
Abstract of “Nonparametric Bayesian Models for Neural Data” by Frank Wood, Ph.D.,

Brown University, May 2007.

Many neural data analyses can be cast as latent variable modeling problems. Specific

examples include spike sorting and neurological data analysis. Challenges in spike sorting

include figuring out how many neurons generated a set of recorded action potentials and,

further, which neuron generated each action potential. A challenge in analyzing neurological

data is to infer both the number and the characteristics of lesions that may be causal with

respect to clinical signs presented by stroke patients. A shared characteristic of both of these

problems is that the true underlying generative process is unobservable and potentially quite

complex, so care must be taken in not only choosing a family of models but also in selecting

a model of appropriate complexity. In such cases it may be preferable to employ a model

that allows model complexity to be inferred from the data.

Non-parametric Bayesian (NPB) modeling is a type of latent variable modeling in which

model complexity can be estimated from data without making restrictive a priori assump-

tions. Our thesis is that using NPB modeling results in theoretical and practical improve-

ments to neural data analysis.

In defense of this thesis we develop a NPB spike sorting approach and show how it

allows experimentalists to utilize more data, to make assumptions explicit, and to express

spike sorting uncertainty at the level of inference from a novel spike train model. We

discuss the theoretical advantages of this approach and demonstrate novel and improved

neural data analyses including neural decoding. We also develop a new NPB binary matrix

factorization model and accompanying posterior estimation algorithms. We illustrate this

NPB binary matrix factorization model by inferring a causal model for signs exhibited

by stroke patients. Finally, a sequential posterior estimation algorithm for this model is

developed and demonstrated.

Nonparametric Bayesian Models for Neural Data

by

Frank Wood

B. S. Computer Science, Cornell University, Ithaca, NY, USA, 1996

M. Sc. Computer Science, Brown University, Providence RI, 2004

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2007

c© Copyright 2007 by Frank Wood

This dissertation by Frank Wood is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Michael J. Black, Director

Recommended to the Graduate Council

Date
Thomas L. Griffiths (University of California at Berkeley), Reader

Date
John F. Hughes, Reader

Date
Zoubin Ghahramani (Cambridge University), Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Acknowledgements

I would like to thank Karen Fuerherm for her love and loyal support and my family Vernon,

Carol and Drew Wood for helping me to pursue my dreams.

I owe a debt of gratitude to Stefan Roth who helped me become mathematically literate

again after a long business-world hiatus. Without Matthew Fellows and Wilson Truccolo

this dissertation would have a different topic; thank you. In this respect I also owe thanks

to John Donoghue, Stewart Geman, Elie Bienenstock, and Mayank Mehta. Thank you.

In addition to my advisor Michael Black and the committee members listed on the

previous page (particularly Tom Griffiths), I also owe thanks to my collaborators Prabhat,

Phil Kim, and Sharon Goldwater.

My life at Brown has suffered since Joseph Laviola graduated; I thank him for his

tireless dedication to play. To my officemates Daniel Acevedo, Yanif Ahmad, and Russell

Bent; thanks for letting me win most of the bets. I thank Anne Booker for helping to keep

me sane.

Last but not least I would like to thank Grace, Mark, and Noelle Wood who made

Rhode Island a home rather than merely the place I lived during graduate school.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Background . 3

1.2 Preview of results . 6

1.3 Summary . 11

2 Nonparametric Bayesian Mixture Modeling 12

2.1 Finite Gaussian Mixture Modeling . 14

2.2 Infinite Gaussian mixture model . 20

2.2.1 Expanded Gibbs sampler . 23

2.2.2 Collapsed Gibbs sampler . 24

2.2.3 Sequential posterior estimation . 30

2.3 Experiments . 33

2.3.1 Estimation . 33

2.3.2 Handling overlapping classes . 36

2.3.3 Sensitivity analysis . 42

2.4 Discussion . 46

3 Application: Spike Sorting 48

3.1 Introduction . 48

3.2 Motivation . 48

3.3 Evidence of uncertainty in spike sorting data 50

3.3.1 Human interpretations of spike sorting data 50

3.3.2 Variability of spike trains produced by manual sorting. 51

v

3.4 Effect of spike train variation on inference from neural data 54

3.5 Related work . 57

3.6 Inference using the NPB spike train model 60

3.6.1 Preferred direction somatotopy? . 65

3.6.2 Neural decoding . 70

3.7 Discussion . 75

4 Nonparametric Bayesian Matrix Factorization 80

4.1 Matrix factorization . 80

4.2 Bayesian matrix factorization . 82

4.3 A semi-conjugate model: infinite binary matrix factorization 84

4.3.1 Gibbs sampler posterior estimation 84

4.3.2 Particle filter posterior estimation 86

4.3.3 Experiments . 90

4.4 A conjugate model: infinite linear-Gaussian matrix factorization 91

4.4.1 Particle filter posterior estimation 92

4.4.2 Experiments . 93

4.5 Conclusion . 94

5 Application: Stroke databank modeling 96

5.1 Causal structure learning . 96

5.2 Modeling hidden causal structure . 98

5.3 Generative model . 98

5.3.1 A finite model . 99

5.3.2 Taking the infinite limit . 100

5.4 Inference algorithms . 101

5.4.1 Reversible jump MCMC posterior estimation 101

5.4.2 Gibbs sampler posterior estimation 103

5.5 Experiments . 104

5.5.1 Synthetic data . 104

5.5.2 Mt. Sinai stroke databank . 107

5.6 Discussion . 108

6 Conclusion and Future Work 111

Bibliography 114

vi

List of Tables

3.1 Gross subjective variability of spike trains 54

3.2 Decoding results as a function of manual sorting 57

vii

List of Figures

1.1 Random data . 3

1.2 Candidate models for the data plotted in Figure 1.1 4

1.3 Hand sorted action potential waveforms. 5

1.4 Labeling of action potential principal component projections 6

1.5 Hypothetical causal Bayesian network . 9

1.6 Maximum a posteriori causal structure subgraph for stroke findings 10

2.1 Graphical model for Gaussian mixture models 18

2.2 Results for IGMM estimation from synthetic data 35

2.3 Synthetic 4D data: ground truth labeling; all 2D projections 38

2.4 MAP labeling of 2D projections of 4D data 39

2.5 Cluster label entroy from IGMM of 2D synthetic data 40

2.6 Number of classes found in 4D data using 2D models 41

2.7 Number of classes found in 4D data using 3D models 42

2.8 Example data for hyperparameter sensitivity analysis 43

2.9 IGMM sensitivity analysis results . 45

2.10 Estimated latent class cardinality marginals for synthetic data 47

3.1 Two experts sorting the same waveforms . 52

3.2 Variability of human spike sorting: synthetic data 52

3.3 IGMM posterior samples for pursuit tracking data 62

3.4 IGMM posterior uncertainty for pursuit tracking data 63

3.5 IGMM posterior samples for pinball data 64

3.6 IGMM posterior uncertainty for pinball data 65

3.7 Preferred direction distribution for the pursuit tracking data 68

3.8 Preferred direction distribution for pinball data 69

3.9 Example trajectories . 70

viii

3.10 Random partitioning decoding results . 71

3.11 Pursuit tracking decoding results . 78

3.12 Pinball decoding results . 79

4.1 Nonparametric Bayesian matrix factorization illustration 83

4.2 Infinite binary matrix factorization results 90

4.3 Gibbs sampling vs. particle filtering for infinite binary matrix factorization 91

4.4 Generation of synthetic image data . 93

4.5 Comparison of particle filter vs. Gibbs sampler posterior estimation 94

5.1 Hypothetical causal Bayesian network . 97

5.2 Graphical model for hidden cause matrix factorization model 99

5.3 Hidden cause modeling; comparison of RJMCMC to Gibbs sampling 105

5.4 Casual structure learning results for synthetic data 106

5.5 Gibbs sampler trace plots for Mt. Sinai databank model estimation 109

5.6 Maximum a posteriori causal graph for Mt. Sinai stroke databank 110

ix

Chapter 1

Introduction

Evidence is accumulating in many fields that neural computation is Bayesian in nature

[Koerding and Wolpert, 2004; Weiss et al., 2002]. Conversely, Bayesian modeling may be

the most promising tool outside of the wet laboratory for investigating the algorithmic

basis of neural computation. If we accept these propositions then it would seem that

exploring Bayesian modeling will help in development of a theory of neural computation.

Additionally, recognizing that neural computation is superior in some domains (for instance

object recognition, learning from a single example, source separation, etc.) makes it seem

likely that studying the mechanisms of neural computation will yield important insights

into improved Bayesian modeling. The synergy between neuroscientific investigation and

progress in Bayesian modeling is a primary motivation for this dissertation.

The focus of this dissertation is on improved models for neural data analysis. Models

play an important role in neural data analysis as quite often the true generative process

underlying neural data is unknown or can’t be observed directly. As such characteristics of

the generative process of interest must be inferred using models constructed from related

observations. A simple analysis that makes this clear is determining how many neurons are

captured in any single electrophysiological recording. Such a recording is typically made

using an electrode placed in neural tissue and usually consists of an amalgam of activity

from many neurons, the number of which usually is neither known nor directly observable.

In this example a model based approach must be used to infer how many neurons were

recorded.

Unfortunately in this case and many others like it, because the true generative process

is not observable there is uncertainty about what the “best” model is to use. One approach

to coping with this uncertainty is to pick a model or family of models and a definition of

1

2

“best” and then to search for the best model. If it is certain that the definition of best,

the model family, and the search procedure always produces a model that is closer to the

true generative process, then confidence in outcomes from analyses based on the best model

should be high. Unfortunately it is not often the case that the model and search procedure

are guaranteed to produce a model closer to the true generative process. Because of this it

often pays to take an agnostic approach to modeling.

This can be done by representing uncertainty in and about the models themselves.

Two major sources of modeling uncertainty are determining the best parameters for the

model and, often closely related, picking the best model complexity. Bayesian modeling

approaches allow one to account for uncertainty about model parameters. Nonparametric

Bayesian modeling (NPB) allow one to avoid uncertainty in choosing model complexity by

subsuming estimation of it into the model itself. How this works is not meant to be clear at

this point but it will be made clear later, particularly by reviewing one particular NPB model

in Chapter 2. The important point here is that neural data analyses, or for that matter any

analyses that are based on modeling approaches that model uncertainty and avoid a priori

assumptions about model complexity will benefit in theoretical and practical terms. The

benefits taking such an approach in analyses of neural data are most clearly demonstrated

in Chapter 3 where a nonparametric Bayesian model of spike trains is developed and used

in various example neural data analyses.

This work on nonparametric Bayesian modeling does not stand alone. To the contrary,

nonparametric Bayesian models have recently enjoyed a surge in popularity in the machine

learning community [Neal, 2000; Rasmussen, 2000; Griffiths and Ghahramani, 2005; Wood

et al., 2006b; Wood and Griffiths, 2007] for many of the reasons stated. The NPB models

in those publications and in this dissertation are all descendents of Dirichlet process models

that have been known in the statistics community for some time [Antoniak, 1974; Ferguson,

1983]. Nonparametric Bayesian models have been successfully applied in many domains

other than neural data analysis including studies of high level cognitive processing [Sanborn

et al., 2006], object recognition [Sudderth et al., 2005], and hierarchical modeling [Teh et al.,

2004]. To our knowledge we were the first to apply nonparametric Bayesian modeling in

support of neural data analyses [Wood et al., 2006b].

Our general thesis is that adopting nonparametric Bayesian modeling will yield the-

oretical and practical improvements to analyses of neural data. In this introduction we

clarify this assertion, starting here with a more detailed but still high level explanation of

nonparametric Bayesian modeling then conclude with a preview of the models, algorithms,

and applications developed in this dissertation.

3

Figure 1.1: From left to right: random data, true generative mixture model, true labeling

1.1 Background

To start let’s pretend that we have an analysis we would like to perform on data Y ∈ R2

which we have reason to believe was generated by several distinct processes that generate

groups of “similar” datapoints. An example of such data is shown on the left in Figure 1.1.

In order to perform this hypothetical analysis we would be well served to utilize a model of

the data that reflects this character of the true underlying generative process. A standard

way to do this is to build a latent variable model, usually a mixture model, in which a

correspondence is sought between mixture densities in the model and the distinct processes

that generated the data. A more detailed explanation of mixture modeling is given in the

next chapter. For now it is sufficient to understand that fitting a mixture model to the data

effectively establishes this correspondence, as each point is attributed to one of the mixture

densities in the mixture model.

Unfortunately determining how many distinct processes generated such data is often

hard to do. For example look at the left panel of Figure 1.1 again. In this figure it is not

immediately clear what the true generative process is (i.e. how many clusters are in the

data). This is reinforced by Figure 1.2 in which constant variance isosurfaces are used to

represent Gaussian mixture models with one to six component densities fitted to the data

shown in Figure 1.1. Without knowing the ground truth is not immediately clear which

model is the best in terms of correspondence to the true generative process behind the data

(the true generative process is show in the right two panels of Figure 1.1).

In fact if one were to search for the mixture model that best represents the data using

the likelihood of the data under the model one would find that increasing the number of

mixture components will always produce a better model (up to the number of data points

N at least). This is because one can always increase the likelihood of the data by placing

each point in its own cluster. This highlights one of the sources of modeling uncertainty

that taking a NPB modeling approach addresses; namely selecting the “complexity” of the

4

Figure 1.2: Candidate models for the data plotted in Figure 1.1

model. The effect on analysis outcomes from inference in models that vary in complexity

may be significant. Too complex a model may result in overfitting and lack of generalization

(i.e. potentially incorrect analysis outcomes), too simple a model may result in the converse

(but still potentially incorrect analysis outcomes). Approaches for negotiating this tradeoff

are instances of the general technique called model regularization [Duda et al., 2000].

A problem with traditional approaches to regularization is that there are many different

ways to regularize a model, and often the “best” models selected under different regular-

ization schemes will themselves be different. Picking the best model is thus complicated

by needing to select between a number of best models (corresponding to each of the reg-

ularization schemes). One way of dealing with this is to be confident in one’s modeling

choices and to conclude that the problem of selecting the “best” model is solved given a

good regularization approach and a sufficient amount of data. The Bayesian approach we

advocate is different.

In the Bayesian framework regularization is subsumed into the model specification. To

see this, let Θ be the set of all model parameters and Y be the training data. Let our model

be a density function called the likelihood P (Y|Θ) with parameters Θ. Bayesian models

specify an a priori distribution of the parameters P (Θ) called the prior. The prior is how

regularization is introduced in the Bayesian context. A prior that penalizes models with

5

Figure 1.3: Hand sorted action potential waveforms.

high complexity can help in generalization by changing the model selection criteria from

“find the best model” to “find the best model that also isn’t overly complex”.

The Bayesian perspective also dictates that we eschew our search for the best model

in favor of learning a distribution over models. Bayes’ rule tells us how to construct this

distribution by combining the likelihood with the prior

P (Θ|Y) ∝ P (Y|Θ)P (Θ).

The distribution over model parameters P (Θ|Y) is called the posterior distribution. Analy-

ses can be averaged over such a posterior distribution, accounting for modeling uncertainty

while avoiding having to choose some “best” model.

Thus being Bayesian means that we no longer attempt to find a single “best” model

(although we can, and this is called the maximum a posteriori (MAP) model and takes

into account the influence of the prior) and that analyses will be averaged over a posterior

distribution over models.

Unfortunately in traditional mixture modeling for example, the number of mixture den-

sities K is not modeled as a random quantity

P (Θ|Y;K) ∝ P (Y|Θ;K)P (Θ;K)

with the obvious ramification that the problem of needing to specify or search for a “best”

model is re-introduced. In mixture model clustering K is the number of clusters. Even

in an otherwise Bayesian modeling context its value is often selected a priori or picked via

some other optimization strategy, for instance cross-validation. There is a Bayesian way

of learning a distribution over K, notably the reversible jump Markov chain Monte Carlo

work of Green [1995], but in our opinion this approach has some undesireable shortcomings.

Some evidence in support of this opinion is given in Chapter 5.

6

Figure 1.4: From left to right: hand labeled PCA coefficients for the waveforms plotted
in Figure 1.3, maximum likelihood Gaussian mixture model labeling, and infinite Gaussian
mixture model labeling

In this dissertation we advocate a nonparametric Bayesian approach to this problem

where model complexity estimation is subsumed into the model. NPB models are typified

by having unbounded prior complexity, which in the mixture model example corresponds

letting K → ∞. This choice of an infinite number of mixture densities would apparently

complicate estimation and inference due to the need to compute with models having an

infinite number of parameters. It also apparently violates the spirit of being Bayesian

to have picked a “value” for K (∞). However in practice such models are designed to

remain sparse in the sense that posterior distribution will admit only models with fewer

mixture densities than the number of observations and often fewer than that depending on

the model definition and parameterization. This approach admits interesting philosophical

interpretations but is most easily appreciated as an elegant and computationally efficient

way of avoiding a priori selection of model complexity. The consequence of taking this

approach is that analyses cast as posterior inference in NPB models take into account

uncertainties arising from both model parameter estimation and from model complexity

selection.

1.2 Preview of results

It remains to expand this explanation of NPB modeling and to defend our claim that adopt-

ing such a nonparametric Bayesian approach yields theoretical and practical improvements

to the analysis of neural data. We begin with an in-depth review of infinite Gaussian mixture

modeling (IGMM) in Chapter 2, the IGMM being a nonparametric Bayesian model.

In Chapter 3 we introduce a novel use of the IGMM for neural data analysis based on

spike trains [Wood et al., 2006a, see]. Neural data analyses based on spike trains are varied

in nature and constitute a significant fraction of all neural data analyses. The process of

7

generating spike trains from electrophysiological recordings is called spike sorting. A more

precise definition of spike sorting is given in Chapter 3; briefly however, spike sorting is the

process of clustering a set of putative action potentials (“spikes”) in order to uncover how

many neurons generated them and which neuron generated which action potential. Mixture

modeling is one way to do this clustering.

Here we preview some of the results from Chapter 3. Figure 1.3 shows hand-labeled

spikes recorded from a single electrode. In this figure colors indicate the labels given to each

action potential waveform by an expert human sorter, thus the red and green waveforms are

labeled as having arisen from two distinct neurons. The black waveforms were determined

by the expert sorter to be too ambiguous to retain in subsequent neural data analyses. That

spike sorting may be cast as a clustering problem is clear from Figure 1.4 where there is one

dot for each of the waveforms in Figure 1.3. To produce Figure 1.4, principal component

analysis (PCA) [Jolliffe, 1986] was used to build a reduced dimensionality representation

of the waveforms in Figure 1.3. In general we will show the PCA representation when

presenting spike sorting results; however, it should be kept in mind that we are sorting

spikes based on differences between waveform shapes. Different waveform shapes are caused

by heterogeneous cell types and for cells of the same type from variation in the distance to

the electrode tip.

Neuroscientists study many aspects of the brain and at many different levels of organi-

zation; however, many of the questions they ask can be cast as operations on spike trains.

Unfortunately it is known that it is almost unavoidable that uncertainties will arise in spike

sorting, and furthermore that spike train variability induced by different sortings can and

will affect analysis results. [Harris et al., 2000; Wood et al., 2004a]. Sometimes experimen-

tal design and avoidance of ambiguous data can minimize the level of uncertainty in spike

trains; however, in other cases experimental design might be adversely constrained. For in-

stance chronically implanted electrodes do not allow the experimenter precise control over

electrode placement nor do they admit easy adjustment of the electrodes if data recorded

from them is ambiguous. In such cases one may still wish to make the greatest use of the

available data. Doing so in a principled way requires a modeling approach that retains an

estimate of the variability manifest in spike trains arising from uncertainty in spike sorting.

Our novel NPB spike sorting approach does this. As a prelude to expanded results

presented in Chapter 3, consider Figures 1.4 which shows a finite mixture model fitted

to the data shown in Figure 1.4 (we follow the literature in sorting in PCA space). This

model was fit using a standard method for finding a “best” Gaussian mixture model called

expectation maximization (EM) [Dempster et al., 1977]. In this case EM was initialized

8

using spectral clustering [Ng et al., 2001] and the model included no other regularization.

Expectation maximization is the maximum likelihood parameter estimation procedure for

models with missing or hidden variables. Ten restarts of expectation maximization were

considered and the best model was retained. Further, the number of densities (model

complexity) was selected according to the Bayesian information criteria (BIC) [Duda et al.,

2000]. Here the best model according to the BIC had six Gaussian densities (models from

with one to fifteen densities were considered). Figure 1.4 shows a single model from the

NPB posterior distribution over models. As far as we know no nonparametric Bayesian

approach has been applied to the spike sorting problem prior to our work.

These figures illustrate one of the practical benefits of NPB modeling. As a consequence

of utilizing an explicit generative model the partitioning of the data looks quite reasonable

as compared to the human labeling in Figure 1.4. What isn’t captured by these figures is

the theoretical benefit of the NPB spike sorting approach. While the maximum likelihood

approach (EM) requires us to select a single “best” model, in the NPB case we construct a

posterior distribution over models that represents our uncertainty about, for instance, the

number of clusters in the data and the assignment of datapoints to clusters. Neural data

analyses that are cast as operations on such a posterior distribution will be shown to benefit

from theoretical and practical improvements.

It also should be noted that the amount of data involved in a typical neurophysiolog-

ical recording is quite large (Gbs) and that current state of the art automatic clustering

algorithms are offline batch processing algorithms. This means that the data can only be

analyzed after it has been recorded. Current spike sorting algorithms also require very

large amounts of computer time and a high degree of manual intervention [KlustaKwik].

An appealing consequence of our choice of NPB modeling is that it is possible to construct

the model sequentially [Fearnhead, 2004; Wood and Griffiths, 2007]. This means that the

posterior distribution can be estimated in a single online pass through the data, perhaps

even at the time of recording. This is an enormous improvement over prior art because

it means that spike sorting can be done sequentially in a single pass through the data,

potentially at the same time as it is being recorded.

In further defense of our thesis we also develop a matrix factorization model, posterior

estimation algorithms, and novel applications of these models that demonstrate their prob-

able utility for neural data analysis as well. Figure 1.6 shows a subgraph of the maximum a

posteriori causal structure for a databank of clinical stroke findings for 50 patients. These

results come from an artificial modeling problem constructed by throwing away our knowl-

edge about types of strokes (particular lesion locations) and which signs are expressed by

9

Y

Z

X

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6 X7 X8

Figure 1.5: A hypothetical Bayesian network connecting hidden causes Y1, . . . , YK to ob-
served variables X1, . . . , XN . We consider the case where the number of hidden causes, K,
is unbounded. The state of the hidden causes, the observed variables, and the dependencies
between them can all be summarized using binary matrices, being Y, X, and Z respectively.

patients having particular types of strokes. Given only a database of symptoms (in the true

neurologist vernacular these would be called signs) expressed by 50 patients we infered a

causal model of stroke symptoms. Our model consisted of a set of latent causes and the

connectivity between those latent causes and the symptoms expressed. For instance, a left

temporal lesion might cause language and cognitive impairments in addition to, potentially,

right side facial weakness. Right side facial weakness on the other hand could be caused by

a number of different lesions. So in this causal model, unlike the spike sorting model, the

relation between cause and observations is many-to-many rather than one-to-one.

While the details of the model, estimation, and inference algorithms are left to Chapters

4 and 5, the model we chose was a “Noisy-Or” model in which the probability of observing

a particular symptom (binary) is related to the number of diseases the patient has that are

causally linked to that symptom. Such a model allows us to cast the causal structure learning

problem as a binary matrix factorization model if we represent the causal connectivity of a

bipartite graph from causes to observations, illustrated in Figure 1.5, by a binary adjacency

matrix where there is a one if there is a link from a hidden variable to an observed variable

and a zero if not.

Leaving the details to a later chapter, if X is a matrix of stroke symptom observations

we can model it using probabilistic matrix factorization model

X ∼ Noisy-Or(ZY)

where, as noted, Z is a binary matrix that represents the adjacency structure in a bipartite

graph between causes and observations and Y is a matrix of latent causes. The shared di-

mension of Z and Y stipulates the number of hidden causes and thereby constitutes model

complexity. In the same way as in the spike sorting case we can do nonparametric Bayesian

inference in a model of causal structures. Although here too the objective is to learn a dis-

tribution over causal structures, Figure 1.6 shows the MAP sample from a model of the Mt.

10

co
m

pd
ef

se
ve

rit
y

no
nf

lu
en

cy
se

ve
rit

y
re

pe
tit

io
ns

ev
er

ity
an

om
ia

se
ve

rit
y

vf
de

fic
its

id
et

yp
er

ig
ht

po
or

ok
nd

ire
ct

io
nl

ef
t

fa
ci

al
si

de
ty

pe
le

ft
fa

ci
al

si
de

ty
pe

rig
ht

w
ea

kn
es

st
yp

el
ef

t
w

ea
kn

es
st

yp
er

ig
ht

de
cr

am
si

de
le

ft

ab
nd

tr
ss

id
el

ef
t

ba
bs

si
de

le
ft

ds
ss

id
el

ef
t

Figure 1.6: Maximum a posteriori causal structure subgraph for stroke findings

Sinai stroke databank [Tuhrim et al., 1991]. While the same argument for the theoretical

superiority of the nonparametric Bayesian approach holds in this problem domain, this spe-

cific figure illustrates the utility of our novel model and estimation technique. To generate

this figure we took our database of 50 patients and the binary stroke findings (symptoms)

they exhibited and generated a distribution over causal models, each postulating stroke

localizations (lesions locations) that would well explain the findings in the databank. What

we show is a subset of the MAP causal structure and highlight two of the localizations

this sample indicates. In dashed black we find a grouping of comprehension deficit, non-

fluency, repetition, anomia, visual field deficit, facial weakness, and general weakness with

the latter three on the right side, which is generally consistent, in part, with a left temporal

infarct. In solid black we find a grouping of poor optokinetic nystagmus, lack of facial

control, weakness, decreased rapid alternating movements, abnormal deep tendon reflexes,

Babinski sign, and double simultaneous stimulation neglect, all on the left side, which is

consistent with a right frontal/parietal infarct. These interpretations were developed by an

expert clinical neurologist who further claimed that the other features (numerous) of the

MAP causal structure were generally consistent and reasonable given the modest patient

database available.

While it is comforting that this model performs well on a simple, somewhat artificial

problem like that described, unlike the previous spike sorting example the main contribution

here is not an analysis framework for stroke patient data. Instead the novel NPB binary

causal structure model is itself the contribution. Many neural data analyses ranging from

studies of neural connectivity to models of population spiking activity could benefit from

such a model. The stroke data analysis merely illustrates the power of the model and

provides a guide for its utilization in subsequent neural data analyses.

11

1.3 Summary

What is important to understand at this point is our thesis regarding the benefits to neural

data analyses of utilizing nonparametric Bayesian modeling. We claim that nonparametric

Bayesian modeling should allow more data to be utilized, particularly if discarding ambigu-

ous data is a default practice. Furthermore as model complexity estimation is subsumed

into the modeling framework nonparametric Bayesian modeling may avoid bias in analy-

sis outcomes resulting from selection of a single best model that happens to be either too

complex or not complex enough. Finally the NPB models we discuss can all be estimated

sequentially. This means that model estimation can proceed in lockstep with the accu-

mulation of observations. For many neural data analyses this is a desirable characteristic

because of the nature and volume of data to be analyzed.

Chapter 2 starts with a review of nonparametric Bayesian mixture modeling.

Chapter 2

Nonparametric Bayesian Mixture

Modeling

There are a wide variety of problems for which latent variable modeling is appropriate. A

latent variable model utilizes “hidden” random variables to represent the state of processes

that are not directly observable. The reasons for constructing such a model vary. In

some cases the specific values of the postulated latent variables are of interest; in others

the latent variable model is merely a sophisticated mechanism for model regularization.

