
Abstract of “Approximation Schemes for Euclidean Vehicle Routing Problems.” by Aparna Das,

Ph.D., Brown University, May, 2011.

Vehicle routing is a class of optimization problems where the objective is to find low cost delivery

routes from depots to customers using vehicles of limited capacity. Vehicle routing problems gener-

alize the traveling salesman problem and have many real world applications to businesses with high

transportation costs such as waste removal companies, newspaper deliverers, and food and beverage

distributors.

We study two basic vehicle routing problems: unit demand routing and unsplittable demand rout-

ing. In the unit demand problem, items must be delivered from depots to customers using a vehicle

of limited capacity and each customer requires delivery of a single item. The unsplittable demand

problem is a generalization, where customers can have different demands for the number of items,

but each customer’s entire demand must be delivered all together by one route.

Both problems are NP-Hard and do not admit better than constant factor approximation algorithms

in the metric setting. However in many practical settings the input to the problem has Euclidean

structure. We show how to exploit this to design arbitrarily good approximation algorithms. We

design a quasi-polynomial time approximation scheme for the Euclidean unit demand problem in

constant dimensions, and asymptotic polynomial time approximation schemes for the unsplittable

demand problem in one dimension.

Approximation Schemes for Euclidean Vehicle Routing Problems.

by

Aparna Das

B. S., Cornell University, 2001

M. S., University of Wisconsin, 2005

Sc. M., Brown University, 2007

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May, 2011

c© Copyright 2011 by Aparna Das

This dissertation by Aparna Das is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Claire Mathieu, Director

Recommended to the Graduate Council

Date
Philip Klein, Reader

Date
Pascal Van Hentenryck, Reader

Approved by the Graduate Council

Date
Peter Weber

Dean of the Graduate School

iii

Acknowledgements

I owe the deepest gratitude to my advisor Claire Mathieu. Her support and guidance in my research,

my career, and life in general, have been invaluable to me. I thank her for always having my best

interests in mind. Her generosity and positive outlook continue to impress me and I hope to one

day be as good a role model for someone as she is for me.

I thank Philip Klein for serving on my research comps and thesis committees and for his ongoing

interest in my work. I am grateful for his feedback and encouragement, and for always pushing me

to improve.

I thank Pascal Van Hentenryck for serving on my thesis committee, for his advice on new research

topics, and for inspiring me with his wonderful course in optimization.

I am grateful to Lisa Hellerstein for being my very first research advisor and for encouraging me

to do research and apply to graduate school.

I also thank the computer science faculty at Brown, especially Amy Greenwald, David Laidlaw,

Anna Lysyanskaya, John Savage and Eli Upfal for taking an interest in my work and in me over

these past years.

I also thank my collaborators, Matthew Cary, Ioannis Giotis, Anna Karlin, Shay Mozes, and

Daniel Ricketts, for allowing me to have supportive and stimulating research experiences.

I feel very lucky to have met my wonderful office mates and friends in the department. I like to

thank them for listening to my practice talks, providing me with encouragement and for allowing

me to have a life at Brown outside of research.

Lastly, I would like to thank my family for their unconditional support. I am grateful to my

husband for his patience, honesty and for believing in me. I am forever indebted to my parents for

their dedication and for being our eternal advocates. And finally, to my sister for her short and

insightful pieces of advice and for always leading by example.

iv

Contents

1 Introduction 1

1.1 Problem Definitions . 4

1.2 Overview of Results . 5

1.3 Techniques . 7

1.3.1 Algorithm Techniques . 7

1.3.2 Bounds for Analysis . 7

2 Traveling Salesman Problem: Review of Arora’s Algorithm [2] 10

2.1 Introduction . 10

2.2 Algorithm and Proof of Main Theorem . 11

2.2.1 Preprocessing . 12

2.2.2 The Structure Theorem . 13

2.2.3 Proof of the Main Theorem . 13

2.3 The Dynamic Program . 14

2.4 Computing a Structured Tour . 15

2.4.1 Patching . 15

2.4.2 Portal Respecting . 18

2.5 Proof of the Structure Theorem . 19

2.5.1 A First Approach . 19

2.5.2 Properties of New Crossings . 21

2.5.3 Correctness of Algorithm 2 . 23

2.6 Extension to Higher Dimensions . 24

3 Vehicle Routing: Unit Demands and Single Depot 25

3.1 Introduction . 25

3.2 Algorithm and Proof of Main Theorem . 27

3.2.1 The Structure Theorem . 27

3.2.2 Assigning Types . 30

3.2.3 A Constant Factor Approximation [29] . 30

3.2.4 Proof of Main Theorem 3.1.1 . 32

v

3.3 Proof of the Structure Theorem 3.2.6 . 32

3.3.1 Proof of Lemma 3.3.1 . 33

3.3.2 Proof of Lemma 3.3.3 . 36

3.4 The Dynamic Program . 37

3.5 Proof of Theorem 3.2.10 . 40

3.5.1 Proof of Lemma 3.5.1 . 40

3.5.2 Proof of Lemma 3.5.2 . 41

3.6 Derandomization . 46

3.7 Extension to Higher Dimensions . 46

4 Extension to Multiple Depots 47

4.1 Introduction . 47

4.2 Preliminaries . 48

4.3 Algorithm and Proof of Main Theorem . 49

4.3.1 Partitioning into Sub-Instances . 50

4.3.2 Preprocessing . 51

4.3.3 Extending the Structure Corollary . 52

4.3.4 A Constant Factor Approximation for Multiple Depots 52

4.3.5 Proof of Main Theorem 4.1.1 . 53

4.4 Extending the Dynamic Program . 54

4.5 Proof of Theorem 4.3.5 . 54

4.5.1 Proof of Lemma 4.5.2 . 54

5 Vehicle Routing: Unsplittable Demands, Single Depot in One Dimension 56

5.1 Introduction . 56

5.2 Preliminaries . 59

5.3 Algorithm and Proof of Main Theorem . 60

5.3.1 Rounding . 60

5.3.2 Partitioning into Regions . 61

5.3.3 Solving a Region . 61

5.3.4 Proof of Main Theorem 5.1.1 . 64

5.4 Proof of Lemma 5.3.1 . 65

5.5 Proof of Lemma 5.3.3 . 67

5.6 Proof of Lemma 5.3.7 . 68

5.7 Proof of Lemma 5.3.8 . 69

6 Extension to Constant Number of Depots 71

6.1 Introduction . 71

6.2 Algorithm and Proof of Theorem 6.1.1 . 72

6.2.1 The Unsplit Problem Between Two Depots. 73

vi

6.2.2 Proof of Main Theorem 6.1.1 . 74

6.3 Algorithm for Unsplit Between Depots and Proof of Theorem 6.3.1 75

6.3.1 Rounding . 75

6.3.2 Partitioning into Regions . 77

6.3.3 Solving the Middle Region . 77

6.3.4 Proof of Theorem 6.3.1 . 79

6.4 Proof of Lemma 6.3.2 . 81

6.5 Proof of Lemma 6.3.4 . 82

6.6 Proof of Lemma 6.3.6 . 83

6.7 Proof of Lemma 6.3.7 . 84

7 Many Customers and Restricted Capacity 86

7.1 Introduction . 86

7.2 Algorithm and Proof of Main Theorem . 87

7.2.1 Partitioning into close and far Instances . 88

7.2.2 Solving the far instance . 89

7.2.3 Proof of Main Theorem 7.1.1 . 91

7.3 Proof of Lemma 7.2.2 . 92

7.4 Proof of Lemma 7.2.4 . 93

8 Conclusion and Open Questions 95

Bibliography 98

vii

Chapter 1

Introduction

To highlight the impact of truck distribution and delivery on our daily lives, Joseph Malkevitch,

Professor of Mathematics and Computing, writes

“ Love may make the world go round but what makes our daily lives so much easier

are trucks. Trucks deliver the food that we eat to the supermarkets ... they deliver the

gasoline to the stations where we refill the gas tanks ... and they are responsible for a

huge part of the movement of supplies...” [39].

And what allows truck delivery to work so well? Joseph Malkevitch reveals that “what helps make

it possible for trucks to carry out all the deliveries they do, is mathematics”.

The truck dispatching problem was first introduced and mathematically analyzed in 1959 by

Dantzig and Ramser [19] where the goal was to find low cost delivery routes from depots to customers

using a truck of limited capacity. Surprisingly, the authors admitted that “no practical applications

have been made as yet” for the problem, but went on to describe a linear programming algorithm for it

whose “calculations may be readily performed by hand or automatic digital computing machine” [19].

With the passing of 50 years and numerous practical applications later, the truck dispatching

problem is recognized as the first mathematically formulated vehicle routing problem, which now

describes a large class of optimization problems with a diverse set of constraints. All vehicle routing

problems (VRPs) involve finding routes using a vehicle of limited capacity and typically the objective

is to minimize the total cost of the routes. VRPs have been widely studied by researchers in computer

science and in operations research. Several popular approximation algorithms exist for VRPs as well

as general-purpose heuristics such as local search, tabu search, genetic algorithms, neural networks

and ant colony optimization schemes. See [37, 50] for details. Several books are also devoted to

VRPs e.g. [50] and [28], among others.

The real world applications of vehicle routing problems occur in businesses involved in transporta-

tion, distribution and delivery that have high transportation costs. This includes companies such as

package and newspaper delivery companies, and food and beverage distributors e.g. companies like

UPS, FedEx and Peapod. Towns and cities also solve VPRs for designing sanitation pickup routes

1

2

and school bus routes. Toth and Vigo report on several cases where business saved between 5 and

20% of total costs utilizing computerized models to solve their vehicle routing problems [50]. The

February 2010 issue of OR/MS Today magazine surveyed sixteen commercially available software

for VRPs from vendors such as IBM, Jeppesen (a Boeing Company), UPS Logistics Technologies

and Route Solutions, and their accompanying article stated that “Routing software is being used in

an increasingly diverse set of industries.” [44].

Problems studied. In this work we focus on two basic vehicle routing problems: unit demand

routing (UnitDem), and unsplittable demand routing (Unsplit). In both problems items are located

at some depot (or depots) and must be delivered to customers using vehicles that can carry a limited

number of items, for example k items, at any time. The goal is to find the minimum cost set of

distribution routes for the vehicle to make all the deliveries, such that each route starts and ends at

some depot. In the UnitDem problem , all items are identical and each customer requires delivery of

a single item. In the Unsplit problem customers can have different demands for the number of items,

but each customer must receive their entire demand at once, in other words splitting a customer’s

delivery among multiple delivery routes is not allowed.

The UnitDem problem applies directly in settings where all customers have identical demands, for

example delivery of the daily newspaper. It also models the setting where customers have different

demands but their demands are allowed to be split among multiple delivery routes, for example

gas stations receiving their daily shipment of gasoline in multiple deliveries throughout the day. If

demands are splittable, a customer with demand w is modeled by w customers with unit demand1.

In contrast, the Unsplit problem models scenarios where each customer’s entire demand must

arrive in one delivery. For example residential customers probably prefer to receive their entire

grocery order, or their entire take out order in one delivery. The unsplittable constraint intro-

duces bin-packing features into the routing problem and thus requires more sophisticated solution

techniques than the UnitDem problem.

Having multiple depots models delivery companies with several branches for example a grocery

chain with multiple locations, all containing products for delivery. The multiple depot setting also

has applications to the design of telecommunication networks where user nodes must be connected

to one of many possible hubs using links with limited capacities [38].

Hardness of VRPs. While VRPs have abundant applications, unfortunately almost all of them

are computationally hard i.e. NP-Hard [30], thus it is unlikely that we can find algorithms to solve

these problems optimally in reasonable time. The hardness of VRPs stem from the hardness of

the traveling salesman problem (TSP) where the goal is to find the minimum cost delivery route

with a vehicle of infinite capacity. Almost all VRPs are at least as hard as the TSP. Even stronger

hardness results exist for VRPs with the unsplittable constraint stemming from the hardness of the

bin packing problem.
1This reduction works in polynomial time only if the maximum customer demand is poly(n).

3

One way researchers have tried to tackle VRPs is via approximation algorithms, which do not

generally find the optimal solution but are guaranteed to find a solution which is close to optimal.

Hardness results from general (non-metric) TSP show that it is NP-Hard to approximate the general

UnitDem and Unsplit problems to any constant factor [49]. In the metric setting (i.e assuming

triangle inequality) all three problems admit constant factor approximations. The constant factor

approximations for UnitDem and Unsplit are based on an algorithm by Haimovich and Rinnooy

Kan from 1985 [29], which partitions a tour of all the customers into smaller parts such the total

number of items demanded in each part is at most the vehicle capacity.

For NP-Hard problems, the best approximation guarantees are provided by approximation schemes.

These allow the optimal solution to be approximated with arbitary precision by spending more com-

putation time. Unfortunately hardness results from TSP imply that metric UnitDem and Unsplit,

as well as many other VRPs, do not admit polynomial time approximation schemes unless P=NP,

i.e they are APX-Hard. Thus constant factor approximations are most likely the best possible in

the metric setting of these problems.

One setting where it may be possible to do better for the UnitDem problem is when the input is

modelled as having additional geometric structure than just metric structure. The hardness results

above do not necessarily apply in geometric settings and we may be able to exploit the additional

structure to design polynomial time approximation schemes. The TSP is a prominent example where

better approximation algorithms are possible under geometic settings. The metric setting of TSP

admits no approximation scheme (assuming P6=NP), but approximation schemes have been designed

for the Euclidean setting [2, 40] and the planar graph setting [34].

Hardness results from bin packing imply that the Unsplit problem does not admit polynomial

time approximation scheme unless P=NP, even in one dimension [27]. However this does not rule

out an asymptotic approximation scheme, which performs like a polynomial time approximation

scheme when the cost of optimal solution is large. Asymptotic approximation schemes are known

for the bin packing problem.

Thesis statement. In this thesis, we study the Euclidean setting of the UnitDem problem in

small dimension and the 1-dimensional setting of the Unsplit problem. We design approximation

algorithms with improved guarantees over the metric case for both of these settings leading to the

thesis statement:

Arbitrarily good approximation guarantees are possible by exploiting Euclidean properties

in vehicle routing problems.

In the Euclidean setting all the customers and the depots lie in Rd for small dimension d and

distances are given by the `2 norm. In the 1-dimensional setting they lie on the line and distances

are given by the `1 norm. The Euclidean setting is often a good model for practical problems. In

fact many of the common test beds for VRPs are 2-dimensional Euclidean instances. For example all

the instances listed on researchandpractice.com and more than half of the instances on webvrp.com

are 2-dimensional and Euclidean [53, 54]. While the 1-dimensional setting of the Unsplit problem

4

has a limited number of applications in routing and distribution it has important applications in job

scheduling. See Chapter 5 for more details.

The typical criticism about approximation schemes is that they are often elaborate algorithms

with big running times and thus they are often regarded only as theoretical tools that are useful to

pinning down the complexity of a problem. This is true in the case of our approximation scheme for

Euclidean UnitDem (Chapters 3, and 4) which runs in quasipolynomial time. While our algorithm

provides strong evidence that a polynomial time approximation scheme should also be possible, it is

still an open question, and remains an active line of research. If a polynomial time approximation

scheme can be designed it will show that the UnitDem problem is computationally equivalent to TSP,

i.e. the capacity of the vehicle is irrelevant in terms of computational hardness. Our approximation

schemes for the Unsplit problem are reasonably efficient and simple. Thus we believe these can be

used in practice.

Designing theoretically justified algorithms are also useful for designing new algorithmic tech-

niques and validating existing heuristics. In the process of designing approximation schemes we are

forced to identify parts of the problem where we can afford to a compute a coarse solution versus

parts where the solution must be computed more precisely. These types of insights are often useful

to designing heuristics that can be used in real software. For example our algorithm for UnitDem

suggest that a coarse solution can be computed in regions containing many customers which require

service from large number of routes. Our algorithm for Unsplit suggests that a coarse solution may

be computed in regions containing many large demands.

Designing approximation schemes for VRP problems also requires developing techniques to han-

dle the global vehicle capacity constraint. In contrast TSP has no such global containt. Thus in

the case of TSP we can afford to spend most of the computational effort on finding very good local

solutions which can be pasted together, without the risk of violating any global constraint. Things

are not as simple for the VRP where it is sometimes better to choose a suboptimal local solution

due to the capacity constraint. Developing techniques for handling global constraints such as the

vehicle capacity may be useful to solving other graph problems.

1.1 Problem Definitions

We formally define the problems studied in this thesis and state definitions that will be used

throughtout.

Euclidean traveling salesman problem (TSP). Given a set of customers C represented as n points

in Rd, where d is a small constant independent of n, find the shortest length tour that visits all

customers in C.

Euclidean unit demand vehicle routing problem (UnitDem). Given a positive integer k denoting the

vehicle capacity, a set C of n customers and a set D of depots, such that C and D are points in

Rd where d is a small constant independent of n, find a collection of tours of minimum total length

5

covering all customers in C, such that each tour in the collection starts and ends at a depot and

covers at most k customers.

D contains only one depot in the single depot setting and multiple depots in the multiple depot

setting.

One dimensional unsplittable demand vehicle routing problem (Unsplit). Given a positive integer k

denoting the vehicle capacity, a set C = {(pi, wi)}i≤n of n customers each with a position pi on

the line and a demand wi ≤ k, and a set of m depots D each represented also by a position on the

line, find a collection of tours of minimum total length covering the demands of all customers in C,

such that each tour starts and ends at some depot, delivers at most k demand and such that no

customer’s demand is split up among multiple tours.

D contains only one depot in the single depot setting and multiple depots in the multiple depot

setting. In the setting with restricted capacity, k ≤ n.

Geometric definitions. In the metric setting the distance between all nodes (i.e customers and

depots) satisfy the triangle inequality. In the Euclidean setting all nodes lie in Rd for some constant

d and distances are given by the `2 norm. In the 1-dimensional setting all nodes lie on a line and

distances are given by the `1 norm.

1.2 Overview of Results

We define approximation algorithms and approximation schemes and give a high level overview of

our results.

Approximation schemes. Consider any minimization problem and let OPT denote its optimal

cost. An algorithm A for the problem is a c-approximation if it outputs a solution with cost A

such that A ≤ c · OPT. Algorithm A is an approximation scheme if it is a c-approximation for

all error parameters c > 0. Approximation schemes are particularly designed for the setting where

c ∈ (0, 1), so c is typically denoted by ε to emphasize that it is small. Thus for all error parameters

ε ∈ (0, 1) an approximation scheme’s output has cost at most (1 + ε)OPT. In fact, A is considered

an approximation scheme as long as its output has cost (1 + O(ε))OPT, as in that case, running A
with error parameter ε/O(1) outputs a solution of cost (1 + ε)OPT as desired.

A polynomial time approximation scheme (PTAS) is an approximation scheme whose running

time is polynomial in the size of the instance but can depend arbitrarily on ε, and usually grows

exponentially in 1/ε. A fully polynomial time approximation scheme (FPTAS) has a running time

that is polynomial in the size of the input and in 1/ε. A quasi polynomial time approximation

scheme (QPTAS) has running time that is quasipolynomial in the size of the problem instance; if

the instance is of size n, it runs in time nlogO(1) n.

An asymptotic approximation scheme outputs, for every ε > 0, a solution of cost at most (1 +

ε)OPT+α where α is a constant independent of the size of the instance. It is “asymptotic” as when

6

UnitDem VRP Unsplit VRP
Single depot Multiple depots Single depot Constant depots

Approx.
ratios

Metric: 2.5 [29] Metric: 5.5 [38] Metric: 3.5 [30] Metric: 7 [38, 30]

Euclidean: 2 + ε
[29, 2]

Euclidean: 4 + 2ε
[38, 2]

1-dim: 1.75 [55] 1-dim: 6 [38, 30]

Approx.
schemes

Metric: APX [7] Metric: APX [7] Metric: APX [7] Metric: APX [7]

Euclidean: PTAS Euclidean: PTAS 1-dim: APTAS 1-dim: APTAS
for k = Ω(n) [2, 7], for k = Ω(n) [2], Chap. 5 Chap. 6
k ≤ 2logf(ε) n [1] k,m ≤ log n

log log n [14]

QPTAS all k QPTAS all k 1-dim: PTAS for
Chap. 3 Chap. 4 k = poly(n)

Chap. 7

Table 1.1: Status of UnitDem and Unsplit VRP problems.

OPT is large i.e OPT > α/ε, the cost of the output is at most (1 + ε)OPT + εOPT = (1 + 2ε)OPT.

Thus using the asymptotic approximation scheme with error parameter ε/2 would return a solution

of cost at most (1 + ε)OPT as desired. Asymptotic approximation schemes are also described as

fully polynomial time or polynomial time based on their running time’s dependence on ε as described

above. These are abbreviated as AFPTAS and APTAS respectively.

Approximation schemes are desirable as they can be tuned to approximate the problem within

any required degree. They allow a tradeoff between running time and precision; by spending more

computation time we get solutions which are closer to optimal. For example setting ε = .05 an

approximation scheme outputs solutions that are within 5% of the optimal.

Results and Organization. In this work, we design approximation schemes for the Euclidean

UnitDem problem in small dimension and the 1-dimensional Unsplit problem. We study both the

single depot and multiple depot settings. In summary our results include:

• A quasi polynomial time approximation scheme for Euclidean UnitDem VRP with single depot

(Chapter 3). Our algorithm extends to the setting with multiple depots (Chapter 4).

• An asymptotic polynomial time approximation scheme (for a suitable definition of asymptotic)

for 1-dimensional Unsplit VRP with a single depot (Chapter 5). Our algorithm extends when

there are constant number of depots (Chapter 6).

• A polynomial time approximation scheme for 1-dimensional Unsplit VRP with restricted ca-

pacity and a single depot. (Chapter 7).

An understanding of our algorithm for UnitDem VRP requires an understanding of Arora’s Euclidean

TSP algorithm which we review in Chapter 2. Table 1.1 summarizes the existing algorithms for the

UnitDem and Unsplit problems.

7

1.3 Techniques

1.3.1 Algorithm Techniques

We highlight some of the techniques used in our algorithms:

• Simplifying the solution: A common theme in all our algorithm is to first define some sim-

plifying structure for solutions and then restrict ourselves to only search for these structured

solutions. The simplicity of the structure implies that there cannot be too many different

structured solutions and thus enumeration or dynamic programming can be used to find the

structured solution with minimum cost. For example in the UnitDem problem a structured

solution is one that uses portals, has few box crossings, and covers a predefined threshold

number of customers. In the Unsplit problem it is a solution that covers customers from a

small region. The main challenge is to identity simplifying structure that still allows for near

optimal solutions.

• Rounding: We use rounding to simplify the input and also during computation to keep track of

fewer possibilities. At times we round values to predetermined thresholds that are independent

of the input. For example, in the UnitDem problem tour capacities are rounded to powers of

(1 + ε) (Chapters 3 and 4). We also round values to flexible thresholds extending a technique

due to Fernandez de la Vega and Lueker [26]. In the Unsplit problem, we round customer

demands to a constant number of thresholds, where the thresholds vary based on the demands

that appear in the input (Chapters 5, 6, 7).

• Arora’s Techniques: We make extensive use of the techniques from Arora’s Euclidean TSP

algorithm including the randomized dissection, the placement of portals and Arora’s Structure

Theorem. We use these for the UnitDem algorithms (Chapters 3 and 4).

1.3.2 Bounds for Analysis

To analyze our algorithms we like to compare the cost of its output with the cost of OPT. However

as OPT is unknown instead we compare to a lower bound of OPT.

VRP Lower bounds. Some version of the following two lower bounds for UnitDem and Unsplit

was proved by Haimovich and Rinnooy Kan [29] and by Haimovich, Rinnooy Kan and Stougie [30].

Definition 1.3.1. (Rad) Let I be an instance of the UnitDem or Unsplit problem with customers

C and depots D and vehicle capacity k. For each customer i ∈ C let wi denote the demand of i ,

where for UnitDem wi = 1, ∀i. Let ri = mind∈D dist(i, d) denote the radius of i, where dist(i, d) is

the distance of customer i to depot d. The Rad of I is

Rad(I) =
2
k

∑
i∈C

wi · ri

8

Lemma 1.3.2. (Rad Lower Bound.) Let I be an instance of the UnitDem or Unsplit problem, and

let OPT denote the cost of the optimal solution of I. We have that,

Rad(I) ≤ OPT.

Proof. Let S be a solution of I, s be a tour of S and i ∈ s denote that customer i is covered by tour

s. Let d be the originating depot of tour s. The cost of s is at least the distance to the farthest

customer from d covered by s, i.e cost(s) ≥ 2 maxi∈s dist(i, d). As dist(i, d) is at least ri, we have:

cost(S) ≥
∑
s∈S

2 ·max
i∈s

ri

=
∑
s∈S

2 ·max
i∈s

ri ·
∑
i∈s

wi∑
j∈s wj

≥
∑
s∈S

∑
i∈s

2 ·max
i∈s

ri ·
wi

k

≥
∑
s∈S

∑
i∈s

2 · ri ·
wi

k
=

2
k

∑
i∈I

ri · wi

The second line holds as
P

i∈s wi

(
P

j∈s wj)
= 1 and the third line as s covers total demand ≤ k.

Lemma 1.3.3. (TSP Lower bound) Let I be an instance of the single depot UnitDem or Unsplit

problem with customers C and depot d, and let OPT denote the optimal solution of I. The TSP of

I i.e. the shortest length tour that visits all the customers and depot d, is such that TSP ≤ OPT.

Proof. Let S be a solution of I. Thus S visits all customers and the depot and therefore cost(S) ≥
TSP. S can be modified to visit each customer and the depot at most once by taking detours. The

cost of the modified solution is still at most the cost S by the triangle inequality.

The TSP is a lower bound in the single depot setting, where the solution is connected. To see

why it may not be a lower bound in the multiple depot setting, consider an instance with two depots

that are far from each other, but each is surrounded by a cloud of near by customers. A TSP of all

the customers must traverse the distance between the depots, where as OPT may cost much less by

consisting of tours that stay near one of two depots.

TSP bounds. The minimum spanning tree (MST) is a simple lower bound for the TSP.

Definition 1.3.4. (Minimum spanning tree (MST)) Let G = (V,E) be a connected graph with

vertices V and edges E s.t each edge e = (u, v) ∈ E has cost ce equal to the distance between vertices

u and v. A minimum spanning tree of G is a non-cyclic subgraph T ⊂ E (i.e a tree) that connects

all the vertices such that the sum of the cost of edges in T is minimum.

Lemma 1.3.5. (MST lower bound.) For a connected graph G, let TSP denote a tour of the vertices

of G and MST denote the minimum spanning tree of G. We have that MST ≤ TSP.

Proof. MST is a lower bound for TSP as deleting any edge in the TSP results in a tree that connects

all vertices (i.e a spanning tree).

9

In our VRP algorithms we will often need to compute a TSP of a subset of the points, for which

we will use a simple 2-approximation algorithm of TSP which is based on the MST. When distances

satisfy the triangle inequality the output of the 2-approximation has cost at most 2MST, as shown

by the following Lemma which appeared in [48].

Lemma 1.3.6. (MST upper bound.) Let G, TSP and MST be defined as in the above Lemma, and

let the cost of edges in G satisfy the triangle inequality. We have that TSP ≤ 2MST.

Proof. The following procedure starts from the MST and builds a TSP of cost at most 2MST:

1. Double each edge of the MST to obtain a Eulerian graph G′ and find an Eulerian tour of G′.

2. Build a TSP by visiting the vertices in the order they appear in the Eulerian tour of G′

shortcutting when necessary.

The Eulerian tour of G′ has cost at most 2MST, and due to the triangle inequality the shortcutting

steps do not add additional cost Thus TSP ≤ 2MST.

Chapter 2

Traveling Salesman Problem:

Review of Arora’s Algorithm [2]

2.1 Introduction

This chapter presents a review of Arora’s PTAS for Euclidean TSP [2] which we will extend in

Chapter 3 to design the QPTAS for the UnitDem problem.

Recall the problem: given a set of customers C represented as n points in Rd, where d is a small

constant independent of n, find the shortest length tour that visits all customers in C.

The traveling salesman problem is a fundamental and classical optimization problem. It is be-

lieved that some form of the problem was studied by mathematicians in the 1800s and that the

familiar version was first studied around the 1930s. TSP is also a computationally difficult problem.

Metric TSP is NP-Hard and does not admit a PTAS unless P=NP [5]. The best approxima-

tion known in the metric setting is the 3/2-approximation of Christofides which was discovered in

1977 [15]. Euclidean TSP was also shown to be NP-Hard in 1977 by Papadimitriou [42] and many

researchers believed that the Euclidean problem also did not admit a PTAS. Thus it was a surpris-

ing discovery when Arora and independently Mitchell gave a PTAS for Euclidean TSP. Mitchell’s

algorithm works on the plane and Arora’s algorithm works for constant number of dimensions [2, 40].

The techniques designed by Arora and Mitchell have since been applied to design algorithms

for several other NP-Hard geometric problems, including approximation algorithms for TSP with

neighborhoods [22], PTASs for Steiner Forest [12], k-Median [35], and k-MST [2, 40] and QPTASs

for Minimum Weight Triangulation [46], Minimum Latency problems [4], and UnitDem of Chapter 3,

among others. See [3] and [40] for surveys. The techniques of Arora and Mitchell had such great

impact that both were awarded the 2010 Gödel Prize for their work on the Euclidean TSP problem.

As the Gödel announcement stated “The discovery of a PTAS for ETSP [Euclidean TSP], with its

long trail of consequences, counts as a crowning achievement of geometric optimization”.

In this chapter we present Arora’s algorithm focusing mainly on the setting where the customers

10

11

are located in R2. In Section 2.6 we describe his extension to Rd for constant d. The following

theorem is proved,

Theorem 2.1.1. (Main Theorem) [2] Algorithm 1 is a randomized polynomial time approximation

scheme for the two dimensional Euclidean traveling salesman problem. Given ε > 0, it outputs a

solution with expected length (1 + O(ε))OPT, in time n logO(1/ε) n.

