
Abstract of “Exploiting Planarity for Network Flow and Connectivity Problems” by Glencora Bor-

radaile, Ph.D., Brown University, May 2008.

By restricting the input to a problem, it often becomes possible to design more accurate or more

efficient algorithms to solve that problem. In this thesis we restrict our attention to planar graphs

and achieve both these goals. Planar graphs exhibit many structural and combinatorial properties

that enable the design of good algorithms. These properties include: corresponding to every planar

graph there is a dual planar graph; the dual of the complement of the edges of a spanning tree form

a spanning tree of the dual graph; a set of edges is a cycle if and only if the dual edges form a

cut; cycles can be said to enclose edges, faces and vertices in the planar embedding; paths can be

compared as to their relative embedding.

We capitalize on these properties to design (a) faster algorithms for polynomial-time-solvable network

flow problems and (b) algorithms with better approximation guarantees for NP-hard connectivity

problems. We give a conceptually simple O(n log n)-time algorithm for finding the maximum st-

flow in a directed planar graph, proving a theorem that was incorrectly claimed over a decade ago.

We also show how to compute the minimum cut between all pairs of vertices on a common face

of a planar graph in linear time. We give the first polynomial-time approximation schemes for the

Steiner-tree and 2-edge-connected subgraph problems. Both schemes are NP-hard in planar graphs

and admit no PTAS in general graphs. Our schemes run in O(n log n) time.

Exploiting Planarity for Network Flow and Connectivity Problems

by

Glencora Borradaile

Honors B.Sc. Applied Mathematics, University of Western Ontario, 2002

Sc.M. Computer Science, Brown University, 2004

Submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in the

Department of Computer Science at Brown University

Providence, Rhode Island

May 2008

c© Copyright 2006, 2007, 2008 by Glencora Borradaile

This dissertation by Glencora Borradaile is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Philip Klein, Director

Recommended to the Graduate Council

Date
Claire Mathieu, Reader

Date
Robert Tarjan, Reader
(Princeton University)

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Biography

Glencora Borradaile was born during a snowstorm in Thunder Bay, Ontario on the twelfth of De-

cember, 1980. She is the daughter of a teacher and a professor and the sister of a biochemist and

an economist. She attended the University of Western Ontario from 1998 to 2002, earning an Hon-

ours Bachelor of Science degree in Applied Mathematics and was awarded a Gold Medal as the top

graduate of the program. She completed her Masters in 2004 while studying towards a doctorate

in Computer Science at Brown University. She has received two undergraduate research awards,

two graduate scholarships and a postdoctoral fellowship from the Natural Science and Engineering

Research Council of Canada. While at Brown University, she has received a Kanellakis Graduate

Fellowship, a Brown University Dissertation Fellowship and a Rowland Lloyd Graduate Award.

When she isn’t at her white board, she’s being either athletic or culinary.

iv

Acknowledgments

Philip Klein helped me rediscover my love for research and I look forward to his advice in the years

to come as I grow to become his colleague. Claire Mathieu has been more than a committee member;

she has been a role-model. I thank Robert Tarjan, whose research is woven throughout this thesis,

for serving on my committee.

I thank the theory-lunch crowd at Brown and the theory community at large for always providing

a welcoming atmosphere. Special thanks go to Aparna Das, Bernard Haeupler, Nick Harvey, Crystal

Kahn, Warren Schudy and Christopher Wilson who commented on parts of this dissertation.

I am grateful for the financial support of the Natural Science and Engineering Research Council

of Canada, the Rosh Foundation, the National Science Foundation, the Canadian Scholarship Trust

and General and Mrs. Kanellakis.

To my family, who supported me.

To my friends, who kept me sane.

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Contributions and organization . 2

1.2 Preliminaries . 3

1.2.1 Graphs . 3

1.2.2 Vector spaces . 4

1.2.3 Planar graphs . 5

1.2.4 Duals of planar graphs . 5

1.2.5 Clockwise and leftmost . 8

1.2.6 Tree-cut operation . 10

2 Network Flow Problems 11

2.1 Maximum flow algorithms . 12

2.2 History of planar maximum flow . 13

2.2.1 Toward an O(n log n) algorithm . 14

2.3 Leftmost-path algorithm . 15

2.3.1 Leftmost circulations and flows . 16

2.3.2 Unusability Theorem . 17

2.3.3 Implementation of MaxFlow . 25

2.4 Multiple minimum cuts . 29

2.4.1 Minimum cuts between boundary vertices of a planar graph 31

2.4.2 Running time of BoundaryCutTree . 31

2.4.3 Correctness of BoundaryCutTree . 31

2.4.4 A more compact cut tree . 33

2.5 Open Problems . 35

vi

3 Connectivity Problems 37

3.1 Algorithms for connectivity problems . 38

3.1.1 Polynomial-time approximation schemes . 38

3.1.2 Polynomial-time solvable cases . 39

3.1.3 New approximation schemes for planar connectivity problems 40

3.2 Brick decomposition . 40

3.2.1 Construction of the mortar graph . 41

3.2.2 Running time of BrickDecomposition . 42

3.2.3 Properties of the mortar graph . 42

3.3 Structural properties of bricks . 43

3.3.1 Bricks . 44

3.3.2 Simplifying trees with leaves on ǫ-short paths 46

3.3.3 Simplifying forests inside bricks (Proof of Theorem 3.3.3) 52

3.3.4 Simplifying subgraphs of 2-EC multi-subgraphs inside bricks 56

3.4 The Structure Theorem . 63

3.4.1 Portals . 63

3.4.2 Portal-connected graph . 64

3.5 Approximation via spanner construction . 67

3.5.1 Spanner Construction . 68

3.5.2 Correctness . 69

3.6 Approximation via the brick decomposition . 70

3.6.1 Parcels . 70

3.6.2 New requirements . 73

3.7 Dynamic program . 75

3.7.1 Defining the recursion tree . 76

3.7.2 The dynamic programming table . 77

3.7.3 Steiner tree . 78

3.7.4 2-EC . 80

3.7.5 Correctness . 82

3.8 An exact algorithm for the boundary 2-EC problem 83

3.9 Open Problems . 85

A Notation 88

Bibliography 89

⋆ Parts of this thesis have appeared in print before [15, 16, 19]. I thank my coauthors, Philip Klein

and Claire Mathieu, for their permission in using portions of these papers in this thesis.

vii

List of Tables

1.1 TreeCut Algorithm . 10

2.1 Planar Maximum-Flow and Minimum-Cut Algorithms 14

2.2 LeftmostCirculation Algorithm . 16

2.3 Abstract MaxFlow Algorithm . 17

2.4 Implemented MaxFlow Algorithm . 26

2.5 BoundaryCutTree Algorithm . 31

2.6 GomoryHuEdges Algorithm . 34

3.1 BrickDecomposition Algorithm . 42

3.2 DecomposeConnectivity Algorithm . 59

3.3 PortalSelection Algorithm . 64

3.4 A framework for designing planar PTAS . 68

3.5 ConnectivitySpanner Algorithm . 69

3.6 ParcelDecomposition Algorithm . 71

3.7 NewRequirements Algorithm . 74

3.8 The filling procedure for Steiner tree and 2-EC dynamic programs 78

3.9 Boundary2EC Algorithm . 83

viii

List of Figures

1.1 A planar graph and its dual . 5

1.2 Interdigitating spanning trees . 6

1.3 Cycle-cut duality . 6

1.4 Cycle orientation . 7

1.5 Crossing paths and cycles . 8

1.6 A non-self-crossing cycle have faces bounded by subpaths of the cycle 10

1.7 Cutting open a planar graph along a tree . 10

2.1 Flow can be removed from an arc in the leftmost-path algorithm 18

2.2 An obstruction for proving the Unusability Theorem 19

2.3 Showing that there is no flow across an obstruction 21

2.4 Flow paths to and from an obstruction do not intersect 22

2.5 Using an obstruction to prove the Unusability Theorem 24

2.6 The creation of an obstruction . 24

2.7 Persistence of obstructions in proving the Unusability Theorem 25

2.8 An iteration of MaxFlow . 27

2.9 Termination of MaxFlow . 28

2.10 A Gomory-Hu cut-equivalent tree . 30

2.11 A fundamental cut . 33

2.12 A compact tree representing boundary-to-boundary minimum cuts 35

3.1 The mortar graph and bricks . 41

3.2 Strips and columns of the brick decomposition . 41

3.3 The set of bricks corresponding to a mortar graph 44

3.4 Construction of a brick . 45

3.5 Tree replacements reduce the number of leaves . 47

3.6 Three paths in a tree for payment of a tree replacement 47

3.7 Edge-sets of a tree needed for the analysis of Lemma 3.3.6 48

3.8 Two paths in a tree for payment of a tree replacement 49

3.9 A tree with two roots . 50

3.10 Tree transformation for Lemma 3.3.7 . 51

ix

3.11 South-to-north paths in forest embedded in a brick 54

3.12 Breaking a graph into trees with leaves on a single path 55

3.13 Cycles block 2-EC edges . 57

3.14 Crossing edge-disjoint paths imply more edge-disjoint paths 58

3.15 Decomposing a 2-EC graph into trees . 61

3.16 Maintaining 2 edge-disjoint paths between boundary vertices 63

3.17 Construction of the portal connected graph . 64

3.18 The brick insertion operation . 65

3.19 Breadth-first search levels correspond to cycles . 75

3.20 Brick contraction . 76

3.21 A configuration for the Steiner-tree dynamic program 79

3.22 A configuration for the 2-EC dynamic program . 80

3.23 Existence of a tree enclosed by a cycle . 84

3.24 Duplicate edges are required . 85

3.25 The Steiner forest problem . 86

x

Chapter 1

Introduction

Claire Mathieu once said that planar graphs are treacherous. Centuries earlier, Euler discovered

the same thing. In 1750, Euler set out to prove what is now known as the Euler Characteristic for

Polyhedra:

n − m + f = 2

where n is the number of vertices, m the number of edges, and f the number of faces of a polyhedron.

Attempting to characterize the polyhedra for which it is true is daunting, and, indeed, forms the

basis of Lakatos’ book on mathematical logic [76]. Euler, in the first of two papers on this matter,

proposed the characteristic but then admits, “I have not been able to find a firm proof of this

theorem.” [39, 94] In the second paper, Euler thought he proved the characteristic for all polyhedra,

when in fact he only proved it for convex polyhedra [38, 95]. Unbeknownst to Euler, Descartes

had written, a century earlier, the very proof that had eluded Euler. Descartes proved a rule

that can easily be transformed into the Euler Characteristic [28] for the relevant polyhedra. Sadly,

Descartes’ original manuscripts were lost, despite having been dropped into a river, rescued, dried

and ultimately transcribed by Leibniz. The proof was unknown until the copy was rediscovered in

1860. Admittedly, it is much easier to prove the characteristic for connected planar graphs, where

one need not worry about aberrant polyhedra.

Planar graphs had also been the focus of Euler’s 1741 Bridges-of-Königsberg paper, a paper that

may have single-handedly launched the field of topology. The people of Königsberg wondered if they

could walk through their town in such a way that each of the seven bridges is crossed exactly once.

From the town’s map, Euler generated a (planar) graph with an edge for each bridge and proved

that there exists a path on a graph which travels along each edge exactly once if and only if the

graph is connected and has zero or two vertices of odd degree [37]. Of course, this property is also

true for general graphs, but is perhaps the earliest motivation that studying planar graphs can lead

to wonderful insights.

1

2

1.1 Contributions and organization

In this thesis we study ways in which planarity can be exploited to design algorithms that outperform

their general-graph counterparts. The last 50 years has seen a wealth of research in this vein. For

example, the existence of small, balanced separators [77] in planar graphs gives efficient divide-and-

conquer algorithms for shortest paths [55, 40] (among other problems). Here we use other properties

of planar graphs, such as the existence of a dual planar graph, the relative orientation of paths,

and combinatorial embeddings to find better approximation algorithms than are possible in general

graphs and to find more efficient exact algorithms than are known for general graphs.

The thesis is broken into two main parts: Chapter 2 concerns network flow problems and Chap-

ter 3 concerns connectivity problem. Each of these chapters is self-contained and for that reason,

we forgo a detailed introduction to the relevant chapter. All of our results are deterministic. We

summarize our results here:

Maximum directed st-flow Fifty years ago, Ford and Fulkerson gave an algorithm for finding

the maximum st-flow in an st-planar graph [41]. We generalize this algorithm to handle any directed

planar graph in O(n log n)-time [16], proving a theorem incorrectly claimed by Weihe [108]. This

improves on an O(n log3 n log C) running time using previously known techniques [40, 79] (where C

is the sum of the capacities). The best algorithm for general graphs requires O(n3/2 log2 n) time for

planar graphs [46]. Our algorithm is used as a black box for an algorithm that computes the global

minimum cut in a planar graph [22]. It is also used a subroutine for finding a maximum st-flow in

a non-planar graph that is embedded in the plane such that only k pairs of edges are crossing [56].

Multiple undirected minimum cuts We show that, given a face f of an undirected planar

graph, one can compute the minimum cut between each pair of vertices adjacent to f in linear

time [14]. This improves on a quadratic running time using previously known techniques [48, 51, 55].

Steiner tree We give the first polynomial-time approximation scheme for the Steiner-tree problem

in undirected planar graphs [15, 19]. The algorithm runs in O(n log n) time. The previous best

approximations are constant-factor approximations for general graphs. It has been shown that

no PTAS exists for general graphs [11]. Our algorithm has been used as a black box to obtain

an O(n log n)-time approximation scheme for finding a Steiner tree in the Euclidean plane in the

presence of obstacles [81].

2-edge-connected multi-subgraphs Given a set of connectivity requirements r(x) ∈ {0, 1, 2}
defined for each vertex x, the 2-edge-connected multi-subgraph problem is: find a minimum-weight

multi-subgraph that contains at least min{r(x), r(y)} edge disjoint paths between every pair of

vertices x, y. We give the first polynomial-time approximation scheme for this problem in undirected

planar graph [17]. The algorithm is an extension of the previously mentioned Steiner-tree algorithm

and has the same running time. Previous work only considered the case where the solution spans all

3

the vertices of the input graph (i.e. r(x) ∈ {1, 2}) [7, 6]. We also give an exact linear-time algorithm

for the case when the vertices with non-zero requirements are on the boundary of a single face.

Throughout this document we state the date of the first publicly-available peer-reviewed publica-

tions but cite the most complete publications.

1.2 Preliminaries

We conclude the introduction with basic graph notation and properties of planar graphs that will be

used throughout the paper. The reader familiar with these topics may feel free to skip the remainder

of this chapter (Chapter 2 begins on page 11). However the comparator left of and the operation

TreeCut will be covered in this section and may not be familiar to most readers. The notation

used in this paper is summarized in Appendix A (page 88).

1.2.1 Graphs

A graph G is either a directed graph 〈V, A〉 or an undirected graph 〈V, E〉, where A and E are the

sets of arcs and edges respectively. For an arc a ∈ A, we define two oppositely directed darts, one in

the same orientation as a (which we sometimes identify with a) and one in the opposite orientation.

Similarly for an edge e ∈ E, we define two oppositely directed darts.

We define rev (·) to be the function that takes each dart to the corresponding dart in the opposite

direction. Formally, the dart set is A×{±1}, and rev (〈a, i〉)) = 〈a,−i〉. The head and tail of a dart

d in a graph G (written headG(d) and tailG(d)) are such that the dart is oriented from tail to head.

We may omit the subscript when doing so introduces no ambiguity. We may use uv to indicate a

dart d such that u = tail(d) and v = head(d).

An x-to-y walk is a sequence of darts d1 . . . dk such that headG(d1) = x, tailG(dk) = y and, for

i = 2, . . . , k, headG(di−1) = tailG(di). We call a is walk in which no dart appears more than once a

path. We may interpret a dart as a path. An empty sequence represents the trivial path consisting

of a single vertex; we will always associate a particular empty sequence with a particular vertex.

We use start(P) to denote the first vertex, x, of P and end(P) to denote the last vertex y of P . If

additionally headG(dk) = tailG(d1) then the walk is a cycle. A path/cycle of darts is simple if no

vertex occurs twice as the head of a dart in the path/cycle.

If P = d1 . . . dk and Q = e1 . . . eℓ are walks such that end(P) = start(Q), we use P ◦Q to denote

the walk d1 . . . dke1 . . . eℓ. If u and v are vertices in path P such that u = tail(di), v = head(dj) and

i ≤ j (or, u = v for a vertex u in P), we use P [u, v] to denote the subpath P ′ such that start(P ′) = u

and end(P ′) = v. Since walks may visit vertices or darts multiple times, when we use this notation,

we intend u and v to refer to specific occurrences of vertices within the path. If P is a cycle, and u

occurs before v in P then P [u, v] denotes a subpath of the cycle. We use P [u, v) to denote the walk

obtained from the walk P [u, v] by deleting the last dart; P (u, v] and P (u, v) are defined similarly.

4

P [·, v] denotes the subpath P ′ with start(P ′) = start(P) and end(P ′) = v. P [u, ·] is similarly

defined. The reverse of P , rev (P) is defined as the sequence rev (dk), rev (dk−1), . . . , rev (d1).

Graphs are identified with sets of edges, thus a subgraph H of a graph G is also considered a

subset of the edges of G. The set of vertices that are endpoints of edges in H is denoted V (H).

A spanning tree T of G is a connected, spanning subgraph of G that contains no cycles of edges

or arcs. (Note that T will contain cycles of darts, but we regard T primarily as a set of edges or

arcs, disregarding orientation.) For vertices u and v, T [u, v] denotes the unique simple u-to-v path

through T . Given an identified vertex or root of T , T [u] denotes the u-to-root path in T .

We denote the length of the shortest x-to-y path in G as distG(x, y).

For a set S of vertices, Γ+(S) is the set of darts whose tails are in S and whose heads are not.

Such a set of darts is called a cut. A cut is a simple cut if both S and V \S are connected. A simple

cut is also known as a bond.

1.2.2 Vector spaces

The arc space of a graph G = 〈V, A〉 is the vector space RA: a vector δ in arc space assigns a real

number δ[a] to each arc a ∈ A. It is notationally convenient to interpret a vector δ in arc space as

assigning real numbers to all darts. For a dart 〈a, i〉 (i = ±1), we define

δ[〈a, i〉] = i · δ[a].

For each arc a, we define δ(a) to be the vector in arc space that assigns 1 to a and zero to all other

arcs:

∀a′ ∈ A, δ(a)[a′] =

{
1 if a′ = a,

0 otherwise.

For a multi-set S of darts, we define δ(S) =
∑

d∈S δ(d). For any set of edges, arcs or darts, H , we

define δ(H) = δ(S) where S is the multi-set of darts comprising H . We equate a vertex v with the

set of darts whose tails are v, so δ(v) is
∑

tail(d)=v δ(d).

A vector η in arc space specifies a set of darts of G, namely the set of darts assigned positive

values by η. We say, for example, that a dart d is in η if η[d] > 0. We can similarly say that η

contains a path or a cycle.

The cycle space of G is the subspace of the arc space spanned by

C = {δ(C) : C a cycle of darts in G}.

We will refer to vectors in cycle space alternatively as circulations. This term will be overloaded

when we discuss flow problems where we will impose constraints on the values in the circulation

vector.

Given a spanning tree T and for a dart d /∈ T , the fundamental cycle of d with respect to T is

the cycle formed by d and the path in T [headG(d), tailG(d)]. Fundamental cycles are simple. The

set of all fundamental cycles forms a basis for the cycle space.

5

1.2.3 Planar graphs

According to the geometric definition, a planar graph is a graph for which there exists a planar

embedding. A planar embedding of a graph is a drawing of the graph on the plane (or the surface

of a sphere) so that vertices are mapped to distinct points and edges are mapped to non-crossing

curves. We call a set of contiguous points in the plane/on the sphere that are not in the image of the

vertices or arcs a face. For an embedding on the plane, there is one infinite face. For an embedding

on the sphere, an arbitrary face can be designated as the infinite face. We denote the infinite face

f∞.

One can alternatively define embeddings combinatorially, without reference to topology [53, 30,

113]. A combinatorial embedding is sometimes called a rotation system. A combinatorial embedding

is given by a permutation π such that for each dart d, π(d) is the dart e such that x = tail(d) = tail(e)

and e is the dart immediately after d in the counterclockwise ordering of the darts around x. While

such a formulation frequently makes the implementation of algorithms simpler, we will only use the

permutation π explicitly in a few places throughout this work. However, we do note that for all the

algorithms contained herein, a combinatorial embedding is sufficient for implementation.

Planar graphs can also be characterized by the minors they do not contain: the complete graph

with 5 vertices, K5, and the complete bipartite graph with 6 vertices, K3,3 [74, 107]. We will not

use this characterization in this thesis.

1.2.4 Duals of planar graphs

Corresponding to every connected planar embedded graph G there is another connected planar

embedded graph denoted G∗. The faces of G are the vertices of G∗ and vice versa. The arcs (and

hence darts) of G correspond one-to-one with those of G∗. If d is a dart of G, the tail of the

corresponding dart of G∗ is the face to the left of d, and the head is the face to the right of d. Thus

intuitively the geometric orientation in G∗ of the dart corresponding to d is obtained by rotating

the embedding of d clockwise roughly 90 degrees. It is notationally convenient to equate the darts

of G with the darts of G∗. We call G the primal graph and G∗ the dual and an example is given in

Figure 1.1. The permutation corresponding to the combinatorial embedding for G∗ is denoted π∗

and is equal to π ◦ rev.

Figure 1.1: A planar graph and its dual: the primal is given by solid vertices and solid arcs and the
dual is given by open vertices and dotted arcs.

6

We will liberally use the following two classical results on planar graphs. These theorems are

illustrated in Figures 1.2 and 1.3, respectively.

Theorem 1.2.1 (Interdigitating Spanning Trees [34, 100]). For a spanning tree T of G, the set of

arcs or edges not in T form a spanning tree of the dual G∗ which we denote T ∗.

Figure 1.2: The primal is given by solid arcs and the dual by dotted arcs. The dark bold edges form
a spanning tree T of the primal. The edges not in T form a spanning tree T ∗ of the dual.

Theorem 1.2.2 (Cycle-Cut Duality [109]). In a connected planar graph, a set of darts forms a

simple directed cycle in the primal iff it forms a simple directed cut in the dual.

Figure 1.3: The primal is given by solid edges and the dual by dotted edges. The dark bold (directed)
darts form a simple directed cycle in the dual and a directed bond, Γ+(S), in the primal, where S
is the set of the lower 4 vertices.

Recall that the cycle space of G is the subspace of the arc space spanned by C = {δ(C) :

C a cycle of darts in G}. We equate a face f with the set of darts forming the counterclockwise

boundary of the face, so δ(f) is the sum of δ(d) over such darts. In a planar graph the set of vectors

{δ(f) : f a face of G, f 6= f∞}

is a basis for the cycle space of G. Therefore any vector η ∈ C can be represented as a linear

combination of these basis vectors. We use φ to denote the vector of coefficients for this linear

combination, so

η =
∑

f 6=f∞

φ[f]δ(f)

7

We call φ a potential assignment, and we refer to φ[f] as the potential of face f . This use of potentials

was introduced by Hassin [51] for st-planar graphs (a graph in which s and t are on the boundary

of a common face) and by Miller and Naor [79] for general planar graphs. We adopt the convention

that φ[f∞] = 0.

We say a face f is external to the circulation corresponding to a potential assignment φ if

φ[f] = 0, and is internal otherwise. We say that a dart d is external if the faces to d’s left and right

are external, and we say d is internal if the faces to d’s left and right are internal. A dart can be

neither internal nor external. We say a dart is contained by a circulation if the dart is neither internal

nor external. A dart and its reverse have the same property (external, internal, or contained) with

respect to a circulation. We say a vertex v is external if every dart incident to v is external, and is

internal if every dart incident to v is internal.

For a cycle C, we say C encloses a face (dart or vertex, resp.) if the face (dart or vertex, resp.)

is internal to or contained by δ(C). Likewise, we define strictly enclosed if the dart or vertex is

internal to δ(C). For C a simple cycle with a geometric embedding, this definition corresponds to

the notion of a face, dart, or vertex being embedded inside C, with respect to f∞..

The boundary of a face f of a planar embedded graph is the set of darts whose tail is f in the

dual and is denoted ∂f . This set of darts is non necessarily connected. If the set is connected, then

the darts form a non-self-crossing cycle C; C is a clockwise cycle if f 6= f∞ and a counterclockwise

cycle if f = f∞. The boundary ∂H of a planar embedded graph H is equal to ∂f∞.

A circulation is counterclockwise (abbreviated c.c.w.) if the potential of every face is nonnega-

tive [65]. A circulation is clockwise (abbreviated c.w.) if the potential of every face is non positive.

A cycle P is clockwise if δ(P) is clockwise. A cycle or circulation may be neither counterclockwise

nor clockwise, but a simple cycle is either clockwise or counterclockwise. These definitions have

geometric interpretations, as illustrated by Figure 1.4.

(a) (b)

Figure 1.4: (a) A clockwise cycle. (b) A cycle that is neither clockwise nor counterclockwise.

Consider two paths P and Q that share a common vertex x. Suppose x is the head of a dart

d of P that is not a dart of Q. Path P is said to enter path Q at vertex x. One can similarly

define leaves. Suppose additionally that x = head(a) and x = tail(b) where a and b are darts of Q.

Consider the embedded graph induced by a, b and d. If π(b) = rev (d) and π(rev (d)) = rev (a), then

P is said to enter Q from the left. If π(rev (d)) = b and π(rev (a)) = rev (d) then P is said to enter Q

from the right. Suppose path P and Q have a maximal subpath R in common (where R may be the

trivial path of one vertex) such that P enters Q at start(R) on the right and P leaves Q at end(R)

8

on the left then P crosses Q at x where x is a vertex of R. Similarly, P can cross Q from left to

right. The notion of enters and crossing are illustrated in Figure 1.5.

If P and Q are paths that do not cross for any vertex, then they are non-crossing. A path

is non-self-crossing if for every pair of subpaths P and Q of the path, P does not cross Q. See

Figure 1.5 for examples of these situations.

P
Q

x

y

(a)

P

Q

(b) (c)

v

(d)

Figure 1.5: (a) P crosses Q: P enters Q on the right at x and P leaves Q on the left at y. (b) P and
Q are non-crossing. (c) This is a self-crossing cycle. (d) This is a non-self-crossing but non-simple
cycle, since vertex v occurs twice.

We will use the following lemma in Section 2.3.2 where we will use non-self-crossing cycles instead

of simple cycles as one may be tempted to use. This lemma allows us to build non-self-crossing cycles

from other non-self-crossing cycles.

Lemma 1.2.3 (Composition Lemma). Let C be a non-self-crossing cycle and let A be a non-self-

crossing path with endpoints on C such that no part of A is enclosed by C. Then

A ◦ C[end(A), start(A)]

is a non-self-crossing cycle.

Proof. Since no part of A is enclosed by C, A does not cross C. It follows that A◦C[end(A), start(A)]

is non-self-crossing.

1.2.5 Clockwise and leftmost

An x-to-y walk A is left of an x-to-y walk B if δ(A) − δ(B) is a clockwise circulation. (This

definition was given by [68] for paths, but generalizes naturally to walks.) Likewise A is right of

B if δ(A) − δ(B) is a counterclockwise circulation. Left of and right of are transitive, reflexive,

antisymmetric relations. An x-to-y path A is the leftmost x-to-y path in a graph if, for every x-to-y

path B, A is left of B. There is not necessarily a leftmost walk: suppose P = Q ◦ C is the leftmost

path where Q is an x-to-y path and C is a c.w. cycle then R = P ◦C is a walk that is left of P and

R ◦ C is left of R and so on. However, the following lemma allows us to consider only simple paths

in graphs with no clockwise cycles.

9

Lemma 1.2.4. Let G be a graph with no clockwise cycles. If P is a leftmost walk, then P is a

simple path.

Proof. Suppose P is not a simple path. Let x be a vertex that occurs at least twice on P . Let x1

be the first occurrence of x on P and let x2 be the last. Then C = P [x1, x2] is a cycle. Since G

has no clockwise cycles, C must be counterclockwise. Let P ′ = P [·, x1] ◦ P [x2, ·] be the path that is

obtained from P by removing C. The circulation

δ(P) − δ(P ′) = δ(C)

is counterclockwise, so P is right of P ′: P is not leftmost, a contradiction.

Lemma 1.2.5. Every subpath of a leftmost path is a leftmost path.

Proof. Let P be a leftmost path. Let Q be an x-to-y subpath of P . Suppose there is another x-to-y

path Q′ 6= Q that is left of Q. Let P ′ = P [·, x] ◦ Q′ ◦ P [y, ·]. The circulation

δ(P ′) − δ(P) = δ(P [·, x] ◦ Q′ ◦ P [y, ·]) − δ(P [·, x] ◦ Q ◦ P [y, ·])
= δ(Q′) − δ(Q)

is clockwise since Q′ is left of Q. So P ′ 6= P is left of P , a contradiction.

Theorem 1.2.6 (Non-crossing Theorem). If P and Q are unique non-self-crossing x-to-y paths that

do not cross each other, then P is either right of or left of Q.

Proof. Let C = Q◦rev (P): C is a non-self-crossing cycle. Let GC be the graph induced on C. Since

GC is a connected graph, each face of GC has a connected boundary. We show that δ(C) is either a

clockwise or counterclockwise circulation. Recall that we equate a face with the set of darts forming

the clockwise boundary of the face.

First we show that each face of GC uses either darts of C or darts of rev (C) (but not both).

Suppose for a contradiction that f is a face that uses darts of both C and rev (C). Let A and B be

maximal subpaths of C such that A ∈ ∂f and rev (B) ∈ ∂f and end(A) = start(rev (B)). Let A′

and B′ be the subpaths of C such that C = A ◦ A′ ◦ B ◦ B′. Since f is a face, C does not cross ∂f

and so A ◦ A′ must leave ∂f from the left (at end(A), by the maximality of A). Likewise, B ◦ B′

leaves ∂f from the left. Since C is non-self-crossing, A ◦ A′ does not cross B ◦ B′. However B′ is

an end(B)-to-start(A) path and A′ is a end(A)-to-start(B): A′ crosses B′. See Figure 1.6 for an

illustration.

Since each face of GC uses either darts of C or rev (C), the following potential assignment is

valid:

φ[f] =

{
−1 if ∂f ⊂ C

0 otherwise

If φ[f∞] = 0, φ is a valid potential assignment and corresponds to the circulation η = δC. Then C

is clockwise and Q is left of P .

If φ[f∞] = −1, φ + 1 is a valid potential assignment (where 1 is the all-ones vector). It follows

that C is counterclockwise and Q is right of P .

