
Abstract of “Policy Delegation and Migration for So�ware-De�ned Networks” by Andrew DeBock Ferguson,

Ph.D., Brown University, April 2014.

In today’s networks, non-administrative users have little interaction with a network’s control-plane. Such

users can send probe tra�c to develop inferences about the network’s present state, yet they cannot directly

contact the control-plane for answers because of security or privacy concerns. In addition to reading the control-

plane’s state, modern applications have increasing need to write con�guration state as well. �ese applications,

running in home, campus, and datacenter networks, know what they need from the network, yet cannot convey

such intentions to the control-plane.

�is dissertation introduces participatory networking, a novel platform for delegating read and write

authority from a network’s administrators to end users, or applications and devices acting on their behalf. Users

can then work with the network, rather than around it, to achieve better performance, security, or predictable

behavior. Our platform’s design addresses the two key challenges: how to safely decompose control and visibility

of the network, and how to resolve con�icts between untrusted users and across requests, while maintaining

baseline levels of fairness and security.

We present a prototype implementation of participatory networking, structured as an API and controller

for OpenFlow-based so�ware-de�ned networks (SDNs). We call our controller PANE, and demonstrate its

usefulness by experiments with four real applications (Ekiga, SSHGuard, ZooKeeper, and Hadoop), and its

practicality through microbenchmarks. Furthermore, we develop a mechanical proof for a key portion of PANE,

the �rst for an SDN controller.

Unfortunately, network administrators interested in using SDN controllers such as PANE to manage the

network face the herculean challenge of migrating existing policy to the new platform. To lessen this challenge,

this dissertation introduces Exodus, the �rst tool for directly translating existing network con�gurations in

languages such as Cisco IOS and Linux iptables to SDN controller so�ware. �ese controllers are written in

Flowlog, a novel, rule-based, tierless language for SDNs we signi�cantly enhance for Exodus.

Automatic migration of existing con�gurations into SDN controllers has exposed several limitations in

both today’s languages for SDN programming, and OpenFlow itself. �is dissertation explores these limits, and

provides guidance on SDN migration and necessary switch features.

Abstract of “Policy Delegation and Migration for So�ware-De�ned Networks” by Andrew DeBock Ferguson,

Ph.D., Brown University, April 2014.

In today’s networks, non-administrative users have little interaction with a network’s control-plane. Such

users can send probe tra�c to develop inferences about the network’s present state, yet they cannot directly

contact the control-plane for answers because of security or privacy concerns. In addition to reading the control-

plane’s state, modern applications have increasing need to write con�guration state as well. �ese applications,

running in home, campus, and datacenter networks, know what they need from the network, yet cannot convey

such intentions to the control-plane.

�is dissertation introduces participatory networking, a novel platform for delegating read and write

authority from a network’s administrators to end users, or applications and devices acting on their behalf. Users

can then work with the network, rather than around it, to achieve better performance, security, or predictable

behavior. Our platform’s design addresses the two key challenges: how to safely decompose control and visibility

of the network, and how to resolve con�icts between untrusted users and across requests, while maintaining

baseline levels of fairness and security.

We present a prototype implementation of participatory networking, structured as an API and controller

for OpenFlow-based so�ware-de�ned networks (SDNs). We call our controller PANE, and demonstrate its

usefulness by experiments with four real applications (Ekiga, SSHGuard, ZooKeeper, and Hadoop), and its

practicality through microbenchmarks. Furthermore, we develop a mechanical proof for a key portion of PANE,

the �rst for an SDN controller.

Unfortunately, network administrators interested in using SDN controllers such as PANE to manage the

network face the herculean challenge of migrating existing policy to the new platform. To lessen this challenge,

this dissertation introduces Exodus, the �rst tool for directly translating existing network con�gurations in

languages such as Cisco IOS and Linux iptables to SDN controller so�ware. �ese controllers are written in

Flowlog, a novel, rule-based, tierless language for SDNs we signi�cantly enhance for Exodus.

Automatic migration of existing con�gurations into SDN controllers has exposed several limitations in

both today’s languages for SDN programming, and OpenFlow itself. �is dissertation explores these limits, and

provides guidance on SDN migration and necessary switch features.

Policy Delegation and Migration for So�ware-De�ned Networks

by

Andrew DeBock Ferguson

B. S. E., Princeton University, 2008

Sc. M., Brown University, 2011

A dissertation submitted in partial ful�llment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

April 2014

© Copyright 2014 by Andrew DeBock Ferguson

�is dissertation by Andrew DeBock Ferguson is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Rodrigo Fonseca, Director

Recommended to the Graduate Council

Date
Shriram Krishnamurthi, Reader

Brown University

Date
Jennifer Rexford, Reader
Princeton University

Approved by the Graduate Council

Date
Peter M. Weber

Dean of the Graduate School

iii

Acknowledgements

“�e pleasure we found in working together made us exceptionally patient;

it is much easier to strive for perfection when you are never bored.”

Daniel Khaneman

�is dissertation is the result of �ve years of wonderful collaboration. �e development and implemen-

tation of the ideas between these pages simply would not have been possible without the hard work, deep

discussions, and shared excitement of all my co-authors: Rodrigo Fonseca, Arjun Guha, Betsy Hilliard, Shriram

Krishnamurthi, Chen Liang, Tim Nelson, Jordan Place, and Michael Scheer. I owe them all a tremendous debt.

�e success of these projects is also due to the technical and administrative sta�s of the Brown Computer

Science department, particularly Lauren Clarke, Je� Coady, Mark Dieterich, Kathy Kirman, Dawn Reed, and

Max Salvas. With our interest in experimental infrastrucutre, I suspect systems researchers pose a unique and

di�cult challenge for their departments’ technical sta�; nonetheless, Je� and Max were always ready to satisfy

my creative requests, and Mark at least feigned understanding when I brought down the department routers in

the middle of the night. I truly appreciate all of their help.

A very special and important thank you goes to my labmates: Chen Liang, Jon Mace, Marcelo Martins, Je�

Rasley, Matheus Santos, Da Yu, and Ray Zhou. �anks to them and the life they brought to the lab, it was okay

to consider the systems lab “home” during the long stretches needed to realize these projects. �anks, you guys.

Shriram Krishnamurthi and his CSCI 1730 (Programming Languages) course changed my life. I am surely

not the �rst person to whom this has happened, and I certainly won’t be the last. By introducing me to the

power of type systems, functional programming, logic programming, and many other topics, I �nally had the

tools to e�ect the changes I knew needed to be made in today’s networks. I have leaned heavily on his students

iv

over the years: Spiros Eliopoulos, Arjun Guha, Ben Lerner, Tim Nelson, Joe Politz, Justin Pombrio, and Hannah

Quay-de la Vallee. For three years, I have always sat within 15 feet of at least a few of them, and I am going to

miss terribly the luxury of easy access to their wisdom.

I have so much to thank Jennifer Rexford for. As an undergraduate, Jen’s introduction to computer networks

was the only class in which I couldn’t help but start the homework just as soon as it was released; she had made

everything just too interesting! Later, she would write my letter of recommendation to grad school, despite a)

my last minute request, and b) being trapped in the Bankok airport due to the December 2009�ai protests.

Since then, the instances of Jen’s help to my development as a researcher have only continued to pile-up.

Critical amongst Jen’s contributions was the early introduction to Frenetic. Learning from, talking with,

debating with, drinking with, and collaborating with the wider Frenetic family – Carolyn Anderson, Marco

Canini, Spiros Eliopoulos, Nate Foster, Mike Freedman, Arjun Guha, Rob Harrison, Nanxi Kang, Naga Katta,

Chris Monsanto, Srinivas Narayana, Mark Reitblatt, Josh Reich, Jennifer Rexford, Cole Schlesinger, Alec Story,

Dave Walker, and those to whom I apologize for forgetting – was truly instrumental to the success of these

projects. I couldn’t have done this without their contributions: in papers, in conversation, and on Github.

I also want to thank Peter Bodik and Srikanth Kandula for an incredibly maturing internship at Microso�

Research. While the paper we produced on guaranteeing job latency in data parallel clusters does not �t within

this dissertation, the experience taught me the level of work required for these projects, and �rmly connected

to reality what I had read about Big Data and warehouse-scale computing.

Finally, I must thank my advisor, Rodrigo Fonseca, who, from the �rst day, gave me the freedom, support,

and encouragement to pursue my intellectual curiosities. Sometimes, this lead to failure ... but a few times,

it worked out, eventually bringing you, dear reader, this dissertation. From the �rst time we wrote a paper

together, I knew for certain I was lucky to have Rodrigo as an advisor. I still am.

v

Contents

List of Figures ix

1 Introduction 1

1.1 �e Need for Delegated Network Management . 1

1.2 So�ware-De�ned Networking . 2

1.3 Migrating to So�ware-De�ned Networks . 3

1.4 Summary of Contributions . 4

2 Participatory Networking: An API for Application Control of SDNs 5

2.1 �e PANE Controller . 6

3 Interacting with PANE 10

3.1 Requests . 10

3.2 Queries . 12

3.3 Hints . 13

4 �e Two Challenges 16

4.1 Privilege Delegation . 16

4.2 Con�ict Resolution . 18

4.2.1 Semantics of HFT . 19

4.2.2 Compiling Policies . 21

4.2.3 Con�ict-resolution Operators in PANE . 23

4.2.4 Strict vs Partial Ful�llment . 24

4.2.5 Compiler Complexity . 25

vi

5 �e PANE Controller 27

5.1 PANE’s Network Information Base . 28

5.2 Additional Features . 29

5.3 Fault Tolerance and Resilience . 29

6 Evaluation of Participatory Networking 31

6.1 Application Usage . 32

6.1.1 Ekiga . 32

6.1.2 SSHGuard . 32

6.1.3 ZooKeeper . 33

6.1.4 Hadoop . 35

6.2 Implementation Practicality . 36

6.3 Related Work . 37

7 Exodus: Toward Automatic Migration of Enterprise Network Policies to SDNs 41

7.1 Background: Cisco IOS . 42

7.2 Choosing a Target Language . 46

7.3 Flowlog . 48

8 From IOS to SDN 50

8.1 Network Con�guration . 50

8.2 Code Generation . 52

8.3 Prototyping the Network . 57

9 Evaluation of Exodus 59

9.1 Feasibility . 59

9.2 Utility . 60

9.3 Compiler Validation . 61

10 Discussion of SDNMigration 63

10.1 Language Limitations . 63

10.1.1 OpenFlow Shortcomings . 63

10.1.2 Lessons for SDN Language Designers . 65

vii

10.1.3 Flowlog De�ciencies . 67

10.2 Architectural and Physical Tradeo�s . 67

10.3 �e Route Ahead . 69

10.4 Related Work . 70

11 Conclusion 73

11.1 Bringing PANE to Flowlog . 74

11.2 Limitations of the “One Big Switch” Abstraction . 74

11.3 Lessons from Building SDN Controllers . 75

viii

List of Figures

2.1 �e PANE system and request processing . 7

2.2 Sample interaction between three principals and PANE. 8

3.1 Example user request for reserved bandwidth; PANE determines that it cannot be ful�lled until

time t. 11

4.1 (a) A PANE share. (b) A share hierarchy. �e rectangle above each share represents a �owgroup

according to one dimension (e.g., source IP). Sub-shares are de�ned on a subset of their parent’s

�owgroup, and may not have more permissive privileges than their parent. 17

4.2 Caption for Semantics . 19

4.3 Evaluation of a single packet . 20

4.4 Network Flow Tables . 22

4.5 PANE’s con�ict-resolution operators . 23

6.1 Latency of ZooKeeper DELETE requests. 34

6.2 E�ect of Hadoop on PANE and network. 34

6.3 Latency of switch operations in milliseconds. 36

7.1 Topology for Example Network . 43

8.1 Exodus Work�ow . 51

8.2 Logical �ow tables in an Exodus router implementation (a), and the implementation with

physical switches in OpenFlow 1.0 (b). 52

8.3 Two Exodus routers attached to a shared subnet . 57

ix

Chapter 1

Introduction

�esis StatementModern applications can bene�t from read and write interaction with a network’s control-

plane, yet such interaction is currently unsupported due to security and fairness concerns. We design a practical

and feasible platform for so�ware-de�ned networks (SDNs) that addresses these challenges through policy

delegation, and demonstrate its bene�ts. Furthermore, we can assist administrators migrating to these new

networks by directly translating their existing network con�gurations to SDN controller so�ware.

1.1 �e Need for Delegated Network Management

Today’s applications, whether running in datacenters, enterprise, campus, or home networks have an increasingly

di�cult relationship with the network. Networks are the shared fabric interconnecting users, applications, and

devices, and �uctuating, unpredictable network performance and reliability create challenges and uncertainty for

network administrators, application developers, and frustrated end-users alike. As a result, so�ware developers,

researchers, and administrators expend considerable e�ort to work around the network rather than work with

the network: video conferencing applications constantly probe network bandwidth [11], overlay networks are

used to re-route tra�c [11], network paths are reactively recon�gured based on inferences [1], and humans are

required to throttle heavy network loads in response to planned or unplanned shi�s in tra�c matrices. Using

humans for network control, however, is no panacea, having been responsible for signi�cant recent outages at

both Github [35] and Amazon [2].

At a minimum, packet networks forward data, collect tra�c statistics, and divide tra�c based on addresses

or other header �elds. Increasingly, modern networks also provide additional services, o�en implemented via

1

2

middleboxes, such as �rewalling, compression, encryption, threat-detection, acceleration, and caching. Yet,

all of these features are, for the most part, invisible to the applications passing tra�c through them, or only

available via rudimentary interfaces such as DSCP header bits.

With greater visibility into and control of the network’s state, a conferencing application could request

bandwidth for a video call, and learn via the network that, while only a guaranteed audio call is available now, it

could reserve a video call in one hour. An intrusion detection script on a user machine could request that the

network �lter tra�c from a speci�c source. An important RPC service could protect latency-sensitive �ows

from competing background tra�c. Or, a MapReduce-style application could request bandwidth guarantees, or

maximally disjoint paths, to improve performance of its shu�e phase.

Such examples suggest that an API should exist between the network’s control-plane and its users, applica-

tions, and end-hosts. �ese principals need both read access, to learn the network’s present and expected future

conditions, and write access, to make independent con�guration changes for their own bene�t, and provide

helpful knowledge, such as future tra�c demands, directly to the network’s control-plane.

In this thesis, we introduce the concept of participatory networking, in which the network provides a

con�guration API to its users, applications, and end-hosts, and present the design, implementation, and

evaluation of the �rst practical participatory networking controller for an OpenFlow-enabled so�ware-de�ned

network.

In the absence of security guarantees and limited authorities, participatory networks would be places of

anarchy. To be usable, such networks must provide isolation for their independent principals, preventing

malicious users from hogging bandwidth, dropping packets, or worse. While isolation could be provided

through network virtualization, we believe that is not always the right abstraction, as it hides the fundamentally

shared aspect of networks.

By contrast, participatory networks reveal the con�icts between their principals, and directly expose the

control-plane’s view of the network. Principals can use this greater awareness to make better-informed decisions

about how to use or recon�gure the network.

1.2 So�ware-De�ned Networking

�e recent development of So�ware-De�ned Networks (SDNs) o�ers a platform to realize the vision of partici-

patory networks [37, 62]. SDNs separate the logic that controls the network from its physical devices, allowing

con�guration programs to operate on a high-level, global, and consistent view of the network. �is change

3

has brought signi�cant advances to datacenter and enterprise networks, such as high-level speci�cation of

access control [66] and QoS [53], safe experimentation [79], in-network load-balancing [93], and seamless VM

migration [27].

In a traditional network, the control-plane, which determines how to transmit packets, is distributed

across the network’s switches. Each switch independently runs distributed algorithms (e.g., Bellman-Ford) to

determine the packet forwarding policy. By contrast, an SDN has a logically centralized controller, running

on a commodity server platform, which calculates a forwarding policy (e.g., with Dijkstra’s algorithm). �e

controller implements this policy by programming the switches’ data-planes, which process tra�c at line-rate.

�is programming is accomplished via a protocol such as OpenFlow [62], which provides a common

abstraction of a switch’s data-plane. �e principal component of this abstraction is a sequence of prioritized

“Match-Action” pairs, where matches list a set of packet header �elds, and actions specify handling of the

matching packets: transmit via a port, place in a queue, drop, etc.

1.3 Migrating to So�ware-De�ned Networks

So�ware-de�ned networks also o�er to simplify the management of enterprise networks, a notoriously chal-

lenging problem [8, 17, 18, 51, 85, 101]. SDNs ease the evolvability of the network by centralizing con�guration

and management, and enable the use of modern programming languages and veri�cation techniques.

However, migrating from an existing, working network environment to an SDN presents a formidable

hurdle [45]. Enterprises and administrators are familiar with, and quite likely depend upon, the speci�c behavior

of existing con�gurations, and any SDN replacement will need to begin with identical behavior.

Unfortunately, these networks can be large and complex [51, 58, 103], with network behavior de�ned by

myriad policies, usually speci�ed for each individual device, in a variety of languages that con�gure distributed

programs embedded in these devices. �e scale and complexity of the aggregate behavior of these rules means

the process of creating a controller program for an equivalent SDN is non-trivial. For example, Purdue’s network

was reported to have over 15,000 hosts, 200 routers, 1,300 switches, and 182 VLANs in 2011 [85]. Stanford’s

backbone, whose publicly available con�guration we use in our evaluation (Chap. 9) [103], has two large border

routers connected through 10 switches to 14 Operational Zone routers. In aggregate, the con�guration comprises

757,000 forwarding entries and 1,500 ACL rules.

Today, there are a few options for incrementally migrating a physical network to an SDN [17, 20, 58], which

we review later in the dissertation. However, a common de�ciency of these migration paths is the need to

4

rewrite network policies and con�gurations from scratch, a tall order for busy network operators [6]. For a

risk-averse network administrator, this may be reason enough not to migrate.

�is dissertation directly addresses the problem of migrating distributed network con�gurations to equiva-

lent SDN controller programs, and presents Exodus, a system we developed for performing this conversion.

�e controllers Exodus generates are written in Flowlog [68], a language for SDN programming we designed

out of our experience building the PANE controller.

�e development of PANE, Flowlog, and Exodus has exposed a number of de�ciencies in the current state of

SDN development. We close with a discussion of these de�ciencies relative to traditional networking (Chap. 10),

and within the modern so�ware-stack itself (Chap. 11).

1.4 Summary of Contributions

In summary, this thesis makes the following contributions:

1. We introduce the concept of participatory networking, an interface for So�ware-De�ned Networks which

allows administrators to safely delegate control of the network to end users and their applications [31].

2. We present a rich con�ict-resolution formalism – hierarchical �ow tables (HFTs) – which allows con-

�icting policies to coexist in the network. HFTs introduce hierarchical merge composition [29], which

complements existing parallel [33] and sequential [64] composition.

3. We demonstrate, through a participatory networking prototype, four instances in which end-user appli-

cations bene�t from read and write interaction with a network’s control-plane [30].

4. We present and evaluate Exodus, the �rst framework for automatic migration of existing network con�g-

urations to equivalent So�ware-De�ned Networks.

Chapter 2

Participatory Networking

An API for Application Control of SDNs

�is chapter introduces the concept of participatory networking, in which the network provides a con�guration

API to its users, applications, and end-hosts, and o�ers an overview of the �rst participatory networking

controller for a so�ware-de�ned network. Later chapters will describe this design in more detail, and present

its evaluation.

Our prototype OpenFlow-based controller for participatory networks is called PANE. �e PANE controller

implements a capability system – it delegates read and write authority, with optional restrictions, from the

network’s administrators to the users, or applications and hosts acting on their behalf. �e controller is logically

centralized, has a global view of the network, and implements the principals’ high-level intents by changing the

con�guration of the actual network devices. In addition, we implement and evaluate the examples described

above by augmenting four real applications (Chap. 6).

