaptation process. We studied some of the theo-
retical issues of this class of estimators and showed that, under a restricted but reasonable
class of importance-sampling Bayesian networks and sub-estimators weighting schemes, we
can guarantee convergence of the estimators to their true value (with probability one as
the number of samples goes to infinity), and provide theoretical confidence intervals for the
estimators as a function of the total number of samples used for the estimate.

We theoretically analyzed the behavior of the adaptive process and showed that for
an interesting set of error measures and under a particular, but significantly general and
interesting class of sampling BN distributions, the adaptive process converges to a stationary
point of the error function (i.e., the sequence of parameters for the sampling BN found during
the update process are such that, with probability one, their error converges, the gradients
converge to zero, and if the parameters themselves converge, they will converge to a point in
the error measure such that the gradient is zero (the error measure characterizes the notion
of difference of any sampling BN in the class to the optimal distribution).

Many theoretical problems remain open. Bounds on the number of samples for the
comparison-based method could not be provided, particularly when we use a sophisticated
adaptive sample reallocation schedule. Also, how to obtain optimal allocation schedules is
not yet clear (although it is clear that we can benefit from approaching this problem as a

special class of a multi-armed bandit problem). As for the adaptive importance sampler,



143

there are obvious theoretical problems yet to be resolved. For instance, how do (or can) we
assess the quality of the converging sampling BN distributions and the rate of convergence?
In what cases can we represent the optimal sampling BN efficiently? Is it possible to adapt
the structure of the sampling BN along with the parameters in an interesting, effective, and
efficient way?

From a practical perspective, we believe most of the theoretical results in this thesis are
too loose to be of direct practical use for the average model we are likely to find or develop
in practice. Hence, apart from developing methods with provably better bounds on sample
complezxity, we should also consider adapting methods that use heuristic approximations
based on asymptotic normality which have been effectively used in practice in the statistical
literature. The work of Charnes and Shenoy [1999], for instance, follows this direction, but
it is mainly an estimation-based approach. We believe we can extend their method easily
to use a comparison-based approach instead. Heuristic approximations methods based on
normality assumptions could be very effective in practice even though they provide no
theoretical guarantees, since the assumptions they are typically based on do not hold for

the general ID model and are hard to corroborate or establish empirically.

4.1 Contributions

We now summarize the main contributions made in the thesis.
e Provided sample-complexity bounds for traditional method.

e Proposed method for action selection based on sequential estimation. Provided
sample-complexity bounds for that method and showed that it reduces the number
of samples with respect to the traditional method both on expectation and with high

probability.

e Proposed a general framework for comparison-based methods. Theoretically analyzed
some instances. Provided empirical evidence for its potential in improving the effec-

tiveness of sampling methods for action selection.

e Proposed stochastic-gradient methods (update rules) for adaptive importance sam-
pling in problem in BNs and IDs, in which we systematically update the importance-

sampling distribution.

e Empirically showed the potential of the proposed adaptive importance-sampling meth-

ods for estimation problems.
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e Presented preliminary theoretical results on the quality of the estimators and the

behavior of the update rules of the adaptive importance-sampling methods.

4.2 Future work

Despite the progress already made in analyzing the sampling methods presented in this
thesis and demonstrating their practicality, there are still many practical and theoretical
questions left unanswered. Most of these questions were already posed throughout the

document. Here, we list the most pressing problems for future work:

e Theoretical analysis of the comparison-based method with regard to bounds on the
number of samples using both simple allocation rules and adaptive reallocation. Also,
study the problem of how to optimally allocate samples in a sequential (i.e., adaptive)
way. We believe we can borrow significantly from the work on multi-armed bandit

problems.

e Theoretically study additional properties of the adaptive importance-sampling meth-

ods proposed, such as convergence quality and rate of convergence.
e Connect AIS and variational approximation methods.

e Study how to integrate the methods for adaptive importance sampling and action
selection in an effective way. Theoretically study the properties of the resulting com-

bined method.