Additionally, in many cases it is difficult to determine the appropriate complexity for the

latent variable model. Specifying too complex a model can result in a model that is too

powerful and overfits the data. Specifying too simple a model can result in inappropriately

smooth representations of the data. Ultimately avoiding both problems requires negotiating

an often delicate balance between model specificity and generality.

In a maximum-likelihood modeling various mechanisms can be employed to negotiate

this tradeoff; cross validation and model selection by penalized likelihood are two of the

most common approaches. In cross validation some percentage of the data are withheld

when constructing the model. How well the model fits the held out section is measured

and this process is repeated. Cross validation achieves complexity control by selecting the

model that performs best on average. This is a somewhat heuristic approach as the number

of folds in the cross valuation must be established and the dependence of this decision on

other model parameters is not accounted for. Approaches based on penalizing the likelihood

based on information theoretic criteria such as the minimum description length, reviewed in

Grünwald [2007], or the Bayesian information criteria introduced by Schwarz [1978] employ

a similar heuristic approach. Multiple models of varying complexity are trained and for

12

13

each an information theoretic quantity is computed as a function of the model complexity.

The model with the best combined score (highest likelihood and lowest complexity penalty)

is judged to be the model with ideal complexity.

Various Bayesian approaches to model complexity exist; perhaps the most general of

which is the reversible jump Markov chain Monte Carlo work of Green [1995]. In this work

the standard Metropolis Hastings sampling of Metropolis et al. [1953] and later Hastings

[1970] is extended to allow for transitions in model rather than parameter space. In this

sense a posterior distribution over model complexity can be estimated from the data. Usu-

ally such transitions are considered only between models in the same parametric family

where, for instance, the number of parameters is the measure of model complexity. A

particular example of this is given in Richardson and Green [1997] for Gaussian mixture

models.

This chapter serves as an introduction to nonparametric Bayesian (NPB) modeling,

focusing in particular the practical aspects of mixture modeling. We introduce the non-

parametric Bayesian modeling approach by focusing on one particular NPB model, the

infinite Gaussian mixture model (IGMM) of Rasmussen [2000]. There are many kinds of

nonparametric Bayesian models; however, we use the IGMM as an example because of the

familiarity of Gaussian mixture modeling and also because in Chapter 3 we use an IGMM

to approach the neuroscience problem of spike sorting in a different way.

The general Bayesian nonparametric methodology is to specify a model with unbounded

a priori complexity, but to restrict it in such a way that models of finite realized complexity

are manifest a posteriori given a finite amount of data. In doing so the model automatically

captures and expresses the inherent complexity of the data. The IGMM is a specific case

of a Dirichlet process mixture model introduced in part by Antoniak [1974] with per-class

normally distributed observations. Here model complexity is indicated by the number of

latent classes. As the IGMM has an infinite number of latent classes with each being a

normal distribution it is a mixture model with infinite complexity,

In Section 2.1 we introduce notation and review finite Gaussian mixture modeling. In

Section 2.2 we review the IGMM and derive the conditional distributions necessary for

Gibbs sampling. We review two kinds of Gibbs sampling posterior estimation in Sections

2.2.1 and 2.2.2, expanded and collapsed Gibbs sampling respectively. In Section 2.2.3 we

introduce a sequential posterior estimation algorithm for the IGMM. We conclude in Section

2.3 with a demonstration of IGMM modeling using synthetic data.

14

2.1 Finite Gaussian Mixture Modeling

A finite Gaussian mixture model (GMM) is a latent variable model formed by adding

together weighted Gaussians. Finite GMM’s are frequently used in both statistics and com-

puter science. This is because they are quite flexible and can be used to both approximate

arbitrary probabilitiy densities, particularly those exhibiting multi-modality, and to cluster

data if the latent variables are treated as class labels.

The generative model for a multivariate finite GMM is

ci|~π ∼ Multinomial(~π) (2.1)

~yi|ci = k, Θ ∼ Gaussian(·|θk)

where C = {ci}Ni=1 are class indicator variables. Here Θ = {θk}Kk=1, θk = {~µk,Σk} are

the mean and covariance for class k, and ~π = {πk}Kk=1, πk = P (ci = k), the class prior

probabilities, are parameters of the model. The notation x|y; z ∼ f(x, y; z) means that the

random variable x is conditionally distributed given the random quantity y and parameter

z according to the probability distribution function f . Here by “Gaussian” we mean the

multivariate normal (MVN) density function.

The latent class indicator variables C serve to indicate which class generated each dat-

apoint (i.e. ci = k means that the ith datapoint came from kth latent class). Latent

variables, also called hidden variables, are so named because they cannot be directly ob-

served. If learned, however, they are often semantically useful depending on the application

domain. For instance using them in a mixture modeling context can result in powerful au-

tomatic summarization of data. For this reason it is often the case that in mixture modeling

the de facto goal is to learn the state of these latent variables.

Before getting into model estimation, understanding the generative view of this model

helps to build intuitions about how it works. To generate data from this model first the

number of latent classes K must be chosen; also the relative proportions of data arising

from each class, ~π (i.e. πk is the expected percentage of the data that will arise from class

k). The number of observations N must also be chosen; as too the parameters for each

latent class θk. Once these choices are made then N class labels ci may be generated by

sampling from a multinomial parameterized by ~π (i.e. pick ci = j with probability πj).

Finally N observations may be generated from the corresponding normal distributions with

parameters ~µci ,Σci .

15

To model data using a GMM one must turn around this generative process and instead

estimate the model parameters from the data (i.e., the latent variables π, C,Θ). Expectation

Maximization (EM), introduced by Dempster et al. [1977], is the preferred method for

estimating model parameters in situations where observations are missing or, equivalently,

the model contains latent variables. Expectation maximization is a maximum-likelihood

(ML) estimation technique consisting of an iterative procedure for finding a single setting

of the parameters and missing variables that maximizes the log likelihood of the data given

the model

~̂π, Θ̂ = arg max
~π,Θ

log(P (Y|~π,Θ)). (2.2)

where Y is the set of all observations ~yi and the likelihood is arrived at by marginalizing

out the latent class indicator variables

P (Y|~π,Θ) =
N∏

i=1

K∑
k=1

πkP (~yi|ci = k, Θ). (2.3)

EM is a powerful algorithm that was shown by Neal and Hinton [1998] to always con-

vergence to a local maximum of the likelihood. Unfortunately if the likelihood has multiple

maxima (as may be the case), this guarantee is not sufficient to ensure that the global max-

imum will be found. For this reason the initialization of the EM algorithm can have marked

effects on the results. Another problem not specific to EM but of mixture modeling in

general is that the likelihood can always be increased by adding more mixture components.

This can be problematic because in its basic form EM requires us to know the number of

latent classes K a priori. Although EM variants that attempt to learn K exist they are not

not straightforward.

Here we hit for the first time on a central theme of this work: the true number of latent

classes K is usually not known a priori, cannot be directly observed, and therefore must be

estimated from the data. There are several ways to estimate K in the maximum-likelihood

setting, among them cross validation [Duda et al., 2000] and regularization through infor-

mation theoretic model complexity penalties such as the Bayesian information criterion.

The Bayesian information criterion is given by BIC = −2log(P (Y, C|~π,Θ)) + νK log(N),

where νK is the degrees of freedom of a model indexed by K (here the number of hidden

densities) [Schwarz, 1978]. This can be interpreted as roughly penalizing models according

to their complexity or roughly the log of the number of free parameters. Note that in the

mixture modeling context this penalty puts a brake on improving the likelihood score by

16

adding more mixture components. At some point the cost of encoding the model’s extra pa-

rameters will outweigh adding more components. By iteratively searching for this threshold

one may choose the number of mixture densities.

Unfortunately such maximum-likelihood approaches all do something that one might

like to avoid: They seek a single “best” model of the data. In some circumstances this is

a reasonable thing to do, for instance, if a single state of the latent variables is actually

the quantity of interest then finding the best setting of them is a reasonable thing to do.

However if the ultimate goal is to infer something about the existing data or observations

yet to come, it may be advantageous to consider multiple models of the data rather than

a single best model. One way to do this is to estimate a distribution over models. This

way inferences one might like to draw from the data can be cast as operations on such

a distribution. Averaging (one such operation) can help avoid problems that arise from

mistakenly choosing a suboptimal model (i.e., picking a best model that isn’t actually the

best) when doing ML modeling.

This is the Bayesian approach and taking it will allow us to work around model selection

among other problems. Taking the Bayesian approach means that the model parameters

will themselves be treated as random variables. This means that we should specify genera-

tive models for the parameters as well which are called “priors.” Then, instead of estimating

a single best set of parameters, our goal will be to estimate distribution over parameters

called the posterior distribution. As a reminder, Bayes’ rule tells us that the posterior

probability of a set of parametersM given observations Y is proportional to the likelihood

P (Y|M) times the prior probability of the parameters M

P (M|Y) ∝ P (Y|M)P (M). (2.4)

If we view EM as a Bayesian procedure we see that it provides a point estimate of the

posterior distribution assuming that the prior probability of all models is equal. Of course

this is not our goal, our goal is instead to estimate the entire posterior distribution.

To estimate the posterior distribution we first have to specify priors for the model

parameters. For both purposes of illustration and use in subsequent chapters we follow

Fraley and Raftery [2005] in choosing priors of the following types for the model parameters:

Dirichlet for ~π and Gaussian times Inverse Wishart for θ [Gelman et al., 1995]. These

priors are chosen for mathematical convenience and interpretable expressiveness. They are

conjugate priors 1 which will allow us to analytically perform many of the integrations
1A prior is conjugate if it yields a posterior that is in the same family as the prior [Gelman et al., 1995].

17

necessary in estimating the posterior distribution for this model. This choice of priors is

denoted

~π|α ∼ Dirichlet(·| α
K

, . . . ,
α

K
) (2.5)

Θ ∼ G

where Θ ∼ G is shorthand for

Σk ∼ Inverse-Wishartυ0(Λ
−1
0) (2.6)

~µk ∼ Gaussian(~µ0,Σk/κ0). (2.7)

The formulas for these distributions are readily available on the web and in print, for

instance in Gelman et al. [1995]. Here we focus on the modeling interpretation of these

choices. The Dirichlet prior is used to encode prior knowledge about the number and

relative prevalence of the hidden classes. Here we choose a uniform parameterization α
K for

mathematical convenience when generalizing to the nonparametric model; however, if K is

somehow known a priori then a non-uniform parameterization can be chosen accordingly.

For now we will treat α as a hyperparameter to be user specified but it too can be treated

as a parameter of the model for which a distribution is to be estimated. The parameters

of the Gaussian times Inverse-Wishart prior, H = {Λ−1
0 , υ0, ~µ0, κ0}, are used to encode

our prior beliefs regarding the shape and position of the mixture densities. For instance

~µ0 specifies where we believe the mean of the mixture densities should be, where κ0 is the

number of pseudo-observations we are willing to ascribe to our belief. The hyper-parameters

Λ−1
0 and υ0 behave similarly for the mixture density covariance. We will refer to H as the

hyperparameters of our model. In general these will be specified by a user and not estimated

from the data. Note that this specification of the priors assumes that we know the value of

K a priori. At this point we are focusing on building the Bayesian Gaussian mixture model;

shortly we will show how to avoid this assumption. Also these are not the only choices

that one could make for the priors. In particular other choices for the multivariate normal

parameter priors may be more appropriate for certain applications.

A graphical model representing this model is shown in the middle of Figure 2.1. This

graphical model illustrates the conditional dependency structure of the model. For instance

πk is independent of yi given ci. In this figure circles indicate random variables and plates

indicate repetition. Links between variables indicate that they appear together in terms in

18

¼

µc

y
i

k

k

i

N

K

K

®

G¼

µc

y
i

k

k o

i

N

K

K

®

G¼

µc

y
i

k

k o

i

N

1

1

Figure 2.1: From left to right: graphical models for a finite Gaussian mixture model (GMM),
a Bayesian GMM, and an infinite GMM

the joint probability distribution. From such a graphical model the joint distribution of the

data and model parameters can easily be read out. Here that joint distribution is is given

by

P (Y,Θ, C, ~π, α;H) =

 K∏
j=1

P (θj ;H)

(N∏
i=1

P (~yi|ci, θci)P (ci|~π)

)
P (~π|α)P (α). (2.8)

Given this joint distribution it is simple to derive the posterior distribution by algebraic

manipulation. The posterior distribution of the Bayesian Gaussian mixture model is

P (C,Θ, ~π, α|Y;H) (2.9)

∝ P (Y|C,Θ)P (Θ;H)

(
N∏

i=1

P (ci|~π)

)
P (~π |α)P (α).

where P (Y|C,Θ) =
∏N

i=1 P (~yi|ci, θci) and P (Θ;H) =
∏K

j=1 P (θj ;H).

In Equation 2.9 the proportionality sign hides the marginal probability of the data

under the model (also called the “evidence”) which cannot be computed analytically. In

19

such cases Markov chain Monte Carlo (MCMC) methods such as those reviewed in Neal

[1993] can be used to obtain a discrete representation of the posterior by sampling from this

unnormalized density. These methods simulate a discrete Markov process whose equilibrium

distribution is the posterior distribution. Other posterior inference methods can be used

here, particularly the variational approach outlined in Jordan et al. [1999], but in this work

we will focus on MCMC methods for reasons that will shortly become apparent.

What we have now is a Bayesian Gaussian mixture model. Citing the literature we have

asserted that MCMC techniques can be used to estimate a posterior distribution in such

models. However, we have not yet surmounted our assumption about knowing K a priori.

This is important in modeling situations where either estimating K from the data is of

importance or when models estimated with different values of K produce varying inference

results.

What we would like is a model whose posterior distribution manifests models that vary

in the number of mixture components. Inference using such a model would allow for the

variability resulting from inference in different models with different values of K to be

averaged away. In addition, since such a model will implicitly define a distribution over K,

inference about the cardinality of hidden classes can also be performed.

In Green [1995] one approach to building this kind of posterior distribution was devel-

oped: reversible jump Markov chain Monte Carlo (RJMCMC). RJMCMC, as the name

implies, is a MCMC technique. In RJMCMC additional special “dimension shifting” tran-

sition rules are specified such that K can vary from one step of the sampler to the next.

These rules are typically complex as detail balance must be preserved across transitions

that are not one-to-one. Regardless, RJMCMC applied in the context of a Bayesian Gaus-

sian mixture model produces a posterior distribution over mixture models that vary in K.

We will not review RJMCMC for Bayesian Gaussian mixture modeling here as our focus

will soon shift to sequential posterior estimation which is not possible in the RJMCMC

framework.

In contrast to RJMCMC there is what is called the “nonparametric Bayesian” approach

to modeling. Nonparametric Bayesian models are models in which the prior complexity

of the model is unbounded (here K → ∞). To clarify: for RJMCMC as applied to finite

Gaussian mixture modeling this is not the case; RJMCMC specifies transition rules between

finite mixture models. A NPB GMM is a model with fixed infinite complexity. This choice

of infinite prior complexity corresponds to assuming that there are an infinite number of

hidden classes. This might seem problematic as the mixture model thereby consists of an

infinite number of mixture densities. However first note that only a finite number can be

20

manifest by a finite dataset. Additionally note that if we utilize a prior that favors “sparsity”

in the class prior probabilities ~π then most classes will be allocated zero posterior probability

mass (this is the case for the choice of prior and its parameterization that we made earlier).

The infinite Gaussian mixture model (IGMM) developed by Rasmussen [2000] is exactly

such a model. The IGMM is just one specific example of a Dirichlet process mixture model

of which many exist in the literature [Neal, 1998, 2000; MacEachern and Muller, 1998] to

highlight just a few.

2.2 Infinite Gaussian mixture model

Towards understanding the IGMM note that the only terms in Equation 2.9 that explicitly

depend on K are P (ci|~π) and P (~π|α) as both involve ~π whose dimensionality is K. Of course

the likelihood P (Y|C,Θ) and the class parameter prior P (Θ;H) also implicitly depend on

K as it is the number of hidden classes. This dependence on K is indirect however as both

the likelihood and the class parameter prior only need to be evaluated for realized hidden

classes (i.e. hidden classes to which at least one observation is attributed).

The IGMM arises as K →∞. While it is possible work with directly with such infinite

dimensional models it is easier to consider the Bayesian mixture model having integrated ~π

out. So, operating on P (ci|~π) and P (~π|α), recognize that ~π can be marginalized out because

the Dirichlet prior is conjugate to the multinomial likelihood

P (C|α) =
∫

d~π

N∏
i=1

P (ci|~π)P (~π |α)

=
∏K

k=1 Γ(mk + α
K)

Γ(α
K)K

Γ(α)
Γ(N + α)

. (2.10)

This expression is the joint probability of a single labeling C. Since permutation of

the labels assigned to a single set of observations results in no change in the semantics

of the labeling, we would like a model that expresses the probability of partitions of the

data rather than labelings per se. A partition of the data is a grouping of the data into

nonoverlapping subsets and is independent of the labels given to each of the subsets. The

number of different assignments of K labels that can be assigned to a partioning of the data

with K+ < K bins is K!
(K−K+)! . As each partition has the same marginal probability under

21

Equation 2.10 the total probability of any one partitioning of the data is

P (C|α) =
K!

(K −K+)!

∏K
k=1 Γ(mk + α

K)
Γ(α

K)K

Γ(α)
Γ(N + α)

. (2.11)

It is the limit of this expression as K → ∞ that turns the Bayesian GMM into the

IGMM [Rasmussen, 2000]. The limiting expression (taken from Griffiths and Ghahramani

[2005]) is given here without derivation

P (C|α) = αK+

K+∏
k=1

(mk − 1)!

 Γ(α)
Γ(N + α)

(2.12)

where , mk =
∑N

i=1 I(ci = k) is the number of items in class k (I() is the indicator function)

and Γ() is the Gamma function with Γ(α) = (α− 1)Γ(α− 1). As before K+ is the number

of bins in the partition; this being equivalent to the number of classes containing at least

one item.

In order to do posterior estimation in such a model one needs to be able to at a minimum

evaluate Equation 2.12 which is clearly the case. In order to do Gibbs sampling in such

a model one needs to be able to sample from P (ci = k|C−i) where C−i is all labels except

for ci. A sequential generative process for sampling from this conditional distribution was

explored in depth by Pitman [2002] and is given here

P (ci = k|C−i) =

{
mk

i−1+α k ≤ K+

α
i−1+α k = K+

(2.13)

This process is known as the Chinese restaurant process (CRP) because of a story

that illustrates the process [Pitman, 2002]. Repeated here, the story describes a method

of sequentially seating customers stochastically at tables in a Chinese restaurant with an

infinite number of tables: the first customer enters the restaurant and is seated at the first

table. Subsequent customers enter the restaurant and are stochastically seated according to

the number of people already sitting at each table. If there are many people already sitting

at a table (i.e., mk is large for table k) then the probability of being seated at that table is

high and vice versa. However, there is always a small probability of being seated at a table

that has no prior occupants; α/(i − 1 + α) where i is the number of the current customer

being seated.

The generative view of the infinite Gaussian mixture model with this prior on the class

identifiers is that the class identifiers for N datapoints are generated from the Chinese

22

restaurant process. Depending on α this will yield some value of K+ < N . Observations

then are generated from each of K+ Gaussian densities whose parameters are each drawn

independently from the multivariate normal inverse Wishart (MVN-IW) prior.

The IGMM can be seen as a Dirichlet process mixture model in which the class ids are

explicitly represented. Dirichlet process mixture models are alternately notated

G ∼ DP(αG0)

θi ∼ G

yi|θi ∼ N (·|θi)

where the variables have the same meaning as before; however, the generative story is

different. Here a distribution G is generated from a Dirichlet process (DP) with parame-

ters α and G0. From G not necessarily unique parameters θi are drawn for each datapoint

circumventing the need for explicit class identifiers. In this formulation sharing of these

class parameters serves the same purpose as the class indicator variables C in the limiting

formulation above. The Dirichlet process is a prior over infinite dimensional multinomials

(probability density functions) [Ferguson, 1973; Blackwell and MacQueen, 1973]. The dis-

tribution over partitions in Equation 2.12 is closely related to the the marginal distribution

of the θi’s in a DP mixture model in which G has been integrated out in that the pattern of

sharing of θi’s in such a model generates a partition of the data. The distribution of these

partitions is the same as the distribution given in Equation 2.12.

Of the other ways to construct and sample from the Dirichlet process and by extension

DP mixture models, the stick breaking construction of Sethuraman [1994] is one particularly

important example. Among other benefits the stick breaking construction makes sampling

methodologies different than those treated in this review possible. We limit ourselves in

this review to the limiting construction because our ultimate interest is in sequential pos-

terior estimation, which does not yet exist for the estimation approaches based on the stick

breaking representation of the Dirichlet process.

Now that we have defined a nonparametric Bayesian prior for our model we need to

figure out how to generate samples from the posterior distribution Equation 2.9 in this

limiting case. Here we review and investigate three different samplers for doing so. The

first two correspond to algorithms two and three of Neal [1998], which themselves were

previously set forth in Bush and MacEachern [1996]; West et al. [1994]; MacEachern and

Muller [1998]; Neal [1992]. The third is a sequential posterior estimation algorithm that

23

corresponds to the techniques in Fearnhead and Clifford [2003]; Fearnhead [2004]; Sanborn

et al. [2006] and related to Wood and Griffiths [2007]. The first we will call the expanded

Gibbs sampler in that the latent class parameters are explicitly represented in the sampler

state, the second we will call the collapsed Gibbs sampler (following Liu [2001]) because

the latent class parameters are integrated out and the sampler state consists of only the

class identifiers. Each of these is an offline or batch sampling algorithm requiring that

the entire dataset be present. In contrast, the third algorithm, which we will call the

sequential or online sampler, is a sequential posterior estimation algorithm, meaning that

each observation is processed once in sequence when estimating the posterior.

2.2.1 Expanded Gibbs sampler

Remember that our goal is build an estimate of the posterior distribution for the infinite

Gaussian mixture model by using MCMC to draw samples from the posterior. The expanded

Gibbs sampler is the first of three posterior estimation algorithms we present in this work.

The expanded Gibbs sampler is an instance of one of the algorithms in Neal [1998] as applied

to the IGMM of Rasmussen [2000]. The state of this expanded Gibbs sampler consists of

of the class identifiers and the mixture density parameters {C,Θ}. In Gibbs sampling each

variable is sampled from its conditional distribution given all other variables [Geman and

Geman, 1984]. For this sampler the necessary conditional distributions can be derived by

simple algebraic operations on the joint distribution given in Equation 2.12. The conditional

distribution for Θk given the state of all other variables is

P (θk|C,Y,Θ−k, ~π, α;H) ∝
∏

i:ci=k

P (~yi|ci, θk)P (θk;H). (2.14)

where Θ−k = {θk, . . . , θk−1, θk+1, . . . , θN}. Likewise we sample all class identifiers C accord-

ing to their individual conditional distributions.

P (ci = k|C−i,Y,Θ, ~π, α) ∝ P (~yi|ci,Θ)P (ci|C−i) (2.15)

where C−i = {c1, . . . , ci−1, ci+1, . . . , cN}. The prior predictive distribution P (ci|C−i) is given

in Equation 2.13 above.

To complete the specification of the expanded Gibbs sampler all that remains to be

specified is a method for sampling the remaining free parameter, α. The can be done using

a Metropolis update, although it too can be updated using a Gibbs step [Escobar and West,

1995]. The expanded Gibbs sampler algorithm is given in Algorithm 1.

24

Algorithm 1 Expanded Gibbs sampler for IGMM
1: c1, . . . ck ← 0
2: C0 ← {c1, . . . ck}
3: Θ0 ← {}
4: K+ = 0
5: for s = 1 : # samples do
6: Cs ← Cs−1

7: Θs ← Θs−1

8: for i = 1 : N do
9: if ci 6= 0 then

10: mk,−i ←
PN

j=1 I(cj = ci)− 1
11: if mk,−1 = 0 then
12: {Θs} ← {Θs}\Θci

13: cj = cj − 1 ∀ j > i
14: K+ = K+ − 1
15: else
16: mk,−i ← 0
17: end if
18: end if
19: sample ci ∼ P (·|C−i,Y, Θ, . . .) // Using Eqn: 2.15
20: if ci ∩ Cs = ∅ then
21: sample ~µci ,Σci ∼ MVN-IW(µ1, κ1,Λ1, ν1) // from the MVN-IW posterior given observation yi

22: Θs ← {Θs−1, {~µci ,Σci}}
23: K+ = K+ + 1
24: end if
25: end for
26: for k = 1 : K+ do
27: sample θk ∼ P (·|C,Y, Θ−k, . . .) // Using Eqn: 2.14
28: end for
29: sample α using a Metropolis step
30: end for

2.2.2 Collapsed Gibbs sampler

It is also possible in this model to more fully exploit our choices of conjugate priors. Having

chosen the multivariate-normal inverse Wishart prior for the multivariate normal class dis-

tributions makes it possible to analytically integrate these parameters out as well yielding

an expression for a posterior over only C

P (C|Y;H) =
∫

dΘP (C,Θ|Y;H)

∝ P (C;H)
∫

dΘP (Y|C,Θ;H)P (Θ;H).

(2.16)

The advantage of analytically marginalizing out the normal parameters Θ is that the

state space of the sampler is reduced. Typically this leads to faster convergence of the

25

sampler to the equilibrium distribution [Liu, 2001]. Furthermore, posterior inference is

made simpler and more accurate by analytically integrating out a set of parameters rather

than doing Monte Carlo integration over a discrete posterior representation.

Continuing, here we demonstrate how to marginalize out Θ. In the following expression

the joint over the data is considered and broken into K parts, each corresponding to one

class.

P (C|Y;H) =
∫

dΘP (C,Θ|Y;H)

∝ P (C;H)
∫
· · ·
∫

dθ1 · · · dθK

 K∏
j=1

P (θj ;H)

 N∏
i=1

P (~yi|ci = j, θj)

∝ P (C;H)
∫
· · ·
∫

dθ1 · · · dθK

K∏
j=1

N∏
i=1

I(ci = j, P (~yi|ci = j, θj)P (θj ;H))

∝ P (C;H)
K∏

j=1

∫
dθj

N∏
i=1

I(ci = j, P (~yi|ci = j, θj)P (θj ;H)) (2.17)

where I(expr, val) is an indicator function that returns val if expr is true and one otherwise.

This shows that the collapsed posterior is the product of the prior over C and K independent

terms, each of which is the posterior probability of an independent set of observations under

the class to which they are currently attributed.

If we isolate the set of datapoints attributed to a single class Y(j) = {yi : ci = j} and

denote the cardinality of that set N (j) = |Y(j)| then we can rewrite the right hand side of

the final line of 2.17 in a simpler form.

K∏
j=1

∫
dθj

N∏
i=1

I (ci = j, P (~yi|ci = j, θj)P (θj ;H)) =
K∏

j=1

∫
dθj

N(j)∏
i=1

P (~y(j)
i |c

(j)
i , θj)P (θj ;H)

Focusing on a single cluster and dropping the class index j for now we see that

P (Y|H) =
∫

dθ

N∏
i=1

P (~yi|θ)P (θ;H) (2.18)

is the standard likelihood conjugate prior integral for a MVN-IW where, remembering that

θ = {~µ,Σ} the expression for the MVN likelihood term, P (~yi|θ) expands to the familiar

26

MVN normal joint distribution for N i.i.d. observations

N∏
i=1

P (~yi|θ) = (2π)−
Nd
2 |Σ|−

N
2 e−

1
2
tr(Σ−1S0) (2.19)

where S0 =
∑N

i=1(~yi − ~µ)(~yi − ~µ)T . Here, following convention, |X| means the matrix

determinant of X.