PANE’s user-facing API serves as the next layer on the current SDN stack. �e abstractions provided by

so�ware-de�ned networks allow us to reason formally about PANE’s design, and ensure the network continues

to provide baseline levels of fairness and security, even as principals dynamically invoke their capabilities.

Our design addresses the two key challenges of participatory networks: how to safely decompose control and

visibility of the network, and how to resolve con�icts between participants and across requests. PANE’s solutions

to these challenges were developed both through formal reasoning, and by porting real-world applications

to solve existing use cases. We start with an overview of our solution in this chapter, followed by in-depth

5

6

discussions of each challenge in Chap. 4.

Many approaches to achieving some of these goals have been previously proposed including active network-

ing [86], IntServ networking [13], and distributed reservation protocols such as RSVP [14] and NSIS [60]. We

discuss their relation to participatory networking in Sec. 6.3. PANE does not introduce any new functionalities

into the network. Instead, it exposes existing functionalities and provides a single platform for reasoning about

their use. We argue that this approach provides several advantages: a single target for application developers, a

uni�ed management framework for network administrators, and, most importantly, the ability to reason across

all network resources.

PANE is designed for networks within a single administrative domain including corporate WANs, datacen-

ters, campus or enterprise networks, and home networks. In such networks, there is, logically, a single owner

from which authority can be delegated. PANE’s design does not rely on changes to the end-hosts, such as the

use of a particular hypervisor, making it suitable for networks with user-owned or managed devices.

2.1 �e PANE Controller

We �rst present an overview of PANE, including the model of interaction, the types of messages, and the

kinds of network resources one can request. We discuss the challenges involved in exposing network control to

multiple principals, and the solutions we propose. We then discuss additional considerations that in�uenced

PANE’s design, which we detail in the following chapters (3-5).

PANE allows principals to gain controlled visibility into the network and to safely in�uence network

operations. Principals in PANE are end users, or, most commonly, applications and devices running on their

behalf. We assume some infrastructure in the network for authentication, such as 802.1x associated with

an existing user database. A�er authentication, principals interact with the PANE controller using a simple

text-based protocol.

Principals can issue three types of messages to read and write network state: requests (Sec. 3.1), queries

(Sec. 3.2), and hints (Sec. 3.3). Requests are for resources (e.g., bandwidth or access control), with an action to be

taken by the controller. Queries read some component of network state (e.g., tra�c between hosts, or available

bandwidth). Hints inform PANE about current or future tra�c characteristics; the controller may choose to

use hints to improve service. Our initial design implements a �rst come-�rst serve service model, where the

controller handles messages in a serialized fashion.

7

OpenFlow Module

Share Tree

HFT Compilation
Linearization

Conflict Resolution

Authorization

Policy Tree

Network
Information
Base (NIB)

PANE user requests

Switches

1

2

Figure 2.1: �e PANE system and request processing

Each message refers to some subset of the network’s �ows; we call these �owgroups. For example, a message

may request to deny all tra�c from a particular host, or to rate-limit a single �ow, or query the bandwidth used

by some set of �ows. Without restrictions, a malicious or negligent principal can adversely a�ect the network –

a key novelty of PANE is its method to safely allow multiple principals to a�ect the network, without ceding

administrative privileges.

As simple examples, a �rewall program in a user’s machine may issue a request for denying all tra�c from

external IP addresses to itself, to be implemented at the edges of the network; a distributed RPC librarymay issue

a hint for the network informing that all �ows between two ports will be small �ows; or a backup application

may query the network about the current bu�er utilizations along a path.

PANE’s design addresses two key challenges. First, it provides a �exible mechanism that gives multiple

principals control over a �ne-grained portion of network resources. Second, it resolves the inevitable con�icts

that arise between principals’ requests, while allowing oversubscription.

Limiting Authority PANE uses shares to limit the authority of principals. A share stateswho (which principals)

can say what (which messages) about which �ows in the network. �is statement is represented, respectively,

by a share’s three components: its principals, privileges, and �owgroup. Figure 4.1(a) shows an example share.

Principals of a share have two implicit privileges. A principal can delegate its privileges to another principal,

much like passing an object capability. In addition, principals can create sub-shares of shares to which they have

access. Shares are thus organized in a global share tree. �e share tree enforces two key invariants: a sub-share’s

8

1 root: NewShare aliceBW for (user=Alice) [reserve <= 10Mb] on rootShare.
2 root: Grant aliceBW to Alice.
3 Alice: reserve(user=Alice,dstPort=80) = 8Mb on aliceBW from +20min to +30min.
4 root: NewShare bobAC for (dstHost=10.0.0.2) [deny = True] on rootShare.
5 root: Grant bobAC to Bob.
6 Bob: deny(dstHost=10.0.0.2, srcHost=10.0.0.3) on bobAC from now to +5min.
7 Bob: deny(dstHost=10.0.0.4, srcHost=10.0.0.3) on bobAC.

Figure 2.2: Sample interaction between three principals and PANE.

�owgroup must be a subset of its parent’s �owgroup, and a sub-share’s privileges cannot be more permissive

than its parent share’s privileges.

Figure 2.2 traces an example interaction in which the root user creates a new share, aliceBW restricted

to Alice’s tra�c (Line 1). �is share carries the privilege to reserve up to 10 Mbps of guaranteed minimum

bandwidth, and is a sub-share of the root share. In Line 2, the root user grants Alice access to this share. Alice

then uses this share to reserve bandwidth for her HTTP (port 80) �ows for 10minutes, starting 20minutes in the

future (Line 3). In the next line, the root user creates a share for tra�c destined to Bob’s computer (10.0.0.2)

with the privilege to deny tra�c, and subsequently grants Bob access to this share (Line 5). In Line 6, Bob

successfully uses this share to block access from a host 10.0.0.3 for �ve minutes. However, his attempt to

block tra�c from that host to 10.0.0.4 is rejected as the speci�ed �ow group is not a subset of the share’s

�owgroup (dstHost=10.0.0.2).

Resolving Con�icts �e share tree constrains the policies that can be realized in the network, but does not itself

cause any policy to be implemented in the network. Instead, accepted requests and realized hints determine

network policy. We call such accepted requests and realized hints policy atoms – units of the overall network

policy. Policy atoms are arranged in the same hierarchy as the share tree, forming a policy tree. A policy tree is

a declarative data structure that represents the desired global policy for the network. PANE materializes this

policy in the network by installing rules in the switches that implement an equivalent policy (Chap. 5).

Policy atoms thus exist in the context of a share, and are bound by the shares’ privileges and �owgroup.

However, policy atoms may con�ict. For example, one policy atom may deny all HTTP �ows, while another

allows HTTP �ows. �ese atoms may even exist on di�erent shares. �e PANE share tree is �exible: it supports

oversubscription, and allows several shares to express policies for overlapping �owgroups. A key novelty of

PANE is a principled and intuitive con�ict-resolution algorithm for hierarchical policies.

We develop Hierarchical Flow Tables (HFTs) to materialize PANE’s policy tree. HFTs provide a model for

resolving con�icts in a hierarchy of policies, and a formally-veri�ed compiler from such hierarchies to �ow

9

tables suitable for OpenFlow switches. In particular, HFTs use con�ict resolution operators within and between

each node in the hierarchy to �exibly resolve con�icts. We describe the design of PANE’s operators, and the

semantics and implementation of HFTs in Sec. 4.2.

Request Processing Having summarized PANE’s key ideas, we now describe at a high level the processing of a

single request, as depicted in Figure 2.1.When an authenticated principal sends the controller amessage, perhaps

requesting a resource for a �owgroup in a particular share, PANE �rst checks that the request is admissible per

the share’s �owgroup and privileges – Check 1 in the �gure.

If this �rst check passes, PANE then checks to see if it is compatible with the state of the network – Check 2.

�is check involves all accepted requests (i.e., policy atoms) in the policy tree, and the physical capabilities of

the network. For example, a bandwidth reservation requires a circuit between two endpoints with su�cient

bandwidth and switch queues.�is check requires compiling the current policy tree, augmented with the request

itself. If this check passes, the request is incorporated into the tree, and the controller can install the policy onto

the network. �is process also has a variation which only partially ful�lls requests; Sec. 4.2.4 describes both

variations in more detail.

A �nal key feature, which we detail in subsequent chapters, is that PANE allows principals to request

resources for future intervals. To support this, PANE maintains a time-indexed sequence of policy trees. �e

above checks may thus be made against future, planned network state as appropriate.

Chapter 3

Interacting with PANE

We now expand upon the three message types introduced in the overview: requests, queries, and hints. Table 3.1

has a concise speci�cation of these messages, and their relation to other key concepts in PANE.

3.1 Requests

A request a�ects the state of the network for some interval of time. By default, requests take e�ect immediately

and do not expire; speci�c start and end times may optionally be provided. Verifying if a request can be granted

may require walking the tree’s hierarchy, depending on the type of request. �is design allows resources to be

oversubscribed; overallocation is prevented when requests are granted, and not when shares are created.

Participatory networks may support requests for a variety of network resources and services, which we

detail next.

Access Control �e simplest type of network service exposed by PANE is access control – the ability to allow

and deny tra�c, using the Allow andDeny requests. Like all requests, they specify a �owgroup describing the

a�ected tra�c, and the share which the principal is using to invoke the privilege. Each access control privilege

is optionally constrained by a speci�ed number of seconds, n. To exceed this limit, principals must periodically

renew requests. Shares lacking the ability to allow or deny tra�c have n = 0. When creating a sub-share, a

principal cannot exceed these constraints. For example, if a share carries the privilege toDeny tra�c for up to

300 seconds, a sub-share cannot be created with the privilege toDeny tra�c for up to 301 seconds; similarly, a

sub-share could not be created with the privilege to Allow tra�c.

�e handling of a given packet is ultimately decided by the composition of every matching access control

10

11

Time
B
a
n
d
w
id
th

Reservation Limit
✔✘

t

Figure 3.1: Example user request for reserved bandwidth; PANE determines that it cannot be ful�lled until time
t.

request. �is composition makes use of the share tree’s hierarchy to resolve con�icts – for example, an access

control request made on a child share overrides those in parent shares. We defer further discussion of PANE’s

general approach to con�ict resolution until Sec. 4.2.

With each request, the principal can specify a ful�llment mode, either strict or partial. �ese are provided

for atomicity and convenience. In strict mode, PANE rejects a request if it would be (partially) overridden by

any previous request. For example, if a user wants to allow connections to TCP ports 1000-2000, but there

exists a request in a sub-share that denies port 1024, PANE rejects the request, explaining why. In partial mode,

PANE implements the request, and informs the user that it was only partially satis�ed; in the same example,

PANE would inform the user that it has allowed ports 1000-1023, and 1025-2000.

�ese modes exist for two reasons: �rst, to avoid race conditions in request allocations, and second, to

avoid complicated, �ne-grained speci�cations that depend on PANE’s current state. We defer a more complete

discussion of the strict and partial ful�llment modes until Sec. 4.2.4.

Guaranteed Minimum Bandwidth PANE also provides a Reserve privilege which provides guaranteed min-

imum bandwidth (GMB) between two hosts. Shares which contain the privilege to reserve bandwidth are

limited by a modi�ed token bucket: it has the usual attributes of �ll rate F, capacity C, and maximum drain

rate M, and an additional minimum drain rate m. �is lower bound prevents reservations with very low

drain rates that could last inde�nitely. A simple reservation with maximum bandwidth B is a special case with

F = M = B;C = m = 0. GMB reservations are ultimately implemented by PANE’s runtime as a sequence of

forwarding actions and switch queues, as we describe in Chap. 5. Requests which cannot be implemented are

rejected.

Figure 3.1 shows a simple example in which a principal has requested an immediate bandwidth reservation.

PANE determines that granting the request will exceed the share’s available bandwidth. �e principal then

12

examines the share’s schedule of available bandwidth and sends a new request for a reservation to start at t;

PANE accepts the request and later implements it.

When creating sub-shares of shares with GMB privileges, the sub-share’s token bucket must “�t inside”

the parent’s token bucket; parents cannot provide more tokens to their children than they receive. However, a

share’s tokens can be over-subscribed by its sub-shares. When a request is granted, it draws tokens from all of

its parent shares, up to the root of the tree, thus preventing over-allocation.

Path Control A third request type directs �ows through or around middleboxes usingWaypoint and Avoid.

For example, a university’s network administrators can route students’ tra�c through a packet shaper during

business hours, and security researchers can avoid intrusion detection systems for tra�c to be collected by

honeypots. Shares contain sets of IP addresses listing the middleboxes which they can route through or avoid,

and, as with �owgroups, sub-shares may only contain subsets of their parents’ sets. PANE implementsWaypoint

and Avoid by installing �ow-speci�c forwarding rules along a path determined by �xing or deleting nodes as

appropriate when routing over the network graph (Sec. 5.1). Requests to create unrealizable paths are rejected.

Rate-limits PANE supports rate-limit requests which result in matching tra�c being routed through ports

with established rate-limiters, as available in current switches. While basic, such requests can be used to mitigate

DOS attacks or enforce tra�c contracts between tenants in a shared datacenter. PANE’s global view of the

network enables it to make best use of the switches’ features and place rate-limiters close to the tra�c’s source,

as we describe in Sec. 5.1. Like PANE’s bandwidth reservations, rate-limits are currently restricted to circuits; a

network with distributed rate-limiters, such as those proposed by Raghavan, et al. [73], could support more

general limits. �eir integration is le� as future work.

3.2 Queries

PANE also supports messages to query the state of the network. �ese queries may be for general information

about the network, such as the type of a link (e.g., copper or optical), the set of hosts located downstream of a

particular port, or other properties. Each share may contain a list of properties which it is privileged to read.�is

list is similar to a “view” on a database; when sub-shares are created, this view may be further occluded. While

these restrictions provide basic privacy protection when exposing the network’s state, they are not complete. For

example, if a switch has three links, and a principal has the privilege to read the sending and receiving rates on

two of the links, but not the third, it can infer the rate on the third link. We leave a more complete development

13

of privacy protections as future work.

�e current OpenFlow speci�cations and design make a number of properties available which principals in

PANE may query including: the number (or list) of hosts behind a particular port, port-speci�c diagnostic data

such as the number of packets dropped, the number of CRC errors, etc., the physical and topological location of

switches, and the access medium of links. In the future, we would like to support additional details we believe

would bene�t applications such as the current signal-to-noise ratio or broadcasting power of wireless access

points.

PANE also supports a “network weather service” which provides coarse information about current tra�c

conditions. For example, statistics about the total amount of tra�c over a core link are available, but not statistics

about individual �ows. By integrating PANE with a project like Frenetic [33], we expect it could support the

ability to query the tra�c statistics of individual �ows, as such queries require a more robust OpenFlow runtime

than our current implementation.

Applications can issue queries to the PANE controller to improve the user experience. For example, Hadoop

could use the weather service to place reducers away from currently-congested parts of the network, and

streaming video players can determine that a wireless access point is attached to a cellular modem or similarly

constrained backhaul as Shieh, et al. proposed [80].

3.3 Hints

�e �nal type of message in PANE is a hint. Hints are used to provide the network with information which may

improve the application’s or network’s performance, without creating an additional requirement. Providing hints

across abstraction boundaries is a natural feature in other systems. For example, if a three-tier web application

makes a request to the database layer, and hints to the caching layer that it won’t make the same request again

in the near future, the cache may choose to skip storing the result.

�ree hints which are useful for networked applications include: the size (in bytes) of a �ow, a desired

�ow-completion deadline, and the predictability of future tra�c. PANE can use �ow size information to spread

large �ows across multiple paths of equal-cost, as inMahout [24] or Hedera [1]. Deadlines can be communicated

to supporting routers such as those proposed in D3 [94]. And hints about tra�c predictability can be used by

tra�c optimizers such MicroTE [10].

PANE may use hints to derive and install policy atoms which a�ect related tra�c, although it gives no

guarantee or noti�cation to the user. For example, a hint that a �ow is short may generate a policy atom to

14

increase that �ow’s priority. We call such hints realized, and their corresponding policy atoms are tagged as

merely hints (cf. Table 3.1).

�e integration of hints, which can bene�t non-PANE systems, as in the examples above, is deliberate. PANE

provides a network administrator with the framework to delegate privileges, divide resources, and account

for their usage; the ability to issue hints is a privilege, particularly those which a�ect limited resources. �e

framework provided by PANE makes it more feasible to implement hints in an untrusted environment, where

malicious principals may issue false or excessive hints in an attempt to gain an advantage.

Finally, in the absence of transactional-style requests (e.g., a request for “resource A or resource B”), PANE’s

hints are a more �exible way to provide information to the network than via requests. In this use, hints share a

similar role to PANE’s partial ful�llment mode for requests (Sec. 4.2.4).

15

Share S ∈ {P} × {F} × {Priv} A share gives principals some privileges to a�ect a set of �ows.
Principal P ∶∶= (user, host, app) A triple consisting of an application, running on a host by a user.
Flow F ∶∶= ⟨srcIP=n1 , dstIP=n2 , A set of packets with shared properties: source and destination IP address,

proto=n3 , srcPort=n4 , dstPort=n5⟩ transport protocol, and source and destination transport ports.
Privilege Priv ∶∶=CanDeny n ∣ CanAllow n �e privileges to allow or deny tra�c for up to n seconds (optional).

∣ CanReserve n ∣ CanRateLimit n �e privileges to reserve bandwidth or set rate-limits, up to n MB.
∣ CanWaypoint {IP} ∣ CanAvoid {IP} �e privileges to direct tra�c through or around particular IP addresses.

Message Msg ∶∶= P ∶ {F} ∶ S → (Req Tspec ∣ Hint Tspec ∣ Query) A message from a principal with a request, hint, or query using a share.
Time Spec Tspec ∶∶= from t1 until t2 An optional speci�cation from time t1 until t2 .
Request Req ∶∶=Allow ∣ Deny Request to allow/deny tra�c.

∣ Reserve n ∣ RateLimit n Request to reserve n MB or rate-limit to n MB.
∣Waypoint IP ∣ Avoid IP Waypoint/avoid tra�c through a middlebox with the given IP address.

Query Query ∶∶=Tra�cBetween srcIP dstIP ∣ ... Query the total tra�c between two hosts.
Hint Hint ∶∶=Duration t ∣ ... Hint that the �ow’s duration is t.
Policy Atom Atom ∶∶= P ∶ {F} → Req Tspec A requested modi�cation of network state.

∣ Hint P ∶ {F} → Req Tspec A realized hint; it may be removed if it con�icts with a future request.

Table 3.1: Main concepts in PANE

Chapter 4

�e Two Challenges

Participatory networking faces two key challenges to its realization. �e �rst is how to safely decompose control

and visibility of the network, and the second is how to resolve con�icts between participants and across requests.

We now explain how PANE’s design overcomes these challenges.

4.1 Privilege Delegation

�is section presents the semantics of shares and how principals’ messages are authorized in more detail. �e

PANE controller maintains two key data structures. First, the share tree determines the privileges that principals

have to read or write network state. �e tree-structure allows principals to create new shares and delegate

authority to each other. �e share tree itself does not a�ect the state of the network. Instead, the second key

data-structure, the policy tree, holds policy atoms that can a�ect the network. PANE maintains the invariant

that all policy atoms in the policy tree are properly authorized by the share tree at all times.

A share-tree is an n-ary tree of shares, where a share gives a set of principals some privileges to a�ect a set of

�ows in the network. We elaborate on these terms below.