Rao and Smith show how to improve Arora’s running time to O(n log n+n2poly(1/ε)). They build

a spanner graph of the input point where all distances are within (1 + ε) factor of the Euclidean

distances. Thus the optimal TSP on the spanner is a near optimal solution for the original input.

Arora’s techniques are employed to simplify the structure of the spanner which is then exploited to

get a dynamic program that computes the TSP in faster time. See [3, 45] for more details.

Overview of Arora’s approach. Arora’s approximation scheme starts by considering the bound-

ing box containing all the input points. A randomized dissection procedure is used to partition the

bounding box recursively into four smaller boxes using one horizontal dissection line and one vertical

dissection line, until the smallest boxes are of appropriate size. A small number of predetermined

sites called portals are placed along the boundaries of all boxes. The algorithm concentrates on

finding a TSP solution that is portal respecting and light, that is, a tour which enters and exits

boxes only through portals and crosses each box at most a constant (i.e O(1/ε)) number of times.

A dynamic program is used to solve a subproblem in each smaller box and connect subproblems in

adjacent boxes together to build the final solution.

Arora’s structure theorem shows the existence of a near optimal TSP solution which has the

portal respecting and light structure.

There are only a logarithmic number of portals on the boundary of each box and at most O(n)

non empty boxes in the dissection. Thus the dynamic program can “guess” the constant number of

portals the tour will use in each box leading to the running time of Arora’s algorithm.

2.2 Algorithm and Proof of Main Theorem

We review Arora’s PTAS for 2-dimensional Euclidean TSP in Algorithm 1 and prove his main

Theorem 2.1.1.

Algorithm 1 Arora’s PTAS for 2-dimensional Euclidean TSP
Input: n points ∈ R2

1: Perturb instance, perform random dissection and place portals as described in Section 2.2.1.
2: Find the the minimum length portal respecting light tour as defined in Definition 2.2.1 using

the DP of Section 2.3.
Output: The tour found by the DP.

12

Figure 2.1: On the left a dissection showing the lines and boxes up to level 2. On the right portals
on dissection lines and a portal respecting light tour.

2.2.1 Preprocessing

Preprocessing consists of perturbing the input, building a randomized dissection of the input space

and placing portals on the dissection lines the tour will use to enter and leave the boxes of the

dissection.

Perturbation. Define the bounding box as the smallest box whose side length L is a power of 2 that

contains all input points and the depot. Let d denote the maximum distance between any two input

points. Place a grid of granularity dε
n inside the bounding box. Move every input point to the center

of the grid box it lies in. Several points may map to the same grid box center, treat them as a single

point 1. Without loss of generality we can focus on solving the problem for the perturbed instance.

A solution for the perturbed instance can be extended into a solution for the original instance by

taking detours from the grid centers to the original locations of the points. The total cost of these

detours is at most n ·
√

2dε
n =

√
2dε and OPT > 2d, as it must visit the two farthest points. Thus

the total cost of detours is at most εOPT which is within the required ε error parameter.

Finally scale distances by 4n
εd so that all coordinates become integral and the minimum distance

between any two grid centers that contain points is least 4. After scaling the maximum distance

between points and hence the side length of the bounding box is L = O(n). Scaling does not change

the structure of the optimal solution and we can always re-scale to get the cost of the original

instance.

Randomized Dissection. Obtain a dissection by recursively partitioning the bounding box into

4 smaller boxes of equal size, using one horizontal and one vertical dissection line, until the smallest

boxes are of size 1 × 1. The dissection can be viewed as a quad-tree with the bounding box as its

root and the smallest boxes as the leaves. The bounding box has level 0, the 4 boxes created by

the first dissection have level 1, the 16 boxes of the second dissection have level 2 and so on. Since

L = O(n) the level of the smallest boxes will be `max = O(log L) = O(log n). See Figure 2.1. The

1In the UnitDem problem we will treat these as multiple points which are located in the same location.

13

horizontal and vertical dissection lines are also assigned levels. The boundary of the bounding box

has level 0, the 2i−1 horizontal and 2i−1 vertical lines that form level i boxes by partitioning the

level i− 1 boxes are each assigned level i.

A randomized dissection of the bounding box is obtained by randomly choosing integers a, b ∈
[0, L), and shifting the x coordinates of all horizontal dissection lines by a and all vertical dissection

lines by b and reducing modulo L. For example the level 1 horizontal line moves from L/2 to a+L/2

mod L and the level 1 vertical line moves to b + L/2 mod L. The dissection is “wrapped around”

and wrapped around boxes are treated as one region. The crucial property is that the probability

that a line l becomes a level ` dissection line in the randomized dissection is

Pr(level(l) = `) =
2`

L
(2.1)

Portals. Place portals along the dissection lines as follows. Let m = O(log L/ε) and a power of 2.

Place 2`m portals equidistant apart on each level ` dissection line for all ` ≤ `max. Since a level `

line forms the boundary of 2` level ` boxes there will be at most a 4m portals along the boundary

of any dissection box b. As m and L are powers of 2, portals at lower level boxes will also be portals

in higher level boxes. We will compute a tour that always enters and exits boxes at portals.

2.2.2 The Structure Theorem

Arora’s structure theorem shows the existence of a near optimal TSP solution that is portal respect-

ing and light as defined below. See Figure 2.1.

Definition 2.2.1. (Portal respecting and light) Let π be a tour and D a random dissection of the

input. A tour crossing is an edge of π that crosses a through a dissection line l of D. A tour is portal

respecting if all crossings occur at portals. A tour is light with respect to D if for all dissection boxes

b, it crosses each side of b at most r = O(1/ε) times.

Theorem 2.2.2. [2](Arora’s structure theorem) For any instance I let π denote the optimal TSP

solution of length OPT and let D be a randomized dissection of I. Given π, Algorithm 2 outputs a

portal respecting light tour with respect to D, of expected length (1 + O(ε))OPT.

The proof of Arora’s structure theorem is given in section 2.5.

2.2.3 Proof of the Main Theorem

Arora’s Structure Theorem 2.2.2 implies the existence of a portal respecting and light solution with

expected length (1 + O(ε))OPT. The DP of Section 2.3 computes the portal respecting and light

tour of minimum length, thus the DP solution has length at most (1 + O(ε))OPT. The DP runs in

time n · logO(1/ε) n.

14

2.3 The Dynamic Program

The DP Table. A configuration C of a dissection box b describes the tour segments that cross

into b by a list of O(r) portal pairs where each portal pair (p, q) indicates that a segment enters b

at portal p and exits at portal q. As the tour is light there are at most r segments that cross into b.

The DP table has an entry for each dissection box b and each configuration C of b. Table entry

Lb[C] stores the minimum cost of placing tour segments in b such that they are compatible with

C and cover all points inside b (where cost refers to length of the segments). The DP returns the

minimum cost table entry of the root level box.

Computing the table entries. The table entries are computed in bottom-up order. The base

case is to compute Lb[C] for a leaf box b, As all points at are located in the center of a left box,

Lb(C) can be computed by trying the at most r possible ways to place the center into the O(r)

segments described by C.

Inductively, let b be a level ` box and let b1, b2, b3, b4 be the children of b at level ` + 1. As the

tour is portal respecting and light, the boundaries of b1, b2, b3, b4 inside b, are crossed at most 4r

times by the tour and always at portals.

Let Λ be a list of at most 4r portal pairs where each pair represents a segment of b1, b2, b3, b4

and such that for each pair (p, p′), portals p, p′ are from the boundaries of b1, b2, b3, b4 on the

inside of b. An interface vector P describes how to partition the portal pairs of list Λ among the

segments of configuration C. Fix a list Λ and suppose P = i1 ≥ i2 . . . ≥ ic and configuration

C = (p1, q1), (p2, q2), . . . , (pc, qc). This represents that the first segment of C enters b using portal

p1, uses the segments of b1, b2, b3, b4 represented by portal pairs 1 through ii − 1 in Λ, and exists b

using portal q1. The second segment of C enters b at p2 uses the segments of b1, b2, b3, b4 represented

by portal pairs i1 through i2 − 1, in Λ and exits b through q2, and so on.

Let C0 be a configuration for box b. The calculation of Lb(C0) is done in a brute force manner by

iterating through all possible combinations of Λ,P and configurations of b’s children, C1, C2, C3, C4.

A combination C0,Λ,P, C1, C2, C3, C4 is consistent if gluing C1, C2, C3, C4 according to Λ and P
yields configuration C0. When b is the bounding box, only C0 equal to the empty configuration

is feasible as the solution must be contained inside the bounding box. Thus the segments inside

the children of the bounding box must be concatenated together into one tour. In this case the

order of the segments in Λ also describes how they should be concatenated together. Thus for a

Λ = (p1, q
′
1), . . . , (pl, ql) to be feasible in the bounding box it must describe a tour by having p1 = ql.

The cost of configurations {Ci}i≤4 is stored in the lookup table at Lbi
(Ci), so the cost of

(C1, C2, C3, C4,Λ,P) is the sum of the costs of Lbi(Ci) for each child box i ≤ 4. Entry Lb(C0)

is the cost of the tuple (C1, C2, C3, C4,Λ,P) which is consistent with C0 and has minimum cost.

Running time of dynamic program. A configuration is a list of O(r) = O(1/ε) portal pairs.

As each box has O(m) = O(log L/ε) portals there are O(m2) = O((log L/ε)2) possible portals pairs

and each box b has O((log L/ε)O(1/ε)) possible configurations. As there are O(log L) levels and O(n)

non-empty boxes, the DP table has overall size n·(log L/ε)O(1/ε) which is n·logO(1/ε) n, as L = O(n).

15

The boundaries of child boxes b1, b2, b3, b4 have a total of O(log L/ε) portals. By similar reasoning

as above there are logO(1/ε) n possible choices of Λ. P is a list of O(r) integers that are increasing

and all between 0 and O(r). For a fixed Λ there are rO(r) = (1/ε)O(1/ε) ways to choose P, thus there

are logO(1/ε) n choices of Λ,P.

Checking consistency for a particular choice of Λ,P and configurations {Ci}i≤4 can be done in

polynomial time in the size of these descriptions. To compute the lookup table entry at Lb[C0] by

running through all combinations, takes time polynomial in n logO(1/ε) n.

2.4 Computing a Structured Tour

Arora’s structure theorem uses Algorithm 2 to make a tour portal respecting and light.

Algorithm 2 Make-Structured
. Input: Tour π, Random dissection D

1: Run Bottom-Up-Patching, Alg. 4, on each vertical line l in D in arbitrary order.
2: Run Bottom-up-Patching, Alg. 4, on each horizontal line l′ in D arbitrary order, ignoring new

crossings created in previous step.
3: Run Make-Portal-Respecting, Alg. 5, ignoring new crossings created in previous steps.
4: for each dissection box corner c lying at the intersection of some vertical line l and horizontal

line l′ do
5: if there are more than two horizontal crossings of l′ at c then
6: Do Patching, Alg. 3, at point c on line l′ left of l.
7: Do Patching, Alg. 3, at point c on line l′ right of l.
8: end if
9: if there are more than two vertical crossings of l at c then

10: Do Patching, Alg. 3, at point c on line l above l′.
11: Do Patching, Alg. 3, at point c on line l below l′.
12: end if
13: end for
Output: A portal-respecting, light tour π with respect to D.

2.4.1 Patching

Patching ensures that the boundary of each dissection box has at most r = O(1/ε) crossings. Given a

line segment s with many tour crossings, Arora’s patching procedure augments the tour with copies

of s. To consolidate crossings, the tour is modified to use the copies of s to stay on one side of s as

long as possible before crossing to the other side. See Figure 2.2 for an example of patching. Lemma

2.4.1 bounds the cost of Patching.

Lemma 2.4.1. (Patching) Let s be a line segment and π any closed path that crosses s at least

thrice. Algorithm 3 augments π with segments of s of total length at most 3length(s) such that π is

modified to a closed path π′ that crosses s at most twice.

Proof. As M ′
1, . . . ,M

′
t all lie on segment s, the edges in the minimum cost perfect matching and

the edges in the shortest path connecting {Mi}i≤t all lie on segment s. Thus all segments in J ′ on

16

Algorithm 3 Patching
. Input: Segment s of line l containing t ≥ 3 crossings of tour π

1: Break π at points M1,M2, . . . ,Mt, where π crosses s, to obtain paths P0, P1, P2, . . . , Pt.
2: Make two copies of each Mi denoted M ′

i and M ′′
i and place a copy on either side of l.

3: Let J ′ be a multiset of segments containing (1) the shortest path connecting M ′
1 and M ′

t and
(2) the segments in the minimum cost perfect matching between M ′

2, . . . M
′
t . Define J ′′ similarly

for M ′′
1 . . .M ′′

t .
4: Let G be a graph with vertices {M ′

i ,M
′′
i }i≤t and edges {Pi}i≤t, J ′ and J ′′.

5: if t is odd then
6: Add an edge between M ′

t and M ′′
t in G

7: else
8: Add two edges between M ′

t and M ′′
t in G

9: end if
10: Let π′ by an Eulerian traversal of G

Output: Return tour π′ which crosses segment s at most twice.

Figure 2.2: Box b is the shaded region on the right. Patching is done on line l at boundary of box
b. This reduces the three crossings on the boundary of box b (gray circles) to just one crossing (the
bottom crossing). Patching augments the tour with copies of S (dotted) on both sides of l, which
introduces new crossings on the horizontal lines marked by arrows.

17

segment s. The shortest path has cost at most length(s) and minimum cost perfect matching has

cost at most length(s)/2, thus the total length of segments in J ′ is at most 3length(s)/2. The same

argument shows that the total length of segments in J ′′ is at most 3length(s)/2. Since M ′
t and M ′′

t

are copies of the same point, the edge between them which is added to G in the if statement has

zero length. Thus the total length of segments in G is the sum of the lengths of P1, P2, . . . , Pt, plus

the length of segments in J ′, J ′′ which is at most length(π) + 3length(s).

Every node in graph G has even degree thus the Eulerian traversal π′ includes all its edges. Thus

π′ visits all edges P1 . . . , Pt along with all edges in J ′ and J ′′ and crosses s twice if t is even and

once if t is odd. The additional length of π′ over π is 3length(s).

The Bottom-up-Patching procedure, Algorithm 4, is applied to every dissection line, to make the

tour light. To reduce crossings the procedure applies patching bottom up on the box boundaries

lying on line l. Lemma 2.4.2 bounds the cost of bottom up patching on line l in terms of the number

of crossings on line l.

Algorithm 4 Bottom-up-patching
Input: line l with an arbitrary number of tour crossings
1: for j = log L down to level(l) do
2: for each level j dissection box b whose boundary lies on line l do
3: if segment l ∩ b has more than r − 4 crossings then
4: Do patching Algorithm 3 on segment l ∩ b to reduce the crossings on l ∩ b to at most 2.

(or at most 4 for wrapped around boxes) (Figure 2.2).
5: end if
6: end for
7: end for

Output: The boundary of each box lying on line l has at most r tour crossings.

Lemma 2.4.2. Let π be the salesman tour, l be any dissection line and t(π, l) denote the number

of times π crosses line l. The expected cost to make tour π light at line l using Algorithm 4 is

O(ε)t(π, l).

Proof. Suppose that level(l) = i. For each j ≥ i let pl,j denote the number of times patching is

applied in the j-th iteration of the for loop of Algorithm 4. Each application of patching replaces at

least r − 4 + 1 original crossings in l by at most 4 crossings. Thus we have∑
j≥i

pl,j ≤
t(π, l)
r − 3

(2.2)

As each level j box has side length L/2j , a patching on line l in the j-th iteration adds length 3 ·L/2j

to π by Lemma 2.4.1. Thus to make π light at line l its length will increase by at most

increase in lenth of π if (level(l) = i) ≤
∑
j≥i

pl,j · 3 ·
L

2j
(2.3)

If l is a vertical line its level depends only on the horizontal shift a and if l is a horizontal line its

level depends on vertical shift b. In either case the level(l) = i with probability 2i/L by Equation

18

2.1. Thus the expected increase in length of π over the choice of the horizontal random shift is.

E(increase in length of π for line l)

=
∑
i≥1

Pr[level(l) = i] · (increase in length of π if level(l) = i)

≤
∑
i≥1

2i

L
·
∑
j≥i

pl,j · 3 ·
L

2j

= 3
∑
j≥1

pl,j

2j
·
∑
i≤j

2i

≤ 3
∑
j≥1

2pl,j

≤ 6t(π, l)
r − 3

= O(ε)t(π, l) (2.4)

where Equation 2.4 follows from Equation 2.2 and as r = O(1/ε).

2.4.2 Portal Respecting

To make the tour portal respecting the Make-Portal-Respecting procedure (Algorithm 5) replaces

each non-portal crossing with a detour to its nearest portal. Let x be a non-portal crossing on line l

and s the segment of l between x and the closest portal l. The procedure adds a copy of s on either

side of s and takes detours along these copies as shown in Figure 2.3. Lemma 2.4.3 bounds the cost

of the procedure.

Algorithm 5 Make-Portal-Respecting
Input: Tour π with a set X of non-portal crossings
1: for each crossing x ∈ X do
2: Let l be the line crossed by x, p the portal on l closest to x, and s the segment of l between

x and p
3: Let s′, s′′ be two copies of s one for either side of l.
4: Augment π with s′, s′′. Use copy of s′ to go from x to p, cross at p, and then use copy s′′ to

go from p to x. (See Figure 2.3).
5: end for

Output: π, augmented into a portal respecting tour.

Lemma 2.4.3. Let π be a tour and let t(π, l) denote the number of times π crosses a dissection

line l. The expected cost to make π portal respecting (with respect to all lines) using Algorithm 5 is

O(ε)
∑

line l t(π, l).

Proof. We show that for any dissection line l the expected cost to make π portal respecting at a line

l is O(ε)t(π, l). The proof for all lines follows by linearity of expectation.

Consider a line l and suppose that level(l) = i. Recall that a level i line has 2im portals

equidistance apart, where m = O(log L/ε). Thus for any crossing x on l, Algorithm 5 augments π

19

Figure 2.3: Portals on line l are shown as small boxes. The middle crossing is made portal respecting
by augmenting the tour with copies of segment S (dotted) on both sides of l, which introduces new
crossings on the horizontal line at positions marked by the arrows.

with s′ and s′′ which have total length at most L
2im . There are at most t(π, l) non-portal crossing

on line l thus the total cost for line l is

increase in length of π if (level(l) = i) ≤ L

2im
· t(π, l)

Given that the probability that level(l) = i is 2i/L by Equation 2.1, and that `max = O(log L), we

have that the expected cost to make π portal respecting at line l is

E(increase in length of π for line l)

=
`max∑
i=1

Pr[level(l) = i] · (increase in length of π if level(l) = i)

≤
`max∑
i=1

2i

L
· L

2im
· t(π, l)

=
`max

m
= O(ε)t(π, l)

2.5 Proof of the Structure Theorem

To prove Arora’s Structure Theorem 2.2.2 we will prove the correctness of Algorithm 2, that given any

input tours π, Algorithm 2 outputs a portal respecting light tour of cost at most (1+O(ε))length(π).

We start by demonstating that an intuitive approach to making a tour portal respecting and light

does not work due to the new crossings added during patching and portal detours. Then we list

a few properties of these new crossings and finally in subsection 2.5.3 we prove the correctness of

Algorithm 2.

2.5.1 A First Approach

Arora uses the following simple property to relate the cost of the tour to the number of times it

crosses the grid lines of the dissection. For any tour π and dissection line l let t(π, l) denote the

20

number of crossings of π with l.

Property 2.5.1. For any tour π, length(π) ≥ 1
2

∑
line l t(π, l).

Proof. Consider an edge in π as a portion of the tour that goes between two locations with points.

We show that each edge contributes at most twice its length to the left side of the equation, so

summing over all edges proves the lemma.

Consider an edge e in π that goes between two locations with points and has length s. Let u, v

be the horizontal and vertical projections of the edge, such that u2 + v2 = s2. Then e contributes

at most u + 1 plus v + 1 to the left hand side and with a bit of calculation it is easy to see that

u + v + 2 ≤
√

2(u2 + v2) + 2 ≤
√

2s2 + 2

Since the minimum distance between perturbed points is at least 4,
√

2s2 + 2 ≤ 2s.

One seemingly correct method to make a tour π portal respecting and light tour is to apply

Bottom-up-Patching, Algorithm 4, on each dissection line and then apply Make-Portal-Respecting,

Algorithm 5. By Lemma 2.4.2 and using linearity of expectation the total expected cost of doing

Bottom-up-Patching on all lines is O(ε)
∑

line l t(π, l) and by Lemma 2.4.3 Make-Portal-Respecting

has expected cost O(ε)
∑

line l. Thus the total expected cost to make π portal respecting and

light would be O(ε)
∑

line l t(π, l), which by Property 2.5.1 is negligible compared to its length, i.e

O(ε)
∑

line t(π, l) = O(ε)length(π).

However as shown in Figures 2.2 and 2.3, the method described above is incorrect as it does not

address the fact that patching and taking portal detours on a vertical line l can add new crossings

on to horizontal lines. Both patching and portal detours on line l augments the tour with a vertical

segment s, and adds new crossings on horizontal lines that intersect with s. Similarly patching and

adding portal detours on a horizontal line l′ can add new crossings to vertical lines. As Arora states:

“whenever we augment the salesman path with some segments lying on (a vertical

line) l, these segments could cause the path to cross some horizontal line l′ much more

than the t(π, l′) times it was crossing earlier. ” [2]

These new crossings seem problematic to making the tour light as we may need to patch over and

over again in different directions: patch on vertical lines l to reduce the new crossings from horizontal

patching, then patch again on horizontal lines l′ to reduce the new crossings from vertical patchings,

and so on. It is not clear how to show that this process terminates or how to bound the total cost

incurred. Arora initially gives his analysis ignoring these new crossings and then provides a brief

explanation of how to deal with them so that the tour remains light without incurring additional

costs. As Arora states:

“The patching on a vertical line ... could increase the number of times the path crosses

a horizontal line. We ignore this effect for now, and explain at the end of the proof that

this costs us only an additional 4 crossings.” [2]

21

This issue is averted in Algorithm 2 as it ignores all new crossings while it runs Bottom-Up-

Patching and the Make-Portal-Respecting procedures. This is presumably what Arora meant by

“ ignore this effect for now” in his second quote above. In the end Algorithm 2 does zero-cost

patchings to ensure that at most an additional 4 crossings are incurred as Arora claims above. See

subsection 2.5.3 for more details.

2.5.2 Properties of New Crossings

We list some properties of new crossings that will help us prove the correctness of Algorithm 2.

A new crossing of π is a crossing that appears from augmenting π during patching and portal

detours. A crossing is horizontal if it crosses only a horizontal lines l′ and it is vertical if it crosses

only a vertical line l. If a crossing crosses vertical and horizontal lines, i.e it crosses on a box corner,

then it a multi-dimensional crossing. See Figure 2.4.

Figure 2.4: The vertical crossing crosses line l, the horizontal one crosses l′ and the multidimensional
one crosses both and l and l′.

Figure 2.5: Patching on vertical line l in box b augments tour with copies of segment S (dark line), adding new
horizontal crossings to the vertical lines marked by the arrows.

The following properties hold for new crossings.

Property 2.5.2. Each patching on a vertical line l augments the tour with copies of some segment

s of l, and adds new horizontal crossings to horizontal lines l′ that intersect s. Each such l′ has

22

level(l′) > level(l) and gets at most 2 new horizontal crossings to the left of l and 2 new horizontal

crossings to the right of l.

Proof. A patching on line l augments the tour with copies of segment s = l ∩ b (See Line 4 of

Algorithm 4) and new crossings are created where s intersects with a horizontal line l′. See Figure

2.5. All horizontal lines l′ that intersect s inside the box have level(l′) > level(l), since the lines

forming the boundary of a box have lower levels than the lines in the box. As Algorithm 3 adds as

most 2 copies of s on either side of l, each patching adds at most 4 new horizontal crossings on l′; 2

to the left of l and 2 to the right of l.

Property 2.5.3. Each portal detour on a vertical line l augments the tour with copies of a segment

s of l and adds new horizontal crossings to horizontal line l′ that intersect s. Each such l′ has

level(l′) > level(l) and gets at most one new horizontal crossing to the left of l and one new horizontal

crossing to the right of l.

Proof. A portal detour on l augments the tour by a segment s of l creating new crossings whereever

s intersects with horizontal lines l′. As step 3 of Algorithm 5 adds one copy of s on both sides of

l, this adds at most one new horizontal crossing on l′ to the right of l and 1 new crossing on l′

to the left of l. Now we show that new crossings from the portal detour appear on lines l′ with

level(l′) > level(l). As l has at least 2level(l) portals placed equidistance apart, length(s) is at most

L/2level(l). This is also the side length of the largest dissection box whose boundary lies on line l.

The corners of the largest dissection boxes on l are portals by definition, thus s always reaches a

portal on l before crossing a horizontal line at level ≤ level(l).

Analogous properties hold for patching and portal detours on a horizontal line.

Property 2.5.4. Each patching on a horizontal line l′ augments the tour with copies of some

segment s of l′ and adds new vertical crossings to vertical line l that intersect s. Each such l has

level(l) > level(l′) and gets at most 2 new vertical crossings above l′ and 2 new vertical crossings

below l′.

Property 2.5.5. Each portal detour on a horizontal line l′ augments the tour with copies of a

segment s of l adding new vertical crossings to each vertical line l that intersects s. Each such l has

level(l) > level(l′) and gets at most one new vertical crossing above l and one new vertical crossings

below l.

A crossing is counted as a crossing for box b if it crosses one of the boundaries of b.

Property 2.5.6. For any box b, all the new crossing for b occur at the corners of b.

Proof. See Figure 2.6. Let line l contain the boundary of box b. Assume for a contradiction that a

non-corner point i on the boundary of b on l contains a new crossing. Properties 2.5.2, 2.5.3 and

2.5.4, 2.5.5 show that all new crossings occur at the intersection of two lines so let g denote the grid

line intersecting with l at the point i. As i is a non-corner point on boundary of b, level(g) > level(l).

23

Without loss of generality assume l is a vertical line so g is horizontal. Since the crossing at i

is counted as a crossing for b it crosses the boundary on line l and thus is a vertical crossing. By

Properties 2.5.2 and 2.5.3 patching and portal detours on a vertical line can create only horizontal

crossings so the new crossing at i must have occurred from a patching or a portal detour on the

horizontal line g. By Properties 2.5.4 and 2.5.5 patching and portal detours on g creates new

crossings only on lines at levels > level(g). We have reached a contradiction as level(l) < level(g).

Thus there is no way for a new crossing of b to exist at non-corner point i

Figure 2.6: New crossings shown as dark segment at corner c. New crossings appear only at the
corner of b and never at any intermediate boundary site on b such as i. The right figure shows a
magnified view of corner crossings. The three left crossings count as crossings of b.

2.5.3 Correctness of Algorithm 2

We show that given any tour π, Algorithm 2 outputs a portal respecting and light tour of length

at most (1 + O(ε))length(π). Steps (1-3) ignores all new crossings thus after these steps π is portal

respecting and light with respect to the original crossings. By Lemma 2.4.2 and using linearity of

expectation the total expected cost of doing Bottom-up-Patching on all lines is O(ε)
∑

line l t(π, l)

and by Lemma 2.4.3 Make-Portal-Respecting has expected cost O(ε)
∑

line l t(π, l). Thus the total

expected cost incurred up to step 3 is O(ε)
∑

line l t(π, l), which by Property 2.5.1 is negligible

compared to its length, i.e O(ε)
∑

line t(π, l) = O(ε)length(π).

By Property 2.5.6, for any dissection box, the new crossings introduced in steps (1-3) appear

only at the corners of the box. As all corners are already portals by definition, all new crossings are

already portal respecting. It remains to show that the tour can be made light. Algorithm 4 ensures

that each box boundary has at most r− 4 original crossings. We show that steps 4-11 of Algorithm

2 ensures that each dissection box corner will contain at most 2 new crossings. Thus the boundary

of a dissection box will have at most r = O(1/ε) total crossings and the tour will be light.

Suppose box b has a corner c at the intersection of line l and l′ with more than two horizontal

crossings. See right side of Figure 2.6. We show that steps (5-8) of Algorithm 2 reduces them to

at most 4 horizontal crossings at zero cost and without introducing any new vertical crossings. An

analogous argument shows the same for steps (9-12) and the vertical crossings on any corner.

If c has more than two horizontal crossings at c, steps (6-7) does patching at point c on line

l′. The patching occurs at a single point c, thus the tour is augmented by a “segment” s, on l′

24

containing only point c. This implies that s has zero length. Thus by Lemma 2.4.1, as length(s) = 0

the patching has zero cost. The patching is done separately on the left and right sides of l so it does

not introduce any new vertical crossings on line l. At the end of Step 7, c will contain at most 2

horizontal crossings on the right of l and at most 2 horizontal crossings on the left of l. Since b is

only on one side of l, (b is on the left side of l in Figure 2.6) b now has at most 2 horizontal crossings

at c.

In summary up to step 3, Algorithm 2 adds additional length O(ε)length(π) to π to convert it

into a portal respecting light tour with respect to the original crossings. The remaining steps add

no additional length and convert it into a portal respecting light tour with respect to all crossings.

Thus the final tour has length at most (1 + O(ε))length(π).

2.6 Extension to Higher Dimensions

Arora’s algorithm extends to higher dimensions d ≥ 2 while d is a constant independent of n. In Rd

the dissection can be thought of as a Rd−ary tree. Each dissection box is now a d dimensional cube

with 2d boundaries (facets) and each boundary is a d− 1 dimensional cube. The boundary of a box

contains m = O(
√

d log L/ε)d−1 portals which are placed as an orthogonal lattice of m-points. A

tour is light if for each region, the tour crosses the boundary of the region at most r = O(
√

d/ε)d−1

times. Comparing to the values of m and r used in R2, O(log L/ε) and O(1/ε), we see that the

blowup in Rd comes mainly from placing the portals in a lattice structure in d− 1 dimensions [2].