For ease of reference we provide the MVN-IW prior P (Θ;H) here

P (θ;H) = P (~µ,Σ|~µ0,Λ0, ν0, κ0)

=
(2π

κ0
)−

d
2 |Σ|−

1
2 e−

κ0
2

(~µ−~µ0)T Σ−1(~µ−~µ0)

2
ν0d
2 π

d(d−1)
4
∏d

j=1 Γ(νo+1−j
2)

|Λ0|
ν0
2 |Σ|−

ν0+d+1
2 e−

1
2
tr(Λ0Σ−1) (2.20)

Combining the joint multivariate normal likelihood in Equation 2.19 with the MVN-IW

posterior given in Equation 2.20 yields the expanded form of the posterior given in Equation

2.18

=
1
Z0

∫ ∫
d~µdΣ|Σ|−(

ν0+d
2

+1)−N
2 e−

1
2
tr(Λ0Σ−1)− 1

2
tr(Σ−1S0)−κ0

2
(~µ−~µ0)T Σ−1(~µ−~µ0)

Here Z0 is the normalization constant for the MVN-IW prior

Z0 = (2π)
Nd
2 (

2π

κ0
)

d
2 2

ν0d
2 π

d(d−1)
4

d∏
j=1

Γ(
ν0 + 1− j

2
)|Λ0|−

ν0
2 . (2.21)

Now, the choice earlier in this chapter of a conjugate prior for the MVN class parame-

ters helps tremendously. This seemingly daunting integral has a simple analytical solution

thanks to conjugacy. Following Gelman et al. [1995] pg. 87 in making the following variable

substitutions

~µn =
κ0

κ0 + N
~µ0 +

N

κ0 + N
ȳ

κn = κ0 + N

νn = ν0 + N

Λn = Λ0 + S +
κ0n

κ0 + N
(ȳ − ~µ0)(ȳ − ~µ0)T

27

where

S =
N∑

i=1

(~yi − ȳ)(~yi − ȳ)T

then

P (Y;H) =
1
Z0

∫ ∫
d~µdΣ|Σ|−(νn+d

2
+1)e−

1
2
tr(ΛnΣ−1)−κn

2
(~µ−~µn)T Σ−1(~µ−~µn)

can be solved immediately by realizing that this is itself a MVN-IW distribution and the

integral is simply the inverse of its normalization constant with the same variable substitu-

tions applied, i.e.,

Zn =
∫ ∫

d~µdΣ|Σ|−(νn+d
2

+1)e−
1
2
tr(ΛnΣ−1)−κn

2
(~µ−~µn)T Σ−1(~µ−~µn)

= (2π)
Nd
2 (

2π

κn
)

d
2 2

νnd
2 π

d(d−1)
4

d∏
j=1

Γ(
νn + 1− j

2
)|Λn|−

νn
2

which yields

P (Y;H) =
Zn

Z0

=
(2π

κn
)

d
2 2

νnd
2 π

d(d−1)
4
∏d

j=1 Γ(νn+1−j
2)|Λn|−

νn
2

(2π
κ0

)
d
2 2

ν0d
2 π

d(d−1)
4
∏d

j=1 Γ(ν0+1−j
2)|Λ0|−

ν0
2

= (
κ0

κn
)

d
2 2

d
2
(νn−ν0)

|Λ0|
ν0
2
∏d

j=1 Γ(νn+1−j
2)

|Λn|
νn
2
∏d

j=1 Γ(ν0+1−j
2)

which if n is even simplifies further

= (
κ0

κn
)

d
2 2

d
2
(νn−ν0) |Λ0|

ν0
2

|Λn|
νn
2

∏d
j=1[Γ(ν0+1−j

2)
∏N

2
i=1(

νn+1−j
2 − i)]∏d

j=1 Γ(ν0+1−j
2)

= (
κ0

κn
)

d
2 2

d
2
(νn−ν0) |Λ0|

ν0
2

|Λn|
νn
2

d∏
j=1

N
2∏

i=1

(
νn + 1− j

2
− i)

28

Algorithm 2 Collapsed Gibbs sampler for the IGMM
1: c1, . . . ck ← 0
2: C0 ← {c1, . . . ck}
3: K+ = 0
4: for s = 1 : # samples do
5: Cs ← Cs−1

6: for i = 1 : N do
7: if ci 6= 0 then
8: mk,−i ←

∑N
j=1 I(cj = ci)− 1

9: if mk,−1 = 0 then
10: cj = cj − 1 ∀ j > i
11: K+ = K+ − 1
12: end if
13: else
14: mk,−i ← 0
15: end if
16: sample ci ∼ P (·|C−i,Y, . . .) // Using Eqn’s: 2.23 and 2.24
17: if ci ∩ Cs = ∅ then
18: K+ = K+ + 1
19: end if
20: end for
21: sample α using a Metropolis or Gibbs step
22: end for

Now we have an expression for the posterior distribution that is simpler than that given

in Equation 2.9

P (C|Y;H) =
∫

dΘP (C,Θ|Y;H)

∝ P (Y|C;H)P (C)

∝
K+∏
j=1

P (Y(j);H)P (C). (2.22)

By integrating out the class parameters all that needs to be sampled now are the class

identifiers. To sample a single class identifier ci one computes the likelihood of the associated

datapoint yi under every currently existing cluster. This is simply the posterior predictive

distribution for a MVN-IW model which has a standard known form which is given below.

These likelihoods are weighted by the prior probability that ci would take on a particular

value given the DP prior and the current value of all the other class identifiers.

For the collapsed Gibbs sampler then the sampler state consists of C and α as shown in

29

Algorithm 2.2.2. The sampling step for α is the same as in the previous expanded Gibbs

sampling algorithm.

Here, the updates for the class labels are given

P (ci = j|C−i,Y, α;H) ∝ P (Y|C;H)P (C|α)

∝
K+∏
j=1

P (Y(j);H)P (ci = j|C−i, α)

∝ P (Y(j);H)P (ci = j|C−i, α)

∝ P (yi|Y(j)\yi;H)P (ci = j|C−i, α) (2.23)

where Y(j)\yi is the set Y(j) without yi (yi is “removed” from the class to which it belongs

when sampling). In the infinite case we also must consider the probability of starting a new

cluster. This is given by

P (ci 6= j, 1 ≤ j ≤ K+|C−i,Y, α;H) ∝ P (yi;H)P (ci 6= j, 1 ≤ j ≤ K+|C−i, α) (2.24)

where for our model P (yi|Y(j)\yi;H) is the posterior predictive distribution for a new dat-

apoint under a multivariate model with a multivariate normal inverse-Wishart prior. From

Gelman et al. [1995] pg. 88 we know that this is multivariate Student-t

yi|Y(j)\yi;H ∼ tνn−D+1(~µn,Λn(κn + 1)/(κn(νn −D + 1))) (2.25)

where ~µn,Λn, κn, νn are exactly as before and D is, also as before, the dimensionality of yi.

In the case for generating a novel cluster identifier the same posterior predictive distribution

is used; however, as there are no other observations the original hyperparameters are used

instead, i.e.

yi;H ∼ tν0−D+1(~µ0,Λ0(κ0 + 1)/(κ0(ν0 −D + 1))) (2.26)

for ease of reference the multivariate Student-t density function is given here

P (y) = tν(y|µ,W) =
Γ((ν + D)/2)

Γ(ν/2)νD/2πD/2
|W|1/2(1 +

1
ν

(y − µ)TW−1(y − µ))−(ν+D)/2

We now have reviewed two ways of sampling from the posterior distribution of an infinite

30

Gaussian mixture model, one in which the class parameters remained explicitly represented

and one in which they were integrated away. The point of going through this review exercise,

besides putting lots of extraneous gratuitous mathematics in this dissertation, is to provide

enough introductory material to nonparametric Bayesian approaches to make uptake of the

new models in Chapter 4 easy.

2.2.3 Sequential posterior estimation

One of the most exciting things about the nonparametric mixture modeling approach we

are reviewing is that sequential posterior estimation is possible in such models. Sequential

posterior estimation means that estimation of the posterior distribution is accomplished by

processing each observation once in sequence. In the IGMM this is possible because the

prior on C yields an analytic expression for the conditional distribution of the label of a

single point given the labels for all of the others P (ci|C−i).

To explain how this makes sequential posterior estimation possible remember that ~yi is

the ith observation, and let Y(1:i) be all observations up to and including the ith (similarly

for the class identifiers C(1:i)). Note that because of the form of the class identifier prior it

is easy to sample from P (ci|C(1:i−1)); to do so sample the ith class identifier given the first

i− 1 identifiers directly from the prior (using Equation 2.13). Knowing that we can exploit

this fact then applying Bayes’ rule we can write the unnormalized posterior on C(1:i) given

Y(1:i) in the following way

P̂ (C(1:i)|Y(1:i)) ∝ P (~yi|C(1:i),Y(1:i−1))P (ci|Y(1:i−1)).

Since we can evaluate P (~yi|C(1:i),Y(1:i−1)), we can obtain weighted samples from the

normalized posterior P (C(1:i)|Y(1:i)) using importance sampling with a proposal distribution

of

P (ci|Y(1:i−1)) =
∑

∆C(1:i−1)

P (ci|C(1:i−1))P (C(1:i−1)|Y(1:i−1))

≈
L∑

l=1

w
(1:i−1)
{l} P (ci|C(1:i−1)

{l})

where w
(1:i)
{l} is the weight for the lth sample having integrated i observations, C(1:i)

{l} is the

corresponding sample and ∆C(1:i−1) is shorthand for all possible assignments of labels 1

31

Algorithm 3 Particle filter posterior estimation for the IGMM

1: C(1)
{:} ← 1

2: for i = 2 : N do
3: for l = 1 : L do
4: sample C(i)

{l} ∼ P (C(i)
{l} = k|C(1:i−1)

{l}) // Using Eqn. 2.13

5: calculate weight ω
(i)
{l} ∝ P (Y(i)|C(1:i)

{l} ,Y(1:i−1), . . .) // Using Eqn.’s 2.23 and 2.24
6: end for
7: normalize the weights ω

(i)
{l} ← ω

(i)
{l}/
∑L

j= ω
(i)
{j} ∀ l

8: C(i)
{:} ← resample(ω(i)

{:}, C
(i)
{:})

9: end for

through i−1. “Particle filter” is the name given to sequential density estimation approaches

that follow this form. In a particle filter, weighted ”particles” (the samples and weights)

are used to form a discrete representation of the distribution of interest (here the posterior

distribution over class identifiers given observations)

{w(1:i−1)
{l} , C(1:i−1)

{l} } ≈ P (C(1:i−1)|Y(1:i−1)).

These particles are updated once per observation in sequence. The discrete particle repre-

sentation of the posterior distribution is an approximation in the traditional Monte Carlo

integration sense. As the number of particles goes to infinity, averages over the discrete

representation converge to expectations of the true distribution

lim
L→∞

L∑
l=1

w
(1:i−1)
{l} g(C(1:i−1)

{l}) = EP (C(1:i−1)|Y(1:i−1))[g]

=
∑

∆C(1:i−1)

P (C(1:i−1)|Y(1:i−1))g(C(1:i−1)) (2.27)

Refering to Algorithm 2.2.3 and noting that P (~yi|C(1:i),Y(1:i−1)) is given by Equation

2.25 for existing clusters and Equation 2.26 for putative new clusters this completes the

mathematical description of the basic particle filter.

Starting with samples representing the posterior distribution after one observation (this

is easy as the first customer under the Chinese restaurant process always sits at the first

table), an estimate of the posterior after two observations can be arrived at. This sets up a

clear recursion for estimating the posterior distribution accounting for any number of obser-

vations. This type of sequential posterior estimation is known as a sequential importance

32

sampling or as a SIS particle filter [Doucet et al., 2001].

This approach to posterior estimation in nonparametric Bayesian models is not restricted

to the IGMM nor to nonparametric models based on the Dirichlet process. For instance, in

Chapter 4 a similar algorithm is developed for NPB matrix factorization models.

Unfortunately this basic implementation, while correct in the limit as the number of

particles goes to infinity, will only work for a limited and small number of observations

because of particle degeneracy. Particle degeneracy is a way to describe the situation in

which the number of unique particles decreases, leaving only a few unique particles and

correspondingly a sharply and possibly incorrectly peaked posterior. The resampling step

used in sequential importance resampling particle filters [Doucet et al., 2001] helps but does

not completely alleviate the problem in particle filters for Dirichlet process mixture models

[Fearnhead and Clifford, 2003].

To get around the particle degeneracy problem we follow Fearnhead and Clifford [2003]

in adopting a resampling strategy that ensures a diverse particle set. In Fearnhead and

Clifford [2003] we are reminded that these two particle sets are equivalent

1
3
, {1, 2, 1}; 1

3
, {1, 1, 1}; 1

3
, {1, 1, 1}

and
1
3
, {1, 2, 1}; 2

3
, {1, 1, 1}

where here the fraction represents the weight given to each particle and the three integers

in the brackets are the particles which themselves indicate the class labels given to three

hypothetical observations. Clearly, the second representation is more efficient in that it

requires fewer particles to represent the distribution with the same accuracy. This efficiency

is merely a product of the measure being weighted rather than unweighted.

While the details of the exact methodology are available in Fearnhead and Clifford

[2003], we give here a brief accounting for IGMM’s. In the step in which the class label for

the ith observation is sampled from the CRP prior we need not restrict ourselves to sampling

only a single new class label from the prior. In this model it is possible to exhaustively

enumerate all possible values of ci|C−i (i.e. no sampling from the prior, merely enumerating

all possible next labels). Doing this generates a particle set of size M from the original

N particles where M > N , with each particle replicated as many times as the number of

pre-existing unique labels in the particle plus one to account for the possibility of the new

observation having been generated by an as yet unseen latent class. Weights for each of these

particles can be computed as before using Equations 2.23 and 2.24, only now computing M

33

instead of N weights. Having increased the diversity and cardinality of our particle set we

now must down-sample the representation to avoid exponential growth in the number of

particles. One can resample N particles directly from this discrete distribution; however in

Fearnhead and Clifford [2003] a resampling algorithm is developed that is provably optimal

in terms preserving the expected weight of particles retained from the large sample set in

the smaller sample set. Additionally, their approach limits the number of times a particle

can be selected in the down-sampling step to one which yields an optimally diverse particle

set. A trivial consequence of their approach is that the particle set is no longer unweighted

after resampling like it is in regular SIS particle filtering.

In all of our experiments where we report results for particle filter posterior estimation

the approach of Fearnhead and Clifford [2003] is used to maintain the particle set.

2.3 Experiments

Prior to applying this model to neural data it is imperative to test some of its character-

istics. For instance: how sensitive is the model to its settings of the hyperparameters? In

the following sections we investigate this and other characteristics of the infinite Gaussian

mixture modeling approach. In Section 2.3.1 we use the IGMM model to generate synthetic

data and then show that both collapsed Gibbs sampling and particle filtering can be used

to estimate a posterior distribution that admits with high probability the true generative

model. In Section 2.3.2 we investigate how well the model deals with partially overlapping

clusters which we will call ambiguous clusters. We do this by estimating multiple models for

high dimensional data, in each of which we cluster low dimensional projections of the orig-

inal high dimensional data. By clustering low dimensional projections of high dimensional

data we are able to manipulate the level of cluster overlap. In Section 2.3.3 we investigate

the sensitivity of the IGMM to hyperparameter setting.

2.3.1 Estimation

Demonstrating that an estimation approach is able to discover a posterior distribution

over models that is peaked at the true model yields reassurance that if the model and

the hyperparameters are chosen correctly, then the estimation procedure will arrive at a

posterior estimate that gives high score to the true model. The theoretical guarantees for

this are difficult to establish; however, in practice this is often asserted as evidence of the

correctness and effectiveness of a posterior estimation approach. To perform this check,

four dimensional synthetic data was generated from the generative model underlying the

34

IGMM. The parameters used to generate a synthetic dataset were µ0 = [0 0 0 0], v0 =

50, k0 = .05, α = .4,Λ−1
0 = diag(.1). One thousand samples were drawn from this model by

first sampling the class identifiers by simulating a Chinese restaurant process with α = .4.

Sampling the class identifiers in this way implicitly determines K+ the number of non-

empty classes resulting in, for this synthetic dataset, Ktrue
+ = 6. We then sampled Ktrue

+

class distribution parameters {µk,Σk} from the multivariate normal inverse Wishart prior

as parameterized above. Finally 1000 points were sampled from the mixture densities

specified by their true class id ck. In Figure 2.3 all coordinate plane 2D projections of

the 4D data are shown. In the figure the axis labels refer to the dimensions of the 4D data

selected for plotting. Datapoints with the same color have the same class id. Worthy of

note as it will be exploited later in this section is the fact that some of the projections

are highly unambiguous, i.e., having almost no overlap between classes, whereas others

introduce ambiguity by virtue of collapsing two classes on top of one another.

As we are interested in the performance of both the Gibbs sampler (here and onwards

“Gibbs sampler” refers only to the collapsed Gibbs sampler in the context of infinite Gaus-

sian mixture modeling) and the particle filter, each are demonstrated in estimating a pos-

terior distribution given the synthetic data described in the paragraph above. For this

experiment and for both of the posterior estimation algorithms all hyperparameters sup-

plied to the algorithms were set to their true values except α which was varied accross

multiple trials. The effects on estimation of varying the number of samples drawn from

the posterior is demonstrated. For the Gibbs sampler the number of samples is simply the

number of samples; for the particle filter it is the number of particles. We will interchange-

ably refer to the particles generated by the particle filter as samples as they are, like the

Gibbs samples, simply a discrete distribution, and are only unlike the Gibbs samples in that

they have nonuniform weights. The Gibbs sampler was run for 1.25 times the number of

samples reported for purposes of “burn-in” meaning that the first 25% of the samples were

discarded. Here this is appropriate as the Gibbs sampler was observed to converge rapidly.

This rapid convergence may be a function of our implementation of the Gibbs sampler. Our

implementation was not initialized with random class identifiers but instead the first Gibbs

sweep through the data was the same as running the particle filter algorithm with one par-

ticle. The remainder of the Gibbs sweeps use the Gibbs updates without modification. We

have found that this causes the Gibbs sampler to start very near the mode of the posterior

distribution and correspondingly results in rapid convergence to the equilibrium posterior

distribution.

In Figure 2.2 measurements of the posterior estimates produced by the particle filter

35

Figure 2.2: Infinite Gaussian mixture model posterior estimation results for synthetic data
drawn from the generative model underlying the IGMM. All results shown are the result of
averaging over four different pseudorandom number generator seedings. The left column are
estimation results for the particle filter posterior estimation algorithm. The right column are
estimation results for the Gibbs sampler. The first row of results show the expected value of
K+ as computed over the posterior distribution. The true value, K+ = 6 is shown as a red
plane. The second row shows the log posterior score of the MAP model in comparison to
the true model, again given by the red plane. The third row shows the Mirkin metric for the
MAP model which if greater than zero indicates an imperfect match between clusterings.
In each figure the horizontal axes are the logarithm of the number of samples used in the
posterior estimate and the value of α used to initialize the estimation routine.

36

and Gibbs sampler posterior estimation algorithms are shown. The left column shows

results for the particle filter while the right column shows those for the collapsed Gibbs

sampler. Plotted from top to bottom in both columns is E[K+], the expected number of

latent classes; the posterior probability of the labeling; and the average normalized Mirkin

metric, all averaged over four different random seed initializations. The normalized Mirkin

metric developed by Mirkin [1996] is a metric for comparing clusterings which Meila [2002]

interpreted as the two times the ratio of the number of point pairs which are in the same

cluster in the ground truth labeling but are in different clusters under the model labeling

to the total number of point pairs. For instance, if the model induces the same clustering

but a different labeling, the Mirkin metric is zero.

In all plots the ground truth is shown in solid red while the model estimate is shown by

the transluscent white surface with blue lines. Results are plotted over varying values of α

and numbers of samples. The true value of α = .4 was given above in describing how the

synthetic data was generated. The actual (non-logarithmic) number of samples/particles

used was 50, 100, 200, 500, 1000, 2000, and 5000.

What is shown here is that both posterior estimation algorithms converge to good poste-

rior estimates in terms of these three measurements given remarkably few samples. Unfortu-

nately the expected number of classes is shown to be sensitive to the assumed value of α. As

a distribution over α can itself be estimated from the data, this is not of particular concern;

however, in applications where the user wishes to hand specify α some jurisprudence should

be applied in making inferences with respect to the marginal over class cardinality. Also,

while the particle filter is at first glance worse that the Gibbs sampler in terms of Mirkin

metric and log posterior score, the absolute error in both terms is very small, indicating

that the particle filter is potentially suitable for most applications.

2.3.2 Handling overlapping classes

Unfortunately it is common in real world data modeling problems to have data with clusters

that are not well separated. Multiple clusters may overlap or abut in ways that makes

attributing a datapoint to a single class difficult. This is a main justification for adopting

a Bayesian approach to clustering. Testing the ability of the nonparametric models to find

good clusterings in the presense of ambiguous cluster boundaries is important. To study

this we start with the same 4D dataset as described in the previous experiment but cluster it

using lower dimensional (3D and 2D) projections. By modeling each of the two dimensional

(2D) cardinal projections of the data we develop a measure of the model’s ability to perform

37

in situations of ambiguous cluster boundaries. There is one caveat that is important to

mention before proceeding. If a projection direction is chosen to be orthogonal to the line

segment between the means of some two clusters then it will be impossible to distinguish

between them in the lower dimensional space. However, if the projection direction is slightly

skewed and the two clusters do not fall directly on top of one another then the resulting

data will have some degree of ambiguity because of cluster overlap but in principle it can

still be modeled. In this case we would hope that the infinite Gaussian mixture model would

capture and preserve this ambiguity in the posterior distribution over models.

In Figure 2.3 all 2D cardinal projections of the 4D synthetic data are shown. The

true latent class cardinality is K+ = 6 and the labels for all datapoints are illustrated by

distinct color. In most of the projections some degree of ambiguity due to overlap has

been introduced. In particular the subplot in the second row and second column shows

a projection in which many of the classes are nearly indistinguishable. In this situation

we would expect that the model would have a difficult time recovering the true number of

latent classes. On the other hand, the subplot in the bottom row of the first column is a

projection where all of the classes are nearly perfectly separated. Here we expect the model

to cluster the data almost perfectly, despite operating in reduced dimensionality space.

Figure 2.4 shows the maximum a posteriori labeling of data as classified by a model

estimated from that specific 2D projection of the data. The order in which projections

were assigned to subplots is the same as in Figure 2.3 for ease of comparison. Here again

the cluster labels are indicated by distinct color. In the bottom row, ostensibly the two

least ambiguous projections, the MAP clustering from the model is nearly perfect both

in assignment of data to classes and in latent class cardinality. It is the case that the

class identifiers assigned to the clusters in these MAP samples are different than the class

identifiers assigned in the ground truth labeling (notice that the colors assigned to individual

clumps vary between the ground truth and the MAP sample). The IGMM posterior is

invariant to permutations in the labeling of the clusters.

As the labeling in Figure 2.4 is the maximum a posteriori labeling it clearly only repre-

sents a small part of the modeling story. We noted that in the the original ground truth 2D

projections (Figure 2.3) ambiguities arose as a function of clusters being projected on top

of one another. Figure 2.5 illustrates how the model identifies and represents these ambi-

guities. Figure 2.5 was constructed by computing the entropy of the posterior conditional

distribution over labels for each datapoint H[P (ci = k|Y, . . .)]. The color of each datapoint

is assigned according to the average information that would be required to communicate

the label of each datapoint under its conditional label distribution. This corresponds to

38

Figure 2.3: Synthetic 4D data: ground truth labeling; all 2D projections

39

Figure 2.4: IGMM maximum a posteriori labeling of 2D projections of 4D synthetic data.
One IGMM was trained for each panel of 2D data. The color of each dot indicates its class
membership.

40

Figure 2.5: Entropy of class label marginal distribution for models estimated from 2D data
in Fig 2.4. The color of each point corresponds to the entropy of the marginal distribution
over its labeling. The “hotter” the color the more uncertain the label under the IGMM.

41

1 2 3 4 5 6 7 8 9 101112
0

200

400

1 2 3 4 5 6 7 8 9 101112
0

200

400

1 2 3 4 5 6 7 8 9 101112
0

200

400

1 2 3 4 5 6 7 8 9 101112
0

200

400

1 2 3 4 5 6 7 8 9 101112
0

200

400

1 2 3 4 5 6 7 8 9 101112
0

200

400

Figure 2.6: Latent class cardinality marginals from clustering all 2D projections of 4D data.

the “ambiguity” of the data as a label distribution with maximal entropy implies that the

label is equi-likely to take on any one of a number of labels. Accordingly, the colors in

this plot range from black which indicates little ambiguity through red, orange, and yellow

which indicate increasing levels of ambiguity (more bits to convey the label). The colormaps

assigned to each panel of this plot are different in that the colors should only be interpreted

as a measure of ambiguity relative to the individual panel. Absolute bit scales are not

given because, although they could be reported, they would not be particularly meaningful

given that the purpose of this figure is only to illustrate which parts of the data the model

identifies as ambiguous and to what relative extent.

What we observe in Figure 2.5 is that the model correctly identifies the ambiguous

regions in the low dimensional data and that the datapoints that reside in those regions of

ambiguity will be assigned to different latent classes frequently. This will be of consequence

in subsequent inference tasks that utilize the latent variable distribution.

Also relevant to our analysis of the performance of the model in ambiguous data domains

is the marginal distribution over class cardinality. In Figure 2.6 and Figure 2.7 the latent

class cardinality marginal distribution is shown for all possible 2D projections and 3D

projection clusterings of the same original 4D data. The subplots in Figure 2.6 are ordered

in the same way as the corresponding plots of clusters; in Figure 2.7 all possible three

dimensional projections of the data are shown. What the figures show is not unexpected;

42

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1 2 3 4 5 6 7 8 9 10 11 12
0

200

400

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1 2 3 4 5 6 7 8 9 10 11 12
0

500

Figure 2.7: Latent class cardinality marginals from clustering all 3D projections of 4D data.

in projections that do not induce indistinguishable clusters the model produces a marginal

over class cardinality that is peaked in the right place (around 6). Further, we observe that

as the level of ambiguity is decreased (by adding a dimension) the distribution over latent

class cardinality becomes more peaked, generally about the correct value. In the cases

where the distribution is peaked in the wrong case (such as the last column of Figure 2.7

where the projection is unrecoverable in the same way as in the second column and third

row of Figure 2.4), the projections can be observed to be degenerate in an unrecoverable

way; however, the model still admits clusterings of the data with the correct number of

latent classes.

2.3.3 Sensitivity analysis

In Bayesian modeling sensitivity analysis usually refers to testing how sensitive a statistical

conclusion is to particular choices of priors. Here we investigate the sensitivity of the model

to the parameter settings of the particular prior we described in Section 2.2. The way that

we address this is by empirically investigating how much data is necessary to overcome an

improper setting of the hyperparameters.

Here the size of the parameter spaces makes a complete investigation impossible. In order

to fully investigate the sensitivity of the model with respect to hyperparameter settings we

would need to explore a potentially high dimensional parameter space. For instance for

43

Figure 2.8: The upper leftmost figure is the 3D data (1000 points) used in producing
Figure 2.9. The remaining three figures (each also 1000 points) above the horizontal line
are additional datasets drawn from the same model (i.e., the same hyperparameter settings
as the one in the upper left: µ0 = [0 0 0], κ0 = .05,Λ−1

0 = diag(.1), ν0 = 50, α = .4). The
figures below the horizontal line were generated (each also 1000 points) from an IGMM
whose hyperparameters were set to the “wrong” values used for Gibbs and particle filter
sampling in the generation of Figure 2.9 (µ0 = [0 0 0], κ0 = 10,Λ−1

0 = diag(1), ν0 = 5, α =
.2). These bottom figures illustrate the influence of the choice of hyperparameter settings,
here the “wrong” choice leads to more broadly spread, overlapping clusters.