Principals A PANE principal is a triple consisting of an application running on a host by a user. A principal

may be (Skype, 192.168.1.7,Alice) or (Hadoop, 10.20.20.20,Bob) for example. Shares in PANE are held by

principal-sets. We abbreviate singleton sets to their principal. We also use wildcards to denote large sets. e.g.,

(Alice, ⋆, ⋆) is the set of all principals with Alice as the user, and (⋆, ⋆,Hadoop) is the set of all principals with

Hadoop as the application. We write (⋆, ⋆, ⋆) to denote the set of all principals.

16

17

Flowgroup

Principals Privileges
src=128.12/16 ⋀ dst.port ≤1024

Alice
Bob

deny, allow
bandwidth: 5Mb/s

limit: 10Mb/s
hint

query

(a)

Root
share

x y

w z

(b)

Figure 4.1: (a) A PANE share. (b) A share hierarchy. �e rectangle above each share represents a �owgroup
according to one dimension (e.g., source IP). Sub-shares are de�ned on a subset of their parent’s �owgroup, and
may not have more permissive privileges than their parent.

Principals send messages to the PANE controller to request resources and query the state of the network.

For example, the principal (Skype, 192.168.1.7,Alice)may request low-latency service between the Skype call’s

source and destination, and the principal (Hadoop, 10.20.20.20,Bob) may request guaranteed bandwidth

between the three machines in an HDFS write pipeline, as we implement in Sec. 6.1.

In a deployed system, PANE could use 802.1x to authenticate the user portion of a principal against an

existing user database such as Active Directory or LDAP. In an ideal environment, the application and host

portions could be attested to by a TPMmodule and application signatures on the end host [82]. For now, our

prototype only considers the user portion of a principal.

�e three-part principal design allows users and network administrators to fully understand the provenance

of each request. For example, in a cluster of Hadoop machines, requests by di�erent Application Masters are

identi�able back to the speci�cmachine they weremade from. Similarly, users can di�erentiate between requests

from distinct applications on the same machine.

Flows A �ow is a set of related packets on which requests are made. For example,

⟨srcIP=w , dstIP=x , proto=TCP, srcPort=y, dstPort=z⟩

is a �owgroup that denotes a TCP connection from w ∶ y to x ∶ z. A PANE share allows principals to a�ect a

set of �ows, which we denote with wildcards when possible. For example, the following �owgroup denotes all

HTTP requests:

⟨srcIP=⋆, dstIP=⋆, proto=TCP, srcPort=⋆, dstPort=80⟩

18

whereas the following denotes HTTP requests and responses:

⟨srcIP=⋆, dstIP=⋆, proto=TCP, srcPort=⋆, dstPort=80⟩∪

⟨srcIP=⋆, dstIP=⋆, proto=TCP, srcPort=80, dstPort=⋆⟩

A key invariant of the share tree is that if share S1 is a sub-share of share S2, then S1’s �owgroup is a subset of

S2’s �owgroup. �erefore, sub-shares allow principals to implement �ne-grained delegation of control.

Privileges Privileges in PANE de�ne the messages principals may send using the share. Each message type, as

described in the previous chapter, has a corresponding privilege. For example,CanAllow n andCanDeny n per-

mit admission-control policies to be requested for n seconds, and CanWaypoint {IP} indicates that principals

can route tra�c through an IP address in the given set.

4.2 Con�ict Resolution

Con�icts arise naturally in a participatory network, as PANE is designed to allowmultiple, distributed principals

to author the network con�guration. For example, one principal may issue a request to deny tra�c to TCP

port 80, while another may request such tra�c be allowed. �is section discusses how PANE handles con�icts

between overlapping requests through the introduction of Hierarchical Flow Tables (HFTs).

Two requests overlap when the intersection of their respective �owgroups is not empty, i.e., there are some

�ows that match both. As described in Chap. 2, principals make requests in the context of a share, and accepted

requests become policy atoms residing in this share. Policy atoms, then, inherit from the share tree a natural

hierarchical relationship, which we call the policy tree. �e network’s e�ective policy is a function of the set of

all policy atoms, their position in the tree, and the semantics of con�ict resolution between overlapping policy

atoms.

We now develop a detailed semantics for HFTs (Sec. 4.2.1), describe a compiler which translates HFTs for

use in OpenFlow-based SDNs (Sec. 4.2.2), detail PANE’s choice of con�ict-resolution operators (Sec. 4.2.3), the

ful�llment of strict and partial requests, (Sec. 4.2.4), and �nally, analyze the complexity of the HFT compiler

(Sec. 4.2.5).

19

H = header names and ingress ports
patterns V = const ∣ pre�x ∣ ⋆
matches M = ∅ ∣ ⟨

ÐÐ→
H,V⟩

actions A = Allow ∣ Deny ∣ Reserve(n) ∣ RateLimit(n) ∣ 0
con�ict-resolution (+) = A→ A→ A
operators
policy atoms P = M × A
policy tree nodes D = (+D) × 2P
policy trees T = (+P) × (+S) × D × 2T

packets K = ⟨
ÐÐÐÐ→
H, const⟩

cmb ∶ D × K → A
cmb((+, {⋯(M i ,A i)⋯}),K) = A′1 +⋯ + A′k + 0
where {A′1 ,⋯,A′k} = {A i ∣M i ∩ K ≠ ∅}

eval ∶ T × K → A
eval((+P ,+S ,D, {T1 ,⋯, Tn}),K) = cmb(D,K) +P A1
where A1 = eval(T1 ,K) +S A2

A2 = eval(T2 ,K) +S A3
⋯

An = eval(Tn ,K) +S 0

Figure 4.2: Semantics of HFT2

4.2.1 Semantics of HFT

A Hierarchical Flow Table allows several principals to author a tree of policies, and specify custom con�ict-

resolution operators at each node in the tree. In this section, we de�ne the semantics of a policy tree as the �nal

action it produces on an individual packet, a�er it has consolidated actions from all policies in the tree.1 In

Sec. 4.2.2, we compile these policy trees to run e�ciently on hardware.

Figure 4.2 de�nes packets (K), policy trees (T), actions (A), and a function eval that matches packets against

policy trees and returns an action. For our purposes, packets are a vector of header names and values; we do

not match on packets’ contents. For concreteness, we depict the actions we have implemented in our prototype

(Chap. 5): admission control, reserving a guaranteed minimum bandwidth (GMB), rate-limiting bandwidth,

and 0, a special “don’t care” action.

A policy tree is a tree of policy nodes (D), which contain sets of policy atoms (P). An atom is a match rule

and action pair, (M ,A). When a packet matches a policy atom, M ∩ K ≠ ∅, the atom produces its action. �e

interesting cases occur when a packet matches several policy atoms with con�icting actions. In these cases, we

1�is semantic model, where the central controller conceptually sees all packets, is inspired by Frenetic [33].

20

(dstPort = 22, Deny)

(dstIP = 10.0.0.2, GMB=30)

(dstPort = 80, GMB=10) (srcIP = 10.0.0.1, Allow)

Allow
GM

B=
10

GMB=10GM
B=

30

1

2 3

4 5

GMB=30
[srcIP = 10.0.0.1
dstIP = 10.0.0.2

ddstPort = 80]

packet headers:

Figure 4.3: Evaluation of a single packet

resolve con�icts with the con�ict-resolution operators (+) attached throughout the policy tree.

Policy trees have di�erent types of con�ict-resolution operators at several points in the tree (i.e., +D , +P ,

+S in Figure 4.2). �ese multiple types allow an HFT to resolve di�erent types of con�icts using independent

logic. For example, con�icts between parent and child nodes may be resolved di�erently than con�icts between

a single node’s internal policy atoms. �erefore, the choice of con�ict-resolution operators is a key policy

decision. Our prototype network (Chap. 5) provides two default operators; developing and evaluating additional

operators, such as operators to support priorities across requests, is le� as future work.

�e function cmbmatches a packet with an individual policy tree node. If a packet matches several policy

atoms, cmb uses the node’s internal con�ict-resolution operator, +D , to combine their actions. �e compiler

requires +D to be associative and have 0 as its identity.3

�e function evalmatches a packet with a policy tree by applying cmb to the policy tree node at the root,

and recursively applying eval to its children. A policy tree has con�ict-resolution operators +P and +S , which

respectively allow it to resolve parent-child and inter-sibling con�icts di�erently. In particular, +P does not

have to be commutative – it is always used with the parent’s action on the le� and the child’s action on the right.

�is lets us express intuitive con�ict resolutions such as “child overrides parent.”

Example: Figure 4.3 depicts a simple policy tree and illustrates how eval produces an action, given the tree and

indicated packet. Each node contains its policy atoms, and atoms which match the packet are colored green.

�e eval function recursively produces an action from each sub-tree; these actions are the labels on each node’s

outgoing edge.

In this example, the policy atoms at each leaf match the packet and produce an action. Node 3 receives

22M×A is the set of all subsets of pairs drawn from M and A.
3�at is, we require a + (b + 0) = (a + b) + 0 = a + b.

21

con�icting actions from its children, which it resolves with its inter-sibling con�ict-resolution operator:

Reserve(10) +S Allow = Reserve(10). Node 3 has no policy atoms itself, so it produces the 0 action. Since 0 is

the identity of all con�ict-resolution operators, 0 +P Reserve(10) = Reserve(10) is the resulting action from

this sub-tree.

Finally,Node 1 computes the aggregate action of its children:Reserve(30)+SReserve(10) = Reserve(max(30, 10)).

Since Node 1’s policy atoms do not match the packet, the �nal action is 0 +P Reserve(30) = Reserve(30).

4.2.2 Compiling Policies

�e preceding section assumes that a central function, eval, observes and directs all packets in the network.

Although eval speci�es the meaning of policy trees, this is not a practical implementation. We now describe

how to compile HFT’s policy trees to run on commodity switches, which support simpler, linear �ow tables, to

produce a practical implementation.

Our compiler works in two stages. First, we translate policy trees to network �ow tables, which have a basic,

linear matching semantics. Second, we use network �ow tables to con�gure a distributed network of switches,

translating high-level actions such as GMB(n) to low-level operations on switches (Sec. 5.1).

A network �ow table (N) is a sequence of paired match rules and actions. �e scan function, de�ned in

Figure 4.4, matches packets against network �ow tables and returns the action associated with the �rst matching

rule. If no rules match the packet, then scan returns 0.4

�ematching semantics of network �ow tables correspond to the matching semantics of switch �ow tables

exposed by OpenFlow. When a packet matches a switch �ow table, only one rule’s action applies. If a packet

matches multiple rules, the switch selects the one with the highest priority. A rule’s index in a network �ow

table corresponds to a switch �ow table priority, with index 0 as the highest priority. Since all rules have distinct

indices, a naive correspondence would give all rules distinct priorities. A more compact one, which we use,

maps a sequence of non-overlapping network �ow table rules to a single priority in a switch �ow table.

�e linT function is our compiler from policy trees to network �ow tables. It uses linD as a helper to compile

policy tree nodes. �e linD function translates policy atoms to singleton network �ow tables, and combines

them with union(+,N ,N′).Union builds a network �ow table that matches packets in either N or N ′. Moreover,

when a packet matches both N and N ′, union computes the intersection using the + con�ict-resolution operator

to combine actions.

4�e scan function is derived from NetCore [63].

22

Network Flow Tables N = ⟨
ÐÐ→
M ,A⟩

scan ∶ N × K → A

M1 ∩ K = ∅⋯M j−1 ∩ K = ∅ M j ∩ K ≠ ∅

scan(⟨(M1 ,A1)⋯(Mn ,An)⟩,K) = A j

M1 ∩ K = ∅⋯Mn ∩ K = ∅

scan(⟨(M1 ,A1)⋯(Mn ,An)⟩,K) = 0

linD ∶ D → N
linD (+D , {M1 ,A1 ,⋯,M j ,A j}) = N1
where N1 = union(+D , ⟨M1 ,A1⟩,N2)

⋯

N j = union(+D , ⟨M j ,A j⟩, ⟨⟩)

linT ∶ T → N
linT (+P ,+S ,D, {T1⋯Tk}) = union(+P , linD(D),N1)

where N1 = union(+S , linT(T1),N ′

2)

⋯

Nk = union(+S , linT(Tk), ⟨⟩)

union, inter ∶ (+) × N × N → N

union((+),N1 ,N2) = inter((+),N1 ,N2)N1N2
inter((+), ⟨⋯(M i ,A i)⋯⟩, ⟨⋯(M′

j ,A
′

j)⋯⟩) =

⟨⋯(M i ∩M′

j ,A i + A′j))⋯⟩

Figure 4.4: Network Flow Tables

Similarly, linT recursively builds network �ow tables for its subtrees, and calls linD on its root node. It applies

union to combine the results, using +S and +P where appropriate.

�e functions in Figure 4.4, linT , linD , union, and inter require the con�ict-resolution operators to satisfy

the following properties.

De�nition 1 (Well-formed) T is well-formed if:

• All con�ict-resolution operators are associative, and

• 0 is the identity of all con�ict-resolution operators.

Proving the compiler correct requires the following key lemma, which states that all con�ict-resolution operators

distribute over scan.

Lemma 1 For all +, N1, and N2, where 0 is the identity of +, scan(union(+,N1 ,N2)) = scan(N1) + scan(N2).

With this, we prove the compiler correct.

23

+P ∶ A× A→ A
Deny +P Allow = Allow
Allow +P Allow = Allow
AP +P Deny = Deny
Deny +P Reserve(n) = Reserve(n)
Reserve(m) +P Reserve(n) = Reserve(max(m, n))
Reserve(m) +P Allow = Reserve(m)
Allow +P Reserve(m) = Reserve(n)
Deny +P Ratelimit(n) = Ratelimit(n)
Ratelimit(m) +P Ratelimit(n) = Ratelimit(min(m, n))
Ratelimit(m) +P Allow = Ratelimit(m)
Allow +P Ratelimit(m) = Ratelimit(n)

+S ∶ A× A→ A
Deny +S A2 = Deny
Reserve(m) +S Reserve(n) = Reserve(max(m, n))
Reserve(m) +S Allow = Reserve(m)
Ratelimit(m) +S Ratelimit(n) = Ratelimit(min(m, n))
Ratelimit(m) +S Allow = Ratelimit(m)

�e +S operator is commutative. We only show representative cases.

Figure 4.5: PANE’s con�ict-resolution operators

�eorem 1 (Soundness) For all well-formed policy trees, T and packets, P, eval(T , P) = scan(linT(T), P).

Wemechanize all our de�nitions and proofs using the Coq proof assistant [23].5 ∎

4.2.3 Con�ict-resolution Operators in PANE

As discussed previously, HFTs resolve con�icts through the use of con�ict resolution operators. �ese operators

take two con�icting requests as input, and return a single resolved request. For example, a packet which

matches policy atoms from Reserve(10) and Reserve(30) may be resolved to the higher guaranteed bandwidth,

Reserve(30), as occurs at Node 1 in Figure 4.3.

�e HFT design allows for complex con�ict-resolution operators, and could support di�erent operators

at each node in the tree. However, for PANE we chose simple con�ict-resolution operators in the interest

of user and administrator understanding. Figure 4.5 speci�es PANE’s con�ict-resolution operators. PANE’s

parent-child operator (+P) speci�es a “child overrides parent” policy for admission control. PANE’s +S and +D

operators are identical, and specify a “Deny overrides Allow policy” between siblings.

�ese operators’ simple design is heavily in�uenced by PANE’s �rst come-�rst serve approach to granting

requests – for example, the operators do not consider the principal whomade the request; each request is treated

equally within its hierarchical context. However, by taking advantage of this design �exibility, operators which

5�e complete proof is available with PANE’s source code: http://github.com/brownsys/pane

http://github.com/brownsys/pane

24

resolve con�icts by using priorities could be introduced. Because such an approach would lead to previously

accepted requests being preempted, the PANE controller would need to maintain a connection to each principal

to provide preemption noti�cations. Avoiding this complexity is an additional bene�t of PANE’s current, simple

approach.

Finally, it is important to note that PANE’s con�ict-resolution operators may drop previously realized hints

to ful�ll strict requests, detailed next, as needed.

4.2.4 Strict vs Partial Ful�llment

We now return to PANE’s strict and partial modes of ful�llment, �rst introduced with the Allow and Deny

privileges. In each mode, a request is �rst authenticated against the share tree, then, as shown in Figure 2.1,

PANE veri�es the resulting policy tree can be compiled to a valid network con�guration. A�er this veri�cation,

the two modes di�er.

In strict mode, PANE ensures that a request’s speci�ed action is the same as the action returned by HFT’s

eval function for all packets in the request’s �owgroup – that is, no con�ict resolution operator has changed

the resulting action for any matching packets. More formally, when a request with match rule M and action

A is added to a policy tree, yielding tree T , ∀ packets K ∈ {K∣M ∩ K ≠ ∅}, eval(T ,K) = A. If this condition

does not hold, the request is rejected. In partial mode, the request is not subject to this check, and may even be

relaxed – for example, a request for 30 Mbps of guaranteed bandwidth on a share with only 20 Mbps available

will be relaxed to a request for 20 Mbps.

�ese modes are useful for three reasons. First, strict mode provides the principal with a guarantee that

the request will be implemented in the network as speci�ed. �is is a limited form of change-impact analysis:

was the impact of my change on the network’s con�guration what I expected? If not, cancel the request. We will

expand PANE’s ability to provide change-impact analysis in future work.

Second, partial mode improves support for concurrent requests, as at least a relaxed form of a partial request

will succeed. Without this, a principal faces the risk of repeatedly cra�ing strict requests based on the network

state at time t0, only to have the request arrive at time t2 > t0 and con�ict with a request accepted at time t1,

where t2 > t1 > t0.

Finally, partial mode’s ability to relax a request is a useful convenience. For example, if a principal has

permissions which a�ect dozens of speci�c TCP ports in the range 1000-2000, yet not all of them, partial

requests can be made for that range, and the requests would be relaxed to just the speci�c ports, freeing the

principal from needing to specify the particular ports on each request.

25

Partial reservations, such as the 20 Mbps received of the 30 Mbps requested in the example above, are

particularly useful as applications can use them to provide upper-bounds for transfer time. Although the faster

reservation may have been preferred, the slower one still provides predictability to the end-user (and in either

scenario, the actual bandwidth received by the transfer may be even higher than the guaranteed minimum).

Such a use case is di�erent from that for bandwidth hints; with hints, the principal does not know how the

information will be used, if at all.

4.2.5 Compiler Complexity

To realize a policy tree in OpenFlow hardware, we have to compile it to �ow tables for each switch. A direct

implementation of the HFT algorithm produces �ow tables of size O(2n), where n is the size of the policy

tree. With two changes, we can greatly reduce the complexity: the modi�ed algorithm yields �ow tables of size

O(n2) in O(n2) time. �is section is an overview of our results.

OpenFlow �ow tables are simple linear sequences of patterns and actions. A �ow can match several,

overlapping policy atoms in a policy tree and trigger con�ict-resolution that combines their policies. However,

in an OpenFlow �ow table, a �ow will only trigger the action of the highest-priority matching pattern.

For example, suppose the policy tree has two atoms with the following �owgroups:

⟨srcIP=X , dstIP=Y , proto=tcp, srcPort=⋆, dstPort=⋆⟩

⟨srcIP=⋆, dstIP=⋆, proto=tcp, srcPort=⋆, dstPort=80⟩

Suppose �ows that match the �rst �owgroup – all �ows from X to Y – are waypointed through some switch,

and that �ows that match the second �owgroup – all HTTP requests – are given some bandwidth reservation.

�ese two �owgroups overlap, thus a �ow may be (1) waypointed with a reservation, (2) only waypointed, (3)

only given a reservation, or (4) not be a�ected by the policy.

An OpenFlow �ow table that realizes the above two-atom policy tree must have entries for all four cases. In

general, such an approach generates all possible combinations given trees of size n — i.e. �ow tables of size

O(2n).