10

B

B'

A

A'

f

Figure 1.6: If A ◦ A′ ◦ B ◦ B′ is a cycle and A ∪ rev (B) ∈ ∂f , then A′ must cross B′.

1.2.6 Tree-cut operation

The TreeCut operation [69] will be useful for proving a number of properties in Chapter 3. It is

illustrated in Figure 1.7. The operation cuts open a planar graph along a tree, producing another

planar graph with a new face enclosed by the duplicated tree edges.

TreeCut(G, T)

1. Let C be the clockwise non-self-crossing cycle that forms the Euler tour of T .
2. Duplicate the edges of T and replicate the nodes of T according to their degree such

that C visits each of these edges only once.
3. Create a new face fT that is left of every dart in C.
4. Return the new graph.

Table 1.1: TreeCut takes as input a planar embedded graph G and a tree T and returns a graph
where the edges of T are duplicated and form a simple cycle that is the boundary of a new face.

T

(a) (b)

f
T

(c)

Figure 1.7: The process of cutting open a graph along a tree, T (bold edges): duplicate edges,
replicate vertices and create a new face fT .

Chapter 2

Network Flow Problems

The history of maximum-flow and minimum-cut problems [96] is tied closely to planar graphs.

During the height of the cold war, the United States spent considerable effort analyzing the Soviet

rail network: “The success of interdiction depends largely on [the] interdiction-program efforts on the

enemy’s capability to move men and supplies.” [50]. Modelling the Soviet rail network as a planar

graph (by, in fact, taking the dual of the planar graph composed of boundaries of administrative

districts with edges representing transportation capacity between these districts), Harris and Ross,

as members of the RAND corporation, studied the problem of determining the best way to interdict

the Soviet rail network. That is, they found the minimum number of rail lines that must be cut

in order to stop movement of supplies and men between tactically important locations: they found

a minimum cut in the graph. Ford and Fulkerson picked up on this line of research, leading to

their landmark paper proving the max-flow, min-cut theorem and formulating the augmenting-path

algorithm [41].

We now give the formal statement of the maximum-flow and minimum-cut problems. Given a

graph G, a source vertex s, a sink vertex t and capacities on the darts c(d), the maximum-flow

problem is

max f · δ(s)

s.t. f · δ(v) = 0, ∀v ∈ V \ {s, t} (2.1)

f [d] ≤ c(d), ∀ darts d (2.2)

where f is a vector in arc-space. Constraint (2.1) is the conservation constraint: the net flow at

every non-source-or-sink vertex is zero. Constraint (2.2) is the capacity constraint. If a capacity

function c is given only in terms of the arcs, then we define a capacity function c′ on the darts as

c′(〈a, 1〉) = c(a) and c′(〈a,−1〉) = 0 for each arc a. A flow assignment f or st-flow is called feasible if

it satisfies these constraints. The goal is to maximize the value of the flow, f · δ(s). A flow of value

zero is called a circulation and is a vector in cycle space.

11

12

Given the same input, the minimum-cut problem is:

min c(Γ+(S))

s.t. s ∈ S ⊆ V \ {t} (2.3)

A set of vertices S satisfying Constraint (2.3) is called an st-cut. The value of a cut is given by the

objective function.

Theorem 2.0.7 (Max-Flow Min-Cut). The value of the maximum st-flow is equal to the value of

the minimum st-cut.

The Max-Flow Min-Cut Theorem was discovered independently by Ford and Fulkerson [41],

Kotzig [72], and Elias et al. [32].

2.1 Maximum flow algorithms

In the same paper that proved the Max-Flow Min-Cut Theorem, Ford and Fulkerson suggested an

algorithm (actually, a paradigm) for finding a maximum flow called the augmenting path algorithm.

The algorithm is iterative: find a path P from the source to the sink and push flow on this path.

That is, the value of the flow for each dart in P is increased by an amount ∆.

More formally, a dart d is residual with respect to f and c if f [d] < c(d). Otherwise, d is non-

residual. A path is residual if all its darts are residual. It follows from the Max-Flow Min-Cut

Theorem that a feasible st-flow f is maximum if and only if there is no residual s-to-t path with

respect to f and c. Augmenting an st-flow f along a residual s-to-t path P , means increasing f [d]

by the same amount for each dart d in P . We call this path the augmenting path. Suppose that f

is feasible with respect to c. If the amount of the increase is no more than

∆ = min
d∈P

c(d) − f [d],

then after augmentation the st-flow f is still feasible. If the increase is exactly ∆, then we say

the augmentation saturates the path P . In this case, at least one dart of P becomes saturated or

non-residual.

Dinitz [29] and Edmonds and Karp [31] showed that if the shortest (with respect to number of

darts) augmenting path is chosen then there are at most nm iterations. Dinitz gave an O(n2m)

analysis for this using the notion of a blocking flow. In [46], Goldberg and Rao gave a clever

implementation resulting in an O(min(n2/3, m1/2)m log n2

m log U)-time algorithm (where U is the

largest integral capacity) by using a different adaptive notion of distance that is related to the

residual capacities. This is the fastest known algorithm for maximum flow in a general graph and

results in an O(n3/2 log n log U)-time algorithm for planar graphs.

We briefly mention another type of maximum flow algorithm: the push-relabel algorithm, al-

ternatively known as the preflow-push algorithm [47]. Rather than pushing flow along paths, flow

is pushed on individual arcs. This algorithm does not maintain a feasible flow and selects arcs to

augment in order to bring the flow closer to feasibility.

13

2.2 History of planar maximum flow

In [41], Ford and Fulkerson give a particular augmenting-path algorithm for the case of finding

the maximum st-flow in a planar graph in which the source and the sink are on the boundary

of a common face, the infinite face. Such a graph is termed st-planar. With the graph viewed

with the source embedded on the left and the sink on the right, the algorithm iteratively augments

the uppermost residual path. This algorithm has the property that the flow on an arc is never

decreased. Since each augmentation makes at least one arc non-residual, the algorithm requires at

most m augmentations, where m is the number of arcs. We will give more details in Section 2.3.

In 1979, Itai and Shiloach [58] showed that each iteration of the uppermost path algorithm could

be implemented in O(log n) time, where n is the number of vertices, using a priority queue of the

residual darts. Consequently, the algorithm can be carried out in O(n log n) time (using the fact

that a simple planar graph with n vertices has at most 3n arcs).

In 1991, Hassin demonstrated that a maximum st-flow in an st-planar graph G could be derived

from shortest-path distances in the planar dual G∗ of G where capacities in G are interpreted

as lengths in G∗. With this insight, it can be seen that the uppermost-path algorithm can be

interpreted in the planar dual as Dijkstra’s algorithm. The fact that the uppermost path algorithm

can be implemented to run in O(n log n) time corresponds to the observation, due to Johnson [60],

that Dijkstra’s algorithm could be implemented to run in O(n log n) time by using a priority queue.

Frederickson showed later that shortest-path distances in a planar graph with nonnegative lengths

could be computed in O(n
√

log n) time, and Henzinger et al. [55] showed subsequently that the

same problem could be solved in O(n) time; combining this with Hassin’s result yields an O(n)-time

algorithm for maximum st-flow in st-planar graphs.

There remained, however, the more general and more natural problem of st-flow in a planar

graph in which s and t need not be on the boundary of a common face. In 1983, Reif [90] showed

that the minimum st-cut (and so, via the Max-Flow Min-Cut Theorem, also the value of the max

st-flow) could be found in O(n log2 n) time for the special case of undirected planar graphs. This

algorithm uses the observation that the edges crossing a min st-cut form a minimum length cycle

C that separates s from t in the planar dual graph (where s and t are faces). The algorithm finds

a shortest path P in G∗ from a vertex adjacent to s to a vertex adjacent to t. Reif proves that C

only crosses P once. A divide-and-conquer algorithm is given in which a minimum separating cycle

is found that contains the middle vertex of P : this cycle corresponds to an st-planar min cut in the

primal. This results in an O(n log2 n)-time algorithm, using the aforementioned O(n log n) st-planar

flow algorithm of Itai and Shiloach. In 1985, Hassin and Johnson [52] draw on Reif’s technique to

show that the flow assignment could also be found within the same time bound, again for undirected

planar graphs. The shortest path algorithms of Henzinger et al. [55] or Klein [68] can be used to

re-implement these algorithms in O(n log n) time.

Still the more general problem of st-flow in a planar directed graph remained open. This problem

is more general since the problem of maximum st-flow in an undirected graph can be converted to a

directed problem by introducing two oppositely oriented arcs of equal capacity for each edge. In 1982,

14

Johnson and Venkatesan gave a divide-and-conquer algorithm that finds a flow of input value v in a

directed planar graph in O(n
√

n log n) [61]. The algorithm divides the graph using O(
√

n) balanced

separators, finding a flow in each side of value v. However, the flow on the O(
√

n)-boundary edges

of each subproblem might not be feasible. Each boundary edge is made feasible via an st-planar

flow computation.

In 1989, Miller and Naor [79] showed that finding a directed st-flow of value v could be reduced

to computing shortest-path distances in a graph with positive and negatives lengths. Here, v units

of flow are routed (perhaps infeasibly) along any s-to-t path P . The capacity of a dart d on P may

now be violated. We are required to route this excess flow through the rest of the graph for each

dart on P . This is a feasible circulation problem and can be solved using shortest-path distances in

the dual graph, where lengths may be negative. In 2001, Fakcharoenphol and Rao [40] presented

the first sub-quadratic algorithm for computing shortest-path distances in a graph with positive and

negative lengths. In these algorithms, the value v of the flow can be found by parametric search,

resulting in a sub-quadratic running time depending on C, the sum of the capacities. This is the first

sub-quadratic algorithm for the general problem of finding a maximum st-flow: previous algorithms

are limited to st-planar or planar undirected graphs.

Year Restriction Time Reference
1956 st-planar O(n2) Ford and Fulkerson [41]
1979 st-planar O(n log n) Itai and Shiloach [58]
1982 flow of given value O(n

√
n log n) Johnson and Venkatesan [61]

1983 value, undirected O(n log2 n) Reif [90]

1985 undirected O(n log2 n) Hassin and Johnson [52]
1987 st-planar O(n

√
log n) Hassin [51] using Frederickson [42]

1997 st-planar O(n) Hassin [51] using Henzinger et al. [55]
1997 undirected O(n log n) Hassin and Johnson [52] using

Henzinger et al. [55]

2001 O(n log3 n log C) Miller and Naor [79] using
Fakcharoenphol and Rao [40]

Table 2.1: Planar Maximum-Flow and Minimum-Cut Algorithms

2.2.1 Toward an O(n logn) algorithm

In 1994, Weihe [108] published an O(n log n) algorithm for planar directed maximum st-flow with

a rather complicated proof of correctness. The algorithm, though inspired by Ford and Fulkerson’s

uppermost-path algorithm, is also quite complicated. From the example included in the paper, it

is clear that the uppermost path (as generalized to non-st-planar graphs) is not the augmenting

path. In a preprocessing step, the input graph is transformed into one satisfying the following three

requirements.

1. Each vertex but the source and sink has degree exactly three;

2. there are no clockwise cycles; and

15

3. each arc uv belongs to a simple s-to-v path and a simple u-to-t path.

Satisfying Requirement 1 involves: splicing together every two successive arcs sharing an endpoint

of degree one; and replacing each vertex of high degree by a cycle, increasing the number of vertices

to 2m, which is at most 6n. Requirement 2 can be satisfied by using a reduction of Khuller, Naor,

and Klein [65] to computing shortest-path distances in the dual (and so can be computed in O(n)

time using the algorithm of Henzinger et al. [55]). Details of this step will be given in Section 2.3.1.

Requirement 3 is problematic. Weihe states “To satisfy this assumption, simply remove all arcs

that violate it. None of these arcs will help us solve our problem.” However, as pointed out by Biedl,

Brejová, and Vinař [13], there is no known O(n log n)-time algorithm to delete all such arcs. They

give the best known algorithm to date, which runs in O(n2) time. To our knowledge, the dependence

of Weihe’s proof of correctness on Requirement 3 has not been resolved. Although Weihe has claimed

that his algorithm can be corrected, this has not been verified.

2.3 Leftmost-path algorithm

We revisit the uppermost-path algorithm of Ford and Fulkerson [41]. Recall that in each iteration,

the uppermost residual path is saturated. We forgo a rigorous definition of uppermost as it is

superseded by the more general leftmost (the uppermost path is the leftmost path). However, using

an intuitive definition, we get the following lemma:

Lemma 2.3.1. Let Pi be the uppermost residual path in the ith iteration of the algorithm. Pi+1 is

below Pi.

Proof. For a contradiction, suppose that Pi+1 is not below Pi. Then there is an x-to-y subpath of

Pi+1 that is above an x-to-y subpath of Pi. From this we can construct a path that was residual in

the ith iteration that is above Pi.

We present an algorithm to find a maximum st-flow in a directed planar graph that runs in

O(n log n) time. The algorithm is a direct generalization of the uppermost-path algorithm. Ford

and Fulkerson’s algorithm finds the uppermost flow: one in which no flow can be rerouted above the

existing flow. Our generalization finds the leftmost flow (which we define in the next section, and

is defined with respect to the infinite face). At the start of the algorithm, we start with a leftmost

flow of value zero which is achieved via a preprocessing step equivalent to satisfying Requirement 2

of Weihe’s algorithm. The algorithm, at an abstract level, is:

Designate a face adjacent to t as f∞.

Saturate the clockwise cycles. (LeftmostCirculation)

While there is a residual s-to-t path, saturate the leftmost such path. (MaxFlow)

We will first illustrate how the notions of clockwise and leftmost are related for circulations and give

an algorithm for saturating the clockwise cycles, LeftmostCirculation. We will then extend this

16

definition to flows. The analysis of MaxFlow will assume that the input graph has no clockwise

residual cycles.

2.3.1 Leftmost circulations and flows

In 1993, Khuller, Naor and Klein showed that circulations in planar graphs form a finite distributive

lattice [65]. A distributive lattice is a partial order such that each pair of elements has a meet

(greatest lower bound) and a join (least upper bound). Meet and join are distributive operators. We

call the unique minimum of the circulation lattice the leftmost circulation. The leftmost circulation

in the lattice is the vector in cycle space whose corresponding potential function is maximized subject

to the capacity constraints:

max φ · 1
s.t. φ[headG∗(d)] − φ[tailG∗(d)] ≤ c(d), ∀ darts d

This linear program exactly solves the shortest path problem in the dual planar graph: the po-

tentials found correspond to shortest path distances from f∞ to every face, interpreting capacities

as distances. We are interested in the properties of the residual graph given by the circulation

corresponding to these potentials. The algorithm LeftmostCirculation is expanded from [65]

(Table 2.2).

LeftmostCirculation(Gin, cin, f∞)

1. Interpret capacities cin(d) as lengths of darts in the dual graph G∗
in.

2. Let φ[f] = distG∗

in
(f∞, f) for every face f .

3. Let η[d] = φ[headG∗

in
(d)] − φ[tailG∗

in
(d)] for every dart d.

4. Let Gout be the residual graph with respect to η.
5. Let cout(d) = cin(d) − η[d] for every dart d.
6. Return (Gout, cout).

Table 2.2: LeftmostCirculation takes as input a directed planar embedded graph, an identified
face (the infinite face) and a dart capacity function. The algorithm returns the residual graph that
has no clockwise residual cycle.

Lemma 2.3.2. The residual graph returned by LeftmostCirculation (Gin, cin, f∞) has no resid-

ual clockwise cycle.

Proof. Let (Gout, cout) = LeftmostCirculation (Gin, cin, f∞). Let C be a clockwise cycle of darts

in Gout and let T be the tree representing the shortest-path distances computed in LeftmostCir-

culation. There is a path in T from f∞ to every face enclosed by C, so at least one dart of C is

17

in the shortest path tree. Let d be such a dart:

cout(d) = cin(d) − η[d]

= cin(d) −
(
distG∗

in
(f∞, tailG∗

in
(d)) − distG∗

in
(f∞, headG∗

in
(d))

)

= cin(d) − cin(d) since d is in the shortest-path tree

= 0

Since d is not residual, C is not residual.

Two st-flows f1 and f2 of the same value differ by a circulation. That is, f1 − f2 is a circulation.

If this circulation is clockwise, then f1 is left of f2 [108]. If this circulation is counterclockwise, then

f1 is right of f2. A flow f is a leftmost flow of its value if for every other flow f ′ of the same value, f

is left of f ′. Alternatively, a f is a leftmost flow if the residual graph has no clockwise residual cycle.

Lemma 2.3.3. Let f be a leftmost flow and let P be the leftmost residual path. Saturating P results

in a leftmost flow f ′.

Proof. Suppose for a contradiction that f ′ is not a leftmost flow. By the definition of leftmost, there

must then be a clockwise residual cycle C with respect to f ′. Assume w.l.o.g. that C is simple.

Since f was leftmost, C was not residual prior to the augmentation, and so P must have a dart d in

common with rev (C).

Let P ′ = P [·, tail(d)]◦C[tail(d), tail(d)]◦P [tail(d), ·] where C[tail(d), tail(d)] is the cycle starting

at tail(d). P ′ is a walk and δ(P ′) − δ(P) = δ(P) + δ(C) − δ(P) = δ(C) is a clockwise circulation

and so P ′ is left of P . Therefore P is not the leftmost path.

2.3.2 Unusability Theorem

We will now concentrate on an abstract version of MaxFlow (Table 2.3). Let (G0, c0) = (Gout, cout)

(Abstract) MaxFlow(G0, c0, s, t)

1. Initialize f = 0.
2. While there is a residual s-to-t path w.r.t. f and c0, saturate the leftmost s-to-t path,

modifying f .
3. Return f .

Table 2.3: MaxFlow takes as input a directed planar embedded graph G0 and capacities c0 with
no clockwise residual cycles (as output by LeftmostCirculation(Gin, cin, f∞) where f∞ is any
face adjacent to t) and returns the maximum flow from s to t.

be the output of LeftmostCirculation(Gin, cin, f∞) where f∞ is any face adjacent to t. We as-

sume that G0 and c0 are the input to MaxFlow. To aid in the analysis, we will use the interpretation

that every arc of G0 has nonzero capacity: for each arc a of Gout, if cout(a) = 0 then interpret rev (a)

as an arc of G0, else interpret a as an arc. In what follows, arc always refers to an arc of G, anti-arc

18

refers to a dart whose reverse is an arc. Since the output of LeftmostCirculation is a graph

with no clockwise residual cycles (Lemma 2.3.3), we have the following property.

Property 2.3.4. The input graph to MaxFlow has no clockwise cycle of arcs.

The following invariant of MaxFlow follows from Lemma 2.3.3:

Invariant 2.3.5. During the execution of MaxFlow, G0 has no clockwise residual cycles with

respect to f .

Recall that in Ford and Fulkerson’s uppermost-path algorithm, once flow is pushed on an arc,

flow can never be removed from that arc. This is not the case if the graph is not st-planar, as

illustrated in Figure 2.1. However, we show that while you can remove flow from an arc, you cannot

push flow back onto that arc, as stated in the following Unusability Theorem.

s

t

s

t

Figure 2.1: A simple example illustrating that flow can be removed from an arc in MaxFlow, even
in the case of unit capacities. On the left, the leftmost residual path (dotted) pushes flow along
the bottom arc. On the right is the resulting residual graph. The leftmost residual path (dotted)
removes flow from the bottom arc.

Theorem 2.3.6 (Unusability Theorem). Suppose an arc a is augmented and some time later rev (a)

is augmented. Then arc a cannot be augmented again.

The remainder of this section will be devoted to proving the Unusability Theorem. The structure

of the proof is as follows. We show that if an arc a is augmented and later rev (a) is augmented,

then a structure in the residual graph arises called an obstruction (Lemma 2.3.17). We show that

this structure persists under leftmost augmentations (Lemma 2.3.18) and is a witness to a never

belonging to a leftmost residual path (Lemma 2.3.16).

Since the augmentations of the algorithm are always along leftmost residual paths, we have a

number of properties which we give in the following lemma and which will be used in the remainder

of this section.

Lemma 2.3.7 (Prohibited augmentations). The following situations are not permitted if A is a

leftmost augmentation and the given vertex indices are well-defined:

1. A[x, y] is right of a residual path R[x, y].

2. A[x, y] makes a clockwise cycle with residual path R[y, x].

19

3. A has a dart that enters a simple t-to-s residual path R from the right.

Proof. We prove each part separately.

1. A[s, x] ◦ R[x, y] ◦ A[y, t] is left of A. This contradicts the requirement that A is the leftmost

residual path.

2. This contradicts Invariant 2.3.5.

3. Suppose uv is a dart of a leftmost augmentation path and suppose uv enters a t-to-s residual

path R from the right. As such, uv /∈ R and rev (uv) /∈ R. A[s, u] must intersect R at some

vertex: let x be the last intersection of A[s, u] with R (possibly x = s). If x ∈ R(v, s], then

A[x, v] ◦ R[v, x] is a clockwise residual cycle, contradicting Invariant 2.3.5. If x ∈ R(t, v) then

R[x, v] is a residual path that is left of A[x, v], which is a prohibited augmentation of the

second kind.

Now we define what it means to be unusable. Unusability is given by a structure in the residual

graph called an obstruction.

Definition 2.3.8 (Unusable Arc). An obstruction cycle (or more simply, an obstruction) is a

clockwise non-self-crossing cycle L ◦M where L is residual and M consists entirely of arcs. We say

it is an obstruction for an arc a if 〈a, 1〉 is the first dart of L. We say an arc a is unusable if there

is an obstruction for a.

We give a second, equivalent representation for an obstruction which will be useful in proving

the Unusability Theorem. Both are illustrated in Figure 2.2.

a

L

M

(a)

a

Q2

Q
1

R

(b)

Figure 2.2: (a) An obstruction for arc a as given by Definition 2.3.8. (b) The obstruction for arc a
as given by Lemma 2.3.9 with the obstruction from (a) shaded in the background. L, Q2 and R are
residual; M , Q1 and Q2 consist of arcs; a is the first arc of L and Q2.

Lemma 2.3.9. An obstruction for arc a is equal to the clockwise cycle Q1 ◦ Q2 ◦ R where

1. Q1 ◦ Q2 consists entirely of arcs,

2. Q2 ◦ R is residual,

3. a is the first dart of Q2,

20

4. there is flow through the vertex start(R), and

5. there is flow through the vertex end(R).

Proof. Let L ◦ M be an obstruction for a. Since G0 has no clockwise cycles, L ◦ M cannot consist

entirely of arcs. Let b be the first anti-arc of L. By Invariant 2.3.5, L ◦ M cannot consist entirely

of residual darts and so M cannot consist entirely of residual darts. Let c be the first non-residual

dart of M .

Let Q1 = M [tail(c), ·], let Q2 = L[·, tail(b)], and let R = L[tail(b), ·] ◦M [·, tail(c)]. By choice of

b, L[·, tail(b)] consists entirely of arcs, so property 1 holds. By choice of c, M [·, tail(c)] is residual,

so property 2 holds. Since a is the first dart of L, property 3 holds. Since b is a residual anti-arc,

rev (b) carries flow, so property 4 holds. Since c is a non-residual arc, it carries flow, so property 5

holds.

Definition 2.3.10. For an unusable arc a, let ∆a denote the obstruction for a that encloses the

minimum number of faces (breaking ties arbitrarily). Write ∆a as Q1
a ◦ Q2

a ◦ Ra, and let Qa denote

Q1
a ◦ Q2

a.

The definition of a minimally enclosing obstruction provides a number of properties of the residual

graph.

Property 2.3.11. Suppose a is unusable. There is no residual path enclosed by ∆a from a vertex

in Q2
a(·, ·] to a vertex in Q1

a.

Proof. Assume for a contradiction that W is such a residual path. Then W ◦ Q1
a[end(W), ·] ◦

Q2
a[·, start(W)] is an obstruction for a that encloses fewer faces than ∆a does. That is, W can be

used to replace Ra in the obstruction.

Property 2.3.12. Suppose a is unusable. Q2
a belongs to a t-to-s residual path.

Proof. Since ∆a is a clockwise cycle, it cannot be residual, so Q1
a cannot be residual. Let b be the

last non-residual dart of Q1
a. Since Q1

a contains only arcs, b carries flow and this flow must be routed

to t. Let Ft be any head(b)-to-t flow path and let Fs be any s-to-start(Ra) flow path. Since the

reverse of a flow path is residual, the path rev (Ft) ◦ Q1
a[head(b), ·] ◦ Q2

a ◦ rev (Fs) is a residual t-to-s

path.

Property 2.3.13. There are no flow paths enclosed by ∆a between vertices on the boundary of ∆a.

Proof. Assume for contradiction that F is such a simple flow path. Let α = start(F) and β =

end(F). Then C1 = ∆a[α, β] ◦ rev (F) and C2 = F ◦ ∆a[β, α] are clockwise non-self-crossing cycles,

each enclosing fewer faces than ∆a. See Figure 2.3.

We will refer to the following:

Argument 1 Note that rev (F) is residual. If ∆a[α, β] were residual then C1 would be a residual

clockwise cycle, contradicting Invariant 2.3.5. Since all non-residual darts of ∆a are in

Q1
a, we infer that ∆a[α, β] must include at least one dart of Q1

a.

21

C1

C2

∆a

α

β

F

Figure 2.3: An illustration of the cycles C1 and C2 for the the proof of Property 2.3.13. By
Argument 1, there is an arc (bold) of Q1

a in ∆a[α, β]. By Argument 2, there is an arc (grey) of Ra

in ∆a[β, α].

Argument 2 Note that F consists entirely of arcs. If ∆a[β, α] consisted entirely of arcs then C2 would

be a clockwise cycle of arcs in G0, contradicting Property 2.3.4. Since all anti-arcs of

∆a are in Ra, we infer that ∆a[β, α] must include at least one dart of Ra.

There are two cases to consider:

Case 1 start(Ra) is a vertex of ∆a[β, α]: By Argument 1, Q1
a is not a subpath of ∆a[β, α]. If a is

in ∆a[α, β] then C1 is an obstruction enclosing fewer faces than ∆a. If a is in ∆a[β, α] then

C2 is an obstruction enclosing fewer faces than ∆a.

Case 2 start(Ra) is a vertex of ∆a(α, β): By Argument 2, Ra is not a subpath of ∆a[α, β], so

end(Ra) is outside ∆a[α, β]. By Argument 1, Q1
a is not a subpath of ∆a[β, α], so α is a

vertex of Q1
a. Therefore the first arc of Q2

a, which is a, is in ∆a[α, β], so C1 is an obstruction

enclosing fewer faces than ∆a.

Each case contradicts the minimality condition of ∆a.

Corollary 2.3.14. If ∆a encloses a flow-carrying dart d, then ∆a encloses the source s and every

s-to-head(d) flow path.

Proof. Suppose for a contradiction that there is a flow-carrying dart d enclosed by ∆a such that

there is an s-to-head(d) flow path P such that e is a dart of P and e is not contained by ∆a. Let Q

be a head(d)-to-t flow path. The path P ◦ Q contains a subpath that starts at a vertex (head(e))

not strictly enclosed by ∆a, goes through a dart (d) enclosed by ∆a, and ends at a vertex (t) not

strictly enclosed by ∆a. Such a flow path violates Property 2.3.13.

For an unusable arc a there is a start(Ra)-to-t flow path and an s-to-end(Ra) flow path by Parts 4

and 5 of Lemma 2.3.9.

22

Corollary 2.3.15. For an unusable arc a, any start(Ra)-to-t flow path does not intersect any s-to-

end(Ra) flow path.

Proof. Let Ft be any start(Ra)-to-t flow path and let Fs be any s-to-end(Ra) flow path. Suppose

for a contradiction that Ft and Fs share a vertex. Let w be the first such vertex in Ft. Let F ′
s be

the maximal suffix of Fs that is not internal to ∆a. By Corollary 2.3.14, F ′
s is the only part of Fs

that is not internal to ∆a. Since no arc of Ft is interior to ∆a, w must be a vertex of F ′
s.

Let F = Ft[start(Ra), w] ◦ F ′
x[w, end(Ra)]. F is a start(Ra)-to-end(Ra) flow path that is not

internal to ∆a. See Figure 2.4. By the Non-crossing Theorem, F is either right of or left of Ra.

There are two cases.

Case 1 If F is right of Ra, Ra ◦ rev (F) is a clockwise residual cycle, contradicting Invariant 2.3.5.

Case 2 If F is left of Ra, F is also left of rev (Qa) by transitivity. Hence F ◦Qa is a clockwise cycle

in G0, a contradiction. This case is illustrated in Figure 2.4.

Q
a

F
t

w

R
a

F
s

s

Figure 2.4: If flows to and from ∆a (dashed), Fs and Ft share a vertex w, we can construct from
them a start(Ra)-to-end(Ra) flow path F (bold). The shaded area is bounded by a clockwise cycle
of arcs.

Now we have all the tools needed to prove the Unusability Theorem. We prove it in three parts.

First we show that an unusable arc cannot belong to a leftmost residual path (Lemma 2.3.16). Next

we show that if an arc a satisfies the condition of the Unusability Theorem, there is an obstruction

for a in the residual graph (Lemma 2.3.17). Finally we show that obstructions persist under leftmost

augmentations (Lemma 2.3.18). The Unusability Theorem follows.

Lemma 2.3.16 (Unusable Arc Consequence). A leftmost augmenting path contains no unusable

arcs.

Proof. Let A be the leftmost augmenting path, and assume for a contradiction that it goes through

an unusable arc a.

The goal is to first construct a non-self-crossing cycle, C, that encloses a and does not enclose t.

A[tail(a), ·] must therefore cross C. We will show that this results in a contradiction.

23

By the definition of ∆a, there is an s-to-end(Ra) flow path. Let Fs be any such path and let

P1 = Q2
a ◦ Ra ◦ rev (Fs). P1 is a residual head(a)-to-s path. Let A1 be the maximal suffix of

A[s, tail(a)] that does not cross P1. Let C1 = A1 ◦ P1: C1 is a residual cycle and since there are no

c.w. residual cycles, it is c.c.w. C1 is also non-self-crossing by construction.

We next define another c.c.w. non-self-crossing cycle, C2, whose boundary is given by subpaths

of Q2
a, A, and a flow path not enclosed by ∆a. If P1 does not include start(Ra), define C2 = C1.

Note that in this case, P1 is a subpath of Q2
a. Otherwise, we consider the following construction.