44

4 dimensional data the parameter space is 23 dimensional. This is clearly too complex

a space to explore fully. So we do the simplest possible thing, namely, we set the values

of the hyperparameters incorrectly to arbitrary, somewhat unreasonable values (values a

complacent novice user might choose accidentally). These choices are illustrated in Figure

2.8. Figure 2.8 shows example synthetic datasets drawn from the IGMM generative model

with two sets of hyperparameters. First, on the top half of the figure four draws from the

generative model are shown with the same set of “ground truth” parameters. The data

which we use to build a posterior distribution is shown in the upper, upper left. This data

is characterized by, generally speaking, nicely separated clusters with approximately equal

variance. The bottom half of the figure shows data generated from the IGMM generative

model parameterized as the Gibbs sampler was parameterized. Here each class is more

broadly spread, there are fewer classes on average (given the same number of datapoints),

and the classes tend to overlap.

Figure 2.8 shows metrics of posterior distributions estimated from the data in the upper

upper left of Figure 2.8 (training data). The sampler was initialized with parameters dif-

ferent than those used to generate the training data (values given in the caption of Figure

2.8). Two pivotal estimation quantities were varied; first the number of training observa-

tions and second the number of samples used to represent the posterior. This experiment

was repeated for both the Gibbs sampler (right column) and the particle filter (left col-

umn). The variation of information developed by Meila [2002] is an information theoretic

comparison of clusters invariant to cluster cardinality and label permutations. On the top

row we observe that for both the particle filter and the Gibbs sampler both increasing the

number of observations and increasing the number of samples improves the clustering. We

computed the expected variation of information by averaging the variation of information

between each sample from the posterior and the true clustering. The second and third

rows show the expected and maximum a posteriori estimate of K+ where Ktrue
+ = 6 (shown

in red). Both the Gibbs sampler and the particle filter produce posterior estimates that

generally improve as the number of observations and samples increases.

Another aspect of the IGMM modeling one might wish to understand is how well the

model does in fitting multiple sets of data all drawn from the same model. So far we have

performed tests on single datasets where we vary the parameterization of the posterior esti-

mation algorithm. In Figure 2.10 we show the difference between expected (left subfigure)

and MAP (right subfigure) value of K+ under the posterior distribution and the true value

for estimates of multiple datasets. To generate this figure we generated a single dataset for

pairs of random number generator seeds (Matlab’s rand and randn). Each initialization of

45

Figure 2.9: This figure illustrates the sensitivity of IGMM posterior estimation to hyperpa-
rameter choice. The right column shows results for the Gibbs sampler; the left the particle
filter. Here we generated data from a model with hyperparameters µ0 = [0 0 0], κ0 =
.05,Λ−1

0 = diag(.1), ν0 = 50, α = .4 and the estimated a posterior by initializing the sam-
plers with hyperparameters µ0 = [0 0 0], κ0 = 10,Λ−1

0 = diag(1), ν0 = 5, α = .2. The effect
of varying the number of samples/particles used in the posterior estimate and the amount
of training data is shown. The top row shows a metric of cluster similarity while the bottom
rows shows E[K+] and the maximum a posteriori value of K+ for the estimated model.

46

the random number generators resulted in a different dataset. The horizontal axis in both

subfigures is labeled with a trial identifier of which there were eleven; the verticle is the

number of clusters in the resulting dataset. The number of clusters is implicitly determined

by running the Chinese restaurant process as described in earlier sections. Each different

rand seed could potentially have generated a unique number of clusters however in this case

it did not. For this experiment we did not test the particle filter and accordingly only show

results for the Gibbs sampler. What we can informally note from this figure is that the

Gibbs sampler estimated posterior distribution slightly overestimates the number of latent

classes in the data, but not always and usually not significantly.

2.4 Discussion

In this chapter we reviewed the infinite Gaussian mixture model by relating it to the finite

mixture model and working through much of the math necessary to understand the nonpara-

metric case. We reviewed two different posterior estimation methodologies then concluded

the chapter by exploring characteristics of both the model and the estimation procedures.

Missing from this chapter is any discussion of other posterior estimation approaches such as

the variational approach developed by Blei and Jordan [2005] and the split-merge sampling

algorithm developed by Jain and Neal [2004]. Secondarily no analysis of different priors

was included, perhaps changing the multivariate normal inverse Wishart distribution with

the multivariate Jeffreys. Additionally, sampling of α was only briefly mentioned however

it is easy to do with either a Gibbs or Metropolis sampling step. In subsequent neural data

analyses we do just that, but here we do not. Likewise nor do we consider estimating a

distribution over the other hyperparameters.

47

0 5 10 15
1

2

3

4

5

6

7

8

Trial

E
[K

+
]

0 5 10 15
1

2

3

4

5

6

7

8

9

10

Trial

M
A

P
 K

+

Figure 2.10: Performance of the IGMM with respect to latent class cardinalities. In this
figure we show the difference between Ktrue and both the expected value of K+ under the
posterior and the maximum a posteriori value of K+. The intial state of the pseudo random
number generators was initialized differently for each x, y pair. Here the horizontal axis is
the trial number (corresponding the the setting of one of the random number generator
seeds) and the vertical is the resulting true value of K+. For each trial there are multiple
vertical points; each corresponds to a different dataset (initialization of of the other pseu-
dorandom generator). In general we see that the model tends to slightly overestimate the
number of classes both in expectation and in MAP. In the right subfigure normally dis-
tributed jitter was added to the vertical position of each point; otherwise all points would
overlap on integer values.

Chapter 3

Application: Spike Sorting

3.1 Introduction

Labeled sequences of discrete action potential generation times are at the heart of many

neural data inference tasks. Such “spike trains” are generated from electrophysiological

recordings by a process called spike sorting. Spike sorting was introduced in Chapter 1.

To expand on the introduction here, spike sorting is the task of detecting and labeling all

action potentials that occur in a recording. The inferred labels identify from which neuron

each spike came.

In this chapter a new approach to spike sorting is presented; differing from almost all

prior art in that no single best spike train is sought. Instead a distribution over spike trains

is estimated for the purposes of expressing uncertainties that arise during the spike sorting

process in the outcome of neural data inference tasks. In this chapter the infinite Gaussian

mixture model reviewed in the previous chapter is demonstrated in this capacity.

3.2 Motivation

This work is motivated by traditional neural data analyses that can be cast as operations

on spike trains. Among many others these include hypothesis tests about single cells or

population characteristics, and decoding from single or multiple neurons. Currently it is

typical of such analyses to to assume that the spike trains on which they are based are

unambiguously correct. In other words, any uncertainties that might have arisen during

the conversion from analog voltage trace to discrete spike train are ignored. To combat this

it has become common practice to report in published results spike sorting methodologies

and signal to noise ratios for analyzed data. Unfortunately this in and of itself may not be

48

49

sufficient recourse as Harris et al. [2000] and Wood et al. [2004a] have both demonstrated

that there is uncertainty that arises in spike sorting and in particular that expert spike

sorters can and do produce spike trains that vary extensively. It is unfortunately also typical

of traditional neural data analyses to ignore the ultimate effect of spike train variability on

the outcome of spike train analyses as it is usually neither investigated nor reported.

In defense of experimental practice we recognize that in some recordings and for some

types of recording technology there are situations in which it might be true that the data

are unambiguous and the inferred spike trains accurately reflect the true activity of the

recorded neuron(s). Additionally we do not believe that most conclusions wrought from

traditional analyses of spike trains would be changed if some accounting scheme for spike

sorting uncertainty were developed and retroactively applied. To the contrary, we submit

that most will stand unchanged due to the tendency towards conservativeness that we have

noted anecdotally amongst experimentalists: usually only the most unambiguous, noisefree

data is admitted for analysis.

We also submit that a simple reason for the field having de facto accepted the assumption

that the results of spike sorting are “correct” is the paucity of statistical tools that would

allow one to avoid accepting that assumption, the work of Nguyen et al. [2003] being an

exception. Without such tools it is unclear how to avoid accepting this assumption other

than to have many individuals sort the same data and to do repeated analyses from all

resulting spike trains. Unfortunately it isn’t clear how exactly this would help as there is no

principled way to average amongst the various human interpretations of the data. A second

reason for tolerating the assumption may be that there is typically more data than can be

practically analyzed so searching for and only analyzing spike trains that seem to be mostly

unambiguous may be more practical than searching for ways to account for uncertainties

that might arise in spike sorting when ambiguous data could just as well be discarded.

That aside, there may be situations in which either discarding data is undesirable or

impractical. A clear example of this is chronically implanted human and primate subjects

where one might expect the implanted recording device to work for years without post-

implant adjustment. This means that in such subjects it may be undesireable or impractical

to adjust the position of the recording device or to reimplant the subject. The nature of

chronic recording setups leaves them unusually susceptable to changes or degradation of the

signal over time. In cases like this in may be of utmost importance to make the best of the

available signal, even if it is ambiguous.

Even in situations where it might be practical to seek out unambiguous data, there is

evidence that neural data that appears to be unambiguous may in actuality less so than

50

appearances would suggest. In Harris et al. [2000] it is shown that there is a persistent

absolute error rate of around 10% in sorting data recorded from tetrodes and worse for

data from single electrodes. In their study ground truth neural activity was determined by

recording the activity of a neuron intracellularly. At the same time they recorded the activity

of the cell extra-cellularly as well. This allowed them to report the error rate with respect to

the ground truth. This work inspired a similar study by Wood et al. [2004a] for data recorded

from microelectrode arrays. Unfortunately the physical characteristics of microelectrode

arrays prohibit measurement of the ground truth so only subjective variability results could

be reported. The results from this study showed high variability between expert sorters

and are reviewed in the next section. Finally the recent work of Blanche et al. [2005]

suggests that data recorded using tetrodes is more ambiguous than is widely thought. In

this work data was recorded using a new microelectrode array consisting of fifty densely

spaced recording sites. The recorded data was then sorted in multiple ways. One way

used information from all fifty recording sites. In the other ways “virtual” tetrodes were

constructed by selecting subgroups of four recording sites out of the fifty. The original data

was then sorted using information from only the four recording sites in the virtual tetrode.

By doing this it was clearly demonstrated that neurons that were indistinguishable given

only features from four recording sites became distinct when information from additional

recording sites was utilized.

Unfortunately in none of these studies were the effects of the spike train variability

on subsequent analyses analyzed. This raises the question; how sensitive are neural data

analyses based on spike trains to variation in the given spike trains? Here we first review

evidence of spike train variability in human intepretations of microelectrode array data

before illustrating the effect of this variability on neural decoding.

3.3 Evidence of uncertainty in spike sorting data

Expert spike sorters are known to produce different spike trains given the same data; a fact

that has been demonstrated for data recorded from multiple types of recording technology.

3.3.1 Human interpretations of spike sorting data

In our own study of human spike sorting performance (Wood et al. [2004a]), we quantita-

tively assessed the inherent ambiguity of spike sorting data recorded from a multi-electrode

array (CKI) by asking five expert subjects to sort a set of waveforms recorded from the arm

area of primary motor cortex in two different monkeys. Using this data we computed the

51

subjective variability of spike trains produced by different subjects. In our view this sub-

jective variability is a proxy for inherent ambiguity in the spike sorting data and provides

a measure of the spike train variability we should anticipate in subsequent analyses. With

data recorded from this type of micro-electrode array however there is no way to establish

“ground truth” and consequently no way to quantitatively measure the error in human

sorting performance. To address this, we generated a set of synthetic channels containing

realistic action potential waveforms and asked the same subjects to sort them as well. The

synthetic channels were designed to be indistinguishable from the real and allowed us to

establish quantitative error rates with realistic waveforms.

The five expert subjects were graduate students, research assistants, or postdoctoral

researchers from the same laboratory who all had significant experience in sorting neural

recordings. The subjects sorted twenty independent channels using Plexon’s offline spike

sorter [Plexon Inc.], labeling units and waveforms as they would for their own research and

were given as much time as they liked to sort the data. Plexon’s software provides users

with various tools to sort waveforms one channel at a time. A commonly used approach

is manual cluster selection and refinement in a graphical display constructed by projecting

the waveforms onto subsets of the principal components.

3.3.2 Variability of spike trains produced by manual sorting.

Figure 3.1 illustrates the kind of subjective variability we observed between subjects sorting

the same real data. The figure shows the sorting results for two subjects (D and E), where

for simplicity only a subset of the waveforms from one of the real channels in the dataset is

shown. The green waveforms indicate agreement between the subjects on the presence of

a single neuron (in green). The subjects disagree however on the number of units present

with subject E hypothesizing two additional neurons in the data. These results are typical

of what we observed throughout the study.

Figure 3.1 provides another view of the same dataset. Here a two-second segment of

the data is viewed as a spike train. Each vertical line corresponds to a spike while the color

corresponds to the classification in Figure 3.1. Black lines correspond to waveforms that

were deemed to ambiguous to sort. Note the level of disagreement in the classified spike

trains. Even for the green spikes which have similar waveforms, the two subjects included

very different numbers of spikes. We will show in Section 3.4 (Table 3.2) that spike train

variability affects decoding performance. We further posit that differences such as these as

this might lead to variations in conclusions drawn from other neural data analyses such as

52

Figure 3.1: Manual classification of the same (real) waveforms by two different subjects.
The waveforms on the left are shown twice, once for each subject and are colored to reflect
each subjects’ spike sorting choices. Subject D identified one neuron in the recording and
attributed 3,474 action potentials to it. Subject E identified three neurons with the green
labeled neuron being the same as that identified by subject D, only here the number of action
potentials attributed to it was 4,013. The colors of the spike trains on the right correspond
to the labeling of the waveforms on the left and the height of the lines corresponds to the
peak to trough height of the action potential. All waveforms and spikes colored black were
deemed by the experts to be too ambiguous to sort.

A B C D E
0

20

40

60

80

Subject

P
er

ce
nt

False Negative
False Positive

Figure 3.2: Mean ± std. dev. false positive (FP) and false negative (FN) error rates over all
synthetic channels per subject. FP’s occurred when a subject inappropriately counted noise
waveforms as having come from the single generating unit FN’s occurred when a subject
miss-classified a true spike as noise.

53

modeling of neural encoding or detection of excess synchrony.

Table 3.1 shows the number of units and number of spikes detected by each of the

subjects. The subjects agreed on the number of units in the real channels only 25% of

the time, and most of these consensus channels either contained no neural activity or were

extremely well isolated. The number of units detected varied by roughly a factor of two

(from a low of 18 to a high of 35) while the total number of spikes varied even more, with

subject E finding approximately four times as many as subject B. Even when the subjects

agreed on the number of units in a given channel, quite often they disagreed about how

many spikes each generated.

Variability of manually sorting synthetic data

Because it is impossible to know the “ground truth” for data recorded from chronically im-

planted micro-electode arrays we also conducted a study where we asked the same human

subjects to sort 5 synthetic channels, each consisting of one “true” neuron plus noise char-

acteristic of microelectrode array data. These synthetic channels were constructed using a

multivariate Gaussian generative model for waveforms arising from a single neuron and an

empirical process for generating irrelvant confounding waveforms. One well isolated neu-

ron from the twenty channels was chosen to train the generative model. The confounding

waveforms were generated by drawing waveforms randomly from every channel except the

one used to train the generative model, excluding all waveforms that had been classified as

spikes in the any sorting of the 20 channels.

It is common to use a plot of the inter-spike intervals (ISI) when performing spike sorting

as violations of the absolute refractory period indicate misclassification. Consequently, we

assigned timestamps to the non-confounding synthetic waveforms by sequentially drawing

inter-spike intervals from an empirical ISI distribution. Additionally, for realism, the syn-

thetic channels needed to exhibit the same recording artifacts the real channels exhibited.

The real data was captured when crossing upwards through a voltage threshold, and, in

the real channels all the captured waveforms were aligned on the threshold crossing. To

replicate this in the synthetic data we aligned both the synthetically generated waveforms

and the sampled noise waveforms using an appropriate threshold.

Figure 3.2 shows how the subjects performed on the task of spike sorting the synthetic

channels. On average the subjects had overall 23% FP and 30% FN error rates for the

synthetic channels. The data illustrated in Figure 3.2 also suggests that the subjects em-

ployed individual sorting strategies; this phenomenon was also observed by Harris et al.

54

Subject A B C D E
Spikes 99160 50796 150917 77194 202351
Units 28 32 27 18 35

Table 3.1: Totals for each subject, all real channels combined. Spike counts include all
identified spikes; unit counts include all neurons each subject found.

[2000]. Despite large variability, it seems that subjects A,B, and D used a sorting strat-

egy that consistently worked to minimize false positives while subjects C and E chose one

that worked to minimize false negatives. It also suggests that it might not be possible

to overcome the trade-off between false positives (FP) and false negatives (FN) using the

sorting tools employed. This might be due to inherent similarities between spike shapes or

between spike and confounding waveforms. It is also possible that the tools our subjects

employed restricted them from being able to definitively segment and classify the activities

of individual neurons; for example, the software only allows users to view 2D projections

onto the principal components.

Anecdotally, one of the individuals who served as a subject in this study was the same

person who provided the training data (sorted real data) for the synthetic data. This person

unknowningly sorted the same channels twice, once to provide the training data for synthetic

data generation and then once a month later as a subject in this study. This individual

determined that the real channels contained 12% more neurons the second time around (25

→ 28) yet classified 8% fewer of the waveforms as neural activity (108073 → 99160 spikes).

Although this demonstrates the kind of subjective variability we found, it also affects the

analysis of our results for synthetic data. While the reported subject-to-subject variability

for synthetic data would remain unaffected, the FN and FP rates we reported for synthetic

data could vary depending on the way the training channels were initially sorted by our

expert.

3.4 Effect of spike train variation on inference from neural

data

Unfortunately, the effect of spike train variability on the outcomes of spike train analyses is

not well studied, though it is mentioned as a significant concern for the field in a review by

Brown et al. [2004]. In this section we review our finding that spike train variability affects

decoding performance [Wood et al., 2004a]. We assert that will it affect other analyses as

55

well; the extent to which we do not yet know.

In Section 3.3 we found that expert human sorters produced different spike trains given

the same recording, however we did not show how this affected the results of analyses based

on spike trains, decoding being one such analysis. By asking volunteers to sort another

dataset, this one with associated kinematics information, we were able to ascertain how

subjective variability in spike trains affects decoding results.

Decoding arm position from M1

That motor cortical neural spiking activity is correlated to movement has been known for

a very long time. In Georgopoulos et al. [1982] it was established that arm coding neurons

in primate motor cortex modulate their firing rate as a function of hand movemement

direction. In particular it was established that each neuron has a “preferred direction” of

movement which causes the neuron to fire most rapidly. Movement in directions out of

phase with that preferred direction were found to cause less rapid firing. As a follow on

to this work it was established in Georgopoulos et al. [1986] that hand movement direction

could be “decoded” from the firing activity of a population of neurons whose preferred

directions were known. Subsequent to this study many algorithmic improvements to neural

decoding have been made; one of the more notable was the adoption of the Kalman filter

[Kalman, 1960] as a neural decoding algorithm. In this study we utilize the Kalman filter

to decode arm position from the firing activity of cells in primate motor cortex.

To investigate the effect of spike train variability on decoder output we used the Kalman

filter decoding method described in Wu et al. [2003] to decode arm position from spike

trains generated from multiple channels of motor cortical neural data. The Kalman filter

was trained on 3 minutes of rate and kinematic data binned in 70 millisecond time bins.

Variations in the input spike trains manifest themselves as variations in the estimated

rates. Average decoding results are given for 5 independent 1 minute data segments. The

kinematics were encoded as a 6 attribute vector comprised of hand x, y position, velocity,

and acceleration. Our implementation differed from Wu et al. [2003] in that we found that

the optimal lag between rate and kinematics for decoding was 0 milliseconds instead of 140

milliseconds. Rate was computed by counting the number of spikes that occured between

the time at the beginning and end of each of the bins.

The data used in this study was from a single monkey in which, following task training,

a Bionic Technologies LLC (BTL) 100-electrode silicon array (CKI) was implanted in the

arm area of primary motor cortex (M1). The recording setup was similar to that used in

56

Serruya et al. [2002]. where an animal was trained to use a two-joint planar manipulandum

to control the motion of a feedback cursor on a computer screen. The simultaneous recording

of hand kinematics and neural activity allowed the study of motor cortical encoding of hand

motion and the training of decoding methods. A recording from this animal performing a

“pinball” tracking task (Wu et al. [2003]) was used in this study.

The recording used for this study was a collection of 96 independent channels where

the waveform capture threshold for each channel was empirically determined at the time of

recording, and was set low enough to ensure that a majority of the spiking activity was cap-

tured. The array was placed in M1, but by virtue of array design and insertion technique

the location of each electrode with respect to individual neurons was unknown. Corre-

spondingly, every channel may have had waveforms from multiple neurons. Additionally,

on each channel some number of threshold-crossing waveforms consisting of surrounding

neural activity that was too ambiguous to sort were recorded. A single contiguous 600

second segment of data was extracted from a part of the recording featuring high arm

movement and neural firing rates. Unlike other studies where decoding is done only on data

recorded between start and stop cues, we extracted a single continuous segment where there

were periods of no arm movement.

Four subjects, all graduate students or postdoctoral researchers and all expert spike

sorters, were given this recording and asked to sort it using any tool at their disposal. They

were instructed to sort it in the way they thought would maximize decoding performance.

As in the previous section, all subjects used Plexon’s Offline sorter software (Plexon Inc.) to

sort the dataset. Units were identified and spikes were assigned to them by manually cluster

cutting waveforms projected into various two dimensional PCA subspaces. The resulting

spike trains were decoded and tabular results are displayed as A,B,C, and D in Table 3.2.

To better understand exactly how spike sorting variability impacts decoding performance

we also decoded spike trains produced by both randomly sorting and not sorting at all. No

sorting (‘None’ in Table 3.2) means that all waveforms on each channel were attributed to

a single neuron. Randomly sorting (‘Random’ in Table 3.2) means that on each channel

three neurons were posited and waveforms were randomly attributed to them with equal

probability.

Variation in decoding results

Table 3.2 summarizes the decoding results. In the table ‘Ave. Human’ is the average of

subjects ‘A’, ‘B’, ‘C’, and ‘D’. Reported are the total number of neurons and spikes identified,

57

Subject Neurons Spikes MSE (cm2)
A 107 757674 11.45 ± 1.39
B 96 335656 16.16 ± 2.38
C 78 456221 13.37 ± 1.52
D 88 642422 12.37 ± 1.22
Ave. Human 92 547993 13.46 ± 2.54
Random 288 860261 13.28 ± 1.54
None 96 860261 12.78 ± 1.89

Table 3.2: Kalman filter decoding results for rates estimated from different spike trains.
Shown here are average Kalman filter decoding results for 5 independent 1 minute spike
trains as sorted by 4 human subjects and 2 control algorithms (‘None’ and ‘Random’) Note
that the average human decoding results are worse than those for both not sorting and
sorting randomly.

the correlation coefficients between the decoded and the true x and y hand position, and the

mean square error (MSE) between the same. These results not only confirm the variability

of spike sorting results demonstrated in Section 3.3 but also show that decoding performance

is affected by spike sorting, sometimes significantly.

3.5 Related work

Having established the fact that spike sorting often involves dealing with ambiguous data

and that spike train variability resulting from that ambiguity does affect neural decoding

results we now suggest a solution. Our proposed nonparametric Bayesian approach differs

from what is typical of automated spike sorting work. As stated in the introduction to this

chapter our aim is not strictly speaking a new and improved automated spike sorter like

those proposed in Shoham et al. [2003]; Wood et al. [2004b]; Hulata et al. [2002]; Lewicki

[1998]; Takahashi et al. [2003]; or Sahani et al. [1998]. Those all aim to produce a single

“best” spike train given a recording. Instead we embrace the uncertainties illustrated in the

previous sections as inherent to the spike sorting problem and develop a probabilistic model

of spike trains that allows us to represent this uncertainty and automatically account for its

effect on spike train analyses. Such an approach allows expression of the level of confidence

one came have in neural data analysis outcomes with respect to spike sorting variability.

This approach requires a slight but significant rephrasing of our aim: instead of seeking the

best spike train upon which to perform some analysis we now a seek a spike train model in

which to do inference.

In Nguyen et al. [2003] the foundation for this approach was laid. They took the Bayesian

58

approach of Richardson and Green [1997] in analyzing mixtures with an unknown number

of components and applied it in the context of Gaussian mixture model spike sorting. A

summary of this approach is that a posterior distribution over spike trains was estimated

using reversible jump Markov chain Monte Carlo (RJMCMC). This is quite similar in many

respects to the approach we take in our work; however, they refrained from utilizing the

full posterior distribution in subsequent spike train analyses, opting instead to consider

only the maximum a posteriori sample from their model. In effect this means that their

adoption of the techiniques of Richardson and Green [1997] accomplished little more than

placing a complex but reasonable prior on the Gaussian mixture model and doing maximum

a posteriori estimation and automatic model complexity selection.

In this section we apply nonparametric Bayesian estimation and inference techniques

to the problem of spike sorting. We develop a spike sorting approach based on the infinite

Gaussian mixture model we reviewed in the previous chapter. Like Nguyen et al. [2003] we

demonstrate that our approach is a practical improvement over the a maximum likelihood

approach to finite Gaussian mixture spike sorting. However we go beyond Nguyen et al.

[2003] and show how to to express spike train uncertainty at the level of inference from

spike trains. We argue the benefits of doing so and illustrate the effects on simple example

spike train analyses.

Like Nguyen et al. [2003] and many of the more traditional spike sorting papers we focus

on a very restricted subset of the overall spike sorting problem. Our focus is on the process of

determining from which neuron out of an unknown number of neurons each action potential

arose based on action potential waveshape alone. In doing so we overlook the equivalently

difficult problem of spike detection and instead refer readers to Radons et al. [1994] for

treatment of that topic. Additionally we will ignore the problem of detecting overlapping

spikes (deconvolving coincident action potentials) here refering readers to the work of Fee

et al. [1996] and Görür et al. [2004].

In our restricted view of spike sorting we assume that the statistics of action poten-

tial waveforms generated by neurons are sufficient to distinguish between neurons. We

also assume that timing information is uneccesary to distiguish between cells. Thus our

data consists solely of a large number of waveforms generated by an unknown number of

cells. These assumptions are clearly not true in reality, but we adopt them for purposes of

exposition and model simplicity.

We have established that we will use an infinite Gaussian mixture model to do spike

sorting. In Chapter 2 we reviewed IGMM’s in detail. Here we provide an overview of the

translation of the spike sorting problem into the notation of the IGMM.

59

Suppose that we have N action potential waveforms from a single channel neurophys-

iological recording R = [~t1, . . . ,~tN], where each snippet is a vector of n voltage samples
~ti = [t1i , . . . , t

n
i]T ∈ Rn. For single electrode recordings n = 40. Our goal is to build a

posterior distribution over sortings of this recording; simultaneously estimating how many

neurons are present and which waveforms came from which neurons.