The running time of Arora’s algorithm in Rd is O(2dn log L · mO(2dr)) = n(log n)O(d/ε)d−1
, as

L = O(n). This running time follows as the dissection tree now contains O(2dn) non empty boxes

and as the DP has to “guess” r of the m portals on each of the 2d boundaries that portal respecting

and light tour tour will use to enter and exit each non empty box. Note that the running time

has a doubly exponential dependence on d. Thus the dimensions should be d = o(log log n) for the

running time to be polynomial.

Chapter 3

Vehicle Routing: Unit Demands

and Single Depot

This chapter’s results are joint work with Claire Mathieu and have appeared in [21].

3.1 Introduction

This chapter present our QPTAS for Euclidean UnitDem problem with a single depot, in constant

dimensions.

Recall the problem: Given a positive integer k denoting the vehicle capacity, a set C of n

customers, and a depot, such that C and the depot are points in Rd where d is a small constant

independent of n, find a collection of tours of minimum total length covering all customers in C,

such that each tour in the collection starts and ends at the depot and covers at most k customers.

As previously mentioned, the UnitDem problem models scenarios where all customers either have

equal demands for items or when customer demands are allowed to be split between multiple tours.

The metric setting of UnitDem has a 2.5-approximation due to Haimovich and Rinnooy Kan [29],

but is APX-Hard and admits no PTAS [6]. The Euclidean setting has been conjectured, by Arora

and others, to have a PTAS [3]. The conjecture seems natural as UnitDem is the most basic

vehicle routing problem and seems very close to the TSP, which admits a PTAS in the Euclidean

setting [2, 40]. Partial results already exist and PTASs have been designed for Euclidean UnitDem

for certain vehicle capacities. When the vehicle capacity is large, k = Ω(n), Arora’s PTAS for TSP

easily extends to a PTAS. In the case of small capacity, k = O(log n/ log log n), Asano et al. [7]

presented a PTAS extending a known PTAS due to [29]. Recently, for larger capacity, k ≤ 2logδ n

(where δ a function of ε), Adamaszek et al. presented a PTAS using the QPTAS described in this

chapter as a black box [1]. Designing a PTAS regardless of the value of k remains an active line

of research and as noted by Adamaszek et al. “the case k =
√

n is the hardcore of the difficulty in

obtaining a PTAS for all values of k [1].

25

26

We present a QPTAS for Euclidean UnitDem VRP with single depot. We focus mainly on the

setting where the customers are located in R2 and in Section 3.7 show how to extend the results to

Rd for constant d. We prove the following Theorem.

Theorem 3.1.1. (Main Theorem) Algorithm 6 is a randomized quasi-polynomial time approxima-

tion scheme for the two dimensional Euclidean unit demand vehicle routing problem with a single

depot. Given ε > 0, it outputs a solution with expected length (1 + O(ε))OPT, in time nlogO(1/ε) n.

The Algorithm can be derandomized.

Where previous approaches fail. It is natural to start from Arora’s PTAS for Euclidean TSP

and try to extend it to UnitDem. In fact Arora attempted this as well. However this approach

reaches a road block which Arora described in [3] and we now recap below.

Using Arora’s randomized dissection we can recursively partition the region of input points into

progressively smaller boxes. Then we can search for a solution that goes back and forth between

adjacent boxes a limited number of times and always through a small number of predetermined

sites, i.e portals, that are placed along the boundary of boxes. The next step is to extend the TSP

structure theorem to show that there exists a near optimal solution that crosses the boundary of

boxes a small number of times, so that dynamic programming can be used to guess these crossings.

Unfortunately, as noted by Arora [3],

“we seem to need a result stating that there is a near-optimum solution which enters or

leaves each area a small number of times. This does not appear to be true. [...] The

difficulty lies in deciding upon a small interface between adjacent boxes, since a large

number of tours may cross the edge between them. It seems that the interface has to

specify something about each of them, which uses up too many bits.”

Indeed, to combine solutions in adjacent boxes it seems necessary to remember the number of

points covered by each tour segment and that is too much information to remember, if there are

many tour segments.

Overview of our approach. To get around the problem above we introduce a new trick which

allows us to remember approximately how many points are on each tour segment. This allows us

to build tours that cover approximately k points. We design a simple randomized technique to

drop points from these tours so that the capacity constaint is maintained. Our technique ensures

that the dropped points can be covered at low cost with additional tours, and we simply use the

3-approximation of [29] to cover them. See Figure 3.1. Thanks to dropping points, we may assume

that the number of points on each tour segment is a power of (1 + ε/ log n), so there are only

O(log n log k) possibilities. This is a huge saving (when k is Ω(log n)) compared to the k possibilities

that would be required to remember the number of points exactly and it enables us to deal with

the difficulties described by Arora: now we have a small interface between adjacent boxes, namely,

for every pair of portals and every threshold number of points, we remember the number of tour

segments that have this profile. The quasipolynomial running time of our dynamic program (DP)

27

follows as the number of profiles is polylogarithmic and there are at most n tour segments of each

profile.

The main technical difficulty consists in showing that the dropped points can be covered at low

cost. That cost is split into several components and analyzed separately using a variety of techniques

in Section 3.5.

3.2 Algorithm and Proof of Main Theorem

Algorithm 6 presents our QPTAS. It starts the same way as Arora’s TSP algorithm by performing

a random dissection of the input and placing portals on girdlines. Then it uses a quasipolynomial

time DP to find a structured solution (Definition 3.2.4), which is near optimal but can include some

tours that cover more than k points. A feasible set of tours, which we refer to as the black tours, is

obtained by dropping points from the tours of the structured solution that cover more than k points.

The dropped points which we refer to as the red points, are chosen carefully using a randomized

procedure to ensure that they can be covered cheaply. We use the 3-approximation of [29] on the

red points to obtain a set of red tours. The final output is the union of the red and black tours. See

Figure 3.1.

Algorithm 6 QPTAS for Euclidean UnitDem single depot, in two dimensions
Input: Customers C, a depot in R2, and integer k

1: Perturb instance, perform random dissection, and place portals as in Arora’s algorithm of Chap.
2.2.1.

2: Use the DP from Section 3.4 to find a structured solution of Definition 3.2.4.
3: Use the DP’s history to construct the structured tours and assign types to points using the

randomized type assignment from Subsection 3.2.2.
4: Color a point black if it has type 0 and red otherwise. Drop all red points from the structured

tours, so that the structured tours only cover black points.
5: Use the 3-approximation Algorithm 8 to get solution of the dropped red points.

Output: Union of red tours on the red points and black tours on the black points.

In the following subsections we define a structured solution, the random type assignment proce-

dure and describe the constant factor approximation. We also state some auxiliary theorems and

use them to prove the main theorem (Theorem 3.1.1). The proofs of the auxiliary theorems are

presented in later sections.

3.2.1 The Structure Theorem

The structured solution will be allowed to consist of tours that cover approximately k points. To

compute the structured solution in quasi-polynomial time we will predefine τ = O(log L log k) thresh-

olds in the range [1, k] (recall that L = O(n) is the side length of the bounding box). Rather than

remembering the exact number of points covered by a tour segment we will remember a threshold.

If a tour segment covers x points we will “round” it to cover a threshold number of points as follows:

28

Figure 3.1: A solution computed by Algorithm 6 for k = 7. The star is the depot, the solid circles
are the “black” points and the empty circles are the “red” points. The solid tours are computed by
the DP in step 2. Each covers ≤ k “black” points. The dotted tour covers the “red” points and is
computed in step 5 using the 3-approximation.

We find the largest threshold value t < x and set the type of exactly x − t points on the segment

to indicate that they should be dropped from the segment. Once dropped the segment will contain

exactly the threshold number of points.

Tour segments can be rounded at any level of the dissection tree. To indicate that a point was

rounded/dropped at level ` we will set its type to `. In the end, all points with type between [1, `max]

will be colored red and dropped from the structured tours. We defined these concepts formally:

Definition 3.2.1. (Thresholds, rounded segments, rounded box)

• Let τ = dlog(1+ε/ log L)(kε)e+ 1/ε be the number of thresholds, where L = O(n) the side length

of the bounding box. For i ∈ [1, 1/ε], let threshold ti = i, and for i ∈ (1/ε, τ] let threshold

ti = ti−1(1 + ε/ log L).

• The type of a point is an integer in [0, `max]. A point of type= 0 is active in all levels and a

point of type> 0 is active in all levels greater than its type.

• For any box b, a segment of b is a piece of a tour that enters and exits b at most once. A

segment of box b is rounded if it covers exactly a threshold ti number of points inside b, that

are active at level(b). Otherwise the segment is unrounded. See Figure 3.2.

• A box is a rounded if it contains only rounded segments. Otherwise it is unrounded.

A solution will consist of a collection of k-tours that cover all n customers:

Definition 3.2.2. (k-tour) A k-tour is a tour that cover at most k customers and the depot.

In a relaxed set of tours, each tour is allowed to cover slightly more than k customers.

29

Figure 3.2: The figure shows boxes at levels ` + 1 and `, and four types of points. The points of
type > ` + 1 (white) and type = ` + 1 (stripped) are inactive in all boxes shown. Points with type
` (dotted) are active at level ` + 1. Points of type < ` (solid) are active in all shown boxes. If the
thresholds are 5, 9. The segment is rounded at level ` covering 9 active points. At level ` + 1, the
segment is rounded in the left box covering 5 active points and unrounded in the right box covering
6 active points.

Definition 3.2.3. (Relaxed) A set of tours satisfies the relaxed conditions if they cover all the

customers and there exists an assignment of types for the points such that:

1. Each tour visits the depot and covers at most k type 0 points.

2. Let b be a dissection box and let s be a segment in b that covers t active points at level(b). Then

segment s has at most t(1 + ε/ log L) active points at level(b) + 1.

3. Let γ = dlog4 L/ε4e be the rounding size. Any box b with at least γ is a rounded box containing

only rounded segments.

The first condition of the relaxed definition states that each tour can cover at most k type 0

points. These points which will be active in at level 0, and hence included in the final black tours.

Each relaxed tour however can cover some additional points of type i > 0. Intuitively, the second

condition allows a tour to acquire an additional O(ε/ log L)k active points at each, and as there are

O(log L) levels in the dissection, the number of type > 0 points on a relaxed tour is at most O(ε)k.

The third condition ensures that boxes are rounded when they contain many segments (≥ γ), when

it is too expensive to remember the exact number of points on each segment.

Definition 3.2.4. (Structured) A set of tours Π is structured, with respect to a fixed random

dissection D, if Π consists of tours which are portal respecting and light, and there exists a type

assignment for the points that satisfies the relaxed conditions.

We define an extended objective function F that in addition to minimizing the length of the

tours will also charge for the number of tour crossings at each level.

30

Definition 3.2.5. (Extended Objective Function) Fix a random dissection D and let Π be a set of

k-tours. For every level ` let c(π, `) be the number of times a tour π ∈ Π crosses the boundaries of

level ` boxes, and let d` = L/2` denote the length of a level ` dissection box. The extended objective

function is:

F (Π) =
∑
π∈Π

length(π) +
ε

log L

∑
level `

∑
π∈Π

c(π, `) · d`, (3.1)

The structure theorem implies the existence of a near optimal solution consisting of structured

tours, as made explicit in Corollary 3.2.7. Theorem 3.2.6 is proved in Section 3.3.

Theorem 3.2.6. (Structure Theorem) Let Π be a set of k-tours that covers all n customers. Let Π′

be the portal respecting and light tours obtained by applying Arora’s structure theorem to every tour

in Π. There exists a type assignment satisfying the relaxed conditions to make Π′ structured, and in

expectation over random shifts of the dissection, F (Π′) ≤ (1 + O(ε))length(Π).

Corollary 3.2.7. (Structure Corollary) Let OPT denote the length of the optimal solution for an

instance I of UnitDem, and let OPTS denote the length of the structured solution that minimizes

objective function F . In expectation over random shifts of the dissection, OPTS ≤ (1 + O(ε))OPT.

Proof. Let Π∗ be the optimal set of k-tours for I. Thus Π∗ covers all n customers and length(Π∗) =

OPT. By Theorem 3.2.6 there exists a structured set of tours Π′ such that in expectation, F (Π′) ≤
(1 + O(ε))length(Π∗) = (1 + O(ε))OPT.

Let ΠS be the set of structured tours that minimizes F , thus F (ΠS) ≤ F (Π′). The corollary

follows as OPTS = length(ΠS) ≤ F (ΠS) ≤ F (Π′) ≤ (1 + O(ε))OPT.

By Corollary 3.2.7 we can focus on computing the structured solution that minimizes objective

F , which we will denote OPTS . Section 3.4 presents a dynamic program that computes OPTS in

quasipolynomial time and proves the following theorem.

Theorem 3.2.8. (Dynamic Program) For any instance I of the UnitDem problem, OPTS(I) is

computed by the dynamic program of Section 3.4 in time nlogO(1/ε) n.

3.2.2 Assigning Types

The type assignment procedure “rounds” a tour segment by choosing the points that should be

dropped from the segment. To round a segment S, Algorithm 7 chooses an interval of S, and sets

the type of points in the interval to indicate they should be dropped. The interval is chosen such

that its length is an O(ε) fraction of the length of S and such its Rad is an O(ε) fraction of the Rad

of S. Choosing the interval with these properties will be enough to ensure that the constant factor

approximation of the red points has small cost. See Figure 3.3 for an illustration of Algorithm 7.

3.2.3 A Constant Factor Approximation [29]

We use the tour partitioning algorithm of Haimovich and Rinnooy Kan to obtain a solution for

the red dropped points. It partitions a TSP of the red points into tours that cover at most k

31

Algorithm 7 Randomized Type Assignment
Input: Level ` segment S with x active points
1: Choose an active point p uniformly from the active points of S.
2: Let t be the largest threshold ≤ x and choose an interval of y = x − t active points from S as

follows:
3: if S has y − 1 active points after p then
4: Choose p and the next y − 1 active points on S.
5: else
6: Choose the xp active points from p to the end of S, and the first y−xp active points from the

start of S.
7: end if
8: Assign all y points in the interval to type `.

Output: Segment S with t active points.

Figure 3.3: b is a level ` box with 8 active points (dark circles) and two inactive points (the white
circles). If the largest threshold less than 8 is t = 5, then y = 3 points are marked to be dropped.
Thus p and the next two active points are labelled type `.

32

points. Theorem 3.2.9 was proved by Haimovich and Rinnooy Kan and shows the algorithm is a

3-approximation [29].

Algorithm 8 Tour Partitioning 3-approximation [29]
Input: Customers C and a depot in any metric space, and integer k

1: Compute a tour π of the customers and the depot with the 2-approximation of TSP from
Lemma 1.3.6.

2: Choose a point p uniformly at random from π.
3: Go around π starting at p, and every time k points are visited, take a detour to the depot.

Output the resulting set of bn/kc+ 1 tours.

Theorem 3.2.9. [29, 7] For any input I, an instance of the metric UnitDem problem with single

depot, in expectation the output of Algorithm 8 has length at most Rad(I) + 2 · TSP(I) ≤ 3OPT.

3.2.4 Proof of Main Theorem 3.1.1

The output of Algorithm 6 has cost equal to the length of the black tours plus the length of red

tours. As the black tours are obtained by dropping points from the DP solution, their length is at

most the length of the DP tours. By Theorem 4.3.3 the DP outputs OPTS which by Corollary 3.2.7

has cost at most (1+O(ε))OPT. Thus the length of the black tours is at most (1+O(ε))OPT. The

length of the red tours is at most O(ε)OPT by Theorem 3.2.10, which is proved in Section 3.5.

Theorem 3.2.10. In expectation over the random shifts of the dissection and the random type

assignment, the length of the red tours output by Algorithm 6 is O(ε)OPT.

The DP dominates the running time. The derandomization of the Algorithm is discussed in

Section 3.6.

3.3 Proof of the Structure Theorem 3.2.6

Given Π and dissection D, obtain Π′ by applying Arora’s algorithm (Algorithm 2) to each tour of

Π. We show that Π′ satisfies the requirements of the Theorem using two main Lemmas 3.3.1 and

3.3.3 given below.

For each tour π ∈ Π, let πL denote its portal respecting and light version obtained using Arora’s

Algorithm 2. The first lemma proves that, F (πL) ≤ (1+O(ε)length(π). Its proof, which is presented

in Section 3.3.1, is derived only by analyzing Arora’s algorithm.

Lemma 3.3.1. Let π be a tour and let πL be the portal respecting and light tour obtained when

Arora’s structure theorem (Algorithm 2) is applied with π. We have that F (πL) ≤ (1+O(ε))length(π).

As a corollary of Lemma 3.3.1 we get that,

Corollary 3.3.2. Let Π be a any set of tours and ΠL be the set of portal respecting and light tours

obtained when Arora’s structure theorem (Algorithm 2) is applied to each tour in Π. We have that

F (ΠL) ≤ (1 + O(ε))length(Π).

33

Proof. length(Π) =
∑

π∈Π length(π) and similarly F (ΠL) =
∑

πL∈ΠL F (πL). The proof follows by

applying Lemma 3.3.1 to each pair π, πL and using linearity of expectation.

Lemma 3.3.3 shows that there exists a type assignment which satisfies the relaxed conditions for

Π′. See Section 3.3.2 for its proof.

Lemma 3.3.3. Let Π denote a set of k-tours covering all customers. There exists a type assignment

of the points such that Π satisfies the relaxed conditions of Definition 3.2.3.

ΠL consists of portal respecting light tours and by Corollary 3.3.2 it satisfies the length condition

of the structure theorem. As ΠL is a set of k-tours that cover all customers, by Lemma 3.3.3 there

exists a type assignment such that ΠL satisfies the relaxed definition. Thus Π′ = ΠL is a structured

solution which completes the proof of Theorem 3.2.6.

3.3.1 Proof of Lemma 3.3.1

By Equation, 3.1 F (πL) is,

F (πL) = length(πL) +
ε

log L

∑
level `

c(πL, `) · d` (3.2)

We get Equation 3.4 applying Arora’s Structure Theorem 2.2.2 to the first term of Equation 3.2.

We have that,

F (πL) = (1 + O(ε)) · length(π) +
ε

log L

∑
level `

c(πL, `) · d` (3.3)

≤ (1 + O(ε)) · length(π) +
ε

log L

∑
level `

O(2 + ε) · length(π) (3.4)

≤ (1 + O(ε)) · length(π) +
ε

log L
O(log L)O(2 + ε) · length(π) (3.5)

≤ (1 + O(ε)) · length(π) + O(ε) · length(π) (3.6)

Equation 3.4 follows by applying Lemma 3.3.4 (given below) to each level `. Equation 3.5 follows

as there are `max = O(log L) levels in the dissection. Equation 3.6 shows that F (πL) ≤ (1 +

O(ε))length(π), proving the lemma.

Lemma 3.3.4. For any level `, E[c(πL, `) · d`] ≤ O(2 + ε) · length(π).

Proof. Let π represent any tour and πL represent the portal respecting light tour output by Algo-

rithm 2. As discussed in the previous chapter πL may contain some new crossings that π does not

have. We bound the number of crossings in πL in terms of the crossings in π.

Recall that c(π, `) denotes the numbers of times π crosses the boundaries of level ` boxes, and

that t(π, l) denotes the number of times tour π crosses dissection line l. The boundaries of level `

boxes are formed by the lines at levels ≤ ` and by Equation 2.1 the probability that a line has level

≤ ` is 2`+1/L. Thus for any level `, we have,

E(c(π, `)) =
∑
line l

t(π, l) · Pr[l is boundary of level ` box] =
2`+1

L

∑
line l

t(π, l) (3.7)

34

The following property relates the length of the tour to the number of crossings on any level,

and is an implication of Property 2.5.1..

Property 3.3.5. Let π be a tour and ` a level of the dissection D. Let d` = L/2` denote the side

length of a level ` dissection box. In expectation we have, length(π) ≥ O(d`)E[c(π, `)].

Proof. Combine Property 2.5.1 with Equation 3.7 to get,

length(π) ≥ 1
2

∑
line l

t(π, l) =
1
2
· L

2`+1
E[c(π, `)] =

d`

4
· E[c(π, `)] = O(d`)E[c(π, `)]

We apply Lemma 3.3.6 (given below) to bound the expected number of crossings in πL in terms

of the number of crossings in π, and then apply Property 3.3.5 to complete the proof as,

E[c(πL, `) · d`] ≤ (2 + O(ε))E[c(π, `)] · d` ≤ O(2 + ε)length(π)

Lemma 3.3.6. For any level ` E[c(πL, `)] ≤ (2 + O(ε))E[c(π, `)].

Proof. We bound the expected number of crossings in πL in terms of the number of crossings in π,

by counting the number of new crossings in πL introduced from patching and portal detours.

New crossings from patching. Suppose l is a line at level(l) = i < `. Let pl,j denote the number

of times patching is applied to line l in the jth iteration of the for loop of Algorithm 3, to reduce

original crossings (i.e from steps 1 or 2 of Algorithm 2). Note that pl,j = 0 if j < i. Each application

of patching replaces at least r − 4 original crossings on l by at most 4 original crossings. Thus we

have, ∑
j≥i

pl,j ≤
t(π, l)
r − 3

(3.8)

Patching on line l in the j-th iteration augments π with a segment s of length ≤ L/2j . For j < `

we have,

(#level(`) boxes lying on each side of s) =
L/2j

L/2`
= 2`−j

By Properties 2.5.2 and 2.5.4, patching adds at most 2 new crossings to the boxes lying on s. As

there are 2`−j level ` boxes lying on each side of l, each patching adds at most 4 · 2`−j new crossings

to level ` boxes. As Algorithm 3 can patch line l for each j ≥ i , the total number of new crossings

introduced to level ` boxes from patching on line l is

(# new crossings to boxes at level`) ≤
∑
j≥i

pl,j · 4 · 2`−j

35

Patching line l contributes new crossings only if level(l) = i, thus the expected number of new

crossings on level ` boxes is

E(# new crossings at level ` from patching on line l)

=
∑

`>i≥1

Pr[level(l) = i] ·
∑

`>j≥i

(
pl,j · 4 · 2`−j

)
≤ 4

∑
`>j≥1

pl,j · 2`−j
∑
i≤j

Pr[level(l) = i]

= 4
∑

`>j≥1

pl,j · 2`−j
∑
i≤j

2i

L
(3.9)

= 4
∑

`>j≥1

pl,j · 2`−j · 2j+1

L

≤ 4 · t(π, l)
r − 3

· 2`+1

L
(3.10)

where Equation 3.9 follows by Equation 2.1 and Equation 3.10 follows from Equation 3.8.

Equation 3.10 gives the expected number of new crossings from patchings on any level i < ` line.

Summing over all lines l, using Equation 3.7, and the fact that r = O(1/ε) we have that,

E(# new crossings at level ` from patching) ≤
∑
line l

4 · t(π, l)
r − 3

· 2`+1

L

≤ 4 · E[c(π, `)]
r − 3

= O(ε)E[(c(π, `)] (3.11)

New crossings from portal detours. Recall that a level i line has 2im portals, equidistance apart,

where m = O(log L/ε). Thus a portal detour on a level i augments the tour with a segment s of

length at most L
2i·m . For any level ` > i, there are at most L/(2im)

L/2` = 2`−i/m level ` boxes lying

on each side of segment s. By Properties 2.5.3 and 2.5.5, s adds one new crossing to each of these

boxes adding a total of 2 · 2`−i/m new crossings at level `. At most E[(c(π, i)] portal detours are

required for level i lines. Recall that by Property 2.5.6, all new crossings introduced from patching

36

were at corners of boxes which are portals. Thus we have that,

E(# new crossing at level ` from portal detours)

=
∑
i≤`

(# detours at level i) · 2`−i

m

≤
∑
i≤`

E[(c(π, i)] · 2`−i

m

=
∑
i≤`

(
2i+1

L

∑
line l

t(π, l)

)
· 2`−i

m
(3.12)

=
∑
i≤`

(
2`+1

L

∑
line l

t(π, l)

)
· 1
m

(3.13)

=
∑
i≤`

E[(c(π, `)]
m

≤ O(log L)
E[c(π, `)]

m
= E[c(π, `)] (3.14)

Equation 3.12 and 3.13 follow from Equation 3.7 and Equation 3.14 as there are O(log L) levels.

Total crossings. The expected number of πL crossings at level ` is at most the original crossing of

π at level ` plus the number of new crossings from patching and detours derived in Equations 3.11

and 3.14.

E[c(πL, `)] ≤ E[c(π, `)] + O(ε)E[c(π, `)] + E[c(π, `)] = (2 + O(ε))E[c(π, `)]

3.3.2 Proof of Lemma 3.3.3

Given a set of k-tours Π that covers all customers, Algorithm 9 assign types to points such that Π

satisfies the relaxed conditions of Definition 3.2.3.

Algorithm 9 Relaxed type assignment for a set of k-tours [29]
Input: Π a set of k-tours covering all customers in C

1: Label all points as type 0
2: for level ` from `max to 0 do
3: for each level ` box b with more than γ segments do
4: for each segment s in b, round s as follows do
5: Let x be the number of active points on segment s, and ti the largest threshold s.t ti ≤ x.

Pick any x− ti active points on s and label them as type `.
6: end for
7: end for
8: end for

Output: Π and the type assignment for points.

Observe that Algorithm 9 only labels points with types and does not modify the structure of

any tour. As Π is initially a set of k-tours covering all n customers, this is also true after Algorithm

37

9 completes. Initially each tour in Π covers at most k customer points. Thus after the first step of

the algorithm, all tours in Π cover at most k points of type 0, thus the first condition of Definition

3.2.3 is satisfied. Since Algorithm 9 only labels points with types ≥ 0, every tour in Π continues to

cover at most k type 0 points after the Algorithm completes. Thus the first condition of Definition

3.2.3 will be satisfied.

Now consider the third condition. Consider a box b at level ` containing more than γ segments.

Recall that the active points in b are points of type < `. The for loop in lines 4-6 rounds each

segment of b by increasing the type of some points on the segment to ` so that the segment covers

exactly a threshold number of active points. Thus the third condition of Definition 3.2.3 holds for b

once Algorithm 9 has finished working on level `. While the algorithm works at levels j < `, points

are only labelled with types less than `. Thus the number of active points remains the same at level

` and the condition continues to hold in box b.

Now consider the second condition. Consider a segment prior to and after it is rounded at level

`. Prior to rounding all points on the segment either have type 0 or a type strictly greater than `,

so the segment has the same number of active points, at level ` and at level ` + 1. Let x be the

number of active points prior to rounding such that ti ≤ x ≤ ti+1. After rounding, the segment has

x− ti points labelled with type `. This leaves ti active points at level ` and x active points at level

` + 1. As ti(1 + ε/ log L) = ti+1 > x, the second condition of Definition 3.2.3 is satisfied.

3.4 The Dynamic Program

The DP Table. For each dissection box b, the DP table will have an entry for all the possible ways

to extend a solution of b. Observe that given a solution of b, to extend it outside, only requires us

to know about the tour segments that cross the boundary of b, and we can essentially ignore any

tours that are completely contained inside b. Thus we define a configuration C of a dissection box

b, to describe only the tour segments that cross the boundaries of b. A box is either described by a

rounded configuration or an unrounded configuration.

• Rounded Configuration: Consists of a list of numbers rp,q,t,d, for every pair of portals p, q of b,

every threshold t ∈ {t1, . . . , tτ}, and depot indicator bit d ∈ {0, 1}. The number rp,q,t,d, is the

number of rounded tour segments that use portals p and q to enter and exit b, cover exactly t

active points, and visit the depot as indicated by d.

• Unrounded Configuration: Contains a list of γ tuples of the form (p, q,m, d). The j-th tuple

(p, q,m, d)j denotes the j-th unrounded tour segment that covers exactly m points and enters

and exits b from portals p to q and visits the depot as indicated by d.

The DP has a table entry Lb[C] for each dissection box b and each configuration C of b. Lb[C]

is the minimum cost of placing tour segments in b which are compatible with C, and are structured

as defined by Definition 3.2.4, where cost is computed by objective F . The DP returns OPTS as

the minimum table entry over all configurations of the root level box.

38

Computing the table entries. The table entries are computed in bottom-up order. The base

case computes Lb[C] for a leaf box b. First assume that b contains no depot. If C is a rounded

configuration whose segments together cover t points, then C is feasible for b if the segments cover

all but at most t(ε/ log L) points of b. Otherwise if C is an unrounded configuration, C is feasible

for b if all points of b are covered by the segments described by C. It is easy to compute the cost

of a feasible C for leaf boxes as all points are located in the center of the box. Now suppose that b

contains a depot. Then all points of b which are not covered by any segment described in C can be

covered at zero cost by tours that stay completely inside (i.e at the center of) b.

Inductively, let b be a box at level ` and let b1, b2, b3, b4 be the children of b at level ` + 1. As

every tour is structured (and in particular portal respecting and light), a tour segment (or a tour)

in b crosses the boundaries of b1, b2, b3, b4 inside b, at most 4r times, and always through portals.

Every tour segment and tour in b is the concatenation of at most 4r + 1 pieces, where a piece

uses two portals of b1, b2, b3, b4, and either visits a depot or not. Each piece is either a rounded

segment or one of the at most γ unrounded segments inside a child of b. Thus each piece can be

described by a tuple (p, p′, x, d), where p, p′ are portals, d is the depot indicator flag and x is either

a threshold ti for some i < τ , or x is a number j ≤ γ indicating that the piece is the j-th unrounded

tour in a child box of b. Each tour segment and tour in b is described by a concatenation profile

Φ = (p1, p2, x1, d1), (p2, p3, x2, d2), . . . (ps, ps+1, xs, ds), which is a list of the at most 4r + 1 tuples it

is constructed from. For a given Φ, let xΦ denote the sum of active points picked up by all pieces in

Φ. If a piece (p, p′x, d) comes from a rounded box, it contributes x = ti (some threshold ti) number

of active points to xΦ. Otherwise if the piece is from an unrounded box, x is a number less than or

equal to γ, and the piece contributes mx, (the exact) number of active points picked up by the x-th

unrounded segment of a child box of b.