By the definition of ∆a, there is a start(Ra)-to-t flow path. Let Ft be any such path and let F ′
t be

the maximal prefix of Ft that is enclosed by C1 (possibly the empty path). By Corollary 2.3.15,

Ft and Fs do not share any vertices and by Corollary 2.3.14, no part of Ft is enclosed by ∆a. We

conclude that end(F ′
t) is in A1 and define C2 = F ′

t ◦ A1[end(F ′
t), ·] ◦ P1[·, start(F ′

t)]. Note that

P1[·, start(F ′
t)] = Q2

a[tail(a), ·]. By definition, C2 is non-self-crossing.

Notice that in both cases, Ra is not enclosed by C2. Let P2 be the maximal prefix of Ra ◦ Q1
a

that is not enclosed by C2. Applying the Composition Lemma to C2 and rev (P2), we get a non-self-

crossing cycle, C whose boundary is composed of subpaths of Ft, A, rev (Q1
a), rev (Ra), and possibly

rev (Q2
a). Further, C is c.c.w. and encloses a.

Let A3 denote the maximal prefix of A[head(a), ·] that does not cross C. The last two cases are

illustrated in Figure 2.5.

Case 1 end(A3) ∈ Q2
a ◦ Ra. Let P3 = Q2

a ◦ Ra: P3 is a boundary of C and since A3 is enclosed by

C, A3 is right of P3[start(A3), end(A3)], violating Part 1 of Lemma 2.3.7.

Case 2 end(A3) ∈ rev (F ′
t). Since rev (F ′

t) is a subpath of a t-to-s residual path, this case contradicts

Part 3 of Lemma 2.3.7.

Case 3 end(A3) ∈ Q1
a. Let A4 be the maximal suffix of A3 that is internal to ∆a. The only boundary

vertices of ∆a that are not boundary vertices of C are the vertices of Q2
a so start(A4) must

be a vertex of Q2
a. This case therefore contradicts Property 2.3.11.

Lemma 2.3.17 (Unusable Arc Creation). If augmentation A uses arc a in the reverse direction, a

will be unusable after augmentation A.

Proof. Let a be an arc and let A be the leftmost residual path. Suppose d is a dart in A where

d = rev (a). Since d is residual, a must carry flow. Let F be any s-to-head(a) flow path. Let x be

the last vertex of A[·, tail(a)] that is in F . Let L = rev (A[x, tail(a)]) and let M = F [x, tail(a)]. See

Figure 2.6

Both L and M are simple and by the choice of x, L does not cross M . L is residual after

augmentation and a is the first dart of L. M consists entirely of arcs. Since rev (M) is residual

before augmentation, A[x, tail(a)] must make a c.c.w. cycle with it by Part 2 of Lemma 2.3.7.

Therefore M ◦ L is a c.w. non-self crossing cycle: it is an obstruction for a.

Lemma 2.3.18 (Unusable Arc Persistence). Once an arc becomes unusable, it remains unusable.

24

a

F'

Q
1

Q
2

R

A

(a)

a

F'

RA

(b)

a

Q2

A

(c)

Figure 2.5: (a) An example of a possible augmentation that uses an unusable arc, a as outlined in
Lemma 2.3.16. In this particular example, C = A[end(F ′), tail(a)] ◦ rev (Q1) ◦ rev (R) ◦ F ′. (b) The
counterexample as described in Case 2 of Lemma 2.3.16. A cannot escape C via F ′ or R. (c) The
counterexample as described in Case 3 of Lemma 2.3.16. A cannot escape C via Q1.

s

x

a

F

Figure 2.6: The creation of an obstruction (whose interior is shaded) from the flow path (dotted)
through a (grey) and the augmentation path through rev (a) (solid).

Proof. Let a be an unusable arc and let A be the leftmost residual s-to-t path. Saturating A can

only change the fact that Ra is residual. Assume that A and Ra share a dart.

Let b be the first dart of Ra that is in A. Let A1 be the maximal suffix of A[·, tail(b)] that is not

enclosed by ∆a. Since A cannot enter Ra from the right by Part 2 of Lemma 2.3.7 and since the

right of Ra is enclosed by ∆a, A1 is not a trivial path.

The following cases are illustrated in Figure 2.7.

Case 1 A1 6= A[·, tail(b)]. Let c be the last dart of A1 that is enclosed by ∆a. Both Q2
a and Ra belong

to t-to-s residual paths (Property 2.3.12 and by consequence of Lemma 2.3.9, resp.). Since c

is enclosed by ∆a and so enters ∆a from the right, head(c) cannot belong to either Q2
a or Ra

by Part 3 of Lemma 2.3.7. So head(c) is on Q1
a. Let P = Q1

a[head(c), ·] ◦ Q2
a ◦ Ra[·, tail(b)].

Since A1 does not cross P , A1 is either left of or right of P .

(a) A1 is left of P . Let Ft be any start(Ra)-to-t flow path as guaranteed by Part 4 of

Lemma 2.3.9. This flow path is a part of a t-to-s residual path P ′ guaranteed by

25

Property 2.3.12. Let C be the cycle obtained by applying the Composition Lemma to

∆a and A1: this cycle encloses the last dart d of Q2
a. Since d ∈ P ′ and F ′

t is in not

part enclosed by ∆a by Property 2.3.13, P ′ enters C via a part A1. Since C is c.w. by

construction, A1 must enter P ′ from the right. This contradicts Part 3 of Lemma 2.3.7.

(b) A1 is right of P . Since rev (A1) is residual after augmentation, rev (A1) ◦ P is an ob-

struction for a after augmentation.

Case 2 A1 = A[·, tail(b)]. Let Fs be any s-to-end(Ra) flow path. Let A2 be the maximal suffix of

A1 that does not cross Fs. Let F ′
s = Fs[start(A2), ·]. Since start(A2) is not enclosed by ∆a,

F ′
s starts outside the interior of ∆a, and so by Property 2.3.13 no part of F ′

s is interior to

∆a. Let C = F ′
s ◦ rev (Ra[tail(b), ·]) ◦ rev (A2). By the choice of A2, C is non-self-crossing.

By Part 2 of Lemma 2.3.7, rev (C) is c.c.w. and so C is c.w. Let C1 be the composition of

C and ∆a. Since the interior of C is disjoint from the interior of ∆a and C1 is c.w., C1 is

non-self-crossing. Let Q1 = F ′
s ◦Q1

a and R = Ra[·, tail(b)] ◦ rev (A2). Then C1 = Q1 ◦Q2
a ◦R

is an obstruction for a after augmentation since rev (A2) is residual after augmentation.�
Q
1 R

A

(a)

Q
2� R

b A

F'

(b)

Figure 2.7: Illustrations of the cases in Lemma 2.3.18. (a) In Case 1, Q1[start(A), tail(b)] ◦ Q2 ◦
R[·, head(b)] ◦ rev (A) is a new obstruction. (b) In Case 2, F ′ ◦ Q1 ◦ Q2 ◦ R[·, head(b)] ◦ rev (A) is a
new obstruction.

This completes the proof of the Unusability Theorem.

2.3.3 Implementation of MaxFlow

For the sake of bounding the running time, we next give a implementation of max-flow(G0, c0, s, t)

as a kind of network-simplex algorithm (Table 2.4). Later in this section we show that the imple-

mentation indeed implements the abstract version. The algorithm maintains a spanning tree T of

the graph rooted at the sink t and the corresponding dual spanning tree T ∗ rooted at the infinite

face f∞.

Right-first search [92] in Step 2 constructs a tree T spanning every vertex v that can reach t in

G0, and the path T [v] is the leftmost v-to-t path in G0. The primal tree T is represented using a

dynamic-tree data structure [1, 3, 42, 99, 103], enabling Steps 6, 7, 11 and 12 to run in O(log n) time.

26

(Implementation) MaxFlow(G0, c0, s, t)

1. Initialize f = 1.
2. Initialize T to be the right-first search tree searching backwards from t (disregarding

the orientation of the arcs).
3. Let G be the graph obtained from G0 by deleting all vertices not in T .
4. Initialize T ∗ to consist of the darts of G whose arcs are not in T .
5. Repeat:

6. If T [s] is residual, saturate T [s], modifying f .
7. Let d be the last non-residual dart in T [s].
8. If tailG∗(d) is a descendent in T ∗ of headG∗(d) then return f .
9. Let e be the parent dart in T ∗ of headG∗(d).

10. Eject e from T ∗ and insert d into T ∗.
11. Eject d from T and insert e into T .
12. Compute the reverse residual capacities of the darts in T [tailG(e), tailG(d)].

Table 2.4: A network-simplex type implementation of the MaxFlow algorithm.

The dual tree T ∗ is represented by an Euler-tour tree data structure [54], so Steps 8, 9 and 10 can

also be implemented in O(log n) time. To clarify Step 12: the path T [tailG(e), tailG(d)] becomes

directed away from t in Step 11. In order to efficiently compute residual capacities towards t, we

must consider the capacities of the rev (T [tailG(e), tailG(d)]).

An iteration of Step 5 is a pivot step and is illustrated in Figure 2.8. To show that max-

flow(G0, c, s, t) takes O(m log n) time, we show that there are at most 3m pivot steps (Theo-

rem 2.3.26). It therefore follows that the algorithm runs in O(m log n) time.

First we show that the algorithm does maintain spanning trees of G and G∗.

Invariant 2.3.19. T is a spanning tree of G and T ∗ is a spanning tree of G∗.

Proof that the algorithm maintains the invariant. Step 2 establishes that T is a spanning tree of

G and Step 4 establishes that T ∗ is a spanning tree of G∗, by the Interdigitating Spanning Trees

Theorem. Steps 10 and 11 preserve the invariant. �

Invariant 2.3.20. If d is a dart in T ∗ such that tailG∗(d) is the parent of headG∗(d) (i.e., d is

oriented away from f∞, the root of T ∗ in G∗), then d is non-residual.

Proof that the algorithm maintains the invariant. First we show that the invariant holds initially.

T ∗ is composed of arcs not in T . Let a be any arc not in T . By construction of T , the path of arcs

a◦T [headG(a)] is right of T [tailG(a)]. Let C = a◦T [headG(a), tailG(a)]: C is a simple c.c.w. cycle.

The face to the left of a is enclosed by C and the face to the right is not. In G∗, a is directed out of

C in G∗. Since a is the only arc on the boundary of C that is not in T and f∞ is not enclosed by

C, 〈a, 1〉 is directed towards f∞ in T ∗ and 〈a,−1〉 is oriented away from f∞. Since the reverses of

arcs have zero capacity, the invariant holds initially.

27

Before

e

After

Figure 2.8: The edges of T are solid, non-tree edges are dashed. T ∗ is represented by light edges. In
an iteration of max-flow, the s-to-t path (bold) is saturated and d is the root-most non-residual
edge. The shaded face is the face whose parent in T ∗ changes, headG∗(d). The parent dart e is
removed from T ∗ and inserted into T , and rev (d) is inserted into T ∗ and becomes the new parent
dart.

Next, note that, in each nonterminating pivot step, tailG∗(d) is not a descendent in T ∗ of

headG∗(d). Dart e, the parent of headG∗(d), is removed from T ∗. The component of T ∗ − {e}
that contains f∞contains tailG∗(d) and not headG∗(d): d is oriented away from f∞. Since d was

saturated in Step 6, d is non-residual. See Figure 2.8 for an illustration of this.

Let c be a dart that remains in T ∗ during a pivot. The residual capacity of c does not change

and the orientation of c in T ∗ does not change. The invariant holds. �

We say that a dart d is a non-tree dart if d 6∈ T and rev (d) 6∈ T .

Lemma 2.3.21. There is no clockwise simple cycle whose non-tree darts are all residual.

Proof. Suppose for a contradiction that C was such a cycle. Let S be the set of non-tree darts in

C. By Invariant 2.3.19, for every dart d ∈ S, the tree T ∗ contains either d or rev (d). Since every

dart in S is residual, Invariant 2.3.20 implies that T ∗ contains every dart in S. Since C is clockwise,

headG∗(d) is enclosed by C for every dart d in C. Since T is a tree, C contains at least one non-tree

dart d ∈ S. The directed path T ∗[headG∗(d)] is completely enclosed by C, implying that C also

encloses f∞ = end(T ∗[headG∗(d)]), a contradiction.

We show in the next two corollaries that the network-simplex version of max-flow implements the

abstract version. Corollary 2.3.22 shows that the leftmost residual s-to-t path is augmented in each

iteration and Corollary 2.3.23 shows that the algorithm is correct.

Corollary 2.3.22. For every vertex v, there is no residual path strictly left of T [v].

Proof. Suppose for a contradiction that there is a residual path strictly left of T [v]. Then the leftmost

residual v-to-t path, P must be strictly left of T [v]. Let Q be a subpath of P such that the endpoints

of Q are on T [v] but Q and rev (Q) are both edge disjoint from T [v]. Since P is leftmost, Q is left

of T [end(Q), start(Q)]. So, Q ◦ rev (T [end(Q), start(Q)]) is a simple c.w. cycle whose non-tree darts

are residual, contradicting Lemma 2.3.21.

28

Corollary 2.3.23. The st-flow f returned by the algorithm is maximum.

Proof. When the algorithm terminates in Step 7, tailG∗(d) is a descendent in T ∗ of headG∗(d). Let

C be the simple cycle d ◦ T ∗[headG∗(d), tailG∗(d)]. In the primal G, the darts of C form a directed

cut Γ+
G(S). Every dart in C except d is a non-tree dart, so the headG(d)-to-t path in T does not

use any dart in C or the reverse of any dart in C. Since t is on the infinite face, C does not enclose

t and so S does not contain t. Likewise the s-to-tailG(d) path in T does not use and dart in C or

the reverse of any dart in C. Since d crosses C, S contains s. Since every dart comprising the cut

is non-residual, there is no residual s-to-t path. By the Max-Flow Min-Cut Theorem, the flow is

maximum.

t
d

rev(d)

Figure 2.9: An illustration of Corollary 2.3.23. Darts of the dual tree are dark, with darts of T ∗

solid. In the dual, s and t are faces, shown shaded. Upon termination, tailG∗(d) is a descendent in
T ∗ of headG∗(d). Since rev (d) is non-residual and the reverses of dual tree darts are non-residual,
the cycle shown is a saturated cut separating s from t. The darts of this cut (in the primal) are
light.

We now show that there are at most 3m pivot steps in the max-flow algorithm. Let d be a

dart. We have the following facts with regards to the max-flow algorithm:

Fact 1. If d is residual at time i and non-residual at time j (i < j), there was an augmentation

including d at some time between i and j.

Fact 2. If d is non-residual at time i and residual at time j (i < j), there was an augmentation

including rev (d) at some time between i and j.

Fact 3. When it is inserted into T , d is residual by Invariant 2.3.20.

Fact 4. When it is ejected from T , d is non-residual.

Claim 2.3.24. A dart 〈a, 1〉 where a is an arc of G0 is ejected at most once.

Proof. Let a be an arc and let d = 〈a, 1〉. Suppose for a contradiction that a is ejected at time i1

and at time i2 (i1 < i2).

To be ejected at time i1, d must be non-residual by Fact 4. Fact 1 implies that there was an

augmentation including d at some time k0 where 0 < k0 < i1.

To be ejected at time i2, d must have been inserted at some time j1 where i1 < j1 < i2. At time

j1, d is residual by Fact 3. By Fact 2, there was an augmentation including rev (d) at some time k1

where i1 < k1 < j1.

29

Since there was an augmentation including d at time k0 and there was an augmentation including

rev (d) at time k1 > k0, d cannot be augmented after time k1 by the Unusability Theorem.

Finally, to be ejected at time i2, d must be non-residual by Fact 4. By Fact 2, there was an

augmentation including d at some time k2 where j1 < k2 < i2. But d cannot be augmented after

time k1. This is a contradiction.

Corollary 2.3.25. A dart 〈a,−1〉 where a is an arc of G0 is ejected at most twice.

Proof. Let a be an arc and let d = 〈a,−1〉.
Suppose d is ejected at times i1 and i2. Then d must be inserted at time i1 < j1 < i2. By Fact

4, d is non-residual at time i1 and by Fact 3, d is residual at time j1. By Fact 2, rev (d) must be

part of an augmentation at some time k1 where i1 < k1 < j1.

Likewise, by Fact 4, d is non-residual at time i2 and by Fact 1 d must be augmented at time k2

where j1 < k2 < i2.

At time i2, d is out of the tree and non-residual. Since rev (d) cannot be augmented after time k2

by Claim 2.3.24, d can never become residual again and so cannot be inserted or ejected again.

As a consequence of the above, we have the following theorem:

Theorem 2.3.26. There are at most 3m pivot steps in the max-flow algorithm.

2.4 Multiple minimum cuts

In 1961, Gomory and Hu showed that the minimum cut between all pairs of nodes in a general

(i.e. not necessarily planar) undirected, weighted graph G with n vertices can be represented by

a tree T on the same n vertices [48]. Further, they showed that T can be computed using n − 1

minimum-cut computations (or, equivalently, n − 1 maximum-flow computations). Such a tree is

called a cut-equivalent tree and has the property that for every pair of vertices s and t, the min st-cut

in G is equal (in both value and bipartition of the vertices) to the min st-cut in T . It has long been

an open question as to whether one can improve on the Gomory-Hu algorithm by constructing a

cut-equivalent tree in time faster than O(n F (n, m)) where F (n, m) is the time for a single max-flow

(or min-cut) computation on a graph with n vertices and m edges.

Until recently, no algorithm has broken the O(n F (n, m)) bound. In [12], Bhalgat et al. present

an algorithm for the special case of unweighted graphs that runs in O(mn log2 n) time. This improves

the best previously-known solution (using Goldberg and Rao’s max-flow algorithm for unit capacity

graphs [46]) by Ω(
√

n/ log2 n). Their solution uses an efficient tree-packing algorithm as a subroutine,

as opposed to a max-flow algorithm.

In undirected planar graphs, maximum flow can be computed in O(n log n) time (by using the

algorithm presented in this thesis restricted to undirected graphs, or by using [55] or [68] to imple-

ment [52, 90]). Shiloach [98] first studied the problem of computing a cut-equivalent tree in planar

graphs. He demonstrated that a planarity-exploiting maximum-flow algorithm can be used as a sub-

routine of Gomory and Hu’s algorithm. (It has since been demonstrated that any min-cut producing

30

algorithm can be used to produce a cut-equivalent tree [49]). Combining these results produces an

O(n2 log n)-time algorithm for constructing a cut-equivalent tree for a planar graph. The algorithm

of Bhalgat et al. for general graphs does not beat this bound.

In this work we consider the special case of finding the min cuts between all pairs of vertices

on a common face f of a weighted planar graph. Such cuts can be represented by a (partial) cut-

equivalent tree (Figure 2.10). Gomory and Hu’s algorithm can be generalized to this subset version

of the problem using k − 1 max-flow computations [24] where k is the number of vertices bounding

f . Using the st-planar max-flow algorithm of Hassin [51] (which can be implemented in O(n)-time

using [55]) as a subroutine of the Gomory-Hu algorithm results in an O(kn)-time algorithm. Since

k can be as large as n, this algorithm may take Ω(n2) time.

(a) (b)

Figure 2.10: (a) A planar graph G (capacities not shown) with f the infinite face. One half of
the bipartition of the min st-cut is given by the shaded region. The value of the cut is the sum
of the capacities of the edges leaving this region. (b) The tree T (capacities not shown) that is
cut-equivalent for the boundary vertices of G. The min st-cut is highlighted and is given by the
minimum-capacity edge on the path in T from s to t. This edge has capacity equal to the value of
the min st-cut in G and the corresponding bipartition of the vertices is the same. For the partial
cut-equivalent tree, this property need only hold for the bold vertices. In this work, T turns out to
be a spanning tree of G.

Here we give an algorithm that constructs the cut-equivalent tree for the boundary vertices of

an undirected, weighted planar graph G that runs in O(n) time, regardless of how many vertices

there are on the boundary of the graph. The algorithm is inspired by the relationship between

minimum cuts and shortest paths via the planar dual (as demonstrated by Hassin [51]). We first

find a shortest-path tree T ∗ of the planar dual rooted at f , interpreting capacities as lengths. We

show that the dual tree comprised of edges not in T ∗ forms a cut-equivalent tree T for the vertices

in ∂G. We then show that from T , which has n vertices, we can construct another tree T ′ that

has k vertices (as illustrated in Figure 2.12) and is also cut equivalent (which is the smallest tree

representing these cuts).

A cut X1 in graph G1 with capacities c1 is equivalent to a cut X2 in graph G2 with capacities

c2 on the same vertex set as G1 if c1(X1) = c2(X2) and the bipartition of the vertices given by X1

is equal to the bipartition given by X2. For undirected graphs, Γ+(S) for any S ⊆ V is equivalent

to Γ+(S̄) where S̄ = V \ S, in the same graph with the same capacities. (In particular, a minimum

31

st-cut is equivalent to a minimum ts-cut.)

A K-cut-equivalent tree for a graph G is a tree T on the same vertex set as G such that the

minimum st-cut in T is equivalent to the minimum st-cut in G for every pair of vertices s, t ∈ K. We

will describe an alternative representation for a K-cut-equivalent tree in Section 2.4.4. Traditionally

a cut-equivalent tree is for the set K = V .

2.4.1 Minimum cuts between boundary vertices of a planar graph

In the following we give a construction for a K-cut-equivalent tree where K is the set of vertices on

the boundary of an input face f of a planar graph. We will drop the prefix ‘K-’ and will assume

that f is the infinite face of the embedding. So, K is the set of vertices on the boundary of the

planar graph. We call the vertices of K terminals. The algorithm BoundaryCutTree is given in

Table 2.4.1.

BoundaryCutTree(G,c,f):

1. Let T ∗ be a shortest-path tree, interpreting c as lengths, in G∗ rooted at f . Let φ(g)
be the corresponding f -to-g distance for every vertex g of G∗.

2. Let T be the spanning tree of G consisting of all the edges not in T ∗.
3. For each dart d of T , compute h(d) = φ(headG∗(d)) + c(d) + φ(tailG∗(d)).
4. Return T with capacities h.

Table 2.5: The algorithm BoundaryCutTree takes as input an undirected planar embedded graph
G with capacities c and a face f and computes a tree that is cut-equivalent for vertices adjacent to
f . That is, the algorithm implicitly finds all the minimum cuts between vertices adjacent to f .

2.4.2 Running time of BoundaryCutTree

Since the capacities are non-negative, the shortest-path tree needed for Step 1 can be computed in

O(n) time using the algorithm of Henzinger et. al. [55]. Steps 2 and 3 can be computed in O(n)

time. Overall, the algorithm takes O(n) time.

Note that since c(·) is symmetric (since G is undirected), h(·) is also symmetric: h(d) =

φ(headG∗(d))+c(d)+φ(tailG∗(d)) = φ(tailG∗(rev (d)))+c(rev (d))+φ(headG∗(rev (d))) = h(rev (d)).

So, one need only compute h(d) once per pair of oppositely oriented darts. Also, since T will only

be used to compute min cuts between boundary vertices of G, one need only compute h(d) for darts

that are on paths in T between boundary vertices of G (i.e. darts of the minimal subgraph of T that

spans the boundary vertices of G).

2.4.3 Correctness of BoundaryCutTree

We prove the correctness of BoundaryCutTree as follows. First we show that for two vertices s

and t on the boundary of f , there is a min st-cut that shares exactly one dart with T [s, t] where

T is the tree found in Step 2 (Lemma 2.4.1). Next we show that for any dart d ∈ T [s, t], the min

32

st-cut constrained to intersect T [s, t] at only d is composed of the edges of the fundamental cycle

of d with respect to T ∗ (Lemma 2.4.2). The correctness of the algorithm follows fairly directly

(Theorem 2.4.3).

Lemma 2.4.1. Let G be an undirected planar embedded graph with capacities c. Let T ∗ be a f -rooted

shortest-path tree in the dual G∗, interpreting the capacities as lengths. Let T be the spanning tree

of G consisting of all the edges not in T ∗. For every pair of vertices s and t such that t is on the

boundary of f , there exists a minimum-capacity st-cut X such that |X ∩ T [s, t]| = 1.

Proof. Let X be a min st-cut Γ+(S) such that s ∈ S and S is minimal. Let d be the first dart

of T [s, t] that is in X . Let C be the fundamental cycle of d with respect to T ∗ (i.e. C = d ◦
T ∗[headG∗(d), tailG∗(d)]).

We show that X is enclosed in C.

Suppose, for a contradiction, that there is a dart e of C strictly enclosed by X in G∗ (recall that

X is a cycle in G∗). Either e is a dart of T ∗[headG∗(d), f] or e is a dart of T ∗[f, tailG∗(d)]. If e is

a dart of T [headG∗(d), f], let P be the maximal subpath of T [headG∗(d), f] such that e ∈ P and P

is strictly enclosed by X . If e is in T [f, tailG∗(d)], let P be the maximal subpath of T [f, tailG∗(d)]

such that e ∈ P and P is strictly enclosed by X . In both cases, the endpoints of P are on X and

both P and rev (P) are shortest paths (since T ∗ is a shortest-path tree in an undirected graph).

Let a and b be the start- and end-points of P , respectively. We create two cycles from P and X :

X1 = X [b, a] ◦ P and X2 = X [a, b] ◦ rev (P). Since s is a face in G∗ that is enclosed by X , either s

is enclosed by X1 or X2. Suppose, without loss of generality, that s is enclosed by X1. Since P is a

shortest path, c(P) ≤ c(X [a, b]). We have c(X1) = c(X [b, a]) + c(P) = c(X) − c(X [a, b]) + c(P) ≤
c(X)− c(X [a, b]) + c(X [a, b]) ≤ c(X). Since X1 is a cycle in G∗, it is a cut in G and so, X1 is a min

st-cut that encloses fewer faces than X , contradicting the minimality of X .

Therefore X is a cycle enclosed by C in G∗. Since d was chosen to be the first dart of T [s, t] in

X , a second dart of T [s, t] cannot be in X without crossing C (which contains only one dart of T ∗,

d). The lemma follows.

Lemma 2.4.2. Let G be an undirected planar graph with capacities c. Let T ∗ be a f -rooted shortest-

path tree in the dual G∗, interpreting the capacities as lengths. Let T be the spanning tree of G

consisting of all the edges not in T ∗. For any dart d in the path T [s, t], the fundamental cycle of d

with respect to T ∗ is the minimum st-cut whose intersection with T [s, t] is {d}.

Proof. Let C = T ∗[headG∗(d), tailG∗(d)] ◦ d: C is the fundamental cycle with respect to d and T ∗.

Let S be the set of vertices in the component of T \ {d} that contains s: S does not contain t. By

the Cycle-Cut Duality Theorem, C = Γ+(S) and so C is an st-cut. Since both s and t are adjacent

to f , C must contain f as a vertex in G∗ (that is, C must cut through the face f). Thus we can

express C as T ∗[f, tailG∗(d)] ◦ d ◦ T ∗[headG∗(d), f].

Let X be the minimum st-cut such that X ∩ T [s, t] = {d}. Since both s and t are adjacent to

f in G∗, X must contain the dual vertex f . Since X is a cycle in G∗, it follows that X is a simple

33

cycle of the form Q ◦ d ◦ P where P is a headG∗(d)-to-f path and Q is a f -to-tailG∗(d) path. We

have shown that C is a cycle of this form and minimizes the capacity, subject to the constraints.

The correctness of BoundaryCutTree now follows from the following theorem:

Theorem 2.4.3. Let G be an undirected planar graph with capacities c. Let T and h be the tree

and capacity function returned by BoundaryCutTree(G,c,f). For two vertices s and t on the

boundary of G, there is a minimum st-cut in T that is equivalent to the minimum st-cut in G.

Proof. For any dart d, let X(d) = T ∗[f, tailG∗(d)] ∪ {d} ∪ T ∗[headG∗(d), f]. By Lemma 2.4.2, X(d)

is the minimum st-cut whose intersection is {d}. By Lemma 2.4.1, there is a minimum st-cut in G

whose intersection with T [s, t] is a single dart. So, there is a dart d ∈ T [s, t] for which X(d) is the

min-st cut in G. The dart that achieves this minimizes the capacity of X(d) and is:

dmin = argmin
d∈T [s,t]

c(X(d))

= argmin
d∈T [s,t]

c(T ∗[headG∗(d), f]) + c(d) + c(T ∗[f, tailG∗(d)])

= argmin
d∈T [s,t]

φ(headG∗(d)) + c(d) + φ(tailG∗(d))

= argmin
d∈T [s,t]

h(d).

And so dmin also minimizes h(d) along T [s, t] and is the min st-cut in T : the value of the minimum

st-cut in T is equal to the value of the minimum st-cut in G.

In fact, since X(dmin) is the fundamental cycle in G∗ corresponding to dmin with respect to T ∗,

the bipartition of the vertices given by T \ {dmin} is equal to that given by the cut X(dmin) in G.

Therefore the min st-cut in T gives the same bipartition of the nodes as the min st-cut in G. Such

a cut is illustrated in Figure 2.11.

��
d

Figure 2.11: A graph G with spanning tree T given by the set of solid edges. The grey cycle is the
fundamental cycle in G∗ composed of dart d in G∗ and the path in T ∗ between the endpoints of d.
Since d is on the path in T from s to t, the grey cycle is an st-cut in G.

2.4.4 A more compact cut tree

BoundaryCutTree finds a tree that is cut-equivalent for pairs of vertices on the boundary of the

input graph G. However, T has n vertices, while G has only k terminals. We would like to find a

34

tree T̂ with the following properties: T̂ has one node for every vertex on the boundary of G; each

node of T̂ is labeled with a subset of the vertices of G, forming a partition of the vertices of G, with

the label of a node containing the corresponding terminal of G; given two boundary vertices a and

b of G the min ab-cut in G should be equivalent to the AB-cut in T̂ where A is the node of T̂ whose

label contains a (likewise b ∈ B, where the bipartition of the vertices is inherited from the labels of

the bipartition of the nodes of T̂). The result is a K-cut-equivalent tree and is described in [24].

We review the Gomory-Hu algorithm here. If the terminal set K has cardinality > 1, two

terminals are chosen s, t and the min st-cut Γ+(S) is computed. The algorithm proceeds recursively

on the graph obtained by identifying the vertices in S with terminal set K ∩ (V − S) and on the

graph obtained by identifying the vertices V −S with terminal set K∩S. The cuts found are enough

to construct a cut-equivalent tree for the vertices.

Given the tree T with capacities h output by BoundaryCutTree, we give an O(n) implemen-

tation of the Gomory-Hu algorithm to find a K-cut-equivalent tree where K is the set of terminals

(boundary vertices). In the following, π is the cyclic ordering of the terminals according to the first

time the terminal appears in an Euler tour of T starting from a terminal s (that is, for t ∈ K, π(t)

is the next terminal in this Euler-tour ordering of K). Initially, r = s, and g is a null function. To

restrict π to a subtree means to restrict π to the sub-ordering of the terminals of K that appear in

that the subtree.