Instead of clustering in such high dimensional spaces, we use a reduced dimensionality

representation of the waveforms, where each ~ti is represented in a lower dimensional basis

obtained via principal component analysis (PCA) such that ~ti ≈
∑D

d=1 yd
i ~ud. Here ~ud

is the dth PCA basis vector, and the yd
i are the linear coefficients. Our spike sorting

algorithm clusters the low dimensionality representation of the waveforms Y = [~yi, . . . , ~yN]

rather than the full waveforms, so, for the remainder of this paper, when we write “event”,

“spike”, or “waveform” it should be read as shorthand for “low dimensionality waveform

representation”.

We follow Lewicki [1998] in making the common assumption that the distribution of

waveforms from a single neuron is well approximated by a multivariate Gaussian. Under

this assumption our choice of an (infinite) Gaussian mixture model is natural.

To express the spike sorting modeling problem in the notation in Chapter 2 we do

the following. The class indicator variables in the IGMM indicate from which neuron

each waveform arose (i.e. ci = k means that the ith waveform came from neuron k).

Recapitulating the generative view of the finite mixture model in the spike sorting setting

helps build intuition for how the model represents the data. To generate a set of action

potential waveforms from a finite Gaussian mixture model first the number of neurons K

must be chosen, as too the relative firing rates ~π of the neurons, the number of spikes N , and

the statistical characteristics of the waveforms originating from each neuron, θk. Once these

choices are made then N class labels ci are generated from a multinomial parameterized by

~π, and finally N waveforms each from the corresponding multivariate normal distribution

with parameters ~µci ,Σci .

The Bayesian extension of this finite mixture model spike sorting approach follows along

the lines of Chapter 2 as well. Here the Dirichlet prior encodes prior knowledge about the

number and relative prevalence of neurons and their firing rates. The typical covariance

structure observed for waveforms discharged from neurons can be encoded using the priors

over the mixture densities’ shape and position (µ0, κ0,Λ0, ν0). Lastly, the nonparametric

assumption behind the IGMM corresponds to assuming that there are is an infinitely diverse

set of neurons of which only a finite but unknown number are present in any recording.

60

3.6 Inference using the NPB spike train model

Having reviewed the IGMM in the previous chapter and having provided justification for

its adoption as a spike train model in this chapter, it remains to demonstrate its utility in

performing neural data analyses.

As a reminder we are not particularly interested in the sorting results per se nor the

resulting spike trains; although clearly both must be reasonable in order for us to be suc-

cessful. Instead we are interested in demonstrating improvements to spike train analyses

that result from accounting for spike train variability arising from neural data uncertainty.

Here we perform two analyses of each of two motor cortical recordings. First we show how

to use the NPB spike train model to address a hypothesis about low level physiological

organzation, namely that the preferred direction of motor cortical neurons forms the basis

of a fine grained motor cortical somatotopy. Our aim with this example is to show how the

IGMM posterior distribution over spike trains allows us to utilize data that might otherwise

not be utilized and to express uncertainty in our conclusions. Second, as we have corre-

sponding behavioural variables (arm position) for these recordings we demonstrate neural

decoding utilizing the NPB spike train model.

We start by describing the motor cortical datasets. Two different primate motor cortical

datasets are used in this work. Both were recorded from the same monkey but on two

different dates over a year apart. The tasks performed by the monkey on each occasion

were different; the first was a “pursuit tracking” task and the second was a “pinball” task.

In the discussion and results these datasets will be distinguished by task name.

As described by Wu et al. [2005] and Serruya et al. [2003] both the pursuit tracking task

and the pinball task are voluntary two dimensional arm control tasks. In the pursuit tracking

task the objective is to track a continuously moving target by two dimensional dextrous

manipulation of a manipulandum. Both the target and a cursor representing the current

manipulandum location are shown to an a monkey. In the pinball task the task objective is

to acquire (move a cursor onto) a sequence of targets that appear sequentially at random

points in the space reachable by the manipulandum. This can be seen as a generalization of

the center-out reaching task commonly utilized in the motor control literature. The pursuit

tracking dataset consists of ten trials each containing approximately five to ten seconds of

movement. The pinball task dataset consists of fifty trials each consisting of approximately

the same movement duration.

For both tasks the firing activity of a population of cells was recorded from a chronically

implanted microelectrode array manufactured by CKI of which six were selected on the basis

61

of having good task-related tuning. The interelectrode spacing in these microelectrode

arrays is large enough that each recording site on the electrode is independent. This means

that the microelectrode array data can be thought of as twelve independent single electrodes.

Threshold crossing events (waveforms) were saved on all channels along with the time at

which they occured. The thresholds were empirically set by the experimenter at the time of

recording to exclude non-neural waveforms from being captured. Following application of

the waveform dimensionality reduction procedure given above to each channel individiually,

the waveforms from the the pursuit tracking task were projected onto the first two PCA

basis vectors accounting for on average 66% of the waveform variance (51%, 87%, 69%, 78%,

58%, and 55% per channel respectively, all rounded to the nearest percent). The waveforms

for the pinball data were projected onto the first three PCA basis vectors accounting for

on average 56% of the total waveform variance (59%, 72%, 52%, 54%, 54%, and 47% per

channel)

Both datasets were sorted three ways. One way was expectation maximization with

finite Gaussian mixture models and Bayesian information criterium model selection. We

will refer to this as the maximum likelihood approach. The other two ways were infinite

Gaussian mixture modeling; both Gibbs sampling and particle filtering posterior estimation.

The hyperparameters chosen for the IGMM were the same for both datasets, µ0 = [0 0], κ0 =

.2,Λ0 = diag(.1), and ν0 = 20 (for the pinball data µ0 and Λ0 were appropriately sized for

three dimensional observations). Sorting results for the the pursuit tracking data are shown

in Figure 3.3 and for the pinball data in Figure 3.5.

Each of these figures is divided into six sections by thin black lines. We refer to these

sections as panels. The upper left panel in both figures shows the six selected channels

before spike sorting. Each dot is the projection of one waveform. The upper right panel

shows a manual labeling of the data. In this panel the color black is significant as it

indicates waveforms that were identified by the human sorter as being too ambiguous to

sort. The first panel in the second row is the expectation maximization penalized maximum

likelihood solution. The remaining three panels illustrate the posterior distribution over

labelings induced by the IGMM. Each of these three panels is one sample from the IGMM

posterior. Looking closely one can see that many of the individual waveform labels change

from one sample to another as both new classes are introduced and destroyed and individual

waveforms are attributed alternatively to one of a number of neurons.

As ascertaining how uncertainty is represented by this model we also provide a plot that

illustrates this in Figures 3.4 and 3.6. Both figures redisplay the unsorted (unlabeled) data

for ease of reference along with a plot that illustrates the relative (to the dataset) uncertainty

62

Figure 3.3: Results from sorting six channels of the pursuit tracking neural data using
infinite Gaussian mixture modeling (IGMM). PCA projections of waveforms from channels
1-6 are shown in each of the six panels. The top left panel shows the unsorted waveforms,
the top right shows a manual labeling (the black points are not assigned to any neuron),
the first panel in the second row shows a maximum likelihood labeling, and the remaining
three are samples from the IGMM posterior.

63

Figure 3.4: Results from sorting six channels of the pursuit tracking neural data using
infinite Gaussian mixture modeling (IGMM). Channels 1-6 are shown in both panels. On
the left is the unsorted data, on the right the same points are plotted but with colors that
indicate how uncertain the cluster label for that point is (the entropy of the conditional
label distribution over labels for that point). Black means certain; red, orange, and yellow
through white mean more uncertain.

of the label given to each datapoint. This plot was constructed in exactly the same was as

was Figure 2.5 in the previous chapter. The higher the entropy of the marginal distribution

over a points labeling the hotter the color assigned (black → red → orange → yellow →
white). Points that are nearly white have marginal posterior labeling distributions that

have high entropy which means that the cluster to which they are attributed is uncertain

under the model.

Both the pursuit tracking a pinball datasets have channels that have relatively unam-

biguous cluster boundaries and channels that have ambiguous boundaries. Additionally, the

apparent cluster cardinalities in both sets of channels vary from apparently unambiguous to

very ambiguous. Half of the pursuit tracking channels are characterized by having relatively

certain cluster memberships and class cardinalities this is reflected in Figure 3.4 (upper and

bottom right, middle left). In the pinball data all but one of the channels have apparently

quite ambiguous cluster membership and cardinalities. This is reflected in an equivalent plot

for the pinball data in Figure 3.6. We conclude from visual inspection of the unsorted data

and the models’ estimate of uncertainty that the pinball data is more ambiguous that the

pursuit tracking data, but that uncertainty about both cluster membership and cardinality

are evident in both datasets.

64

Figure 3.5: Results from sorting six channels of the pursuit tracking neural data using
infinite Gaussian mixture modeling (IGMM). PCA projections of waveforms from channels
1-6 are shown in each of the six panels. The top left panel shows the unsorted waveforms,
the top right shows a manual labeling (the black points are not assigned to any neuron),
the first panel in the second row shows a maximum likelihood labeling, and the remaining
three are samples from the IGMM posterior.

65

Figure 3.6: Results from sorting six channels of pinball neural data using infinite Gaussian
mixture modeling (IGMM). Channels 1-6 are shown in both panels. On the left is the
unsorted data, on the right the same points are plotted but with colors that indicate how
uncertain the cluster label for that point is (the entropy of the conditional label distribution
over labels for that point). Black means certain; red, orange, and yellow through white mean
more uncertain.

3.6.1 Preferred direction somatotopy?

Given a model that represents spike sorting uncertainty we now show how to exploit it in

a neural data inference task. The inference task we illustrate here is largely arbitrary and

the amount of data anlyzed is insufficient to make strong claims about the validity of the

results. The real point of this example inference task is to demonstrate posterior inference

in the IGMM spike sorter.

Our inference task is to disprove a “null hypothesis” (quotes here because hypothesis

testing is somewhat incompatible with Bayesian methods in general) which states that

“preferred direction” is the basis of a fine grained motor cortical somatotopy. We seek to

infer that this hypothesis does not hold and would like to be able to express our level of

confidence in this result. Somatotopy is the word used to describe mappings of regions or

parts of the body to specific functional areas of the cerebral cortex. There is widespread

historical evidence of such mappings in visual, sensory, and motor cortex; however much

of the work is focused on high level organization. For instance, as reviewed by reviewed

by Aflalo and Graziano [2006], arm movement is encoded above hand movement (closer to

the top of the head) but below leg movement in motor cortical somatotopic organization.

Here we hypothesis a basis for fine grained somatotopic organization. We are interested in

understanding the fine grained organization of the arm coding region of motor cortex as it

66

will affect neural decoding algorithm design decisions.

In Georgopoulos et al. [1982] it was established that neural firing rates in primate motor

cortex change in response to the direction of hand movement in two dimensional movement

tasks. The direction that evokes a cell’s maximum firing rate is called its preferred direction.

Furthermore they found that the firing rate of a cell is higher for movement in directions

near a cell’s preferred direction and falls off smoothly as a function of the difference between

the direction of movement and the cell’s preferred direction. It was shown that a cosine

function (cosine tuning curve) fit the relationship between average firing rate and movement

direction well. The preferred direction for a cell may be established by cosine regression

and differentiation.

In Georgopoulos et al. [1986] this observation was exploited to “decode” hand position

from the firing rate of a population of motor cortical neurons. Given a population of cells for

which preferred directions are known they showed that a simple decoder may be constructed

that uses these preferred directions and the cells’ instantaneous firing rates. This is done by

multiplying the instantaneous firing rate of each cell with a normalized vector that points in

the direction of its preferred direction. Adding these weighted vectors together produces an

estimate of the true movement direction. They also established that speed may be decoded

by linearly regressing the aggregate population firing rate onto speed.

Underlying this decoding approach is the assumption that knowing precisely which spike

originated from which neuron will result in better decoding performance. This is because

each cell has its own preferred direction and utilizing this information should only help.

However, in Wood et al. [2004b] evidence emerged that indicated that this might not actually

be the case. In that study it was shown that not sorting multielectode data produced better

decoding results than carefully sorting the data. There are many possible interpretations

of this finding: the most reasonable among them is that decoding algorithms are generally

susceptable to noisy rate estimation. This means that by adding the signal of multiple

neurons together, so long as they don’t have opposed preferred directions and similar firing

rates will help rather than hurt decoding. As the per channel signal will be more robust

(there clearly are always more spikes per channel than there are spikes per neuron per

channel) the instantaneous rate estimate for the multiunit comprised of all neurons recorded

on a channel will be less noisy than the individual rate estimates for all of the individual

neurons on a channel. So long as neurons on the same channel (i.e. neurons that are very

close to one another in the motor cortex) have preferred directions that are not diametrically

opposed gains in decoding performance may be had by simply combining the output of all

of the neurons; treating the result as a single neuron whose preferred direction is an average

67

of the individual cells preferred directions.

Here the hypothesis about preferred direction being the basis of a fine grained motor

cortical somatotopy emerges. If it is the case that preferred direction is the basis of fine

grained motor cortical somatotopy then the preferred directions of cell recorded on the

same channel of a microelectrode array should be the same or near the same. If this is the

case then averaging the output of cells recorded on the same channel will almost certainly

always improve decoding performance. In other words spike sorting is unecessary for good

decoding. If it is not the case then decoding performance should vary, perhaps significantly,

depending on the spike trains produced.

A characterization of the distribution of preferred directions in a small volume of tissue

can be arrived at by estimating the preferred directions for cells recorded on the same elec-

trode. We have 12 channels (electrodes) from primate motor cortex as well as associated

arm position information. In Figure 3.7 we show an estimate of the preferred direction

distribution for the pursuit tracking data. This plot has the same row and column ordering

as the subpanels in Figure 3.3. The red dashed lines indicate the estimated preferred direc-

tions for the manual labeling. The solid black lines of varying length protruding like spines

out from the inner circle are a representation of a marginal of the posterior distribution

learned by the IGMM spike sorter. The length of each of these lines is proportional to the

normalized count of the number of times a cell with a given preferred direction was found

in the posterior distribution.

To be concrete, remember that the IGMM posterior distribution is a collection of spike

trains that are samples drawn from the posterior (in the particle filtering case these samples

are weighted). For each spike train sample the preferred directions for each posited cell

were computed. The normalized count of the number of times a cell with a given preferred

direction was found was computed by dividing the number of times a cell with a particular

preferred direction was found by the number of cells identified in all of the posterior samples.

This we call the posterior marginal distribution over cell preferred direction. It is the

distribution over cell preferred directions and indicates the level of certainty one can have

in concluding that a cell with a certain preferred direction exists on the channel.

In Figure 3.7 there is a direct correspondence between the subpanels of the figure on the

left and the subpanels of the figure on the right. The figure on the left is the manual sorting

of the pursuit tracking data repeated from Figure 3.3. The figure on the right displays a

marginal distribution computed using the IGMM spike train model which represents the

probability of finding a cell with any preferred direction on that channel.

The upper right subpanels of both subfigures in Figure 3.7 correspond to a channel that

68

Figure 3.7: On the left: human sorted pursuit tracking waveforms. On the right: preferred
direction distribution for the pursuit tracking channels. The solid black line in the circle
indicates movement to the right. The dashed red lines indicate the preferred direction of
cells identified in the manually sorted data. The radial ticks outside of the circle are the
normalized histogram of cell preferred direction counts from the IGMM posterior.

has two clear clusters. The tickmarks that surround the circle in the preferred direction

marginal panel show two tightly peaked modes in the posterior marginal over cell preferred

direction cardinality; one with preferred direction of approximately π/4 and the other with

preferred direction of approximately 15π/8. The solid horizontal black line inside the circle

corresponds to 2π radians which is rightward horizontal hand motion (positive x hand

motion). The dashed red line is the preferred direction of the manually identified cell. Here

there is good correspondence between the manual labeling and one of preferred direction

modes on the channel. By comparing the two panels it can plainly be seen that the human

sorter only found one cluster unambiguous enough to label. The upper left panel in Figure

3.7 shows good correspondence between the manual labeling and the posterior distribution

mode. Here the posterior marginal over preferred direction cardinality is not as tightly

peaked however. This spread is due to the uncertainties that arise in assigning spikes to

neurons. These uncertainties were illustrated in Figure 3.4 where points that lie close to

natural cluster boundaries shift from one class to another. This relabeling of points results

in shifts in the computed preferred direction. A possible effect of this preferred direction

variability as a consequence of spike sorting ambiguity is illustrated bottom right panels of

the subfigures in Figure 3.7 where the manual labeling identifies a neuron with a preferred

direction that is skewed from the most likely preferred direction of the cell(s) on the channel

69

Figure 3.8: On the left: human sorted pinball waveforms. On the right: preferred direction
distribution for the pinball channels. The solid black line in each of the circles indicates
movement to the right. The dashed red lines indicate the preferred direction of cells iden-
tified in the manually sorted data. The radial ticks outside of the circle are the normalized
histogram of cell preferred direction counts from the IGMM posterior.

under the model.

The middle row of Figure 3.7 and first column of the third row have no red dotted

lines. This is because the manual labeling identified no neural waveforms. Using the IGMM

spike train model reveals clear evidence that there is more than one cell on the two of these

channels as the posterior marginal over preferred direction cardinality is multimodel for

each.

Figure 3.8 shows similar results for the pinball data, except here the correspondence

between the manual labeling and the posterior modes is better than for the pursuit tracking

data.

We find reassurance in these figures due to fact that the analysis based on the manually

sorted data and the analysis based on the IGMM spike train model are in agreement with

respect to the ultimate conclusion: the distribution of preferred directions between closely

spaced neurons does not follow a fine-grained preferred direction somatotopic organization.

This means that either preferred direction isn’t the basis of fine grained motor cortical

somatotopy or perhaps that the low level organization of this region of motor cortex isn’t

somatotopically organized.

The ultimate point of this inference excercise was not to establish definitively whether

or not preferred direction forms the basis of a fine grained somatotopic mapping in motor

70

Pursuit Tracking Pinball

Figure 3.9: On the left: two example pursuit tracking hand position trajectories, on the
right: five example pinball hand position trajectories.

cortex but was instead to demonstrate how the IGMM posterior distribution could be uti-

lized by casting a spike train analysis as inference from using a spike train model. Here

we framed a neuroscientifically relevant hypothesis in such a way as to allow it to be eval-

uated over the IGMM posterior distribution over spike trains: “Is preferred direction the

fine grained somatotopic coordinate system in motor cortex?” As the posterior distribution

over preferred direction cardinality was multimodal we can conclude that it is not. Addi-

tionally the posterior marginal distribution over preferred direction cell cardinality allows

us to express our (un)certainty about this finding steming from spike sorting uncertainties,

both in the number of neurons and in the attribution of spike to neurons. Here we do not

compute a numerical certainty in our inference finding as the multimodality of the poste-

rior distribution is visually apparent. In the next section more quantitative measures of

confidence in inference results are reported.

3.6.2 Neural decoding

Subsequent to the seminal decoding work of Georgopoulos et al. [1986] many additional

neural decoders have been developed, each generally speaking successively better than the

next. It was established that the linear firing rate models employed in Serruya et al. [2003]

and Wu et al. [2005] are generalizations of the cosine tuning population decoding algorithm.

In these the preferred direction framework is subsumed into a more general linear regression

model of neural firing rate as a function of hand velocity . In the case of the work of Serruya

et al. [2003] a linear filter was used to decode hand position from neural firing rate given

71

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Figure 3.10: Results for decoding pursuit tracking hand position from the six channels
shown in Figure 3.3. The top subplot shows average correlation coefficients (x in blue, y in
red) decoding results for ten random partitionings of each channel into the number of bins
given on the horizontal axis. The bottom figure shows the same for data partitioned by
K-means [Duda et al., 2000] into K different partitions where K is given on the horizontal
axis. Note that decoding performance does not suffer until the data is partitioned into
ten or more partitions and not significantly until it is partitioned into many more. Also
note that the decoding results for both partitioning styles are comparable to the results for
decoding from the best automated models.

regression coefficients learned from training data. The work of Wu et al. [2005] extended this

by embedding the linear regression model into a recursive Bayesian estimation framework.

We will adopt the recursive Bayesian estimation framework proposed for neural decoding

in Wu et al. [2005] in this section.

Evidence that there may be multiple cells with distinct preferred directions per channel

implies that knowing the correct labeling could improve neural decoding provided that

the resulting rate estimates are not too noisy. Unfortunately there are multiple convolved

factors in decoder performance. These we will touch on later.

Our neural decoding problem involves inferring intended hand position from motor cor-

tical neural activity alone. We follow Wu et al. [2005] in treating this as a recursive Bayesian

inference task where ~xt is the intended hand position we aim to recover given neural firing

activity ~zt. Our goal is to show that accounting for spike train uncertainty results in decod-

ing performance that is no worse than not doing so and in general can result in improved

decoding performance.

Let ~xt ∈ R6 be a six component vector consisting of planar cartesian hand position,

velocity, and acceleration. This observed quantity was measured using a manipulandum

under task specific control by a monkey performing a pinball task as documented in Serruya

et al. [2002]. The movement coordinate system was established with respect to the center

72

of the plane to which the movement of the manipulandum was restricted. Radial movement

direction is reported such that zero degrees corresponds to positive horizontal movement.

Example hand trajectories for two different tasks are shown in Figure 3.9.

Decoding hand position ~xt is easiest to describe with respect to a single spike train.

Given a posterior distribution over spike trains this procedure is repeated for each sample

and the results are averaged straightforwardly. For each cell on all channels rates were cal-

culated by counting the number of spikes that occured in 70 msec bins. The correspondence

between rate zt and xt was established by aligning the rate from 140 msec in the future with

the current hand position. As in Wu et al. [2005], for each posited neuron the binned spike

counts were transformed by subtracting the mean count from all bins and then taking the

square root of the result in each bin. Transforming the rate in this way makes the resulting

distribution of transformed rates closer to being normally distributed, an assumption made

by the decoding algorithms to follow. A matrix Z ∈ RNxT consisting of the transformed

binned counts of all cells was constructed where N is the total number of cells posited on

all channels and T is the number of 70 msec. bins in the recording minus two to account

for the typical lag between firing rate and motor output. A similar matrix X ∈ RDxT was

constructed for the kinematic correlates X with D = 6 rows (x, y position, velocity, and

acceleration) and T columns, T here being the same as for Z.

Following Wu et al. [2005] we used a Kalman filter to recursively estimate a posterior

predictive distribution over ~xt, P (~xt|~zt . . . ~z1). The Kalman filter [Kalman, 1960] is a closed

form solution to the following recursion

P (~xt|~zt) ∝ P (~zt|~xt)
∫

P (~xt|~xt−1)P (~xt−1|~zt−1)d~xt−1.

The Kalman filter makes a number of strong assumptions about both the generative obser-

vation process, ~zt = f(X,Z) and the state process ~xt = g(X,Z). In particular the following

linear Gaussian and conditional independence assumptions are made

~xt = A~zt + ~w, ~w ∼ N (~0,W)

~zt−1 = H~zt +~,q ~q ∼ N (~0,Q)

where ~w ∼ N (~0,W) means ~w is distributed normally with zero mean and covariance W.

Partitioning X and Z into training data and test data, the matrices A and H are arrived at

by solving the linear equations, Z† = AX† and Z†
2:T = HZ†

1:(T−1) where X† is the training

73

data subset of X, Z† is the same for the rate matrix, and Z†
2:T is all rows of Z† and all but

the first column. The matrices W and Q are the sample covariance of the respective error

residuals.

Pursuit tracking task decoding

The pursuit tracking data consisted of ten epochs of pursuit tracking. Example trajectories

are shown in Figure 3.9. Eight tracking sequences of X and Z from the recording were

extracted and used as training data. Two were extracted and used as test data. Linear

Gaussian parameters were estimated for the state and observation processes from the train-

ing data as explained above. The Kalman filter was used to recursively estimate test hand

position given test firing rates as described in the work of Wu et al. [2005]. Results are

reported for test tracking epochs alone. The resulting predicted trajectory was compared

to the true trajectory by computing the correlation coefficients and mean squared error

between the true and predicted values of ~xt for all points in the trajectory.

Figure 3.11 and Figure 3.12 illustrate the advantage of accounting for spike sorting

uncertainty in decoding from motor cortical firing activity. Both the correlation coefficient

and the mean squared error between true and estimated hand position are shown. Higher

correlation coefficients are better, whereas lower mean squared errors are better. For the

mean squared error only the relative ranking of spike train analysis methods can be deduced

from as the errors are not scaled to real world units. Reference decoding results were

also obtained from spike trains created by sorting randomly, not sorting, sorting using

unregularized maximum likelihood (ML) finite Gaussian mixture modeling (GMM) with

BIC model selection, and sorting manually. The random sorting was performed in the same

was as described in the generation of Table 3.2 by randomly assigned spikes to one of three

different neurons. No sorting means that all spikes were assigned to the same neuron. The

manually sorted data was decoded twice, once excluding waveforms discarded because that

were deemed too ambiguous to sort (black dots in the upper right panel of Figure 3.3), and

once treating those excluded waveforms as having been generated by a single other cell.

The box plots representing decoding using the IGMM spike train model visualize the

distribution of results obtained by stochastically selecting one spike train per channel from

the corresponding posterior distribution, decoding to generate an estimated trajectory, then

repeating this process. The median of this distribution is an approximation to the true pos-

terior mean over all possible decodings. To compute the true posterior mean and variance,

decoding would have to be repeated number of times exponential in the number of channels.

74

In the case of the particle filter posterior the spike trains were selected according to their

weights.

In generating these plots the Kalman filter was trained and tested using only those

partitions that generated more than 5 percent of the total number of spikes in the posterior

distribution, discarding the rest. This means that some amount of the information available

for decoding was discarded. This was necessary due to numerical stability issues arising in

the computing the inverse covariance matrix for classes with very few points.

Additionally these decoding results are highly convolved with characteristics of the

Kalman filter decoder. For instance it is the case as shown in Figure 3.10 that, up to

a limit, even randomly partitioning the data does not significantly hurt and may even im-

prove decoding results so long as there is sufficient signal to estimate and invert all class

covariance matrices. This is because the linear regression model and the Kalman filter will

automatically learn the preferred direction of each partition. It is as if the activity from

each true neuron is partitioned into several less active pseudo-neurons, each with their own

preferred direction. So long as the spikes assigned to each partition are consistently from

the same neuron (or neurons with the same preferred direction) then there should be no

degradation of decoding performance. Thus the only gain to be had in taking the NPB

approach arises from the difference between ensuring that spikes from the same neuron are

grouped together and partitioning the data in such a way that some partitions mix spikes

from cells with opposed or nearly opposed preferred directions. We expect this effect to be

small.

That said, in this dataset we see evidence that taking into account spike sorting un-

certainty may improve neural decoding results on average. In Figure 3.11 we see a reca-

pitulation of the finding in Section 3.4 that decoding from spike trains arrived at by not

sorting at all or even randomly sorting does, in general, just as well or better than decoding

from manually sorted spike trains. We also see that decoding using the IGMM spike train

model produces results that are on average as good or better than decoding from spike

trains produced by other sorting approaches. Most importantly, the “error bars” (actually

quartiles of the decoding results) produced from the IGMM decoding results indicate what

level of confidence one may have in the average decoder output as a function of spike train

uncertainty. This is the primary contribution we claim here.

75

Pinball task decoding

The pinball data consisted of fifty epochs of pinball target acquisition data. Fourty five

pinball sequences of X and Z from the recording were extracted and used as training data.

Five were extracted and used as test data. Example pinball hand position trajectories are

shown in Figure 3.9. All other data processing and decoding processes were repeated as

described for the pursuit tracking data above.