We make two changes to prune the generated �ow table: (1) we remove all rules that generate empty patterns

and (2) we remove all rules whose patterns are fully shadowed by higher-priority rules. �e earlier algorithm

is recursive, and we prune a�er each recursive call. It is obvious that this simple pruning does not a�ect the

semantics of �ow tables. However, a surprising result is that it dramatically improves the complexity of the

26

algorithm.

�e intuition behind our proof is that for su�ciently large policy trees, the intersections are guaranteed to

produce duplicate and empty patterns that get pruned. To see this, note OpenFlow patterns have a bit-vector

that determines which �elds are wildcards. Suppose two patterns have identical wildcard bits and we calculate

their intersection:

First, if the two patterns are identical, then so is their intersection. Of these three identical patterns, two get

pruned. Second, if the two patterns are distinct, since their wildcards are identical, they exactly match some

�eld di�erently. �us, their intersection is empty and pruned.

If patterns have h header �elds, there are only 2h unique wildcard bit-vectors. �erefore, if a policy tree

has more than 2h policy atoms, it is assured that some intersections create empty or duplicate patterns that are

pruned, thus thinning the number of generated rules as new policy atoms are considered.

Our full complexity analysis shows that when the number of policy atoms, n, is larger than 2h , then the

compilation algorithm runs in O(n2) time and produces a �ow table of size O(n2). OpenFlow 1.0 patterns

are 12-tuple, and our current policies only use 5 header �elds. �erefore, on policies with more than 25 policy

atoms, the algorithm is quadratic.

Updating Flow Tables

It is not enough for PANE to generate �ow tables quickly. It must also propagate switch updates quickly,

as the time required to update the network a�ects the e�ective duration of requests. �e OpenFlow protocol

only allows switches to be updated one rule at a time. A naive strategy is to �rst delete all old rules, and then

install new rules. In PANE, we implement a faster strategy: the controller state stores the rules deployed on

each switch; to install new rules, it calculates a “di�” between the new and old rules. �ese di�s are typically

small, since rule-table updates occur when a subset of policy atoms are realized or unrealized.

Chapter 5

�e PANE Controller

�e complete PANE system integrates the previously described components into a fully-functioning SDN

controller, as depicted in Fig. 2.1. It manages simultaneous connections with the network’s principals and its

switches. In this role, it is responsible for implementing both our participatory networking API, as well as the

details of computing default forwarding routes, transmitting OpenFlow messages, and reacting to network

changes such as switches joining and links failing. To accomplish these tasks, the PANE controller maintains

three data structures: the share tree, a sequence of policy trees, and a network information base (NIB), described

below.

We have developed a prototype PANE controller using Haskell and the Nettle library for OpenFlow [89].

Although we chose OpenFlow as our substrate for implementing PANE, participatory networking’s design does

not depend on OpenFlow. PANE could be implemented using other mechanisms to control the network, such

as 4D [37], MPLS, or a collection of middleboxes.

A prototype release is available on Github, and we provide a virtual machine for Mininet-based evaluation

on our website.1 �e release also includes a Java library which implements an object-oriented interface to

PANE’s text API.

�e PANE controller is an entirely event-driven multicore program. �e three primary event types are

incoming PANE API messages, incoming OpenFlow messages, and timer events triggered by the start or �nish

of previously accepted requests or realizable hints.

API messages always specify a share on which they are operating. When a message arrives, the PANE

1http://pane.cs.brown.edu.

27

http://pane.cs.brown.edu

28

controller �rst uses the share tree to determine whether it is authorized, and then, for requests, whether it is

feasible by consulting the policy trees, as described in the previous chapters.

When requests start and expire, the PANE controller compiles the new policy tree to a set of switch �ow

tables, translating high-level actions to low-level operations on individual switches in the network. For example,

aReserve(n) action becomes a circuit of switch queues and forwarding rules that direct packets to those queues.

As we will describe next, PANE’s runtime uses its NIB and a default forwarding algorithm to realize this and

other actions. Our implementation constructs a spanning tree and implements MAC learning as its forwarding

algorithm.

When possible, PANE uses the slicing extensions to OpenFlow 1.0 to create and con�gure queues, and

out-of-band commands when necessary. While OpenFlow allows us to set expiry timeouts on �ow table entries,

our controller must explicitly delete queues when reservations expire.

As Reitblatt, et al. [74] articulate, it is a challenge to update switch con�gurations without introducing

inconsistent, intermediate stages. Our implementation does not presently address this issue; we anticipate

confronting this problem in the future.

5.1 PANE’s Network Information Base

A network information base (NIB) is a database of network elements – hosts, switches, ports, queues, and links –

and their capabilities (e.g., rate-limiters or per-port output queues on a switch). �e runtime uses the NIB to

translate logical actions to a physical con�guration, determine a spanning tree for default packet forwarding, and

to hold switch information such as manufacturer, version, and its ports’ speeds, con�gurations, and statistics.

For example, PANE’s runtime implements a bandwidth reservation, (M ,Reserve(n)), by querying the NIB

for the shortest path with available queues between the corresponding hosts. Along this path, PANE creates

queues which guarantee bandwidth n, and �ow table rules to direct packets matching M to those queues. We

chose this greedy approach to reserving bandwidth for simplicity, and leave the implementation of alternatives

as future work.

PANE also uses the NIB to installDeny rules as close as possible to the tra�c source. If the source is outside

our network, this is the network’s gateway switch. If the source is inside the network, packets are dropped at the

closest switch(es) with available rule space.

�e NIB we implement is inspired by Onix [55]. It uses a simple discovery protocol to �nd links between

switches, and information from our forwarding algorithm, such as ARP requests, to discover the locations of

29

hosts.

5.2 Additional Features

�e PANE runtime supports several additional features beyond the requests, hints, and queries previously

described. Principals are able to query PANE to determine their available capabilities, examine the schedule of

bandwidth availability, create sub-shares, and grant privileges to other principals. PANE’s API also provides

commands to determine which existing requests and shares can a�ect a speci�ed �owgroup; this is particularly

useful for debugging the network, such as to determine why certain tra�c is being denied.

Beyond the API, the PANE controller also includes an administrative interface which displays the current

state and con�guration of the network, real-time information about the controller’s performance such as

memory and CPU usage, and allows the dynamic adjustment of logging verbosity.

5.3 Fault Tolerance and Resilience

While the principals in PANE are authenticated, they do not need to be trusted as privileges are restricted by

the system’s semantics. We recognize, however, that it may be possible to exploit combinations of privileges in

an untoward fashion, and leave such prevention as future work.

Our prototype implementation of PANE is currently defenseless against principals which issue excessive

requests; we leave such protection against denial-of-service as future work, and expect PANE’s requirement for

authenticated principals to enable such protections.

�e PANE controller must consider two types of failures. �e �rst is failure of network elements, such as

switches or links, and the second is failure of the controller itself.

When a switch or link fails, or when a link’s con�guration changes, the PANE runtime must recompile

the policy tree to new individual switch �ow tables, as previously used paths may no longer be available or

acceptable. Because the underlying network has changed, this recompilation step is not guaranteed to succeed. If

this happens, we defer to PANE’s �rst come-�rst serve service model, greedily replaying requests to build a new

policy tree which does compile; implementing this simply requires annotating the current policy tree’s policy

atoms with the order in which they were created. Developing a more sophisticated approach to re-constructing

a feasible policy tree, perhaps taking advantage of priorities, or with the goal of maximizing the number of

restored requests, remains as future work.

30

To handle failure of the controller, we can keep a database-like persistent redo log of accepted requests,

periodically compacted by removing those which have expired. Upon recovery, the PANE controller could

restore its state from this log. In production settings, we expect the PANE controller to be deployed on multiple

servers with shared, distributed state. Switches would maintain connections to each of the controllers as newer

OpenFlow speci�cations support. We leave the design and analysis of both options as future work. Because

network principals use PANE in an opt-in fashion to receive predictable performance, a complete runtime

failure would simply return the network to its current state of providing best-e�ort performance only.

Chapter 6

Evaluation of Participatory Networking

We evaluate our PANE prototype with the Mininet platform for emulating SDNs [57], and with real networks.

Our primary testbed includes two Pronto 3290 switches running the Indigo �rmware,1 and several so�ware

OpenFlow switches (bothOpen vSwitch and the reference user-mode switch) running on Linux Intel-compatible

hardware, and on the TP-LinkWR-1043NDwireless router.Wired connections are 1 Gbps and wireless runs over

802.11n. Clients on the network include dedicated Linux servers, and �uctuating numbers of personal laptops

and phones. In addition to the participatory networking API, the network also provides standard services such

as DHCP, DNS, and NAT.

Members of our group have been using the testbed since February 2012 to manage our tra�c, and during

this time, it has been our primary source of network connectivity. �e testbed is compatible with unmodi�ed

consumer electronic devices, which can easily interact with a PANE controller running at a well-known

location.2

In the following chapters, we examine two aspects of our prototype. First, we consider four case studies of

real applications that use the PANE API to improve end-user experience (Sec. 6.1). Second, we evaluate the

practicality of implementing the PANE API in current OpenFlow-enabled networks, considering questions

such as the latency of processing requests, and the number of rules created by networked applications (Sec. 6.2).

1http://indigo.openflowhub.org/

2�e PANE controller could also be speci�ed using a DHCP vendor-speci�c or site-speci�c option.

31

http://indigo.openflowhub.org/

32

6.1 Application Usage

We ported four real applications to use the PANE API: Ekiga, SSHGuard, ZooKeeper, and Hadoop. We now

describe how intentions of an application developer or user can be translated to our API, and the e�ects of using

PANE on the network and the application. Our PANE-enabled versions of these applications are all publicly

available on Github.3

6.1.1 Ekiga

Ekiga is an open source video conferencing application. We modi�ed Ekiga to ask the user for the anticipated

duration of video calls, and use a Reservemessage to request guaranteed bandwidth from the network between

the caller’s host and either the network gateway or the recipient’s host, for the appropriate time. If such a

reservation is not available, Ekiga retrieves the schedule of available bandwidth from PANE and calculates the

earliest time at which a video call or, alternatively, an audio call, can be made with guaranteed quality. It then

presents these options to the user, along with a third option for placing a “best e�ort” call right away.

Realizable reservations cause the PANE controller to create guaranteed bandwidth queues along the path of

the circuit, and install forwarding rules for Ekiga’s tra�c. Measurements of Skype use on a campus network

with more than 7000 hosts show that making reservations with PANE for VoIP applications is quite feasible.

Skype calls peaked at 75 per hour, with 80% of calls lasting for fewer than 30 minutes [11]. �is frequency is well

within current OpenFlow switches’ capabilities, as we measure in Sec. 6.2.

6.1.2 SSHGuard

SSHGuard is a popular tool to detect brute-force attacks via log monitoring and install local �rewall rules (e.g.,

via iptables) in response. We modi�ed SSHGuard to use PANE as a �rewall backend to block nefarious

tra�c entering the network. In particular, this means such tra�c no longer traverses the targeted host’s access

link.

For example, if Alice is running SSHGuard on her host and it detects a Linux syslog entry such as:

sshd[2197]: Invalid user Eve from 10.0.0.3

3http://github.com/brownsys.

http://github.com/brownsys

33

SSHGuard will block Eve’s tra�c for the next �ve minutes using PANE’sDeny request. �e PANE controller

then places an OpenFlow rule to drop packets to Alice’s host coming from Eve’s at a switch close to Eve’s host.

Although this is a basic example, it illustrates PANE’s ability to expose in-network functionality (namely,

dropping packets) to end-user applications. Besides o�-loading work from the end-host’s network stack, this

approach also protects any innocent tra�c which might have su�ered due to sharing a network link with a

denial-of-service (DoS) attack.

To demonstrate this bene�t, we generated a UDP-based DoS attack within our testbed network. We started

an iperf TCP transfer between two wireless clients, measured initially at 24 Mbps. We then launched the

attack from a Linux server two switch-hops away from the wireless clients. During the attack, which was directed

at one of the clients, the performance of the iperf transfer dropped to 5 Mbps, rising to only 8 Mbps a�er the

victim installed a local �rewall rule. By using PANE to block the attack, the transfer’s full bandwidth returned.

6.1.3 ZooKeeper

ZooKeeper [44] is a coordination service for distributed systems used by Twitter, Net�ix, and Yahoo!, among

others, and is a key component of HBase. Like other coordination services such as Paxos [56], ZooKeeper

provides consistent, available, and shared state using a quorumof replicated servers (the ensemble). For resiliency

in the face of network failures, ZooKeeper servers may be distributed throughout a datacenter, and thus quorum

messages may be negatively a�ected by heavy tra�c on shared links. Because ZooKeeper’s role is to provide

coordination for other services, such negative e�ects are undesirable.

To protect ZooKeeper’s messages from heavy tra�c on shared links, we modi�ed ZooKeeper to make

bandwidth reservations using PANE. Upon startup, each member of the ensemble made a reservation for

10 Mbps of guaranteed minimum bandwidth for messages with other ZooKeeper servers. Additionally, we

modi�ed our ZooKeeper client to make a similar reservation with each server it connected to.

We installed ZooKeeper on an ensemble of �ve servers, and developed a benchmarking client which we

ran on a sixth. �e client connected a thread to each server and maximized the throughput of synchronous

ZooKeeper operations in our ensemble. To remove the e�ect of disk latency, the ZooKeeper servers used RAM

disks for storage. At no time during these experiments were the CPUs of the client, switches, or servers fully

loaded. Like our modi�ed applications, this benchmarking tool is also available on Github.

Figure 6.1 shows the latency of ZooKeeper DELETE requests during the experiment. In the “Pre” line,

ZooKeeper alone is running in the network and no reservations were made using PANE. In the “Post” line,

we used iperf to generate bi-directional TCP �ows over each of the six links directly connected to a host.

34

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.0001 0.001 0.01 0.1 1

P(
X

<=
 x

)

Latency of DELETE Operations (s)

Pre
Post

PANE

Figure 6.1: Latency of ZooKeeper DELETE requests.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10 100 1000

P
(X

 <
=

 x
)

Interarrival Time (s)

(a)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f
R

e
s
id

e
n
t
R

u
le

s

Time(min)

(b)

Figure 6.2: E�ect of Hadoop on PANE and network.

�is tra�c totaled 3.3 Gbps, which we found to be the maximum Open vSwitch could sustain in our setup. As

shown in the �gure, this competing tra�c dramatically reduced ZooKeeper’s performance – average latency

quadrupled from 1.55ms to 6.46ms (we obtained similar results with a non-OpenFlow switch). Finally, the

“PANE” line shows the return to high performance when ZooKeeper reserved bandwidth using PANE.

We found similar results for other ZooKeeper write operations such as creating keys, writing to unique

keys, and writing to the same key. Read operations do not require a quorum’s participation, and thus are less

a�ected by competing background tra�c.

35

6.1.4 Hadoop

In our �nal case study of PANE’s application performance bene�ts, we augmented a Hadoop 2.0.3 pre-release

with support for our API. Hadoop is an open source implementation of the MapReduce [26] data-processing

framework. In Hadoop, large �les are divided across multiple nodes in the network, and computations consist

of two phases: a map, and a reduce. During the map phase, a function is evaluated in parallel on independent

�le pieces. During the reduce, a second function proceeds in parallel on the collected outputs of the map phrase;

the data transfer from the mappers to the reducers is known as the shu�e. During the shu�e, every reduce

node initiates a transfer with every map node, making it particularly network-intensive for some jobs, such as

sorts or joins. Finally, the output of the reduce phase is written back to the distributed �lesystem (HDFS).

By using PANE, our version of Hadoop is able to reserve guaranteed bandwidth for its operations. �e

�rst set of reservations occurs during the shu�e – each reducer reserves bandwidth for transferring data from

the mappers. �e second set of reservations reserves bandwidth when writing the �nal output back to HDFS.

�ese few reservations protect the majority of network transfers that occur during the lifetime of a Hadoop job.

Our version of Hadoop also makes reservations when a map task needs to read its input across the network;

however, such transfers are typically less common thanks to “delay scheduling” [102]. �erefore, in a typical

job, the total number of reservations is on the order of M × R + R × 2 where M and R are, respectively, the

number of nodes with map and reduce tasks. �e number of reservations is not precisely described by this

formula as we do not make reservations for node-local transfers, and reducers may contact a mapper node

more than once during the shu�e phase. As reducers can either be copying output from mappers in the shu�e,

or writing their output to HDFS, the maximum number of reservations per reducer at any time is set by the

value ofmapreduce.reduce.shu�e.parallelcopies in the con�guration, which has a default value of �ve.

To measure the e�ect of using PANE to make reservations in Hadoop, we developed a benchmark which

executed three 40 GB sort jobs in parallel on a network of 22 machines (20 slaves, plus two masters) connected

by a Pronto 3290 switched controlled by PANE. Hadoop currently has the ability to prioritize or weight jobs

using the scheduler, but this control does not extend to the network. In our benchmark, the �rst two jobs

were provided with 25% of the cluster’s memory resources, and the third, acting as the “high priority” job, was

provided with 50%. �e benchmark was run in two con�gurations: in the �rst, Hadoop made no requests

using PANE; in the second, our modi�ed Hadoop requested guaranteed bandwidth for each large �ow. �ese

reservations were proportional to the job’s memory resources, and lasted for eight seconds, based on Hadoop’s

256 MB block size. In our star topology with uniform 1 Gbps links, this translated to 500 Mbps reservations for

36

0 10 100
Latency of flow mod install

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Histogram

(a)

0 10 100
Latency of interleaved queue creation

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Histogram

(b)

0 10 100
Latency of consecutive queue creation

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Histogram

(c)

Figure 6.3: Latency of switch operations in milliseconds.

each link.

Averaged across three runs, the high priority job’s completion time decreased by 19% when its bandwidth

was guaranteed. Because it completed more quickly, the lower priority jobs’ runtime also decreased, by an

average of 9%, since Hadoop’s work-conserving scheduler re-allocates freed memory resources to remaining

jobs.

While Hadoop was running, we also measured its e�ect on PANE and the switch’s �ow table. Figure 6.2(a)

is a CDF of the time between Hadoop’s reservations. As currently implemented, PANE modi�es the switch

�ow table a�er each request. �is CDF shows that batching requests over a 10 ms window would decrease the

number of �ow table updates by 20%; a 100 ms window would decrease the updates by 35%. Figure 6.2(b) plots

the amount of �ow table space used by Hadoop during a single job. On average, Hadoop accounted for an

additional 2.5 �ow table entries; the maximum number of simultaneous Hadoop rules was 28.

6.2 Implementation Practicality

In addition to examining PANE’s use in real applications, we also evaluated the practicality of its implementation

in currentOpenFlownetworks.We found that our Pronto 3290 switches, running the Indigo 2012.09.07 �rmware,

were capable of supporting 1,919 OpenFlow rules, which took an average of 7.12 ms to install per rule. Tomeasure

this, we developed a benchmarking controller which installed wildcard match rules, issuing a barrier request

a�er each flow_modmessage was sent. We based this controller on Floodlight, and it is available for download

from our Github page.

�e latency distribution to fully install each flow_mod is show in Figure 6.3(a). It has two clusters – for

the 92.4% of flow_mod’s with latency less than 10.0 ms, the average latency was 2.80 ms; the remaining 7.6%

had an average latency of 59.5 ms. For PANE’s principals, these much higher tail latencies imply that requests

37

cannot always be implemented within a few milliseconds, and for truly guaranteed tra�c handling, requests

have to be made at least 100 milliseconds in advance.

We found that our Pronto switches could support seven hardware queues with guaranteed minimum

bandwidth on each port, and each queue required an average of 1.73 ms to create or delete, as shown in

Figure 6.3(b). However, this average doubles to 3.56 ms if queues are created consecutively on the same port

(i.e., P1Q1, P1Q2, P1Q3, ..., P2Q1, etc.), as shown in Figure 6.3(c). �is shows that an optimized PANE controller

must consider the order in which switch operations are made to provide the best experience for its principals.