GomoryHuEdges(T , h, π, s, r, g):

1. For every vertex x on T [r, π(s)], compute g(x) = argmind∈T [s,x] h(d).
2. Let d = g(π(s)).
3. Let r be the last vertex of T [s, d] that has degree > 2 in T or is a terminal.
4. Let T1 and T2 be the components of T − d such that r ∈ V (T1).
5. If T1 has more than one terminal,

M1 = GomoryHuEdges(T1, h, π restricted to T1, s, r, g).
6. If T2 has more than one terminal,

M2 = GomoryHuEdges(T2, h, π restricted to T2, π(s), π(s), null).
7. Return M1 ∪ M2 ∪ {d}.

Table 2.6: The GomoryHuEdges algorithm finds a K-cut-equivalent tree when the input is a tree.

First we argue that GomoryHuEdges finds the cuts that a Gomory-Hu algorithm would. In

step 1, the min sπ(s)-cut is computed: d. Deleting d creates two subproblems (Step 4). Step 3 guar-

antees that r will be a vertex of T [s, π(s)] for the subproblem in Step 5. Therefore, upon calling Go-

moryHuEdges, the function g satisfies that for every vertex x on T [s, r], g(x) = argmind∈T [s,x] h(d).

It follows that GomoryHuEdges correctly implements the Gomory-Hu algorithm.

The function g stores partial min cuts and allows us to achieve an O(n) running time. Step 1

is implemented so that evaluating g(x) takes one comparison for each x: between h(e) for the last

dart of T [s, x] and g(tailT (d)). It is not hard to see that each dart e appears only once in such

a comparison. Since there are O(n) edges in a planar graph, there are O(n) such comparisons in

GomoryHuEdges.

35

Let M be the set of darts output by GomoryHuEdges. Contract to a vertex v every maximal

subtree H of T that does not contain a dart of M and label v with vertex set of H . The resulting

tree T̂ is the K-cut-equivalent tree we desire. It is illustrated in Figure 2.12.

Figure 2.12: The tree T given by solid edges is that returned by BoundaryCutTree on the graph
G with boundary given by dotted lines. The edges of M found by GomoryHuEdges are highlighted
in grey. The nodes of a compact cut tree T ′′ for the boundary vertices of G are given by the large
grey circles and are labeled with the vertices of G they contain. The edges of T ′′ are exactly the
edges found by GomoryHuEdges.

2.5 Open Problems

The BoundaryCutTree algorithm represents the first step towards an algorithm for the all-pairs

min-cut problem in undirected, weighted planar graphs (that is, building the cut-equivalent tree for

all the vertices of a planar graph) that would beat the O(n F (n, m)) bound given by the Gomory-

Hu algorithm. This bound, in planar graphs, is O(n2 log n). It isn’t immediately obvious how the

algorithm seen here could result in, say, a sub-quadratic bound for the all-pairs problem. However

the algorithm for representing all the boundary-to-boundary distances of a planar graph presented

by Klein in 2005 [68] was later used for efficiently computing distances between an arbitrary set

of vertex pairs [20] by using balanced separators. The algorithm given here could prove similarly

useful.

Turn now to the maximum-flow problem. While the algorithm given in this thesis seems to close

the book on a long line of research, it is certainly not the most general of maximum-flow algorithms

for planar graphs. Our algorithm is only guaranteed for a single source and a single sink. In general

graphs, this is no limitation as one can turn a multiple-source, multiple-sink flow problem into an

st-flow problem: connect a new vertex s to each of the sources with infinite-capacity edges and

repeat for the sinks. However, as Miller and Naor point out [79], planarity is not preserved by this

reduction. They give a planarity-exploiting algorithm for a similar problem in which the demands

on the sources and sinks are known a priori.

Consider the maximum-flow problem with multiple sources and a single sink. While this problem

is not completely general, an efficient solution would solve the image segmentation problem as defined

by Cox, Rao, and Zhong [25] more efficiently [87]. Although the Unusability Theorem for MaxFlow

36

depends on the existence of a single source (i.e. Property 2.3.12), the algorithm does not. Certainly,

the preprocessing step does not depend on the sources or sinks: clockwise cycles can be saturated.

For each source, the primal spanning tree maintains a leftmost source-to-sink path. The natural

extension of max-flow saturates one of these leftmost residual paths in each iteration. There is

freedom in the choice of sources: in order to maintain a leftmost flow, it does not matter which source

is chosen, only that the augmentation is a leftmost augmentation from that source. Unfortunately, we

have counterexamples to the Unusability Theorem for various choices of source (including leftmost,

rightmost, and any fixed order) for each iteration.

In 2005, Klein presented an algorithm that computes the shortest-path tree rooted at each vertex

on a common face [68]. Klein’s algorithm and MaxFlow use similar ideas. In Klein’s algorithm, a

preprocessing step computes a leftmost shortest-path tree rooted at one such vertex u. (Klein instead

used rightmost.) This is analogous to our finding a leftmost or clockwise-saturating circulation. The

tree is re-rooted at the next vertex v along the boundary of the face. A pivoting step changes the

tree to reduce the distance labels while maintaining that the distance to every vertex in the graph

is the shortest given by any path to the left of the tree path to that vertex. This is analogous to

our maintaining a leftmost flow. When the current tree becomes a shortest-path tree, the tree is

re-rooted at the next vertex along the boundary of the face. Klein shows that the algorithm uses

O(n) pivot steps and implements each pivot step using primal and dual spanning trees represented

by a dynamic-tree data structure. A similar concept had also been used to design algorithms for

finding edge- and vertex-disjoint paths in planar graphs [92].

In these algorithms, the planar graph is searched in a consistent manner. In MaxFlow, the

augmenting path moves from left to right. This is particularly obvious when both the source and

sink are on the the infinite face. In the multiple-source shortest-path algorithm, described above,

the tree moves from left to right. In both cases, the current solution is optimal when considering

solutions to the left of the current solution. This is analogous to the plane-sweep technique of

computational geometry. In two dimensions, a line is swept through the plane of data from left

to right maintaining optimal solution to the problem considering only the data to the left of the

line. Unifying the analysis of MaxFlow and the multiple-source shortest-path algorithm could

lead to a general plane-sweep technique for planar graphs. The MaxFlow and multiple-source

shortest-path algorithms have a network-simplex interpretation. The primal tree that is maintained

throughout the algorithm corresponds to a basic solution; the pivot step corresponds to a pivot step

in the simplex algorithm. Problems that have a natural network-simplex interpretation are obvious

starting points for such a generalization.

Chapter 3

Connectivity Problems

The Steiner-tree problem is a classic problem in combinatorial optimization that started with a

geometry problem. Fermat is said to have asked Torricelli what point in the Euclidean plane min-

imizes the sum of the distances to three given points. Torricelli solved the problem exactly [106].

Later, Steiner gave a significantly more elegant construction [101], and the problem was attributed

to him. More generally, metric Steiner-tree problem is to find a tree spanning a given set of points

in the metric space where additional (Steiner) points may be introduced in order to minimize the

total length of the tree. In graphs, given a subset of the vertices called terminals of the graph, the

Steiner-tree problem is to find a minimum weight subgraph that connects that subset.

In some cases, one might require more than a single path connecting each pair of terminals.

Most generally, the goal is to find a subgraph H that satisfies a set of connectivity requirements,

r(x) for each vertex x. For a pair of vertices x and y, H satisfies the connectivity requirement

between x and y if there are min{r(x), r(y)} disjoint x-to-y paths in H . Disjoint may have one

of two interpretations: the paths can either be edge disjoint or vertex disjoint (not considering, of

course, the endpoints of the paths). If paths are vertex disjoint, then they are also edge disjoint.

Connectivity problems for r > 1 are often called survivable network problems as the network is

resistant to disconnection if (in the edge-connected case) an edge or (in the vertex-connected case)

a vertex is removed. The problem arises in telecommunication network design where an important

requirement is the network’s resilience to link failures [91].

In this work we consider {0, 1, 2} requirements in undirected, planar graphs: r(x) ∈ {0, 1, 2} for

every terminal x. The Steiner-tree problem is a special case of this problem. We consider a standard

relaxation of the problem where the solution H is a multi-subgraph of the input graph G. That is,

an edge e of G may be counted multiple times in H . In this case, the weight of edge e is also counted

multiple times in the weight of H . We summarize the problems here:

Steiner-tree problem Given a set of terminals Q, find a minimum-weight tree T of G that spans

Q (r(x) = 1 for every vertex x ∈ Q).

2-edge-connectivity (2-EC) problem Given a set of requirements on the vertices, r(x) ∈ {0, 1, 2},
37

38

find a minimum-weight multi-subgraph H of G that contains at least min{r(x), r(y)} edge-

disjoint paths between every pair x, y of terminals.

We call the set of vertices with non-zero requirements the set of terminals. The 2-EC problem

contains, as a special case, the Steiner-tree problem. It also contains the special case of finding

a multi-subgraph that achieves 2-edge-connectivity between a set of terminal vertices (i.e. r(x) ∈
{0, 2}). Note that it is sufficient to allow at most 2 copies of any edge for the 2-EC problem, so

H is a bi-subgraph of G. In the following, we will denote by OPT1(G, Q) and OPT2(G, Q) the the

weight of the optimal solution to the Steiner-tree and 2-EC problem, respectively. When we omit

the subscript, the statement is true for both problems.

3.1 Algorithms for connectivity problems

Most versions of connectivity problems are NP-complete. The weighted network Steiner-tree problem

(in general graphs) was one of Karp’s original 21 NP-hard problems [63]. So, unless P=NP, there

is no polynomial-time algorithm for computing an optimal solution. In fact, even when the input

is restricted to be planar, the Steiner-tree problem is NP-complete (by a reduction from the NP-

completeness of the rectilinear Steiner-tree problem [44]). The 2-EC problem was shown to be

NP-hard in complete graphs with arbitrary weights by Eswaran and Tarjan [36]. It is NP-hard in

planar graphs (by a reduction from the Hamiltonian cycle problem).

The goal, then, of algorithms researchers is to find approximation algorithms. For the Steiner-

tree problem, the first was a 2-approximation due to Takahashi and Matsuyama [102] and Kou,

Markowsky and Berman [73]. Their running time was improved by Wu, Widmayer, and Wong [112],

Widmayer [110], and Mehlhorn [78]. The approximation ratio has been improved by Zelikovsky,

Berman, Ramaiyer, Romel, Steger, Karpinsky, Hougardy, and Promël [8, 57, 64, 84, 114, 115],

leading to a 1.55-approximation by Robins and Zelikovsky [93]. For the problem of finding a subgraph

containing 2 edge-disjoint paths between every pair of terminals, there is a 2-approximation algorithm

due to Frederickson and Jájá [43] (the running time was improved by Khuller and Thurimella [66]).

This is the best known approximation ratio for weighted graphs. For unweighted graphs, Kuller and

Thurimella gave a 1.5-approximation that was later improved to a 5/4-approximation [62]. For the

non-spanning case, Ravi [89] showed that Frederickson and Jájá’s algorithm could be generalized to

give a 3-approximation. Klein and Ravi [70] gave a 2-approximation for a more general problem that

specifies which pairs of nodes must be connected. This result was greatly generalized by Williamson

et al. [111], Goemans et al. [45] and Jain [59]. All of these algorithms are for general, undirected

graphs and do not require duplicate edges.

3.1.1 Polynomial-time approximation schemes

One may consider the polynomial-time approximation scheme or PTAS the best one can do for an

NP-hard problem. A PTAS is a family of algorithms such that for any given ǫ > 0, the corresponding

39

algorithm runs in polynomial time and, for any input, returns a solution whose value is within a

1 + ǫ factor of the optimal solution.

Unfortunately, it has been shown that the network Steiner-tree problem is max-SNP complete [11,

105]: it is NP-hard to find a Steiner tree of weight at most 96/95 times optimal if RP 6=NP [23].

Similarly, the 2-EC problem is max-SNP complete [27]: it is NP-hard to find a 2-edge-connected

spanning subgraph of a degree-3 graph to within 1573/1572 of optimal [26].

However, we show that this intractability can be overcome by restricting the input to be planar

by giving a PTAS for the Steiner tree [19, 15] and 2-EC problems. Further, we give an efficient

PTAS (or EPTAS) for these problems: the degree of the polynomial in the running time does not

depend on ǫ. Our running times are of the form O(2poly(1/ǫ)n + n log n) = O(n log n).

Previously no PTAS was known for the Steiner-tree problem in planar graphs. However, a PTAS

has been given for the related problem in low-dimensional Euclidean space. The first algorithms used

a recursive quad-tree decomposition of the space [4, 80] such that there is a near-optimal solution

that crosses each region of the quad-tree a constant number of times. This is analogous to the

Structure Theorem we give (Section 3.4). The algorithm due to Arora [4] is near-linear in n with

a polylog factor whose degree depends on ǫ. Rao and Smith [88] gave an O(n log n) approximation

scheme using the concept of a spanner, a concept we also use to derive our algorithms. In this

Euclidean case, n denotes the number of terminals.

No PTAS has been given for the subset 2-EC problem we consider here (i.e. the set of terminals

Q is a strict subset of the vertices of the input graph). Berger et al. [6] gave a PTAS for the spanning

case (Q = V) in unweighted, planar graphs when duplicate edges are allowed. Berger and Grigni [7]

extended this result to handle weighted, planar graphs (still for the spanning case), allowing and not

allowing edge-duplication. The PTAS is not an EPTAS. A PTAS is also known for the corresponding

geometric problem in complete geometric graphs of low dimension [27].

3.1.2 Polynomial-time solvable cases

Theorem 3.1.1. [35] Let G be a weighted planar embedded graph and let Q be a set of k terminals

that all lie on the boundary of a single face. Then there is an algorithm to find an optimal Steiner

tree of G spanning Q in time O(nk3 + (n log n)k2).

This algorithm has been generalized by Bern [9] and by Bern and Bienstock [10] to handle some

additional special cases, e.g. where the terminals lie on a constant number of faces. Provan [86, 85]

used the same approach to give exact and approximate algorithms for some geometric special cases.

The algorithm of [35] uses as a subroutine an algorithm for computing single-source shortest paths.

Using instead as a subroutine the linear-time planarity-exploiting algorithm of [55], one can improve

the running time to O(nk3). We will use this algorithm to solve both the Steiner-tree and 2-EC

problems.

We give an equivalent algorithm for the 2-EC problem (Section 3.8):

40

Theorem 3.1.2. Let G be a weighted planar embedded graph and let Q be a set of k terminals that

all lie on the boundary of a single face. Then there is an algorithm to find an optimal multi-subgraph

of G satisfying requirements r(x) ∈ {0, 1, 2} for every vertex x ∈ Q. The running time is O(k3n).

For the case when r(x) ∈ {0, 2}, the running time is linear.

As with many NP-hard problems, the Steiner-tree and 2-EC problems can be solved in polynomial

time (in fact in linear time) in graphs of bounded treewidth given a tree-decomposition of bounded

width w. An optimal Steiner tree can be computed in O(wwn)-time [71]. An optimal solution to

the 2-EC problem can be found in O(2O(w2)n)-time [7] (this algorithm solves the spanning case, but

can be easily modified to solve the subset version).

3.1.3 New approximation schemes for planar connectivity problems

We give two O(n log n)-time approximation schemes for each Steiner tree and 2-EC. Both rely on a

graph decomposition we call a brick decomposition. The brick decomposition is a grid-like subgraph

that spans the input terminals with weight at most O(OPT) where OPT is the weight of the optimal

solution (Section 3.2). We then show that for both the Steiner-tree and 2-EC problem, the optimal

solution crosses each face of the brick decomposition a small number of times. This property is given

by the main Structure Theorem, Theorem 3.4.4 in Section 3.4. The Structure Theorem is the main

tool for giving a PTAS.

The first approximation scheme computes, for each face of the brick decomposition, optimal

solutions within each face where the terminals are assumed to be on the boundary of the face. We

show that the union of the brick solutions together with the brick decomposition edges forms a light

spanner: a subgraph whose weight is O(OPT) that contains a near-optimal solution to the original

problem. The details of the framework are given in Section 3.5. This use of a spanner is similar to

the algorithm for Steiner tree in the Euclidean plane due to Rao and Smith [88]. This scheme has

doubly-exponential dependence on 1/ǫ.

The second approximation scheme has singly-exponential dependence on 1/ǫ. Here a second

level of decomposition is found that breaks the brick decomposition into parcels, each of which has

(something close to) bounded carving width [97]. Based on a carving decomposition of each parcel,

a near-optimal solution is found using portals to limit the interaction between faces of the brick

decomposition. The details are given in Section 3.6. The use of portals and the brick decomposition

is similar to Arora’s approximation schemes for problems in the Euclidean plane [4].

In both algorithms we will actually construct a (1 + cǫ)-approximate solution for a constant c

fixed by the analysis (and not dependent on ǫ). In order to achieve a (1 + ǫ)-approximation, one

should use ǫ/c as the precision. We will (not unreasonably) assume ǫ is in the range (0, 1).

3.2 Brick decomposition

In this section, we give first the construction for the graph decomposition that we call a brick

decomposition. The brick decomposition is defined by a subgraph of the input graph called a mortar

41

graph, each face of which defines a brick. In Section 3.4.2, we will show that there is a near-optimal

solution that crosses the boundary of each brick a small number of times.

3.2.1 Construction of the mortar graph

The mortar graph, denoted MG, is a connected, grid-like subgraph of an input graph G (Figure 3.1).

(a) (b)

Figure 3.1: (a) An input graph G with bold edges forming the mortar graph MG in (b).

The construction of the mortar graph depends on the terminal set Q and the precision ǫ. The

algorithm BrickDecomposition for finding MG is given in Table 3.1. Steps 1 through 5 of the

algorithm are identical to the first three steps in Klein’s construction [69] of a subset spanner.

We require the following definition for the algorithm:

Definition 3.2.1 (ǫ-short). A path P in a graph G is ǫ-short if for every pair of vertices x and y

on P , the distance from x to y along P is at most (1 + ǫ) times the distance from x to y in G:

distP (x, y) ≤ (1 + ǫ)distG(x, y).

G’

x

yx’ y’

(a)

G’

(b)

R

B

(c)

Figure 3.2: (a) The first strip is created by a path (dashed) connecting x to y. The distance between
every pair of vertices, x′ and y′, between x and y on the boundary is well approximated by the
boundary distance. We recurse on the shaded face. (b) A graph is divided into strips (by the dashed
lines). One strip is shaded and enlarged in (c). Columns (vertical lines) are taken from the set of
shortest paths from the lower, south boundary S (dashed) to the upper, north boundary N (solid).

Note that in Step 3, such vertices always exist because for x = y, H [x, y] is equal to H and is not

an ǫ-short path. This step is illustrated in Figures 3.2(a) and (b). The path N (a shortest path) is

called the north boundary of the strip. The path H [x, y] (whose interior is an ǫ-short path) is called

the south boundary of the strip (denoted S). We embed a strip so that S is below N and we take s0

to be the left endpoint common to S and N . By convention column C0 is defined to be the (empty)

42

BrickDecomposition(G,Q,ǫ):

1. Find a 2-approximate Steiner-tree T spanning Q in G.
2. Let G′ = TreeCut(G,T). Interpret the new face as the infinite face f∞ with

counterclockwise boundary H .
3. Find vertices x, y on H such that H [x, y] is a minimal subpath of H that is not

ǫ-short. Let N be a shortest path from x to y in G′: the subgraph enclosed by
H [x, y]∪N is called a strip and we denote H [x, y] by S. Recursively decompose the
subgraph of G′ enclosed by N ∪ H [y, x] into strips (if this subgraph is nontrivial).

4. For each strip embedded with N above S and vertices ordered from left to right
along S:

5. For i = 1, 2, . . ., find the first vertex si on S (in left-to-right order) such that
the distance from si−1 to si along S is greater than ǫ times the distance from
si to N in the strip: distS(si−1, si) > ǫ dist strip(si, N) Column Ci is defined to
be the shortest path in the strip from si to N .

6. Let
κ = κ(ǫ) = 4ǫ−2(1 + ǫ−1), (3.1)

and let Ci = Ci ∪ Ci+κ + ∪Ci+2κ ∪ . . . for i ∈ {0, 1, . . . , κ − 1}. Let i∗ be the
index that minimizes ℓ (Ci). We designate the columns in Ci∗ as supercolumns.

7. Return the edges belonging to T , the strip boundaries and supercolumns.

Table 3.1: The algorithm for constructing the mortar graph, a subgraph of G that depends on an
input set of terminals Q and a given precision, ǫ > 0.

shortest path from s0 to N . We also include as a column the trivial path starting and ending at the

rightmost vertex common to S and N . Columns are illustrated in Figure 3.2(c).

The mortar graph is composed of the edges of the 2-approximate Steiner tree T (Step 1), the

strip boundaries (Step 3), and the supercolumns (Step 6). Each face of the mortar graph is bounded

by two supercolumns and a northern and southern strip boundary. These faces will define the bricks

(Section 3.3).

3.2.2 Running time of BrickDecomposition

Step 1 can be done in O(n log n) time [78, 110, 112]. In planar graphs, Step 1 can be computed in

linear time [104]. Klein [69] shows that the strip decomposition of an n-vertex planar graph can be

found in O(n log n) time using [68] and describes how to reduce the problem of finding the columns

in a strip to a single shortest-path computation in an augmented strip. It is therefore possible to

find all the columns in O(n) time. The entire construction takes O(n log n) time.

3.2.3 Properties of the mortar graph

We upper-bound the total weight of the mortar graph, including various components of the mortar

graph, in terms of the length of the optimal solution. The following was given by Klein in [69] as

ℓ (H) ≤ 4 OPT1(G, Q). Since a solution to the 2-EC problem is also a solution to the Steiner-tree

43

problem, OPT1(G, Q) ≤ OPT2(G, Q), and so this lemma applies to either problem. All further

inequalities in terms of OPT will be based on this lemma, allowing us to drop the subscript.

Lemma 3.2.2. ℓ (H) ≤ 4 OPT(G, Q).

Lemma 3.2.3 (Inequality (10), Klein [69]). The total length of all the boundary edges of all the

strips is at most (ǫ−1 + 1) times the length of H.

Lemma 3.2.4 (Lemma 5.2, Klein [69]). The sum of the lengths of the columns in a strip is at most

ǫ−1ℓ (S) where S is the southern boundary of the strip.

Lemma 3.2.5. The sum of lengths of the supercolumns in a strips is at most 1/κ times the sum of

the lengths of the columns in the strip.

The following lemma show that the sum of the weights of the supercolumns is an ǫ fraction of

OPT. We will assume that our optimal solution includes all the edges of the supercolumns. This will

allow us to concentrate on maintaining connectivity between the northern and southern boundaries

of bricks.

Lemma 3.2.6. The sum over the strips of the lengths of all the supercolumns is at most ǫOPT(G, Q).

Proof. Combine Lemmas 3.2.2, 3.2.3, 3.2.4, 3.2.5 and Equation (3.1).

The next two lemmas are needed for the approximation schemes we give in Sections 3.5 and 3.6.

Lemma 3.2.7 (Terminal Property). The mortar graph spans Q.

Proof. This is clear from Step 1 of BrickDecomposition. In fact every terminal is a vertex of a

strip boundary.

Lemma 3.2.8 (Mortar-Graph Length Property). The length of MG is at most 5ǫ−1OPT(G, Q).

Proof. From Lemma 3.2.2 and Lemma 3.2.3, we have that the lengths of the strip boundaries is

at most 4(ǫ−1 + 1)OPT(G, Q). From Lemma 3.2.6, the lengths of the supercolumns is at most

ǫ OPT(r,). Adding those quantities yields

ℓ (MG) ≤ 4(1 + ǫ + ǫ2/4))ǫ−1OPT(G, Q),

hence the Lemma.

3.3 Structural properties of bricks

The mortar graph defines a set of subgraphs of the input graph called bricks. Each brick corresponds

to a face of the mortar graph (Figure 3.3).

The decomposition into bricks will prove very useful. In this section we define the set of bricks

given by the mortar graph (Lemma 3.3.1) and then state a structural property about the bricks

44

(a) (b) (c)

Figure 3.3: Given an input graph (a), the faces of the mortar graph (b) define the set of bricks (c).

(Theorem 3.3.3) concerning forests embedding in bricks. We prove this theorem in stages, first

proving three lemmas about trees with leaves on ǫ-short paths (Section 3.3.2) and finally proving

Theorem 3.3.3 in Section 3.3.3. This theorem will apply directly to the Steiner-tree problem. How-

ever, for the 2-EC problem, we need to extend the theorem to handle 2-connectivity. We do this in

Section 3.3.4.

3.3.1 Bricks

Consider the mortar graph edges in the cut open graph (G′ of Step 2). Each face f of the mortar

graph that strictly encloses at least one edge of G′ defines a graph called a brick. In G, the brick

consists of the edges of G that are enclosed by the boundary ∂f of f . This boundary is a cycle of

edges, possibly with repetition if some edges occur twice in the boundary. (An example of such a

situation is shown on Figure 3.4. Note that in G′ each ∂f is a simple cycle by construction, but in

G, this might not be the case.) In G′, we duplicate edges as follows:

Cut the original graph Gin along ∂f , duplicating the edges you cut along (and replicating the

vertices) as in the operation TreeCut, and define the brick to be the subgraph of Gin embedded

inside that cycle, including the boundary edges according to their multiplicity in ∂f . That is, if

an edge occurs twice in the boundary of the face, then there are two copies of that edge in the

corresponding brick.

It is easy to see that computing the set of bricks takes O(n) time.

The boundary ∂B of a brick B is the simple cycle of boundary edges. The corresponding face

of MG is called the mortar boundary of B. Each edge of the mortar graph occurs at most twice in

the disjoint union of the boundaries of the bricks. Since we defined bricks corresponding only to

non-empty faces, every brick contains at least one edge not belonging to MG. Figure 3.3(c) is an

example of the set of bricks corresponding to the mortar graph of Figure 3.3(b). The construction

of a brick is illustrated in Figures 3.4(a) and (b).

Each brick B is bounded by subpaths of the northern and southern boundaries of a strip (NB

and SB, respectively) and two supercolumns EB and WB (east and west). The construction of MG

implies the following lemma, which summarizes the properties of a brick.

Lemma 3.3.1. The boundary of a brick B, in counterclockwise order, is the concatenation of four

paths WB ∪ SB ∪ EB ∪ NB such that:

45

(a) (b)

Figure 3.4: Construction of a brick: (a) The boundary of a face f of MG is a cycle of edges (thick
edges), possibly with repetition (i.e. an edge can occur twice in the boundary). The light edges are
those in the interior of f in Gin. (b) We obtain the corresponding brick by cutting open the graph
along the boundary of f . The resulting brick B has boundary ∂B.

(B1) The set of edges B \ ∂B is nonempty.

(B2) Every terminal of Q that is in B is on NB or on SB.

(B3) NB and SB are ǫ-short.

(B4) There exists a number k ≤ κ and vertices (called column bases) s0, s1, s2, . . . , sk ordered

from left to right along SB such that distSB
(x, si) < ǫdistB(x, NB) where x is a vertex of

SB(si, si+1). That is, for any vertex x ∈ S(si, si+1), the distance from x to si along SB is less

than ǫ times the distance from x to a NB in B.

κ is defined by Equation (3.1) in Table 3.1.

We now state a theorem that shows the existence of a near-optimal Steiner tree that joins the

boundary of each brick a small number of times.

Definition 3.3.2 (Joining vertex). Let H be a subgraph of a graph G and let P be a path in G. A

joining vertex of H with P is a vertex of P that is the endpoint of an edge of H \ P .

The intersection of a tree with a brick may not be connected, and so the theorem applies to

forests inside bricks. This theorem is a key ingredient to the proof of correctness of the PTAS.

Theorem 3.3.3 (Structural Property of Bricks). Let B be a plane graph with boundary N∪E∪S∪W

satisfying the brick properties of Lemma 3.3.1. Let F be a subgraph of B. There is a forest F̃ of B

with the following properties:

(F1) If two vertices of N ∪ S are connected in F , then they are connected in F̃ .

(F2) The number of joining vertices of F̃ with both N and S is at most α(ǫ).

(F3) ℓ (F̃) ≤ (1 + cǫ)ℓ (F).

In the above, α(ǫ) = o(ǫ−5.5) and c is a fixed constant.

Recall that the sum of the weights of the supercolumns is at most ǫOPT. This allows us to

include them in a near-optimal solution: the intersection of this near-optimal solution with a brick

46

is a forest with leaves only on the northern and southern boundaries of the brick. The connectivity

between these vertices is guaranteed by the Structural Property of Bricks.

We sketch the proof of this theorem. Each brick B has at most κ column bases along the southern

boundary. For each column base si, we find a south-to-north path Pi in F . Pi starts at the last

vertex on SB(si−1, si) that is in F and ends at a vertex of NB. By the property of column bases,

SB(si−1, start(Pi)) is an ǫ fraction of the length of Pi. We will add these subpaths of SB to F .

This will turn F into a set of O(κ) rooted trees, each of which has leaves on either NB or SB, but

not both (Section 3.3.3). We will replace each tree T with another, simpler tree T ′ that spans the

leaves of T (in order to maintain the connectivity of F). We will additionally require T ′ to span the

root of T . In some cases, we will need T ′ to span an additional node of T (a second ‘root’, so to

speak) in order to maintain the connectivity in F . We will show various ways of simplifying trees

in Section 3.3.2.

We will give a counterpart to the Structural Property of Bricks Theorem for the 2-EC problem

in Section 3.3.4.

The Structural Property of Bricks Theorem is used to prove our main Structure Theorem (Sec-

tion 3.4) which essentially states:

There is a near-optimal solution to the problem that crosses the boundary of each face

of the mortar graph O(1) times.

The Structure Theorem applies to both the Steiner-tree and 2-EC problems. We will solve a sub-

problem for each face of the mortar graph. The small number of crossings allows us to limit the

interaction between these subproblems, forcing our solution to use a small number of identified portal

vertices (Section 3.4.1) on the boundary of each face of the mortar graph.

3.3.2 Simplifying trees with leaves on ǫ-short paths

In this self-contained section, we establish a few combinatorial lemmas that simplify trees whose

leaves lie on an ǫ-short path. These lemmas will be used in Section 3.3.3.

Lemma 3.3.4. Let T be a tree all of whose leaves lie on an ǫ-short path P . There is a subpath of

P spanning the vertices of T ∩ P whose total length is at most (1 + ǫ)ℓ (T).