A profile Φ with p1 = ps+1 describes a tour (rather than a tour segment) in b, It is feasible if at

least one of its tuples visits the depot, i.e has indicator d = 1 and xΦ ≤ k. Suppose Φ describes a

tour segment in b. If C is an unrounded configuration for b, the segment described by Φ is unrounded

and the DP counts the segment as having exactly xΦ active points. Otherwise if C is a rounded

configuration for b, the segment described by Φ is rounded and the DP counts the segment as having

ti active points where ti is the largest threshold less than xΦ i.e, ti ≤ xΦ < ti(1 + ε/ log L).

Let ϕ denote the number of different concatenation profiles possible for b. Let ni, for i ≤ ϕ,

denote the number of tour segments in b with concatenation profile Φi. We define an interface

vector I = (ni)i≤ϕ as a list of ϕ entries. Intuitively, the vector I describes the composition of all the

segments in b and provides the interface between how tour segments in b are formed by concatenating

the segments of b’s children.

Let C0 be a configuration for box b. The calculation of Lb(C0) is done in a brute force manner

by iterating through all possible values of the interface vector I and all possible combinations

of configurations in b’s children, C1, C2, C3, C4. A combination C0, I, C1, C2, C3, C4 is consistent

if I describes at most γ unrounded segment, and if gluing C1, C2, C3, C4 according to I yields

configuration C0.

39

The cost of configurations {Ci}i≤4 is stored in lookup tables Lbi
(Ci). Let cb(I) be the total

number of tour segments in b as specified by I. The cost according to objective function F , of

(C1, C2, C3, C4, I) is (ε/ log L) · 2cb(I) plus the sum of the costs of Lbi(Ci) for each child box i ≤ 4.

Entry Lb(C0) is set equal to the cost of the tuple (C1, C2, C3, C4, I) that is consistent with C0 and

has minimum cost.

Running time of dynamic program. The number of possible configurations for a box b is

the number of possible rounded configurations plus the number of unrounded configurations. A

rounded configuration consists of a list of at most O(τ log2 L) entries as there are O(log2 L) different

pairs of portals (p, q), τ different thresholds, and two possible values for indicator d. As τ =

O(log2 L), the rounded configuration contains a list of O(log4 L) numbers. Each number in the list

rp,q,t,d is an integer that is at most n, thus there are nO(log4 L) different rounded configurations.

Each unrounded configuration contains a list of γ = O(log4 L) tuples (p, q,m, d) and there are

log2 L · n · 2 possibilities for each tuple. Thus there are (2n log2 L)γ = nO(log4 L) possible unrounded

configurations. As each box is described by either a rounded or an unrounded configuration, there

are nO(log4 L) configurations per box. As there are O(n) non empty boxes, the DP table has overall

size nO(log4 L) which is nO(log4 n) as L = O(n).

The number of possible concatenation profiles for segments in box b is computed as follows. Each

Φ has a list of O(r) tuples (p, p′, x, d). There are O(log2 L) choices of portals p, p′, two choices for

d, and γ + τ choices of x, so there are O((τ + γ) log2 L) = O(log6 L) possibilities for each tuple. As

r = O(1/ε), there are ϕ = (log6 L)O(r) = (log L)O(1/ε) possible concatenation profiles.

The interface vector I has ϕ entries, and each entry is an integer less than n. Thus we have nϕ,

possible interface vectors for a box b, a quasi-polynomial number of possibilities.

Checking consistency for a particular interface vector I and configurations {Ci}i≤4 can be done

in polynomial time in the size of their descriptions. There are nO(log4 L) possible values for each Ci

and nlogO(1/ε) L possible values for I. Thus to run through all combinations of I, C1, C2, C3, C4 and

to compute the lookup table entry at Lb[C0] takes time polynomial in nlogO(1/ε) L which is nlogO(1/ε) n

as L = O(n).

Remark. The DP only verifies that for the set of k-tours it returns there exists a type-assignment

satisfying the relaxed Definition 3.2.3. However the DP does not actually label points with specific

types. Instead it records the number of active points the tour segments it constructs should have.

Once the value of OPTS is found, we can trace through the DP history and make type assignments

while constructing the tours of OPTS . If we construct a tour segment with x active points at level

` that the DP’s history recorded as having t active points, choosing any x− t active points from the

segment and labelling them with type ` would satisfy the relaxed definition. However choosing the

x− t active points arbitrarily may not always be sufficient to ensure that the labelled points, which

will be dropped later, can all be covered with small cost. To ensure that we will use the randomized

type assignment Algorithm 7 to choose the points that will be labelled.

40

3.5 Proof of Theorem 3.2.10

For any input I, let R denote the points colored red by Algorithm 6. The red tours are found

using the 3-approximation Algorithm 8 of [29] by Theorem 3.2.9 they have length at most Rad(R)+

2TSP(R∪depot). The following lemmas bounds each of these terms by O(ε)OPT, which proves that

the theorem.

Lemma 3.5.1. For any instance I, let R denote the points of I colored red by Algorithm 6. In

expectation over the random type assignment, Rad(R) = O(ε)OPT

Lemma 3.5.2. For any instance I, let R denote the points of I colored red by Algorithm 6. In

expectation over the random dissection and type assignment TSP(R ∪ depot) = O(ε)OPT

3.5.1 Proof of Lemma 3.5.1

For each level ` ∈ [0, `max] let R` denote the points labelled as type `. Thus the red points R, is the

union of all R` over all levels. Thus,

Pr[i ∈ R] =
∑
`>0

Pr[i ∈ R`] (3.15)

We compute the probability that a point i is in R`. If i ∈ R`, it has been labelled type `. Thus

i must have been chosen in the interval by Algorithm 7 while rounding the level ` segment S that

covers i. Property 3.5.3 (given below) shows the probability that i is chosen in the interval, and

hence included in R`, is Pr[i ∈ R`] = O(ε/ log L). As there are `max = O(log L) levels, Equation

3.15 reduces to,

Pr[i ∈ R] = O(ε)

Thus we have that,

E[Rad(R)] =
2
k

∑
i∈I

d(i, o) · Pr[i ∈ R] ≤ 2
k

∑
i∈I

d(i, o) ·O(ε) = O(ε)Rad(I).

The lemma follows as Rad(I) is a lower bound on OPT by Lemma 1.3.2.

Property 3.5.3. Let S be a level ` segment that is rounded by Algorithm 7, and let i be an active

point covered by S prior to rounding. Then point i is in interval chosen by Algorithm 7, with

probability at most O(ε/ log L).

Proof. Let x be the number of active points covered by S prior to its rounding, and let threshold

ti be the largest threshold such that ti ≤ x < ti+1. To round S the type assignment procedure

Algorithm 7, labels y = x− ti active points of S as type `. The y points are selected as an interval

by starting at a uniformly selected active point p, and then selecting the y − 1 active points lying

after p, wrapping around s if necessary.

There are a total of x different intervals, each one starting at a different active point p of S,

and point i lies in y different intervals. As Algorithm 7 picks uniformly among these intervals, the

41

probability that i lies in the selected interval is y/x. By definition of thresholds (Definition 3.2.1),

ti+1 ≤ ti(1 + ε/ log L), so we have that,

Pr[i is in the interval] =
y

x
=

x− ti
x

<
ti+1 − ti

ti
≤ ε

log L
.

3.5.2 Proof of Lemma 3.5.2

For each level ` ∈ [0, `max] let R` denote the type ` points of I, and note that R = ∪`>0R`. We

prove that for each `, E[TSP(R` ∪ depot)] ≤ O(ε/ log L)OPT. This implies the lemma since there

are `max = O(log L) levels so the tours of R`, for all `, can be pasted together at the depot to get a

tour of R of cost at most O(ε)OPT.

Focus on a single level ` and let B` be the boxes at level ` containing points from R`. We upper

bound the cost of TSP(R` ∪ depot) by thinking of the tour in three parts. For each box b ∈ B`,

let Rb denote the points of R` lying inside b. The inside parts consists of tours of the points in Rb

connected to the boundary of b, for each box b ∈ B`. The boundary part includes the boundaries of

all boxes in B`. Given the inside and the boundary of each b ∈ B`, to get a tour of R` we only need

a tour of the boxes B` and the depot. We refer to this as the outside part. Thus we have that,

TSP(R` ∪ depot) ≤
∑
b∈B`

(TSP of Rb connected to boundary of b) + (boundary of b) + outside cost

For the outside cost we define a complete graph G = (V,E) such that V contains a vertex for

each box in B` and one additional vertex to represent the depot. The cost of the edges of G are

as follows: the edge between two box vertices b, b′ has cost equal to the length of the shortest path

from any portal of b to any portal of b′. The cost of an edge between a box vertex b and the depot

vertex is equal to the length of the shortest path, from any portal of b to the depot. By Lemma

1.3.6 the outside cost; i.e a tour of the depot and boxes in B`, is at most 2MST (G). Thus we have

that:

TSP (R` ∪ depot) ≤
∑
b∈B`

(TSP of Rb connected to boundary of b) + (boundary of b) + 2MST (G)

(3.16)

By Lemmas 3.5.4 and 3.5.5 the inside and boundary costs are both O(ε/ log L)F (OPTS). Lemma

3.5.6 shows that 2MST (G) is O(ε/ log L)OPTS . As OPTS ≤ F (OPTS), we have that 2MST (G) ≤
O(ε/ log L)F (OPTS), which by the structure Corollary 3.2.7 is at most (1 + O(ε))OPT. Thus all

three costs O(ε/ log L)OPT, proving the lemma.

Lemma 3.5.4. (Inside cost) In expectation over the random dissection and the random type assign-

ment,
∑

b∈B`
(TSP of Rb connected to boundary of b) ≤ O(ε/ log L)F (OPTS)

42

Figure 3.4: The figure shows a box b ∈ B`. The white points have type ` and were dropped. Claim
3.5.7 shows that total length of the white intervals (boxed segments) is small. Claim 3.5.9 shows
that the cost of connecting the white intervals to the boundary is small (dashed lines).

Lemma 3.5.5. (Boundaries cost) In expectation over the random dissection and the random type

assignment,
∑

b∈B`
(boundary of b) ≤ O(ε/ log L)F (OPTS).

Lemma 3.5.6. (Outside cost) In expectation over the random shifted dissection, E[2MST (G)] ≤
O(ε/ log L)OPTS.

Proof of Lemma 3.5.4

Recall that for each b ∈ B`, the type assignment procedure (Algorithm 7) chooses Rb by selecting

intervals of the segments of b, and labelling the points in the interval as type `. The TSP of Rb

connected to the boundary of b is at most the sum the lengths of these intervals plus the cost of

connecting the intervals together and to the boundary of b. See Figure 3.4.

Claim 3.5.7 shows that in expectation over the random type assignment the sum of the lengths

of these intervals over all boxes in B` is O(ε/ log L)OPTS . Define the connection cost of b to be the

cost of connecting the intervals of b together and to the boundary of b. Let C(`) denote the sum of

the connection costs for all boxes b ∈ B`. Claim 3.5.9 shows that C(`) = O(ε/ log L)F (OPTS). The

proof of the lemma follows by combining Claims 3.5.7 and 3.5.9.

Claim 3.5.7. In expectation over the random type assignment, the sum of the lengths of type `

intervals across all boxes in B` is O(ε/ log L)OPTS.

Proof. Property 3.5.8 shows that for any segment S the expected length of its type ` interval is

O(ε/ log L) times the length of S. Thus by linearity of expectation the sum of all type ` intervals

over all boxes B` is at most O(ε/ log L) times the total length of all segments in B`. The claim

follows as the sum of all segments in B` is at most OPTS .

Property 3.5.8. For a segment S the interval chosen by Algorithm 7 when rounding S has expected

length O(ε/ log L)length(S).

Proof. Let x be the number of active points on segment S. List the active points in the order

they appear on segment S: p1, p2, . . . , px. Thus p1 is the first active visited by S after crossing the

boundary and px is the last active point visited by S before crossing the boundary. For i < x, let

43

li denote the length of segment S between pi and pi+1 and let lx be the length of S from px to

boundary plus the length of S from the boundary to p1. Thus we have that,

length(S) =
∑
i≤x

li

Let threshold ti be such that ti ≤ x < ti+1. Algorithm 7 chooses the interval by uniformly

selecting a starting active point and then selecting the next y = x − ti consecutive active points,

wrapping around if necessary. Thus if point i is in the interval, it contributes at most li to the length

of the interval. By Property 3.5.3, we have that

E[length(S)] ≤
∑
i≤x

Pr[i is in the interval] · li

≤
∑
i≤x

ε

log L
li

=
ε

log L
length(s)

Claim 3.5.9. The total connection cost for level `, C(`) is O(ε/ log L)F (OPTS).

Proof. Recall that C(`) is the sum of the connection cost for all boxes in B`. To prove the lemma

we will show that the connection cost for each b ∈ B` we let OPTS
b denote the cost of OPTS inside

b, and prove that,

Connection cost of b ≤ O(ε/ log L)F (OPTS
b) (3.17)

Then summing Equation 3.17 over all b ∈ B` proves the lemma.

Fix any b ∈ B`. The connection cost of box b is the cost of connecting the type ` rounded

intervals inside b together with the boundary of b. Select set R′ to contain one representative type `

point from each type ` rounded interval in b. Let d` denote the side length of b, then the connection

cost of b is at most,

Connection cost of b ≤ MST (R′) + d`/2 (3.18)

We bound the connection cost of b using the following bound for TSP [29][7]. (See [29] for a proof).

Theorem 3.5.10. [29][7] Let U be a finite set of points in a 2-dimensional box of side length dmax.

Then TSP (U) = O(dmax

√
|U |)

In our context, dmax = d`, and U = R′. Combining Theorem 3.5.10 with Equation 3.18 we get

Connection cost of b ≤ MST (R′) + d` = O(d`

√
|R′|)

As b is a rounded box, the segments in b can be partitioned into gb ≥ 1 groups, each containing

exactly γ rounded segments, and possibly one additional group containing less than γ rounded

44

segments. As R′ contains one representative from each rounded segment in b, R′ has size at most

γ(gb + 1) ≤ 2γ · gb. Thus we have that

Connection cost of b ≤ O(d`

√
2γ · gb) (3.19)

Each tour segment of b contributes two crossings at a level ` box and objective function F (Equation

3.1) charges OPTS the amount (ε/ log L) · d`, for each crossing at a level ` box. Thus Equation 3.20

gives the charge for b and we have that,

F (OPTS
b) ≥ 2

ε

log L
· d` · γ · gb (3.20)

≥ ε

log L
·
√

2γgb · (Connection cost of b) (3.21)

≥ O

(
log L

ε

)
· √gb · (Connection cost of b) (3.22)

Above Equation 3.21 follows by combining Equation 3.20 with Equation 3.19. Equation 3.22 follows

as
√

γ = log2 L/ε2. As gb ≥ 1 Equation 3.17 is proved.

Proof of Lemma 3.5.5

The proof follows the proof of Claim 3.5.9. Let |B`| denote the number of level ` boxes containing

type ` points. The sum of the boundaries of these boxes is∑
b∈B`

(boundary of b) = 4d`|B`| (3.23)

Each box b ∈ B` contains at least γ rounded segments. Each rounded segment has two crossings

with the boundary of a level ` dissection box. As objective function F (Equation 3.1), charges each

crossing of a level ` box, (ε/ log L)d` Equation 3.24 follows, and we have that,

F (OPTS) ≥ 2
ε

log L
d`γ|B`| (3.24)

≥ 2
ε

log L
d`γ

∑
b∈B`

(boundary of b) (3.25)

≥ O

(
log3 L

ε3

) ∑
b∈B`

(boundary of b) (3.26)

Equation 3.25 follows by combining equation 3.24 with Equation 3.23. Equation 3.26 follows as

γ = log4 L/ε4. This shows that
∑

b∈B`
(boundary of b) = o(ε/ log L)F (OPTS).

Proof of Lemma 3.5.6

As each b ∈ B` contains points labelled ` there are at least γ rounded segments in b and thus OPTS

has at least γ tour segments crossing into b. As each tour in OPTS is structured (and in particular

light), each tour crosses b at most 4r times. Thus there are at least γ/4r tours entering b.

Let P be a multigraph that denotes the projection of OPTS onto graph G where every edge in

OPTS between two boxes b, b′ ∈ B` and between the depot and a box b ∈ B` is represented by an

45

Figure 3.5: The shaded boxes are the boxes of B`. (a) Given that OPThas at least 3 tours entering
each box, OPTcrosses all non-trivial cuts at least 6 times. This is made explicit in Equation 3.27.
(b) The MST crosses all non-trivial cuts at least once as expressed in Equation 3.28

edge in P . Clearly cost(P) ≤ OPTS as the cost of edges in G are always at most the distances of the

edges in I. As there are has at least γ/4r tours in OPTS crossing each b ∈ B`, P has at least γ/4r

edges crossing any cut separating the depot vertex from any box vertices. See Figure 3.5. Consider

the linear program in Equation 3.27 on G with V denoting the vertices of G and we the cost of edge

e in G. The linear program finds w the minimum cost way to selected a set of edges in G such that

each non-trivial subset of V is crossed at most γ/4r times. Thus the cost(P) ≥ w.

w = min
∑

edge e

wexe s.t.



∑
e∈δ(S) xe ≥ γ/4r ∀S ⊂ V

S 6= ∅
S 6= V

xe ≥ 0

(3.27)

Consider linear program in Equation 3.28, which is the IP relaxation of MST on G.

w′ = min
∑

edge e

wexe s.t.



∑
e∈δ(S) xe ≥ 1 ∀S ⊂ V

S 6= ∅
S 6= V

xe ≥ 0

(3.28)

Observe that for any solution s of linear program 3.27, s · 4r/γ is a solution for linear program

3.28. If w is the minimum solution of linear program 3.27, then w′ the minimum solution of linear

program 3.28 is w′ = w · (4r)/γ. The MST relaxation of Equation 3.28 is known to have integrality

gap at most 2 i.e w′ ≥ 1
2 ·MST (G) [52]. Thus we have that

OPTS ≥ cost(P) ≥ w = w′ · γ

4r
≥ MST (G) · γ

8r

Thus (8r/γ) ·OPTS ≥ MST (G). As 8r/γ = o(ε/ log L), the lemma is proved.

46

3.6 Derandomization

Arora’s dissection can be derandomized by trying all choices for the shifts a and b. More effi-

cient derandomizations are given in Czumaj and Lingas and in Rao and Smith [18, 45]. As for

the randomized type assignment Algorithm 7, to guarantee that the cost of the dropped points is

small, when selecting an interval Y to drop from a segment S, we only need to pick Y such that

(1) Rad(Y) ≤ O(ε/ log L)Rad(S) and (2)length(Y) ≤ O(ε/ log L)length(S). In Lemma 3.5.1 and

Property 3.5.8 we prove that these two conditions hold at the same time, in expectation when Y is

chosen by first selecting a point uniformly from S and then selecting the next |Y | − 1 consecutive

points. To derandomize we can test the at most |S| intervals of length |Y | in S, (each starting from

a different point in S), and select any interval that satisfies both conditions.

3.7 Extension to Higher Dimensions

Algorithm 6 extends to higher dimension d ≥ 2 while d is a constant independent of n. Our

algorithm uses two main methods: The first is a generalization of Arora’s TSP algorithm to find

the black tours and the second is the rounding scheme that keeps track of capacity constraints. As

Arora’s TSP algorithm extends to d ≥ 2 dimension for constant d our generalization of this method

also does the same. Our rounding scheme has no geometric dependency and does not change in

higher dimensions. To show that the red tours have small cost we did use a geometric property that

upper bounds the TSP of a set of points in a 2-dimensional box (i.e Theorem 3.5.10). However there

exists generalization of that Theorem for Rd. In fact Arora also uses Theorem 3.7.1 to generalize

his patching lemma for Rd.

Theorem 3.7.1. [32] Let U be a finite set of points in the d-dimensional cube with side length L.

There exists a constant cd such that tsp(S) ≤ cd · L · |U |d−1/d.

As in Arora’s TSP algorithm in d dimensions, each dissection box is now a d dimensional cubes

with 2d boundaries (facets) and each box boundary is a d − 1 dimensional cube. The boundary

of a box contains m = O(
√

d log L)d−1 portals and each tour is r = O((
√

d/ε)d−1) light. The

dissection tree will now contain O(2dn) non empty boxes. The running time of the QPTAS will be

O(2dn · nmO(2dr)
) = n(log L)O(d/ε)d−1

, since for every box in the dissection the DP will now guess the

number of tours of each type that are present in the box, and there are mO(2dr) tour types. Thus for

the running time of our approximation scheme to remain quasipolynomial we would need (d)(d−1)

to be a constant.

Chapter 4

Extension to Multiple Depots

This chapter’s results are joint work with Claire Mathieu and will be included in the journal version

of [21].

4.1 Introduction

This chapter presents our QPTAS for the Euclidean UnitDem problem with a multiple depots, in

constant dimensions.

Recall the problem: Given a positive integer k denoting the vehicle capacity, a set C of n

customers and a set D of depots, such that C and D are points in Rd where d is a small constant

independent of n, find a collection of tours of minimum total length covering all customers in C,

such that each tour in the collection starts and ends at a depot and covers at most k customers.

The UnitDem problem with multiple depots models the setting where the delivery company has

multiple warehouses. The multiple depot setting also has applications to the design of telecommuni-

cation networks where user nodes must be connected to one of many possible hubs using links with

limited capacities [38].

All hardness results from the single depot setting extend to the multiple depot setting. Thus in

the metric setting the problem is APX-Hard and admits no PTAS [6], but there is a 6-approximation

due to Li and Simchi-Levi [38]. It remains an open question whether the Euclidean setting of the

problem has a PTAS for all k. As in the single depot setting, Arora’s PTAS for TSP can be extended

into a PTAS when the vehicle capacity is large i.e k = Ω(n). Cardon et al. [14] extend the methods

of Asano et al. [7] and Haimovich and Rinnooy Kan [29] to design a PTAS for the setting when the

vehicle capacity and the number of depots is small i.e k, |D| = O(log n/ log log n). We conjecture that

we should also be able to use the QPTAS presented in this chapter and the methods of Adamaszek

et al. [1] to get a PTAS for any number of depots and k ≤ 2logδ n (where δ a function of ε).

We extend our QPTAS from the single depot setting to handle multiple depots. As always we

focus mainly on the setting where the customers are located in R2. Our algorithm can be extended

47

48

to Rd for constant d as described in Section 3.7. We prove the following Theorem.

Theorem 4.1.1. (Main Theorem) Algorithm 10 is a randomized quasi-polynomial time approxima-

tion scheme for the two dimensional Euclidean unit demand vehicle routing problem with multiple

depots. Given ε > 0, it outputs a solution with expected length (1 + O(ε))OPT, in time nlogO(1/ε) n.

The Algorithm can be derandomized.

Overview of our approach. Unlike the TSP problem and single depot setting, a solution for

the multiple depots problem is not necessarily connected. Thus the farthest distance between two

points, and the TSP of the points, are no longer lower bounds for OPT. Our algorithm and analysis

from the single depot setting must be updated where ever these lower bounds were used.

We can no longer place our entire instance into a single bounding box. But we use a technique

introduced by Borradaile et al. for the Steiner forest problem, where the solution is also discon-

nected, to partition our instance into sub-instances such that it suffices to solve each sub-instance

independently.

Each sub-instance may still contain multiple depots however each can be solved similarly to the

the single depot setting. For each sub-instance we perform a random dissection and place portals

on the dissection lines. As before we use rounding to remember approximately the number of points

covered by each tour segment. Then a quasipolynomial time dynamic program is used to find a

structured solution, that is a solution consisting of portal respecting and light tours each covering

approximately k customers. With multiple depots, the dynamic program’s tour configurations de-

scribes whether a tour segment visits some depot rather than the depot. But this requires only a bit

of information so the running time does not change. To get a solution which is feasible with respect

to the vehicle capacity, we use the same randomized procedure as before to drop points from the

tours so that each one covers at most k points. We use a different constant factor approximation,

this time the 6-approximation of [38] on the dropped points to obtain solution for them.

The TSP is no longer a lower bound thus our analysis showing that it is cheap to cover the

dropped red points must be updated. The output of the 6-approximation of [38] can be bounded

in terms of the TSP of a slightly different instance (the virtual instance) as well as the Rad of the

original instance. Thus we only need to extend our analysis from the single depot setting to show

that the TSP of the virtual instance is small. Figure 4.1 shows a solution computed by Algorithm

10.

4.2 Preliminaries

For any two points i, j ∈ I let dist(i, j) denote the shortest distance between i, j. Recall that the

radius of a customer i ∈ C is defined as ri = mind∈D dist(i, d). For each customer i ∈ C let D(i)

denote the closest depot to i. We define virtual instance the virtual instance of I denoted by Ĩ as

follows:

49

Figure 4.1: A solution computed by Algorithm 10 for k = 7. The stars are the depots, the solid circles
are the “black” points and the empty circles are the “red” points. The solid tours are computed by
the DP in step 2. Each covers ≤ k “black” points. The dotted tour covers the “red” points and is
computed in step 5 using the 6-approximation.

Definition 4.2.1. (Virtual Instance) For any input I = {C,D} let the virtual instance Ĩ, contain

all customers in C and a single virtual depot v. Define the distances of points in Ĩ as follows: for

any customer i ∈ C the distance from i to virtual depot v is d̃ist(i, v) = ri and for any two customers

i, j ∈ C let d̃ist(i, j) = min{ri + rj , dist(i, j)}, i.e the minimum of the distance from i to j in I and

the distance from i to j going through v. For any two customers i, j if d̃ist(i, j) ≤ dist(i, j) the edge

between i, j in Ĩ is called a virtual edge.

We use OPT(Ĩ) to denote the optimal solution of the virtual instance. Note that OPT(Ĩ) ≤ OPT

as distance are in Ĩ are at most the distances in I and that the distances in Ĩ satisfy the triangle

inequality. The virtual instance will is used by the constant factor algorithm and our in our analysis.

4.3 Algorithm and Proof of Main Theorem

We present a quasi-polynomial time approximation scheme for the problem with multiple depots and

prove the main theorem. We partition the instance into sub-instances and solve each sub-instance

independently and output the union of their solutions.

A sub-instance may contain multiple depots. Nevertheless it is solved very similarly to the single

depot problem. The dynamic program needs to be slightly reinterpreted to handle multiple depots

and we will use a different constant factor approximation algorithm for the red points.

In the following subsections we define the new constant factor approximation and give some

straightforward extension of the definitions from the single depot case to prove the Main Theorem

4.1.1. The crux of the analysis is showing that the constant factor approximation on the red points

still has negligible cost compared to opt.

50

Algorithm 10 QPTAS: Euclidean UnitDem, multiple depots, two dimensions
Input: Customers C, depots D, and integer k

1: Partition instance into sub-instances as described in Section 4.3.1.
2: for each sub-instance do
3: Perturb sub-instance, perform random dissection and place portals as described in Section

4.3.2
4: Use the DP from Section 4.4 to find a structured solution of Definition 3.2.4.
5: Use the DP’s history to construct the structured tours and assign types to points using the

randomized type assignment as in the single depot case.
6: Color points black and red as in the single depot case and drop all red points from the

structured tours.
7: Use the 6-approximation Algorithm 12 to get solution for dropped red points.
8: The solution of the sub-instance is the union of red tours on the red points and black tours

on the black points
9: end for

Output: Union of the solutions of all sub-instances.

4.3.1 Partitioning into Sub-Instances

Recall that in Arora’s TSP algorithm, all input points are placed inside a bounding box of side length

L. In problems like TSP and UnitDem with single depot where the solution is connected, the cost

of the optimal solution at least is the distance between the two farthest points, so L = O(OPT). In

the case of multiple depots, the bounding box of all points does not in general have length O(OPT).

To overcome this difficulty we use a trick similar to one introduced by Borradaile et al. [12] for

the Euclidean Steiner Forest problem, where this difficulty also arises. We partition the instance

into sub-instances, using Algorithm 11, and prove in Lemma 4.3.1 that it suffices to solve each

sub-instance independently to get a solution for the whole instance.

Algorithm 11 Partition into Sub Instances
Input: Customers C, depots D, and integer k

1: Run the 6-approximation, Algorithm 12, to get a solution of cost A.
2: Define a graph that has an edge between customers c, and c′ if and only if they are within

distance A of each other
3: Let V1, V2, . . . Vx be the connected components of the resulting graph.
4: for each component Vi for i = 1, . . . x do
5: for each customer c in component Vi do
6: Let D(c) be the set of depots that are within distance A to customer c.
7: Include D(c) in component Vi.
8: end for
9: end for

10: Let Q1, . . . Qx be the resulting components.
Output: Sub instances Q1, . . . Qx.

Lemma 4.3.1. Let Q1, Q2, . . . Qx be the sub-instances returned by Algorithm 11, (ni)i≤x denote the

number of customers in Qi, and let A denote the cost of 6-approximation computed in Line 1. Let

51

Li be the maximum distance between any two points in Qi. We have that

1.
∑

i

OPT(Qi) = OPT

2. Li ≤ (ni + 1)A

Proof. We prove the first property. For a contradiction suppose that a customer c ∈ Q and c′ ∈ Q′

where Q 6= Q′, are covered by the same tour in OPT. As c and c′ are in different sub-instances they

are also in different components in Line 3 of Algorithm 11 . Thus the distance between c and c′ is

greater than A ≤ 6OPT, a contradition. A similar argument shows that a customer c in Q cannot

be covered by a depot in which is in Q′ 6= Q.