Together, these results suggest that an individual switch can support a minimum of about 200 reservations

per second. Higher throughput is possible by batching additional requests between OpenFlow barriers. While

these switch features are su�cient to support the four applications above, we found that Hadoop’s performance

bene�ted from per-�ow reservations only when �ows transferred more than one megabyte. For smaller �ows,

the overhead of establishing the reservations outweighed the bene�t. In an example word count job, only 24%

of �ows were greater than 1 MB; however this percentage rises to 73% for an example sort.

6.3 RelatedWork

Programming theNetwork PANE allows applications and users to in�uence network operations, a goal shared

by previous research such as active networking [86]. In active networks, principals develop distributed programs

that run in the network nodes. By contrast, PANE sidesteps active networks’ deployment challenges via its

implementation as an SDN controller, their security concerns by providing a much more restricted interface to

the network, and their complexity by providing a logically centralized view of the network.

Using Application-Layer Information Many previous works describe speci�c cases in which information

from end-users or applications bene�ts network con�guration, �exibility, or performance; PANE can be a

unifying framework for these. For example, Hedera [1] showed that dynamically identifying and placing large

�ows in a datacenter can improve throughput up to 113%. PANE avoids Hedera’s inference of �ow size by enabling

applications and devices to directly inform the network about �ow sizes. Wang, et al. [92] propose application-

aware networking, and argue that distributed applications such as Hadoop can bene�t from communicating

their preferences to the network control-plane, as we show in §6.1. ident++ [65] proposes an architecture in

which an OpenFlow controller reactively queries the endpoints of a new �ow to determine whether it should be

admitted. TVA is a network architecture in which end-hosts authorize the receipt of packet �ows via capabilities

38

in order to prevent DoS-attacks [97]. By contrast, PANE allows administrators to delegate the privilege to install

restricted network-wide �rewall rules, and users can do so either proactively or reactively (cf. §6.1.2).

UPnP [88] allows applications to control a network gateway, such as to add a port-forwarding entry to a

NAT table, but is restricted to this setting.

Darwin [21] introduced amethod for applications to request use of a network’s resources, including computa-

tion and storage capabilities in network processors. Like PANE, Darwin accounts for resource use hierarchically.

However, it does not support over-subscription, lacks support for access control and path management, and

requires routers with support for active networks. Yap, et al. have also advocated for an explicit communication

channel between applications and so�ware-de�ned networks, in what they called so�ware-friendly networks

[98].�is earlier work, however, only supports requestsmade by a single, trusted application. By contrast, PANE’s

approach to delegation, accounting, and con�ict-resolution allow multiple applications to safely communicate

with an SDN controller.

NetworkQoS andReservations Providing a predictable network experience is not a new goal, and there is a vast

body of protocols and literature on this topic. PANE relies heavily on existing mechanisms, such as reservations

and prioritized queue management [53, 84], while adding user-level management and resource arbitration.

PANE also goes beyond QoS, integrating hints and guarantees about access control and path selection. To date,

we have focused on mechanisms exposed by OpenFlow switches; we expect other mechanisms for network

QoS such as those proposed for rate-limiting TCP streams in a distributed fashion [73] could be integrated as

well. PANE’s primary contribution is a uni�ed framework for exposing these mechanisms while delegating

authority and accounting for resource use within a single network.

Like PANE, protocols such as RSVP [14] and NSIS [60] provide applications with a way to reserve network

resources on the network. PANE, however, is designed for single administrative domains, which permits

centralized control for policy decisions and accounting, and sidesteps many of their deployment di�culties.

PANE provides applications with control over the con�guration of network paths, which RSVP and NSIS do not,

and goes beyond reservations with its hints, queries, and access control requests, which can be made instantly

or for a future time. Finally, RSVP limits aggregation support to multicast sessions, unlike PANE’s support for

�ow groups.

Kim, et al. [53] describe an OpenFlow controller which automatically con�gures QoS along �ow paths

using application-described requirements and a database of network state. PANE’s runtime performs a similar

function for the Reserve action, and also supports additional actions.

39

Recent works in datacenter networks, such as Oktopus [5] and CloudNaaS [9], o�er a predictable experience

to tenants willing to fully describe their needs as a virtual network, only admitting those tenants and networks

whose needs can be met through careful placement. �is approach is complementary to PANE’s, which allows

principals to request resources from an existing network without requiring complete speci�cation.

So�ware-De�ned Networking PANE is part of a line of research into centralized network management

includingOnix [55], Tesseract [96], and CoolAid [22]. CoolAid provides high-level requests and intentions about

the network’s con�guration to its operators; PANE extends this functionality to regular users and applications

with the necessary delegation and accounting, and implements them in an SDN. PANE builds upon the

control-plane abstractions proposed by Onix and Tesseract for, respectively, OpenFlow and 4D [37] networks.

Recent developments in making SDN practical (e.g.,[38, 62, 89]) greatly improve the deployability of PANE.

Resonance [66] delegates access control to an automated monitoring system, using OpenFlow to enforce policy

decisions. Resonance could be adapted to use PANE as the mechanism for taking action on the network, or

could be composed with PANE using a library such as Frenetic [33].

Expressing policies in a hierarchy is a natural and common way to represent delegation of authority and

support distributed authorship. Cinder [77], for example, uses a hierarchy of taps to provide isolation, delegation,

and division of the right to consume a mobile device’s energy. PANE uses HFTs [29] as a natural way to express,

store, and manipulate these policies directly, and still enable an e�cient, equivalent linear representation of the

policy.

FlowVisor [79] divides a single network into multiple slices independently controlled by separate OpenFlow

controllers. FlowVisor supports delegation – a controller can re-slice its slice of the network. Each of these

controllers sends and receives primitive OpenFlow messages. In contrast, PANE allows policy authors to state

high-level, declarative policies with �exible con�ict resolution.

Networking and Declarative Languages PANE’s design is inspired by projects such as the Margrave tool for

�rewall analysis [67] and the Router Con�guration Checker [28], which apply declarative languages to network

con�guration. Both use a high-level language to detect con�guration mistakes in network policies by checking

against prede�ned constraints. PANE, however, directly integrates such logic into the network controller.

FML [43] is a Datalog-inspired language for writing policies that also supports distributed authorship. �e

actions in PANE are inspired by FML, which it extends by involving end-users, adding queries and hints, and

introducing a time dimension to action requests. In an FML policy, con�icts are resolved by a �xed scheme

– deny overrides waypoints, and waypoints override allow. By contrast, PANE o�ers more �exible con�ict

40

resolution operators. For example, within a single HFT policy tree, one policy node may specify “allow overrides

deny,” while another speci�es “deny overrides allow.”

FML also allows policies to be prioritized in a linear sequence (a policy cascade). PANE can also express a

prioritized sequence of policies, in addition to more general hierarchies. For example, PANE uses an inverted

“child overrides parent” con�ict-resolution scheme (Sec. 4.2.3) by default, and the author of an individual policy

node can adopt a more restrictive “parent overrides child” scheme. FML does not support both “child overrides

parent” and “parent overrides child” schemes simultaneously.

�e eXtensible Access Control Markup Language (XACML) provides four combiner functions to resolve

con�icts between subpolicies [36]. �ese functions are designed for access control decisions and assume an

ordering over the subpolicies. By contrast, HFTs support user-supplied operators designed for several actions

and consider all children equal.

Chapter 7

Exodus

Toward Automatic Migration of Enterprise Network Policies to SDNs

�is chapter considers the problemofmigrating distributed network con�gurations to equivalent SDN controller

programs, and introduces Exodus, a systemwe developed for performing this conversion. In subsequent chapters,

we will see how Exodus works by following a detailed example, evaluate its capabilities, and re�ect on the lessons

it o�ers regarding SDN migration.

Exodus consumes con�gurations written in languages such as Cisco IOS and Linux iptables, and generates

programs written in Flowlog, a research language for SDN programming [68]. Flowlog provides a compiler and

run-time system for controlling OpenFlow switches; atop this, Exodus generates both the controller so�ware

and the switch con�gurations needed to execute these programs. Two of Flowlog’s advantages are that it provides

rich veri�cation tools (which are not the focus of this dissertation), and enables Exodus to generate code we

believe is easy to later evolve and maintain (Chap. 9). We will discuss the choice of Flowlog in more detail in

Sec. 7.2.

By bootstrapping an SDN controller program with equivalent behavior to the original network (in full or in

part), Exodus’s approach lets network operators iteratively obtain the bene�ts of centralization. For example,

Exodus can convert the con�guration of just a single router, replacing one piece of the network, or it can

convert the network’s complete set of con�gurations. �e resulting SDN controller can then be used to control

OpenFlow-enabled switches in the production network, or it can be used to evaluate the new con�guration in a

laboratory or emulation environment.

41

42

�is automated (and quick!, see Chap. 9) process gives the network operators time to become comfortable

with their new SDN, before upgrading more critical components of the network. (For instance, Panopticon [58]

shows how to achieve many bene�ts of SDN in a cost-aware manner, by only selecting a few routers at a time

for conversion to an SDN; however, Panopticon does not explain what so�ware to actually run on the controller,

the gap that Exodus �lls. We discuss alternate approaches to SDN migration, such as hybrid mode switches, in

Sec. 10.4.) Only a�er the existing policy is successfully migrated may it make sense to begin reaping additional

bene�ts which are exclusive to SDNs, such as treating the network as a single “big switch.”

In keeping with the heterogeneity of modern networks, Exodus is not limited to IOS. Because it uses a rich

intermediate language based on �rst-order logic, it can handle other con�guration languages as well, limited

only by parsing and translation into this logic; we have built a translator for Linux iptables as well, and support

features similar to those in Juniper Network’s JunOS. Because the intermediate language is similar enough to

Flowlog, we present only the latter, which is also the concrete output of Exodus. Also, to make the dissertation

more broadly accessible, we present the compiler through examples rather than formal rules.

�e rest of this exposition proceeds as follows: we start by exploring an input language to our compiler,

Cisco IOS, and introduce a running example program (Sec. 7.1). Next, we describe our chosen target language,

Flowlog, and justify our choice (Sec. 7.2). �is is followed by a description of our system (Chap. 8), which we

evaluate on the con�gurations of a large campus network (Chap. 9). Conducting this research has identi�ed

several interesting weaknesses in current technology, which we discuss in Chap. 10. We then explain how we

can extend our prototype to cover more features (Sec. 10.3), discuss related work (Sec. 10.4), and conclude.

7.1 Background: Cisco IOS

We begin by introducing the source language, IOS. IOS is expressive: it provides not just a “routing” language or

a “�rewall” language, but also a rather wide array of features that we discuss below. �is set of features ensures

that our compilation task is a non-trivial one. (Later in this section, we discuss con�guration languages other

than IOS.)

As a running example for the exposition, we present a small enterprise’s con�guration, consisting of a pair

of networking devices connected as shown in Fig. 7.1. �e �gure represents two devices, int and ext, that

sandwich a DMZ. �e enterprise places publicly visible servers, such as the Web server, in this DMZ. External

tra�c is allowed to connect to speci�ed servers and ports in the DMZ, but tra�c cannot penetrate further to

enter the corporate LAN. In turn, limited tra�c from the corporate LAN is allowed to egress to the external

43

192.168.0.0/16
(Corporate LAN)

10.1.1.0/24
(DMZ)

10.200.0.0/16
(External)

int ext

in_lan in_dmz out_dmz out_inet

Figure 7.1: Topology for Example Network

network. Finally, the external network is allowed certain carefully delineated connections with the corporate

LAN, as we discuss below.

Listing 7.1 shows a small IOS con�guration for a single device above. (We will use excerpts from this

listing throughout this dissertation.) Line 1 de�nes the name of the router to be int (short for “internal”).

Lines 3-5 de�ne an interface (or “port”) called in_dmz, assign it an IP address and subnet (10.1.1.1/24), and

indicate that the router should apply NAT functionality to tra�c arriving at this interface (which is an outside,

or public-facing, interface). Lines 7-10 de�ne the internal interface in_lan, and assign an ingress �lter (via

access-group) as well as an IP address and subnet (192.168.1.1/16). NAT is enabled here as well, but as an

inside interface.

Lines 12-15 de�ne the access-list (or ACL) 102, which is used to �lter tra�c arriving at in_lan. It says that:

ip packets arriving from 192.168.4.1/24 should be denied access to the 10.1.1.3 host, tcp packets from any

source destined for 10.1.1.3:25 are permitted, as are tcp packets to port 80 on any host. Other packets are

denied. IOS resolves con�icts between these rules using the standard �rst-applicable semantics: A packet from

the forbidden subnet will be denied, even if it is destined for 10.1.1.3:25.

Line 17 con�gures NAT for the router. In this case, all outgoing packets will be rewritten to have source

address 10.1.1.1 (interface in_dmz). �e overload keyword enables multiple internal devices to map to

the single external address, multiplexing via the traditional Layer-4 attributes. While IOS also allows a pool

of external addresses to be used, that feature is beyond the scope of this example. Access-list 1 dictates which

packets NAT should apply to. Line 18 de�nes access-list 1, which matches all packets from the subnet on in_lan.

Finally, line 20 introduces a default route. If a packet is destined for an address outside the two interfaces’

subnets, 10.1.1.2 will be its next-hop router.

Listing 7.2 provides the con�guration for the other device, ext. �e IOS features it uses are mostly identical

to those in Listing 7.1.�is router shares the DMZ subnet (10.1.1.0/24) with the int router. Its other interface

44

exits the example network via subnet 10.200.0.0/16.�e onemajor di�erence is that this device uses a re�exive

access-list.

1 hostname int

2

3 interface in_dmz

4 ip address 10.1.1.1 255.255.255.0

5 ip nat outside

6

7 interface in_lan

8 ip access-group 102 in

9 ip address 192.168.1.1 255.255.0.0

10 ip nat inside

11

12 access-list 102 deny ip 192.168.4.1 0.0.0.255 host 10.1.1.3

13 access-list 102 permit tcp any host 10.1.1.3 eq 25

14 access-list 102 permit tcp any any eq 80

15 access-list 102 deny any

16

17 ip nat inside source list 1 interface in_dmz overload

18 access-list 1 permit 192.168.1.1 0.0.255.255

19

20 ip route 0.0.0.0 0.0.0.0 10.1.1.2

Listing 7.1: Example IOS Con�guration (1)

1 hostname ext

2

3 interface out_dmz

4 ip access-group 103 in

5 ip address 10.1.1.2 255.255.255.0

6

7 interface out_inet

8 ip access-group 104 in

9 ip address 10.200.1.1 255.255.0.0

10

11 ip access-list extended 103

12 deny ip any host 10.200.200.200

13 deny tcp any any eq 23

14 permit tcp host 10.1.1.1 any eq 80 reflect returnflow

45

15 permit tcp host 10.1.1.1 any eq 22 reflect returnflow

16 deny any

17

18 ip access-list extended 104

19 deny 10.200.200.200

20 permit tcp any host 10.1.1.3 eq 25

21 permit tcp any host 10.1.1.4 eq 80

22 evaluate returnflow

23 deny any

Listing 7.2: Example IOS Con�guration (2)

Re�exive access lists are used to dynamically open temporary �rewall holes to permit return packets for

approved outgoing �ows. �e rules on lines 14-15 allow outgoing web and SSH tra�c from the NAT address,

with the additional stipulation reflect returnflow, which creates a table (and gives it the name returnflow)

of ongoing �ows approved by this rule. Line 22 evaluates this table, permitting the return tra�c. Note the lack

of a permit tcp any host 10.1.1.1 rule to permit the NAT’s return tra�c; such a rule is both overly broad

and unnecessary due to the re�exive ACL con�guration.

Other Con�guration Languages So far, we have discussed only the IOS language. Our parser also handles

a signi�cant subset of the Linux iptables language, which has similar functionality but di�erent syntax. For

instance, consider the following con�guration (which mirrors the permit rule on line 13 of Listing 7.1):

1 iptables -A INPUT -i int_lan

2 -d 10.1.1.3 -dport 25

3 -p tcp -j ACCEPT

Exodus has an internal, logic-based intermediate language that serves as a target of all these compilers. Because

this intermediate language is agnostic to surface syntax, we believe Exodus can also work well with other popular

(and in some cases, competing) con�guration languages, such as Juniper’s JunOS. Nevertheless, for simplicity,

the rest of this dissertation is written in terms of IOS.

Exodus Compiler Coverage: Challenges and Scope �ere are numerous challenges involved in converting

such con�gurations to SDN. First, the text to be converted describes multiple small programs: packet �ltering,

NAT, static routing tables, and local-subnet routing. Each of these must be faithfully translated by the compiler.

Second, the semantics of these programs resides in the �rmware that interprets them; uttering ip nat inside

46

does not describe how to implement the NAT, but merely con�gures it according to the available settings. �ird,

the con�guration is tailored to a single network appliance; every such device on the network has a separate

con�guration that describes its local behavior. A complete translation to SDN must integrate all such devices

into a single, uni�ed system.

Finally, the IOS language is used in a variety of di�erent network appliances, and exposes many additional

features (e.g., deep packet inspection, dynamic routing, multicast groups, DoS protection, VPNs, and more)

beyond those already presented. Moreover, even basic features of IOS can exhibit a sometimes ba�ing array

of variant syntax. For instance, the access-lists of Listing 7.1 could have been written di�erently, as an

ip access-list, using similar but not identical syntax as seen in Listing 7.2.

As an initial step, we have focused on an essential set of features rather than attempting to convert all of

IOS. To date, our IOS-to-SDN compiler supports:

1. interface and subnet con�gurations;

2. standard and most extended IOS ACLs, including re�exive access-lists;

3. static routing tables, and policy-based static routing; and

4. ACL-based “overload” NAT.

It also accepts multiple IOS con�gurations to produce a single SDN program.

Overload NAT (an IOS term for port address translation, where a single public IP address is multiplexed by

Layer-4 attributes) was chosen to demonstrate the viability of our compilation technique; the same techniques

could be used to support other varieties, such as static network address translation, or a NAT employing a pool

of IP addresses. We defer further discussion of how to extend our compiler to support additional IOS features

until Sec. 10.3.

7.2 Choosing a Target Language

Since our goal is to translate a collection of IOS policies into an SDN controller program, we must select a target

controller platform. �ere are many options: C++ code for the NOX platform [38], Python code for POX [71],

or Java atop Floodlight [32]. �ere are also numerous research languages available [34, 48, 64, 68, 89–91]. Our

�nal choice was motivated by the following needs:

47

Output in a High-Level Language A�er the policies have been turned into SDN programs, they will not

remain static: instead, they will need to be modi�ed as the network and its requirements evolve.�erefore,

it is important to produce programs that are not so low-level that they end up being regarded as “write-

only”. Instead, we must target a meaningfully high-level language, and produce relatively readable output

in that language. �is requirement makes the highly expressive research languages [34, 48, 54, 68, 91] an

attractive choice.

One advantage to producing high-level code is that it can also then be subjected to program analysis

and veri�cation activities, which will better support evolution of the controller so�ware. �ere is a wide

and growing range of such tools, though the most powerful, sound tools seem to be built for research

languages [39, 68].

Support for Controller State As we have already seen, policies refer extensively to state. �e resulting con-

troller programs must be able to support NAT, re�exive access lists, and other features that dynamically

a�ect how packets are handled. �us, the target SDN platform must support stateful controller programs,

and allow the modi�cation of network behavior based on controller state.

While platforms like NOX obviously support these, some research languages do not [63, 64, 91]. �is

requirement also bars us from using the simplest of targets – OpenFlow switch rules – as they are

stateless and cannot themselves implement these dynamic policies [62]. High-level languages with built-

in state include Maple’s algorithmic policies [91], and the rule-based languages Nlog [54], Flog [48] and

Flowlog [68].