Proof. Let P ′ be the shortest subpath of P that spans all the vertices of T ∩ P . There is a path Q

in T between the endpoints of P ′. Since P is ǫ-short, ℓ (P ′) < (1 + ǫ)ℓ (Q) ≤ (1 + ǫ)ℓ (T).

Lemma 3.3.5. Let T be an r-rooted tree in graph G with leaves all on an ǫ-short path P . There is

a binary r-rooted tree that has length at most (1 + ǫ)ℓ (T) and spans all the vertices of T ∩ P .

Proof. Let u be a root-most vertex of T with at least three children and let Tu be the subtree of T

rooted at u. Let T̂ ′
u be the tree consisting of the minimum subpath P ′ of P that spans all the leaves

of Tu and the shortest u-to-P path Q′ (Figure 3.5).

47

u

�
�
u

P'

Q'

Figure 3.5: The replacement for a tree Tu (shown as a shaded triangle) rooted at u consists of the
minimum subpath P ′ of P that spans the leaves of Tu and the shortest u-to-P ′ path, Q′. These
paths are shown in bold.

Since u has at least three children in T , it must be that Tu contains three disjoint paths from u

to P ′, including paths Q1 and Q2 to the endpoints of P ′ and a third path Q3 to some other vertex of

P ′ (Figure 3.6). Note that ℓ (Q1) + ℓ (Q2) is at least the distance in G between the endpoints of P ′

which in turn is at least ℓ (P ′)/(1 + ǫ) because P ′ ⊆ P is an ǫ-short path. Also, ℓ (Q3) ≥ dist(u, P ′).

Combining, we get the following bound on the length of T ′
u:

ℓ (T̂u) = ℓ (P ′) + distG(u, P ′)

< (1 + ǫ)(ℓ (Q1) + ℓ (Q2)) + ℓ (Q3)

< (1 + ǫ)ℓ (Tu).�
P

Q
1

Q
2

Q
3

Figure 3.6: If u has at least 3 children, then there are edge-disjoint u-to-P paths, Q1, Q2, and Q3.

Repeating this process until every vertex has at most two children produces a binary tree T ′ rooted

at r and spanning the vertices of T ∩P . Since the vertices {u} are chosen root-most, the trees {Tu}
are disjoint. Summing over all replacements, we infer that

ℓ (T̂) ≤ (1 + ǫ)ℓ (T).

Lemma 3.3.6. Let T be a tree in graph G rooted at a vertex r with leaves on an ǫ-short path P .

There is another tree T̂ rooted at r spanning the vertices of T ∩ P whose total length is at most

(1 + 4 · ǫ)ℓ(T) such that T̂ has at most 11 · ǫ−1.45 joining vertices with P .

48

Proof. Let T ′ be the tree derived from T in Lemma 3.3.5. Starting from T ′, we construct a tree T ′′

from T ′ that satisfies the properties of the lemma. We partition the edges of T ′ into super-edges,

defined by maximal paths in T ′ whose internal vertices all have degree 2 in T ′. The level of a

super-edge is equal to the number of super-edges traversed when going from the root of T ′ to the

beginning of the super-edge. The endpoints of a super-edge are called super-vertices and the level

of a super-vertex is the equal to the number of super-edges traversed when going from the root of

T ′ to the super-vertex.

Select a level k (to be determined shortly). Let Uk be the set of all super-vertices at level k. For

each u ∈ Uk, replace the subtree T ′
u of T ′ rooted at u with another tree T ′′

u rooted at u that is the

union of the minimum subpath P ′ of P spanning the vertices of T ′
u ∩ P and the shortest u-to-P ′

path (just as we did for Lemma 3.3.5, Figure 3.5). After all such replacements, we get a new tree,

T ′′.

To analyze this construction, we show that there is a level k ≤ ⌈logΦ(
√

5/ǫ + 1)⌉ such that

ℓ (T ′′) ≤ (1 + ǫ)ℓ (T ′), where Φ is the golden ratio. Since T ′ is binary, the number of super-vertices

at level k is at most

2k ≤ 21+log
Φ
(
√

5(1/ǫ+1))

≤ 2(
√

5(ǫ−1 + 1))1/ log
2
Φ

< 11 · ǫ−1.45

assuming ǫ < 1. Hence the number of joining vertices of T ′′ with P is at most 11 · ǫ−1.45.

For a super-vertex u, there is a unique path Q1
u in T ′

u between the endpoints of P ′. For a level

i of T ′, let Ei be the union over all super-vertices in level i of the super-edges of Q1
u. That is,

Ei = ∪u∈Ui
Q1

u. Note that the super-edges in Ei are in level ≥ i. For i > 0, let Li be the set of

super-edges in level i that are not in the set Ei−1. Let L0 be one of the two super-edges in level 0.

Note that Li ∩Ei is non-empty, and that Li ∩Ei−1 is empty. For j < i, every super-edge in Ej that

has level i is also in Ei−1. Since Li consists of super-edges having level i, Li ∩Ej is empty for j < i.

For an illustration of Li and Ei, see Figure 3.7. Define Si = ∪∞
j=iLj .�

P

Figure 3.7: The bold edges are in E1. The dotted edges are in L2.

Let k′ be the minimum index for which ℓ (Lk′) ≤ ℓ (Sk′+2) (if there is no such level, let k′ = ∞). Let

k = min
(
k′,

⌈
logΦ(

√
5(1/ǫ − 1))

⌉)
,

49

where Φ is the golden ratio. Clearly k ≤ ⌈logΦ(
√

5(1/ǫ + 1))⌉ and so the number of joining vertices

of T ′′ with P is at most 11 · ǫ−1.45 as argued above. The rest of the proof is devoted to showing

ℓ (T ′′) ≤ (1 + ǫ)ℓ (T ′).

Q�
Q
2

	
P'

e

Figure 3.8: The bold path is Q1 and the dashed path is Q2. Both paths use edge e, which is an edge
of Li where u is a vertex of level i. The tree rooted at u will be replaced by the dotted tree.

Let u be a super-vertex in level k. Note that for each vertex in level i, exactly one child super-

edge is in Li. Let e be the super-edge in Lk whose parent is u. Let Q1 be the path in T ′ between

the endpoints of P ′ and let Q2 be the path from u to P that traverses e and subsequently uses only

edges of Ek+1 \ Ek (Figure 3.8). There are two cases:

Case 1, k = k′: Then ℓ (Lk) ≤ ℓ (Sk+2). Note that Q1 ⊆ Ek and Q2 ⊆ Ek+1 ∪ {e}. For i > k + 1,

therefore, neither Q1 nor Q2 shares any edges with Li. Hence neither Q1 nor Q2 shares any

edges with Sk+2. We bound the length of T ′′
u :

ℓ (T ′′
u) = ℓ (P ′) + distG(u, P ′)

≤ (1 + ǫ)[ℓ (Q1) + ℓ (Q2)]

< (1 + ǫ)[ℓ (T ′
u) + ℓ (e) − ℓ (Sk+2 ∩ T ′

u)]

< (1 + ǫ)[ℓ (T ′
u) + ℓ (Lk ∩ T ′

u) − ℓ (Sk+2 ∩ T ′
u)]

Summing over all u ∈ Uk, we bound the length of T ′′:

ℓ (T ′′) < (1 + ǫ)[ℓ (T ′) + ℓ (Lk) − ℓ (Sk+2)] < (1 + ǫ)ℓ (T ′).

Case 2, k 6= k′: Then ℓ (Li) > ℓ (Si+2) for every i ≤ k. Note that Si is the disjoint union of Li and

Si+1, so

ℓ(Si) = ℓ (Li) + ℓ (Si+1)

> ℓ (Si+2) + ℓ (Si+1)

for every i ≤ k. It follows that ℓ (S1) > Fibk ℓ (Sk), where Fibk is the kth Fibonacci number.

By our choice of k,

Fibk >
Φk − 1√

5
=

√
5/ǫ√
5

≥ ǫ−1,

which implies that ℓ (Sk) < ǫℓ (S1) ≤ ǫℓ (T ′). We bound the length of T ′′
u :

ℓ (T ′′
u) = ℓ (P ′) + distG(u, P ′) ≤ (1 + ǫ)ℓ (Q1) + ℓ (Q2) < (1 + ǫ)ℓ (Q1 ∪ Q2) + ℓ (e)

50

Summing over all u ∈ Uk, we bound the length of T ′′:

ℓ (T ′′) < (1 + ǫ)ℓ (T ′) + ℓ (Lk) < (1 + ǫ)ℓ (T ′) + ℓ (Sk) < (1 + 2ǫ)ℓ (T ′).

Using T̂ = T ′′, we find that ℓ (T̂) < (1 + 2ǫ)ℓ (T ′) < (1 + 2ǫ)(1 + ǫ)ℓ (T) < (1 + 4ǫ)ℓ (T).

Lemma 3.3.7. Let T be a tree in planar graph G with leaves on an ǫ-short path P that is a subpath

of ∂G. Let p and q be two vertices of T . There is another tree T̂ that contains p and q and the

vertices of T ∩P whose total length is at most (1+c1ǫ)ℓ (T) such that T̂ has at most c2 ·ǫ−2.5 joining

vertices with P , where c1 and c2 are constants.

Proof. Let Q be the unique p-to-q path in T . Removing the edges of Q from T breaks T into a

forest with k trees rooted at vertices of Q and leaves on P : T = {T1, T2, . . . , Tk}. The root of Ti is

ri and is the unique vertex common to Ti and Q. The trees are numbered according to their root

along Q with r1 = p and rk = q (without loss of generality). See Figure 3.9 for an illustration. Since

P ⊆ ∂G, the leaves of T are in order along P and is consistent with the ordering of the trees T . We

include as (trivial) trees in this sequence all joining vertices of Q with P .
��
P

�
1

�� ��
���

k
�� Q

Figure 3.9: The edges of a tree with roots p and q is partitioned into trees T1, T2, . . . , Tk and a p-to-q
path Q.

We define a transformation:

Let Ta and Tb be such that a ≤ b. Let x and y be the endpoints of the minimum subpath

of P spanning the leaves of Ta, Ta+1, . . . , Tb. Since P ⊆ ∂G, we can assume that x is a

vertex of Ta and y is a vertex of Tb. Remove from T the trees Ta, Ta+1, . . . , Tb and the

ra-to-rb subpath of Q. Add Ta[ra, x], P [x, y], and Tb[rb, y] creating tree T ′ as illustrated

in Figure 3.10.

The path Q[p, ra] ◦ Ta[ra, x] ◦ P [x, y] ◦ Tb[y, rb] ◦ Q[rb, q] is a p-to-q path in T ′, so T ′ spans p and

q.Further, this transformation guarantees that T ′ spans the vertices of T ∩ P : a tree Ti that is

removed from T has leaves on the x-to-y subpath of P , which is included in T ′. So, T ′ spans the

vertices required by the Lemma.

The increase in length due to this transformation is given by

∆ = ℓ (Ta[ra, x]) + ℓ (Tb[y, rb]) + ℓ (P [x, y]) − ℓ (Q[ra, rb]) −
b∑

i=a

ℓ (Ti).

51

P

�
b

T�ra r
b

x y

Q

Figure 3.10: The path Q[ra, rb] is replaced by Ta[ra, x] ◦ P [x, y] ◦ Tb[y, rb] (shown bold), allowing us
to remove the trees rooted between a and b.

Now we find values of a and b for the transformation that reduces the number of joining vertices

of the tree with P while not increasing the length of the tree by much. Let P ′ be the shortest

subpath of P that spans the vertices of T ∩ P . Say a subtree Ti is light if ℓ (Ti) < ǫℓ (P ′) and heavy

otherwise. Let I = {i : Ti is light}. Let

w =

{
(min I) − 1 + k − (max I) if I 6= ∅
k otherwise

Case I, w ≥ ǫ−1 + 2: In this case, there are at least ǫ−1 + 2 heavy trees in T . We apply the

transformation described above with a = 1 and b = k. The increase in length is given by:

∆ = ℓ (T1[p, x]) + ℓ (Tk[y, q]) + ℓ (P [x, y]) − ℓ (Q) −
k∑

i=1

ℓ (Ti)

≤ ℓ (P ′) −
k−1∑

i=2

ℓ (Ti)

< ℓ (P ′) − ǫ−1ǫℓ (P ′), since there are at least ǫ−1 + 2 heavy trees

= 0.

The resulting tree T ′ is a single path from p to q containing exactly two joining vertices with

P : x and y (since T ′ = {x, y}). Since ℓ (T ′) < ℓ (T), T ′ achieves the properties of the Lemma.

Case II, w < ǫ−1 + 2: In this case, we apply the transformation described with a = min I and

b = max I. The increase in length is given by:

∆ = ℓ (Ta[ra, x]) + ℓ (Tb[y, rb]) + ℓ (P [x, y]) − ℓ (Q[ra, rb]) −
b∑

i=a

ℓ (Ti)

≤ 2ǫℓ (P ′) + ℓ (P [x, y]) − (ℓ (Ta[ra, x] ∪ Q[ra, rb] ∪ Tb[y, rb])︸ ︷︷ ︸
≥ℓ (P [x,y])/(1+ǫ), since P is ǫ-short

)

= 2ǫℓ (P ′) + ℓ (P [x, y]) + ǫℓ (Ta[ra, x] ∪ Q[ra, rb] ∪ Tb[y, rb]) − ℓ (P [x, y])

≤ 2ǫ(1 + ǫ)ℓ (T) + ǫℓ (T),

For the last inequality, observe that there is a path in T between the endpoints of P ′; since P ′

is ǫ-short, (1 + ǫ)ℓ (P ′) is at most the length of this path in T (which in turn is at most the

length of T itself).

52

The new tree T ′ consists of the p-to-q path Q′ and, attached to Q′, the trees

T1, . . . , Ta−1, Tb+1, . . . , Tk.

The joining vertices of T ′ with P include p, q, and the joining vertices of all the trees Ti.

Though there are fewer than ǫ−1 + 2 such trees remaining, each of the trees might itself have

many joining vertices with P .

Let T ′
i be the tree obtained from Ti by applying Lemma 3.3.6 with the ǫ-short path P . Obtain

a new tree T ′′ from T ′ by replacing each tree Ti with T ′
i . By Lemma 3.3.6, there are at most

11ǫ−1.45 joining vertices with P per tree T ′
i . Since w < ǫ−1 + 2, the new tree T ′′ has at most

11ǫ−1.45(ǫ−1 + 2) + 2 joining vertices with P (the extra 2 counts the joining vertices x and y),

achieving the last property of the lemma.

By Lemma 3.3.6, ℓ (T ′
i) < (1+ ǫ)ℓ (Ti), and so ℓ (T ′′) < (1+ ǫ)ℓ (T ′) which, using the bound on

the length of T ′, is at most (1+ǫ)(1+cǫ)ℓ (T), satisfying T ′, is at most (1+ǫ)(1+2ǫ(2+ǫ))ℓ (T),

satisfying the length bound for the lemma.

3.3.3 Simplifying forests inside bricks (Proof of Theorem 3.3.3)

We are now ready to prove Theorem 3.3.3. We are given a subgraph F embedded in a brick B that

has boundary S ∪ E ∪ N ∪ W where E and W are supercolumns. Let F0 be a minimal subgraph

of F such that if two vertices of N ∪ S are connected in F , then they are connected in F0: F0 is a

forest whose leaves are all on N and S. We partition F0 into two forests F1 and F2 such that each

component of F1 has leaves only on N or S (but not both) and every vertex of F2 ∩ S belongs to a

path P from S to NB that shares only one vertex with S (i.e. the first vertex of P).

We find F1 and F2 as follows. Let x be a vertex of F0 ∩ (N ∪ S). Cut F0 at this vertex: suppose

x has degree d in F0; partition F0 into d sets, in each of which x has degree one. Repeating for every

such vertex partitions F0 into a set of trees T . Consider a tree T of T that spans vertices of both N

and S. Let y be a vertex of T ∩S. If every path from y to N in T uses a vertex of SB (other than y)

then this vertex has degree > 1 in F0 and would have undergone the cut operation described above.

The forest F2 is the union of trees in T that have leaves on both N and S and F2 = F0 −F1. These

forests have the required properties. From forest Fi (for i = 1, 2), we will build a forest F̂i satisfying

the three properties of Theorem 3.3.3.

Before specifying F̂1 and F̂2, let us see how this implies Theorem 3.3.3. Define F̂ as the union of

F̂1 and F̂2. Suppose two vertices z0 and zk of N ∪ S are connected in F . By construction, they are

connected in F0. By definition of F1 and F2, there are vertices z1, . . . , zk−1 of S ∪ N such that for

i = 1, . . . k, vertices zi−1 and zi are connected in either F1 or F2. By (F1), zi−1 and zi are connected

in either F̂1 or F̂2, and so they are connected in F̂ . It follows that z1 and zk are connected in F̂ .

53

We have that F̂ has at most α(ǫ) = 2α(ǫ) = o(ǫ−5.5) joining vertices with N ∪ S. Moreover,

ℓ (F̂) ≤ ℓ (F̂1) + ℓ (F̂2)

≤ (1 + cǫ)ℓ (F1) + (1 + cǫ)ℓ (F2)

≤ (1 + cǫ)(ℓ (F1) + ℓ (F2))

= (1 + cǫ)(ℓ (F0))

≤ (1 + cǫ)ℓ (F).

So F̂ satisfies all of the requirements of Theorem 3.3.3.

We now give the construction of F̂1. Let T be a connected component of F1: by construction, T

has leaves on either S or N , but not both. Without loss of generality, assume that T ’s leaves are on

N . Let T̂ be the tree guaranteed by Lemma 3.3.4. Replace each connected component of F1 with

such a tree produces a forest F̂1 with the desired properties. In fact F̂i has no joining vertices with

N or S and ℓ (F̂1) ≤ (1 + ǫ)ℓ (F1).

In the rest of this subsection, we give the construction of F̂2. Let s0, . . . , st be the vertices of

S guaranteed by Lemma 3.3.1 (where s0 is the vertex common to S and W and st is the vertex

common to S and E).

We define a path Pi for each i ≥ 0:

For i = 0, let x0 be the last vertex of S that is in F2 (where s0 is the first vertex of S).

Let k0 be the minimum index such that x0 is a vertex of S[s0, sk0
). By definition of F2,

there exists a path in F2 from x0 to N that does not use any vertices of S (other than

x0.) Let P0 be the rightmost such path. That is, P0 is the path in F2 from x0 to the last

vertex common to F2 and N . This vertex is guaranteed to be connected to x0 in F2 by

the definition of F2.

For i ≥ 1, let xi be the last vertex of S[s0, ski−1
) for which there is a path in F2 from xi

to N that does not use any vertices of S nor of Pi−1. Let Pi be the rightmost such path.

Let yi be the last vertex of Pi (yi is a vertex of N). Let ki be minimum such that xi is a vertex of

S[s0, ski
). Let t′ ≤ t be the last index for which xt′ and Pt′ exist. Note that ℓ (S[ski

, xi]) ≤ ǫℓ (Pi)

by Property (B4) of Lemma 3.3.1. These paths are illustrated in Figure 3.11.

For 0 ≤ i < t′, let Hi be subgraph of F2 enclosed by Pi, N , Pi+1, S not including any edges of

Pi+1. Let Ht′ be the subgraph of F2 enclosed by Pt′ , N , E, and S. Note that the graphs Hi form a

partition of the edges of F2. For the rest of our construction, we work in each Hi independently.

By definition of xi+1, any vertex of Hi ∩ S[s0, ski−1] is connected to Pi in F2, and so in Hi. By

definition of Pi+1, every vertex of Hi ∩ N [yi+1, yi] that is connected to Pi+1 is also connected to Pi

or to S[ski−1, xi]. It follows that Hi ∪S[ski
, xi] is a connected graph. We construct a graph Ĥi from

Hi ∪ S[ski
, xi]. There are two cases.

Pi+1 ∩ Hi = ∅ : Define Ti to be a subtree of Hi ∪S[ski−1, xi] that contains all of the edges of Pi and

of S[ski−1, xi] and spans all vertices of Hi ∩N and of Hi ∩S. Ti is a tree rooted at ski−1 with

54

�
2

�
1

�� ����
y�y

1
y
2�
2

�
1

����
1

Figure 3.11: We define a set of vertex-disjoint paths that break F2 into manageable regions. There
are at most t ≤ κ such paths (and the same number of regions).

leaves only on N . Define ri = ski−1. Let H ′
i be the tree corresponding to Ti that is guaranteed

by Lemma 3.3.6. Let Ĥi = H ′
i ∪ S[ski−1, xi].

Ĥi spans all the vertices of Hi ∩ N by Lemma 3.3.6. Ĥi spans all the vertices of Hi ∩ S since

Hi ∩ S ⊂ S[ski−1, xi] by construction and S[ski−1, xi] ⊆ Ĥi.

H ′
i (and so Ĥi) has at most c1ǫ

−1.45 joining vertices with N by Lemma 3.3.6. Since H ′
i is a

binary tree, Ĥi has at most c1ǫ
−1.45 joining vertices with S.

We analyze the length of Ĥi:

ℓ (Ĥi) ≤ ℓ (H ′
i) + ℓ (S[ski−1, si])

≤ (1 + 4ǫ)ℓ (Ti) + ℓ (S[ski−1, si])

≤ (1 + 4ǫ)(ℓ (Hi) + ℓ (S[ski−1, xi])) + ℓ (S[ski−1, si])

≤ (1 + 4ǫ)(ℓ (Hi)) + (2 + 4ǫ)ℓ (Pi), as observed above

≤ (1 + c2ǫ)ℓ (Hi), for a fixed constant c2.

qi+1 ∈ Pi+1 ∩ Hi : Let Qi be a minimal path from qi+1 to S[ski−1, xi] ◦ Pi and let ri be the vertex

common to Qi and S[ski−1, xi]◦Pi. Using an argument similar to the above, Hi∪S[ski−1, xi]−
Qi is connected. By definition of Pi+1, Qi contains no vertex of N , except perhaps ri. Let Ti

be a subtree of Hi ∪ S[ski−1, xi] − Qi that contains all the edges of S[ski
, xi] ∪ Pi and spans

all vertices of Hi ∩ N , Hi ∩ S, and {qi, ri}.

Let T S
i be the subgraph of Ti that is enclosed by the cycle formed by Qi, S, Pi and Pi+1. Let

ri be the root of T S
i . T S

i has leaves only on S. Let T N
i = Ti − T S

i . T N
i is a tree because

T N
i ∩T S

i = {ri}. The leaves of T N
i (except perhaps ri) are all on N . Without loss of generality,

assume that T S
i does not contain qi, the vertex possibly inherited from a similar construction

in Hi−1.

Let T̂ S
i be the tree guaranteed by Lemma 3.3.6 as applied to tree T S

i , root ri, and ǫ-short path

S: T̂ S
i spans V (T S

i ∩ S) ∪ {ri}. Let T̂ N
i be the tree guaranteed by Lemma 3.3.7 as applied

to tree T N
i , vertices ri and qi, and ǫ-short path N . Lemma 3.3.7 guarantees that T̂ N

i spans

V (T N
i ∩ N) ∪ {ri, qi}. Let T̂i = T̂ S

i ∪ T̂ N
i ∪ S[ski

, xi].

55

�
i

�
i

P
i+1

s
ki-1

q
i+1

q
i

r
i

Q
i

Figure 3.12: Pi is the xi to yi path. The dotted tree is T N
i and the dark solid tree is T S

i .

If two vertices of N ∪ S ∪ {qi, ri} are connected in Ti, then they are connected in T̂i. Let

Ĥi = T̂i ∪ Qi. If two vertices of N ∪ S ∪ {qi−1, qi, ri} are connected in Hi, then they are

connected in Ĥi.

The number of joining vertices of Ĥi with N and S is equal to the number of joining vertices

of T̂ N
i with N , which is at most c3ǫ

−2.5 by Lemma 3.3.7, plus the number of joining vertices

of T̂ S
i with S, which is at most c4ǫ

−1.45.

We analyze the length of Ĥi:

ℓ (Ĥi) ≤ ℓ (T S
i) + ℓ (T N

i) + ℓ (S[ski−1, si]) + ℓ (Qi)

≤ (1 + c6ǫ)ℓ (T S
i) + (1 + c7ǫ)ℓ (T N

i) + ǫℓ (Pi) + ℓ (Qi)

by Lemmas 3.3.6, 3.3.7 and 3.3.1

≤ (1 + c8ǫ)ℓ (Ti ∪ Qi) + ǫℓ (Pi)

≤ (1 + c8ǫ)(ℓ (Hi) + ℓ (S[ski−1, si])) + ǫℓ (Pi)

≤ (1 + c8ǫ)(ℓ (Hi) + ǫℓ (Pi)) + ǫℓ (Pi) (Lemma 3.3.1)

≤ (1 + c9ǫ)ℓ (Hi).

We define F̂2 to be the union of Ĥi over all i. It only remains to show that F̂2 satisfies properties

(F1), (F2), and (F3) of Theorem 3.3.3:

(F1) Suppose vertices za and zb are vertices of N ∪ S that are connected in F2. Let R be the path

from za to zb in F2. Let Ha, Ha+1, . . . , Hb be the subgraphs of F2 that contain edges of R.

Since R is a path in F2, Hi is connected to Hi+1 for a ≤ i < b, and so qi and qi+1 are connected

in Hi. Likewise since za is a vertex of S ∪ N , za is connected to qj for some a ≤ j < b (and

likewise for zb). It follows that za and zb are connected in F̂2.

(F2) F̂2 is the union of t′ ≤ t ≤ κ subgraphs Ĥi. We have seen that Ĥi has at most c4ǫ
−2.5 joining

vertices with N ∪ S. F̂2 has at most c4κǫ−2.5 = c10ǫ
−5.5 joining vertices with N ∪ S, using

Equation (3.1).

56

(F3) We bound the length of F̂2:

ℓ (F̂2) =
t′∑

i=0

ℓ (Ĥi)

≤
t′∑

i=0

(1 + c′ǫ)ℓ (Hi)

= (1 + c′ǫ)ℓ (F2) since the Hi’s are disjoint.

Theorem 3.3.3 is proved.

3.3.4 Simplifying subgraphs of 2-EC multi-subgraphs inside bricks

Theorem 3.3.3 applies directly to the Steiner-tree problem: the intersection of a tree with a brick is

a forest and since out terminals are vertices of MG, it is enough to maintain connectivity between

vertices on the boundary of a brick. However, for the 2-EC problem, the intersection of a solution

with a brick has a more complicated structure. At the end of this section we will state and prove

a counterpart to Theorem 3.3.3 that maintains up to 2 connectivity between vertices on the north

and south boundary of a brick.

For a graph H and vertices x and y, define

cH(x, y) = min{2, maximum number of edge-disjoint x-to-y paths in H}.

For two (multi-)subgraphs H and H ′ of a common graph G, H ′ achieves the connectivity of H if

cH′(x, y) ≥ cH(x, y) for all pairs of vertices. We will restrict our attention to connectivity between

boundary vertices of a common graph G. That is, if H and H ′ are multi-subgraphs of G, then H ′

achieves the boundary 2-connectivity of H if H ′ achieves the 2-connectivity of H for pairs of verices

on the boundary of G.

Lemma 3.3.8. Let H be a (multi-)subgraph of G and let C be a cycle of H. Let H ′ be the subgraph

of H obtained by removing the edges of H that are strictly enclosed by C. H ′ achieves the boundary

2-connectivity of H.

Proof. Without loss of generality, take C to be a clockwise cycle. Consider two boundary vertices

x and y. We show that there are cH(x, y) edge-disjoint x-to-y paths in H that do not use edges

strictly enclosed by C. There are 2 non-trivial cases:

cH(x, y) = 1 : Let P be an x-to-y path in H . If P intersects C, let xP be the first vertex of P that

is in C and let yP be the last vertex of P that is in C. Let P ′ = P [x, xP]◦C[xP , yP]◦P [yP , y].

If P does not intersect C, let P ′ = P . P ′ is an x-to-y path in H that has no dart strictly

enclosed by C.

cH(x, y) = 2 : Let P and Q be edge-disjoint x-to-y paths in H . If Q does not intersect C, then P ′

and Q are edge-disjoint paths, neither of which has a dart strictly enclosed by C (where P ′ is as

57

defined above). Suppose that both P and Q intersect C. Define xQ and yQ as for P . Suppose

these vertices are ordered xP , xQ, yQ, yP around C. Then P [x, xP] ◦C[xP , yQ] ◦Q[yQ, y] and

Q[x, xQ] ◦ rev (C[yP , xQ]) ◦ P [yP , y] are edge disjoint x-to-y paths that do not use any darts

enclosed by C. This case is illustrated in Figure 3.13; other cases follow similarly.

We have shown that we can achieve the boundary 2-connectivity of H without using any edges

enclosed by a cycle of H . The lemma follows.

C�
�

� �
Figure 3.13: An illustration of the proof of Lemma 3.3.8: there are edge disjoint x-to-y paths that
do not use edges enclosed by C.

We say that a planar graph G has the empty-cycle property if for every cycle C of G, C does not

strictly enclose any edges. The following is easy to achieve from the above lemma.

Corollary 3.3.9. Let H be a subgraph of G. There is a subgraph H ′ of H that achieves the boundary

2-connectivity of H and has the empty-cycle property.

Lemma 3.3.10. Let H be a subgraph of G and let a, b, c, d be a set of vertices in order along ∂G.

If cH(a, c) = 2 and cH(b, d) = 2 then cH(x, y) = 2 for x, y ∈ {a, b, c, d}.

Proof. Let P1 and P2 be non-crossing edge-disjoint a-to-c paths and let Q1 and Q2 be edge-disjoint

b-to-d paths. Let C = P2 ◦ rev (∂G[a, c]). Without loss of generality, assume that P2 is left of P1.

Then b is a vertex of C and C does not enclose P1 (as pictured in Figure 3.14). Let Q′
1 be the

longest prefix of Q1 that is enclosed by C. Similarly define Q′
2.

Without loss of generality assume that end(Q1) occurs before end(Q′
2) on P2. Then Q′

2 ◦
P2[end(Q′

2), c] and Q′
1 ◦ rev (P2[end(Q1), a]) ◦ P1 are edge-disjoint b-to-c paths and so cH(b, c) = 2.

Similarly cH(c, d) = 2. The lemma follows from the transitivity of 2-edge connectivity.

Lemma 3.3.11. Let P and Q be leftmost non-self-crossing xP -to-yP and xQ-to-yQ paths, respec-

tively, where xP , yP , xQ, and yQ are vertices in order on ∂G. Then xP does not cross yP .