In Figure 3.12 decoding results are shown for the pinball data. The claims to be made

here are similar to those for the pursuit tracking data; however, here the ML spike sorting

approach appears to have produced spike trains that result in good decoding results. While

it may be the case that ML spike sorting always will produce spike trains that are better

for decoding, that may not always be the case and as the ML approach produces a single

best spike train without any estimate of uncertainty ones confidence in this ranking cannot

be established. The ML decoding results are still within the range of variability predicted

by decoding from the NPB spike train model, although for this data at the high end of the

scale. Here again the primary contribution is a demonstration of how to account for spike

train variability in subsequent spike train analyses.

For both the pursuit tracking and pinball data the error bars for the Gibbs sampler

IGMM posterior estimator encompass decoding results for not sorting, randomly sorting,

ML sorting, and so forth. There is insufficient evidence to make any claims about improved

decoding, but that in and of itself was not our aim. Being able to illustrate the effect of

spike train variability in a systematic way was out aim and these figures show just that. Of

some concern and of interest with respect to future work is why the particle filter posterior

estimate of the decoding variability due to spike train uncertainty is smaller that the Gibbs

sampler posterior estimate of the same. We are not entirely sure why this is so and future

work will include investigating the cause behind this effect.

3.7 Discussion

There are a number of shortcomings to the IGMM spike sorting approach, and these we

will dispense with first, prior to highlighting the real and potential benefits of adopting

the nonparametric Bayesian spike sorting approach. Perhaps the biggest problem is that

the technique does not extend down to modeling the raw voltage trace. Computational

infeasability rapidly becomes an issue when even contemplating such a model as the amount

of data to be modeled in that case is enormous. However, that our proposed method does

76

not extend to detection means that not all variability in spike sorting is expressed in the

posterior distribution over sortings. Necessarily variability in spike detection cannot be

included because it isn’t modeled. This shortcoming is coupled with another shortcoming,

namely that our method cannot detect and resolve overlapping spikes. In Görür et al.

[2004] a mixture of factor analyzers technique for resolving overlapping waveforms was

developed that should be integrable with our technique with relatively little trouble besides

increased computational complexity. Our model also does not explicitely exclude spikes from

occurring in the refractory period, i.e. two spikes can be generated by the same neuron

under our model even if the time between them is less than a few milliseconds. As our

generative model is of waveshape alone we would need to integrate timing information into

the model. This is quite feasible under this model and could be easily and computationally

efficiently implemented. Simply appending the timing information as another dimension

of the waveform and constructing a likelihood function whereby the likehood of generating

spikes within some sort time difference is very near zero for any particular neuron. A

similar same kind of strategy can be employed to account for changing spike waveshape. It

should be noted here, however, that the anisotropic Gaussian distribution is fairly robust to

waveshape change already. Lastly, for long term chronic spike sorting applications such as

unattended neuroprosthetics, disappearance and appearance of classes should be modeled.

In it’s current form, even in the case of the online posterior estimation algorithm, the model

cannot handle disappearance and appearance of new neurons. Leveraging the dependent

Dirichlet process work of Srebro and Roweis [2005] and Griffin and Steel [2006] should allow

nonparametric spike sorting models for chronic spike sorting applications. Lastly our model

is somewhat sensitive to hyperparameter settings. This can be addressed in two ways: one

is to use less informative priors, particularly in place of the MVN IW prior; the other is to

treat them in a Bayesian way as well. This is relatively simple to do in the Gibbs sampling

case as a distribution can be estimated for the hyperparameters themselves. Depending

on the choice of priors this will increase the dimensionality of the sampling space which

necessarily will make sampling more challenging, particularly in the particle filtering case.

While these shortcomings are significant and may limit the applicability of the non-

parametric spike sorting approach to a subset of rather than all neural data inferences (for

instance, tests for excess synchrony would be an inappropriate use of this model as over-

lapping waveforms are not detected), it still remains that this IGMM approach to spike

sorting is a significant step towards accounting for spike sorting uncertainty in inference

from neural data. While our approach is similar in this respect to Nguyen et al. [2003],

they did not demonstrate how the utility of the full posterior distribution. Furthermore,

77

the IGMM posterior estimation approach is simpler to implement and admits a sequential

estimation variant.

Beyond reporting confidence intervals and accounting for spike train variability arising

from spike sorting uncertainties, particle filter posterior estimation enables online spike

sorting, a long time goal of the community. Looking towards a future in which online

IGMM spike sorting is feasible (specialized software and/or dedicated hardware would be

necessary to achieve this now) opens up a number of possible novel spike sorting applications.

For instance, it is possible to imagine an experiment where one wants to find a neuron

that modulates its firing rate in response to some particular stimulus. Running an online

IGMM spike sorter in conjunction with positioning the recording apparatus might allow

the experimenter to test for the presence of such a cell in the recording at the same time as

positioning the device.

Additionally, in the case of chronic implants for neural prosthetics and long term experi-

mentation an online spike sorter could run for the duration of the implant, sorting everything

as it is recorded, dramatically enhancing the amount of spike train data available to analyze.

78

0.8
1

1.2
1.4
1.6

CC
 x

 +
 C

C
y

Correlation Coe�cient Pursuit Tracking

IG
MM G

ibbs

IG
MM PF

None

Random

EM BIC

Human w
/ a

mb.

Human w
/o

 amb.
0.4

0.6

0.8

1

1.2

M
SE

 x
 +

 M
SE

 y

Mean Square Error Pursuit Tracking

Figure 3.11: Results for decoding pursuit tracking hand position from the six channels
shown in Figure 3.3. The top subplot shows the sum of x and y correlation coefficients
(CC) between decoding and true hand positions; the bottom shows the sum mean squared
error for the same. The label for each box and whisker is printed below the horizontal axis of
the bottom figure. Results are shown for our NPB spike train model, particle filter and gibbs
sampler posterior estimation, expectation maximization finite Gaussian mixture model spike
sorting with BIC model selection, no sorting, random sorting, and manually sorted spike
trains both including spikes that were deemed too ambiguous and excluding those spikes.
For the NPB and random distributions over spike trains the middle line in the box indicates
the median decoding result, the box indicates the first quartile, and the whiskers indicate
the full extent of the results. Although it may be possible to improve decoding results by
accounting for spike sorting uncertainty, our contribution is the development of a model
that makes it possible to report meaningful “error bars” that represent the affect of spike
sorting uncertainty on spike train analysis results.

79

0.4

0.6

0.8

1

1.2

CC
 x

 +
 C

C
y

Correlation Coe�cient Pinball

IG
MM G

ibbs

IG
MM PF

None

Random

EM BIC

Human w
/ a

mb.

Human w
/o

 amb.1

1.5

2

x 10
−3

M
SE

 x
 +

 M
SE

 y

Mean Square Error Pinball

Figure 3.12: Results for decoding pinball task hand position from the six channels shown
in Figure 3.3. The top subplot shows the sum of x and y correlation coefficients (CC)
between decoding and true hand positions; the bottom shows the sum mean squared error
for the same. The label for each box and whisker is printed below the horizontal axis of the
bottom figure. Results are shown for our NPB spike train model, particle filter and gibbs
sampler posterior estimation, expectation maximization finite Gaussian mixture model spike
sorting with BIC model selection, no sorting, random sorting, and manually sorted spike
trains both including spikes that were deemed too ambiguous and excluding those spikes.
For the NPB and random distributions over spike trains the middle line in the box indicates
the median decoding result, the box indicates the first quartile, and the whiskers indicate
the full extent of the results. Although it may be possible to improve decoding results by
accounting for spike sorting uncertainty, our contribution is the development of a model
that makes it possible to report meaningful “error bars” that represent the affect of spike
sorting uncertainty on spike train analysis results.

Chapter 4

Nonparametric Bayesian Matrix

Factorization

In Chapter 2 we reviewed a simple nonparametric latent variable model, the infinite Gaus-

sian mixture model (IGMM), and illustrated its utility by using it to build a model of spike

trains. There our contribution was a novel application of the IGMM to the problem of

spike train modeling. The purpose of reviewing the IGMM was to review nonparametric

Bayesian modeling and to prepare the reader for this half of the dissertation in which the

contributions are more theoretical in nature. In this chapter we present a new nonpara-

metric Bayesian latent variable model and associated estimation algorithms. In the next

chapter we demonstrate this model on an inference task from neurological data.

More specifically we present a novel nonparametric Bayesian binary matrix factorization

model in which, unlike the IGMM, each observation can be influenced by multiple hidden

causes. Additionally we develop particle filter posterior estimation algorithms for a class

of NPB matrix factorization models. We start by briefly reviewing classical probabilistic,

Bayesian, and NPB matrix factorization before introducing our new model. We conclude

this chapter by introducing particle filter sequential posterior estimation for a family of

NPB matrix factorization models.

4.1 Matrix factorization

One of the goals of unsupervised learning is to discover the latent structure expressed in

observed data. The nature of the learning problem will vary depending on the form of the

data and the kind of latent structure it expresses, but many unsupervised learning problems

80

81

can be viewed as a form of matrix factorization – i.e. decomposing an observed data matrix,

X, into the product of two or more matrices of latent variables. If X is an N ×D matrix,

where N is the number of D-dimensional observations, the goal is to find a low-dimensional

latent feature space capturing the variation in the observations making up X. This can

be done by assuming that X ≈ ZY, where Z is a N ×K matrix indicating which of (and

perhaps the extent to which) K latent features are expressed in each of the N observations

and Y is a K × D matrix indicating how those K latent features are manifest in the D

dimensional observation space. Typically, K is less than D, meaning that Z and Y provide

an efficient summary of the structure of X.

A standard problem for unsupervised learning algorithms based on matrix factorization

is determining the dimensionality of the latent matrices, K. Nonparametric Bayesian statis-

tics offers a way to address this problem: instead of specifying K a priori and searching

for a “best” factorization, nonparametric Bayesian matrix factorization approaches such

as those in [Griffiths and Ghahramani, 2005] and [Wood et al., 2006b] estimate a poste-

rior distribution over factorizations with unbounded dimensionality (i.e. letting K → ∞).

This remains computationally tractable because each model uses a prior that ensures that

Z is sparse, based on the Indian Buffet Process (IBP) [Griffiths and Ghahramani, 2005].

The search for the dimensionality of the latent feature matrices thus becomes a problem of

posterior inference over the number of non-empty columns in Z.

In this chapter we review previous nonparametric Bayesian matrix factorization results

which use Gibbs sampling for posterior estimation [Griffiths and Ghahramani, 2005] and

revisit our our work which first appeared in [Wood et al., 2006b]. In particular we review the

infinite linear Gaussian matrix factorization model of [Griffiths and Ghahramani, 2005] and

then our own infite binary matrix factorization model. As suggested in Chapter 2, Gibbs

sampling is the standard estimation algorithm used in nonparametric Bayesian modeling.

However, as also reviewed in Chapter 2, sequential Monte Carlo methods such as particle

filtering can provide an efficient alternative to Gibbs sampling in Dirichlet process mixture

models [Fearnhead, 2004; MacEachern et al., 1999].

Accordingly in this chapter we develop a novel particle filtering algorithm for posterior

estimation in matrix factorization models that use the IBP, and illustrate its applicability

to two specific models – one with a conjugate prior, and the other without a conjugate

prior but tractable in other ways. Our particle filtering algorithm is by nature an “on-line”

procedure, where each row of X (observation) is processed only once, in sequence. This

stands in comparison to Gibbs sampling, which must revisit each row many times to converge

to a reasonable representation of the posterior distribution. We present simulation results

82

showing that our particle filtering algorithm can be more efficient than Gibbs sampling and

discuss its applicability to the broad class of nonparametric matrix factorization models

based on the IBP.

4.2 Bayesian matrix factorization

Let X be an observed N ×D matrix. Our goal is to find a representation of the structure

expressed in this matrix in terms of the latent matrices Z (N ×K) and Y (K ×D). This

can be formulated as a statistical problem if we view X as being produced by a probabilistic

generative process, resulting in a probability distribution P (X|Z,Y). The critical assump-

tion necessary to make this a matrix factorization problem is that the distribution of X

is conditionally dependent on Z and Y only through the product ZY. Although defining

P (X|Z,Y) allows us to use methods such as maximum-likelihood estimation to find a point

estimate, our goal is to instead compute a posterior distribution over possible values of Z

and Y. To do so we need to specify a prior over the latent matrices P (Z,Y), and then we

can use Bayes’ rule to find the posterior distribution over Z and Y

P (Z,Y|X) ∝ P (X|Z,Y)P (Z,Y). (4.1)

This constitutes Bayesian matrix factorization, but two problems remain: the choice of K,

and the computational cost of estimating the posterior distribution.

Unlike standard matrix factorization methods that require an a priori choice of K,

nonparametric Bayesian approaches allow us to estimate a posterior distribution over Z

and Y where the size of these matrices is unbounded. The models we discuss in this

dissertation place a prior on Z that gives each “left-ordered” binary matrix (see [Griffiths

and Ghahramani, 2005] for details) probability

P (Z) =
αK+∏2N−1

h=1 Kh!
exp{−αHN}

K+∏
k=1

(N −mk)!(mk − 1)!
N !

(4.2)

where K+ is the number of columns of Z with non-zero entries, mk is the number of 1’s

in column k, N is the number of rows, HN =
∑N

i=1 1/i is the N th harmonic number, and

Kh is the number of columns in Z that when read top-to-bottom form a sequence of 1’s

and 0’s corresponding to the binary representation of the number h. This prior on Z is a

distribution on sparse binary matrices that favors those that have few columns with many

ones, with the rest of the columns being all zeros.

83

~
*

Z YX 1

1

D

N

K+

D

N

Figure 4.1: Nonparametric Bayesian matrix factorization. The data matrix X is the product
of Z and Y, which have an unbounded number of columns and rows respectively.

This distribution can be derived as the outcome of a sequential generative process called

the Indian buffet process (IBP) [Griffiths and Ghahramani, 2005]. Imagine an Indian restau-

rant into which N customers arrive one by one and serve themselves from the buffet. The

first customer loads her plate from the first Poisson(α) dishes. The ith customer chooses

dishes proportional to their popularity, choosing a dish with probability mk/i where mk is

the number of people who have choosen the kth dish previously, then chooses Poisson(α/i)

new dishes. If we record the choices of each customer on one row of a matrix whose columns

correspond to a dishes on the buffet (1 if chosen, 0 if not) then (the left-ordered form of)

that matrix constitutes a draw from the distribution in Eqn. 4.2. The order in which the

customers enter the restaurant has no bearing on the distribution of Z (up to permutation

of the columns), making this distribution exchangeable.

In this work we assume that Z and Y are independent, with P (Z,Y) = P (Z)P (Y).

As shown in Fig. 4.1, since we use the IBP prior for P (Z), Y is a matrix with an infinite

number of rows and D columns. We can take any appropriate distribution for P (Y), and

the infinite number of rows will not pose a problem because only K+ rows will interact

with non-zero elements of Z. A posterior distribution over Z and Y implicitly defines a

distribution over the effective dimensionality of these matrices, through K+. This approach

to nonparametric Bayesian matrix factorization has been used for both continuous [Griffiths

and Ghahramani, 2005, 2006] and binary [Wood et al., 2006b] data matrices X.

Since the posterior distribution defined in Eqn. 4.1 is generally intractable, Gibbs sam-

pling has previously been employed to construct a sample-based representation of this dis-

tribution. However, generally speaking, Gibbs sampling is slow, requiring each entry in Z

and Y to be repeatedly updated conditioned on all of the others. This problem is com-

pounded in contexts where the the number of rows of X increases as a consequence of new

observations being introduced, where the Gibbs sampler would need to be restarted after

the introduction of each new observation.

84

4.3 A semi-conjugate model: infinite binary matrix factor-

ization

In this model, first presented in the context of learning hidden causal structure [Wood

et al., 2006b], the entries of both X and Y are binary. Each row of X represents the values

of a single observed variable across D trials or cases, each row of Y gives the values of

a latent variable (a “hidden cause”) across those trials or cases, and Z is the adjacency

matrix of a bipartite Bayesian network indicating which latent variables influence which

observed variables. Learning the hidden causal structure then corresponds to inferring Z

and Y from X. An example application of this model and a more detailed introduction

to its interpretation as a model of causal structure is given in Chapter 5. The model fits

our schema for nonparametric Bayesian matrix factorization model (and hence is amenable

to the use of our particle filter) since the likelihood function it uses depends only on the

product ZY.

The likelihood function for this model assumes that each entry of X is generated in-

dependently P (X|Z,Y) =
∏

i,d P (xi,d|Z,Y), with its probability given by the “noisy-OR”

[Pearl, 1988] of the causes that influence that variable (identified by the corresponding row

of Z) and are active for that case or trial (expressed in Y). The probability that xi,d takes

the value 1 is thus

P (xi,d = 1|Z,Y) = 1− (1− λ)zi,:·y:,d(1− ε) (4.3)

where zi,: is the ith row of Z, y:,d is the dth column of Y, and zi,: · y:,d =
∑K

k=1 zi,kyk,d.

The parameter ε sets the probability that xi,d = 1 when no relevant causes are active,

and λ determines how this probability changes as the number of relevant active hidden

causes increases. To complete the model, we assume that the entries of Y are generated

independently from a Bernoulli process with parameter p, to give P (Y) =
∏

k,d pyk,d(1 −
p)1−yk,d , and use the IBP prior for Z.

4.3.1 Gibbs sampler posterior estimation

To use Gibbs sampling in this model we need to be able to sample from the distributions

P (zi,k|X,Z−i,k,Y) and P (yk,t|X,Z,Y−k,t), where Z−i,k is all values of Z except for zi,k

and Y−k,t is all of the values of the matrix Y except for yk,t. As both zi,k and yk,t are

binary, these distributions can be computed by enumeration. We can find P (zi,k = 1|z−i,k)

by exploiting the exchangeability of the IBP. Since any ordering of the customers results

in the same distribution, we can assume that the ith customer is the last to enter the

85

restaurant. Accordingly, they should sample each dish that has previously been tasted by

m−i,k customers with probability m−i,k

N , and try a Poisson(α
N) number of new dishes, for

which m−i,k = 0. Thus, we need to consider two separate cases in sampling zi,k in our

Gibbs sampler: the case where m−i,k > 0, and the case where m−i,k = 0.

When m−i,k > 0, P (zi,k = 1|z−i,k) is given by

P (zi,k = 1|z−i,k) = θ̄k =
m−i,k

N
. (4.4)

In this case, we obtain

P (zi,k = a|X,Z−i,k,Y) (4.5)

∝ θ̄a
k(1− θ̄k)(1−a)

T∏
t=1

(1− (1− λ)zi,:·y:,t(1− ε))|zi,k=a

where |zi,k=a means to replace zi,k with a in the preceding expression.

The case where m−i,k = 0 requires more careful treatment. In our non-parametric

approach, Z is a matrix with infinitely many columns (and Y is a matrix with infinitely

many rows). In practice, only the non-zero columns of the matrix can be held in memory,

but we still need to sample those columns. To do so let Knew
i be the number of columns of

Z which contain a 1 only in row i. Then we have

P (Knew
i |Xi,1:T ,Zi,1:K+Knew

i
,Y) (4.6)

∝ P (Xi,1:T |Zi,1:K+Knew
i

,Y,Knew
i)P (Knew

i)

where the prior P (Knew
i) is Poisson(α

N), and we find P (Xi,1:T |Zi,1:K+Knew
i

,Y,Knew
i) by

marginalizing over Ynew = YK+1:K+Knew
i ,t, the new rows of Y. As each entry of X is

independent, we have

P (Xi,1:T |Zi,1:K+Knew
i

,Y,Knew
i) (4.7)

=
∏

t=1:T

P (xi,t|Zi,1:K+Knew
i

,Y,Knew
i)

86

marginalizing over Ynew gives

P (xi,t = 1|Znew,Y,Knew
i)

=
∑
Ynew

P (xit = 1|Znew,Ynew)P (Ynew)

=
Knew

i∑
m=0

[1− η(1− λ)m(1− ε)]pm(1− p)Knew
i −m

(
Knew

i
m

)
= 1− (1− ε)η

Knew
i∑

m=0

[(1− λ)p]m(1− p)Knew
i −m

(
Knew

i
m

)
= 1− (1− ε)η(1− λp)Knew

i (4.8)

where η = (1− λ)zi,1:K ·y1:K,t . The last step makes use of the binomial theorem. This gives

us all we need to compute the conditional distribution over Knew
i defined in Eqn. 4.6. In

theory, sampling from this distribution would require evaluating it at all possible values of

Knew
i . We approximate this by sampling from the distribution over Knew

i ≤ 10.

While Y technically has an infinite number of rows, in practice we need only sample

yk,t for those rows that correspond to non-zero columns of Z. Proceeding similarly for yk,t

gives

P (yk,t = a|Z,X,Y−k,t) (4.9)

∝ pa(1− p)1−a
N∏

i=1

(1− (1− λ)zi,:y:,t(1− ε))|yk,t=a.

The pseudocode for our Gibbs sampler is given in Algorithm 4.

4.3.2 Particle filter posterior estimation

Our novel approach to posterior estimation in NPB matrix factorization models based on

the IBP addresses the problems faced in Gibbs sampling by exploiting the fact that the

prior on Z is recursively decomposable. To explain this we need to introduce new notation,

let X(i) be the ith row of X, and X(1:i) and Z(1:i) be all the rows of X and Z up to i

respectively. Note that because the IBP prior is recursively decomposable it is easy to

sample from P (Z(1:i)|Z(1:i−1)); to do so simply follow the IBP in choosing dishes for the

ith customer given the record of which dishes were chosen by the first i− 1 customers (see

Algorithm 5). Applying Bayes’ rule, we can write the posterior on Z(1:i) and Y given X(1:i)

87

Algorithm 4 Gibbs sampler for hidden causes
1: for r = 1, . . . , number of iterations do
2: for i = 1, . . . , N do
3: for k = 1, . . . , K do
4: if m−i,k > 0 then
5: sample zi,k according to Eqn. 5.11
6: else
7: mark zi,k to be zeroed
8: end if
9: end for

10: zero marked zi,k’s
11: sample Knew

i according to Eqn. 4.6
12: Zi,K+1,K+Knew

i
← 1

13: for all yj,t ∈ YK+1:K+Knew
i ,1:T do

14: sample yj,t according to Eqn. 5.12
15: end for
16: K ← K + Knew

i

17: end for
18: for all yk,t ∈ Y do
19: sample yk,t according to Eqn. 5.12
20: end for
21: remove columns with

P
i zi, k = 0 from Z

22: remove corresponding rows from Y
23: end for

in the following form

P (Z(1:i),Y|X(1:i)) ∝ P (X(i)|Z(1:i),Y,X(1:i−1))P (Z(1:i),Y|X(1:i−1)). (4.10)

Here we do not index Y as it is always an infinite matrix.1

If we could evaluate P (Z(1:i−1),Y|X(1:i−1)), we could obtain weighted samples (or “par-

ticles”) from P (Z(1:i),Y|X(1:i)) using importance sampling with a proposal distribution of

P (Z(1:i),Y|X(1:i−1)) =
∑

Z(1:i−1)

P (Z(1:i)|Z(1:i−1))P (Z(1:i−1),Y|X(1:i−1)) (4.11)

and taking

w` ∝ P (X(i)|Z(1:i)
(`) ,Y(`),X

(1:i−1)) (4.12)

as the weight associated with the `th particle. However, we could also use a similar scheme
1In practice, we need only keep track of the rows of Y that correspond to the non-empty columns of Z,

as the posterior distribution for the remaining entries is just the prior. Thus, if new non-empty columns
are added in moving from Z(i−1) to Z(i), we need to expand the number of rows of Y that we represent
accordingly.

88

Algorithm 5 Sample P (Z(1:i)|Z(1:i−1), α) using the Indian Buffet process
1: Z← Z(1:i−1)

2: if i = 1 then
3: sample Knew

i ∼ Poisson(α)
4: Zi,1:Knew

i
← 1

5: else
6: K+ ← number of non-zero columns in Z
7: for k = 1, . . . , K+ do
8: sample zi,k according to P (zi,k = 1) ∼ Bernoulli(

m−i,k

i
)

9: end for
10: sample Knew

i ∼ Poisson(α
i
)

11: Zi,K++1:K++Knew
i
← 1

12: end if
13: Z(1:i) ← Z

to approximate P (Z(1:i−1),Y|X(1:i−1)) if we could evaluate P (Z(1:i−2),Y|X(1:i−2)). Fol-

lowing Eq. 4.11, we could then approximately generate a set of weighted particles from

P (Z(1:i),Y|X(1:i−1)) by using the IBP to sample a value from P (Z(1:i)|Z(1:i−1)
(`)) for each

particle from P (Z(1:i−1),Y|X(1:i−1)) and carrying forward the weights associated with those

particles. This “particle filtering” procedure defines a recursive importance sampling scheme

for the full posterior P (Z,Y|X), and is known as sequential importance sampling [Doucet

et al., 2001]. When applied in its basic form this procedure can produce particles with

extreme weights, so we resample the particles at each iteration of the recursion from the

distribution given by their normalized weights and set w` = 1/L for all `, which is a standard

method known as sequential importance resampling [Doucet et al., 2001].

The procedure defined in the previous paragraphs is a general-purpose particle filter

for matrix-factorization models based on the IBP. This procedure will work when the prior

defined on Y is not conjugate to the likelihood (and is much simpler than other algorithms

for using the IBP with non-conjugate priors, e.g. [Görür et al., 2006]). However, as we will

soon demonstrate the procedure can be simplified further in special cases.

In this model the prior over Y is not conjugate to the likelihood, so we are forced to

explicitly represent Y in our particle filter state, as outlined in Equations 4.10 and 4.11.

However, we can define a more efficient algorithm than the basic particle filter due to the

tractability of some integrals. This is why we call this model a “semi-conjugate” model.

The basic particle filter defined in Section 4.3.2 requires drawing the new rows of Y from

the prior when we generate new columns of Z. This can be problematic since the chance of

producing an assignment of values to Y that has high probability under the likelihood can

be quite low, in effect wasting many particles. However, if we can analytically marginalize

out the new rows of Y, we can avoid sampling those values from the prior and instead

89

Algorithm 6 Particle filter for Infinite Binary Matrix Factorization
1: initialize L particles [Z

(0)
` ,Y

(0)
`], ` = 1, . . . , L

2: for i = 1, . . . , N do
3: for ` = 1, . . . , L do
4: sample Z

(i)
` from Z

(i−1)
` using Algorithm 5

5: calculate w` using Eqns. 4.12 and 4.3
6: end for
7: normalize particle weights
8: resample particles according to weight CDF
9: for ` = 1, . . . , L do

10: sample Y
(i)
` from P (Y

(i)
` |Z

(1:i)
` ,Y

(1:i−1)
` ,X(1:i))

11: end for
12: end for

sample them from the posterior, in effect saving many of the potentially wasted particles.

If we let Y(1:i) denote the rows of Y that correspond to the first i columns of Z and Y(i)

denote the rows (potentially more than 1) of Y that are introduced to match the new

columns appearing in Z(i), then we can write

P (Z(1:i),Y(1:i)|X(1:i)) = P (Y(i)|Z(1:i),Y(1:i−1),X(1:i))P (Z(1:i),Y(1:i−1)|X(1:i)) (4.13)

where

P (Z(1:i),Y(1:i−1)|X(1:i)) ∝ P (X(i)|Z(1:i),Y(1:i−1),X(1:i−1))P (Z(1:i),Y(1:i−1)|X(1:i−1)).

(4.14)

Thus, we can use the particle filter to estimate the distribution P (Z(1:i),Y(1:i−1)|X(1:i))

(vs. P (Z(1:i),Y(1:i)|X(1:i))) provided that we can find a way to compute P (X(i)|Z(1:i),Y(1:i−1))

and sample from the distribution P (Y(i)|Z(1:i),Y(1:i−1),X(1:i)) to complete our particles.