We prove the second property. Let A be the cost of the 6-approximation computed in Line 1 of

Algorithm 11. Fix any Qi and and let points p, p′ be the points which are farthest apart in Qi. If

p, p′ are both customers there is an Euclidean path from p, p′ such that dist(p, p′) ≤ (ni − 1)A. If

both p, p′ are depots, then dist(p, p′) ≤ (ni + 1)A. If one point is a depot and the other a customer

then dist(p, p′) ≤ niA.

4.3.2 Preprocessing

The sub-instances Q1, . . . Qy are preprocessed independently using the Arora’s technique with slightly

different parameters.

Perturbation For any Qi, define its bounding box as the smallest box whose side length Li is a

power of 2 that contains all points in Qi. Let ni be the number of customers in Qi. Let A denote

the cost of the 6-approximation computed in Line 1 of Algorithm 11. Place a grid of granularity

δi = Aε/(2 · ni · 6) inside the bounding box. Move every input point (customers and depots) to the

center of the grid box it lies in. Several points may map to the same grid box center, treat them

as multiple points which are located in the same location. Scale distances in Qi by 4/δi so that all

coordinates become integral and the minimum distance between any two grid centers that contain

points is least 4. By Property two of Lemma 4.3.1, after scaling the maximum distance between

points and hence the side length of the bounding box is Li = O(n2
i /ε).

A solution for the perturbed instance of Qi can be extended into a solution for Qi by taking

detours from the grid centers to the original locations of the points. At most 2ni detours will be

required for Qi; ni detours for the customers and at most ni detours for the depots as there are at

most ni tours. The cost of each detour (before scaling) is 2δi, thus the cost of all the detours for Qi

(before scaling) is at most 2ni ·δ. Over all Q1, . . . , Qx the cost of detours is at most
∑

i 2niδi ≤ Aε/6

which is ≤ εOPT by Theorem 4.3.4. Scaling does not change the structure of the optimal solution

and we can always re-scale to get the cost of the original instance. Thus the total cost of the

perturbation is within the required ε error parameter.

52

Randomized Dissection and Portals. The randomized dissection, and placement of portals

are done for each Qi just as in Arora’s TSP algorithm using Li in place of L, and ni in place of n.

See Section 2.2.1.

4.3.3 Extending the Structure Corollary

We extend the definitions from Section 3.2.1 to a multiple depot problem. These extensions apply

to a sub-instance and the whole instance.

Most extensions can be done by replacing the words “the depot” with “some depot”. For example

a k-tour, and each tour in a relaxed set, now must visit some depot rather than the depot. With

these reinterpreted definitions, the Structure Theorem 3.2.6 also holds for multiple depots. Thus we

get Corollary 4.3.2, corresponding to Corollary 3.2.7, which states that the structured set of k-tours

that minimizes F is a near optimal solution.

Corollary 4.3.2. (Structure Corollary) Let I be an instance (or a sub-instance) of UnitDem with

multiple depots. Let OPT denote the length of the optimal solution of I, and let OPTS denote

the length of the structured solution of I that minimizes objective function F . In expectation over

random shifts of the dissection, OPTS ≤ (1 + O(ε))OPT.

By Corollary 4.3.2 we can focus on computing the structured solution that minimizes objective

F , which we will denote as OPTS . In section 4.4 we show that the essentially the same DP as the

single depot case can be used for the multiple depot setting, which proves the following:

Theorem 4.3.3. (Dynamic Program) Let I be an instance (or sub-instance) of the UnitDem problem

with multiple depots with n customers. Then OPTS(I) is computed by the dynamic program of

Section 4.4 in time nlogO(1/ε) n.

4.3.4 A Constant Factor Approximation for Multiple Depots

The constant factor approximation we use was presented by Li and Simchi-Levi in 1990. The

algorithm uses the tour partitioning 3-approximation (Algorithm 8) to get a solution for the virtual

instance Ĩ, which is then translated into a solution for I. Using the solution of Ĩ directly may result

in paths (rather than tours) that start and end at different depots. Each such path is converted

into a tour by taking an extra detour to one of its depots. Theorem 4.3.4 was proved by Li and

Simchi-Levi and shows that Algorithm 12 is a 6-approximation.

Theorem 4.3.4. [38] For any input I, an instance of the metric UnitDem problem with multiple

depots, in expectation the output of Algorithm 12 has length most Rad(Ĩ)+2 ·TSP(Ĩ) ≤ 3OPT(Ĩ) ≤
6OPT.

Proof. As the virtual instance Ĩ is a single depot problem, by Theorem 3.2.9, Algorithm 8 returns

a solution, Π̃, of expected length Rad(Ĩ) + 2TSP(Ĩ) ≤ 3OPT(Ĩ). Replacing the virtual edges of Π̃

does not increase its length, as each virtual edge e = (i, j) of cost ri + rj is replaced by two actual

53

Algorithm 12 Tour Partitioning for multiple depots 6-approximation [38]
Input: Customers C and depots D in metric space, and integer k

1: Let Π̃ denote the solution returned by Algorithm 8 on virtual instance Ĩ.
2: Let P be a set to be populated with paths between two depots, with ≤ k customers
3: for each tour π̃ in Π̃ do
4: Replace each virtual edge e = (i, j) in π̃ between customers i, j with edges ei = (i,D(i)),

e2 = (j, D(j)) where D(i) and D(j) are the depots closest to i, j.
5: Add the set of paths created in the previous step to P .
6: end for
7: for each path p ∈ P do
8: Let i, j be the first and last customers in p and D(i), D(j) be their closest depots.
9: if ri + dist(j, D(i)) ≤ rj + dist(i, D(j)) then

10: Turn p into a tour π that starts and ends at depot D(i).
11: else
12: Turn p into a tour π that starts and ends at depot D(j).
13: end if
14: end for
Output the resulting tours Π = (π).

edges of cost ri and rj . Thus the length of the paths in P is equal to length(Π̃) ≤ 3OPT(Ĩ). By the

triangle inequality converting the paths in P into tours Π will at most double the length of each path

in P , thus we have that the length of the output is at most 2length(P) ≤ 6OPT(Ĩ). The Theorem

follows as OPT(Ĩ) ≤ OPT.

4.3.5 Proof of Main Theorem 4.1.1

We first prove that Algorithm 10 obtains solutions of cost (1 + O(ε))OPT(Qi) for each sub-instance

Qi. Fix a sub-instance Qi. To show that a solution of cost (1+O(ε))OPT(Qi) is obtained, follow the

proof of Theorem 3.1.1, replacing Corollary 3.2.7 with Corollary 4.3.2, Theorem 3.2.8 with Theorem

4.3.3 and Theorem 3.2.10 with Theorem 4.3.5.

Theorem 4.3.5. Let I be an instance (or sub-instance) of the UnitDem problem with multiple

depots and let OPT denote the optimal solution of I. In expectation over the random shifts of the

dissection and the random type assignment, the length of the red tours for I output by Algorithm 10

is O(ε)OPT.

We use the first property of Lemma 4.3.1 to show that the union of the solutions of all sub-

instances gives a solution of cost (1 + O(ε))OPT for the whole instance.

The DP for each sub-instance dominates the running time. Let ni denote the number of customers

in Qi. The run time is at most,
y∑
i

nlogO(1/ε) ni

i ≤ nlogO(1/ε) n

The derandomization of the Algorithm can be done by derandomizing the procedure for all sub-

instances individually as discussed in Section 3.6.

54

4.4 Extending the Dynamic Program

A slight modification to the configurations of the single depot DP allows it to also handle multiple

depots. The main insight is that for each tour segment we only need to remember whether the

segment visits some depot or not.

Recall that in the single depot DP of Section 3.4, a rounded configuration represents segments

by numbers rp,q,t,d and an unrounded configuration represent them by tuples (p, q,m, d). In both

cases p, q are portals, t and m represent the (approximate) number of points on the segment and d

indicates whether the segment visited the depot. For the multiple depot setting the only modification

to the DP is to update the meaning of indicator d. Now d = 1 will represent that the segment visited

a depot, rather than the depot.

Recall that a configuration profile Φ = (p1, p2, x1, d1), (p2, p3, x2, d2), . . . (ps, ps+1, xs, ds) with

p1 = ps+1 indicates that the segments form a tour. In the single depot case such a Φ is feasible if

at least one segments had di = 1 indicating that it visited the depot. In the multiple depot setting

the same condition implies that at least some depot was visited, and so the profile is still feasible. If

multiple depots were vistied we can shortcut around all but one of the depots in the final solution.

4.5 Proof of Theorem 4.3.5

Let R denote the points marked red by Algorithm 10. By Theorem 4.3.4 the 6-approximation of R

has cost at most Rad(R̃) + 2 ·TSP(R̃), where R̃ is the virtual instance with the points in R and all

the depots. The proof of Theorem 4.3.5 follows from Lemmas 4.5.1 and 4.5.2 which show that in

expectation both quantities are O(ε)OPT.

Lemma 4.5.1. For any instance I with multiple depots, let R denote the points of I colored red by

Algorithm 10 and R̃ denote the virtual instance with the points in R and depots in I. In expectation

over the random type assignment, Rad(R̃) = O(ε)OPT(I)

Proof. The proof of the corresponding lemma for the single depot case (Lemma 3.5.1) implies that

Rad(R̃) = O(ε)Rad(Ĩ). As the Rad bound sums the distance of each point to its closest depot,

Rad(Ĩ) = Rad(I). The Lemma follows as Rad(I) ≤ OPT(I).

Lemma 4.5.2. For any instance I with multiple depots, let R denote the points of I colored red by

Algorithm 10 and R̃ denote the virtual instance with the points in R and depots of I. In expectation

over the random dissection and type assignment TSP(R̃) = O(ε)OPT(I)

4.5.1 Proof of Lemma 4.5.2

For each level ` ∈ [0, `max] let R` denote the type ` points of I and note that R = ∪`>0R`. Let R̃`

denote the virtual instance on the set of customers in R` and all the depots in the instance. We will

prove that for each level `, E[TSP(R̃`)] ≤ O(ε/ log L)OPT. This implies the lemma as the tours of

R̃` from all O(log L) levels can be pasted together at virtual depot v to yield a tour of R̃.

55

We follow the proof of Lemma 3.5.2 and upper bound the cost of TSP(R̃`) by thinking of the tour

of R̃` in three parts: inside, boundary and outside. The inside and boundary parts are defined just

as in the proof Lemma 3.5.2, using distances of the actual instance rather than the virtual instance.

This still gives an upper bound on the cost of the virtual TSP as distances in the virtual instance

are always at most the distances in the actual instance. Given the inside and boundary to get a tour

of R̃` we only need a tour of the boxes of B` and the virtual depot. We refer to this as the outside

part and we will use virtual distances for this part.

Define a complete graph G̃ = (V,E), which corresponds to the G in the proof of Lemma 3.5.2,

but uses virtual distances. G̃ contains a vertex for each box in B` and one additional vertex to

represent the virtual depot. The edge costs in G̃ are defined as follows: the cost of the edge between

two box vertices b, b′ is equal to the length of the shortest path in Ĩ from any portal of b to any

portal of b′, the cost of an edge between a box vertex b and the virtual depot vertex is equal to

the length of the shortest path in Ĩ from any portal of b to the virtual depot. By Lemma 1.3.6 the

outside cost; i.e the cost of a tour of the virtual depot and boxes B`, is at most 2MST (G̃). Thus

we have that:

TSP (R̃` ∪ v) =
∑
b∈B`

(TSP of Rb connected to boundary of b) + (boundary of b) + 2MST (G̃)

(4.1)

The first two terms (i.e the inside and boundary costs) are defined exactly as in Lemma 3.5.2

using the actual distances, thus they can be analyzed using Lemmas 3.5.4 and 3.5.5 and shown to

be O(ε/ log L)F (OPTS). By Corollary 4.3.2 F (OPTS) ≤ (1 + O(ε))OPT, thus we have that,∑
b∈B`

(TSP of Rb connected to boundary of b) + (boundary of b) ≤ O(ε/ log L)OPT

By Lemma 4.5.3 (below) we have that MST (G̃) ≤ O(ε/ log L)OPTS . By definition of F that is

at most O(ε/ log L)F (OPTS), which by Corollary 4.3.2 is at most O(ε/ log L)OPT. Thus we have

shown that TSP(R̃` ∪ v) ≤ O(ε/ log L)OPT overall.

Lemma 4.5.3. (Outside cost) In expectation over the random shifted dissection, E[2MST (G̃)] ≤
O(ε/ log L)OPT.

Proof. The proof follows by replacing G with G̃ in the proof of Lemma 3.5.6 and interpreting OPTS

as the structured solution for the multiple depot problem.

Chapter 5

Vehicle Routing: Unsplittable

Demands, Single Depot in One

Dimension

This chapter’s results are joint work with Shay Mozes and Claire Mathieu and have appeared in [20].

5.1 Introduction

This chapter presents our APTAS for 1-dimensional Unsplit VRP with a single depot.

Recall the problem: Given a positive integer k denoting the vehicle capacity, a set C = {(pi, wi)}i≤n

of n customers each with a position pi on the line and a demand wi ≤ k, and a single depot also

with a position on the line, find a collection of tours of minimum total length covering the demands

of all customers in C, such that each tour starts and ends at the depot, delivers at most k demand

and such that no customer’s demand is split up among multiple tours.

Problem applications. As previously mentioned, from the VRP perspective the Unsplit problem

models the case where all customers require their entire demand in one delivery, e.g residential

customers ordering take out, or groceries. The 1-dimensional setting may be a suitable model for

train routing, where a train delivers cargo from a harbor to stations located along the railroad.

The problem can be equivalently viewed as a scheduling problem of minimizing the makespan

on a single batch machine with non-identical job sizes or a generalization of bin-packing.

In the scheduling setting, integrated circuits are tested by subjecting them to thermal stress for

an extended period of time (burn-in). Each circuit has a prespecified burn-in time (pi) and a number

of boards (wi) it requires. Since circuits may stay in the oven for a period longer than their burn-in

time, it is possible to place different circuits as a batch in the oven simultaneously as long as the

capacity of the oven (the number of boards in the oven) k is not exceeded. The processing time of

56

57

each batch is the longest burn-in time required among the circuits in the batch. Once processing

is begun on a batch, no product can be removed from the oven until the processing of the batch

is complete. The goal is to find a partition of the circuits into batches so that the total processing

time of all batches (the makespan) is minimized.

In the generalized bin packing setting, we are given a set C of n items of sizes w1, . . . , wn and

costs p1, . . . , pn. The goal is to find the minimum cost packing of items into k sized bins where the

cost of a bin is the maximum cost item in the bin. As an application of the generalized problem,

consider packing temperature sensitive products into k-sized storage bins where each product has

a size and a maximal temperature at which it may be stored safely. The lower the temperature

the higher the cost to store the product. Packing all the products, so that none are damaged while

keeping the cost of operations as low as possible requires solving the generalized bin packing problem.

Hardness. The classical bin-packing problem reduces to the Unsplit problem (for any dimensions

and with any number of depots) by setting all pi equal. It is well known [27] that bin-packing is

strongly NP-hard and does not have a polynomial time approximation algorithm with approximation

ratio better than 3/2 unless P=NP, hence no PTAS is possible. Thus this also applies to the Unsplit

problem, even in 1-dimension. The hardness results however, do not exclude APTAS (asymptotic

PTAS), and in fact these exist for bin packing when the cost of the optimal solution is at least 1/ε

(that is, at least 1/ε bins are necessary).

Our result. We design an APTAS for the 1-dimensional Unsplit single depot problem. The

problem does not admit an asymptotic approximation scheme in the usual sense. The reason is that

the cost of the solution is determined by the positions pi, so any instance can be scaled so that the

cost of an optimal solution is arbitrarily large without changing the solution itself. Therefore, to

define a notion of asymptotic for our problem we restrict the ratio of the optimal solution and the

maximal position. In other words, scale the input so that maxi pi = 1. The asymptotic regime for

our algorithm occurs when the cost of the scaled input is Ω(1/ε6).

Theorem 5.1.1. For any instance of the 1-dimensional Unsplit single depot problem such that

maxi pi = O(ε6)OPT, Algorithm 13 outputs a solution of cost (1 + O(ε))OPT in time O(n log(n)) +

log(n)(1/ε)O(1/ε).

Related work. We are not aware of any prior work from the VRP community that specifically

considers the 1-dimensional setting of the Unsplit problem. For the metric setting, Haimovich,

Rinnooy Kan, and Stougie give a 3.5-factor approximation [30]. Bramel et al. give a probabilistic

analysis for the Euclidean plane where customer demands are drawn i.i.d from any distribution [13].

Labbé et al. [36] give a 2-approximation for the problem on a tree.

The problem in its formulation as minimizing the makespan on a single batch machine with

non-identical job sizes has been extensively studied in the past two decades, and the result of this

chapter gives the first APTAS for the most general setting of this problem. Previously, Zhang and

58

Cao [56] designed an APTAS for the symmetric setting where pi = wi for all i, which we compare

our result to below. Uzsoy [51] was the first to consider the problem of minimizing the makespan

on a single batch machine. He proved that it is NP-Hard and presented a few heuristics that were

evaluated empirically. Many others have considered the problem since and various heuristics are

given in [8, 23, 24, 43] to name just a few. In terms of approximation algorithms, Zhang et al. [55]

prove constant approximation ratios for some heuristics, with 7/4 being the best.

Comparing our result to the APTAS of Zhang and Cao [56], our algorithm does not require the

assumption that pi = wi for all i as in [56]. Our algorithm also has a much better running time than

the APTAS of [56]; O(n log)+ log n · (1/ε)O(1/ε) versus n(1/ε)O(1/ε)
. However our speedup in running

time comes at the price of having a more severe asymptotic assumption. An alternative version of

our algorithm which uses enumeration (rather than an LP) as in the work of Zhang and Cao [56],

has the less severe asymptotic assumption, maxi pi = O(ε)OPT, but runs in time n(1/ε)O(1/ε)
.

The bin packing problem has a very long history and many variants of the problem have been

studied (see [16] for a survey). However none of these variants capture the generalization we describe

above. APTAS and AFPTAS have been designed for classical bin packing as well as some of its

variants. Fernandez de la Vega and Lueker [26] designed a PTAS for classical bin packing in 1981.

In the subsequent year, Karmarkar and Karp [33] extended their framework and gave an AFPTAS.

Variants of bin packing which have APTASs or AFPTAs include bin packing with variable sized

bins [41] and generalized cost structure [25], among others. A variant which was shown to be

APX-Hard (i.e does not admit APTAS) is multi dimensional bin packing [10].

Overview of our approach. Our techniques draw on those used in the literature for the bin-

packing problem, namely rounding demands and separate handling of small and big demands. We

simplify our instance by rounding the positions of all customers and then apply the De La Vega

and Lueker [26] rounding scheme from bin packing on the big demands at each position, yielding a

small number of distinct big demands at each position. Next we try a few different ways (O(1/ε))

to partition the customers into disjoint regions. For each possible partition, we solve the problem

in each region independently and combine to get a solution for the whole instance. In the end we

output the solution of the partition with the minimum cost. Figure 5.1 shows a solution computed

by our algorithm.

To solve the problem inside each region of a partition, we using solve a relaxed problem, where

we pretend that the small demands are fluid and can be split arbitrarily among different tours. We

find a near optimal solution for the relaxed problem by rounding the solution of a linear program

as was done in [25, 17]. Finally we extend the relaxed solution greedily into a feasible solution that

respects the unsplittable constraint for small demands.

Due to rounding each region contains only a constant number of positions and each position has

a constant number of distinct big demands. This allows us to solve the relaxed problem in each

region in constant time. Our running time follows as there are a logarithmic number of regions in

each partition.

59

Figure 5.1: A solution computed by Algorithm 13 for k = 10. The star is the depot, the circles on
the line are the customers with demands. The dashed lines partition the instance into regions. All
tours (shown below the line) cover customers from only one region and at most k total demand.

For the analysis we use a shifting technique as in [9, 1] to show that if we try a few (O(1/ε))

different ways to partition the instance into regions at least one yields a near-optimal solution.

Finally we show that it is possible to construct a near-optimal solution by greedily inserting the

small demands into the relaxed solution we compute.

5.2 Preliminaries

Without loss of generality we assume that our input is preprocessed as defined below:

Definition 5.2.1. (Preprocessed) An instance is preprocessed if:

• The depot’s position is the origin.

• All customers are located to the right of the depot.

• No customer is closer than (ε · pmax)/n from the depot, where pmax = maxi pi.

We can always define the depot’s position to be the origin and reinterpret the positions of the

customers such that the position of each customer also represents its distance to the depot. If there

are customers on the right and left of the depot, we can solve each side separately, as they are

analogous to one another, and return the union of the two solutions. We denote pmax as the furthest

position from the depot. If there are any customers located at positions closer than ε · pmax/n from

the depot, we can serve them each with a separate tour. The overall cost for this is at most 2εpmax,

which is at most εOPT as any solution has cost at least 2pmax.

Observe that if p is the maximum position of any customer on tour t then the cost of t is 2p.

60

5.3 Algorithm and Proof of Main Theorem

We present the APTAS in Algorithm 13 and prove Theorem 5.1.1. Figure 5.1 shows a solution

computed by our algorithm.

Algorithm 13 APTAS for Unsplit with single depot in one dimension
Input: A preprocessed instance with customres (pi, wi)1≤i≤n and vehicle capacity k
Precondition: maxi pi ≤ ε6OPT
1: Round the input using Algorithm 14 described in section 5.3.1.
2: for 1 ≤ j ≤ 1/ε do
3: Partition the instance into regions R1, R2, . . . using partition Pj (as in Definition 5.3.2).
4: for each non-empty region Ri of partition Pj do
5: Solve the relaxed problem in Ri treating small demands as fluid using Algorithm 15.
6: Extend the relaxed solution into a feasible solution, Soli, for small demands in Ri using

Algorithm 16.
7: end for
8: Let Best(Pj) = ∪Ri∈Pj Soli be the solution found using partition Pj .
9: end for

Output: minj Best(Pj), the minimum cost solution found over all partitions.

5.3.1 Rounding

Algorithm 14 uses rounding to reduce the number of positions and the number of distinct big demand

sizes at each position. Due to preprocessing, the position of each customer represents its distance

from the depot. Thus in Line 1 rounding a position pi, means to move customer i to a new position

so that its distance from the depot is the smallest integer power of (1 + ε) that is at least pi. A

demand wi is called big if wi ≥ εk and small otherwise. Lines 3-8 uses the rounding technique of bin

packing algorithms due to Fernandez de la Vega and Lueker [26] to reduce the number of distinct

big demands at each position.

By Lemma 5.3.1 an optimal solution of the rounded instance I ′ can be extended into a near

optimal solution for I. Thus we can focus on computing a solution for the rounded instance I ′. See

Section 5.4 for the proof of the lemma.

Lemma 5.3.1. Given a preprocessed instance I, Algorithm 14 outputs an instance I ′ such that:

1. Each customer’s position is at distance (1 + ε)j for some integer j, from the depot.

2. Each position has at most 1/ε2 + 1 distinct sizes of big demands.

3. Any feasible solution for I ′ is also feasible for I.

4. OPT(I ′) ≤ (1 + O(ε))OPT(I).

61

Algorithm 14 Rounding
Input: Preprocessed instance I with vehicle capacity k, customers (pi, wi)1≤i≤n

1: Round up each customer’s position, pi (i.e its distance to the depot), to the next integer power
of (1 + ε)

2: Partition demands (wi)i into big (≥ kε) and small (< kε).
Rounding big demands:

3: for each position p with np number of big demands s.t np ≥ 1/ε2 do
4: Consider the np big demands in decreasing order and partition them into d1/ε2e groups s.t

each group (except possibly one) has cardinality exactly bnpε
2c.

5: for each group g do
6: Round the size of all demands in g to the size of the maximum demand in g.
7: end for
8: end for

Output: Rounded instance I ′.

5.3.2 Partitioning into Regions

We define 1/ε ways to partition the instance into disjoint regions in Definition 5.3.2. Lemma 5.3.3

states one of the main structural properties, that for at least one of these partitions, solving each

region independently and combining the solutions yields a near optimal solution for the whole

instance.

Definition 5.3.2. (Partitions) Let I ′ be a rounded instance of the problem where pmax = maxi pi

is the farthest position from the depot. Partitions are defined in terms of blocks and regions.

A block, is described by an integer i ≥ 0 where the i-th block consists of the customers at positions

(pmaxε
i+1, pmaxε

i]. A region consists of at most 1/ε consecutive blocks.

We define 1/ε ways to partition I ′ into regions. For each 0 ≤ j < 1/ε, in partition Pj, the farthest

region (from the depot) consists of the customers at positions (εjpmax, pmax], and for all i ≥ 0, the

i-th farthest region consists of the customers at positions (εjpmaxε
(i+1)/ε, εjpmaxε

i/ε].

Observe that in partition Pj the farthest region consists of j blocks, and for all i ≥ 0 the i-th

farthest region consists of 1/ε blocks.

Lemma 5.3.3 allows us to reduce the problem to solving each region of I ′ separately. Its proof

uses a simple structural property about the tours, and a shifting technique similar to that of Baker

[9] and Hochbaum and Maass [31]. See Section 5.5.

Lemma 5.3.3. Let I ′ be a rounded instance of the problem and let Pj, for 0 ≤ j < 1/ε, be

the partition of I ′ into regions. There exists a partition Pj, such that
∑

Ri∈Pj
OPT(Ri) ≤ (1 +

O(ε))OPT(I ′).

5.3.3 Solving a Region

Using Lemma 5.3.3 we focus on solving the problem in each region. We define a relaxed problem

(Definition 5.3.4) that can be solved in constant time. Then we extend the relaxed solution into a

feasible solution for all demands.

62

Definition 5.3.4. (Relaxed problem) Fix a region R of the rounded instance I ′. In the relaxed

problem, the small demands of R are treated as fluid and allowed to be split up among multiple tours

and placed fractionally on tours.

Solving the relaxed problem. We describe how to handle the (solid) big demands for solving

the relaxed problem. As a result of rounding, each region R contains just a constant number

of positions and each position contains a constant number of distinct big demands. Thus the total

number of distinct big demands in R is a constant. The big demands in R can be described concisely

as:

Definition 5.3.5. (Big demand type) Fix a region R of the rounded instance I ′. A big demand type

is a pair (p, b) where p is the position of a big demand and b is one of the at most 1/ε2 (rounded)

big demand sizes at position p. Let n(d) denote the total number of demands of type d = (p, b) in R.

A tour can cover only a constant number (at most 1/ε) of big demands. Thus we can describe

tour of R concisely by a multiset of big demand types. The configuration of a tour roughly describes

which demands it will cover: for each occurrence of a big demand type (p, b) in its multiset the tour

covers one of the big demands from position p with size b.

Definition 5.3.6. (Configuration) Fix a region R of rounded instance I ′. A configuration f of a

tour in R consists of a position mf , which is the furthest position of the tour, and a multiset Df of

big demand types, each with position at most mf , whose (rounded) sizes sum up to at most k.

For each configuration f , let cf denote the remaining capacity of a tour with configuration f

(i.e., cf = k −
∑

(p,b)∈Df
b). For any big demand type d, let nf (d) denote the multiplicity of d in

Df .

Given the set of configurations F of region R a linear program is used to solve the relaxed

problem. Let S be the set of small demands in region R. The linear program will consider the

small demand as fluid at each position in R. The linear program has one variable xf for each tour

configuration f ∈ F and the objective is to select a minimum cost set of tour configurations such

that two constraints are satisfied: Constraint 5.2 ensures that all big demand types are covered

by the selected tour configurations and constraint 5.3 ensures that for each position p, the small

demands further right than p can be covered with the remaining capacities of the tour configurations

that extend to the right of p.

63

min
∑
f∈F

2 ·mfxf (5.1)

s.t
∑
f∈F

xfnf (d) ≥ n(d) ∀ demand types d (5.2)

∑
f :mf≥p

cfxf ≥
∑

(pi,wi)∈S
pi≥p

wi ∀ positions p (5.3)

xf ≥ 0 (5.4)

Algorithm 15 rounds a basic solution of the linear program above to obtain a solution to the

relaxed problem. Let OPT(R) denote the optimal (unrelated) solution of region R.

Algorithm 15 Solve Relaxed Region
Input: A region R with a set S of small demands.
1: Let D be the set of big demand types for region R (Definition 5.3.5).
2: Let F be the set of tour configurations for region R (Definition 5.3.6).
3: Let x∗ = (x∗f)f∈F denote a basic optimal solution of the linear program of (Equations 5.1-5.4).
4: Let x̄f = dx∗fe for each f ∈ F .
5: Cover the big demand types in D with tours specified by the (x̄f)f∈F . 1

Output: The resulting set of tours covering D.

By Lemma 5.3.7, Algorithm 15 returns in constant time a solution covering all big demands in R,

whose cost is bounded in terms of OPT(R) and pR, where pR is the farthest postion in R. Note that

later we will use the “asymptotic” assumption to show that the additive pR term is small compared

to OPT. The proof appears in Section 5.6.

Lemma 5.3.7. Let R be a region of rounded instance I ′, pR denote the farthest position in R

and OPT(R) denote the cost of the optimal (unrelaxed) solution of R. Given R, Algorithm 15

outputs in time (1/ε)O(1/ε) a set of tours T covering all big demands in R such that cost(T) ≤
OPT(R) + pR · ((1/ε)2 log(1/ε))(2 + 1/ε2).

Extending a relaxed solution. Let T = (mt, ct)t denote the list of tours output by Algorithm

15 where mt is the furthest position and ct denotes the remaining capacity of tour t after it has

covered the big demands. Algorithm 16 takes the list of tours (mt, ct)t as input and greedily extends

them to cover the small demands of R in a feasible way (i.e., without splitting any of them).

By Lemma 5.3.8 the output of Algorithm 16 is bounded by the cost of the relaxed tours T and

pR. See Section 5.7 for the proof.

Lemma 5.3.8. Let G be tours output by Algorithm 16 on input T = (mt, ct)t. Then cost(G) ≤
(1 + 2ε)cost(T) + 2pR.