Proof. For a contradiction, assume that Q crosses P . Let C be the cycle P ◦ rev (∂G[yP , xP]) where

∂G is counterclockwise. C not contain both xQ and yQ. If Q crosses P , there must be a subpath of

Q enclosed by C. Let x be the first vertex of Q in P and let y be the last. There are two cases:

x ∈ P [xP , y] : Q[xQ, x] ◦ rev (P [xP , x]) ◦ ∂G[xP , xQ] is a cycle that strictly encloses y and does not

enclose yQ. Since y is the last vertex of Q on P , Q must cross itself, a contradiction.

58

a

P! P

2

"
1
#
"
2
$%

Figure 3.14: An illustration of the paths in Lemma 3.3.10.

x ∈ P [y, yP] : Since Q crosses P , at least part of Q[x, y] is enclosed by C. Therefore Q[x, y] ◦P [y, x]

is not clockwise; so Q[x, y] is not left of rev (P [y, x]), contradicting that Q is leftmost.

We call a set of vertices S a 2-requirement clique if cH(x, y) = 2 for all x, y ∈ S.

Lemma 3.3.12. Let H be a subgraph of G. Let S be a boundary 2-requirement clique of H. Then

there is a non-self-crossing cycle C in H such that S ⊆ V (C) and the order that C visits the vertices

in S is the same as their order along ∂G.

Proof. Assume that the vertices of S are in the order s1, s2, . . . , sk along ∂G.

Let Pi be the leftmost non-self-crossing si-to-si+1 path in H taking the indices modulo k. Let

C = P1 ◦P2 ◦ · · ·◦Pk−1. Certainly C visits each of the vertices s1, s2, . . . in order. By Lemma 3.3.11,

Pi does not cross Pj . Therefore, C is non-self-crossing, proving the lemma.

We will use the algorithm DecomposeConnectivity in proving Lemma 3.3.16 and in a dy-

namic program in Section 3.7. We will show in Lemma 3.3.16 that given 1- or 2-edge-connectivity

requirements c between a set of boundary vertices S, DecomposeConnectivity(S,c) finds a set

of subsets X of S such that independently satisfying 1-connectivity for each of the sets in X will

satisfy the requirements c.

Lemma 3.3.13. DecomposeConnectivity takes time O(|S|2).

Proof. Since each 2-requirement clique has size at least 2, and these vertices will not be in a 2-

requirement clique of a subproblem, the recursion tree has at most |S|/2 levels. Each vertex of the

2-requirement clique, S′, will appear in two subproblems, and each vertex will be duplicated at most

once. The total number of vertices considered at each level of recursion is at most 2|S|. The overall

running time is O(|S|2).

Lemma 3.3.14. Let X be the output of DecomposeConnectivity. Then X is a non-crossing

multi-partition of S.

59

DecomposeConnectivity(S,c):

1. Let S′ = {s1, s2, . . . , sk} be a maximal 2-requirement clique in S corresponding to
c. Let sk+1 = s1.

2. If |S′| = 0, return {S}.
3. Let X = ∅
4. Let c′(si, si+1) = c′(si+1, si) = 1 for i = 1, . . . , k.
5. For i = 1, . . . , k,

6. Let Si be the vertices of S ordered between si and si+1.
7. X = X∪DecomposeConnectivity(Si,c

′).

8. Return X .

Table 3.2: DecomposeConnectivity takes as input an cyclically ordered set vertices S and a
symmetric function c : S × S → {1, 2}. The algorithm returns a set of subsets of S.

Proof. The recursive calls of DecomposeConnectivity are on non-crossing subsets of S. Since

every element of S is returned at least once by Step 2, X is a multi-partition of S.

We will need the following lemma to prove the Structure Theorem for 2-edge connectivity.

Lemma 3.3.15. Let x and y be vertices that are consecutive in S in a maximal 2-requirement clique.

Then there is a set X returned by DecomposeConnectivity such that x, y ∈ X and X is a subset

of the elements in S between x and y.

Proof. Without loss of generality, assume that x = s1 and y = s2 in Step 1 of DecomposeCon-

nectivity. Then, x and y will be consecutive in the set S1 in the recursive call. Since they will

not appear in another 2-requirement clique, by the maximality of the cliques, x and y will remain

consecutive until they are output in a set in Step 2. Further S1 contains only vertices of S that are

in order between x and y.

We are now ready to prove the main lemma:

Lemma 3.3.16. Let H be a subgraph of G that satisfies the Empty-Cycle Property. Let X =

{X1, X2, . . .} be the result of DecomposeConnectivity(∂G ∩ H,cH). Then H is the disjoint

union of trees Ti such that

(T1) Ti spans Xi;

(T2) ∪iT̂i achieves the boundary 2-connectivity of H where T̂i is any subgraph that spans Xi.

(T3) X is a non-crossing sub-partition of V (∂G).

Proof. Without loss of generality, assume that H is connected. We prove the theorem inductively

via the recursion of DecomposeConnectivity. Let S be the vertices of H ∩ ∂G, ordered along

∂G.

60

Let S′ = {s1, s2, . . . , sk} be the 2-requirement clique found in Step 1 of DecomposeConnec-

tivity. Let C be the corresponding non-self-crossing cycle guaranteed by Lemma 3.3.12. Assume

that C and ∂G are clockwise.

Let Hi be the subgraph of H that is enclosed by C[si, si+1] ◦ rev (∂G[si, si+1]) for some i ∈
{1, . . . , k}. Note that C[si, si+1] ⊆ Hi. We have several observations:

Fact 1 H is the disjoint union ∪iHi.

Fact 2 No path in Hi crosses any path in Hj . (Since C is non-self-crossing, Hi is edge disjoint from

Hj for i 6= j.)

Fact 3 Let x ∈ ∂G(si, si+1) and y ∈ ∂G(si+1, si). Then cH(x, y) ≤ 1. (This follows from the

maximality of S and Lemma 3.3.10: if cH(x, y) ≥ 2, then x and y would be in S.)

Fact 4 Let x ∈ ∂G(si, si+1) and y ∈ ∂G(si+1, si). If cH(x, y) = 1, then cH(x, si) = 1. (An x-to-y

path would have to intersect the si-to-si+1 path.)

Fact 5 Let x ∈ ∂G(si, si+1) and y ∈ ∂G[si, si+1]. If cH(x, y) ≥ 2, then there are x-to-y edge-disjoint

paths P and Q in Hi. (Otherwise, cH(x, si) ≥ 2, contradicting the maximality of S.)

Consider the modified requirements found in Step 4. Let ci be the requirements in c′, restricted

to vertices in ∂G[si, si+1] ∩ S. It follows from Facts 4 and 5 that Hi satisfies the requirements

(i.e. cHi
(x, y) ≥ ci(x, y)∀x, y ∈ V (∂G)). In particular, Hi spans the vertices Si. Inductively,

DecomposeConnectivity terminates when the requirements between vertices of the input set

S are all unitary: therefore H is the union of trees, each of which spans a set X ∈ X (giving

Property 1). Property 3 follows from Lemma 3.3.14. Now we prove Property 2 inductively by

showing that Property 2 holds for one level of recursion.

Let Ĥi be any subgraph of G that satisfies the new requirements, ci. Let Ĥ be the disjoint union

∪iĤi. We show that Ĥ achieves the boundary 2-connectivity of H , thus proving (T3). We have

three cases:

1. Consider the connectivity between si and sj . The requirements guarantee there is an si-to-si+1

path Pi in Ĥi. Since Ĥ is a disjoint union of the Ĥi’s, Pi◦Pi+1◦· · ·◦Pj−1 and Pj◦Pj+1◦· · ·◦Pi−1

are edge-disjoint si to sj paths.

2. Let x and y be vertices of ∂G[si, si+1] (but with {x, y} 6= {si, si+1}). The connectivity re-

quirements between x and y are not modified in Step 4 so ci(x, y) = c(x, y) and Ĥi satisfies

these requirements.

3. Let x be a vertex of ∂G(si, si+1) and let y be a vertex of ∂G[sj , sj+1] with i 6= j. By Fact 3

cH(x, y) ≤ 1. By Fact 4, if cH(x, y) = 1, then cH(x, si) = 1 and cH(y, sj) = 1. By the

requirements, there is an x-to-si path in Ĥi and a sj-to-y path in Ĥj . We have already argued

that si and sj are connected in Ĥ.

61

We illustrate the 2-requirement cliques found by DecomposeConnectivity and the set of trees

comprising H ′ in Figure 3.15.

(a) (b)

Figure 3.15: (a) A subgraph (thick edges) H of G (whose boundary is rectangular) satisfying the
Empty-Cycle Property can be decomposed into a set of trees (b) whose leaves are on the boundary
of G. The leaves of the trees correspond to the sets Xi found by DecomposeConnectivity. The
dark edges in (a) correspond to the 2-requirement cliques found in DecomposeConnectivity.

We are now ready to state and prove a theorem that is to 2-connectivity what Theorem 3.3.3

(Structural Properties of Bricks) is to Steiner trees.

Theorem 3.3.17. Let B be a plane graph with boundary N ∪ E ∪ S ∪ W and satisfying the brick

properties of Lemma 3.3.1. Let H be a subgraph of B. There is another subgraph Ĥ with the following

properties:

(H1) Ĥ achieves the 2-connectivity of H for vertices of N ∪ S.

(H2) The number of joining vertices of Ĥ with both N and S is at most 2α(ǫ).

(H3) ℓ (Ĥ) ≤ (1 + cǫ)ℓ (H).

In the above, α(ǫ) is the function given by Theorem 3.3.3 and c is a fixed constant.

Proof. Let H ′ be a minimal subgraph of H such that H ′ achieves the 2-connectivity of H for vertices

on N ∪ S. By Corollary 3.3.9, H ′ has the empty-cycle property.

By Lemma 3.3.16, H ′ is the union of a set of disjoint trees T = {T1, T2, . . .} where Ti spans a

set of vertices Xi ∈ V (N cupS). Partition T into three sets:

T1 = {Ti ∈ T such that Xi ⊆ V (N) or Xi ⊆ V (S)}.

T2 = {Ti ∈ T such that Xi has vertices in both V (N) and V (S)}.

We further partition T2. Let Ti and Tj be two trees in T2. Since X is a non-crossing multi-sub-

partition of boundary vertices of the brick, if the vertices Xi ∩ V (S) appear before Xj ∩ V (S) along

S then the vertices in Xi ∩ V (N) appear before Xj ∩ V (N) along N . It follows that there is an

ordering of the trees in T2 from left to right in the brick. Let TA be the set of trees of T2 that are

even numbered in this ordering and let TB = T2 \ TA. That is, the trees in T2 alternate between TA

and TB .

62

Consider a tree Ti ∈ T1 such that (w.l.o.g.) Xi ⊆ V (N). Let T̂ be the minimal subpath of N

that spans Xi. Let F̂1 be the disjoint union of {T̂ : T ∈ T1}. Let F̂A be the forest guaranteed by

Theorem 3.3.3 for the graph obtained by taking the union of the trees in TA. Similarly define F̂B .

Let Ĥ be the disjoint union of F̂1, F̂2, F̂A, F̂B. We show that Ĥ achieves the required properties.

It is clear from the construction that F̂1 does not have any joining vertices with N or S. By

Theorem 3.3.3, each of F̂A and F̂B has at most α(ǫ) joining vertices with N ∪ S. Therefore Ĥ has

at most 2α(ǫ) joining vertices with N ∪ S, proving Property H2.

Since N and S are ǫ-short paths, ℓ (F̂1) ≤ (1+ǫ)ℓ (F̂1). By Theorem 3.3.3, ℓ (F̂A) ≤ (1+cǫ)ℓ (F̂A)

and ℓ (F̂B) ≤ (1 + cǫ)ℓ (F̂B). It follows that ℓ (Ĥ) ≤ (1 + cǫ)ℓ (H), proving Property 3.

First we show that if two vertices of N ∪ S are connected in H ′, then they are connected in Ĥ .

Consider a set Xi ∈ X . There is tree Ti ∈ T that spans Xi. By construction there is a tree (perhaps

a subtree) in Ĥ

If Ti is in T1, by construction T̂i spans Lemma 3.3.4 guarantees that the vertices Xi will be

connected in F̂1. Let T̂i be a subgraph of Ĥ that spans Xi. By Property 2 of Lemma 3.3.16, ∪iT̂i

achieves the 2-connectivity of H ′. Note that we have not shown that T̂i is edge-disjoint from T̂j ,

and so Ĥ is not necessarily the disjoint union of these trees. However, this is sufficient to show that

if two vertices of N ∪ S are connected in H ′, then they are connected in Ĥ .

We now show that if two vertices of N ∪ S are 2-edge connected in H ′, then they are 2-edge

connected in Ĥ . This will complete the proof.

Let a and b be vertices of N ∪ S that are 2-edge connected in H ′. Let Y ⊆ V (N ∪ S) be the

maximal 2-requirement clique such that a, b ∈ Y . Let y1, y2, . . . , yk be the order of the vertices of Y

along the boundary of the brick. Let Xi be the set such that yi, yi+1 ∈ Xi and Xi ⊆ V (∂B[yi, yi+1])

(as guaranteed by Lemma 3.3.15).

We have three cases:

Y ⊆ V (N) : Without loss of generality, assume that y1 is the first vertex and yk is the last vertex

of Y along N . Then X1, . . . , Xk−1 are subsets of N . Xk may contain vertices of S. Let T̂i be

a tree in F̂1 that spans Xi (for i = 1, . . . , k − 1). Since F̂1 is the disjoint union of these trees,

there is a path P in F̂1 that visits each vertex y1, . . . , yk in order.

If Xk spans a vertex of S then Xk ∈ FA (without loss of generality). The vertices Xk are

spanned by F̂A and so there is a yk-to-y1 path Q in Ĥ that is edge disjoint from P . P ◦ Q is

a cycle such that Y ⊆ V (P ∪ Q). The vertices in Y are 2-edge connected in Ĥ .

Y ⊆ V (S) : This case follows as the above case.

Y ∩ V (N) 6= ∅ and Y ∩ V (S) 6= ∅ : Without loss of generality, assume that y1 and yl are the first

and last vertices of Y along N . Then yk and yl+1 are the first and last vertices of Y along S. By

the argument used in the above case, there is a path P in Ĥ that visits the vertices y1, . . . , yl

in order. Likewise, there is a path Q in Ĥ that visits the vertices yl+1, . . . , yk in order. We

now argue that there are edge-disjoint yl-to-yl+1 and yk-to-y1 paths in Ĥ by showing that Tl

63

(the tree corresponding to Xl) is in FA and Tk (the tree corresponding to Xk) is in FB. (This

case is illustrated in Figure 3.16.)

At some point during DecomposeConnectivity, Y is the clique that is considered in Step 1.

Let C be the clique-cycle corresponding to Y (Lemma 3.3.12). Suppose there is another clique

cycle C′ that contains a vertex of N(y1, yl) and a vertex of S(yk, yl+1). Then C ∪ C′ is

connected and is a clique cycle that visits a vertex set larger than Y , violating the maximality

of Y . So Y is the only clique considered by DecomposeConnectivity that contains vertices

of both N(y1, yl) and S(yk, yl+1). The subproblems corresponding to Y that include vertices

of N(y1, yl) only include vertices of N(y1, yl). It follows that there is no set X in X that

contains a vertex between y1 and yl along N and a vertex between yk and yl+1 along S (other

than Xl and Xk). Therefore, there is no tree T in T3 that is ordered between Tl and Tk. If

Tl ∈ TA (without loss of generality), then Tk ∈ TB.

x

y

P
Q

Figure 3.16: If there are two edge-disjoint paths between x and y, then there is a cycle C (bold)
through x and y. Exactly two subpaths P and Q of C (solid) will appear in T2. Since C encloses no
edges, P and Q are alternating in the order used to define TA and TB. There will be edge disjoint
paths between the endpoints of P and Q in Ĥ .

3.4 The Structure Theorem

In this section, we use the brick decomposition as a scaffolding to build a graph called the portal

connected graph. In the portal connected graph, we can

• compute an optimal solution via the spanner method (Section 3.5) or a near-optimal solution

via a parcel-decomposition (Section 3.6), and

• derive a near-optimal solution in the original graph using the Structure Theorem.

An illustration of the construction of the portal connected graph is given in Figure 3.17.

3.4.1 Portals

In order to define the portal connected graph we first need to designate as portals some vertices of

∂B for each brick B.

64

(a) (b) (c)

Figure 3.17: (a) A mortar graph MG. (b) The corresponding set of bricks. For each brick, B, we
select a subset of the boundary vertices and designate them as portals. (c) Each brick is embedded
in the corresponding face of MG. The portals are connected to the corresponding vertices in MG
via portal edges shown in grey.

Let

θ = θ(ǫ) = 10α(ǫ)ǫ−2, (3.2)

where α(ǫ) = o(ǫ−5.5) as given by Theorem 3.3.3. We the algorithm given in Table 3.3.

PortalSelection(B)

1. Let v0 ∈ V (∂B) be the endpoint of an edge strictly enclosed by ∂B.
2. Designate v0 as a portal vertex.
3. Set i = 0.
4. Repeat:

5. Let vi be the first vertex of ∂B such that ℓ (∂B[vi−1, vi]) > ℓ (∂B)/θ.
6. If v0 ∈ V (∂B(vi−1, vi]), stop.
7. Otherwise, designate vi as a portal vertex and set i = i + 1.

Table 3.3: A greedy algorithm to select portals.

The following lemma follows trivially:

Lemma 3.4.1 (Coverage Property). For any vertex x on ∂B, there is a portal y such that the x-to-y

subpath of ∂B has length at most ℓ (∂B)/θ.

Lemma 3.4.2 (Cardinality Property). There are at most θ portals on ∂B.

Proof. Suppose there are p iterations. Each iteration selects a subpath of length more than ℓ (∂B)/θ,

so we have ℓ (∂B) ≥ ∑p
i=1 ℓ (∂B[vi−1, vi]) > p ℓ (∂B)/θ, and so it follows that p < θ.

3.4.2 Portal-connected graph

In preparation for stating the Structure Theorem, we define an operation called brick insertion. For

any subgraph G of MG, we derive a planar embedded graph B+(G) as follows. For each face f of

G corresponding to a brick B, embed a copy of B inside the face f , and, for each portal vertex v of

B, connect v in the brick to the corresponding vertex in f , using a zero-length artificial edge (or, in

65

(a) (b) (c)

Figure 3.18: A brick (a) is inserted by embedding it in the corresponding face of MG (b) and
introducing a portal edge connecting each portal to the corresponding vertex of MG (c).

the case of 2-EC, using 2 zero-length artificial edges). We refer to the artificial edges as portal edges.

This step is illustrated for a single brick in Figure 3.18 and for a collection of bricks in Figure 3.17(c).

We refer to B+(MG) as the portal-connected graph. Intuitively, this graph is almost the same

as the input graph, except that artificial cost-zero separations have been added so that paths that

connect vertices strictly enclosed by faces of the mortar graph to outside vertices are forced to go

through the portals.

If a vertex of MG is a vertex of Q (the set of input terminals), we do not consider its copy on

the brick to be a terminal vertex. Thus a brick has no terminals.

The following simple lemma follows directly from the fact that each portal edge in B+(MG)

connects a vertex of a brick to the corresponding vertex of MG.

Lemma 3.4.3. If A is a connected multi-subgraph of B+(MG) for which there are k edge-disjoint

paths connecting terminals x and y in Q, then A − {portal edges} is a connected multi-subgraph of

G in which there are at least k edge-disjoint paths connecting x and y.

The following theorem is central to the proof of correctness of the spanner construction and the

approximation scheme. Indeed, taken together, Lemma 3.4.3 and Theorem 3.4.4 provide a reduction

from a connectivity problem on G to a connectivity problem on B+(MG).

Theorem 3.4.4 (Structure Theorem).

OPT(B+(MG), Q) ≤ (1 + cǫ)OPT(G, Q)

where c is an absolute constant and OPT refers to either the Steiner-tree or the 2-EC problem.

Proof. We start with the optimal solution H to the Steiner-tree or 2-EC problem and transform it,

in stages, into a solution Ĥ to the same problem in B+(MG), while almost preserving its length:

ℓ (Ĥ) < (1 + c′ǫ)ℓ (H) for a fixed constant c′. We prove this theorem for the more general 2-EC

problem.

First we add 2 copies of the east and west boundaries of each brick. Let H1 be the union of

H with 2 copies of the east and west boundaries (EB and WB) for every brick B in G. Using

Lemma 3.2.6, we have

ℓ (H1) ≤ OPT(G, Q) + 2ǫOPT(G, Q). (3.3)

Then we reduce the number of joining vertices on the north and south boundaries of each brick.

Let H ′
1 be the subgraph of H1 that is strictly embedded in a brick of G. Replace H ′

1 with the

66

subgraph H ′
2 that is guaranteed by Theorem 3.3.17. From the third part of the Theorem, we deduce

that ℓ (H ′
2) ≤ (1+ cǫ)ℓ (H ′

1). Repeating this process for every brick of G produces the subgraph H ′
2.

Since the bricks are disjoint, we have

ℓ (H2) ≤ (1 + cǫ)ℓ (H1). (3.4)

Now we map the edges of H2 to a subgraph of B+(MG). Every edge of G has at least one

corresponding edge in B+(MG). For every edge e of H2, we select one corresponding edge in B+(MG)

as follows: if e is an edge of MG select the corresponding mortar edge of B+(MG), otherwise select the

unique edge corresponding to e in B+(MG) (according to the multiplicity of e in the multi-subgraph

H2). This process constructs a subgraph H3 of B+(MG) such that

ℓ (H3) = ℓ (H2). (3.5)

Since H3 is not connected, we connect it via portal and mortar edges. Let VB be the set of joining

vertices of H3 with NB∪SB for a brick B of B+(MG). For any vertex v on the interior boundary ∂B

of a brick, let pv be the portal on ∂B that is closest to v, let Pv be the shortest v-to-pv path along

∂B and let P ′
v be the corresponding path of mortar edges. Let e be the portal edge corresponding

to pv. Add 2 copies of each Pv, P ′
v, and e to H3. Repeat this process for every v ∈ VB and for every

brick B, building a graph Ĥ . This completes the definition of Ĥ .

We now need to analyze the length of Ĥ :

ℓ (Ĥ) ≤ ℓ (H3) +
∑

B∈B

∑

v∈VB

2(ℓ (Pv) + ℓ (e) + ℓ (P ′
v)), (3.6)

and we have:

∑

B∈B

∑

v∈VB

2(ℓ (Pv) + ℓ (e) + ℓ (P ′
v)) = 4

∑

B∈B

∑

v∈VB

ℓ (Pv), since ℓ(portal edges) = 0

≤ 4
∑

B∈B

∑

v∈VB

ℓ (∂B)/θ(ǫ), by Lemma 3.4.1

≤ 4
∑

B∈B

α(ǫ)

θ(ǫ)
ℓ (∂B), by Theorem 3.3.3, Part 2

≤ 4
α(ǫ)

θ(ǫ)
νǫ−1OPT(G, Q), using Lemma 3.2.8

≤ 2ǫ OPT(G, Q), using Equation (3.2).

Combining this with equations (3.6), (3.5), (3.4) and (3.3), we obtain

ℓ (Ĥ) ≤ (1 + cǫ)(OPT(G, Q) + 2ǫOPT(G, Q)) + 2ǫOPT(G, Q) < (1 + (4 + 3c)ǫ)OPT(G, Q)

for the fixed constant c given by Theorem 3.3.17.

It remains to show that Ĥ is a solution to the connectivity problem in B+(MG). First we show

that H2 is a solution to the corresponding problem in G. We give the argument for the 2-EC

problem. The argument for the Steiner-tree problem follows similarly.

67

Clearly, since H is a subgraph of H1 and H is a solution in G, H1 is a solution in H . Now we

argue that H2 is a solution to the problem in G. Let P and Q be edge-disjoint paths in H that

connect terminals s and t. We partition P into a sequence of subpaths as follows: Pi is a subpath

of the partition if it is a maximal subpath strictly enclosed by a brick, or if it is a maximal subpath

on the boundary of a single brick. Each subpath Pi is an xi-to-yi path. For a vertex x in MG, if x

is a vertex internal to an east boundary EB of a brick B, then define x̂ to be the vertex common

to EB and NB (likewise for a vertex internal to a west boundary). If x is a vertex of a north or

south boundary, then define x̂ = x. We similarly partition Q into a sequence of subpaths. Note that

for each path Pi and Qi, the first step of the construction guarantees that there are corresponding

x̂i-to-ŷi paths in H1. Since we added two copies of each east and west boundary, the paths Pi and

Qj are edge disjoint for every i and j. Since x̂i and ŷi are vertices on SB ∪ NB for a brick B,

Theorem 3.3.17 guarantees that there are the same number of edge-disjoint x̂i-to-ŷi paths in H2. It

follows that there are edge disjoint ŝ-to-t̂ path in H2. By Lemma 3.3.1 since s and t are terminals

of Q, they are on north or south brick boundaries, and so ŝ = s and t̂ = t: there are s-to-t paths P̂

and Q̂ in H2.

The definition of H3 breaks P̂ and Q̂ into disjoint paths. Consider one such path, P̂i, that is not

a subpath of MG. By construction, the endpoints of P̂i are joining vertices. To go from H3 to Ĥ ,

these endpoints are connected to the corresponding vertices on MG via portal edges. It follows that

there are s-to-t paths P̂ and Q̂ in Ĥ . Since 2 copies of the portal edges and the subpaths of MG

that are added in constructing Ĥ, we guarantee that P̂ and Q̂ are edge-disjoint.

3.5 Approximation via spanner construction

Here we review the framework for designing polynomial-time approximation schemes in planar graphs

that Klein proposed in 2005 [68] that has previously been used to give a PTAS for the subset-tour

problem in planar graphs [69]. The framework takes a graph G with edge weights and has four steps:

Table 3.4.

Notice that the final solution is a (1 + ǫ)-approximate solution: The solution in G′′ has value at

most OPT(G′), which in turn is at most (1 + ǫ
2)OPT(G′). In Step 4, we include at most c copies

of the edges in S, which adds at most cw(S) ≤ ǫ
2f(ǫ)w(G′) ≤ ǫ

2OPT(G). The weight of the final

solution is bounded by (1 + ǫ)OPT(G). For the travelling salesman problem c = 2 [68] since a tour

must be maintained. For the Steiner-tree problem c = 1 since connectivity need only be maintained.

For the 2-EC problem c = 2.

The edges S found in the thinning step is a minimum-weight set of levels modulo 2cf(ǫ) in a

breadth-first search tree of G′. This technique was first used by Baker [5]. We will use this technique

again in Section 3.6.1. The thinning step is easy to carry out in linear time. The lifting step is also

easy to carry out in linear time.

The graph G′′ has radius g(ǫ). We can find a tree decomposition of G′′ with width 3g(ǫ) in linear

time [5, 33]. Since G′′ has low treewidth, the dynamic programming step can be done in linear time.

68

PTAS Framework for planar graphs (Klein [67])

1. Spanner Step:
Find a subgraph G′ of G with two properties:

(S1) w(G′) ≤ f(ǫ)OPT(G), and

(S2) OPT(G′) ≤ (1 + ǫ
2)OPT(G)

where OPT(G) is the value of the optimal solution in G.

2. Thinning Step:
Use a Baker-esque technique to select a set S of edges of G′ such that for some
constant c and

(a) w(S) ≤ ǫ
2cf(ǫ)w(G′), and

(b) G′′, the graph obtained from G′ by contracting the set of edges S, has radius
g(ǫ) = poly(f(ǫ)).

3. Dynamic Programming Step:
Solve the problem optimally in the low-treewidth graph G′′.

4. Lifting Step:
Use at most c copies of each edge of S to transform the solution obtained in Step 3
for G′′ into a solution for G′ and so for G.

Table 3.4: A framework for designing polynomial-time approximation schemes in planar graphs
using a spanner.

The framework allows us to concentrate on finding a light spanner: a subgraph that satisfies the

shortness property (as given by Property (S1) of the Spanner Step) and the spanning property (as

given by Property (S2) of the Spanner Step). In Section 3.5.1 we give an O(n log n)-time construction

for a subgraph that we show has the shortness and spanning properties in Section 3.5.2.

3.5.1 Spanner Construction

The input to the spanner construction is a set of terminals Q of the planar graph G and our given

precision ǫ. To construct the spanner for 1/2-connectivity problems, we first compute the brick

decomposition. Then for each brick, we exhaustively compute optimal Steiner trees that span a

subset of the portals for the brick.

Since the number of terminals of each Steiner-tree problem solved here is at most θ by the

Cardinality Property, Theorem 3.1.1 implies that the running time of Step 5 is O(2θθ3n′) where n′

is the number of vertices in the brick B.

Combining the running time of Step 5 with the running times of Steps 1 through 3, gives a total

running time for constructing the spanner of O(2θθ3n + n logn) which is O(2poly(1/ǫ)n + n log n)

since θ depends polynomially on 1/ǫ.

69

ConnectivitySpanner(G, Q, ǫ)

1. Let MG = BrickDecomposition(G, Q, ǫ).
2. Compute the set of bricks B corresponding to MG.
3. Designate portals (Section 3.4.1) for each brick.
4. For each brick B and each subset of vertices X of portals:

5. Compute the optimal Steiner tree spanning X in B.

6. Return the union of all the edge sets found in Step 5, together with the edges of MG.

Table 3.5: The input to the spanner algorithm for either the Steiner-tree or 2-EC problem is a planar
graph G, the set of terminals Q and the precision ǫ.

3.5.2 Correctness

To complete the analysis, we prove that the output set of edges satisfy the shortness and spanning

properties.

Lemma 3.5.1 (Shortness property). The total length of the output edges is at most

(1 + 21+θ)5ǫ−1OPT(r, G).

Proof. For each brick B, the length of each Steiner tree is bounded by ℓ (∂B). By construction of

the bricks, each edge occurs at most twice as the edge of a brick boundary, so the sum of brick

boundary lengths is at most 2ℓ (MG). For each brick B, the Cardinality Property for B implies that

Step 5 finds at most 2θ Steiner trees, each of length at most ℓ (∂B), so the total length of all Steiner

trees found, summing over bricks B, is at most 21+θ · ℓ (MG). The output also includes each edge of

the mortar graph, so the total length of the output is at most (1 + 21+θ) · ℓ (MG). Appealing to the

Lemma 3.2.8, which bounds the length of the mortar graph, completes the proof.

Since θ is polynomial in 1/ǫ, the treewidth of the graph found in the framework is g(ǫ) = 2poly(1/ǫ).

Since the dynamic programming step is exponential in this treewidth, the dependence of the running

time of the PTAS on poly(1/ǫ) is doubly exponential.

Lemma 3.5.2 (Spanning property). The output contains a subgraph that satisfies the connectivity

requirements r between vertices in Q and has length at most (1+cǫ)OPT(G, Q) where c is a constant.