Support for Proactive Compilation Recent research has shown how to proactively compile high-level SDN

programs to OpenFlow �ow tables without programmer intervention [63]. Selecting such a platform

removes the need for our compiled SDN programs to micro-manage �ow-table updates on switches, and

allows us to focus on the core goals of this project.

Availability as Open Source Finally, as developing our IOS compiler required us to extend the target language

in numerous ways (Sec. 10.4), having an open source implementation was a necessity. �is requirement

eliminated several candidate languages (e.g., both Maple and Nlog are closed-source).

�is collection of requirements induced us to choose Flowlog as our target language. By doing so, our compiler

can generate high-level rule-based code, and exploit an existing proactive compiler (which in turn relies on the

Frenetic project’s NetCore language [63]) to OpenFlow. In addition, Flowlog has powerful veri�cation tools to

48

support the evolution of the generated controller program.

However, we do not claim that the choice of Flowlog is canonical. �ough we have presented arguments

in favor of it, the choice of target language is also a matter of taste: some might prefer Java or C++ generated

for Floodlight or NOX to programs in a rule-based language. Nevertheless, Flowlog does provide a stateful,

proactively-compiled language which therefore serves as an excellent target for compilation; therefore, we can

view Flowlog the language as merely an API for its proactive compiler. �e ideas of this dissertation apply just as

well to other compilation targets, though the engineering decisions are likely to be rather di�erent (e.g., if one

were generating C++ code that needed to proactively manage OpenFlow rules).

7.3 Flowlog

Flowlog Example Since we will use Flowlog to show the output of compilation in the remainder of the

dissertation, we begin with an illustrative example, which we explain line-by-line:

1 TABLE seen(ipaddr);

2 ON ip_packet(pkt):

3 DO forward(new) WHERE

4 new.locPt != pkt.locPt;

5 INSERT (pkt.nwSrc) INTO seen WHERE

6 pkt.nwDst IN 10.0.0.0/16

7 AND NOT seen(pkt.nwSrc);

Line 1 declares a one-column table of IP addresses. As tables are a common representation of network data,

used for routing tables, ARP caches, NAT tables, and more, the Flowlog runtime maintains state in the form of

a database.

�e remainder of the program comprises two rules, both of which are triggered by any IP packet arrival (line

2) on the network. �e �rst rule (lines 3-4) implements a basic “�ood” forwarding policy; the pkt.locPt term

represents the incoming packet’s arrival port, and the new.locPt term represents the packet’s egress port. If

multiple valid egress ports exist, the packet will be sent out of all of them. �e second rule (lines 5-7) inserts the

packet’s source IP address into the table if the packet is destined for the 10.0.0.0/16 subnet, and the address is

not already stored in the table.

Flowlog Runtime �e Flowlog runtime is implemented in OCaml, and is built atop the NetCore and OCaml-

OpenFlow packages. Packet arrivals, switch connections, and other OpenFlow events are passed via NetCore

49

to Flowlog, where they trigger appropriate rules. For instance, IP packets would trigger the two rules in the

example above. Correspondingly, changes in Flowlog tables are propagated by its runtime back to NetCore,

which in turn updates OpenFlow rules on the relevant switches.

Although the program’s text makes it appear that every packet is seen by the program, Flowlog’s proactive

compiler is in fact far more e�cient. �e switch rules it produces ensure that the only packets that reach

the controller are ones that will change its internal state (in this example, packets with as-yet-unseen source

addresses).

When we execute the above Flowlog program, it compiles into the following initial NetCore policy, which

is then distributed to the switches by the NetCore runtime:

1 (filter dlTyp = ip; all) +

2 (filter dlTyp = ip &&

3 dstIP = 10.0.0.0/16; fwd(OFPP_CONTROLLER))

Line 1 speci�es that all ip packets be �ooded. Line 2 selects the packets of interest and sends them to the

controller. If 10.0.0.1 pings 10.0.0.2, the controller receives both the initial echo request and reply packets.

It adds both IP addresses to its state table, and issues a new policy that ensures it does not see packets from

those hosts again:

1 (filter dlTyp = ip; all) +

2 (filter (dlTyp = ip &&

3 dstIP = 10.0.0.0/16) &&

4 !(srcIP = 10.0.0.1 ||

5 srcIP = 10.0.0.2);

6 fwd(OFPP_CONTROLLER))

Chapter 8

From IOS to SDN

Now we present our core technical contribution. Our goal is the work�ow of Figure 8.1. For instance, given the

examples from Listing 7.1 and Listing 7.2 stored as �les natfw.txt and outerfw.txt respectively, the user runs:

exodus natfw.txt outerfw.txt

�is produces an SDN system that mirrors the network behavior represented by these IOS con�gurations.

Given this two-device con�guration, Exodus produces an SDN system for two OpenFlow switches wired in the

same way, each holding six tables. It also produces Flowlog code that uses these OpenFlow tables, together with

internal state relations, to reproduce the behavior of the original devices.

We present this process in three steps. First (Sec. 8.1), we describe the �ow tables, and explain how we map

them to current OpenFlow hardware. Second (Sec. 8.2), we describe the compiler from IOS to Flowlog that

generates the controller so�ware. Finally (Sec. 8.3), we discuss deploying and running the resulting system

using the complete Exodus tool suite, which is publicly available on Github.

8.1 Network Con�guration

Exodus needs to re�ect the semantics of IOS and the requirements for IP routers (RFC 1812 [4]). To do so,

Exodus creates six logical OpenFlow tables per router in the original con�guration: two for access-control, two

for routing, and one each for Layer-2 rewriting and NAT, as shown in Fig. 8.2(a). �ese tables cannot actually

implement these features; that requires support from the controller. Rather, they implement the corresponding

stage of the processing pipeline, dropping, rewriting, or forwarding packets as dictated by the controller.

�e sequential composition of tables in Fig. 8.2(a) maps to OpenFlow 1.1+’s pipeline of multiple tables, and

50

51

Flowlog Program

Network Specification
(protobufs)

Mininet Startup Script

Translation

Prototyping

Flowlog Runtime
NetCore Compiler + Runtime

Mininet

Exodus IOS Parser and Compiler

IOS Configurations

O
pe

nF
lo

w

Figure 8.1: Exodus Work�ow

echoes the hardware pipelines of traditional, non-OpenFlow routers. Packets �rst enter from the subnets on

the le�, where an inbound ACL is applied before forwarding them to the second stage, which implements the

routing table. �e routing table also determines if a packet needs to be translated. If so, if goes through the NAT

table, and then through a second round of routing. �e ��h stage sets the destination MAC address. A �nal

access check is performed in the outbound ACL table, before the packet reaches the intended subnet.

In OpenFlow 1.0, which we use due to its mature support, sequential composition is well-known to create

large numbers of rules due to the necessary cross-products. To keep the number of rules in check, Exodus

physically performs the composition by wiring four single-table switches in series (see Fig. 8.2(b)). Our current

pipeline is designed to minimize the number of switches; we “fold” the tables in a symmetric arrangement

around the NAT, and packets �ow in both directions. In the inbound direction, the second table, L2 Rewrite, is

just a pass-through.

Our design prepares Exodus for transition to newer versions of OpenFlow with support for multiple tables.

It also makes clear the features needed by each �ow table, allowing one to program a single switch with the

protocol-independent packet processors proposed in [12]: the ACL tables may match any �eld, but only need

to drop or forward packets; the routing table forwards packets based on masked IP addresses; the NAT table

performs Layer-3 rewriting and exact matching; and the Layer-2 rewriting has many “narrow” entries, matching

on IP addresses and setting the corresponding MAC addresses of all connected hosts.

Of the four types of �ow tables used by Exodus, three – ACL, routing, and NAT – are managed by code

generated from the IOS con�guration (as described in Sec. 8.2). �e fourth, Layer-2 rewriting, is independent

52

A
C

L
Ta

b
le

L3
 R

o
u

ti
n

g

N
A

T

L3
 R

o
u

ti
n

g

L2
 R

e
w

ri
ti

n
g

A
C

L
Ta

b
le

...La
ye

r
2

C

o
n

n
e

ct
io

n
s

La
ye

r
2

C

o
n

n
e

ct
io

n
s

...(a)

A
C

L
Ta

b
le

L2
 R

e
w

ri
te

N
A

T

L3
 R

o
u

te

...La
ye

r
2

C

o
n

n
e

ct
io

n
s

... ...

(b)

Figure 8.2: Logical �ow tables in an Exodus router implementation (a), and the implementation with physical
switches in OpenFlow 1.0 (b).

of IOS, and simply sets the destination MAC address on outgoing, routed tra�c. To populate this, we developed

an ARP Proxy, which allows the router to respond to ARP requests for its interfaces and known hosts, and to

issue queries on the attached subnets.

8.2 Code Generation

�e heart of Exodus is a compiler that converts IOS into Flowlog that runs on the controller. We present

the compiler by describing its treatment of each supported feature. Separately, we have modi�ed Flowlog’s

proactive compiler so actions generated by each of these features are mapped to the OpenFlow switch tables

corresponding to that feature.

Static and Policy-Based Layer-3 Routing

�e core purpose of a router is Layer-3 routing. �e Exodus compiler translates IOS routing tables into Flowlog

code that manages the OpenFlow tables responsible for routing. For instance, consider the default route given

on line 20 of Listing 7.1. Each such rule is compiled into a Flowlog fragment that de�nes a next-hop IP address

for incoming packets. In this case, only a “default” route needs to be speci�ed for all packets arriving at the int

router:

1 routerAlias("int", pkt.locSw)

2 AND (10.1.1.2 = nexthop)

53

routerAlias is an empty Flowlog relation de�ned by Exodus and populated by code generated by the compiler.

It maps between the string-based names in IOS and the numeric identi�ers in OpenFlow. �e fragment assigns

a value (10.1.1.2) to the next-hop for all packets arriving at the int router; the value is then used by the

modi�ed Flowlog compiler to populate the appropriate OpenFlow table.

Exodus’s output also assigns next-hops based on IOS’s “policy routing” feature, which assigns next-hops

to packets based on access-lists. While our main example does not use this feature, an interface might be

con�gured as:

1 hostname example

2 interface eth0

3 ip policy route-map internet

Line 3 speci�es that the policy named internet should be applied to tra�c on this interface. �e internet

policy must be de�ned in the con�guration, as in the following example (from [67]):

1 access-list 10 permit 10.232.0.0 0.0.3.255

2

3 route-map internet permit 10

4 match ip address 10

5 set ip next-hop 10.232.0.15

Line 1 of the policy de�nes a set of packets to apply a next-hop address to. Lines 3-5 specify that address – in

this case, 10.232.0.15. As in the static-routing case, Exodus creates a corresponding Flowlog fragment that

assigns the appropriate next-hop for matching packets:

1 routerAlias("example", pkt.locSw)

2 AND portAlias("example", "eth0",

3 pkt.locPt)

4 AND pkt.nwSrc IN 10.232.0.0/22

5 AND 10.232.0.15 = nexthop

Line 1 �lters on the packet’s switch location. Lines 2-3 match the interface the packet arrived from; portAlias is

another Flowlog relation that maps between the string-based interface names in IOS and OpenFlow’s numeric

port identi�ers. Line 4 applies the access-list, making certain that only packets from 10.232.0.0/22 receive the

next-hop address given by line 5. As in the static-routing case, the next-hop value is then used by the modi�ed

Flowlog compiler to produce OpenFlow switch tables.

54

Packet Filtering

We now turn to the OpenFlow tables for ingress and egress ACLs. Consider the rules on lines 12-13 of Listing 7.1.

�is ACL can be trivially represented as OpenFlow rules of essentially the same form, using the “drop” action

for the deny rule, and forwarding otherwise. As Flowlog currently uses negation in place of an explicit “drop”,

the compiler embeds deny rules as negative conditions; e.g. lines 3-4 of:

1 ON tcp_packet(pkt):

2 DO forward(new) WHERE

3 NOT (pkt.nwSrc IN 192.168.4.1/24

4 AND pkt.nwDst = 10.1.1.3)

5 AND pkt.nwDst = 10.1.1.3

6 AND pkt.tpDst = 25

As IOS allows an interface to have separate ingress and egress �lters, Exodus produces separate Flowlog

fragments for each. �is does not add any notable complexity to the output, and is in keeping with the router

pipeline described in Sec. 8.1.

Re�exive ACLs

Whereas ordinary ACLs required no controller state, re�exive access-lists do. A rule tagged with reflect, like

those seen on lines 14-15 of Listing 7.2, matches tra�c like a normal ACL rule, but also causes the device to

remember the tra�c’s source and destination for later use. A corresponding evaluate rule, like the one on line

22 of the same con�guration, uses that memory to permit return tra�c.

While static ACLs can explicitly permit return tra�c, dynamically adding new such rules requires the SDN

controller. �us, in an SDN context, re�exive access-lists must be managed by the controller, as we describe

next, rather than performed entirely by the switch.

Stage 1: “Re�ect”: RememberingOutgoing Tra�c To hold the state on the controller, Exodus uses a relation

called reflexiveACL, which contains a row for each hole to be opened in the �rewall. �is state relation resides

on the controller, and Flowlog’s runtime will use it to automatically keep the ACL tables on the switches up to

date. To declare the new state relation, the compiler generates:

1 TABLE reflexiveACL(string, ipaddr,

2 tpport, nwproto, ipaddr, tpport);

55

Column 1 of this relation stores the identi�er (in this case, returnflow) used for the tra�c of interest.

Columns 2-6 store the standard �ow-identi�cation information. For every matching reflect in the IOS ACL,

the compiler creates a corresponding Flowlog INSERT rule. For instance, the rule on line 14 compiles into:

1 ON tcp_packet(pkt):

2 INSERT ("returnflow", pkt.nwSrc,

3 pkt.tpSrc, pkt.nwProto, pkt.nwDst,

4 pkt.tpDst) INTO reflexiveACL

5 WHERE pkt.nwSrc=10.1.1.1

6 AND pkt.tpDst=80

7 AND aclAlias("ext-out_dmz-acl",

8 pkt.locSw, pkt.locPt, ANY)

9 AND NOT reflexiveACL("returnflow",

10 pkt.nwSrc, pkt.tpSrc, pkt.nwProto,

11 pkt.nwDst, pkt.tpDst);

Lines 5-6 ensure that the ACL rule actually applies to the packet in question, and lines 7-8 enforce that the

check applies only to the proper router and interface names.

Stage 2: “Evaluate”: Permitting Return Tra�c For every evaluate clause in the original con�guration, the

compiler asserts a corresponding ACL rule in Flowlog. �ese rules resemble those of Line 5, and also refer to

the reflexiveACL state table:

1 aclAlias("ext-out_inet-acl", pkt.locSw,

2 pkt.locPt, new.locPt)

3 AND reflexiveACL("returnflow",

4 pkt.nwDst, pkt.tpDst, pkt.nwProto,

5 pkt.nwSrc, pkt.tpSrc)

6 AND (22 = pkt.tpSrc)

7 AND (10.1.1.1 = pkt.nwDst) AND

8 NOT (10.200.200.200 = pkt.nwsrc)

�is example encodes the evaluate rule on line 22 of Listing 7.2. �e aclAlias reference limits the rule to the

proper router and interface. �e reference to the reflexiveACL table on lines 3-5 has a reversed ordering from

the above INSERT rule; this is because the insertion rule triggered on outgoing tra�c, while this rule �lters

incoming tra�c for the same �ow. �e �nal line prevents the rule from applying if the higher priority deny rule

(line 19 of Listing 7.2) would.

56

Network Address Translation

NAT presents two challenges. First, like re�exive access-lists, NAT in SDNs requires some amount of controller

management; Exodus must produce Flowlog code that governs the dynamic nature of NAT. Second, NAT

changes the headers of packets as they are forwarded. While header-mutation is a primitive action in OpenFlow,

the exact values used depend on the NAT’s overall state.

As mentioned in Sec. 7.1, our compiler currently supports only one of the many types of NAT available in

IOS: dynamic port-address translation using a single public IP. �is is su�cient to show the feasibility of our

approach; static NAT is simpler as it requires no controller state, and pool NAT only requires an additional

table of available public IPs.

�e compiler produces Flowlog code that, on controller start, populates state relations describing how NAT

should be performed. For example, these values for Listing 7.1:

1 ON startup(e):

2 INSERT (0x100000000001, 192.168.0.0, 16)

3 INTO needs_nat;

4 INSERT (0x400000000001,1,1,10.1.1.1)

5 INTO natconfig;

6 INSERT (10.1.1.1, 0x6, 10000)

7 INTO seqpt;

8 INSERT (10.1.1.1, 0x11, 10000)

9 INTO seqpt;

Line 1 states that the insertions happen at controller startup. Lines 2-3 record that new �ows from the private

IP 192.168.0.0/16must be subject to NAT on a given switch. Lines 4-5 con�gure a related switch to use the

given external IP address for this translation. Lines 6-9 set up initial port values for NAT (port 10000 for both

TCP and UDP).

Exodus also includes a library, a fragment of which is shown below, that contains rules that utilize these

tables. �ese describe, for instance, how to handle new TCP tra�c from the internal subnet:

1 ON tcp_packet(pkt) WHERE

2 NOT ptassign(0x6, pkt.nwSrc, pkt.tpSrc,

3 ANY, ANY)

4 AND natconfig(pkt.locSw, pkt.locPt,

5 publicLocPt, publicIP)

6 AND NOT natconfig(pkt.locSw, ANY,

7 ANY, pkt.nwDst)

57

Subnet Root
Switch

Edge Switch Edge Switch

Int Router
Switches

Ext Router
Switches

Subnet Root
Switch

Subnet Root
Switch

Figure 8.3: Two Exodus routers attached to a shared subnet

8 AND seqpt(publicIP, 0x6, x)

9 AND add(x, 1, publicPt):

10 INSERT (0x6, pkt.nwSrc, pkt.tpSrc,

11 publicIP, publicPt) INTO ptassign;

12 DO forward(new) WHERE

13 new.locPt = publicLocPt

14 AND new.nwSrc = publicIP

15 AND new.tpSrc = publicPt

16 TIMEOUT 600;

Lines 2-3 dictates that no NAT port has yet been assigned to this �ow. Lines 4-5 extracts the public IP address

to be used. Lines 6-7 prevents the rule from applying if the packet is being sent to a public IP that is reserved for

NAT (i.e., if it is return tra�c). Lines 8-9 produce a fresh TCP port by incrementing the one used most recently.

Lines 10-11 record the port used and the source of the NAT �ow (for translating future packets in the �ow).

Lines 12-16 send this initial packet on its way; the �nal TIMEOUT line applies a 600-second idle timeout to the

forwarding rules, which allows the program to reclaim expired NAT ports for later use.

Although the tables and the data here are di�erent, this process is similar to how the compiler handles

re�exive access-lists.While space restrictions prevent us from giving the entire NATprogram, the rules produced

for return tra�c, UDP tra�c, etc. are similar.

8.3 Prototyping the Network

Exodus produces more than just a Flowlog program: it also produces a description of the network on which it

runs, including the switches, their wiring, and con�guration, which allows us to have a running prototype of

the network in an emulation environment such as Mininet [57]. �e speci�cation can also serve as a blueprint

58

for a physical network that implements the same policies as the original network.

�ese con�guration values are loaded into the Flowlog program on startup, which then interacts with the

corresponding tables in the physical or emulated network. �e compiler outputs the complete description in a

custom Google Protocol Bu�ers format [72]. We have written a Python script that loads this described network

into Mininet for experiments.