64

Algorithm 16 Greedy Extension
Input: Small demands (pi, wi)i and a list T of tours (mt, ct)t, where mt is the furthest position of
tour t and ct is its remaining capacity.
1: for each small demand (pi, wi) in order of decreasing pi do
2: if there is a tour t ∈ T with mt ≥ pi and ct ≥ wi then
3: cover (pi, wi) with t and set ct := ct − wi

4: else
5: add a new tour t with ct = k and mt = pi

6: cover (pi, wi) with t and set ct := ct − wi

7: end if
8: end for

Output: the resulting tours.

5.3.4 Proof of Main Theorem 5.1.1

Correctness of Algorithm 13. By Lemma 5.3.1 the optimal solution of the rounded instance is

a near optimal solution for the original instance. To solve the rounded instance Algorithm 13 tries

all 1/ε ways to partition it into regions. Lemma 5.3.3 shows that for at least one of these partitions,

P ∗, a near optimal solution is obtained by solving in each region independently and combining the

solutions. For the rest of the analysis, focus on the execution of Algorithm 13 that uses partition

P ∗. Let R∗
1, R

∗
2, . . . , R

∗
r be the regions of P ∗. We show below that the cost of the solution found for

each R∗
i can be bounded as follows,

cost of our solution of R∗
i ≤ (1 + 2ε)OPT(R∗

i) + `(ε)pR∗
i

where `(ε) = (1 + 2ε)(1/ε)2 log(1/ε)(2 + 1/ε2) + 2 = O(1/ε5). (5.5)

Assuming Equation 5.5 for now, by Lemma 5.3.3 the output of Algorithm 13 has cost∑
i≤r

(1 + 2ε)OPT(R∗
i) + `(ε)pR∗

i
= (1 + O(ε))OPT + `(ε)

∑
i≤r

pR∗
i
.

By definition of regions, for each i, pR∗
i
≤ pmaxε

i/ε. Thus, `(ε)
∑

i≤r pR∗
i
≤ `(ε)

∑
i≥0 pmaxε

i/ε ≤
2`(ε)pmax, and so the cost of the solution is at most

(1 + O(ε))OPT + 2`(ε)pmax (5.6)

As maxi pi ≤ O(ε6)OPT, the additive cost incurred is O(ε)OPT which is within the desired

approximation factor.

Now we prove Equation 5.5 holds. Consider a region R∗
i of P ∗. Algorithm 15 is used to find a set

of tours T that covers all big demands in R∗
i and all the fluid small demands. Given T , Algorithm 16

produces a solution that covers the small demands feasibly (not as fluid) and by Lemma 5.3.8 the

cost of the resulting solution for R∗
i is at most (1 + 2ε)cost(T) + 2pR∗

i
, where pR∗

i
is the maximum

position in R∗
i . Using Lemma 5.3.7 to bound the cost(T) shows Equation 5.5.

Running Time of Algorithm 13. Rounding positions, rounding the big demands at each position,

and partitioning the instance into regions can all be done in time O(n log(n)). By preprocessing

65

Definition 5.2.1, no customer is located closer than ε · pmax/n from the depot. Thus by Definition

5.3.2 there are at most O(log n/ log(1/ε)) non-empty blocks containing customers. As stated in

the observation after Definition 5.3.2 each partition Pj , partitions the instance into regions, where

all but at most one region consists of 1/ε blocks. Thus each partition Pj has O(ε log(n)/ log(1/ε))

regions.

For a given partition of the instance we solve the relaxed problem and compute the greedy exten-

sion in each region. By Lemma 5.3.7, Algorithm 15 solves the relaxed problem in time (1/ε)O(1/ε)

and by inspection one can see that the greedy extension can be computed in at most O(n). As Algo-

rithm 13 computes a solution for each of the 1/ε possible partitions, the final run time of Algorithm

13 is O(n log(n)) + log(n) · (1/ε)O(1/ε).

5.4 Proof of Lemma 5.3.1

The first property follows from the Line 1 of Algorithm 14 where each position is rounded up to

the next power of (1 + ε). The second property follows from Lines 3-8 of Algorithm 14. Consider

a position p with more than 1/ε2 big demands. In Line 4, the demands are partitioned into d1/ε2e
groups and in Lines 5-6, for each group, all demands in the group are rounded up to the maximum

demand size in the group. Thus afterward, position p has at most 1/ε2 + 1 distinct sizes of big

demands. In I ′ the positions of customers are the same or further from the depot and the sizes of

demands are the same or larger than in I. Thus any solution that covers all customers in I ′ is also

feasible for I, hence the third property holds.

We focus on the last property and analyze rounding positions. Let I1 denote the instance obtained

from I after rounding the positions (Line 1). Any length d tour in OPT(I) can be transformed into

a feasible tour for I1 by extending its length by at most εd, so

OPT(I1) ≤ (1 + ε)OPT(I). (5.7)

Next we analyze rounding demands, by carrying out the de la Vega and Lueker bin packing analysis

at each position [26]. Let R be the set of positions where big demands were rounded (i.e the position

of I1 with more than 1/ε2 big demands). Let I be the instance obtained by partitioning the demands

at each position in R into 1/ε2 equal sized groups and rounding up the demands of each group to

the maximum demand of the group (i.e after Line 8). Let I be the instance that would be obtained

if instead, the demands of each group were rounded down to the size of the maximum demand of

the next lower group (See Figure 5.2). Clearly as demands in I have sizes same or larger than in I,

OPT(I) ≤ OPT(I1) (5.8)

Let np be the number of big demands at position p ∈ R. There are at most bnpε
2c big demands

in all groups in p. Observe that a covering of the demands at p in I yields a covering of all but the

at most bnpε
2c largest demands at p in I (See Figure 5.2). Using a single tour to cover each of those

66

Figure 5.2: The figure shows the big demands at position p. The big demands in instance I1 (center)
are sorted and partitioned into groups. The big demands in I (on right) are obtained by rounding
demands up to the maximum of the group, and in I (on left) by rounding demands down to the
maximum of the next lower group. Each group, except the highest group, contains 3 demands. A
covering of the demands in I yields a covering of all but the 3 largest demands (dotted circles) of I.

demands, at each position p ∈ R, yields

OPT(I) ≤ OPT(I) +
∑
p∈R

2p · npε
2 (5.9)

Using the Rad Lower bound (Lemma 1.3.2) for OPT(I1) and the fact that big demands have

size at least εk, we get

OPT(I1) ≥
2
k

∑
p∈R

p · np · εk =
∑
p∈R

2p · npε (5.10)

Thus starting from Equation 5.9 we have

OPT(I) ≤ OPT(I) +
∑
p∈R

2p · npε
2

≤ OPT(I1) +
∑
p∈R

2p · npε
2 (5.11)

≤ OPT(I1) + εOPT(I1) (5.12)

where Line 5.11 follows by Equation 5.8 and Line 5.12 follows from Equation 5.10. Thus OPT(I) ≤
(1 + ε)OPT(I1) which is (1 + O(ε))OPT by Equation 5.7. The proof is complete as I is the instance

the algorithm outputs.

67

5.5 Proof of Lemma 5.3.3

We define a general notion, small expanse (Definition 5.5.1), for tours covering points in one dimen-

sion. In our setting small expanse tours cover points in at most two regions and Lemma 5.5.2 implies

the existence of a near optimal solution that consists of only small expanse tours.

Definition 5.5.1. (Small expanse) For any tour t that starts and ends at origin θ, let d be the

distance to the farthest point from θ and d′ be the distance to the closest point to θ of all points

covered by t. The expanse of tour t is d/d′. A small expanse tour has expanse at most 1/ε.

Note that in the single depot case, d, d′ are simply the maximum and minimum positions of the

customers covered by a tour. Thus a tour has small expanse if it covers customers between positions

p′ ≤ p, such that p/p′ ≤ 1/ε.

Lemma 5.5.2. Let t be a tour covering points on a line. For any ε ≤ 1/2, there exists a collection

of small expanse tours (ti)i≥0 which cover the same customers covered by t and have total cost at

most (1 + 2ε)cost(t).

Proof. Assume t starts at some origin continues in one direction until the last point is visited and

then returns back to the origin along the same path, i.e each point is visited twice by t. If that is

not case, t can be replaced with cheaper tour that fits the above description and covers the same

points as t.

Let p be the farthest point from the origin covered by t. For every i ≥ 0, define a new tour ti

that starts and ends at the origin and covers only the points covered by t at distances (εi+1p, εip].

See Figure 5.3. Together, the tours (ti)i cover exactly the points that t cover and by construction,

each ti has small expanse. We have: cost(t) = 2p, and the cost the collection of (ti)i is

2(1 + ε + ε2 + . . .)p < cost(t)/(1− ε) ≤ (1 + 2ε)cost(t).

Applying Lemma 5.5.2 to every tour in OPT(I ′) yields a set of small expanse tours of cost

(1 + 2ε)OPT(I ′) which we will use to prove Lemma 5.3.3. Intuitively, since each region has large

expanse, they can be solved independently to get a near optimal small expanse solution, as only a

few tours of the optimal small expanse solution will cover customers in more than one region.

Let S be the optimal solution of I ′ that uses only small expanse tours. Fix a particular partition

Pj of I ′ and let Tj be the set of tours of S that cover customers in more than one region under Pj .

Since each region has large expanse (≥ 1/ε) and each tour in t ∈ Tj has small expanse, t covers

customers in at most two regions of partition Pj . For each t ∈ Tj , make two copies of t, and assign

one copy to cover the customers in the first region and the second copy to cover the customers in

the second region of t. After these modifications all tours cover customers in only one region. For

partition Pj we obtain: ∑
R∈Pj

OPT(R) ≤ S +
∑
t∈Tj

cost(t).

68

Figure 5.3: Lemma 5.5.2. The depot is the star. Tour t of length pt is replaced with tours t0, t1, t2,
by adding the dashed segments from the depot. No points are covered by the dashed segments so ti
only covers points in (ptε

i+1, ptε
i].

Summing over all 1/ε partitions, we obtain:

∑
0≤j<1/ε

∑
R∈Pj

OPT(R) ≤
∑

0≤j<1/ε

S +
∑
t∈Tj

cost(t)

 (5.13)

Note that for partitions Pi, Pj such that j 6= i, Ti and Tj are disjoint; a tour t ∈ Tj spans across

two consecutive regions in Pj and thus two consecutive blocks. These consecutive blocks are in the

same region in partition Pi, thus t /∈ Ti. This implies that the right hand side of Equation 5.13 is at

most (1/ε + 1)S. Thus we have that,∑
0≤j<1/ε

∑
R∈Pj

OPT(R) ≤ (1/ε + 1)S

As the sum on the left hand side has 1/ε terms, there must exist a term j∗ for which
∑

R∈Pj∗
OPT(R) ≤

(1+ ε)S. Another way to see this is that the sum of solutions obtained for all 1/ε possible partitions

is (1/ε + 1)S. Thus at least one partition yields a solution of cost ≤ (1/ε+1)S
(1/ε) = (1 + ε)S. By

Lemma 5.5.2 the optimal small expanse solution S ≤ (1 + 2ε)OPT. Thus for Pj∗ we have that∑
R∈Pj∗

OPT(R) ≤ (1 + O(ε))OPT, which completes the proof.

5.6 Proof of Lemma 5.3.7

First we analyze the running time of Algorithm 15. The bottleneck is the time required to solve

the linear program, which requires polynomial time in the number of variables and constraints.

The linear program has one variable for each tour configuration and a constraint for each demand

type and each position in region R. Below we show that there are (1/ε)O(1/ε) tour configurations,

(1/ε)2 log(1/ε)(1 + 1/ε2) demand types and (1/ε)2 log(1/ε) positions. This implies that the running

time of Algorithm 15 is (1/ε)O(1/ε) which is constant as (1/ε) is a constant.

69

Now we analyze the number of positions, big demand types and tour configurations in region R.

As R spans (ε1/εp, p] for some p, by Lemma 5.3.1, all positions are at powers of (1+ε) thus there are at

most cloc = (1/ε)2 log(1/ε) positions in R.2 Each position has only 1/ε2+1 distinct big demand sizes.

Thus the number of big demand types is at most ctype = cloc · (1 + 1/ε2) = (1/ε)2 log(1/ε)(1 + 1/ε2).

As big demands have value at least kε, at most 1/ε big demands can be covered by any tour of

capacity ≤ k. Thus the number of tour configurations is at most cloc ·
∑

j≤1/ε(ctype)j = (1/ε)O(1/ε).

Let T be the tours output by Algorithm 15. The basic solution x∗ is rounded to get x̄ and T is

obtained by creating tours that cover the big demands as specified by x̄. Since x∗ satisfies constraint

5.3, the tours associated with x̄ will cover all the big demands in R.

Now we bound cost(T). Let OPT(R) be the optimal solution of (the unrelaxed problem) R. Since

x∗ can cover small demands as fluid and use fractional tour configurations,
∑

f∈F mfx∗f ≤ OPT(R).

Using the values of cp and ctype derived in the analysis of the running time , the linear program has

c = cloc + ctype = ((1/ε)2 log(1/ε))(2 + 1/ε2) constraints other than the non-negativity constraints.

Thus a basic optimal solution x∗ has at most c fractional coordinates. The farthest position mf of

tour configuration f , is at most pR, thus,∑
f∈F

mf x̄f ≤ (
∑
f∈F

mfx∗f) + c · pR ≤ OPT(R) + c · pR

5.7 Proof of Lemma 5.3.8

Let A be the new tours added by Algorithm 16. Let (dj)j≥1 be the opening position of each new

in A, sorted in increasing order, and define d0 = 0 for convenience. Thus (dj)j≥1 are the distances

from the opening position to the depot. Let Aj be the set of tours in A with opening position ≥ dj .

We have:

cost(G) = cost(T) +
∑
j≥1

2(dj − dj−1)|Aj |. (5.14)

Let Tj = {t ∈ T : mt ≥ xj} denote the tours of T whose farthest position is at least dj i.e.,

mt ≥ dj . Thus Tj represents the set of tours that pass beyond position dj . Let cap(j) denote the

total remaining capacity (before any small demands are added) of tours of Tj , i.e., cap(j) =
∑

t∈Tj
ct.

Recall that S = (wi, pi)i is the set of small demands and let small(j) =
∑

(wi,pi)∈S:pi≥dj
wi denote

the total small demand at positions at least dj .

The algorithm opens a new tour at position p only if no other tour passing the position has

enough remaining capacity to cover a small demand at the position. Thus as a new tour is opened

at position dj , it must be that every tour in Tj has remaining capacity less than εk (i.e the maximum

size of a small demand). Thus the total amount of small demand assigned by the algorithm to the

tours in Tj is at least

(small demand added to Tj) ≥ cap(j)− |Tj |εk,

2The number of positions can be less than cloc since we don’t need to count positions with no customers.

70

and the total amount of small demand remaining further than position dj is at most

(small demand remaining beyond dj) ≤ small(j)− cap(j) + |Tj |εk ≤ |Tj |εk. (5.15)

Then second inequality in Equation 5.15, follows as constraint (5.3) of the linear program implies

that the total small demand to the right of position dj is equal to the remaining capacity of the

tours that go to the right of dj , i.e small(j) − cap(j) ≤ 0 for all j. As the algorithm opens a new

tour only when no other new tour has enough remaining to cover a some small demand, all but one

new tour that goes to the right of dj is almost full, we have:

|Aj | ≤
|Tj |εk

(1− ε)k
+ 1 =

ε|Tj |
(1− ε)

+ 1. (5.16)

Substituting Equation 5.16 into Equation 5.14 we get that,

cost(G) = cost(T) +
ε

(1− ε)

∑
j≥1

2(dj − dj−1)|Tj |+ 2 max
j

dj .

As cost(T) ≥
∑

j≥1 2(dj − dj−1)|Tj | and maxj dj ≤ pR the maximum position in R, we obtain for

ε ≤ 1/2,

cost(G) ≤ cost(T)
1− ε

+ 2pR ≤ (1 + 2ε)cost(T) + 2pR.

Chapter 6

Extension to Constant Number of

Depots

This chapter’s results are joint work with Shay Mozes and Claire Mathieu and will be included in

the journal version of [20].

6.1 Introduction

This chapter presents an APTAS for 1-dimensional Unsplit VRP with a constant number of depots.

Recall the problem: Given a positive integer k denoting the vehicle capacity, a set C = {(pi, wi)}i≤n

of n customers each with a position pi on the line and a demand wi ≤ k, and a set of m depots D

each represented also by a position on the line, find a collection of tours of minimum total length

covering the demands of all customers in C, such that each tour starts and ends at some depot,

delivers at most k demand and such that no customer’s demand is split up among multiple tours.

With multiple depots, the problem is no longer equivalent to the scheduling problem on a sin-

gle batch machine or the generalization of bin-packing problem mentioned in the introduction of

Chapter 5. It also cannot be viewed as the multiple versions of those problems, e.g. scheduling with

multiple batch machines or the generalized bin packing with multiple bin types, as these problems

have a much more general cost structure than the 1-dimensional setting allows.

The bin packing problem still reduces to the Unsplit problem with multiple depots: set all pi

equal, and have all but one of the depots located at very far from all customers. Hence by the

hardness results of bin packing, this problem does not admit a PTAS unless unless P=NP.

As in the single depot setting, the hardness result does not exclude an asymptotic PTAS, and

we extend our APTAS of Chapter 5 to the setting with constant number of depots and prove

Theorem 6.1.1. As before any instance of this problem can be scaled so that the cost of an optimal

solution is arbitrarily large without changing the solution itself. With multiple depots the cost of

the solution is determined by the radii of customer ri. Recall that the radius of customer i ∈ C is

71

72

ri = mind∈D dist(i, d), i.e. the distance of customer i to its nearest depot. Therefore, to define a

notion of asymptotic we restrict the ratio of the optimal solution and the maximum radius. In other

words, scale the input so that maxi ri = 1. The asymptotic regime for our algorithm occurs when

the cost of the scaled input is Ω(m/ε6), where m is the number of depots. Thus our algorithm is

only an APTAS when the number of depots m is a constant.

Theorem 6.1.1. For any instance I of 1-dimensional Unsplit problem with m depots, such that

maxi ri = O(ε6/m)OPT(I), Algorithm 17 outputs a solution of cost (1+O(ε))OPT in time O(n log(n))+

m log(n)(1/ε)O(1/ε).

Overview of our approach. We reduce the problem on m depots to solving m + 1 smaller

problems, each with at most two depots. We solve the smaller problems independently and combine

to get a solution for the original problem. The smaller problems with a single depot are solved using

the algorithm of Chapter 5, and we design a new algorithm (Alg. 18) for the ones with two depots.

Algorithm 18 starts by rounding positions (this time with respect to both depots), and then applies

the De La Vega and Lueker [26] rounding to obtain a small number of distinct big demands at each

position. We try a few different ways (O(1/ε)) to partition the customers into disjoint regions, solve

the problem in each region independently and combine to get a solution for the small problem. We

pick the solution of minimum cost over all possible partitions we tried.

The partitioning scheme in Algorithm 18 is different than in the single depot setting. Now the

instance is partitioned into three regions, left, right and center. The left and right regions are both

covered only by tours originating from a one depot, hence they can be solved by the algorithm of

Chapter 5. For the center region we find a near optimal solution to the relaxed problem, where the

small demands are fluid, using a variant of the linear program of Chapter 5. We use a new greedy

method tailored for two depots, to extend the solution so that it respects the unsplittable constraint

for small demands.

The analysis involves using the shifting technique (as in the single depot case) to show that one

of the (O(1/ε)) partitions yields a near-optimal solution, and proving that a near-optimal solution

can be constructed by greedily inserting the small demands into the relaxed solution.

6.2 Algorithm and Proof of Theorem 6.1.1

The APTAS for the 1-dimensional Unsplit problem with constant number of depots is presented

in Algorithm 17. The algorithm partitions the original instance with m depots into 2 single depot

instances and m−1 between two depots instances as shown in Figure 6.1. The single depot instances

are solved using the Algorithm 13 of Chapter 5 and the between two depots instances are solved

using the Algorithm 18 of Section 6.3.

73

Algorithm 17 APTAS for Unsplit with constant depots, in one dimension
Input: Depots D, customers (pi, wi)1≤i≤n with vehicle capacity k
Precondition: maxi ri ≤ ε6OPT
1: Consider depots and customers in increasing order of location and partition I into instances

I1, . . . , Im+1 such that:
• I1 is a single depot Unsplit problem with the first depot and the customers to its left.
• For j ∈ [2,m], Ij is a between two depots Unsplit problem (defined in subsection 6.2.1) with
depots j − 1 and j and the customers at positions in between.
• Im+1 is a single depot Unsplit problem with depot m and the customers to its right.

2: Solve I1 and Im+1 using Algorithm 13 of Chapter 5.
3: Solve each Ij for j ∈ [2,m] with Algorithm 18.

Output: The union of the solutions found for I1, . . . , Im+1.

Figure 6.1: An instance of the multiple depots problem with four depots (stars) is partitioned into
5 smaller instances. Instances I1 and I5 are single depot instances, and instances I2, I3, I4 are each
instances between two depots with customers (gray circles) in between the two depots.

6.2.1 The Unsplit Problem Between Two Depots.

The 1-dimensional Unsplit problem between two depots is: Given two depots θl and θr, located

distance L apart on the line, a positive integer k the vehicle capacity, a set C = {(pi, wi)}i≤n of

n customers1 each with a demand wi ≤ k and a position between the depots on the line, find a

collection of tours of minimum total cost covering the demands of all customers in C, such that

each tour starts and ends at a depot, delivers at most k demand and such that each customer i ∈ C

receives its entire demand wi by a single tour. In other words the customer’s demand is not allowed

to be split up among multiple tours.

We can assume that an instance is prepocessed as defined below:

Definition 6.2.1. (Preprocessed) An instance of the 1-dimensional Unsplit problem between two

depots with n customers is preprocessed if:

• The depot θl is located at the origin, and θr is located at position L.

• All customers positions are 0 ≤ pi ≤ L (i.e between the depots).

• No customer is located closer than ε · rmax/n from the depot, where rmax = maxi ri.

We can always define the positions of the depots to be the origin and L and reinterpret the

positions of the customers accordingly. As all customer positions were between the depots now they
1The number of customers in a between two depots problem can be different from the number of customers in the
constant number of depots problem.

74

Figure 6.2: An instance of the multiple depots 1-d Unsplit problem, with five depots (stars). The
solid tour covers points in four instances and is replaced by the four dashed tours, each covering
points in one instance.

will have positions between 0 and L. If there are any customers located closer than ε · rmax/n from

either depot, serve each with a separate tour originating from the closest depot. The overall cost for

these tours is at most 2εrmax, which is at most εOPT as any solution has cost at least 2rmax.

Observe that if p is the maximum position of any customer on tour t then t has cost 2p if

it originates from θl or cost 2(L − p) if it originates from θr. The radius of customer i is ri =

min{pi, L− pi}.

6.2.2 Proof of Main Theorem 6.1.1

Correctness of Algorithm 17. Let I be an instance of 1-dimensional Unsplit with multiple depots

and OPT denote its optimal solution. Let I1, . . . Im+1 be the smaller instances created by Algorithm

17. We can assume that each tour in OPT covers customers in only one instance Ij : Any tour π

covering customers in x > 1 instances Ii1 , Ii2 , . . . , Iix can be replaced x tours π′1, π
′
2, . . . , π

′
x where

π′p is the portion of π that lies in instance Iip
. See Figure 6.2. The sum of the lengths of the (π′)p

is equal to length of π. Thus we have that

OPT(I) = OPT(I1) + OPT(I2) + . . . + OPT(Im+1) (6.1)

We show below that Algorithm 17 computes solutions of cost (1 + O(ε))OPT(Ij) for each Ij . Thus

by Equation 6.1 this yields a solution of cost (1 + O(ε))OPT(I) overall.

The between two depots instances I2, . . . Im are solved by Algorithm 18 presented in Section 6.3.

Fix an Ij for any j ∈ [2,m]. By the proof of Theorem 6.3.1, the solution of Ij has cost at most

(1 + O(ε))OPT(Ij) + O(1/ε5)rIj (see Equation 6.10), where rIj denotes the maximum radius of Ij .

The single depot instances I1 and Im+1 are solved by Algorithm 13 from Chapter 5 and the proof

of Theorem 5.1.1 shows that the solutions for I1 and Im+1 have cost at most (1 + O(ε))OPT(I1) +

O(1/ε5)rI1 and (1 + O(ε))OPT(Im) + O(1/ε5)rIm+1 respectively (see Equation 5.6).

As rmax ≥ rIj for all j ∈ [1,m + 1], the union of the solutions of all Ij is at most

(1 + O(ε))
m+1∑
j=1

OPT(Ij) + O(1/ε5)(m + 1) · rmax

which is at most (1 + O(ε))OPT(I) + O(ε)OPT(I) = (1 + O(ε))OPT(I) by Equation 6.1 and the

asymptotic assumption that rmax ≤ OPT ·O(ε6/m).

75

Figure 6.3: A solution computed by Algorithm 18. The stars are the depot. The instance between
two depots are partitioned into left, center and right, and each tour covers only customers (marked
“x”) from one region.

Running time of Algorithm 17. By Theorem 5.1.1 and Theorem 6.3.1 each Ij is solved in time

O(nj log(nj)) + log(nj)(1/ε)O(1/ε), where nj is the number of customers in instance Ij . Thus over

all the running time is bounded by O(n log(n)) + m log(n)(1/ε)O(1/ε).

6.3 Algorithm for Unsplit Between Depots and Proof of The-

orem 6.3.1

We present Algorithm 18 an APTAS for the 1-dimensional Unsplit problem between two depots

(defined in Section 6.2.1) and prove Theorem 6.3.1. We note that in all the remaining sections of

this chapter notation OPT and rmax refers to an instance of the problem between two depots.

As before the problem does not admit an asymptotic approximation scheme in the usual sense,

since any instance can be scaled so that the cost of an optimal solution is arbitrarily large without

changing the solution itself. We define the asymptotic regime to be when OPT = Ω(1/ε6)rmax. Or

in other words, if the input is scaled so that max ri = 1, the asymptotic regime occurs when the cost

of the scaled input is Ω(1/ε6). Figure 6.3 shows a solution computed by our algorithm.

Theorem 6.3.1. For any instance I of the 1-dimensional Unsplit problem between two depots,

such that maxi ri = O(ε6)OPT(I), Algorithm 18 outputs a solution of cost (1 + O(ε))OPT in time

O(n log(n)) + log(n)(1/ε)O(1/ε).

6.3.1 Rounding

Algorithm 19 reduces the number of positions and the number of distinct big demand sizes at each

position. Lines 1 and 2 places markers at distances that are powers of (1 + ε) from either depot and

then all customers are moved to their closest marker. As in the single depot case, we call a demand

wi big if wi ≥ εk and small otherwise. The big demands are rounded using the Fernandez de la Vega

and Lueker scheme [26].

76

Algorithm 18 APTAS for Unsplit between two depots, in one dimension
Input: A preprocessed instance with depots θl, θr located distance L apart, customers (pi, wi)1≤i≤n,
and vehicle capacity k
Precondition: maxi ri ≤ ε6OPT
1: Round the input using Algorithm 19, described in section 6.3.1.
2: for 1 ≤ j ≤ 1/ε do
3: Partition the instance into regions Rl, Rm, Rr using partition Pj (Definition 6.3.3).
4: Solve the relaxed two depot problem in Rm treating small demands as fluid using Algorithm

15 with the linear problem of Chapter 5 with Equations 6.2-6.5.
5: Extend the relaxed solution into a feasible solution, Solm, for all customers in Rm using

Algorithm 20.
6: Define Il, Ir as instances of the single depot Unsplit problem such that Il consists of customers

in Rl and depot θl and Ir consist of customers in Rr and depot θr.
7: Find solutions Soll, Solr for Il and Ir using Algorithm 13 of Chapter 5.
8: Let Best(Pj) = Soll ∪ Solm ∪ Solr be the solution found using partition Pj .
9: end for

Output: minj Best(Pj), the minimum cost solution found over all partitions.

Algorithm 19 Rounding
Input: Preprocessed instance I with depots θl,θr distance L apart, customers (pi, wi)i≤n such that
pi ≤ L for all i

1: Start at distance l0 = εrmax
n from the left depot, go right and place a marker at each distance

l0(1 + ε)j for j ≥ 0 until distance L is reached.
2: Start at distance l0 from the right depot, go left and place a marker at each distance l0(1 + ε)j

for j ≥ 0 until distance L is reached.
3: Round each customer’s position pi to the nearest marker.
4: Round big demands at each position as in Lines 3-6 of Algorithm 14 of Chap. 5.

Output: rounded instance I ′.

77

The following lemma shows that OPT of I ′ can be modified into a near optimal solution for

instance I. See Section 6.4 for the proof.

Lemma 6.3.2. Given an instance I of the 1-dimensional Unsplit problem between two depots,

Algorithm 19 outputs an instance I ′ such that:

1. Each customer’s position is at distance dmaxε/n(1 + ε)j, for integer j ≥ 0, from a depot

2. Each position has at most 1/ε2 + 1 distinct sizes of big demands.

3. A solution of I ′ of cost C ′ can be converted into a solution for I of cost (1 + ε)C ′.

4. OPT(I ′) ≤ (1 + O(ε))OPT(I).

5. OPT(I ′) can be modified into a feasible solution of I ′ of cost (1 + O(ε))OPT(I).

6.3.2 Partitioning into Regions

We define 1/ε ways to partition the instance into disjoint regions Rl, Rm, Rr as given in Defini-

tion 6.3.3. Lemma 6.3.4 shows that for at least one of these partitions, solving each region indepen-

dently and taking the union of the solutions yields a near optimal solution for the whole instance.

Definition 6.3.3. (Partitions) Let I ′ be a rounded instance of the 1-dimensional Unsplit problem

between two depots. Define 1/ε ways to partition I ′ into regions Rl, Rm, Rr as follows: For j ∈
[1, 1/ε], in partition Pj region Rl consists of customers at positions p ≤ εjL, Rm the customers at

positions (εjL, (1− εj)L) and Rr the customers at positions p ≥ (1− εj)L.