Proof. By the Structure Theorem (Theorem 3.4.4), there exists a solution H in B+(MG) that has

length at most (1 + cǫ)OPT(G, Q). By Lemma 3.3.16, the subgraph HB of H that is enclosed by

a brick B is the union of trees. Replacing one such tree T with another T ′ that maintains the

boundary connectivity results in a subgraph that achieves the boundary 2-connectivity of H (by

(T3) of Lemma 3.3.16). As a consequence of the Structure Theorem, the leaves of T are portals.

Let T ′ be the optimal Steiner tree in B that spans the leaves of T .

Let H ′ be the subgraph resulting from all these replacements: we have ℓ (H ′) ≤ ℓ (H) ≤ (1 +

cǫ)OPT(G, Q). By Lemma 3.4.3, the edges of H ′, not including the portal edges, form a solution to

the problem in G.

70

3.6 Approximation via the brick decomposition

In the last section we used the brick decomposition as a scaffolding for finding a spanner. Using this

spanner and the PTAS framework (Table 3.4) yields a running time whose dependence on poly(1/ǫ)

is doubly exponential [15]. Here we will merge the thinning and dynamic programming steps of the

framework to design an algorithm that is only singly exponential in poly(1/ǫ) [19].

We perform thinning on the mortar graph thereby grouping the bricks into subgraphs called

parcels (Section 3.6.1). We use the bound on the number of portals per brick to design a dynamic

program (Section 3.7) to solve the connectivity problem in a parcel. In order to guarantee con-

nectivity between terminals in different parcels, we introduce some new terminals on each parcel

(Section 3.6.2).

In this section we will assume without loss of generality that the degree of every vertex is 3 in

our input graph.

3.6.1 Parcels

Here we describe the decomposition of MG into subgraphs called parcels. The construction uses a

positive integer parameter η, depending polynomially on ǫ, whose value

η = η(ǫ) = ⌈20ǫ−2⌉ (3.7)

is used at the end of Section 3.7.5.

A linear-time algorithm for this step is given in Table 3.6. The basic idea is to use breadth-first

search in MG∗, the dual of MG, together with the shifting technique of [5]. Each parcel is a planar

embedded subgraph of MG. Each edge is in at most two parcels. A boundary edge is one that

belongs to two parcels. We denote by S the set of edges that are on parcel boundaries.

The parcel decomposition has the following two properties:

Radius Property: The planar dual of each parcel has a spanning tree of depth at most η + 1

(Lemma 3.6.2).

Parcel-Boundary Length Property: The sum of the lengths of the boundaries of the parcels is

at most ℓ (MG)/η (Lemma 3.6.4).

The radius property makes it possible to compute an optimal solution within a parcel in polynomial

time. Our plan is to compute an optimal solution within each parcel and glue these together using

the parcel boundaries to obtain a near-optimal solution for the original graph. To ensure that the

parcel solutions form a connected subgraph of the original graph, we introduce new terminals on the

boundaries of the parcels. The details of this are given in Section 3.6.2.

It should be clear from the algorithm that the running time is O(n). We call the set returned

by ParcelDecomposition the set of parcels of MG. We will now concentrate on showing that the

parcels are planar graphs with the radius and parcel-boundary length properties. In order to do

so, we need some additional notation. For an interval such as [i, j] the subgraph of MG∗ induced

71

ParcelDecomposition(MG, η)

1. Let vroot be a vertex of MG∗ such that there is a terminal (such that r(vroot) = 2
for the 2-EC problem) on the boundary of the face vroot in MG.

2. Do breadth-first search in MG∗ starting from vroot to find , the set of edges whose
endpoints have breadth-first search distance i and i + 1, Ei.

3. For k = 0, 1, . . . , η − 1, let Ek = Ek ∪ Ek+η ∪ Ek+2η ∪ · · · . Let k∗ be the index that
minimizes ℓ (Ek).

4. Let Y denote the set of connected components of MG∗ − Ek∗ . For each Y ∈ Y, let
HY denote the subgraph of MG consisting of the boundaries of faces in V (Y).

5. Return H = {HY : Y ∈ Y}.

Table 3.6: A thinning technique on the input mortar graph finds a set of subgraphs of the mortar
graph called parcels.

by vertices whose breadth-first search distance (or level) from vroot is in [i, j] is denoted MG∗[i, j].

For a positive integer i, let Ki be the set of connected components of MG∗[i,∞). Let K be one

such connected component. The edges of Γ(V (K)) form a bond in MG∗ and by cycle-cut duality

(Theorem 1.2.2) form a simple cycle in MG. We denote this cycle by CK .

Lemma 3.6.1. Two vertices u and v of MG∗ whose levels are in [i, j] are connected in MG∗[i, j] iff

they are connected in MG∗[i,∞).

Proof. Let P be a u-to-v path in MG∗[i,∞), chosen to minimize the number of vertices of P that

are at levels greater than j. Suppose for a contradiction that this number is positive, and let P ′

be a maximal subpath of P consisting of vertices at levels greater than j. Let K be the connected

component of MG∗[j+1,∞) containing P ′. The edges of CK form a simple cycle e1 e2 · · · eg in MG.

Let fj be the face whose corresponding vertex in MG∗ is at level i and whose boundary includes ej .

Note that the vertices of P just before and just after P ′ are among f1, . . . , fg.

For j = 1, . . . , g − 1, since the common endpoint of ej and ej+1 in MG has degree at most three,

either fj and fj+1 are the same or they share an edge on their boundaries. This shows that f1, . . . , fj

(which are vertices of MG∗) are connected, which contradicts the choice of P .

Lemma 3.6.2 (Radius Property). The planar dual of each parcel has a spanning tree of depth at

most η + 1.

Proof. Let Pv denote the path in MG∗ from vertex v up the breadth-first search tree to the root

vroot.

Consider a connected component Y of MG∗ \ Ek∗ and the corresponding parcel HY . Write

H = MG \ A where A is a set of edges. The graph H consists of the boundaries of faces of

MG that correspond to vertices of Y . Thus A includes all edges of MG∗[0, i − 1] and all edges of

MG∗[i + η + 1,∞). We have H∗ = MG∗/A which denotes the contraction of the edges in A. For

every vertex v, the path Pv/A is in H∗. Moreover, the level of v is at most i + η, so Pv has at most

η edges not belonging to MG∗[0, i − 1].

72

Since H consists of the boundaries of faces that are vertices of Y , any vertex of H∗ that is not

a vertex of Y is adjacent to a vertex of Y . This shows that the radius of H∗ is at most η + 1.

Recall that an edge of MG is a boundary edge if it belongs to two parcels. We denote the set of

all such edges by ∂H.

Lemma 3.6.3.

∂H = Ek∗ =
⋃

{CK : K is a connected component of MG∗[i + 1,∞), i ≥ 1, i ≡ k∗ (mod η)}

Proof. Let e be an edge of MG∗. Consider the following three cases

e ∈ ∂H : There are two connected components Y1 and Y2 of MG∗ − E∗
k such that, in MG∗, one

endpoint of e is in Y1 and the other is in Y2. If e were not in Ek∗ then Y1 and Y2 would be

connected in MG∗ − Ek∗ , a contradiction. Thus e ∈ Ek∗ .

e ∈ Ek∗ : For some integer i such that i ≡ k∗ (mod η), e ∈ Ei. Let K be the connected component

of MG∗[i + 1,∞) containing the endpoint in MG∗ of e that has level i + 1. Then e ∈ CK ⊆
Γ(V (K)).

e ∈ CK ⊆ Γ(V (K)) : (K is a connected component of MG∗[i + 1,∞) and i ≡ k∗ (mod η).) Let Y1

be the connected component of MG∗ − Ek∗ that contains the endpoint of e in V (K), and let

Y2 be the component that contains the endpoint not in V (K). By definition of K, the first

endpoint has level i + 1 and the second endpoint has level at most i (in fact exactly i). Thus

e ∈ Ei. By breadth-first search, every path between a vertex at level i + 1 and a vertex at

level at most i contains some edge of Ei, so Y1 and Y2 must be distinct connected components

of MG∗ − Ek∗ . Hence e belongs to both parcel HY1
and HY2

.

Lemma 3.6.4 (Boundary Length Property). ℓ (∂H) ≤ ℓ (MG)/η.

Proof. It follows from the choice of k∗ that ℓ (Ek∗) ≤ ℓ (MG)/η. The proof follows from Lemma 3.6.3.

We have shown that the parcels have the required properties. We will need the following lemma

for the introduction of new terminals in the next section.

Lemma 3.6.5. The following three sets are equal:

1. {connected components of the subgraph ∂H},

2. {connected components of the boundary edges of H : H ∈ H}, and

3. {CK : K a connected component of MG∗[i + 1,∞), i ≥ 1, i ≡ k∗ (mod η)}

Proof. Lemma 3.6.3 shows that the set of edges given by the union of Set 1, the union of Set 2, and

the union of Set 3 are all equal. We show the following:

73

Set 3 equals Set 1: Clearly, each cycle CK is connected and they are edge-disjoint. If two distinct

cycles CK and CK′ shared a vertex u, then u would have degree at least 4 in MG, contradicting

our assumption that our input graph has degree 3.

Set 2 equals Set 3: Let i be positive integer such that i ≡ k∗ (mod η), and let K be a connected

component of MG∗[i + 1,∞). Let Y be the intersection of K with MG∗[i + 1, i + η]. By

Lemma 3.6.1, Y is connected and so is a connected component of MG∗ − Ek∗ . It follows that

the edges of CK are boundary edges of HY . By Part (A), CK is a connected component of the

boundary edges of HY . This proves CK is a member of Set 2.

Let u and v be level-i endpoints in MG∗ of edges of CK . By Lemma 3.6.1, u and v are

connected in MG∗[i− η +1, i]. This shows that all the level-i endpoints of edges of CK belong

to a common connected component Y ′ of MG∗[i−η+1, i]. Thus the edges of CK are boundary

edges of HY ′ . As before, Part (A) implies that CK is a connected component of the boundary

edges of HY ′ .

We have shown that CK is a connected component of boundary edges of each of two parcels.

This proves that no proper subset of CK is a member of Set 2.

3.6.2 New requirements

The next step is to select some new terminals and requirements to ensure that the solution we find

in each parcel will combine to form a solution to the problem in the original graph. The parcel-

boundary length property ensures that connecting to these new terminals does not increase the

length of the optimal parcel solutions by much.

We select the new terminals according to the following terminal-selection rule:

For each parcel H and for each connected component C of the boundary of H , if

B+(MG)− V (C) disconnects some terminals x and y, then designate a vertex z of C as

a new terminal. For the 2-EC problem, the requirement r(z) is 2 if B+(MG) − V (C)

separates terminals with 2-requirements and 1 otherwise.

Notice that the new terminals are vertices of the mortar graph, not of the bricks. We will show that

the new terminals satisfy the following properties:

Spannable Property: Let H be a subgraph of B+(MG) that is a solution to the problem for the

original terminals. Let P be a parcel. Then H ∪∂H contains a solution to the problem for the

original and new terminals in B+(P) (Lemma 3.6.6).

Connecting Property: For each parcel P , let HP be a subgraph of B+(P) that solves the problem

for the original and new terminals in P . Then
⋃

P HP ∪ ∂H contains a connected subgraph of

B+(MG) that solves the problem for the original terminals (Lemma 3.6.7).

74

In Table 3.7, we give a linear-time algorithm for selecting the new terminals and requirements

and we prove that they satisfy the connecting property. Together with the parcel-boundary length

property (along with the definition of η and the mortar-graph length property,) this reduces the

connectivity problem for the original terminals in B+(MG) to the connectivity problem for the

parcels and the induced subsets of old and new terminals.

We can restate the terminal-selection rule as:

For each connected component X of ∂H (the set of edges found in step 3 of ParcelDe-

composition), if B+(MG) − V (X) disconnects some terminals x and y, then designate a

vertex z of X as a new terminal.

Let t be a terminal on the boundary of vroot (as guaranteed by step 1 of ParcelDecomposition). If

terminals x and y are disconnected by a component X of S, then t cannot be connected to both x

and y upon removal of X . Using this observation, we can modify the condition, yielding another

restatement of the terminal-selection rule:

For each connected component X of S, if some original terminal is not connected to t in

B+(MG)− V (X), then designate a vertex of X as new terminal. For the 2-EC problem,

the requirement r(z) is 2 if B+(MG) − V (C) separates terminals with 2-requirements

and 1 otherwise.

The algorithm NewRequirements implements this last restatement in linear time. An illustration

of new terminal selection is shown in Figure 3.19.

NewRequirements(∂H, MG, vroot)

1. Compute the connected components of S.
2. In MG, contract each connected component into a single vertex.
3. Compute the biconnected components and the block/cut-vertex tree. Root it at the

biconnected component containing the terminal face vroot.
4. For each connected component X of S, let k be the maximum requirement r(s) of

vertices s in the subtree rooted at the cut-vertex corresponding to X , designate a
vertex v of X as new terminal and assign r(v) = k.

Table 3.7: We compute the new terminals and their requirements in the mortar graph on the
boundaries of parcels, ∂H.

Lemma 3.6.6. The new terminals satisfy the spannable property.

Proof. Let H be a solution to the connectivity problem and let P be a parcel.

Start from the edges H ∩ B+(P), and for each connected component C of ∂P that has a new

terminal on it, add the edges of C. The resulting set of edges is still connected because, by definition

of new terminals, H must intersect C. For the 2-EC problem, consider an original terminal x in P

and a new terminal z on C. By the terminal selection rule, C separates x from a terminal y not in

75

&
' '

((
z

)b

Figure 3.19: On the left, the nested cycles that form the boundaries of the parcels are pictured.
On the right, we see that parcels drawn according to their level in the breadth-first search. Given
original terminals x, y and z (left and right), new terminals a and b must be introduced to connect
these through the parcel boundaries (right). Note that when the parcels are separated (as shown on
the right), we get two copies of each terminal that is on the boundary of a parcel.

x. There are edge disjoint paths from x to C in H , and so there are edge disjoint paths from x to z

in H ∪ C. The lemma follows from the transitivity of 2-edge connectivity.

Consider the face vroot (the root of the breadth-first search tree) as the infinite face of the

embedding of MG. We can now prove the Connecting Property of the new terminals.

Lemma 3.6.7. For each parcel P that contains a terminal, let HP be a solution in B+(P) connecting

the original and new terminals belonging to P . Then
⋃

P HP is a solution in B+(MG).

Proof. We prove by induction on i that, for every positive integer i such that i ≡ k∗ (mod η), the

union over the parcels P corresponding to connected components of MG∗[0, i]−Ek∗ of the solutions

HP is a solution in B+(MG).

Suppose i = 1. Then the vertices of MG∗[i− η + 1, i] are connected via the first few levels of the

breadth-first search tree of MG∗, so |Ki| = 1. There is only one component to the solution.

Suppose i > 1. Consider a parcel P that has a terminal, where P ⊆ K ∈ Ki. We claim that

one of the vertices of CK is a new terminal. CK separates the interior of CK from the root. CK

corresponds to a cut-vertex x of the block-cut-vertex tree. P corresponds to part of a subtree rooted

at x. Since P has a terminal, that subtree does have a terminal, so CK has a new terminal.

Let v be this terminal. Then v belongs to the solution HP . However, v is a vertex of some parcel

P ′ where P ′ ⊆ K ′ ∈ Ki−η, and hence to HP ′ , so adding HP preserves the required connectivity.

3.7 Dynamic program

In this section, we give a dynamic problem to find an optimal solution to the Steiner-tree and 2-EC

problems in the graph B+(P) where P is a parcel which in turn is a subgraph of the mortar graph.

Recall that B+(P) is obtained by embedding bricks in those faces of P for which bricks are defined

and connecting each brick to the corresponding face of P via at most θ portal edges. Once we have

solved the problem optimally in each parcel, we can union the solutions over all parcels to find a

76

solution H in B+(MG). Our final solution is the union of the mortar and brick edges of H . The

correctness (Section 3.7.5) of the PTAS follows from Lemmas 3.6.6 and 3.6.7.

We first define a binary recursion tree T̂ that is a (non-spanning) subgraph of B+(P) (Sec-

tion 3.7.1). For each vertex v of T̂ we bound the number of edges in B+(P) between the subtree

of T̂ rooted at v and the rest of the graph (Lemma 3.7.2). The leaves of T̂ correspond to bricks.

We show how to solve this base case separately for the Steiner-tree (Section 3.7.3) and 2-EC (Sec-

tion 3.7.4) problems. For non-leaf vertices of T̂ , the procedure for filling the dynamic programming

table is common to both problems (Section 3.7.2).

We show that the dynamic program runs in O(2poly(1/ǫ)m) time, where m is the number of edges

in the parcel. The overall running time of the PTAS (including the construction of the mortar

graph and parcels, and selection of portals) is O(n log n+2poly(1/ǫ)n). Note that the PTAS is singly

exponential in poly(1/ǫ).

3.7.1 Defining the recursion tree

The recursion tree is common to both the Steiner-tree and 2-EC problems.

In order to define the recursion tree, we need an operation called brick contraction. The operation

is applicable to a graph B+(H) obtained from a graph H by applying the brick-insertion operation

from Section 3.4.1. Brick contraction is denoted B÷(B+(H)). Starting with B+(H), contract each

brick to a single vertex, called a brick vertex, as illustrated by Figure 3.20. The mortar edges of

B+(H) are unaffected by this operation. Note that the degree of each brick vertex is the number

of portals for the corresponding brick, which is at most θ by Lemma 3.4.1. The graph B÷(B+(H))

differs from H in that it has a single vertex connected to H via portal edges rather than a brick.

(a) (b)

Figure 3.20: Given a portal-connected graph (a), we perform the brick contraction operation by
contracting each brick to a single vertex, creating (b).

Consider a parcel P . By Lemma 3.6.2, the dual graph P ∗ has a breadth-first search tree T ∗ of

depth at most η + 1. Let T be the set of edges of P not in T ∗. T is a spanning tree of P by the

Interdigitating Trees Theorem. For each face of P that is the mortar boundary of a brick B, let

eB be the portal edge corresponding to the first portal vertex selected for B (see Table 3.3). Let

T̂ := T ∪ {eB : B is a brick}. Observe that T̂ is a spanning tree of B÷(B+(H)) and that the brick

vertices are leaves of T̂ .

Recall that we have assumed for Section 3.6 that the degree of our input graph is 3.

77

Lemma 3.7.1. The degree of T̂ in B÷(B+(H)) is at most 3.

Proof. Note that each vertex of T̂ is either a vertex of P or the result of a brick contraction.

If a vertex v of T̂ is obtained by contracting a brick B, then eB is the only edge in T̂ adjacent

to v: v has degree 1.

If v is a vertex of P , then certainly v has degree at most 3 in our input graph. So v has degree

at most 3 in both P and T , which are subgraphs of our input graph. Since the first portal for a

brick B has degree 3 as guaranteed by Step 1 of PortalSelection (Table 3.3), one adjacent edge

is enclosed by ∂B and the other two adjacent edges are in ∂B. Therefore a vertex can only be the

first portal for one brick. If v is the first portal chosen for brick B, then v has degree at most 2 in

P , and the addition of eB gives degree at most 3.

Root T̂ at a non-brick-vertex of degree at most two. This tree will guide our dynamic program. For

each vertex v of T̂ , let T̂ (v) denote the subtree of T̂ rooted at v. We will use the following lemma

to bound the interaction between subproblems. This property is similar to carving width [97].

Lemma 3.7.2. In the graph B÷(B+(H))), there are at most 2θη + 1 edges between T̂ (v) and the

rest of the graph.

Proof. Let T̂ ∗ be the set of edges of B÷(B+(H)) not in T̂ . Comparing T̂ ∗ to the spanning tree T ∗

of P ∗, we see that each vertex of T ∗ obtained by contracting a brick B corresponds to a path in T̂ ∗

consisting of all but one of the portal edges associated with B. Such a path has at most θ− 1 edges.

Since the depth of T ∗ is at most η (Lemma 3.6.2), the depth of T̂ ∗ is at most θη.

Now we use an argument from [67]. Let v be any vertex of T̂ other than the root, and let ev

be the edge connecting v to its parent. Then ev is not in the tree T̂ ∗. The path in T̂ ∗ between the

endpoints of ev has at most 2θη edges. Combining this path with ev yields a simple cycle in the dual

graph (B÷(B+(H)))∗ having at most 2θη + 1 edges. The edges of this cycle are exactly the edges in

the cut Γ(V (T̂ (v)),B÷(B+(H))) in the primal graph (Theorem 1.2.2).

3.7.2 The dynamic programming table

Here we relate the tree T̂ , which spans the brick-contracted parcel, to the brick-copied parcel. For

each vertex v of T̂ , define

f(v) =

{
B if v is the result of contracting a brick B

v otherwise

and define W (v) to be the subgraph of B+(P) induced by
⋃{f(w) : w ∈ T̂ (v)}. It follows from

Lemma 3.7.2 that the cut Γ(V (W (v))) in B+(P), which is equal to the cut Γ(V (T̂ (v))) in B÷(B+(P)),

has at most 2θη + 1 edges.

For a set of edges L forming a cut, we will define a set of configurations KL. Each configuration

is a relationship on the edges in L. For the 2-EC problem we will assume the edges in L are

78

duplicated to simplify the presentation of the dynamic program. We say the configuration KL ∈ KL

is connecting if

|KL ∩ L| ≥
{

2 if L separates terminals x and y such that r(x) = r(y) = 2

1 if L separates terminals.

(For the Steiner-tree problem, only the second condition applies.) We say configurations KA ∈ KA

and KB ∈ KB are compatible if for every edge e ∈ A ∩ B either e ∈ KA ∩ KB or e /∈ KA ∪ KB.

We will define what is means for a subgraph of B+(P) to meet a configuration separately for

Steiner-tree and 2-EC. The entry Tabv[K] is the weight of the subgraph induced by the vertices

W (v) of a minimum-weight subgraph that meets configuration K. Note that the weight of no edge

in Γ(V (W (v))) is included in Tabv. We present the common procedure Tabv for filling the dynamic

programming table for a non-leaf node v of the recursion table (Table 3.8). We will define consistent

and present the filling procedure for leaves of the recursion for the Steiner-tree and 2-EC problems

separately.

Tabu0

1. Initialize each entry of Tabu0
to ∞.

2. Let u1, . . . , us be the children of u0.
3. For every set of connecting, mutually compatible configurations K, K1, . . . , Ks,

4. For every connecting configuration K0 that is consistent with K, K1, . . . , Ks,

5. L = w(K ∩ (∪s
i=1Ki)) + w(∩s

i=1Ki) +
∑s

i=1 Tabui
[Ki].

6. Tabu0
[K0] := min{Tabu0

[K0], L}

Table 3.8: This procedure fills the table Tabu0
for vertices u0 that are not leaves of the recursion

tree, T̂ . In the above we use the following shorthand: K for KΓ({u0}), and Kui
for KΓ(V (W (ui))).

The cuts are with respect to the graph B+(P).

3.7.3 Steiner tree

We now give the definitions of configuration, consistent, and meet that are specific to the Steiner-

tree problem. We will then give a procedure for solving the base cases of the dynamic program and

bound the running time of the dynamic program for the Steiner-tree problem.

Let U be a set of vertices and let E = Γ(U). A configuration KE corresponding to E is a

non-crossing sub-partition of E. The edges in E form a cycle e1 ◦ e2 ◦ · · · in the dual (by cycle-cut

duality). The cycle induces a cyclic ordering of the edges of E. A partition is non-crossing if no two

sets of the partition cross each other. Set S1 crosses set S2 if ei, ej ∈ S1 and ek, el ∈ S2 and these

edges are in the order eiekejel in E. (See Figure 3.21.)

We say that two configurations KE and KL are consistent if for an edge e ∈ E ∩L, e is either in

both KE and KL or in neither.

Let H be a subgraph induced by U ∩V (E). We say that H meets a configuration KE if for every

set S ∈ KE, S is a subset of a connected component of H .

79

a

a

a

b

b

b

c

c

c

Figure 3.21: A non-crossing subpartition of the edges (solid) in a cut and a subgraph (dotted) that
meets the configuration. Edges in the same set of the partition are labelled with the same letter.

Solving the base case

Suppose v is a leaf of the recursion tree. We show how to fill Tabv.

If v does not correspond to a brick (i.e. f(v) = v), the problem is trivial. Since the weight of any

subgraph that is induced by {v} is zero, the value of Tabv[K] is zero for every such configuration

K.

Suppose then that v corresponds to a brick B (i.e. f(v) = B). Let K be a configuration corre-

sponding to the edges of the cut Γ(V (W (v))) in B+(P). This is the set of portal edges corresponding

to brick B. Let HK be the minimum-weight subgraph of B ∪Γ(V (W (v))) that meets the configura-

tion K. Let a be an edge of Γ(V (W (v))) and let xa be the endpoint of a in B. HK is the union of

Steiner trees whose leaves correspond to the sets in K (taking the endpoints of these edges in brick

B). We assign Tabv[K] the sum of the weights of these trees.

Since each set in a configuration has at most 2θ + 1 elements, we can compute each Steiner tree

in O(θ3nB) time where nB is the number of vertices of the brick (Theorem 3.1.1). Since there are

at most 2θ + 1 sets in the configuration, we can compute Tabv[K] in O(θ4nB) time.

Running time

The number of non-crossing partitions of an n element ordered set is the nth Catalan number, which

is at most 4n/(n + 1) [21, 83]. Therefore, the number of non-crossing sub-partitions is at most 4n.

It follows that the time to populate Tabv for v a brick vertex is O(θ44θnB) which is O(2poly(1/ǫ)nB)

since θ depends polynomially on 1/ǫ. Since a vertex appears at most twice in the set of bricks, the

time needed to solve all the base cases in O(2poly(1/ǫ)n) where n is the number of vertices in the

parcel.

For v not a leaf of the recursion tree, the number of edges in Γ(V (W (v))) in B+(P) is at most

2θη + 1 (Lemma 3.7.2). It follows that the corresponding number of configurations is O(2poly(1/ǫ))

since θ and η each depend polynomially on 1/ǫ. For a recursion tree with n vertices, the time

80

required for the dynamic program, not including the base cases is O(2poly(1/ǫ)n).

The total running time of the dynamic program is O(2poly(1/ǫ)n) where n is the number of vertices

in the parcel.

3.7.4 2-EC

Given a graph G, let EC(G) denote the graph whose nodes are the 2-edge-connected components of

G and whose edges denote adjacency of these components in G. This structure is familiarly known

as a block-cut tree [36]. It is easy to see that EC(G) is a forest. Let ẼC(G) be the graph obtained

from EC(G) by replacing every maximal path having internal degree 2 vertices with an edge.

We call the edge incident to a leaf of a tree a leaf edge.

Let U be a set of vertices and let E = Γ(U). We define a configuration KE corresponding to E.

First we disregard adjacencies between edges of E that have a common endpoint in Ū , creating a

new edges set E′: if two edges a and b of E have a common endpoint x in Ū (the complement of U),

introduce a new vertex x′ such that a’s endpoint in Ū is x and b’s endpoint is x′. The edges in E are

identified with the corresponding edge in E′. A configuration KE is a forest with no degree-2 vertices

whose leaf edges are a subset of E′ (and also, E). See Figure 3.22. Cutting the connectivity of E in

Ū implies that if e ∈ KE ∩E then e is a leaf edge of KE. We denote the set of all configurations on

edge set E by KE .

We now define consistent for 2-EC as needed for filling Tab. We say a configuration KA is

consistent with a set of mutually compatible configurations {KA1
, KA2

, . . .} if KA is isomorphic to

the graph ẼC(∪iKAi
).

Let U be a set of vertices and let M be a subgraph. Let M ′ be the subgraph of M induced by

the vertex set U ∪ V (Γ(U)). Let MU be the graph obtained by cutting the connectivity between

edges of M ′ ∩ Γ(U) in Ū . We say that M meets a configuration KΓ(U) if ẼC(MU) = KΓ(U).

(a) (b) (c)

Figure 3.22: A configuration (dotted forest) for a set of edges E′ (b) derived from the cut edges E
where the vertices U are in the shaded region (a). (c) A subgraph (bold) that meets the configuration.

Solving the base case

Suppose v is a leaf of the recursion tree. We show how to fill Tabv. Recall that we have doubled

the edges in our graph.

81

If v does not correspond to a brick (i.e. f(v) = v), the problem is trivial. Each configuration K

is a star: v is the center vertex, and the edges of Γ({v}) are the edges of K. Since the weight of any

subgraph that is induced by {v} is zero, the value of Tabv[K] is zero for every K.

Suppose then that v corresponds to a brick B (i.e. f(v) = B). Let K be a configuration

corresponding to the edges of the cut Γ(V (W (v))) in B+(P). This is the set of portal edges corre-

sponding to brick B. Let HK be the minimum-weight subgraph of B ∪ Γ(V (W (v))) that meets the

configuration K. Since we need only maintain connectivity between vertices on the boundary of B

(i.e. between portal edges), we know by Lemma 3.3.16 that HK is the union of trees. And so we need

only consider configurations that correspond to boundary connectivity. For all other configurations,

we can assign ∞ to the table entry. Let a and b be edges of Γ(V (W (v))) and let a′ and b′ be their

duplicates. Note that a and a′ are parallel and share a common endpoint xa in B. If all four edges

are mutually adjacent in K (i.e. they share a common endpoint), then cHK
(xa, xb) = 2. If one of

a and a′ appear in the same component of K with one of b or b′, then cHK
(xa, xb) = 1. Otherwise

cHK
(xa, xb) = 0.

By Lemma 3.4.1 there are at most θ portal edges corresponding to any brick. Including duplicate

edges, there are at most 2θ leaf edges in K. From K, we can compute cHK
. Using the algorithm

DecomposeConnectivity, we can find the sub-partition S of the vertices of ∂B that correspond

to the leaves of the trees of HK (Lemma 3.3.16). We can compute this sub-partition in in O(θ2)

time (Lemma 3.3.13). For each set in S we compute the weight of the Steiner tree connecting those

vertices in O(θ3n) (Theorem 3.1.1). The value assigned to Tabv[K] is the sum of the weights of

these trees. We do not include the weights of the portal edges (which have zero weight). Since there

are at most 2θ sets in S. It takes O(θθ3nB) = O(θ4nB) time to compute the length of all the trees

corresponding to configuration K where nB is the number of vertices in brick B. The total running

time to compute Tabv[K] is therefore O(θ4nB).