e Study ways to reduce the model complexity by using model-approximation techniques
based on the relevance of certain domain variables when making particular action
decisions. This is important since reducing the dimensionality of the summations apart

from simplifying the problem leads, in general, to estimators with smaller variance.

e Empirical evaluation of all the methods in a large problem for which exact methods
are intractable and sampling methods can provide a reasonable alternative. Typically,
this can be assessed a priori by looking at some general characteristics of the problem.
For instance, it is generally understood that the characteristics of an ID that make it
hard to solve have to do with the numerical parameters defining the local conditional
probability distributions and the utilities. On the other hand, the effectiveness of
exact methods depend more on the characteristics of the graph which represents the

global structure of the problem.
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e Extensions to IDs with multiple decisions, and MDP and POMDPs, in the spirit of
Charnes and Shenoy [1999], Kearns et al. [1999b] and Kearns et al. [1999a].

e Better ways of dealing with problems having large numbers of observations leading
to large optimal policy descriptions. Maybe combine sampling methods with other
approximations techniques that attempt to represent the optimal policy more com-
pactly or approximate the value functions computed at each stage of dynamic pro-
gramming [Dearden and Boutilier, 1997, Boutilier et al., 2000, Koller and Parr, 1999,
2000, Kim and Dean, 2001]. Maybe develop methods that try to compute near-optimal
randomized policies in a forward manner (as opposed to the backward induction typ-
ically used in dynamic programming, as applied to these problems) in the spirit of
Kearns et al. [1999b] and Kearns et al. [2000] (see also Kearns et al. [1999a]).

4.3 Final remarks

Sampling methods can be a very effective alternative for action selection in influence dia-
grams. [ believe this is specially true for models large enough that exact methods are simply
not an option. Adaptive sampling improves over naive applications of sampling methods
while keeping their simplicity. Further extensions are necessary to deal with more complex

models, but the hope is that the approach taken in this thesis provides a sound foundation.
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Appendix A

Computer-mouse problem

In this appendix, we present a simple made-up ID. We use this model for preliminary
empirical evaluation of some of the methods presented in this thesis. We understand this
problem is very simplistic and exact computation is easy. However, we use this example for

the purpose of illustration and ease of analysis.

Figure A.1 gives a graphical representation of the ID for the computer mouse problem.
The idea is to select an optimal strategy of whether to buy a new mouse (A = 1), upgrade
the operating system (A = 2), or take no action (A = 3). The observation is whether the
mouse pointer is working (M P; = 1) or not (M P; = 0). The variables of the problem are
the status of the operating system (OS), the status of the driver (D), the status of the
mouse hardware (M H), and the status of the mouse pointer (M P), all at the current and

future time (subscripted by ¢ and ¢ 4+ 1). The variables are all binary.
Table A.1 shows the probabilistic values of the local (conditional) probability distribu-

tions for this problem. The variables in the tables in the second row do not have a sub-
script. By this we mean, P(M D, | OS;) = P(M Dy | OSt41) and P(M P, | MDy, M Hy) =
P(MP,1 | MDyy1, MH;t1). The probabilistic model encodes the following information
about the system. The mouse is old and somewhat unreliable. The operating system is
reliable. It is very likely that the mouse pointer will not work if either the driver or the
mouse hardware has failed. The utility model is such that, for all actions, states associated
with the mouse pointer working in the future have larger values than those associated with
the mouse pointer not working in the future. The utility associated with the actions buy,
upgrade, and no action increases in that order. The range of the utility values is from 0 to
50. Table A.2 shows the value of the utilities. Table A.3 shows the values of the actions
and observations Vp(A). From Table A.3 we conclude that the optimal strategy is: buy a
159
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MP, MPy,
MH, MHy 4
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05, 0S4

Figure A.1: Graphical representation of the ID for the computer mouse problem.

new mouse (A = 1) if the mouse pointer is not working (M P; = 0); take no action (A = 3)

if the mouse pointer is working (M P; = 1). This strategy has value 26.50.