In addition to the switches for each router, this script also creates sample Layer-2 networks for each unique

subnet, as shown in Fig. 8.3. �ese sample subnets include a per-subnet “root switch” to which routers on

that subnet are attached, as well as generic “edge switches” and end-hosts (not shown). Forwarding within the

subnets is provided by a standard MAC Learning application (also in Flowlog), although any form of Layer-2

connectivity will su�ce. Finally, the script also launches SSH and web servers on each host to support interactive

testing of the network’s complete ACL, NAT, and routing con�guration.

Chapter 9

Evaluation of Exodus

Exodus is an experimental tool for converting traditional network con�gurations into an equivalent SDN con-

troller program. To evaluate it, we must consider three important questions: feasibility, utility, and correctness.

9.1 Feasibility

�e feasibility of Exodus is a function of both its own methods, and the OpenFlow technology on which

it runs. Beyond examples such as those in Sec. 7.1, we have tested Exodus’s features and scalability with the

router con�gurations of the publicly available Stanford network con�guration [103], a large campus network

supporting more than 30,000 users. We �nd that Exodus is capable of quickly producing equivalent policies

that �t within the bounds of existing OpenFlow hardware. However, the limits of existing hardware restrict the

number of simultaneous end-hosts that can be supported.

To test features, we ran Exodus over the Sec. 7.1 examples, launched the resulting network in Mininet, and

manually exercised the policies in the con�guration to verify their compliance. For example, we were able to

successfully connect via SSH to hosts in the 10.200.0.0/16 subnet from hosts attached to edge switches in the

corporate LAN.�is showed the success of our routing, NAT, and re�exive ACL implementations. Standard

ACL was similarly con�rmed with additional tests.

To test scalability, we ran Exodus on the 16 router con�gurations of the Stanford network. �ese routers had

between 15 and 84 interfaces each, a total of 1500 ACLs, and did not use IOS’s NAT functionality. �e conversion

required 2.19 seconds (averaged over 10 runs) on a 1.7 GHz Core i7 laptop, and the runtime populated each

switch’s �ow tables within 2-5 seconds (64 �ow tables in total).

59

60

A�er startup, we found that the switches implementing IP routing each required only two or three more

OpenFlow rules than the number of attached subnets, with the maximum being 86. �e sizes of the Layer-2

rewrite tables ranged from 55 to 325 rules, depending on the number of attached subnets. �e ACL tables ranged

in sizes from 31 to 581 OpenFlow rules (2840 in total). Subsequent evaluation revealed that while the size of each

ACL table depended on the number of attached subnets and complexity of individual ACL con�gurations, this

was an area where Flowlog’s e�ciency could improve on this computationally di�cult problem [3]. Nonetheless,

all of these tables �t within the limits of existing OpenFlow hardware, which typically support just 1500-3000

rules [76].

As expected, however, the number of OpenFlow rules in the Layer-2 rewrite table (and the NAT table

for the small example) scale linearly with the number of end-hosts (number of connections for the NAT). In

Exodus’s current design, the Layer-2 rewrite table contains one rule per end-host in attached subnets. Similarly,

to the NAT table, Exodus adds three rules per new connection; this is one more than optimal, for reasons we

discuss below (Chap. 10). �erefore, until OpenFlow hardware matures – either with speci�cally-designed

hardware [12], or by making non-TCAM tables available in existing switches – rate-limiting end-host activities

will be extremely important in enterprise networks.

9.2 Utility

We now consider utility: When compiling IOS into an SDN controller, does the compiler leave us with readable,

editable code? Can the code be easily augmented with new SDN features, not present in the original network?

And, can Exodus help us better understand the network?

�e maintainability question is important, since a true migration to SDN must support not only the

con�guration at the time of migration, but also future edits. Kim et al. [51] report more than 2,000 router

con�guration changes per month at Georgia Tech, and over 8,000 switch con�guration changes per month at

the University of Wisconsin, Madison. Flowlog has a rule-based syntax and trigger-response abstraction that

resembles IOS access-lists; adding a new permission or opening a hole in a �rewall only requires new rules be

added, and existing rules can be le� intact.

Removing existing permissions does require editing the current ACL rules: either by removing a rule

entirely, or adding an additional predicate to adjust the permissions. Adjusting policy routing would require

a similar change. As Sec. 8.2 shows, however, the code generated by Flowlog has two properties: (1) �ere

is a relatively clear mapping from the original IOS con�guration (which is further enhanced by comments

61

inserted by the compiler), making it easy for operators to map their knowledge of the IOS con�gurations to

the Flowlog program. (2) �e code generated is fairly high-level and direct, easing subsequent maintenance.

Furthermore, operators can be guided in these changes by Flowlog’s existing analysis tools. Finally, even if the

SDN is eventually reimplemented, the Flowlog version has value as an oracle for systematic testing of the new

system against the old.

�e remainder of the Exodus-generated con�guration is governed by static table entries loaded at program

startup. For example, assigning a given interface the IP and subnet 10.1.1.1/16 is performed by a single row

in a table. �ese can be edited even more easily than the program rules.

To further evaluate Exodus’s code quality, we sought to augment its output with a novel SDN application,

providing features not present in IOS. �is application �rst blocks multicast DNS tra�c, a signi�cant consumer

of bandwidth in enterprise networks [17]. �e application then implements tunnels, on-demand, across the

network, for end-users who wish to stream content to registered Apple devices. We were pleased to �nd

this addition easy to accomplish: Exodus, which generates NetCore, can be composed with other NetCore

programs either sequentially or in parallel, and can also be composed with other Flowlog programs.�is mDNS

application required only seven new Flowlog rules and an additional table.

Finally, while running Exodus on the Stanford network con�guration, it detected missing references,

contradictory statements, and unused IOS fragments present in the original con�guration. Its ability to detect

such fragments using the �rst-order logic in its intermediate language makes Exodus’s utility during migration

apparent, even before the �rst OpenFlow rules are generated. We will discuss several approaches to using

Exodus as part of an SDN migration in Sec. 10.2.

9.3 Compiler Validation

While we did the manual checks of correctness in our small con�gurations, as described in Sec. 9.1 above, we

have le� open the question of how to formally validate or prove the correctness of Exodus. Broadly speaking,

there are two approaches we might use.

�e �rst is to statically prove the correctness of the compiler (and accompanying run-time system). �e

logical underpinnings of Flowlog make it easy to put the work on formal foundations, including proofs of

compiler correctness. However, such a proof would require a comprehensive semantics for the source languages.

Unfortunately, for languages like IOS, there are only partial solutions to this problem [16, 67, 104]. (We are not

aware of any formalizations of iptables.)

62

�e other, complementary, approach is to compare the behavior of the resulting systems. �at is, we can

dynamically check for equivalence between the Exodus-producedOpenFlow tables, and the forwarding behavior

of the source input. �is approach could be built upon the recently developed Header Space Analysis [50] and

related ATPG tool [103]. To do so, the existing HSA implementation would need to be extended to support

the range of language features supported by Exodus, and to accept OpenFlow tables as input. We discuss this

further in Sec. 10.4.

Chapter 10

Discussion of SDNMigration

Automatically translating one language to another starkly highlights di�erences between the source and target

languages. While developing Exodus, we have encountered concrete de�ciencies in OpenFlow, NetCore, and

Flowlog, relative to the functionality of Cisco’s IOS. In addition, our work with Exodus has provided clarifying

examples for some of the architectural and physical tradeo�s between traditional and so�ware-de�ned networks.

We now discuss these two areas.

10.1 Language Limitations

Exodus uses a stack of languages (cf. Chap. 8) to transform Cisco’s IOS into an SDN controller, ranging from a

speci�c, year-old research artifact (Flowlog) to a general-purpose, in-production speci�cation (OpenFlow).

As such, we will chie�y focus on the issues uncovered in OpenFlow, o�er a few lessons for high-level SDN

language designers, and only brie�y touch upon de�ciencies exposed in Flowlog.

10.1.1 OpenFlow Shortcomings

Exodus exposed three shortcomings in OpenFlow which we discuss in detail. Although Exodus was developed

against the OpenFlow 1.0 speci�cation, as it o�ered the most mature implementations, these shortcomings all

remain in the proposed OpenFlow 1.4 standard.

Idle Timeout for NAT �e �rst shortcoming relates to “Idle Timeouts” for �ow table rules. OpenFlow includes

the ability to set a per-rule timeout which is reset whenever the rule matches a packet – for example, a rule with

63

64

such a timeout may expire if it has not matched any tra�c during the previous 60 seconds. �e switch may also

be instructed to notify the controller when such a rule expires.

Together, these timeouts and noti�cations allow OpenFlow controllers to implement so� state (for host

mobility, caching, or reusing �nite resources, such as the ports in a NAT scheme), with the support of the switch

hardware. �is support from the switch is important, as without it the controller would be forced to poll each

switch’s counters periodically to determine if any rules should have expired during the previous period. While

polling each connected switch to implement Idle Timeouts may waste controller resources, it would be even

worse on the switches themselves.

Recent measurements have shown hardware switches are incapable of answering more than four controller

queries per second under the best conditions, and that performance decreases as the number of �ow table

entries increase [25, 76]. Furthermore, because switch CPU bandwidth can be the bottleneck resource, controller

queries issued more frequently than once per second can increase the latency of �ow table updates by an order

of magnitude on some hardware [76].

Unfortunately, even simple policies cannot always be expressed with a single �ow table rule. A NAT, for

example, must commonly generate two rules, one in each direction, to support a single translated �ow. �is

translated �ow is also assigned a �nite resource (one of the Layer-4 ports on a public-facing IP address), which

should be released when the �ow is no longer in use: a perfect use-case for Idle Timeouts, if not for the need for

multiple �ow table rules.

Hence, an OpenFlow-based NAT controller would prefer the Idle Timeout be triggered only when both

rules have been idle for the speci�ed period; any other design is simply incorrect. Extending OpenFlow 1.4’s

FlowMod “bundles,” introduced recently to support atomic transactions, to also be a unit over which an Idle

Timeout could be set, would solve this problem. Finally, OpenFlow switches should ideally also support a

second style of Idle Timeouts which are triggered by TCP packets with the FIN or RST �ags. Such timeouts

have been supported by an Open vSwitch extension since version 1.5.90, and are con�gurable in Cisco IOS.

Matching with Ranges �e second OpenFlow limitation we encountered with Exodus related to translating

IOS rules of the following form, which match Layer-4 port numbers using ranges or inequalities:

1 access-list 101 permit tcp any any range 8080-8180

2 access-list 101 deny tcp any any gt 134

�ese one-line statements in IOS become many more in OpenFlow due to its more restricted syntax

for matching. While OpenFlow 1.0 could only match on Layer-4 port numbers exactly, the situation at least

65

improved with OpenFlow 1.2’s introduction of the OpenFlow Extensible Match (OXM).

�e OXM format provides a bit mask for each �eld, although some �elds are additionally restricted to only

certain bit mask patterns, such as CIDR masks. Even without additional restrictions, OXM’s binary design still

forces the rule on Line 1 to be expanded into six OXMmatches: 8080/12, 8096/11, 8128/11, 8160/12, 8176/14, and

8180/16 (following the CIDR convention). Regardless of underlying implementation (hardware or so�ware),

this design creates more rules. �ese will be seen when displaying the �ow table, when debugging control tra�c,

when calculating �ow statistics, or when synchronizing controller state.

�e syntax translation from IOS ranges and inequalities to OXM bit masks is mechanical, and an obvious

bene�t that can be provided by high-level SDN languages. However, their commonality suggests they should be

an abstraction provided by a future OpenFlow speci�cation, rather than a feature all high-level languages must

reimplement.

Additional ICMP Fields A �nal OpenFlow restriction encountered by Exodus was a lack of support for

matching on the identi�er �eld of ICMP queries, which include basic ICMP Echo Requests. RFC 3022 instructs

NATs to remap this �eld, otherwise ICMP queries cannot be multiplexed between multiple private, source IP

addresses, and the same public, destination IP [83].

We encourage the Open Networking Foundation to add support for matching on and rewriting the ICMP

Query Identi�er �eld (and updating the preceding checksum) to OpenFlow. Without this support, OpenFlow-

based NATs must send all ICMP tra�c to the controller, using a match on the existing ICMP type and code

�elds, for the necessary modi�cations.

10.1.2 Lessons for SDN Language Designers

High-level languages for SDN programming are an important and active area of research [34, 48, 64, 68,

89–91]. �eir goal is to raise the level of abstraction, freeing programmers from mundane details of �ow

table programming and switch implementations, and to make SDN programs more reusable and analyzable.

Abstraction design is an iterative process, and our work with Exodus has led us to identify a few rough spots

which we now discuss.

Composing Actions without Matches A common reason for using high-level SDN languages is to simplify

the composition of multiple policies. Existing semantics for composition include parallel [34], sequential [64],

and hierarchical merge [30]. Prior to this work, none of these approaches could compose an arbitrary header

modi�cation without �rst exactly matching on the �eld being modi�ed. In other words, a (match, action) pair

66

would be required for every observed source MAC address, for example, to update a packet’s Layer-2 source

during hop-by-hop IP routing.

�e reason for this restriction is understandable: setting a header �eld without �rst exactly matching violates

parallel composition. For example, consider a simple policy which sets the source MAC address on packets and

emits them from port 3, which is composed in parallel with a monitoring policy to emit all packets from port 4:

(srcMac -> 00:00:00:00:00:01; emit: 3) || emit: 4

Because OpenFlow does not have an action to copy packets, this might naively become the following action

sequence:

mod_dl_src=00:00:00:00:00:01; output:3; output:4

which will incorrectly send the modi�ed packet also out port 4, instead of the original, unmodi�ed packet. In

this case, correct compilation is still possible with reordering:

output:4; mod_dl_src=00:00:00:00:00:01; output:3

However, correct compilation is only possible if the policy composes at most one such update without match in

parallel. Previously, when the original header �eld was available from the exact match, a compiler could simply

“undo” the header rewrite with a second modi�cation before proceeding with the parallel composition.

Since routers must rewrite the source MAC address when forwarding packets from one subnet to another,

composing at most one rewrite action without match is necessary for scaling the �ow tables e�ectively in Exodus.

�erefore, we have added support for this feature to NetCore, and believe high-level SDN languages which o�er

parallel composition should include this variant, as we do.

Packet Processing Continuations Existing high-level language controllers such as NetCore, Nettle, andMaple

present an abstraction in which a policy function is conceptually evaluated for every packet, a model introduced

by Ethane [17]. �e semantics of this evaluation, however, are to run to completion – that is, a packet arrives at

the controller, the function is evaluated, and new packets are emitted, before the next packet is processed.

While developing Exodus, we have found the need to occasionally suspend the execution of this packet-

processing function, perform processing on other packets, and later return to the suspended execution. �is

suspended execution is known as a continuation.

As a concrete example, consider the process of rewriting the destination MAC address a�er a packet has

been routed. If a packet arrives, and the router does not know the corresponding MAC address, it must suspend

67

processing, emit an appropriate ARP request, and wait for an asynchronous reply. Only a�er processing the ARP

reply, if any, can it �nish processing the previous packet. For this reason, we encourage designers of high-level

languages for SDNs to support continuations in their packet-processing model.

Stable Flow Table Output Finally, we urge the developers of high-level languages to strive to compile logically-

equivalent policies to syntactically-equivalent �ow tables. For the foreseeable future, rule space in hardware

OpenFlow tables will remain at a premium, and application developers will �nd themselves regularly examining

the tables to optimize their resources.

In all the languages discussed above, the syntax of generated �ow tables can change dramatically when

packets are reordered or logically equivalent policies are swapped. While harmless from the packets’ perspective,

such changes make contemporary SDN programming more di�cult. Ideally, automated optimization will

improve this situation, and we are encouraged by recent e�orts [46, 47]; where optimizations are unavailable,

we suggest a canonical ordering be used.

10.1.3 Flowlog De�ciencies

A few de�ciencies in Flowlog’s design were also revealed by Exodus. Taking a “default drop” position, without

exposing it as an explicit action, created additional OpenFlow rules in the ACL tables (Line 5), and a third

rule for each connection in the NAT table (Sec. 9.1). In addition, we found that Flowlog is unable to “dequeue”

just a single element at a time from a relation; thus, our NAT could not reuse the Layer-4 ports assigned to

connections it learned had closed. Finally, providing mathematical operations at compile-time, rather than only

via built-in relations such as add, would have made our task more pleasant.

10.2 Architectural and Physical Tradeo�s

�e output from Exodus is very clearly a hybrid: a centralized SDN controller with explicit mappings to a set of

distributed switches. Although the collection of input policies may now be joined, they are not truly uni�ed; as

an initial prototype, Exodus does not output a policy expressed over a single “big switch” abstraction [19, 64, 78].

However, armedwith the combined policies translated to a high-level SDN language, we can now consider a range

of SDN designs, which we discuss below, both for the policy abstractions, and their physical implementations.

Furthermore, the initial step taken by Exodus, generating a set of OpenFlow rules equivalent to an organiza-

tion’s IOS polices, gives an organization insight into the resources required to replace an existing, traditional

network with one controlled by OpenFlow. For example, how many �ow tables will be needed? How many

68

entries should they support? And, what hardware actions will be required? We previously saw example answers

to these questions for the Stanford network in Chap. 9.

As described in Chap. 7, enterprise networks can be quite large. If policies were dispersed across the entire

network, it could be very di�cult to unify them onto a single abstraction. Fortunately, this is generally not the

case, as enforcing rules only at the core of an enterprise network is generally considered a best practice for the

following reasons:

1. Lower administrative burden: Making changes across the network is time-consuming and error-prone.

2. Edge-switch limitations: Cheaper edge-switches may simply be incapable of enforcing the desired policy.

3. Immunity to end-host mobility: Placing a rule at the core means it will a�ect all tra�c on the network.

While these three reasons are a bene�t during the migration, since there are fewer distributed policies to

unify, it may be sensible to reconsider these reasons a�er migration. For the �rst, the simpli�ed management

experience provided by a centralized control-plane is a primary tenet of SDNs. For the second, a programmatic

controller with a global view can make use of any resources which are at the edge; the question of how many

resources to place at the edge is a topic of debate [20], and we will return to it below.

As for the third, end-host mobility raises a design point when implementing SDN controllers, one closely

aligned with “reactive” versus “proactive” compilation. In the reactive design, proposed in the original Ethane

work [17], each new �ow (or perhaps each new host) would require the controller to establish �ow table rules on

the switch. A proactive design, by contrast, eliminates the controller overhead by pre-establishing all necessary

rules on the switch, and only reacting to less frequent events such as link failures, load re-balancing, or operator

updates.

�ese two designs represent a continuum, however, as a proactive design prevents packets from reaching

the controller by placing restrictions on supported policies to enable compilation, and making assumptions

about the tra�c, which may create unnecessary �ow table rules. In an enterprise network, end-hosts frequently

disconnect, migrate, connect, and re-authenticate, which commonly involves the exchange of several messages

with local network infrastructure such as DHCP and EAP servers. (Georgia Tech reports an average of 2,360

authentication events per minute on its wireless network [52].) Given this reality, a decision to compile policies

in a more reactive fashion may make more sense here than in the datacenter, where unplanned mobility is not

an issue, and latency is more important.

We return now to the question of edge switch functionality. An organization using Exodus already has

a network, and may consider at least two paths for migrating to an SDN. Along one path, they might leave

69

their existing, policy-less edge switches in place, and upgrade the network core to support OpenFlow. �e

recent Panopticon work suggests that even a single, upgraded core switch can be very bene�cial [58], and the

Exodus prototype applies to this scenario. Along the second path, an organization could focus on upgrading

edge switches, making them capable of implementing the policy, and following an architecture similar to that

proposed by Casado, et al. [20]. Under this approach, rules would be pushed from the core to the edge, and

Exodus’s current design can only o�er general guidance about the total size of the network’s �ow tables, and

not a working controller. Although evaluating the risks, costs, and bene�ts of these approaches is up to each

organization, tools like Exodus can help illuminate the decisions.