Observe that in all partitions region Rl consists of customers within distance εjL from depot θl,

region Rr consists of customers within distance εjL from depot θr and region Rm consists of the

customers with ri > εjL, i.e those farther than εjL from both depots.

Lemma 6.3.4 states the main structural property that allows us solve each region separately.

Its proof uses small expanse tours (Definition 5.5.1) and the shifting technique used in the proof of

Lemma 5.3.3. See Section 6.5.

Lemma 6.3.4. Let I ′ be a rounded instance of the 1-dimensional Unsplit problem between two depots

and let Pj, for j ∈ [1, 1/ε], be the partition of I ′ into regions Rl, Rm, Rr. Define Il and Ir to be

instances of the single depot 1-dimensional Unsplit problem where Il consists of the customers in Rl

and depot θl, and Ir consist of the customers in Rr and depot θr.

There exists a partition Pj, such that OPT(Il) + OPT(Rm) + OPT(Ir) ≤ (1 + O(ε))OPT(I ′).

6.3.3 Solving the Middle Region

We focus on solving the problem in region Rm of a partition. As in the single depot setting, we first

solve the relaxed problem (Definition 5.3.4) for Rm and extend that solution into a feasible solution

for all demands in Rm.

78

Solving the relaxed problem. Due to rounding, region Rm contains only a constant number of

positions with customers, and each position contains a constant number of distinct big demands. We

will describe big demand types of Rm exactly as in the single depot case as given in Definition 5.3.5.

To describe a tour in Rm we extend the single depot tour configuration to include the originating

depot θ of the tour and we revise the meaning of mf to be the farthest position vistied by the tour

from its originating depot θ.

Definition 6.3.5. (Augmented Configuration) An augmented configuration f of a tour in Rm

consists of a depot θ, a postion mf that denotes the farthest position from θ visited by the tour, and

a multiset Df of big demand types each with position at most mf , whose (rounded) sizes sum up to

at most k.

Let cost(f) denote the length of the tour described by augmented configuration f . Thus if θ = θl

then cost(f) = 2mf and if θ = θr, cost(f) = 2(L−mf). Let cf denote the remaining capacity of an

augmented tour configuration f (i.e., cf = k −
∑

(p,b)∈Df
b). For any big demand type d, let nf (d)

denote the multiplicity of d in Df .

A slight variant of the linear program from the single depot case solves the relaxed problem. Let

S be the set of small demands in region Rm. Instead of considering the small demand fluid at each

position the linear program will consider the small demand as fluid between every pair of positions.

The linear program has one variable xf for each extended tour configuration f ∈ F and the

objective is to select a minimum cost set of tour configurations such that two constraints are satisfied:

Constraint 6.3 ensures that all big demand types are covered by the selected tour configurations and

Constraint 6.4 ensures the total small demand can be covered by the remaining capacities of the tour

configurations appearing between each pair of positions, where a configuration f appears between

positions [p′, p′′] if p′ ≤ mf ≤ p′′.

min
∑
f∈F

cost(f) · xf (6.2)

s.t
∑
f∈F

xfnf (d) ≥ n(d) ∀ demand types d (6.3)

∑
f∈F :

p′≤mf≤p′′

cfxf ≥
∑

(pi,wi)∈S
p′≤pi≤p′′

wi ∀ positions p′ ≤ p′′ (6.4)

xf ≥ 0 (6.5)

We will use Algorithm 15 with Line 3 modified to solve the linear program of Equations 6.2-6.5

to obtain a solution for the relaxed problem in Rm. It rounds a basic solution to obtain a feasible

relaxed solution. Let OPT(Rm) denote the optimal (unrelaxed) solution. Lemma 6.3.6 is a version

of Lemma 5.3.7 and it bounds the cost of the solutions in terms of OPT(Rm) and rmax. Later

we will use the “asymptotic” assumption (so that the additive rmax term is small compared to

OPT). Note that the factor multiplying rmax is different from the factor in Lemma 5.3.7 because the

79

linear program in Equations 6.2-6.5 has a different number of constraints from the linear program

of Equations 5.1-5.4. The proof appears in Section 6.6.

Lemma 6.3.6. Let Rm be the middle region of rounded instance I ′, and let OPT(Rm) denote the

cost of the optimal (unrelaxed) solution of Rm. Given Rm and using the linear program of Equations

6.2-6.5, Algorithm 15 outputs in time (1/ε)O(1/ε) a set of tours T covering all big demands in Rm

such that cost(T) ≤ OPT(Rm) + rmax · (2/ε2) log(1/ε)[1 + 1/ε2 + (2/ε2) log(1/ε)].

Extending a relaxed solution. Let T = (θt,mt, ct)t denote the list of tours output by Algorithm

15 where θt denotes the originating depot, mt denotes the farthest position from θt and ct denotes

the remaining capacity of tour t after it has covered the big demands. Algorithm 20 greedily extends

these tours to cover the small demands of Rm in a feasible way (i.e., without splitting any of them).

Algorithm 20 checks for each small demand (pi, wi) if any existing tours passing by pi have capacity

to cover wi. If not, a new tour originating from the depot closest to pi is created to cover i.

Algorithm 20 Greedy Extension
Input: Small demands (pi, wi)i, a list T of tours (θt,mt, ct)t s.t tour t originates from depot θt, has
remaining capacity ct, and its farthest position from θt is mt

1: for each small demand (pi, wi) in order of decreasing radii ri do
2: if there is a tour t ∈ T that passes by pi (i.e pi is between θt and mt) with ct ≥ wi then
3: cover (pi, wi) with t and set ct := ct − wi

4: else
5: add a new tour t with mt = pi, ct = k and set its depot, θt, to the closest depot from pi

6: cover (pi, wi) with t and set ct := ct − wi

7: end if
8: end for

Output: the resulting tours.

Lemma 6.3.7 bounds the cost of Algorithm 16 in terms of cost(T) and rmax, and is proved in

Section 6.7. Note that later we will use the “asymptotic” assumption to show that the additive rmax

term is small compared to OPT.

Lemma 6.3.7. On input T = (θt, pt, wt)t, Algorithm 20 outputs G with cost(G) ≤ (1+2ε)cost(T)+

2rmax.

6.3.4 Proof of Theorem 6.3.1

Correctness of Algorithm 18. By Lemma 6.3.2 the optimal solution of the rounded instance is a

near optimal solution for the original instance. To solve the rounded instance Algorithm 18 tries all

1/ε ways to partition it into regions Rl, Rm, Rr. Lemma 6.3.4 shows that for at least one of the 1/ε

partitions, P ∗, a near optimal solution is obtained by solving the single depot instances Il and Ir and

the problem between two depots in region Rm independently and combining the solutions. For the

rest of the analysis focus on the execution of Algorithm 18 that uses partition P ∗ and let I∗l , R∗
m, I∗r

80

be the subproblems from partition P ∗. Below we show that Algorithm 18 obtains solutions of I∗l ,

I∗r and Rm of such that

cost(I∗l) ≤ (1 + O(ε))OPT(I∗l) + O(1/ε5)rmax (6.6)

cost(I∗r) ≤ (1 + O(ε))OPT(I∗r) + O(1/ε5)rmax (6.7)

cost(R∗
m) ≤ (1 + O(ε))OPT(R∗

r) + O(1/ε5)rmax (6.8)

Thus the union of the solutions of I∗l , I∗r , R∗
m yields a solution of the rounded instance I ′ of cost

at most,

(1 + O(ε))(OPT(I∗l) + OPT(R∗
m) + OPT(R∗

r)) + O(1/ε5)rmax

= (1 + O(ε))OPT(I ′) + O(1/ε5)rmax (6.9)

= (1 + O(ε))OPT + O(1/ε5)rmax (6.10)

= (1 + O(ε))OPT (6.11)

Equation 6.9 follows by Lemma 6.3.4 for P ∗ and Equation 6.10 follows by the last property of

Lemma 6.3.2. Applying assumption rmax ≤ ε6OPT shows that the additive cost is within the

desired approximation factor.

Now we show that Equations 6.6-6.8 hold. Algorithm 13 is used to solve the single depot problems

Il and Ir. Since the maximum distance between any position and the depot in Il, Ir is at most rmax

the proof of Theorem 5.1.1 up to Equation 5.6, shows that Equations 6.6 and 6.7 hold.

Consider the subproblem involving region R∗
m. Using Algorithm 15 with the linear program of

Equations 6.2-6.5 finds a set of tours T covering all big demands and all small demands as fluid.

Given T , Algorithm 20 produces a solution that covers the small demands feasibly (without splitting)

and by Lemma 6.3.7 the cost of the resulting solution for R∗
m is at most (1 + 2ε)cost(T) + 2rmax.

Using Lemma 6.3.6 to bound the cost(T), we get that

cost(R∗
m) ≤ (1 + 2ε)OPT(R∗

m) + `(ε)rmax

where `(ε) = (2/ε2) log(1/ε)[1 + 1/ε2 + (2/ε2) log(1/ε)] = O(1/ε5). Thus Equation 6.8 also holds.

Running Time of Algorithm 18. Rounding positions, rounding the big demands at each position,

and partitioning the instance into regions can all be done in time O(n log(n)). Each partition Pj

yields instances Il, Rm, Ir. Region Rm is solved in time O(n) + (1/ε)O(1/ε) as by Lemma 6.3.6 the

relaxed problem can be solved in time (1/ε)O(1/ε) and by inspection one can see that the greedy

extension can be computed in at most O(n). By Theorem 5.1.1 solving Ir and Il using Algorithm 13

of Chapter 5 requires time O(n log(n)) + log n · (1/ε)O(1/ε). Thus overall partition Pj can be solved

in time O(n log(n)) + log n · (1/ε)O(1/ε)

As Algorithm 18 does the above computation for 1/ε possible partitions, the final run time is

O(n log(n)) + log(n) · (1/ε)O(1/ε).

81

6.4 Proof of Lemma 6.3.2

The first property follows from Lines 1-3 of Algorithm 19 as each customer is moved to its nearest

marker and each marker is within distance (rmaxε/n)(1 + ε)j to one of the two depots. The second

property holds for the same reason as in proof of Lemma 5.3.1. The fifth property follows by

combining the third and fourth properties.

We focus on the third property. Let I1 denote the instance obtained after rounding the positions

(Line 3) and I ′ denote the instance obtained after rounding demands. Observe that a solution for

I ′ is feasible for I1 as demands in I1 are less than or equal to demands in I ′. Thus we only need to

show that each tour π1 from a solution of I1 can be converted into a feasible tour for I of cost at

most (1 + ε)cost(π1).

Consider a tour π1 that originates from depot θl and covers its farthest customer from marked

position m (An analogous argument applies when π1 originates from depot θr). The marker at

distance m implies that there must also be a marker at distance m(1 + ε). If in I customer i is

located at p > m, it must be that p < m(1 + ε) as i is rounded to its closest marker in Line 3.

Thus π1 can be transformed into a feasible tour for I by extending its length by at most εm. If

p < m, the length of π1 has to be shortened to make it feasible for I, thus the tour in I will have

cost ≤ (1 + ε)cost(π) trivially.

We focus on the forth property and start by analyzing rounding positions. Consider a tour π of

OPT(I) of length d that originates from depot θl. (An analogous argument applies when π originates

from depot θr). The farthest customer i covered by π has p = d. By Line 1, there exists a marker

within distance at most (1+ ε)d from i. As the position of i is rounded to its nearest marker in Line

3 the rounded position is at distance at most (1 + ε)d. Thus π can be transformed into a feasible

tour for I1 by extending its length by at most εd, and so

OPT(I1) ≤ (1 + ε)OPT(I). (6.12)

Next we analyze rounding demands. The analysis is similar to the proof (of the forth property) of

Lemma 5.3.1 and we only list the equations that need modification. To convert the covering of I

into a covering of I we still have at most bnpε
2c demands at each position p ∈ R that are not covered

by the covering of I, where np is the number of big demands at position p. Each of those demands

is covered with a single tour that originates from its closest depot. For each position p ∈ R let rp

be the radius of p, then we have

OPT(I) ≤ OPT(I) +
∑
p∈R

2rp · npε
2 (6.13)

Using the Rad Lower bound (Lemma 1.3.2) we have

OPT(I1) ≥
2
k

∑
p∈R

rp · np · εk =
∑
p∈R

2rp · npε (6.14)

The rest of the analysis to show that OPT(I ′) = (1 + O(ε))OPT follows the proof of Lemma 5.3.1

using Equation 6.13 in place of Equation 5.9 and Equation 6.14 in place of Equation 5.10.

82

6.5 Proof of Lemma 6.3.4

Definition 6.5.1. (Lengthy Tour) Let I ′ be an instance of the problem between two depots. Denote

the far left to be the customers with positions p ∈ [0, εL] and the far right to be the customers with

positions p ∈ [(1 − ε)L,L]. A tour is a lengthy tour if it originates from depot θl and covers a far

right demand or if it originates from depot θr and covers a far left demand.

Lemma 6.5.2. There exists a near optimal solution of I ′ that contains no lengthy tours.

Proof. Let t be a lengthy tour of OPT(I ′) that originates from depot θl. Thus cost(t) ≥ 2(1− ε)L.

Replace t by two tours tl and tr, where tl originates at θl and covers all the customers covered by

t except for those in the far right, and tr originates at θr and covers the customers covered by t in

the far right. Then cost(tl) ≤ (1− ε)L and cost(tr) ≤ εL. Thus for ε ≤ 1/2 we have that

cost(tl) + cost(tr) ≤ (1− ε)L + εL

≤ (1− ε)L + 2(1− ε)εL

= (1 + 2ε)(1− ε)L ≤ (1 + 2ε)cost(t)

An analogous argument shows that any lengthy tour of t ∈ OPT(I ′) originating from θr can be

replaced with two tours that are not lengthy, of total cost at most (1 + 2ε)cost(t).

Let S be a solution of I ′ consisting of tours that have small expanse (Definition 5.5.1) and that

are not far tours. By Lemmas 5.5.2 and 6.5.2

cost(S) ≤ (1 + O(ε))OPT(I ′) (6.15)

Fix a particular partition Pj of I ′ into three regions Rl, Rm, Rr. We analyze the cost of computing

I ′ as the union of Il , Ir and Rm as defined in the statement of Lemma 6.3.4.

For any partition Pj of I ′ region Rl is contained in the far left and Rr is contained in the far

right. As S consists of no lengthy tours, Rl is served by tours from depot θl and Rr is served by

tours from depot θr. As all tours originate from one of the two depots, no tour in S covers customers

in both Rl and Rm.

For partition Pj let Tj be the set of tours of S that cover customers in two regions (either in Rl

and Rm or in Rr and Rm). Replace each t ∈ Tj by tours t′ and t′′ originating from the same depot

as t such that t′ covers the customers covered by t in Rm and t′′ covers the customers covered by t

in its second region (either Rr or Rl). Observe that t′, t′′ each cover customers in only one region

and cost(t′) + cost(t′′) ≤ 2cost(t). After these modifications all tours cover customers in only one

region of partition Pj and Rl and Rr are served by depots θl and θr respectively. Thus for partition

Pj we obtain:

OPT(Il) + OPT(Rm) + OPT(Il) ≤ cost(S) +
∑
t∈Tj

cost(t)

83

Summing over all 1/ε partitions, we obtain:

∑
1≤j≤1/ε

(OPT(Il) + OPT(Rm) + OPT(IR)) ≤
∑

1≤j≤1/ε

cost(S) +
∑
t∈Tj

cost(t)

 (6.16)

Note that for partitions Pi, Pj s.t j 6= i, Ti and Tj are disjoint. Consider a tour t ∈ Tj that

originates at θl and covers customers in Rl and Rm (an analogous argument holds if t originates at

θr covering customers in Rm and Rr). As t covers in Rm, it must cover a customer at distance > εjL

from θl, but as t also has small expanse, the closest customer from θl it covers is at distance > εj+1L.

Thus t does not cover any customers at positions ≤ εj+1L which implies that t /∈ Ti for any i > j.

On the other hand as t covers in Rl of partition Pj , it must cover a customer at distance < εjL from

θl, but since t also has small expanse the farthest customer from θl it covers is at distance < εj−1L.

Thus t does not cover any customer at positions ≥ εj−1L which implies that t /∈ Ti for any i < j.

Given that the Tj are disjoint, the right hand side of Equation 6.16 is at most (1/ε)cost(S) +

cost(S). Thus, ∑
1≤j≤1/ε

(OPT(Il) + OPT(Rm) + OPT(IR)) ≤ (1/ε + 1)cost(S)

As the sum on the left hand side has 1/ε terms, there must exist a term j∗ for which OPT(Rl) +

OPT(Rm) + OPT(Rr) ≤ (1 + ε)S. As cost(S) ≤ (1 + O(ε)OPT(I ′), the Lemma is proved using

partition Pj∗ .

6.6 Proof of Lemma 6.3.6

The bottleneck in the running time of Algorithm 15 is the time required to solve the linear program.

The LP of Equation 6.2-6.5 has one variable per augmented tour configuration and a constraint

for each demand type and each pair of positions in Rm. Below we show that the number of tour

configurations, positions and demand types all remain the same as in the single depot case. Thus

the running time of Algorithm 15 is still (1/ε)O(1/ε) which is constant for fixed ε.

We analyze the number of positions, big demand types and tour configurations. Region Rm can

have twice as many positions as a region in the single depot case. Rm spans the positions between

(εjL, (1−εj)L] for some j ∈ [1, 1/ε] depending on the partition, and by Lemma 6.3.2, all positions in

Rm are at distances (εrmax/n)(1+ ε)i from one of the two depots. As there are at most 1/ε2 log(1/ε)

powers of (1 + ε) within the span of Rm, there are at most cloc = 2(1/ε)2 log(1/ε) positions.2 As

the big demands were rounded in the same manner as in the single depot case, each position has

at most 1/ε2 + 1 distinct of big demand sizes. Thus the number of big demand types in Rm is at

most ctype = cloc · (1 + 1/ε2) = 2(1/ε)2 log(1/ε)(1 + 1/ε2). As each tour can cover at most 1/ε big

2The number of positions can be less than cloc since we don’t need to count positions with no demands.

84

demands, the number of augmented tour configurations is

(# depots)(# farthest position from depot)(# choices of at most 1/ε big demand types)

= 2 · cloc ·
∑

j≤1/ε

(ctype)j = (1/ε)O(1/ε)

Let T be the tours output by Algorithm 15 using the LP in Equations 6.2-6.5. As x∗ satisfies

constraint 6.4, tours T associated with x̄f , cover all the big demands in Rm.

Now we bound cost(T). We have that
∑

f∈F cost(f)x∗f ≤ OPT(R), since x∗ can cover small

demands as fluid and the use fractional tour configurations. Using the values of cloc and ctype

derived above, the linear program has c = c2
loc + ctype = (2/ε2) log(1/ε)[1 + 1/ε2 + (2/ε2) log(1/ε)]

constraints other than the non-negativity constraints. Thus a basic optimal solution x∗ has at most

c fractional coordinates. By Claim 6.6.1 (below) each tour in OPT has cost at most 4rmax, thus

cost(f) ≤ 4rmax for all f ∈ F and we have,∑
f∈F

cost(f)x̄f ≤ (
∑
f∈F

cost(f)x∗f) + c · cost(f) ≤ OPT(R) + c · rmax.

Claim 6.6.1. Let I be an instance of the problem between two depots such that the radius of I is

rmax, then all tours in OPT(I) have cost at most 4rmax.

Proof. For a contradiction assume there is a tour t in OPT(I) such that cost(t) > 4rmax. We replace

t with two tours t′, t′′ that together cover the same customers as t and such that cost(t′)+cost(t′′) ≤
4rmax, which implies that t /∈ OPT(I).

Define t′ to be identical to t until it reaches distance rmax at which point t′ returns to the

originating depot. Thus cost(t′) = 2rmax. Let t′′ start at the opposite depot of t and cover the

customers of t appearing after distance rmax in t. The cost(t′′) ≤ 2rmax, as every customer covered

by t after distance rmax is closer to the opposite depot of t, and the distance of these customers from

the opposite depot is at most rmax. Thus together t′, t′′ cover all the customers covered by t and

have total cost at most 4rmax ≤ cost(t).

6.7 Proof of Lemma 6.3.7

Let A be the set of new tours added by Algorithm 20, and let |A| = s denote the size of A. Each

new tour is opened at some position p and connected to the closest depot to p. Let (dj)s≥j≥1 be

the distances between the opening position and the closest depot of each new tour in A sorted in

increasing order, and define d0 = 0 for convenience. Let Aj be the tours of A whose opening position

is at distance at least dj from its depot. We have:

cost(G) = cost(T) + 2
∑

s≥j≥1

(dj − dj−1)|Aj |. (6.17)

Observe that |As| = 1, this represents the first new tour the algorithm opens. Now we bound |Aj |
for j < s. Let (px)s≥x≥1 be the the opening positions of the new tours in A ordered in increasing

85

order (i.e from left to right). Let pl
dj

be the left most opening position which is at distance at least

dj from the left depot, i.e pl
dj

= minx{px : px ≥ dj}. Let pr
dj

denote the right most opening position

which is at distance ≥ dj from the right depot i.e pr
dj

= maxx{px : L − px ≥ dj}. For each tour

t ∈ T let θt denote the depot of t and mt denote the farthest position from θt vistied by t. Let T l
j

be the tours from the left depot that pass beyond position pl
dj

i.e T l
j = {t ∈ T : θt = θl,mt ≥ pl

dj
}

and similarly T r
j = {t ∈ T : θt = θr,mt ≤ pr

dj
}. Denote Tj = T l

j ∪ T r
j for convenience. Thus Tj is

the set of tours that visit the interval between positions pl
dj

and pr
dj

and each tour in Tj has length

at least dj .

Let cap(j) denote the total remaining capacity (before any small demands are covered) of tours

in Tj , thus cap(j) =
∑

t∈Tj
ct. Recall that S = (wi, pi)i is the set of small demands and let small(j)

denote the total small demand in positions between pl
dj

and pr
dj

,

small(j) =
∑

(wi,pi)∈S

pl
dj
≥pi≥pr

dj

wi

Algorithm 20 opens a new tour at position p only if no tour passing p has enough remaining

capacity to cover a small demand at p. As new tours are opened at positions pl
dj

and pr
dj

and each

tour in Tj passes by at least one of these positions, all tours of Tj must have remaining capacity

< εk (i.e less than the maximum size of any small demand). Thus the total amount of small demand

assigned by the algorithm to Tj is,

(small demand added to Tj) ≥ cap(j)− |Tj |εk,

and the total amount of small demand remaining between positions pl
dj

and pr
dj

is at most:

(small demand remaining between pl
dj

, pr
dj

) ≤ small(j)− cap(j) + |Tj |εk ≤ |Tj |εk. (6.18)

where the second inequality in Equation 6.18, follows as constraint (6.4) of the linear program implies

that the total small demand located in the interval between any pairs of positions is equal to the

remaining capacity of the tours visting the interval. As the algorithm opens a new tour only when

no other new tour has enough remaining capacity to cover some small demand, all but at most two

tours, one from the right depot and one from the left depot, are almost full and we have:

|Aj | ≤
|Tj |εk

(1− ε)k
+ 2 =

ε|Tj |
(1− ε)

+ 2. (6.19)

As |As| = 1, Equation 6.19 holds for all Aj for 1 ≤ j ≤ s. Substituting Equation 6.19 into

Equation 6.17 we have,

cost(G) = cost(T) +
ε

(1− ε)

∑
j≥1

2(dj − dj−1)|Tj |+ 4 max
j

dj .

As cost(T) ≥
∑

j≥1 2(dj − dj−1)|Tj | and maxj dj ≤ rmax the maximum radii, we obtain for ε ≤ 1/2,

cost(G) ≤ cost(T)
1− ε

+ 2rmax ≤ (1 + 2ε)cost(T) + 2rmax.

Chapter 7

Many Customers and Restricted

Capacity

This chapter’s results are joint work with Shay Mozes and Claire Mathieu and have appeared in [20].

7.1 Introduction

This chapter presents a PTAS for 1-dimensional Unsplit VRP with a single depot and restricted

vehicle capacity.

Recall the problem: Given a positive integer k ≤ n denoting the vehicle capacity, a set C =

{(pi, wi)}i≤n of n customers each with a position pi on the line and a demand wi ≤ k, and a single

depot also with a position on the line, find a collection of tours of minimum total length covering

the demands of all customers in C, such that each tour starts and ends at the depot, delivers at

most k demand and such that no customer’s demand is split up among multiple tours.

Please refer to the introduction of Chapter 5 for the background of this problem and to see how

it is equivalently viewed as a scheduling problem of minimizing the makespan on a single batch

machine with non-identical job sizes and as a generalization of bin-packing.

To the best of our knowledge the restricted capacity setting has not been specifically studied in

prior work. However the constraint certainly makes sense in any setting where the total number of

items to deliver is large compared to the delivery vehicle, e.g. a helicopter delivering goods to land

from a large ship containing many items.

As mentioned in the introduction of Chapter 5, bin packing reduces to the Unsplit problem,

in any dimensions and any number of depots. Bin packing does not to have a polynomial time

approximation algorithm with approximation ratio better than 3/2 unless P=NP, and hence does

not admit a PTAS. Thus it is surprising that the Unsplit problem of this chapter can have a PTAS.

The explanation for this is the following: the hardness proof that bin packing admits no PTAS is

86

87

via a reduction to the Partition problem 1. Partition is known to be NP-Hard in general, but can

be solved in polynomial time when each integer is at most n (or when input is supplied as unary).

Carrying out the reduction from Unsplit with the restricted capacity constraint, that k ≤ n, results

in the polynomially solvable version of Partition, hence the hardness result no longer applies.

Nevertheless, the Unsplit problem with restricted capacity is an NP-Hard problem, as Bin packing

with restricted bin size at most n and sizes wi ≥ 1 for all i, (or in other words bin packing with

unary inputs) reduces to it. As Bin packing is strongly NP-Hard, it is NP-Hard even when the input

is supplied in unary [27].

We give a PTAS for the 1-dimensional Unsplit problem with single depot and restricted capacity.

Our algorithm runs in polynomial time as long as k = poly(n) (or if k is specified in unary).

Theorem 7.1.1. Given an instance of the 1-dimensional Unsplit problem with a single depot and

restricted capacity k = poly(n), Algorithm 21 outputs a solution of cost (1 + O(ε))OPT, in time

keO(1/ε)
+ O(n log(n)) + log(n)(1/ε)O(1/ε).

We note that, unless P=NP, we cannot hope to achieve a PTAS when the conditions of Theorem

7.1.1 do not hold. A PTAS for the case when k > poly(n) would give us a polynomial time algorithm,

rather than a pseudo polynomial time algorithm, for deciding the Partition problem.

Overview of our approach. We partition the instance into two instances close and far and solve

them independently. A similar technique was used for the UnitDem problem on the plane by [29, 7].

The far instance is small enough so that it can be solved exactly by dynamic programming. The

close instance is solved by Algorithm 13 of Chapter 5. The final output is the union of the solutions

for far an close . Figure 7.1 shows a solution computed by our algorithm.

The far instance is solved in polynomial time when k ≤ poly(n), using a generalization of the

dynamic program of subset sum.

The crux of the analysis is a structural lemma which proves that the instance can be split into

close and an instance far with the right properties. It is crucial that, on the one hand, far does not

contain too much demand, so it can be solved efficiently and on the other hand, that far contains

enough demand so that the asymptotic condition of Theorem 5.1.1 holds for close. The lemma is

an extension of the technique of [29] to the unsplittable case.

7.2 Algorithm and Proof of Main Theorem

We present the PTAS in Algorithm 21 and prove Theorem 7.1.1. We assume that the instance is

preprocessed as given by Definition 5.2.1. Figure 7.1 shows a solution computed by our algorithm.
1Partition: Given a set of integers S = w1, . . . , wn, decide if S can be partitioned into two sets S1 and S2 such
that the sum of the numbers in S1 and S2 are equal.

88

Figure 7.1: A solution computed by Algorithm 21. The star is the depot, the dashed tours cover
only customers from far (marked“x”’). The solid tours cover only customers from close.

Algorithm 21 PTAS: Unsplit with single depot, resticted capacity, one dimension
Input: A Preprocessed instance with vehicle capacity k, customers (pi, wi)i≤n

Precondition: k ≤ poly(n).
1: Partition the instance into close and far using Algorithm 22
2: Find OPT(far) using Algorithm 23.
3: Find Best(close) using Algorithm 13 of Chapter 5

Output: Best(close) ∪OPT(far), as the solution for the whole instance.

7.2.1 Partitioning into close and far Instances

To partition the instance into close and far, Algorithm 22 considers the customers in decreasing

order of their positions and identifies an index i∗, such that, by condition (i) of Line 4, the total

demand appearing at positions greater than the position of i∗ is large, but by condition (ii), still

bounded. The far instance is defined to contain all the customers with indices less than or equal

to i∗ and close to contain the customers with indices greater than i∗.

Lemma 7.2.1 shows the optimal solution of I can be transformed into separate solutions for close

and far at small additional cost.

Lemma 7.2.1. Given an instance I, Algorithm 22 returns two instances far and close s.t.

OPT(close) + OPT(far) ≤ (1 + O(ε))OPT

Proof. Assume that close is not empty i.e i∗ 6= n, as otherwise the Lemma holds trivially. Let T

be the set of tours of OPT that cover customers in both instances close and far. We show how to

modify T so each tour covers customers in only one instance. For each tour t ∈ T cut t at position pi∗

to obtain three pieces: the first piece goes from the depot to position pi∗ and covers only customers

in close, the second piece goes further than pi∗ and covers customers only in far and the third piece

goes from pi∗ back to the depot covering only customers in close. Concatenate the first and third

pieces of together at pi∗ to get a tour that covers only customers in the close instance. Doing the

above for each t ∈ T yields a set of tours T1 that cover only customers in close.