The procedure described in the previous paragraph is possible in this model because,

while our prior on Y is not conjugate to the likelihood, it is still possible to compute

P (X(i)|Z(1:i),Y(1:i−1)). The entries of X(i) are independent given Z(1:i) and Y(1:i). Since the

entries in each column of Y(i) will influence only a single entry in X(i), this independence is

maintained when we sum out Y(i). This we have already seen in deriving an an analytic solu-

tion to P (X(i)|Z(1:i),Y(1:i−1)) =
∏

d P (xi,d|Z(1:i),Y(1:i−1)) where P (xi,d = 1|Z(1:i),Y(1:i−1))

was given before in Equation 4.8. This gives us the likelihood we need for reweight-

ing particles Z(1:i) and Y(1:i−1). The posterior distribution on Y(i) is straightforward to

compute by combining the likelihood in Equation 4.3 with the prior P (Y). The particle

filtering algorithm for this model is given in Algorithm 6.

90

Figure 4.2: Infinite binary matrix factorization results. On the left is ground truth, the
causal graph representation of Z and ZZT . The middle and right are particle filtering
results; a single random particle Z and E[ZZT] from a 100 and 1000 particle run middle
and right respectively.

4.3.3 Experiments

We compared the particle filter in Algorithm 6 with Gibbs sampling on a dataset generated

from the model described above, using the same Gibbs sampling algorithm and data genera-

tion procedure as developed in [Wood et al., 2006b]. We took K+ = 6 and N = 12, running

the IBP multiple times with α = 3 until a matrix Z of correct dimensionality (12× 6) was

produced. This matrix is shown in Fig. 4.2 as a bipartite graph, where the observed vari-

ables are shaded. A 6 × 500 random matrix Y was generated with p = 0.2. The observed

matrix X was then sampled from Eqn. 4.3 with parameters λ = .9 and ε = .01.

Fig. 4.3 compares results from the particle filter and Gibbs sampler for this model. The

performance of the models was measured by comparing a general error metric computed

over the posterior distributions estimated by each approach. The error metric (the vertical

axis in Figs. 4.5 and 4.3) was computed by taking the expectation of the matrix ZZT

over the posterior samples produced by each algorithm and taking the summed absolute

difference (i.e. L1 norm) between the upper triangular portion of E[ZZT] computed over

the samples and the upper triangular portion of the true ZZT (including the diagonal). See

Fig. 4.2 for an illustration of the information conveyed by ZZT . This error metric measures

the distance of the mean of the posterior to the ground-truth. It is zero if the mean of the

distribution matches the ground truth. It grows as a function of the difference between the

ground truth and the posterior mean, accounting both for any difference in the number of

latent factors that are present in each observation and for any difference in the number of

latent factors that are shared between all pairs of observations.

The particle filter was run using many different numbers of particles, P . For each value

of P , the particle filter was run 10 times. The horizontal axis location of each errorbar in the

plot is the mean CPU time as reported by Matlab for the corresponding number of particles

P while the error bars indicate the standard deviation of the error. The Gibbs sampler was

run for varying numbers of sweeps, with the initial 10% of samples being discarded. The

91

20

40

60

80

100

120

140

160

180

200

220

Er
ro

r

0.
04 0.

1

0.
3 1 2 6 18 50 40 39
1

CPU runtime in sec.

Gibbs Sampler
Particle Filter

Figure 4.3: Performance results for particle filter vs. Gibbs sampling posterior esti-
mation for the infinite binary matrix factorization model. Each point is an average
over 10 runs with a particular number of particles or sweeps of the sampler P =
[1, 5, 10, 50, 100, 500, 1000, 2500, 5000] from left to right, and error bars indicate the stan-
dard deviation of the error.

number of Gibbs sampler sweeps was varied and the results are displayed in the same way

as described for the particle filter above. The results show that the particle filter attains

similar error to the Gibbs sampler in roughly the same amount of computational time. The

difference in computational time here is due to implementation constants as the asymptotic

complexity of each approach is equivalent. The advantage of the particle filtering approach

here is that it constructs the posterior as observations are obtained; a characteristic that

may be desireable for some applications.

4.4 A conjugate model: infinite linear-Gaussian matrix fac-

torization

In this model, explained in detail in Griffiths and Ghahramani [2005], the entries of both

X and Y are continuous. We report results on the modeling of image data of the same

kind as was originally used to demonstrate the model in Griffiths and Ghahramani [2005].

Here each row of X is an image, each row of Z indicates the “latent features” present in

92

that image, such as the objects it contains, and each column of Y indicates the pixel values

associated with a latent feature.

The likelihood for this image model is matrix Gaussian

P (X|Z,Y, σx) =
1

(2πσ2
X)ND/2

exp{− 1
2σ2

X

tr((X− ZY)T (X− ZY))}

where σ2
X is the noise variance. The prior on the parameters of the latent features is also

Gaussian

P (Y|σY) =
1

(2πσ2
Y)KD/2

exp{− 1
2σ2

Y

tr(YTY)}

with each element having variance σ2
Y . Because both the likelihood and the prior are matrix

Gaussian, they form a conjugate pair and Y can be integrated out to yield the collapsed

likelihood,

P (X|Z, σx) =
1

(2π)ND/2σ
(N−K+)D
X σ

K+D
Y |ZT

+Z+
σ2

X

σ2
Y
IK+ |D/2

exp{− 1
2σ2

X

tr(XTΣ−1X)}

(4.15)

which is matrix Gaussian with covariance Σ−1 = I− Z+(ZT
+Z + σ2

X

σ2
Y
IK+)−1ZT

+. Here Z+ =

Z1:i,1:K+ is the first K+ columns of Z and K+ is the number of non-zero columns of Z.

4.4.1 Particle filter posterior estimation

The use of a conjugate prior means that we do not need to represent Y explicitly in our

particle filter. In this case the particle filter recursion shown in Eqns. 4.10 and 4.11 reduces

to

P (Z(1:i)|X(1:i)) ∝ P (X(i)|Z(1:i),X(1:i−1))
∑

Z(1:i−1)

P (Z(1:i)|Z(1:i−1))P (Z(1:i−1)|X(1:i−1))

and may be implemented as shown in Algorithm 7.

Reweighting the particles requires computing P (X(i)|Z(1:i),X(1:i−1)), the conditional

probability of the most recent row of X given all the previous rows and Z. Since P (X(1:i)|Z(1:i))

is matrix Gaussian we can find the required conditional distribution by following the stan-

dard rules for conditioning in Gaussians. Letting Σ−1
∗ = Σ−1/σ2

X be the covariance matrix

for X(1:i) given Z(1:i), we can partition this matrix into four parts

Σ−1
∗ =

[
A c
cT b

]

93

Algorithm 7 Particle filter for Infinite Linear Gaussian Model
1: initialize L particles [Z

(0)
`], ` = 1, . . . , L

2: for i = 1, . . . , N do
3: for ` = 1, . . . , L do
4: sample Z

(1:i)
` from Z

(1:i−1)
` using Algorithm 5

5: calculate w` using Eqns. 4.12 and 4.16
6: end for
7: normalize particle weights
8: resample particles according to weight cumulative distribution
9: end for

 y
1,:

 y
2,:

 y
3,:

 y
4,:

 z
(i,:)

Y noise x
i,:

Figure 4.4: Generation of X under the linear Gaussian model. The first four images (left
to right) correspond to the true latent features, i.e. rows of Y. The fifth shows how the
images get combined, with two source images added together by multiplying by a single
row of Z, zi,: = [1 0 0 1]. The sixth is Gaussian noise. The seventh image is the resulting
row of X.

where A is a matrix, c is a vector, and b is a scalar. Then the conditional distribution of

X(i) is

X(i)|Z(1:i),X(1:i−1) ∼ Gaussian(cTA−1X(1:i−1), b− cTA−1c). (4.16)

This requires inverting a matrix A which grows linearly with the size of the data; however,

A is highly structured and this can be exploited to reduce the cost of this inversion Barnett

[1979].

4.4.2 Experiments

We compared the particle filter in Algorithm 7 with Gibbs sampling on an image dataset

similar to that used in Griffiths and Ghahramani [2005]. We refer the reader to Griffiths

and Ghahramani [2005] for the details of the Gibbs sampler for this model. As illustrated

in Fig. 4.4, our ground-truth Y consisted of four different 6 × 6 latent images. A 100 × 4

binary ground-truth matrix Z was generated with by sampling from P (zi,k = 1) = 0.5. The

observed matrix X was generated by adding Gaussian noise with σX = 0.5 to each entry of

ZY.

Fig. 4.5 compares results from the particle filter and Gibbs sampler for this model.

Comparison of the particle filter and Gibbs sampling was done using the procedure outlined

in Section 4.3.3, producing somewhat different results: here the particle filter gave a better

94

0

1000

2000

3000

4000

5000

1 10 10
0

10
00

25
00

50
00

10
00

0

25
00

0
50

00
0

Er
ro

r

CPU runtime in sec.

Gibbs Sampler
Particle Filter

Figure 4.5: Performance results for particle filter vs. Gibbs sampling posterior esti-
mation for the infinite linear Gaussian matrix factorization. Each point is an aver-
age over 10 runs with a particular number of particles or sweeps of the sampler P =
[1, 10, 100, 500, 1000, 2500, 5000] left to right, and error bars indicate the standard deviation
of the error.

approximation to the posterior distribution in less time, as shown in Fig. 4.5. The results

show that the particle filter attains low error in significantly less time than the Gibbs

sampler, with the difference being an order or magnitude or more in most cases. This is

a result of the fact that in the particle filter the number of new ones to add to a row of

Z is proposed from the prior requiring only one evaluation of the likelihood. In the Gibbs

sampler determining how many new ones to add to a row of Z requires evaluating the

likelihood many times, up to the truncation level in computing the distribution over Knew.

4.5 Conclusion

In this chapter we have introduced particle filter posterior estimation for non-parametric

Bayesian matrix factorization models based on the Indian buffet process. This approach is

applicable to any Bayesian matrix factorization model with a sparse recursively decompos-

able prior. We have applied this approach with two different models, one with a conjugate

prior and one with a non-conjugate prior, finding both comparable to Gibbs sampling.

95

However, more work needs to be done to explore the strengths and weakneses of these al-

gorithms. In particular, simple sequential importance resampling is known to break down

when applied to datasets with many observations, although we are optimistic that methods

for addressing this problem that have been developed for Dirichlet process mixture models

(e.g., [Fearnhead, 2004]) will also be applicable in this setting. By exploring the strengths

and weaknesses of different methods for approximate inference in these models, we hope to

come closer to our ultimate goal of making nonparametric Bayesian matrix factorization

into a tool that can be applied on the scale of real world problems.

Chapter 5

Application: Stroke databank

modeling

In this chapter we demonstrate our NPB binary matrix factorization model in a causal

structure learning context. In particular we estimate a causal model for stroke signs exhib-

ited by a small population of patients. From this model we can answer questions like, “How

many types of strokes are there?” and “Are these signs manifestations of the same stroke

localization?” all in a way that remains maximally agnostic in the same way as for all the

previous NPB models presented in this dissertation.

5.1 Causal structure learning

A variety of methods from Bayesian statistics have been applied to the problem of learning

the dependencies among a set of observed variables [Friedman and Koller, 2000; Heckerman,

1998]. However, in many settings, the dependencies of interest are not those that exist

among the observed variables, but those that are produced by “hidden causes”. For example,

in medicine, the symptoms of patients are explained as the result of diseases that are not

themselves directly observable – an assumption that is embodied in graphical models for

medical diagnosis, such as QMR-DT [Shwe et al., 1991]. Here we consider how Bayesian

methods can be used to infer both the existence of such hidden causes and how they influence

observed variables. In our medical example, this would mean discovering diseases from the

symptoms of patients.

Learning the structure of graphical models containing hidden causes presents a signifi-

cant challenge, since the number of hidden causes is unknown and potentially unbounded.

96

97

Y

Z

X

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6 X7 X8

Figure 5.1: A hypothetical Bayesian network connecting hidden causes Y1, . . . , YK to ob-
served variables X1, . . . , XN . We consider the case where the number of hidden causes, K,
is unbounded. The state of the hidden causes, the observed variables, and the dependencies
between them can all be summarized using binary matrices, being Y, X, and Z respectively.

Researchers have explored several approaches to this problem. One approach uses statis-

tical criteria to identify when hidden causes might be present (e.g., [Elidan and Friedman,

2005]). While these algorithms are effective, they do not reflect our aim of developing a

Bayesian approach to solving this problem. Other more closely related work defines a prior

over the number of hidden causes, and uses “reversible jump” Markov chain Monte Carlo

(RJMCMC) [Green, 1995] algorithms to move between structures with different numbers

of hidden causes (e.g., [Courville et al., 2005; Orban et al., 2006]). These methods satisfy

our desire for a Bayesian solution, but designing well-mixing RJMCMC algorithms can be

difficult.

Previous Bayesian approaches to inferring hidden causal structure assume that the num-

ber of hidden causes is finite. In many cases, it is more accurate to assume instead that

the number of hidden causes is infinite. Rather than seeking to determine the number of

hidden causes, we instead seek to find and count the finite subset of these hidden causes that

manifest in a particular finite dataset. This perspective on the dimensionality of models

is common in non-parametric Bayesian statistics. For example, Dirichlet process mixture

models assume that data come from a potentially infinite number of clusters, of which only

a finite subset are observed [Antoniak, 1974; Neal, 2000; Rasmussen, 2000]. However, non-

parametric Bayesian methods have not previously been applied to the problem of learning

causal structure from data.

In this chapter we develop a non-parametric Bayesian approach to structure learning

with an unbounded number of hidden causes. Specifically, we define a prior over causal

structures using the Indian buffet process (IBP) [Griffiths and Ghahramani, 2005], a dis-

tribution over infinite binary matrices. Using the properties of the IBP, we derive a Gibbs

sampling algorithm that can be used to sample from the posterior distribution over causal

structures. We compare this approach to standard RJMCMC methods, and use it to infer

98

the hidden causes behind the symptoms of stroke patients.

5.2 Modeling hidden causal structure

Assume we have observed T instances (trials) of a set of N binary variables. Using xi,t

to denote the value of the ith observed variable on the tth trial, we can summarize these

observations with an N × T binary matrix X. A standard structure learning task would

be to learn a Bayesian network representation of the dependencies among the variables

X1, . . . , XN . These dependencies can be expressed using the N ×N adjacency matrix A of

a directed graph in which the nodes correspond to the N variables, with aij = 1 if an edge

exists from node j to node i, and 0 otherwise.

To extend this problem to include hidden causes, assume that there are a further K

binary variables which are never observed. Using yk,t to denote the value of the kth hidden

cause on the tth trial, we can summarize the state of the hidden causes with a K×T binary

matrix Y. If we let zi,k = 1 if an edge exists from node k to node i, and 0 otherwise, we

can represent the dependencies between hidden causes and observable variables with the

N ×K binary matrix Z. The full adjacency matrix G for the Bayesian network defined on

the variables X1, . . . , XN and Y1, . . . , YK is

G =

[
A Z

0 0

]
(5.1)

where 0 denotes a matrix of zeros of the appropriate size to make G a square (N + K) ×
(N + K) matrix.

Our focus on this chapter will be on learning Z, as Bayesian methods for learning A

(e.g., [Friedman and Koller, 2000]) can easily be combined with the methods described here

to infer G as a whole. Our problem, then, reduces to learning the structure of a bipartite

graph (see Figure 5.1).

5.3 Generative model

Our goal is to infer the dependencies between the hidden causes and the observed variables,

Z, and the values of those hidden causes on each trial, Y, from the values of the observed

variables, X. If we define a generative model specifying a distribution over X, Y, and Z,

99

α

λ εY

p

Z

X

Figure 5.2: Graphical model for hidden cause matrix factorization model

we can compute the posterior distribution over Z and Y given X using Bayes’ rule

P (Z,Y|X) =
P (X|Y,Z)P (Y)P (Z)∑

Y,Z P (X|Y,Z)P (Y)P (Z)
(5.2)

where we make the independence assumptions illustrated in Figure 5.2. We will start by

assuming K is finite, and then consider the case where K →∞.

5.3.1 A finite model

We assume that the entries of X are conditionally independent given Z and Y, and are

generated from a noisy-OR [Pearl, 1988] distribution, with

P (xi,t = 1|Z,Y) = 1− (1− λ)zi,:y:,t(1− ε) (5.3)

where zi,: is the ith row of Z, yi,: is the ith column of Y, and zi,:y:,t =
∑K

k=1 zi,kyk,t. The

baseline probability that xi,t = 1 is ε, and λ is the probability with which any of the hidden

causes is effective. This model makes sense in applications where many causes can elicit an

effect, and the likelihood of observing an effect is increased by the number of hidden causes

that are active. The medical diagnosis application we consider later in the chapter fits this

description well.

100

We assume that the entries of Y are generated independently from a Bernoulli(p) dis-

tribution,

P (Y) =
∏
k,t

pyk,t(1− p)1−yk,t (5.4)

where the product ranges over all values of k from 1 to K and all values of t from 1 to

T . This model makes only the very general assumption that the baseline “prevalence” of

all hidden causes is roughly the same. This assumption may not be appropriate for some

applications, and can be relaxed if necessary.

In specifying a distribution on Z, our goal is to generate matrices that allow multiple

hidden causes to affect the same observed variable. This characteristic is desirable in many

settings, and is exemplified by the case of medical diagnosis, where multiple diseases can

cause the same symptom. A simple process for generating such a Z would be to assume

that each hidden cause k (corresponding to a column of the matrix) is associated with a

parameter θk, and then sample the values of zik from a Bernoulli(θk) distribution for i

ranging from 1 to N . If we make the further assumption that each θk is generated from a

Beta(α
K , 1) distribution and integrate out the θk, the probability of Z is

P (Z) =
K∏

k=1

α
K Γ(mk + α

K)Γ(N −mk + 1)
Γ(N + 1 + α

K)
(5.5)

where Γ(·) is the generalized factorial function, with Γ(x) = (x − 1)Γ(x − 1), and mk =∑
i zi,k.

5.3.2 Taking the infinite limit

In non-parametric Bayesian statistics, it is common to define models with unbounded di-

mensionality by taking the infinite limit of models with finite dimensionality [Neal, 2000;

Rasmussen, 2000]. In this spirit, we can consider what happens to the model defined above

as K → ∞. The distribution on X remains well-defined, and the only values of Y with

which we need be concerned are those in rows that correspond to columns of Z for which

mk > 0. Thus, we need only consider what happens to Equation 5.5 as K →∞. If we at-

tend only to the columns for which mk > 0 and define a scheme for ordering those columns,

we obtain the distribution

P (Z) =
αK+∏2N−1

h=1 Kh!
exp{−αHN}

K+∏
k=1

(N −mk)!(mk − 1)!
N !

101

where K+ is the number of columns for which mk > 0, Kh is the number of columns whose

entries correspond to the binary number h, and HN =
∑N

i=1
1
i [Griffiths and Ghahramani,

2005].

This distribution can be shown to result from the Indian buffet process, defined in terms

of a sequence of N customers entering a restaurant and choosing from an infinite array of

dishes (corresponding to columns of Z). The first customer tries the first Poisson(α) dishes

(placing 1’s in the appropriate columns). The remaining customers then enter one by one

and pick previously sampled dishes with probability m−i,k

i , where m−i,k is the number of

customers who have already chosen the kth dish. After trying the shared dishes, each

customer also then tries the next Poisson(α
i) new dishes. The distribution that results from

this process is exchangeable: the probability of each binary matrix Z is unaffected by the

order of the customers.

5.4 Inference algorithms

Having defined a generative model, we can use Bayesian inference to infer Z and Y from

X. However, since the denominator of Equation 5.2 is an intractable sum, an approximate

inference algorithm must be used. We present two such algorithms: a RJMCMC algorithm

for the model with finite but unknown dimensionality and a Gibbs sampler for the model

with an unbounded number of hidden causes.

5.4.1 Reversible jump MCMC posterior estimation

Reversible jump MCMC is a variant of the Metropolis-Hastings algorithm that allows moves

between models of different dimensionality [Green, 1995]. The central idea is to augment

a sampler for a finite model with a “dimension-shifting” move. In our case, a standard

“birth/death” proposal would be of the following form: pick a single hidden cause (column

k of Z) and check the number of incident edges mk. If mk = 0, then remove that cause and

decrement K. If mk > 0, then add a new cause with no links, and generate the new values

of Y that will correspond to it according to the prior. Letting ξ denote the values of Z, Y,

and K, the move is accepted with probability

A(ξ∗, ξ) = min
[
1,

P (X, ξ∗)
P (X, ξ)

Q(ξ|ξ∗)
Q(ξ∗|ξ)

]
(5.6)

where ξ∗ is the proposed value, ξ is the current value, and Q(ξ∗|ξ) is the probability of

proposing ξ∗ given ξ. Making the dependency on K in our finite model explicit and defining

102

P (K) to be the prior probability of K, we can factorize P (X, ξ) into the known probabilities

P (X|Z,Y)P (Y|K)P (Z|K)P (K).

Using this proposal, a hidden cause is added with probability K+/K. An empty col-

umn is added to Z, and a corresponding row of Y is generated by sampling according to

Equation 5.4. The probability of proposing this new configuration of K, Z, and Y is thus

(K+/K)p
P

t yk,t(1 − p)
P

t(1−yk,t) where k is the index of the new column. To return to the

previous configuration we may delete any hidden cause with the same value as our pro-

posed new row of Y. The probability of choosing such a row is δ/(K + 1) where δ is the

number of rows of Y (including the new row) which are identical to the proposed new row.

Consequently, the ratio of proposal probabilities is

Q(ξ|ξ∗)
Q(ξ∗|ξ)

=
δ

K+1
K+

K p
P

t yk,t(1− p)
P

t(1−yk,t)
. (5.7)

The ratio of the probabilities of the resulting configurations needs to take into account

the difference in the probability of Y, which is just the probability of the new row of Y,

p
P

t yk,t(1 − p)
P

t(1−yk,t), the different probabilities of Z with and without the new column

(with the corresponding changes in K), and the different probabilities of K. This gives the

ratio

P (X, ξ∗)
P (X, ξ)

=
p

P
t yk,t(1− p)

P
t(1−yk,t)P (Z|K + 1)P (K + 1)
P (Z|K)P (K)

Putting together this together with Equation 5.7 gives

A(ξ∗, ξ) = min

[
1,

δ
K+1P (Z|K + 1)P (K + 1)

K+

K P (Z|K)P (K)

]
. (5.8)

A similar argument yields the acceptance probability for the proposal to delete a hidden

cause with no links

A(ξ∗, ξ) = min

[
1,

K+

K−1P (Z|K − 1)P (K − 1)
δ
K P (Z|K)P (K)

]
. (5.9)

To complete the specification of the algorithm, we need a scheme for sampling Z and Y. We

use Gibbs sampling, drawing each component of the two matrices from the distributions

P (zi,k|X,Z−i,k,Y) and P (yk,t|X,Z,Y−k,t), where Z−i,k is all values of Z except for zi,k

and Y−k,t is all of the values of the matrix Y except for yk,t. As both zi,k and yk,t are

103

binary, these probabilities can be computed by enumeration. From our generative model

and Bayes’ rule we have

P (zi,k = a|X,Z−i,k,Y)

∝ P (X|Z−i,k,Y, zi,k = a)P (zi,k = a|z−i,k)

where P (X|Z−i,k,Y, zi,k = a) is specified by Equation 5.3, and P (zi,k = a|z−i,k) results

from our prior on Z. It follows from Equation 5.5 that

P (zi,k = 1|z−i,k) = θ̄k =
m−i,k + α

K

N
(5.10)

where z−i,k is all of the entries of column k of Z except row i and m−i,k =
∑N

j 6=i zj,k.

Consequently, we obtain

P (zi,k = a|X,Z−i,k,Y) (5.11)

∝ θ̄a
k(1− θ̄k)(1−a)

T∏
t=1

(1− (1− λ)zi,:·y:,t(1− ε))|zi,k=a

where |zi,k=a means to replace zi,k with a in the preceding expression. Proceeding similarly

for yk,t gives

P (yk,t = a|Z,X,Y−k,t) (5.12)

∝ pa(1− p)1−a
N∏

i=1

(1− (1− λ)zi,:y:,t(1− ε))|yk,t=a.

This yields the RJMCMC sampler in Algorithm 8.

5.4.2 Gibbs sampler posterior estimation

When K →∞, we no longer require dimension-jumping moves, and can simply use a Gibbs

sampler to infer Y and Z. The only difference between the Gibbs sampler and the RJMCMC

algorithm outlined above is the scheme for sampling zi,k. For the the distributions required

for the Gibbs sampler refer to Equations 4.9, 4.5, and 4.6 in Chapter 4.

104

Algorithm 8 RJMCMC sampler for hidden causes
1: for r = 1, . . . , number of iterations do
2: for i = 1, . . . , N do
3: randomly select column k of Z
4: if mi,k > 0 then
5: propose adding a new cause
6: accept according to Eqn. 5.8
7: else
8: propose deleting this unlinked cause
9: accept according to Eqn. 5.9

10: end if
11: for k = 1, . . . , K do
12: sample zi,k according to Eqn. 5.11
13: end for
14: for all yk,t ∈ Y do
15: sample yk,t according to Eqn. 5.12
16: end for
17: end for
18: end for

5.5 Experiments

5.5.1 Synthetic data

We evaluated the RJMCMC algorithm for the finite model and the Gibbs sampler for the

infinite model on two tasks using simulated data. First, we examined the ability of both

algorithms to recover the true number of hidden causes used to generate a dataset. The data

were generated by fixing the number of observations, N , and varying the number of hidden

causes, K. For each value of K, 10 different datasets were generated by using rejection

sampling to draw a matrix Z of the appropriate dimensionality from the IBP, drawing Y

according to Equation 5.4, and then drawing X according to Equation 5.3. RJMCMC

and Gibbs were both initialized with either an empty Z matrix (K = 1 for RJMCMC) or

random Z and Y matrices with K = K+ = 10, and then run for 500 iterations on each

dataset. The other model parameters were fixed at T = 500, α = 3, ε = 0.01, λ = 0.9, and

p = 0.1.

Our results are shown in Figure 5.3. The Gibbs sampler slightly over-estimates the num-

ber of hidden causes, but generally produces results that are close to the true dimensionality

regardless of initialization. In contrast, RJMCMC appears to be affected by initialization.

In particular, it systematically under-estimates the true dimensionality when initialized

with K = 1. This is a result of poor mixing: while proposals to add hidden causes are

often accepted, the new values of Y associated with those causes are typically inconsistent

with the structure of X, and consequently the new causes do not obtain links to observable

105

2 4 6 8 10
0

2

4

6

8

10

12

14

16

K

E[
k]

Gibbs Sampler initialized with K=0
RJMCMC initialized with K=0
Gibbs Sampler initialized with K=10
RJMCMC initialized with K=10
Ground Truth

Figure 5.3: Learning the number of hidden causes using both RJMCMC and Gibbs sam-
pling. Each line show the mean and standard deviation of the expected value of the dimen-
sionality of the model (K for RJMCMC, and K+ for Gibbs) taken over 500 iterations of
sampling for each of 10 datasets.

nodes. The new causes are thus quickly deleted. A new cause might be generated with an

appropriate set of Y values given sufficiently many sampling iterations (see Figure 5.4), but

in a short run like that used here, slow mixing results in a strong influence of initialization.

Our second evaluation compared the ability of the two algorithms to recover specific

structures. We manually specified four Z matrices, and then generated 10 datasets for each

using the procedure outlined above with T = 500 α = 3, ε = 0.01, λ = 0.9, and p = 0.1.