P(0OS,) | O8;
0 1
0901
P(MD[0OS)| MD
0S 0 | 1
0 0.85 | 0.15
1 02 | 0.8

P(OSi11]0S,, A) | OSi

05, A 0 | 1
0 1 0.9 | 0.1
0 2 0.05 | 0.95
0 3 0.9 | 0.1
1 1 0.1 | 0.9
1 2 0.05 | 0.95
1 3 0.1 ] 0.9

P(MH,) MH,

161

0 | 1
0.65 | 0.35
P(MP | MD, MH) MP
MD MH 0 | 1
0 0 0.99 [ 0.01
0 1 0.99 | 0.01
1 0 0.99 | 0.01
1 1 0.95 | 0.05
P(MH . | MH,, A) | MH;,
MH, A 0 | 1
0 1 0.05 | 0.95
0 2 0.95 | 0.05
0 3 0.95 | 0.05
1 1 0.05 | 0.95
1 2 0.15 | 0.85
1 3 0.15 | 0.85

Table A.1: Probability values for the computer-mouse ID.

UMPiy1,4) | MPiyy
A 01
1 0 | 40
2 5 | 45
3 10 | 50

Table A.2: Utility values for the computer-mouse ID.
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Vup,(A) MP;
A 0 1
1 18.20 | 6.60
2 7.54 | 7.39
3 10.57 | 8.30

Table A.3: Value of actions and observations for the computer-mouse ID problem.



Appendix B

Motivating example for large

complex model

We present a “story” behind a large model represented graphically in Figure B.1. Imagine
we are drivers that face the same problem every day. As we get out of work, we have the
choice of one of many parallel routes (like highways). We would like to take one route (or
lane) and stick to it until we arrive to our destination. The only information we would
have available at the time we make our decision of which lane to take is some information
given on the radio about the general status of the routes (a summary of the state of the
first section of the route). This information is limited as it does not exactly tell us which
routes might be congested at the start of our trip, but gives us a general statement about
the traffic conditions. Instead, it might say something like “There is heavy traffic in routes

?

to ’our destination’ ” or “There is medium to light traffic” etc.

We have a model of the “dynamics” of the stretches we have to go through to get to
our destinations. The routes are “spatially” related, as other traffic can move in and out
of adjacent lanes or routes into or out of our lane. Remember, we cannot move once we
decided the route we are going to take. We care about the “state of the lane stretches” (i.e.,
is it congested?). Depending on the lane we select we can have an effect (however small) on
the state of the lanes at the next stretch of road for the different routes. Also, our utility is a
“global” and potentially non-linear, but compactly represented, function of the state of the
stretches of the routes up to our destination and the route we selected (i.e., If we selected
route ¢ then we attach some value to each non-congested stretch and a cost to congested
stretches; maybe congested stretches early on are not so painful to us as congested stretches
later; maybe it hurts us to know afterwards that that there was an alternative route that
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Figure B.1: Graphical representation of a large complex model.
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was a lot less congested than the one we selected.). In addition, each stretch might have
different characteristics, even though there is a sort of Markovian “spatial” structure, it is
not necessarily an homogeneous one (not all the transition probabilities are the same from
one stretch to the next).

The “hidden” structure of the problem might seem too complex for such a limited
amount of information. However, that might be the level of granularity for which we can
have reasonably accurate assessments of the interactions between the state of the stretches
at different parts of the route. One might argue that if the process is not “too chaotic,” even
this limited amount of information is good enough to get an assessment of the potential
“trajectories” the process will take.