89

Algorithm 22 Partition into close and far

Input: vehicle capacity k, customers (pi, wi)i≤n s.t. p1 ≥ · · · ≥ pn

1: if the total demand i.e
∑

i≤n wi = eO(1/ε)k then
2: Let i∗ = n.
3: else
4: Let i∗ be the minimum index such that:

i.
∑

j≤i∗ wj ≥ k/ε6 and

ii. pi∗
∑

j≤i∗ wj ≤ ε
∑n

j=1 wjpj .

5: end if
6: Far: Let the far instance consist of the customers indexed by 1, . . . , i∗.
7: Close: Let the close consist of the remaining customers i∗ + 1, . . . n.

Output: Instances far and close

Let T2 be the set of second pieces of each tour in T . While there exists at least two pieces in T2

each covering at most k/2 demand, concatenate the pieces together at pi∗ into a new piece covering

at most k demand. After all concatenations are done, all but at most one piece in T2 covers at least

k/2 demand. Add a single round trip connection from pi∗ to the depot for each piece in T2 to obtain

tours covering that cover only customers in far.

The total cost of T1 ∪ T2 is the cost of T plus the cost of the round trips to the depot. Let

dem(i∗) =
∑

j≤i∗ wj . Since at most one tour in T2 covers < k/2 demand, the number of tours in T2

is at most dem(i∗)
(k/2)+1 + 1 < 2dem(i∗)

k , which follows as dem(i∗) ≥ k by condition (i) of Line 4. Thus

the total cost of the round trips required for T2, is at most 2pi∗(2dem(i∗)/k). Thus

OPT(close) + OPT(far) ≤ OPT +
4(pi∗)dem(i∗)

k

By Line 4 condition (ii), (pi∗)dem(i∗) ≤ ε
∑n

j=1 wjpj , so applying the Rad bound (Lemma 1.3.2)

completes the proof as,
4pi∗dem(i∗)

k
≤ 4ε

∑
j

wjpj

k
≤ 2εOPT.

7.2.2 Solving the far instance

Algorithm 23 is used to solve far and its correctness is proved by Lemma 7.2.4. The Algorithm is

based on Lemma 7.2.2, that choosing far as in Algorithm 21 implies that OPT(far) uses only a con-

stant number of tours. The proofs of Lemma 7.2.2 appears in Section 7.3 and proof of Lemma 7.2.4

in Section 7.4.

Lemma 7.2.2. For any instance, let far be selected as in Algorithm 21. Then OPT(far) uses at

most cfar = O(1) tours.

90

Given that cfar is a constant, Algorithm 23 solves far by enumerating all configurations of

solutions for far, checking feasibility, and returning the minimum cost feasible configuration. Lemma

7.2.4 shows that Algorithm 23 computes the optimal far solution.

Configurations of far. We define configurations to describe solutions of far concisely. The

configuration considers the cfar tours of OPT(far), in decreasing order of their maximum positions

m1 ≥ m2 ≥ . . . ≥ mcfar
. The positions naturally define cfar intervals where interval Ii consists

of customers between positions (mi+1,mi], where we define mcfar+1 = p∗ for convenience. The

customers in Ii can only be covered by tours j = 1, . . . , i, i.e those with maximum position at least

mi. The list Di specifies how the demands in Ii is partitioned among these tours.

Definition 7.2.3. Let OPT(far) use cfar tours. A configuration of far consists of:

• An ordered list of positions m1 ≥ m2 . . . ≥ mcfar
s.t. mj is the maximum position of tour j.

• For each i ∈ [1, cfar], a list Di of i numbers Di = {di
1, . . . d

i
i}, such that di

j is the amount of

demand picked up by the j-th tour in interval Ii = (mi+1,mi], where for convenience we use

mcfar+1 = pi∗ .

The cost of the configuration is
∑

j≤cfar
2rj.

Note that Di does not directly describe how to partition the demands among the tours in Ii.

Determining whether there exists a partition that is consistent with a configuration, is done in

keO(1/ε)
time (i.e., polynomial in n assuming k ≤ poly(n)) using a trivial extension of the dynamic

program for the subset sum problem. See proof of Lemma 7.2.4 for more details.

Algorithm 23 Solving the far instance
Input: far customers (ps, ws)s with

∑
s ws = keO(1/ε)

1: for each configuration f of far as given in Definition 7.2.3 do
2: for each tour j ≤ cfar do
3: if (Load on tour j) =

∑
i≤cfar

di
j , is > k then

4: Mark f infeasible, as the capacity of tour is exceeded.
5: end if
6: end for
7: for each interval i ≤ cfar, with demand dem(Ii) = {ws : (ws, ps) ∈ Ii} do
8: if Extended DP of subset sum cannot partition dem(Ii) into di

1, . . . , d
i
i then

9: Mark f infeasible, as demands in Ii cannot be partitioned as required by f .
10: end if
11: end for
12: end for
Output: Solution represented by the minimum cost configuration, not marked infeasible.

Lemma 7.2.4. Given an instance of far with demand keO(1/ε), Algorithm 23 finds the optimal

solution of far in time keO(1/ε)
.

91

7.2.3 Proof of Main Theorem 7.1.1

Correctness of Algorithm 21. By Lemma 7.2.1 OPT(far) plus OPT(close) is a near optimal

solution of the original instance. It remains to show that Algorithm 21 computes near optimal

solutions for both far and close. Lemma 7.2.4 proves that Algorithm 23 computes the optimal

solution of the far instance.

We focus on cost of solution for close. Using the notation from the proof of Theorem 5.1.1, let

P ∗ be the partition of near for which Lemma 5.3.3 holds and let R∗
1, R

∗
2, . . . , R

∗
r be the regions of

P ∗. It remains to show that Algorithm 13 finds a near optimal solution for each region of partition

P ∗. Applying the same argument as in the proof of Theorem 5.1.1 we can show that Algorithm 13

finds a solution of cost at most,∑
i≤r

(1 + 2ε)OPT(R∗
i) + 2pR∗

i
= (1 + O(ε))OPT(close) + `(ε)

∑
i≥0

pR∗
i

(7.1)

where `(ε) = O(1/ε5) as defined in the proof of Theorem 5.1.1. We analyze the last term of Equation

7.1. The farthest customer in close is at position ≤ pi∗ , and by definition of regions (Definition 5.3.2)

the farthest position of a region R∗
i is pR∗

i
= pi∗ε

i/ε. Thus,∑
i≥0

pR∗
i
≤
∑
i≥0

pi∗ε
i/ε ≤ 2pi∗ ≤ ε6OPT (7.2)

where the last inequality follows by Lemma 7.2.5 (given below). Thus combining Equations 7.2 and

7.1 and value of `(ε) we have that our solution of close has cost at most

(1 + O(ε))OPT(close) + `(ε)
∑
i≥0

pR∗
i
≤ (1 + O(ε))OPT + O(1/ε5) · ε6OPT

= (1 + O(ε))OPT(close) + O(ε)OPT (7.3)

Thus the cost of the solution output by Algorithm 21 is at most

OPT(far) + (1 + O(ε))OPT(close) + O(ε)OPT,

which is (1 + O(ε))OPT by Lemma 7.2.1.

Lemma 7.2.5. OPT > 2pi∗/ε6.

Proof. By definition of i∗,
∑

j≤i∗ wj ≥ k/ε6. Using Lemma 1.3.2 we have

OPT ≥ 2
∑
j≤i∗

wjpj

k
≥ 2

∑
j≤i∗

wjpi∗

k
≥ 2 · k

ε6
pi∗

k
.

The running time. By Lemma 7.2.4 far can be computed by Algorithm 23 in time keO(1/ε)
. By

Theorem 5.1.1 Algorithm 13 finds a solution for the close instance in time O(n log n/ε) + O(log n ·
(1/ε)O(1/ε)). Thus the running time of Algorithm 21 is keO(1/ε)

+O(n log n/ε)+O(log n · (1/ε)O(1/ε)).

92

7.3 Proof of Lemma 7.2.2

The proof follows from Lemmas 7.3.1 and 7.3.2. Lemmas 7.3.1 shows that the total demand in far

is O(k) and Lemma 7.3.2 shows that as we can assume that all but one tour in OPT(far) covers at

least k/2 demand, cfar = 0(1).

Lemma 7.3.1 is an extension of a technique used by Haimovich and Rinnooy Kan’s [29] for the

UnitDem problem where the demands are splittable. It bounds the total demand in the far instance

by bounding the number of demands that violate the requirement pi∗
∑

j≤i∗ wj ≤ ε
∑n

j=1 wjpj

(Line 4, cond(ii) of Algorithm21).

Lemma 7.3.1. For an instance I, let i∗ be as chosen as in Algorithm 22. Then∑
j≤i∗

wj = eO(1/ε)k = O(k)

Proof. Let the customers be sorted in decreasing order of their positions as in the input of Algorithm

21. Assume that the total demand in the instance is more than eO(1/ε)k, as otherwise the Lemma

holds even if far contains the entire instance.

Algorithm 21 searches for the minimum index in the sorted list of customers where the conditions

of Line 4 are satisfied. Let i0 be minimum index satisfying condition (i) of Line 4, i.e
∑

j≤i0
wi ≥ k/ε6.

Either the algorithm choose i∗ = i0 or not. If i∗ = i0 then as each demand has size at most k the

total demand in far is at most k/ε6 + k. Thus the lemma holds.

Now suppose i∗ 6= i0. As condition (i) is satisfied at i0 it continues to be satisfied for all indices

i > i0. Thus while i∗ has not been reached, i.e for every index i ∈ [i0, i∗), it must be that condition

(ii) of Line 4 is unsatisfied. Thus we have, (w1+ · · ·+wi)pi > ε
∑

j wjpj . Equivalently by rearranging

the equation and multiplying both sides by wi we have,

∀i ∈ [i0, i∗),
1
ε

wipi∑
j wjpj

>
wi

w1 + · · ·+ wi
.

Summing over all i ∈ [i0, i∗) implies

1
ε

>
∑

i∈[i0,i∗)

wi

w1 + · · ·+ wi
. (7.4)

Go through the sequence (wi)i0≤i<i∗ in order of increasing i, and greedily partition the wi’s into

groups g1, g2, . . . such that for every group g, except perhaps the last one, the weight of demands in

the group is between k/ε and k(1/ε+1), i.e k/ε ≤
∑

i∈g wi < k(1/ε+1). Letting W0 = w1+· · ·+wi0−1

and, for group g`, W` =
∑

i∈g`
wi, we can rewrite the right hand side of Equation 7.4 as

∑
`≥1

∑
i∈g`

wi

W0 + · · ·+ W`−1 +
∑

i′∈g`,i′≤i wi′
≥
∑
`≥1

1
W0 + · · ·+ k`−1 + W`

∑
i∈g`

wi

=
∑
`≥1

W`

W0 + · · ·+ W`
. (7.5)

93

Since all W`’s (except possibly the last one) are within a (1 + ε) factor of each other, Equation 7.5

is at least

1
1 + ε

∑
`≥1

1
` + 1

≥ 1
2

log(#(groups)). (7.6)

Replacing the right hand side of Equation 7.4 with Equation 7.6, we have 1/ε > log(#(groups)/2,

which implies that the number of groups is at most exp(2/ε) (plus possibly one more to account for

the last group).

Thus after going through all the indices of demands in groups {W`}`≥0 Equation 7.4 cannot be

satisfied, hence condition (ii) of Line 4 must hold. Since group W0 has demand at most k(1/ε6 + 1)

and the remaining exp(2/ε) groups have total demand at most k(1/ε + 1), the total demand in

positions greater than i∗ is exp(O(1/ε))k, as desired.

Lemma 7.3.2. Let I be an instance of the problem such that the sum of all the demands in I is D.

Then OPT uses at most d2D/ke tours.

Proof. While there are two tours in OPT that each cover ≤ k/2 demand, merge them together at

the depot. Thus without loss of generality we can assume that all but at one tour in OPT covers at

least k/2 + 1 demand.

7.4 Proof of Lemma 7.2.4

Correctness of Algorithm 23 The algorithm iterates through all possible configurations, checks

the feasibility of each, and returns the feasible configuration with minimum cost. Fix a configuration

f . In each interval Ii, di
j specifies the total demand assigned to tour j from interval Ii. Thus the

total load for tour j over all intervals is given by
∑

i≤cfar
di

j . Line 3 computes the load of each tour

in the configuration and verifies that is at most k.

Let dem(i) = {w1, . . . wm} be the demands in interval Ii. Line 8 can use the following general-

ization of the dynamic program of subset-sum to check that the demands in Ii can be partitioned

into Di = {di
1, d

i
2, . . . , d

i
i}. The dynamic program populates a table Q. Table element Q[s, d1, . . . di]

specifies whether the first s demands from Ii, w1 . . . ws, can be partitioned into i sets whose sums are

d1 . . . di. The table is populated using the following recurrence: Q[s, d1, . . . di] is true if any of the fol-

lowing are true: Q[s−1, d1−ws, d2, . . . di], Q[s−1, d1, d2−ws, d3, . . . di], Q[s−1, d1, d2, d3−ws . . . di],

. . . , Q[s−1, d1, d2, . . . , di−ws]. For the base case: Q[1, d1, . . . , di] is true if w1 = dt for some t ≤ i and

all the other dt′ = 0 for all t′ 6= t. Otherwise Q[1, d1, . . . di] is false. We are interested in the entry

Q[m, d1, . . . , di] which specifies whether all the demands in dem(i) can be partitioned according to

Di.

Running Time. Algorithm 23 iterates over all configurations of far, so we start by analyzing

the number of configurations there are. By Lemma 7.3.1 the total demand in far is keO(1/ε),

94

thus by Lemma 7.3.2, the number of tours cfar = eO(1/ε). There are at most keO(1/ε) posi-

tions with customers, thus the number of possible lists of maximum positions m1,m2, . . . ,mcfar

is (# position)cfar = keO(1/ε)
. Each interval i ≤ cfar contains at list Di of i numbers, thus overall

there are at most c2
far numbers in these lists. As each number is less than or equal to k the number

of possible lists D1, . . . , Dcfar is kc2
far = keO(1/ε)

. Therefore, the total number of configurations is

keO(1/ε)
, which is a polynomial in n when k ≤ poly(n).

Next we analyze the time required to verify the feasibility of a configuration. Line 3 takes cfar

time as it involves summing at cfar values. For Line 8 we analyze the runtime of the generalization

of the dynamic program for subset sum. Table Q has size (# possible s)(# possible d1, . . . , di)

= keO(1/ε) · kcfar , as there are at most WeO(1/ε) demands and cfar tours in interval each Ii, and as

each di ≤ k. Each entry in Q can be computed in constant time by looking up at most cfar+1 entries.

Thus the dynamic program for Line 8 is computed in time O(cfar ·keO(1/ε) ·kcfar) = keO(1/ε)
. Lines 3

and 8 are each executed cfar times per configuration, thus the total time to verify a configuration

is cfar(cfar + keO(1/ε)
) = keO(1/ε)

.

To verify all configurations the total running time of Algorithm 23 is

keO(1/ε)
· keO(1/ε)

= keO(1/ε)
.

Chapter 8

Conclusion and Open Questions

We designed quasipolynomial time approximation schemes for the Euclidean UnitDem problem and

asymptotic polynomial time approximation schemes for the 1-dimensional Unsplit problem. Our

algorithms work for the setting with single or multiple depots. Thus we provided support for the

thesis statement: Arbitrarily good approximation guarantees are possible by exploiting geometric

properties in vehicle routing problems.

Our UnitDem algorithm has quasipolynomial and seriously super-polynomial running time, so

it is unlikely to lead to much in the way of practical improvements. However our result does make

progress towards and provides stronger evidence for the long standing conjecture that Euclidean

UnitDem has a PTAS for all k. Recently Adamaszek et al. designed a PTAS for a larger range of k

using our QPTAS as a black box [1].

Our approximation schemes for the Unsplit problem are reasonably efficient and simple and we

believe these can be useful in practice, especially the single depot algorithm which has applications

to batch scheduling.

Open questions for UnitDem The major open question still remaining is: Is there a polyno-

mial time approximation scheme for the Euclidean UnitDem problem for all values of k? As noted

previously, PTAS already exist when k is either large or small compared to n [1, 7, 29, 1, 2], and

several authors including [1, 7] have also noted that k = Θ(
√

n) seems to be the difficult case to

getting a PTAS for all k.

There are several obstacles to reducing the running time of our QPTAS. We describe a tour

segment by its pair of portals and the threshold number of points it covers. As there are O(log n)

portals and O(log2 n) thresholds possible we get a polylogarithmic number of tour profiles. The

quasipolynomial running time of our method follows as there can be O(n) tour segments of each

profile. To reduce the number of tour profiles we seem to require a result showing the existence of a

near optimal solution that uses a small number of portals in each box. We also need to be able to

reduce the number of thresholds while still maintaining that each tour covers no more than (1 + ε)k

points. A few factors of our quasipolynomial running time also comes from accumulating cost over

95

96

the O(log n) levels of the randomized dissection so a more global accounting of the cost may also be

useful to reducing the running time.

Despite these challenges obtaining a PTAS for the UnitDem problem would be an exciting result.

A related setting that also may provide some insights for this is the average case setting of the

problem where the locations of customers and depots are independently and identically distributed.

An open question is: Is there a polynomial time approximation scheme for the average case setting of

the Euclidean UnitDem problem? Haimovich and Rinnooy Kan showed that on the Euclidean plane,

when either k = o(
√

n) or k = Θ(n), their tour partitioning algorithm (Alg. 8) is asymptotically

optimal [29]. Recently, Bompadre, Dror and Orlin showed that in average case the tour partitioning

algorithm is a (2 + ε) − c approximation [11] for c ≥ 0.015 which is a slight improvement over the

worst case setting where the approximation factor is known to be 2 + ε. Thus the average case

setting seems to be an easier problem to design a PTAS for and could also provide new ideas that

may extend to the worst case setting. Note that Karp’s work on the average case Euclidean TSP [47]

inspired some of key ideas in the PTAS for the worst case setting of the problem. Finding a PTAS

for average case UnitDem would have important applications as well since the average case model

applies in many practical settings.

The fixed fleet problem is a common variant of UnitDem where the input also includes the fleet

size f and the customers are required to be covered using at most f routes. This models scenarios

where the tours must occur simultaneously; for example bus routes for school children. We conjecture

that it should be possible to extend our QPTAS for UnitDem when the fixed fleet constraint is soft:

if OPT is the value of the optimal solution that is constrained to use at most f tours, then our

approach can be extended to construct a solution that uses at most f(1+O(ε)) tours of total length

(1 + O(ε))OPT. This would require modifying the dynamic program in our algorithm to find the

optimal black solution that uses at most f tours. As we only drop an O(ε) fraction of the total

points from the black tours (i.e. the red points) we should be able to cover them with at most O(ε)f

tours using the tour partitioning algorithm. An interesting open question is: Is there a polynomial

time approximation scheme for the fixed fleet version of the Euclidean UnitDem problem? Arora’s

Euclidean TSP algorithm yields a PTAS for the problem whenever the optimal solution consists of

a constant number of tours i.e if k = Ω(n) or if f = O(1).

Open questions for Unsplit We designed asymptotic polynomial time approximation schemes

for the 1-dimensional Unsplit problem with running time exponential in 1/ε. We conjecture that

it is possible to get a fully polynomial time by using the column generation technique of Karp and

Karmarkar [33]. This technique was also employed by Epstein and Levin to achieve fully polynomial

time for a different variant of the bin packing problem [25].

It would also be wonderful to extend our algorithms to the Euclidean setting. The main open

question is: Is there an asymptotic polynomial time approximation scheme for the Euclidean Unsplit

problem? We note that in 2-dimensions it is still possible to partition the instance into regions and

use a shifting argument to show that a near optimal solution uses tours that cover customers from

97

only one region. In fact a similar technique was used in [1] for the UnitDem problem on the plane.

We also note that Bramel et al. give a probabilistic analysis for the Euclidean plane for the average

case setting where customer demands are drawn i.i.d from any distribution [13].

Bibliography

[1] A. Adamaszek, A. Czumaj, and A. Lingas. PTAS for k-tour cover problem on the plane for

moderately large values of k. In ISAAC, Berlin, Heidelberg, 2009. Springer-Verlag. [6, 25, 47,

59, 95, 97]

[2] Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems. J. ACM, 45(5):753–782, 1998. [v, 3, 6, 10, 11, 13, 20, 24, 25, 95]

[3] Sanjeev Arora. Approximation schemes for NP-hard geometric optimization problems: A sur-

vey. Mathematical Programming, 97(1-2):43–69, 2003. [10, 11, 25, 26]

[4] Sanjeev Arora and George Karakostas. Approximation schemes for minimum latency problems.

SIAM J. Comput., 32(5):1317–1337, 2003. [10]

[5] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998. [10]

[6] Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in the

plane by k-tours: a polynomial approximation scheme for fixed k. Research Report RT0162,

IBM Tokyo Research Laboratory, 1996. [25, 47]

[7] Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in the

plane by k-tours: towards a polynomial time approximation scheme for general k. In STOC

’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages

275–283, New York, NY, USA, 1997. ACM. [6, 25, 32, 43, 47, 87, 95]

[8] Meral Azizoglu and Scott Webster. Scheduling a batch processing machine with non-identical

job sizes. International Journal of Production Research, 38:2173–2184, June 2000. [58]

[9] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM,

41(1):153–180, 1994. [59, 61]

[10] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple dimensions:

Inapproximability results and approximation schemes. Math. Oper. Res., 31(1):31–49, 2006.

[58]

98

99

[11] A. Bompadre, M. Dror, and J.B. Orlin. Probabilistic analysis of unit-demand vehicle routing

problems. Journal of Applied Probability, 44(1):259–278, 2007. [96]

[12] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approximation

scheme for Euclidean steiner forest. In FOCS ’08: Proceedings of the 2008 49th Annual IEEE

Symposium on Foundations of Computer Science, pages 115–124, Washington, DC, USA, 2008.

IEEE Computer Society. [10, 50]

[13] J. Bramel, Jr. Coffman, Edward G., P. W. Shor, and D. Simchi-Levi. Probabilistic analysis

of the capacitated vehicle routing problem with unsplit demands. Oper. Res., 40:1095–1106,

November 1992. [57, 97]

[14] S. Cardon, S. Dommers, C. Eksin, R. Sitters, A. Stougie, and L. Stougie. A PTAS for

the multiple depot vehicle routing problem. SPOR Reports, January 2008. available at

www.win.tue.nl/bs/spor/. [6, 47]

[15] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. In

J. F. Traub, editor, Algorithms and Complexity: New Directions and Recent Results, page 441,

1976. [10]

[16] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:

a survey, pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997. [58]

[17] Janos Csirik, David S. Johnson, and Claire Kenyon. Better approximation algorithms for bin

covering. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete

algorithms, pages 557–566, Philadelphia, PA, USA, 2001. Society for Industrial and Applied

Mathematics. [58]

[18] Artur Czumaj and Andrzej Lingas. A polynomial time approximation scheme for Euclidean

minimum cost k-connectivity. In ICALP ’98: Proceedings of the 25th International Colloquium

on Automata, Languages and Programming, pages 682–694, London, UK, 1998. Springer-Verlag.

[46]

[19] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science, 6(1):80–

91, 1959. [1]

[20] A. Das, C. Mathieu, and S. Mozes. The train delivery problem-vehicle routing meets bin packing.

In In Proc. WAOA’08, th Workshop on Approximation and Online Algorithms, September 2010.

Springer, 2010. [56, 71, 86]

[21] Aparna Das and Claire Mathieu. A quasi-polynomial time approximation scheme for Euclidean

capacitated vehicle routing. In SODA ’10: Proceedings of the twenty first annual ACM-SIAM

symposium on Discrete algorithms, Philadelphia, PA, USA, 2009. Society for Industrial and

Applied Mathematics. [25, 47]

100

[22] Adrian Dumitrescu and Joseph S. B. Mitchell. Approximation algorithms for tsp with neigh-

borhoods in the plane. J. Algorithms, 48(1):135–159, 2003. [10]

[23] L. Dupont and F. Jolai Ghazvini. Minimizing makespan on a single batch processing machine

with non-identical job sizes. European Journal of Automation Systems, 32:431–440, 1998. [58]

[24] Lionel Dupont and Clarisse Dhaenens-Flipo. Minimizing the makespan on a batch machine with

non-identical job sizes: an exact procedure. Computers and Operations Research, 29(7):807 –

819, 2002. [58]

[25] L. Epstein and A. Levin. An APTAS for generalized cost variable-sized bin packing. SIAM J.

Comput., 38:411–428, April 2008. [58, 96]

[26] W. Fernandez de la Vega and Lueker G. S. Bin packing can be solved within 1+ε in linear time.

Combinatorica, 1(4):349–355, 1981. [7, 58, 60, 65, 72, 75]

[27] M. R. Garey and D. S. Johnson. “ strong ” NP-completeness results: Motivation, examples,

and implications. J. ACM, 25(3):499–508, 1978. [3, 57, 87]

[28] B. Golden, S. Raghavan, and E. Wasil. In The vehicle routing problem: Latest Advances and New

Challenges., volume 43 of Operations Research/Computer Science Interfaces Series. Springer,

USA, 2008. [1]

[29] M. Haimovich and A. H. G. Rinnooy Kan. Bounds and heuristics for capacitated routing

problems. Mathematics of Operations Research, 10(4):527–542, Nov., 1985. [v, 3, 6, 7, 25, 26,

27, 30, 32, 36, 40, 43, 47, 87, 92, 95, 96]

[30] M. Haimovich, A.H.G. Rinnooy Kan, and L. Stougie. Analysis of heuristics for vehicle routing

problems. In Vehicle Routing: Methods and Studies. Management Sci. Systems., volume 16,

pages 47–61, North Holland, Amsterdam, 1988. Elsevier Science B.V. [2, 6, 7, 57]

[31] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in

image processing and vlsi. J. ACM, 32(1):130–136, 1985. [61]

[32] Howard Karloff. How long can a Euclidean traveling salesman tour be? SIAM J. Discrete.

Math., 2(1):91–99, 1989. [46]

[33] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional

bin-packing problem. In FOCS, pages 312–320, Washington, DC, USA, 1982. IEEE Computer

Society. [58, 96]

[34] Philip N. Klein. A linear-time approximation scheme for tsp in undirected planar graphs with

edge-weights. SIAM Journal on Computing, 37(6):1926–1952, 2008. [3]

[35] Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the

Euclidean k-median problem. SIAM J. Comput., 37(3):757–782, 2007. [10]

101

[36] Martine Labbé, Gilbert Laporte, and Hlne Mercure. Capacitated vehicle routing on trees.

Operations Research, 39(4):616–622, 1991. [57]

[37] Gilbert Laporte. What you should know about the vehicle routing problem. Naval Research

Logistics, 54(8):811–819, 2007. [1]

[38] C.L. Li and D. Simchi-Levi. Worst-Case Analysis of Heuristics for Multidepot Capacitated

Vehicle Routing Problems. INFORMS, 2(1):64–73, 1990. [2, 6, 47, 48, 52, 53]

[39] J. Malkevitch. Keep on trucking. Monly Essays on Mathematical Topics, 2010. [1]

[40] J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple

polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM

J. Comput., 28(4):1298–1309, 1999. [3, 10, 25]

[41] F.D. Murgolo. An efficient approximation scheme for variable-sized bin packing. SIAM J.

Comput., 16(1):149–161, 1987. [58]

[42] Christos H. Papadimitriou and Kenneth Steiglitz. Some complexity results for the traveling

salesman problem. In STOC ’76: Proceedings of the eighth annual ACM symposium on Theory

of computing, pages 1–9, New York, NY, USA, 1976. ACM. [10]

[43] N. Rafiee Parsa, B. Karimi, and A. Husseinzadeh Kashan. A branch and price algorithm to min-

imize makespan on a single batch processing machine with non-identical job sizes. Computers

and Operations Research, 37(10):1720 – 1730, 2010. [58]

[44] Janice Partyka and Randolph. Hall. Vehicle routing software survey- on the road to connectivity.

OR/MS Today, 37, February 2010. [2]

[45] Satish B. Rao and Warren D. Smith. Approximating geometrical graphs via “spanners” and

“banyans”. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of

computing, pages 540–550, New York, NY, USA, 1998. ACM. [11, 46]

[46] Jan Remy and Angelika Steger. A quasi-polynomial time approximation scheme for minimum

weight triangulation. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium

on Theory of computing, pages 316–325, New York, NY, USA, 2006. ACM. [10]

[47] Karp R.M. Probabilistic analysis of partitioning algorithms for the TSP in the plane, volume 2

of Math. Oper. Res., pages 209–224. 1977. [96]

[48] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. An analysis of several

heuristics for the traveling salesman problem. SIAM J. Comput., 6(3):563–581, 1977. [9]

[49] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–

565, 1976. [3]

102

[50] Paolo Toth and Daniele Vigo, editors. The vehicle routing problem. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2001. [1, 2]

[51] R. Uzsoy. Scheduling a single batch processing machine with non-identical job sizes. Interna-

tional Journal of Production Research, 32:1615–1635, July 1994. [58]

[52] Vijay V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., New York, NY,

USA, 2001. [45]

[53] WEBSITE. http://neo.lcc.uma.es/radi-aeb/webvrp/, 2010. [3]

[54] WEBSITE. http://researchandpractise.com/vrp/surveys.html, 2010. [3]

[55] Guochuan Zhang, Xiaoqiang Cai, C.-Y Lee, and C.K Wong. Minimizing makespan on a single

batch processing machine with nonidentical job sizes. Naval Research Logistics, 48:226–240,

2001. [6, 58]

[56] Yuzhong Zhang and Zhigang Cao. An asymptotic PTAS for batch scheduling with nonidentical

job sizes to minimize makespan. In COCOA’07: Proceedings of the 1st international confer-

ence on Combinatorial optimization and applications, pages 44–51, Berlin, Heidelberg, 2007.

Springer-Verlag. [58]