Both RJMCMC and Gibbs were initialized with an empty Z matrix (K = 1 for RJMCMC).

We used two measures to evaluate performance. First, in-degree error, which we define to

be the difference between the true in-degree and the expected in-degree of the observed

nodes computed over samples. This is computed by taking the sum absolute difference

between diag(ZZT), the in-degree of the observable nodes, and diag(E[ZZT]), the expected

in-degree computed over the samples. And second, the structure error, which we define to

be the sum absolute difference between the upper triangular portion of ZZT and E[ZZT].

Each element of the upper triangular portion of ZZT is a count of the number of hidden

causes shared by a pair of observable variables, the sum difference is a general measure of

106

0

0.5

1

1.5

2
x 10

4

Ru
nt

im
e

(S
ec

.)

0

0.5

1

1.5

2
x 10

4

0

0.5

1

1.5

2
x 10

4

0

0.5

1

1.5

2
x 10

4

0

5

10

In
 D

eg
re

e
Er

ro
r

r

0

5

10

0

5

10

15

20

0

10

20

30

40

−5

0

5

St
ru

ct
ur

e
Er

ro
r

r

1 10 10
0

50
0

10
00

25
00

50
00

10
00

0 −10

−5

0

5

10

1 10 10
0

50
0

10
00

25
00

50
00

10
00

0 0

5

10

15

20

1 10 10
0

50
0

10
00

25
00

50
00

10
00

0 0

10

20

30

40

1 10 10
0

50
0

10
00

25
00

50
00

10
00

0

Gibbs
RJMCMC

Figure 5.4: Recovering causal structure with RJMCMC and Gibbs sampling. From left to
right the columns are results for a degree 1 bipartite graph (K = 6), disconnected graph
(K = 4), an “undercomplete” random graph with fewer causes than observations (K = 4),
and an “overcomplete” random graph with more causes than observations (K = 8). The
top row shows the true structures, the second row shows mean runtime in wall clock seconds
as a function of the number of iterations of sampling. The third and fourth rows show the
in-degree error and structure error for each algorithm, as defined in the main text, on the
same axis of number of iterations. Error bars are symmetric, and indicate one standard
deviation over 10 datasets.

graph dissimilarity.

The results are shown in Figure 5.4. The Gibbs sampler consistently recovers a structure

close to the truth, and does so in surprisingly few iterations. This reflects a tendency to

move quickly to a good solution, and then minimally explore the space around that solution.

The variance of the results grow slightly with more iterations, reflecting greater exploration

of the space of structures. In contrast, RJMCMC performs poorly for all but the largest

number of iterations. This is a reflection of the fact that it mixes slowly, taking a long time

to increase the dimension of a model. One other feature of the plots bears explanation: the

poor performance on the overcomplete graph is not so much a problem with the algorithms

as an indication of an unavoidable problem with identifiability in overcomplete models. For

instance, in this particular graph there is no information, short of the prior on Y, that can

107

be used to distinguish causal nodes 5 and 6 from a hypothetical single combined node.

5.5.2 Mt. Sinai stroke databank

Here we learn a model of a subset of the Mount Sinai Stroke Data Bank [Tuhrim et al.,

1991]. This data bank consists of stroke signs exhibited by patients admitted to an acute

stroke unit at Mount Sinai Hospital, together with lesion localization evaluations made

by neurologist with special stroke expertise (the data were collected from a standardized

neurological assessment including a detailed neurologic examination). In the language of

the preceding chapter, the signs are our observed variables, and the localizations are our

hidden causes. The raw data bank consisted of 38 signs and 14 localizations. Some signs

were left-right variables and some were graded in degrees of severity. For each patient, signs

were binarized in two steps. First, graded signs like decreased level of consciousness and

comprehension deficit severity were assigned a 1 if any level was indicated at all and 0 if no

indication was made. Second, for “sided” signs like visual field deficit and abnormal deep

tendon reflex we created two variables, one each for left and right, and assigned a 1 to the

variable corresponding to the side on which the sign was observed. Of the resulting 56 sign

variables, only 42 were expressed by at least one patient. The mean number of signs per

patient was 8.24 and the mean number of stroke localizations was 1.96. Every localization

was found in at least one patient, although there were five localizations that were found in

only one patient.

Stroke databank modeling results

Although the ground truth localizations were known, we inferred the localizations, Y, and

their causal relationships to the signs, Z, directly from the signs exhibited by the patients,

X, using our Gibbs sampler. In addition, we placed a Beta(1, 1) prior on λ, ε, and p,

and a Gamma(1, 1) prior on α, and sampled them as well using Metropolis updates for λ

and ε and Gibbs for p and α. These hyperparameters have interpretations: p measures

of the incidence rate of localizations (the approximate ground truth for the data bank is

p = 0.14), ε is the rate of spontaneous sign expression (noise), λ is a measure of how reliably

a localization (or combination of localizations) gives rise to a sign, and α and K together

measure of the number of hidden localizations (ground truth is K = 14).

Trace plots for the hyperparameters over 20,000 iterations of Gibbs sampling appear

in Figure 5.5. Interpretation of these results should be considered under the caveat that

there are few datapoints in this data bank, and that all the data is stroke-specific. The

108

posterior distribution on ε favored low values, suggesting that the prevalence of these signs

in the absence of a particular stroke localization in these patients is low. That values of

λ are reasonably high reflects the fact that the localizations responsible for producing a

particular sign produce that sign with high probability. The posterior distributions on p

and K favored values slightly higher and lower than the ground truth, respectively, but these

parameters should be expected to be coupled, since they influence the overall prevalence

of signs. The under-estimate of K is not unexpected, due to the paucity of data for many

localizations. In fact, there were only nine localizations exhibited by at least two patients,

providing a closer correspondence to the values favored by the sampler.

The causal structure with the highest posterior probability in our set of samples is shown

in Figure 5.6. We can attempt to interpret the hidden causes by examining the signs to which

they are connected. We showed the clusters of signs corresponding to the hidden causes

found by the algorithm to a clinical neurologist familiar with the domain, who concluded

that the localizations were somewhat general but not inappropriately confounded. These

observations came with the caveat that the loss of degree information and the abridgement

of the typical clinical sign and localization domain made precise localizations difficult. As a

further encouraging sign, we note that the data bank contained no bilateral stroke sufferers,

and the recovered graph reflects this by correctly separating signs that are caused by infarcts

in each hemisphere.

5.6 Discussion

Our results suggest a number of future directions. First, while our focus here was on the

case where p and λ were shared by all hidden causes, variations on the algorithm we describe

could be applied in the case where these hyperparameters vary across causes, extending the

applicability of the model. Second, the slow mixing exhibited by RJMCMC requires further

investigation. While birth/death proposals of the kind we used here are common, it may be

possible to develop a faster-mixing proposal by drawing inspiration from the Gibbs sampler

for our non-parametric model, adding and deleting nodes with a single link attached.

The non-parametric Bayesian methods explored in this chapter make it possible to

learn Bayesian networks with infinitely many nodes. While this might seem intractable at

first glance, assuming that the number of nodes is unbounded actually removes the formal

problems involved in inferring hidden causes, and leads to a simple algorithm with broad

applicability.

109

0

0.05

ε

0.6

0.8

λ

0

5

α

0

0.5

p

0.5 1 1.5 2

x 10
4

5

10

15

20

K
+

0 0.5 1

P(
λ)

0 0.5 1

P(
ε)

0 0.5 1
P(

p)

0 5

P(
α)

0 10 20

P(
K

+
|..

.)

Figure 5.5: Trace plots and histograms for the Gibbs sampler applied to the signs exhibited
by 50 stroke patients. The left column shows the current value of ε, λ, p, α, and K+ as the
sampler progressed, where K+ is obtained by examining the current Z sample. The right
column shows histograms of the same variables computed over the samples.

110

de
cl
oc
−d

eg
re
e

di
so
rie

nt
ed

−d
eg

re
e

dy
sp
ra
xi
a

he
m
in
eg

le
ct
−s
id
e−

rig
ht

he
m
in
eg

le
ct
−s
id
e−

le
ft

de
ni
al

co
m
pd

ef
−s
ev
er
ity

no
n�

ue
nc

y−
se
ve
rit
y

re
pe

tit
io
n−

se
ve
rit
y

an
om

ia
−s
ev
er
ity

co
ga

bn

vf
−d

e�
ci
t−
si
de

−t
yp

e−
le
ft

vf
−d

e�
ci
t−
si
de

−t
yp

e−
rig

ht

po
or
ok

n−
di
re
ct
io
n−

le
ft

po
or
ok

n−
di
re
ct
io
n−

rig
ht

ny
st
ag

m
us
−t
yp

e

ab
np

up
ils
−s
id
e−

ty
pe

pr
d−

si
de

ab
ne

om
−t
yp

e−
hg

az
e−

le
ft

bn
eo

m
−t
yp

e−
hg

az
e−

rig
ht

pt
os
is
−s
id
e

fa
ce
nu

m
b−

si
de

−l
ef
t

fa
ce
nu

m
b−

si
de

−r
ig
ht

fa
ci
al
−s
id
e−

ty
pe

−l
ef
t

fa
ci
al
−s
id
e−

ty
pe

−r
ig
ht

sw
al
lo
w
−s
ev
er
ity

ga
g−

se
ve
rit
y

to
ng

w
ea
k−

si
de

dy
sa
rt
hr
ia
−s
ev
er
ity

w
ea
kn

es
s−
ty
pe

−l
ef
t

w
ea
kn

es
s−
ty
pe

−r
ig
ht

at
ax
ia
−t
yp

e

de
cr
am

−s
id
e−

le
ft

de
cr
am

−s
id
e−

rig
ht

ab
nd

tr
s−
si
de

−l
ef
t

ab
nd

tr
s−
si
de

−r
ig
ht

ba
bs
−s
id
e−

le
ft

ba
bs
−s
id
e−

rig
ht

ga
it−

ty
pe

se
ns
ed

ef

ds
s−
si
de

−l
ef
t

ds
s−
si
de

−r
ig
ht

pp
−s
id
e−

le
ft

pp
−s
id
e−

rig
ht

to
uc
h−

si
de

−l
ef
t

to
uc
h−

si
de

−r
ig
ht

te
m
p−

si
de

−l
ef
t

te
m
p−

si
de

−r
ig
ht

po
sl
os
s−
si
de

−l
ef
t

po
sl
os
s−
si
de

−r
ig
ht

vi
bl
os
s−
si
de

−l
ef
t

vi
bl
os
s−
si
de

−r
ig
ht

tw
op

oi
nt
−s
id
e−

le
ft

tw
op

oi
nt
−s
id
e−

rig
ht

ag
ra
ph

−s
id
e−

le
ft

ag
ra
ph

−s
id
e−

rig
ht

Figure 5.6: Causal structure with highest posterior probability. Two grouping of signs are
highlighted. In solid black, we find a grouping of poor optokinetic nystagmus, lack of facial
control, weakness, decreased rapid alternating movements, abnormal deep tendon reflexes
all on the left side, consistent with a right frontal/parietal infarct. In dashed black, we
find a grouping of comprehension deficit, non-fluency, repetition, and anomia generally
consistent, in part, with a left temporal infarct.

Chapter 6

Conclusion and Future Work

Latent variable modeling is natural in settings where causal influences are not directly

observable. Nonparametric Bayesian modeling is natural when the complexity of the model

cannot be prespecified or should grow with the data. In this dissertation we have illustrated

the utility of these approaches by demonstrating theoretical and practical improvements to

spike sorting and subsequent neural data analyses. We also have developed a new NPB

hidden causal structure model and demonstrated it in modeling neurological data.

There are several exciting avenues of future research that stem from the findings in this

dissertation. The first are practical improvements to the spike sorting approach outlined

in Chapter 3. Among them, accounting for refractory periods, modeling action poten-

tial waveform shape change over time, deconvolving overlapping spikes, and handling the

appearance and disappearance of neurons. Specific approaches to each of these were men-

tioned in Chapter 3. On a more theoretical note, our comparison to reversible jump Markov

chain Monte Carlo approaches was cursory. In the broader literature there is unfortunately

little in the way of direct comparison between RJMCMC approaches and nonparametric ap-

proaches, excepting [Green and Richardson, 2001]. A more careful empirical and theoretical

comparison of these techniques is warranted.

With respect to the binary hidden causal structure model and estimation algorithms of

Chapter 4 there are a number of avenues of improvement to explore. The most immediate

is the adoption of the particle resampling approach of Fearnhead and Clifford [2003] to

the particle filter we developed for our nonparametric Bayesian matrix factorization model.

This is straightforward to do and necessary for practical real-world application of our model.

Additionally, demonstrating the model in more complex and data intensive application

domains is of importance.

111

112

Thinking more broadly there is a large class of nonparametric Bayesian latent variable

models that can be developed on the foundation of this and related work. A nonparametric

Bayesian extension to nonnegative matrix factorization (NMF) [Lee and Seung, 2000] would

address the model selection problem in NMF.

Additionally, a more full investigation of the interplay between sequential and batch

posterior estimation in nonparametric Bayesian modeling is warranted. There is little prior

work on moving from one posterior representation to the other [MacEachern et al., 1999].

Stick breaking representations and split merge samplers add yet another dimension of flex-

ibility to mixed estimation schemes. By combining and leveraging the best of all of these

sampling schemes it should be possible to greatly increase the practical applicability of NPB

modeling approaches to real world problems.

One issue in particular confounds all models based on the Dirichlet process which is the

tendency for such models to overestimate the number of hidden classes, or more generally

to strongly prefer a logarithmic distribution over class cardinalities. While this may be

appropriate for a large number of applications, it is certainly not so for all. Examing

this feature of models based on the Dirichlet process and thinking about ways to impose

different assumptions about the distribution of class cardinalities (perhaps uniform) may be

important for successful development of NPB approaches for different application domains.

Finally, in this dissertation we have not considered in any great depth when and if NPB

modeling is the right thing to do; instead we have demonstrated that for some applica-

tions such as modeling neural data doing so has its benefits. Unfortunately NPB modeling

remains computationally expensive and many of the underlying assumptions may be inap-

propriate in some application domains, so this dissertation should not be interpretted as an

unabashed advocation of NPB modeling.

That said we believe that NPB modeling approaches represent the best way forward for

attacking many of the most interesting problems faced by the machine learning community

today. For instance humans somehow learn in an unsupervised way how to identify both

words from sound waves and objects from light impinging on the retina, but both of these

tasks remain beyond the milieu of machine learning. It is probable that each of these

processes requires automatic identification of groups of statistically similar phenomena,

whether spoken words that usually sound nearly the same or objects that exhibit similar

visual characteristics. Development of NPB modeling approaches for these applications is

in its earliest stages and a great deal of work remains to be done; however, each problem

exhibits characteristics that make them excellent candidates for NPB modeling.

Complimentarily NPB modeling is an interesting and elegant framework for addressing

113

questions about how biological computation achieves some of the things we often take for

granted. For instance attempts to figure out a neurophysiological mechanism for robustly

identifying groups of statistically similar observations might benefit from related work in

the theory of nonparametric Bayesian modeling. As an example, good progress has been

made in showing how inference algorithms such as belief propagation might be implemented

in neural circuitry, but, for instance, neurophysiologically plausible mechanisms for learning

the underlying graphical models remain elusive. Might nonparametric Bayesian approaches

to this problem (i.e. inferring the existence and cardinality of latent variables) help guide

our search for such a physical mechanism? We believe that this is quite likely to be the

case.

Bibliography

T. N. Aflalo and M. S A. Graziano. Possible origins of the complex topographic organization

of motor cortex: Reduction of a multidimensional space onto a two-dimensional array.

Journal of Neuroscience, 26(23):6288–6297, 2006.

C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric

problems. The Annals of Statistics, 2:1152–1174, 1974.

S. Barnett. Matrix Methods for Engineers and Scientists. McGraw-Hill, 1979.

D. Blackwell and J. MacQueen. Ferguson distributions via Polya urn schemes. The Annals

of Statistics, 1:353–355, 1973.

T. J. Blanche, M. A Spacek, J. F. Hetke, and N. V. Swindale. Polytrodes: High-density

silicon electrode arrays for large-scale multiunit recording. Journal of Neurophysiology,

93:2987–3000, 2005.

D. Blei and M. Jordan. Variational inference for Dirichlet process mixtures. Journal of

Bayesian Analysis, 1(1):121–144, 2005.

E. Brown, R. Kass, and P. Mitra. Multiple neural spike train data analysis: state-of-the-art

and future challenges. Nature Neuroscience, 7:456–461, 2004.

C. A. Bush and S. N. MacEachern. A semi-parametric Bayesian model for randomized

block designs. Biometrika, 83:275–286, 1996.

CKI. http://www.cyberkineticsinc.com/, 2005.

A. C. Courville, N. D. Daw, and D. S. Touretzky. Similarity and discrimination in classical

conditioning: A latent variable account. In Advances in Neural Information Processing

Systems, Cambridge, MA, 2005. MIT Press.

114

115

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, B, 39:1–38, 1977.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.

Springer, 2001.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley, New York, 2000.

G. Elidan and N. Friedman. Learning hidden variable networks: The information bottleneck

approach. Journal of Machine Learning Research, 6:81–127, 2005.

M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures.

Journal of the American Statistical Association, 90:577–588, 1995.

P. Fearnhead. Particle filters for mixture models with an unknown number of components.

Journal of Statistics and Computing, 14:11–21, 2004.

P. Fearnhead and P. Clifford. Online inference for well-log data. Journal of the Royal

Statistics Society Series B, 65:887–899, 2003.

M. S. Fee, P. P. Mitra, and D. Kleinfeld. Automatic sorting of multiple unit neuronal signals

in the presence of anisotropic and non-gaussian variability. J. Neuroscience Methods, 69:

175–188, 1996.

T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics,

1:209–230, 1973.

T. S. Ferguson. Bayesian density estimation by mixtures of normal distributions. In

M. Rizvi, J. Rustagi, and D. Siegmund, editors, Recent advances in statistics, pages

287–302. Academic Press, New York, 1983.

C. Fraley and A. E. Raftery. Bayesian regularization for normal mixture estimation and

model-based clustering. Technical Report 05/486, Department of Statistics, University

of Washington, Seattle, Washington, 2005.

N. Friedman and D. Koller. Being Bayesian about network structure. In Proceedings of

the 16th Annual conference on uncertainty in AI, pages 201–210. Morgan Kaufmann,

Stanford, CA, 2000.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis. Chapman

& Hall, New York, 1995.

116

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6:721–741, 1984.

A. Georgopoulos, J. Kalaska, R. Caminiti, and J. Massey. On the relations between the

direction of two-dimensional arm movements and cell discharge in primate motor cortex.

Journal of Neuroscience, 2:1527–1537, 1982.

A. Georgopoulos, A. Schwartz, and R. Kettner. Neuronal population coding of movement

direction. Science, 233:1416–1419, 1986.

D. Görür, C. R. Rasmussen, A. S. Tolias, F. Sinz, and N.K. Logothetis. Modeling spikes

with mixtures of factor analyzers. In Proceeding of the DAGM Symposium, pages 391–398.

Springer, 2004.

D. Görür, F. Jäkel, and C. R. Rasmussen. A choice model with infinitely many latent

features. In Proceeding of the 23rd International Conference on Machine Learning, 2006.

P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika, 82:711–732, 1995.

P. Green and S. Richardson. Modelling heterogeneity with and without the Dirichlet process.

Scandinavian Journal of Statistics, 28:355–377, 2001.

J.E. Griffin and M.F.J. Steel. Order-based dependent Dirichlet processes. Journal of the

American Association of Statistics, 101(473):179–194, 2006.

T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet

process. Technical Report 2005-001, Gatsby Computational Neuroscience Unit, 2005.

Tom Griffiths and Zoubin Ghahramani. Infinite latent feature models and the Indian buffet

process. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information

Processing Systems 18. MIT Press, Cambridge, MA, 2006.

Peter Grünwald. The Minimum Description Length Principle. MIT Press, 2007.

K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, and G. Buzsáki. Accuracy of tetrode spike

separation as determined by simultaneous intracellular and extracellular measurements.

Journal of Neurophysiology, 81(1):401–414, 2000.

117

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.

Biometrika, 57(1):97–109, 1970.

D. Heckerman. A tutorial on learning with Bayesian networks. In Michael I. Jordan, editor,

Learning in Graphical Models, pages 301–354. MIT Press, Cambridge, MA, 1998.

E. Hulata, R. Segev, and E. Ben-Jacob. A method for spike sorting and detection based on

wavelet packets and Shannon’s mutual information. Journal of Neuroscience Methods,

117:1–12, 2002.

S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet

process mixture model. Journal of Computational and Graphical Statistics, 13(1):158–

182, March 2004.

I. T. Jolliffe. Principal component analysis. Springer, New York, 1986.

Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul. An

introduction to variational methods for graphical models. Machine Learning, 37:183–

233, 1999.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of

the American Society of Mechanical Engineers, Journal of Basic Engineering, 82:35–45,

1960.

KlustaKwik. http://klustakwik.sourceforge.net/, 2000.

K. P. Koerding and D. M. Wolpert. Bayesian integration in sensorimotor learning. Nature,

427:244–248, 2004.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factoriza-

tion. Nature, 401:788–791, 2000.

M. S. Lewicki. A review of methods for spike sorting: the detection and classification of

neural action potentials. Network, 9(4):R53–78, 1998.

J. S. Liu. Monte Carlo strategies in scienfitic computing. Springer Verlag, New York, NY,

2001.

S. MacEachern and P. Muller. Estimating mixture of Dirichlet process models. Journal of

Computational and Graphical Statistics, 7:223–238, 1998.

118

S. N. MacEachern, M. Clyde, and J. Liu. Sequential importance sampling for nonparametric

Bayes models: the next generation. The Canadian Journal of Statistics, 27:251–267, 1999.

M. Meila. Comparing clusterings. Technical Report 418, Department of Statistics, Univer-

sity of Washington, Seattle, Washington, 2002.

A. W. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-

tions of state calculations by fast computing machines. Journal of Chemical Physics, 21:

1087–1092, 1953.

B. Mirkin. Mathematical classification and clustering. Kluwer Academic Publishers, New

York, 1996.

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal

of Computational and Graphical Statistics, 9:249–265, 2000.

R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71–113,

1992.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical

Report CRG-TR-93-1, University of Toronto, 1993.

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Technical

Report 9815, Department of Statistics, University of Toronto, 1998.

R. M. Neal and G. E. Hinton. A view EM algorithm that justifies incremental, sparse,

and other variants. In M. I. Jordan, editor, Learning in graphical models. MIT Press,

Cambridge, MA, 1998.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In

Advances in Neural Information Processing Systems 14, 2001.

D.P. Nguyen, L.M. Frank, and E.N. Brown. An application of reversible-jump Markov chain

Monte carlo to spike classification of multi-unit extracellular recordings. Network, 14(1):

61–82, 2003.

G. Orban, J. Fiser, R. N. Aslin, and M. Lengyel. Bayesian model learning in human visual

perception. In Advances in Neural Information Processing Systems 18, pages 1043–1050,

Cambridge, MA, 2006. MIT Press.

119

J. Pearl. Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Francisco,

CA, 1988.

J. Pitman. Combinatorial stochastic processes, 2002. Notes for Saint Flour Summer School.

Plexon Inc. http://www.plexoninc.com/OFS.htm, 2003.

G. Radons, J. D. Becker, B. Dülfer, and J. Krüger. Analysis, classification, and coding of

multielectrode spike trains with hidden markov models. Biological Cybernetics, 71:359,

1994.

C. Rasmussen. The infinite Gaussian mixture model. In Advances in Neural Information

Processing Systems 12. MIT Press, Cambridge, MA, 2000.

S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown number

of components. Journal of the Royal Statistical Society, 59(4):731–792, 1997.

M. Sahani, J. S. Pezaris, and R. A. Andersen. On the separation of signals from neighboring

cells in tetrode recordings. In Advances in Neural Information Processing Systems 10,

pages 222–228. MIT Press, 1998.

A. N. Sanborn, T. L. Griffiths, and D. J. Navarro. A more rational model of categorization.

In Proceedings of the 28th Annual Conference of the on Cognitive Science Socity, 2006.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461–464, 1978.

M. Serruya, N. Hatsopoulos, M. Fellows, L. Paninski, and J. Donoghue. Robustness of

neuroprosthetic decoding algorithms. Biological Cybernetics, 88(3):201–209, 2003.

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue. Brain-

machine interface: Instant neural control of a movement signal. Nature, 416:141–142,

2002.

J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650,

1994.

S. Shoham, M. R. Fellows, and R. A. Normann. Robust, automatic spike sorting using

mixtures of multivariate t-distributions. Journal of Neuroscience Methods, 127(2):111–

122, 2003.

120

M. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and

G. Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR

knowledge base I. the probabilistic model and inference algorithms. Methods of Informa-

tion in Medicine, 30:241–255, 1991.

N. Srebro and S. Roweis. Time-varying topic models using dependent Dirichlet processes.

Technical Report UTML TR 2005-003, University of Toronto, 2005.

E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Describing visual scenes using

transformed Dirichlet processes. In Advances in Neural Information Processing Systems,

pages 1297–1304, Cambridge, MA, 2005. MIT Press.

S. Takahashi, Y. Anzai, and Y. Sakurai. Automatic sorting for multi-neuronal activity

recorded with tetrodes in the presence of overlapping spikes. Journal of Neurophysiology,

89:2245–2258, 2003.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes.

Technical Report 653, Department of Statistics, University of California at Berkeley,

2004.

S. Tuhrim, J. Reggia, and S. Goodall. An experimental study of criteria for hypothesis

plausibility. Journal of Experimental and Theoretical Artificial Intelligence, 3:129–144,

1991.

Y. Weiss, E. P. Simoncelli, and E. H. Adelson. Motion illusions as optimal percepts. Nature

Neuroscience, 5:598–604, 2002.

M. West, P. Muller, and M. Escobar. Hierarchical priors and mixture models, with applica-

tion in regression and density estimation. In P. Freeman and A. Smith, editors, Aspects

of Uncertainty, pages 363–386. Wiley, New York, 1994.

F. Wood and T. L. Griffiths. Particle filtering for nonparametric Bayesian matrix factoriza-

tion. In Advances in Neural Information Processing Systems, page to appear, Cambridge,

MA, 2007. MIT Press.

F. Wood, M. J. Black, C. Vargas-Irwin, M. Fellows, and J. P. Donoghue. On the variability

of manual spike sorting. IEEE Transactions on Biomedical Engineering, 51(6):912–918,

June 2004a.

121

F. Wood, M. Fellows, J. P. Donoghue, and M. J. Black. Automatic spike sorting for neural

decoding. In Proceedings of the 27th IEEE Conference on Engineering in Medicine and

Biological Systems, pages 4126–4129, 2004b.

F. Wood, S. Goldwater, and M. J. Black. A non-parametric Bayesian approach to spike

sorting. In Proceedings of the 28th IEEE Conference on Engineering in Medicine and

Biological Systems, pages 1165–1169, 2006a.

F. Wood, T. L. Griffiths, and Z. Ghahramani. A non-parametric Bayesian method for

inferring hidden causes. In Proceedings of the 22nd Conference on Uncertainty in Artificial

Intelligence, pages 536–543, 2006b.

W. Wu, M. J. Black, Y. Gao, E. Bienenstock, M. Serruya, A. Shaikhouni, and J. P.

Donoghue. Neural decoding of cursor motion using a Kalman filter. In Advances in

Neural Information Processing Systems 15, pages 133–140. MIT Press, 2003.

W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black. Bayesian population

coding of motor cortical activity using a kalman filter. Neural Computation, 18:80–118,

2005.