Running time

Recall that a configuration KE is a forest with no degree-2 vertices whose leaf edges are a subset of

edge-set E. Here we bound number of such configurations, |KE |. A forest with no degree-2 vertices

and at most |E| leaves has at most 2|E| vertices. Cayley’s formula states that the number of trees

with n vertices is nn−2. It follows that the number of forests with n vertices is (n + 1)n−2. The

number of forests with at most n vertices is at most n(n + 1)n−2. The set of trees can be computed

in O(1) amortized time per tree [82].

For the base case, |E| is the number of portal edges corresponding to a brick, which is at most 2θ,

including duplication. Populating Tabv for v corresponding to brick B takes time O(θ(θ+1)θ−1θ4nB)

which is bounded by O(2poly(1/ǫ)nB) since θ depends polynomially on 1/ǫ. Populating Tabv for v

not corresponding to a brick takes time O(1). Since each vertex appears in at most twice in the set

of bricks, the time to solve all the base cases is O(2poly(1/ǫ)n).

For v not a leaf of the recursion tree, the number of edges in Γ(V (W (v))) in B+(P) is at

most 4θη + 2, including duplicates (Lemma 3.7.2). It follows that the corresponding number of

82

configurations is O(2poly(1/ǫ)) since θ and η each depend polynomially on 1/ǫ. There are O(n)

vertices of the recursion tree and so the time required for the dynamic program, not including the

base cases is O(2poly(1/ǫ)n).

The total running time of the dynamic program is O(2poly(1/ǫ)n) where n is the number of vertices

in the parcel.

3.7.5 Correctness

Theorem 3.7.3. The dynamic program finds the optimal solution.

Proof. Refer to Table 3.8.

The connecting property guarantees that the final solution is feasible (satisfying the conectivity

requirements). The definitions of compatible and consistent guarantee the inductive hypothesis.

We show that Step 5 computes the length of a minimum-weight subgraph Hu0
induced by the

vertices of W (u0) that meets the configuration K0. We have shown that this is true for the leaves

of the recursion tree. Since K is the configuration corresponding to the cut Γ({u0}), K is a star.

Therefore w(K) is the weight of the edges of Γ({u0}): K is both the configuration and a minimum-

weight subgraph that meets that configuration. Further, w(K ∩ (∪s
i=1Ki)) is the weight of the edges

of K that are in Ki (for i = 1, . . . , s). w(∩s
i=1Ki) is equal to the weight of the edges common to K1

and K2 if s = 2 and zero otherwise. By the inductive hypothesis the weight computed is that of a

Hu0
: the subgraph induced by the vertices in W (u0) of a minimum-weight graph that meets this

configuration.

Consider the entries of Tabu where u is the root of the recursion tree. Since Γ(W (u)) is empty,

there is only one configuration corresponding to this subproblem: the trivial configuration.

By Lemma 3.4.3, combining parcel solutions forms a valid solution in our input graph for terminal

set Q. We need to compare the length of the output to the length of an optimal solution. Let Q̂

denote the set of new terminals.

Let H be the optimal solution in B+(MG) spanning the original terminals. By the spannable

property of the new terminals, for each parcel P , there is a (possibly empty) solution HP in B+(P)

consisting of edges of H ∪∂H (where ∂H is the set of boundary edges of all parcels) for the new and

original terminals in P . We have:

OPT(B+(P), Q ∪ Q̂) ≤ ℓ (HP) = ℓ (HP \ ∂H) + ℓ (HP ∩ ∂H).

Every edge of H not in ∂H appears in HP for exactly one parcel P , and so
∑

P∈H ℓ (HP \ ∂H) ≤
ℓ (H) = OPT(B+(MG), Q). Every edge of ∂H appears in two parcels, and so

∑
P∈H ℓ (HP ∩ ∂H) ≤

2 · ℓ (∂H). Thus the length of the output is

ℓ (∂H) +
∑

P∈H
OPT(B+(P), Q ∪ Q̂) ≤ OPT(B+(MG), Q) + 3ℓ (∂H).

Combining the parcel-boundary length property (Section 3.6.1), the definition of η (Equa-

tion (3.7)), and the mortar-graph length property (Section 3.2), we obtain ℓ (∂H) ≤ 1
2ǫOPT(G, Q).

83

Finally, by Theorem 3.4.4, the length of the output is at most (1 + cǫ) OPT(G, Q). This shows

that we have a PTAS for the Steiner-tree and 2-EC problems that, combining the running times of

the dynamic program and brick decomposition (and all steps in between) is O(2poly(1/ǫ)n + n log n),

giving:

Theorem 3.7.4. There is an approximation scheme for solving the Steiner-tree and 2-EC problems

(allowing duplication of edges) in planar graphs. The running time is O(2poly(1/ǫ)n + n log n).

3.8 An exact algorithm for the boundary 2-EC problem

We give an algorithm (Table 3.9) for the following problem: given a weighted, planar graph G and

a set of requirements r that are only non-zero for vertices of ∂G, find a minimum-weight multi-

subgraph H of G that satisfies the requirements (i.e. there are min{r(x), r(y)} edge-disjoint x-to-y

paths in H). This will prove Theorem 3.1.2 that was stated in Section 3.1.2.

Boundary2EC(G, Q)

1. Let q1, q2, . . . be the cyclic ordering of vertices {v ∈ V (∂G) : r(v) = 2}.
2. For i = 1, . . ., let Xi = {v ∈ V (∂G[qi, qi+1])}.
3. For i = 1, . . ., let Ti be the minimum Steiner tree spanning Xi.
4. Return the disjoint union ∪iTi.

Table 3.9: An algorithm for computing the minimum-weight multi-subgraph of G that satisfies
requirements on the boundary vertices.

We will use the following lemma to give an efficient implementation of Boundary2EC. The idea

is similar to one used in [75].

Lemma 3.8.1. Let a, b and c be vertices ordered along the clockwise boundary ∂G of a planar graph

G. Let Ta be the shortest-path tree rooted at a. Then for any set of terminals Q in ∂G[b, c], there is

a minimum Steiner tree connecting them that enclosed by the cycle ∂G[b, c] ◦ Ta[c, b].

Proof. Let C = ∂G[b, c] ◦ Ta[c, b]. Let T be a minimum Steiner tree in G connecting Q. Suppose

some part of T is not enclosed by C. Let T ′ be a maximal subtree of T not enclosed by C. The

leaves of T ′ are on Ta[c, b]. Let P be the minimum subpath of Ta[b, c] that spans these leaves. Let

P ′ be the start(P)-to-end(P) path in T ′. See Figure 3.23.

We consider the case when start(P ′) is a vertex of Ta[a, b] and end(P ′) is a vertex of Ta[a, c] (the

other cases are similar). Then P ′ must cross Ta[a, x] where x is the last vertex common to Ta[a, b]

and Ta[a, c]. Let y be a vertex of P ′ ∩ Ta[a, x]. Since Ta is a shortest-path tree in an undirected

84

path, every subpath of Ta[a, z] and Ta[z, a], for any vertex z, is a shortest path. We have that:

w(P ′) = w(P ′[start(P ′), y]) + w(P ′[y, end(P ′)])

≥ w(Ta[start(P ′), y]) + w(Ta[y, end(P ′)])

≥ w(Ta[start(P ′), pendP ′])

≥ w(P)

Let T̂ = T \ T ′ ∪ P . By construction, T̂ spans Q. Using that w(P ′) ≥ w(P), we have that

w(T̂) = w(T) − w(T ′) + w(P) ≤ w(T) − w(T ′) + w(P ′) ≤ w(T) since P ′ is a subpath of T ′.

Repeating this process for every subtree of T not enclosed by C results in a tree enclosed by C

spanning Q that is no longer than T .

a

b

c

x

Figure 3.23: There is a tree T̂ that is just as short as T (dotted) and spans the terminals between b

and c but is enclosed by C (whose interior is shaded). T̂ is composed of the portion of T enclosed
by C plus P , the thick grey path.

We describe an O(k3n)-time implementation of Boundary2EC (where k is the number of termi-

nals). Compute a shortest-path tree T rooted at terminal q1 in linear time. For each i, consider the

graph Gi enclosed by Ci = ∂G[qi, qi+1] ◦ T [qi+1, qi]. Compute the minimum Steiner tree spanning

Xi in Gi. By Lemma 3.8.1, Ti has the same length as the minimum spanning tree spanning Xi in

G. Since each edge of G appears in at most two subgraphs Gi and Gj , the trees Ti can be computed

in O(k3n) time (Theorem 3.1.1). This is a correct implementation of Boundary2EC.

We now argue that Boundary2EC finds the minimum-weight multi-subgraph of G satisfying

the requirements. The vertices selected in Step 1 form the only 2-requirement clique among the

terminals. DecomposeConnectivity(V (∂G), r) would find the sets Xi computed in Step 2. By

Lemma 3.3.16, the optimal solution H is the disjoint union of trees ∪iT
′
i such that T ′

i spans Xi.

Since w(Ti) ≤ w(T ′
i), the output of Boundary2EC has weight at most w(H).

Note: if the requirements are such that r(v) ∈ {0, 2} for every vertex v on the boundary of G,

then the sets Xi have cardinality 2. Instead of computing Steiner trees in Step 3, we need only

compute shortest paths. The running time for this special case is therefore linear.

This completes the proof of Theorem 3.1.2.

85

3.9 Open Problems

We have given polynomial-time approximation schemes for two subset connectivity problems: the

Steiner-tree problem and the 2-edge connected problem. The schemes (using either the framework

of Klein [67] or the more direct method given in Section 3.6) rely on the brick decomposition. Recall

that the brick decomposition is based heavily on a construction used to give a PTAS for the subset

tour problem in planar graphs [69]. We originally gave the Structure Theorem for the Steiner-

tree problem [15] only recently generalizing this to 2-edge connectivity. The development of these

three results certainly point to the generality of the brick decomposition. We expect that the brick

decomposition can be used to give approximation schemes for other connectivity problems.

For example, it may be possible to extend the framework to get a PTAS for higher–connectivity

problems. Lemma 3.3.16 showed that a graph can be partitioned into trees while maintaining 2-edge-

connectivity between vertices on the boundary of the graph. If this can be generalized to maintain

k-edge connectivity, then a PTAS for k-edge connectivity follows for fixed k.

In this thesis, we have allowed duplication of edges to obtain the required connectivity. Using

the techniques of this thesis alone, it does not seem possible to overcome this relaxation. While

the partitioning of a solution within a brick into trees (Lemma 3.3.16), and grouping these trees

into forests does not cause any obstacle, the use of the Theorem 3.3.3 does. We use Theorem 3.3.3

to replace each forest embedded in a brick of the aforementioned partition with a simpler forest.

However, parts of each forest is redirected along the boundary of the brick, introducing duplicate

edges (Figure 3.24).

(a) (b)

(c)

Figure 3.24: A simple example illustrating the introduction of duplicate edges as a result of the
Structure Theorem. The intersection of a 2-EC graph (solid) with a brick (dashed) in (a) is de-
composed into 2 forests, grey and black (b), each of which is replaced by spanning subpaths of the
southern boundary of the brick (c) due to Lemma 3.3.4 thereby introducing duplicate edges on the
southern boundary of the brick.

In [7], Berger and Grigni gave a PTAS for the problem of finding a 2-edge-connected subgraph

that spans all the vertices of the input graph but not allowing duplicate edges. The algorithm builds

86

a spanner to be used in the framework (Table 3.4), just as we do for the subset case. However, in

order to prevent the duplication of edges, in each step of the dynamic program a constant number of

edges that do not appear in the spanner are considered. It may be possible to combine this technique

with ours.

The brick decomposition and Klein’s PTAS framework are amenable to problems that have full

connectivity constraints. That is, the solution spans the set of input terminals. On the other extreme,

Baker outlined a method for obtaining approximation schemes in planar graphs for problems with

no connectivity constraints (for example, maximum independent set and minimum vertex cover) [5].

Baker’s scheme involves contracting every kth breadth-first search layer in the input graph (rather

than a spanner subgraph) to find a graph of treewidth O(k). The problem is solved for each possible

residual of breadth-first search layers. For some residual, the weight of the edges that are contracted

is bounded by OPT/k.

There are host of problems between these two extremes. Most notably is the Steiner forest

problem. The input to the Steiner forest problem is a set of terminal pairs si, ti. The output is

a minimum-weight forest that connects si to ti for every i. While si need not be connected to tj

(for i 6= j), the minimum-weight solution may happen to connect si to tj (see Figure 3.25. The

connected components of the optimal solution induce a partition of the terminal set. If one could

find this partition, the problem would reduce to a series of Steiner tree problems and the PTAS

given in this thesis would imply a PTAS for the Steiner forest problem.

s
1*

1

s+ *+,
3

t
3

(a)

s
1

t
1

s
2

t
2

s
3

t
3

(b)

s
1

t
1

s
2

t
2

s
3

t
3

(c)

Figure 3.25: Given a set of terminal pairs the optimal solution might not connect different pairs (a),
or connect pairs together (b) and (c).

Of course, finding this partition is non-trivial. It is not necessary to find the partition correspond-

ing to an optimal solution, but only a partition corresponding to a nearly optimal solution. Again,

if such a partition could be found the Steiner-tree PTAS can be used to give a PTAS for finding

the Steiner forest. One could start with a 2-optimal solution [2], thereby satisfying the connectivity

requirements, and add edges to achieve connectivity sufficient for a (1+ǫ)-optimal solution. We have

recently given a PTAS for the Steiner forest problem in the Euclidean plane using this tactic [18].

If one is able to give a PTAS for the Steiner forest problem, then it is natural to consider the

most general of connectivity of requirements: for every pair x, y of terminals require that there are

r(x, y) ∈ {0, . . . , k} edge-disjoint x-to-y paths. Here, the final solution is not required to span the

87

terminals.

There is a lifetime’s worth of connectivity (and disconnectivity) problems to consider when you

add vertex weights, vertex-disjointness and multi-terminal cut problems to the mix.

Appendix A

Notation

x a vector in RA, RE or RD

δ(a) a vector satisfying δ[x] = 0 for x 6= a and δ[a] = 1

δ(v) for v a vertex
∑

tail(d)=v δ(d)

Γ(S) the set of edges with one endpoint in S and the other in S̄

Γ+(S) the set of darts whose tails are in S and heads are in S̄

∂G the boundary of the graph G as a clockwise cycle

P [x, y] the x-to-y subpath of P

P (x, y] the x-to-y subpath of P with x deleted

P [·, y] the prefix of path P ending in vertex y

P ◦ Q the concatenation of paths P and Q

head(d) the vertex that dart d points to

tail(d) the vertex that dart d points out of

start(P) the first vertex of path P

end(P) the last vertex of path P

T [x, y] the minimal path in tree T from vertex x to vertex y

T [x] the minimal path in rooted tree T from vertex x to the root of T

T (v) the subtree of rooted-tree T rooted at v containing all descendents of v

88

Bibliography

[1] U. Acar, G. Blelloch, R. Harper, J. Vittes, and S. Woo. Dynamizing static algorithms, with

applications to dynamic trees and history independence. In Proceedings of the 15th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 531–540, 2004.

[2] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the

generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456, 1995.

[3] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Maintaining information in fully

dynamic trees with top trees. ACM Transactions on Algorithms, 1(2):243–264, 2005.

[4] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geometric

problems. Journal of the ACM, 45(5):753–782, 1998.

[5] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of

the ACM, 41(1):153–180, 1994.

[6] A. Berger, A. Czumaj, M. Grigni, and H. Zhao. Approximation schemes for minimum 2-

connected spanning subgraphs in weighted planar graphs. In Proceedings of the 13th European

Symposium on Algorithms, volume 3669 of Lecture Notes in Computer Science, pages 472–483,

2005.

[7] A. Berger and M. Grigni. Minimum weight 2-edge-connected spanning subgraphs in planar

graphs. In Proceedings of the 34th International Colloquium on Automata, Languages and

Programming, volume 4596 of Lecture Notes in Computer Science, pages 90–101, 2007.

[8] P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. Journal

of Algorithms, 17:381–408, 1994.

[9] M. Bern. Faster exact algorithms for Steiner trees in planar networks. Networks, 20:109–120,

1990.

[10] M. Bern and D. Bienstock. Polynomially solvable special cases of the Steiner problem in planar

networks. Mathematics of Operations Research, 33:405–418, 1991.

[11] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information

Processing Letters, 32:171–176, 1989.

89

90

[12] A. Bhalgat, R. Hariharan, D. Panigrahi, and K. Telikepalli. An Õ(mn) Gomory-Hu tree con-

struction algorithm for unweighted graphs. In Proceedings of the 39th Annual ACM Symposium

on Theory of Computing, pages 605–614, 2007.

[13] T. Biedl, B. Brejová, and T. Vinař. Simplifying flow networks. In Proceedings of the 25th

International Symposium on Mathematical Foundations of Computer Science, Lecture Notes

in Computer Science, pages 192–201, 2000.

[14] G. Borradaile. Multiple minimum cuts in a planar graph. Submitted, 2007.

[15] G. Borradaile, C. Kenyon-Mathieu, and P. Klein. A polynomial-time approximation scheme

for Steiner tree in planar graphs. In Proceedings of the 18th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 1285–1294, 2007.

[16] G. Borradaile and P. Klein. An O(n log n)-time algorithm for maximum st-flow in a directed

planar graph. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algo-

rithms, pages 524–533, 2006.

[17] G. Borradaile and P. Klein. The two-edge connectivity survivable network problem in planar

graphs. Submitted, 2007.

[18] G. Borradaile, P. Klein, and C. Mathieu. A polynomial-time approximation scheme for Eu-

clidean Steiner forest. Submitted, 2007.

[19] G. Borradaile, P. Klein, and C. Mathieu. Steiner tree in planar graphs: An O(n log n) ap-

proximation scheme with singly exponential dependence on epsilon. In Proceedings of the 10th

International Workshop on Algorithms and Data Structures, volume 4619 of Lecture Notes in

Computer Science, pages 275–286, 2007.

[20] S. Cabello. Many distances in planar graphs. In Proceedings of the 17th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1213–1220, 2006.

[21] E. Catalan. Note sur un problème de combinaisons. Journal de Mathématiques Pures et

Appliquées, 3:111 – 112, 1838.

[22] P. Chalermsook, J. Fakcharoenphol, and D. Nanongkai. A deterministic near-linear time

algorithm for finding minimum cuts in planar graphs. In Proceedings of the 15th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 828–829, 2004.

[23] M. Chleb́ık and J. Chleb́ıková. Approximation hardness of the Steiner tree problem on graphs.

In Proceedings of the 8th Scandinavian Workshop on Algorithm Theory, volume 2368 of Lecture

Notes in Computer Science, pages 170 – 179, 2002.

[24] W. Cook, W. Cunningham, W. Pullyblank, and A. Schrijver. Combinatorial Optimization.

Wiley, 1998.

91

[25] I. Cox, S. Rao, and Y. Zhong. Ratio regions: A technique for image segmentation. International

Conference on Pattern Recognition, 02:557, 1996.

[26] B. Csaba, M. Karpinski, and P. Krysta. Approximability of dense and sparse instances of

minimum 2-connectivity, TSP and path problems. In Proceedings of the 13th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 74–83, 2002.

[27] A. Czumaj and A. Lingas. On approximability of the minimum cost k-connected spanning

subgraph problem. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 281–290, 1999.

[28] R. Descartes. Progymnasmata de solidorum elementis. In Œuvres de Descartes, volume X,

pages 265–276. Adam and Tannery, Paris, 1996. reprinted by Vrin.

[29] E. Dinic. Algorithm for solution of a problem of maximum flow in networks with power

estimation. Soviet Mathematics Doklady, 11:1277–1280, 1970.

[30] J. Edmonds. A combinatorial representation for polyhedral surfaces. Notices of the American

Mathematical Society, 7:646, 1960.

[31] J. Edmonds and R. Karp. Theoretical improvements in algorithmic efficiency for network flow

problems. Journal of the ACM, 19(2):248–264, 1972.

[32] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through a network.

IEEE Transactions on Information Theory, 2(4):117–119, 1956.

[33] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of Graph

Algorithms and Applications, 3(3):1–27, 1999.

[34] D. Eppstein, G. Italiano, R. Tamassia, R. Tarjan, J. Westbrook, and M. Yung. Maintenance

of a minimum spanning forest in a dynamic planar graph. In Proceedings of the First Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 1 – 11, 1990.

[35] R. Erickson, C. Monma, and A. Veinott. Send-and-split method for minimum-concave-cost

network flows. Mathematics of Operations Research, 12:634–664, 1987.

[36] K. Eswaran and R. Tarjan. Augmentation problems. SIAM Journal on Computing, 5(4):653–

665, 1976.

[37] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae sci-

entiarum Petropolitanae, 8:128–140, 1741.

[38] L. Euler. Demonstratio nonnullarum insignum propietatum quibus solida hedris planis inclusa

sunt praedita. Novi commentarii academiae scientiarum Petropolitanae, 4:140–160, 1758.

[39] L. Euler. Elementa doctrinae solidorum. Novi commentarii academiae scientiarum Petropoli-

tanae, 4:109–140, 1758.

92

[40] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, near linear

time. In Proceedings of the 42th Annual Symposium on Foundations of Computer Science,

pages 232–241, 2001.

[41] C. Ford and D. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,

8:399–404, 1956.

[42] G. Frederickson. Fast algorithms for shortest paths in planar graphs with applications. SIAM

Journal on Computing, 16:1004–1022, 1987.

[43] G. Frederickson and J. Jájá. Approximation algorithms for several graph augmentation prob-

lems. SIAM Journal on Computing, 10(2):270–283, 1981.

[44] M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM Journal

on Applied Mathematics, 32(4):826–834, 1977.

[45] M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, É. Tardos, and D. Williamson. Improved

approximation algorithms for network design problems. In Proceedings of the 5th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 223–232, 1994.

[46] A. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM,

45(5):783–797, 1998.

[47] A. Goldberg and R. Tarjan. A new approach to the maximum-flow problem. Journal of the

ACM, 35(4):921–940, 1988.

[48] R. Gomory and T. Hu. Multi-terminal network flows. Journal of SIAM, 9(4):551–570, 1961.

[49] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on

Computing, 19(1):143–155, 1990.

[50] T. Harris and F. Ross. Fundamentals of a method for evaluating rail net capacities. Research

Memorandum RM-1573, The RAND Corporation, Santa Monica, California, 1955.

[51] R. Hassin. Maximum flow in (s, t) planar networks. Information Processing Letters, 13:107,

1981.

[52] R. Hassin and D. Johnson. An O(n log2 n) algorithm for maximum flow in undirected planar

networks. SIAM Journal on Computing, 14:612–624, 1985.

[53] L. Heffter. Über das problem der nachbargebiete. Mathematische Annalen, 38:477–508, 1891.

[54] M. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic

time per operation. Journal of the ACM, 46(4):502–516, 1999.

[55] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for

planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.

93

[56] J. Hochstein and K. Weihe. Maximum s-t-flow with k crossings in O(k3n logn) time. In

Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 843–

847, 2007.

[57] S. Hougardy and H. J. Prömel. A 1.598 approximation algorithm for the Steiner problem in

graphs. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 448–453, 1999.

[58] A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM Journal on Computing,

8:135–150, 1979.

[59] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.

Combinatorica, 2001(1):39–60, 21.

[60] D. Johnson. Efficient algorithms for shortest paths in sparse graphs. Journal of the ACM,

24:1–13, 1977.

[61] D. Johnson and S. Venkatesan. Using divide and conquer to find flows in directed planar

networks in O(n3/2 log n) time. In Proceedings of the 20th Annual Allerton Conference on

Communication, Control, and Computing, pages 898–905, 1982.

[62] R. Jothi, B. Raghavachari, and S. Varadarajan. A 5/4-approximation algorithm for minimum

2-edge-connectivity. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 725–734, 2003.

[63] R. Karp. Complexity of Computer Computations, chapter Reducibility Among Combinatorial

Problems (Symposium Proceedings). Plenum Press, 1972.

[64] M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problem.

Journal of Combinatorial Optimization, 1:47–65, 1997.

[65] S. Khuller, J. Naor, and P. Klein. The lattice structure of flow in planar graphs. SIAM Journal

on Discrete Mathematics, 6(3):477–490, 1993.

[66] S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation. Journal of

Algorithms, 14(2):214–225, 1993.

[67] P. Klein. A linear-time approximation scheme for planar weighted TSP. In Proceedings of the

46th Annual Symposium on Foundations of Computer Science, pages 647–647, 2005.

[68] P. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 146–155, 2005.

[69] P. Klein. A subset spanner for planar graphs, with application to subset TSP. In Proceedings

of the 38th Annual ACM Symposium on Theory of Computing, pages 749–756, 2006.

94

[70] P. Klein and R. Ravi. When cycles collapse: A general approximation technique for constraind

two-connectivity problems. In Proceedings of the 3rd International Conference on Integer

Programming and Combinatorial Optimization, pages 39–55, 1993.

[71] E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner tree in graphs

with bounded tree-width. Technical Report CS0632, Technion, Israel Institute of Technology,

1990.

[72] A. Kotzig. Súvislosť a Pravidelná Súvislosť Konečných Grafov. PhD thesis, Vysoká Škola

Ekonomická, Bratislava, 1956.

[73] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica,

15:141–145, 1981.

[74] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae,

15:271–283, 1930.

[75] Y. Kusakari, D. Masubuchi, and T. Nishizeki. Algorithms for finding noncrossing Steiner

forests in planar graphs. In Proceedings of the 10th Annual International Symposium on

Algorithms and Computation, volume 1741 of Lecture Notes in Computer Science, pages 337–

346, 1999.

[76] I. Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge Univer-

sity Press, 1976.

[77] R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied

Mathematics, 36(2):177–189, 1979.

[78] K. Mehlhorn. Approximation algorithm for the Steiner problem in graphs. Information Pro-

cessing Letters, 27(3):125–128, 1988.

[79] G. Miller and J. Naor. Flow in planar graphs with multiple sources and sinks. SIAM Journal

on Computing, 24(5):1002–1017, 1995.

[80] J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-

time approximation scheme for geometric tsp, k-mst, and related problems. SIAM Journal on

Computing, 28(4):1298–1309, 1999.

[81] M. Müller-Hannemann and S.Tazari. A near linear time approximation scheme for Steiner

tree among obstacles in the plane. In Proceedings of the 10th International Workshop on

Algorithms and Data Structures, volume 4619 of Lecture Notes in Computer Science, pages

151–162, 2007.

[82] S. Nakano and T. Uno. Efficient generation of rooted trees. Technical Report NII-2003-005E,

National Institute of Informatics, 2003.

95

[83] G. Pólya. On picture-writing. American Mathematical Monthly, 63:689–697, 1956.

[84] H. Prömel and A. Steger. RNC approximation algorithms for the Steiner problem. In Pro-

ceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 559–570, 1997.

[85] J. Provan. An approximation scheme for finding Steiner trees with obstacles. SIAM Journal

on Computing, 17(920-934):920–934, 1988.

[86] J. Provan. Convexity and the Steiner tree problem. Networks, 18:55–72, 1988.

[87] S. Rao. Communication to P. Klein.

[88] S. Rao and W. Smith. Approximating geometrical graphs via “spanners” and “banyans”. In

Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 540–550,

1998.

[89] R. Ravi. Approximation algorithms for Steiner augmentations for two-connectivity. Technical

Report TR-CS-92-21, Brown University, 1992.

[90] J. Reif. Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM Journal

on Computing, 12:71–81, 1983.

[91] M. Resende and P. Pardalos, editors. Handbook of Optimization in Telecommunications.

Springer, 2006.

[92] H. Ripphausen-Lipa, D. Wagner, and K. Weihe. Efficient algorithms for disjoint paths in

planar graphs. In W. Cook, L. Lovasz, and P. Seymour, editors, Combinatorial Optimization:

Papers from the DIMACS Special Year, volume 20 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, pages 295–354. American Mathematical Society, 1995.

[93] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM

Journal on Discrete Mathematics, 19(1):122–134, 2005.

[94] E. Sandifer. How Euler did it: V, E and F, Part 1. MAA Online, June 2004.

[95] E. Sandifer. How Euler did it: V, E and F, Part 2. MAA Online, July 2004.

[96] A. Schrijver. On the history of the transportation and maximum flow problems. Mathematical

Programming, 91(3):437–445, 2002.

[97] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241,

1994.

[98] Y. Shiloach. A multi-terminal minimum cut algorithm for planar graphs. SIAM Journal on

Computing, 9(2):219–224, 1980.

[99] D. Sleator and R. Tarjan. A data structure for dynamic trees. Journal of Computer and

System Sciences, 26(3):362–391, 1983.

96

[100] D. Sommerville. An introduction to the geometry of n dimensions. London, 1929.

[101] J. Steiner. Gesammelte werke, volume 2. G. Reimer, Berlin, 1882.

[102] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs.

Mathematica Japonicae, 24:571–577, 1980.

[103] R. Tarjan and R. Werneck. Self-adjusting top trees. In Proceedings of the 16th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 813–822, 2005.

[104] S. Tazari and M. Müller-Hannemann. Shortest paths in linear time on minor-closed graph

classes with an application to Steiner tree approximation. To appear., 2007.

[105] M. Thimm. On the approximability of the Steiner tree problem. In Proceedings of the 2th

International Symposium on Mathematical Foundations of Computer Science, volume 2136 of

Lecture Notes in Computer Science, pages 678 – 689, 2001.

[106] E. Torricelli. Opera geometrica. A. Masse e L. de Landis, Florentiae, 1644.

[107] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570–

590, 1937.

[108] K. Weihe. Maximum (s, t)-flows in planar networks in O(|V |log|V |) time. Journal of Computer

and System Sciences, 55(3):454–476, 1997.

[109] H. Whitney. Planar graphs. Fundamenta mathematicae, 21:73–84, 1933.

[110] P. Widmayer. A fast approximation algorithm for Steiner’s problem in graphs. In Graph-

Theoretic Concepts in Computer Science, volume 246 of Lecture Notes in Computer Science,

pages 17–28. Springer Verlag, 1986.

[111] D. Williamson, M. Goemans, M. Mihail, and V. Vazirani. A primal-dual approximation al-

gorithm for generalized Steiner network problems. In Proceedings of the 25th Annual ACM

Symposium on Theory of Computing, pages 708–717, 1993.

[112] Y. Wu, P. Widmayer, and C. Wong. A faster approximation algorithm for the Steiner problem

in graphs. Acta informatica, 23(2):223–229, 1986.

[113] J. Youngs. Minimal imbeddings and the genus of a graph. Journal of Mathematical Mechanic,

12:303–315, 1963.

[114] A. Zelikovsky. Better approximation bounds for the network and Euclidean Steiner tree prob-

lems. Technical Report CS-96-06, University of Virginia, 1994.

[115] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorith-

mica, 9:463–470, 1999.