I believe that the “state-of-the-art” exact methods for solving influence diagrams will
have problem with a model such as the one I just described. First, as the number of lanes
increases the “width” of the graph becomes large (and it becomes more dense). Also, the
fact that the utility function might involve non-linear interactions among all the variables
in the system is also a problem as it creates a direct dependency about the states of all the
variables in the system (i.e., it creates a large clique containing all the variables!). On the
other hand, note that sampling methods might fare better. The “spatial” decomposition
allows for simple local models of interaction for the states at two subsequent stretches;
that is, whether the next stretch for a lane will be congested depends only on whether the
current and adjacent lanes are congested. This allows simple forward simulation of the
process. Also, we just need to be able to evaluate the utility efficiently given outcomes for
the variables. I believe the effectiveness of sampling methods will be directly tied to the
actual parameters defining the interactions and the utility, not to the actual “structural”
decomposition (i.e., graphical representation); the more chaotic the system, the less effective
the sampling method will be.

I have yet to define the actual parameters and utility function for this model.

By the way, I should note that I have seen a similar structure used by Kwon and Murphy

[2000] and others to model highway traffic using a special class of factored HMMs.
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Appendix C

Additional experimental results for

adaptive importance sampling on
QMR-DT-type BN

In this appendix, we include all the remaining results obtained for applying several adaptive
importance sampling (AIS) methods with different settings. Figures C.1- C.27 show the

results. Please refer to to Section 3.6.2 for a description of the plots.
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Figure C.1: Results for AIS method based on minimizing ev,, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 10%°, 10%°, and 10°!, respectively. Refer to the text for other basic
general descriptions.
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Figure C.2: Results for AIS method based on minimizing ev,, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 10%°, 104, and 10°!, respectively. Refer to the text for other basic
general descriptions.
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Figure C.3: Results for AIS method based on minimizing ev,, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 10%°, 10%°, and 10°!, respectively. Refer to the text for other basic
general descriptions.
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Figure C.4: Results for AIS method based on minimizing ey, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 3 equal to 10%°, 10!, and 10%!, respectively. Refer to the text for other basic
general descriptions.
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Figure C.5: Results for AIS method based on minimizing ey, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 3 equal to 10%°, 10'°, and 10%!, respectively. Refer to the text for other basic
general descriptions.
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Figure C.6: Results for AIS method based on minimizing ey, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 3 equal to 10%°, 10!, and 10%!, respectively. Refer to the text for other basic
general descriptions.
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Figure C.7: Results for AIS method based on minimizing ey, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
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Figure C.8: Results for AIS method based on minimizing ey, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.9: Results for AIS method based on minimizing ey, for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.10: Results for AIS method based on minimizing ey, for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
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Figure C.11: Results for AIS method based on minimizing ey, for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N(t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.12: Results for AIS method based on minimizing ey, for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.13: Results for AIS method based on minimizing eky,, for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
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Figure C.14: Results for AIS method based on minimizing eky,, for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N(t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond
to setting of 3 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
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Figure C.15: Results for AIS method based on minimizing eky,, for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond
to setting of 4 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.16: Results for AIS method based on minimizing e}f’; for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
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Figure C.17: Results for AIS method based on minimizing e}f’; for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.18: Results for AIS method based on minimizing e}f’; for estimating the probability
of a random evidence in the synthetic QMR-DT model. The number of samples per stage
N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
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Figure C.19: Results for AIS method based on minimizing eigil for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general

descriptions.
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Figure C.20: Results for AIS method based on minimizing eigil for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N(t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.21: Results for AIS method based on minimizing ei‘gil for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.22: Results for AIS method based on minimizing e%gfd for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general

descriptions.
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Figure C.23: Results for AIS method based on minimizing eigfd for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N(t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.24: Results for AIS method based on minimizing ei‘gfd for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.25: Results for AIS method based on minimizing eigfs for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 1. The top-right, bottom-left, and bottom-right graphs correspond to
setting of 8 equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general

descriptions.
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Figure C.26: Results for AIS method based on minimizing eigis for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N(t) was set to 10. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.
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Figure C.27: Results for AIS method based on minimizing eigis for estimating the proba-
bility of a random evidence in the synthetic QMR-DT model. The number of samples per
stage N (t) was set to 100. The top-right, bottom-left, and bottom-right graphs correspond
to setting of B equal to 1, 0.1, and 10, respectively. Refer to the text for other basic general
descriptions.