Finally, although SDNs seek to centralize network con�guration, networks will continue to have multiple

regions, each under the direction of a distinct set of logically centralized controllers (for example, the sets of

Onix controllers at the edge of each datacenter in Google’s B4 network [45]). �is will happen for many reasons

including fault isolation, upgrade testing, scalability, and administrative independence. Compiling distributed

router con�gurations into a centralized control program lets us later refactor the boundaries of these regions. It

would appear to be very di�cult to do such a refactoring safely without �rst joining the con�gurations using a

tool like Exodus.

10.3 �e Route Ahead

Our goal with this work is to present a working prototype of a system for converting existing network con�gura-

tions to SDNs. We hope the possibilities raised by Exodus will motivate further development of migration tools.

Exodus currently supports the Cisco IOS and Linux iptables features described above, and can be extended to

support the following additional features:

VLANs VLANs introduce an abstraction layer to support multiple broadcast domains inside a single Layer-2

fabric. Adding support for VLANs in Exodus requires the straight-forward addition of an additional switch

table before the current ACL table (Fig. 8.2). �e VLAN table would then demultiplex the attached Layer-2

fabrics into the subnet inputs used by the current design.

Routing Protocols Exodus currently supports static and policy-based routing, storing the routes in a standard

(subnet ↦ next hop) routing table. Distributed routing protocols such as BGP and OSPF can be supported

by exposing this table to updates from RouteFlow [75] using Flowlog’s existing support for �ri�-serialized

external events.

70

Pooled and Static NAT Cisco IOS supports three forms of NAT: overload, static, and pooled, which correspond

with N-1, N-N, and N-M translation of private to public IP addresses. Exodus implements overload NAT with

a relation mapping private IP addresses to public Layer-4 ports. Its database semantics make the addition of

static and pooled NAT trivial.

VPNs and Tunnels OpenFlow 1.3 introduced support for PBB (MAC-in-MAC) encapsulation, which can

be used for tunneling. As with VLANs, additional data-plane layers may be (de-)multiplexed by inserting an

additional table. Support for other tunneling and VPN approaches, such as IP-in-IP and GRE, currently require

additions to OpenFlow or external con�guration.

MPLS Supporting MPLS will likely require the greatest changes to Exodus, as it replaces the current subnet-

based forwardingwith a label-based approach. Although use ofMPLS has beenmade easier since its introduction

in OpenFlow 1.1, support is still missing in high-level SDN languages.

10.4 RelatedWork

Migrating enterprise networks to networks with centralized control is an important topic in the SDN literature.

While early proposals, such as 4D [37] or SANE [18], were understandably “clean-slate” designs, with no upgrade

path other than starting from scratch, a subsequent strategy was safe co-existence. Ethane [17] required no host

modi�cations, and allowed its switches to be incrementally deployed alongside regular switches. OpenFlow,

from the start, introduced hybrid switches that could operate both with Layer-2/3 control protocols or be

managed by a controller, and had the requirement that OF switches would keep OpenFlow tra�c isolated from

production tra�c [62]. Even in the case of incremental upgrades, these strategies are “dual-stack”, meaning that

the SDN and the traditional network are independent.

A migration approach that is feasible in fully virtualized environments is to run virtual SDN switches in the

hypervisors in the edge, and provide network virtualization [20]. As noted in [58], this approach is not feasible

in many enterprise and campus networks where the edge terminates in legacy access switches.

Panopticon [58] provides another migration strategy that is more integrated than a dual-stack approach.

With strategic switch placement, it can almost match the bene�ts of a full SDN deployment for any �ow that

goes through at least one OpenFlow switch. With this, it provides the illusion that the entire network is a single

SDN to controller applications.

Our work is related, yet orthogonal, to all of these approaches; all require the con�gurations and policies

71

for the SDN controller be written afresh. Exodus automatically performs a partial migration of the existing

con�guration to an equivalent SDN setup.

Another approach to SDNmigration is to progressively replace existing routers with functionally equivalent

OpenFlow components, and then later bene�t from the evolvability of such components. B4 [45], Google’s SDN

system for wide-area tra�c engineering, used such a strategy to replace BGP border routers in their WAN

with custom OpenFlow switches. �ey replaced the BGP logic in the routers with a Quagga BGP node and a

proxy application between the two. In doing this, they had to migrate the BGP con�guration from the routers

to Quagga. RouteFlow [75] allows for a similar strategy. While in a di�erent setting, our approach analogously

allows us to automaticallymigrate the con�guration of an IOS-based router to a combination of a controller

and a set of �owtables on OpenFlow switches.

Benson et al. [7] describe an approach for mining high-level reachability policies from existing network

con�gurations. Our approach also extracts policy from existing con�gurations, but, in contrast, converts the

policy to a declarative program that implements the same policy. Our focus is also broader, including NAT,

routing, and ACLs.

Capretta, et al. [16] describe and formally verify a con�ict-detection algorithm for Cisco IOS �rewall

con�gurations. �eir formalism encompasses only ACLs, not NAT, routing, or Layer-2 behavior, although

their support for idiosyncratic IOS ACL features (such as matching ports greater than a �xed value) is superior

to ours. Zhang, et al. [104] use SAT-solvers to perform analysis on existing �rewall con�gurations and to

synthesize equivalent, smaller con�gurations. �eir techniques apply to a generalized abstract notion of �rewall

con�guration, and do not take routing, NAT, or modi�cations to Layer-2 header information into account.

Nelson, et al. [67] also compile IOS con�gurations to a logical formalism for veri�cation and other analysis.

�eir compiler supports more IOS features than ours, such as static and pool NAT, but their focus is analysis of

single packets at Layers-3 and 4, so their compiler does not address issues such as the translation of Layer-2

addresses when packets cross Layer-3 subnets. All these works, however, focus on translation for the purpose of

analysis, not to generate code for execution.

As described in Chap. 8, Exodus produces Flowlog [68] programs which compile to NetCore, and then

OpenFlow. Implementing the features described in this work required making several enhancements to Flowlog

and NetCore. Flowlog did not originally provide access to ARP packet payloads; to create an ARP cache and

proxy, we extended Flowlog with a general hierarchy of packet types. To translate ACLs and static routes,

which can use address masking, we added support for matching IP address ranges (rather than only individual

addresses) to both Flowlog and NetCore. In addition, we added an event type that allows Flowlog programs

72

to react when OpenFlow table entries expire, with corresponding support in NetCore. We also enhanced the

Flowlog compiler to support joins over multiple state relations, which were previously forbidden.

Finally, Header Space Analysis [50] and ATPG [103] could be used to verify the correctness of the Exodus-

produced con�gurations, by analyzing both the original IOS con�gurations and the resulting OpenFlow rules.

While this is relevant future work, HSA does not currently support all of the features of IOS that Exodus needs,

and does not provide parsers for generic OpenFlow rules.

Chapter 11

Conclusion

�is dissertation has presented two novel contributions, and respective prototypes, to so�ware-de�ned network-

ing. �e �rst, PANE, allows network administrators to safely delegate their authority over the network’s policy.

�e design and con�guration of today’s networks is already informed by application needs (e.g., networks with

full-bisection bandwidth for MapReduce-type frameworks, or deadline-based queuing [5] for interactive web

services). PANE provides a way for the network to solicit and react to such needs automatically, dynamically, and

at a �ner timescale than with human input. To do this, our design overcomes the two challenges of decomposing

network control, and resolving con�icts between users’ needs.

However, before using a novel SDN controller such as PANE, many administrators will wish to migrate their

existing con�gurations to the new platform. Our second contribution, Exodus, is the �rst SDN migration tool

which directly migrates existing network policies to equivalent SDN controller so�ware and anOpenFlow-based

network con�guration. Automatic migration allows network operators familiar with their own networks, but

not SDN, to quickly explore the bene�ts of this new approach. By generating code in a high-level, rule-based

language, Exodus makes it easy to bootstrap a new network controller which can evolve at the frenetic pace of

enterprise network environments [51]. �e high-level semantics of the generated program opens the avenue for

change-impact analysis, and potential refactoring of the physical con�guration of the network, bringing the full

bene�ts of an SDN deployment. No matter the migration strategy eventually employed, Exodus gives network

administrators a concrete, working prototype from which to begin discussion and compare solutions.

73

74

11.1 Bringing PANE to Flowlog

At present, controllers for so�ware-de�ned networks are in their infancy, and most controllers are built to

accomplish particular objectives: PANE, the challenge of policy delegation, and Exodus, the task of policy

migration. As we consider the further growth and maturation of so�ware-de�ned networking, we begin with

the thought exercise of implementing PANE in Flowlog, the language in which Exodus controllers are generated.

Flowlog’s initial design was heavily in�uenced by our experience building PANE. �e PANE controller is

fundamentally event-driven, as new network con�gurations are driven by the dynamic requests arriving from

end users. It also stores a lot of state about the network: host locations, bandwidth availability, access control

lists, switch and link statuses, timelines of future requests, and more. �e central nature of both events and state

made PANE a poor match for the existing SDN languages.

Because Flowlog was designed around events and state, implementing PANE in Flowlog might appear

straightforward. Several components of the PANE runtime such as host discovery, topology discovery, spanning-

tree construction, and forwarding decisions, could be replaced with well-built NIB and forwarding programs in

the current Flowlog. Furthermore, much of the PANE API is exposed to its users assuming a “one big switch”

abstraction of the network, which aligns with that of the NetCore policies Flowlog generates.

However, we �nd that Flowlog currently falls short in two key areas: composition, and routing. In Flowlog’s

present design, all event handlers are triggered at once – it is not possible to �rst evaluate an incoming packet

with, for example, an access-control module (or PANE), and then second with a forwarding module. While the

physical composition employed by Exodus circumvents this problem, PANE requires logical composition as its

policies will not necessarily yield end-to-end routes for all packets.

Indeed, this example is directly related to Flowlog’s second key shortcoming – lack of abstractions for

routing – as PANE policies may, for example, simply declare that some packets should be waypointed through

a particular switch before reaching their destination. Such a policy, like any which introduces topological

constraints, would be challenging to implement in Flowlog, which only provides either a hop-by-hop or a “one

big switch” approach to network programming.

11.2 Limitations of the “One Big Switch” Abstraction

PANE is not the only SDN application which cannot always be implemented in a “one big switch” view of the

network. Other examples include:

75

• Guaranteeing latency – A �ow’s end-to-end latency is a function of many variables, including the choice

of path. As such, an SDN application designed to manage �ow latencies will require details of the network

topology. For example, in a Clos datacenter network, latency is a function of the number of switches (and

therefore links) a packet traverses.

• Provisioning circuits – Many scienti�c WANs are designed to provision optical circuits on demand,

either for bulk data dissemination (e.g., in ESNet) or to isolate experimental tra�c (e.g., in GENI). Such

applications are a particular form of wide-area tra�c engineering, and obviously break the “one big

switch” abstraction.

• Scheduling maintenance – A controller application designed to seamlessly migrate tra�c ahead of

scheduled maintenance necessarily requires information about the network’s physical infrastructure (e.g.,

the bandwidth available on each link, which links will be taken o�ine by switch maintenance, which

links share the same optical cable, etc.).

From these examples, we see that the “one big switch” abstraction works best under two assumptions:

�rst, that the network is uniform, and second, that applications are topology-independent. When networks

are not uniform (for example, a WAN with many di�erent link costs, or a network with middleboxes along

particular paths), or control applications make topology-dependent decisions (for example, to manage latency,

or schedule maintenance) then the controller must expose topology information through a NIB, and should

provide abstractions for path programming and routing.

11.3 Lessons from Building SDN Controllers

Realizing that SDN controllers should provide abstractions for path programming as well as for taking a “one

big switch” view is not the only lesson we can draw from the development of PANE and Exodus. Upon re�ection,

the following list of thirteen features useful in almost every SDN controller emerges:

1. Tables (state) – Every network implementation contains many tables, which may be used for routing,

forwarding, address translation, ARP caching, link-state, access control, and more.

2. Events – Networks are very dynamic, and control applications must respond to many types of events

including switch or link up, switch or link down, host discovery, and external events.

76

3. Policy composition – Supporting policy composition using sequential, parallel, prioritized, and hierar-

chical merge strategies allows for the controller to be written in a modular fashion.

4. Path-based reasoning – Tra�c engineering applications, and those discussed in the previous section, all

use the network topology to make decisions and may introduce constraints on a packet’s path through

the network.

5. Virtualization – Virtualizing the network for SDN applications consists of two components:

• Indirection – Writing a policy on an abstract view of the network (e.g., “one big switch”, or a

particular slice [40])

• Isolation – Policies written on disparate abstract views of the network should not interfere [79].

6. Scalability –�e SDN platform should scale with the network and its demands, through federation [87],

hierarchy [61, 99], and scalable state storage.

7. Redundancy – Redundant, fault-tolerant controllers are a must for any SDN platform in production.

8. Veri�cation – Verifying control programs, as we do in Flowlog, should help to eliminate bugs in these

critical infrastructure components.

9. Debugging – Useful SDN platforms will provide debugging functionality such as capturing packets, and

replaying forwarding decisions [41, 95].

10. Resource management – Many network resources, such as per-switch �ow tables, and per-port rate-

limiters, are constrained. SDN control platforms will need to track the use of these resources, and are

the right place to intelligently optimize their use [25, 46, 47, 100]. Ideally, such platforms could o�er the

illusion of in�nite rule space on the switches [49], just as regular applications see virtual memory.

11. Consistency – Many SDN applications require some form of consistency in both the data-plane and the

control-plane. Developing and implementing notions of consistency for SDN is ongoing [15, 59, 69, 74].

12. Queries – Measuring network state by querying the data-plane is a key component of many network

applications [1, 10, 42, 45]. SDN control platforms will need intelligence to answer queries from multiple

applications without overwhelming limited network hardware [76].

13. Security – Finally, like an OS kernel, the underlying SDN platform is responsible for enforcing network

security guarantees irrespective of the applications in use [70, 81].

77

Today,most SDN controllers excel at only a handful of features on the list above, and none – to our knowledge

– support them all; PANE and Exodus are but stepping-stones in the evolution of so�ware-de�ned networks.

“�e world only spins forward ... �e Great Work Begins.”

Tony Kushner, Angels in America

Bibliography

[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat.

Hedera: Dynamic Flow Scheduling for Data Center Networks. In Symposium on Networked Systems

Design and Implementation (NSDI), 2010. Cited on [1, 13, 37, 76]

[2] https://aws.amazon.com/message/65648/. Cited on [1]

[3] David A. Applegate, Gruia Calinescu, David S. Johnson, Howard Karlo�, Katrina Ligett, and Jia Wang.

Compressing Rectilinear Pictures and Minimizing Access Control Lists. In ACM-SIAM Symposium on

Discrete Algorithms (SODA), 2007. Cited on [60]

[4] F. Baker. Requirements for IP Version 4 Routers. RFC 1812, June 1995. Cited on [50]

[5] Hitesh Ballani, Paolo Costa, �omas Karagiannis, and Ant Rowstron. Towards Predictable Datacenter

Networks. In ACM Sigcomm, 2011. Cited on [39, 73]

[6] Rob Barrett, Eser Kandogan, Paul P. Maglio, Eben M. Haber, Leila Takayama, and Madhu Prabaker. Field

Studies of Computer System Administrators: Analysis of SystemManagement Tools and Practices. In

Computer-Supported Cooperative Work and Social Computing, pages 388–395, 2004. Cited on [4]

[7] �eophilus Benson, Aditya Akella, and David A. Maltz. Mining Policies from Enterprise Network

Con�guration. In Internet Measurement Conference (IMC), 2009. Cited on [71]

[8] �eophilus Benson, Aditya Akella, and David A. Maltz. Unraveling the Complexity of Network Man-

agement. In Symposium on Networked Systems Design and Implementation (NSDI), 2009. Cited on

[3]

[9] �eophilus Benson, Aditya Akella, Anees Shaikh, and Sambit Sahu. CloudNaaS: A Cloud Networking

Platform for Enterprise Applications. In Symposium on Cloud Computing (SOCC), 2011. Cited on [39]

78

https://aws.amazon.com/message/65648/

79

[10] �eophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. MicroTE: Fine Grained Tra�c

Engineering for Data Centers. In Conference on Emerging Networking Experiments and Technologies

(CoNEXT), 2011. Cited on [13, 76]

[11] Dario Bon�glio, Marco Mellia, Michela Meo, and Dario Rossi. Detailed Analysis of Skype Tra�c. IEEE

Trans. on Multimedia, 11(1):117–127, 2009. Cited on [1, 32]

[12] Pat Bosshart, Dan Daly, Martin Izzard, Nick McKeown, Jennifer Rexford, Dan Talayco, Amin Vah-

dat, George Varghese, and David Walker. Programming Protocol-Independent Packet Processors.

arXiv:1312.1719 [cs.NI], 2013. Cited on [51, 60]

[13] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an Overview. RFC

1633, June 1994. Cited on [6]

[14] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol (RSVP). RFC

2205, September 1997. Cited on [6, 38]

[15] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. So�ware Transactional Networking:

Concurrent and Consistent Policy Composition. In Workshop on Hot Topics in SDN (HotSDN), 2013.

Cited on [76]

[16] Venanzio Capretta, Bernard Stepien, Amy Felty, and Stan Matwin. Formal Correctness of Con�ict

Detection for Firewalls. InWorkshop on Formal Methods in Security Engineering, 2007. Cited on [61, 71]

[17] Mart́ın Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker.

Ethane: Taking Control of the Enterprise. In ACM Sigcomm, 2007. Cited on [3, 61, 66, 68, 70]

[18] Mart́ın Casado, Tal Gar�nkel, Aditya Akella, Michael J. Freedman, Dan Boneh, NickMcKeown, and Scott

Shenker. SANE: A Protection Architecture for Enterprise Networks. In USENIX Security Symposium,

2006. Cited on [3, 70]

[19] Mart́ın Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. Virtualizing the Network

Forwarding Plane. InWorkshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO),

2010. Cited on [67]

[20] Mart́ın Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric: A Retrospective on

Evolving SDN. InWorkshop on Hot Topics in SDN (HotSDN), 2012. Cited on [3, 68, 69, 70]

80

[21] Prashant Chandra, Allan Fisher, Corey Kosak, T. S. Eugene Ng, Peter Steenkiste, Eduardo Takashi, and

Hui Zhang. Darwin: Resource Management for Value-added Customizable Network Service. In IEEE

International Conference on Network Protocols (ICNP), 1998. Cited on [38]

[22] Xu Chen, Yun Mao, Z. Morley Mao, and Jacobus Van der Merwe. Declarative Con�guration Manage-

ment for Complex and Dynamic Networks. In Conference on Emerging Networking Experiments and

Technologies (CoNEXT), 2010. Cited on [39]

[23] Coq Development Team. �e Coq Proof Assistant Reference Manual – Version 8.3. http://coq.

inria.fr/, 2011. Cited on [23]

[24] Andrew R. Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-Overhead Datacenter Tra�c

Management using End-Host-Based Elephant Detection. In IEEE Conference on Computer Communi-

cations (INFOCOM), 2011. Cited on [13]

[25] Andrew R. Curtis, Je�rey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, and Sujata

Banerjee. DevoFlow: Scaling Flow Management for High-performance Networks. In ACM Sigcomm,

2011. Cited on [64, 76]

[26] Je�rey Dean and Sanjay Ghemawat. MapReduce: Simpli�ed data processing on large clusters. Commun.

ACM, 51(1):107–113, 2008. Cited on [35]

[27] David Erickson, Glen Gibb, Brandon Heller, David Underhill, Jad Naous, Guido Appenzeller, Guru

Parulkar, Nick McKeown, Mendel Rosenblum, Monica Lam, Sailesh Kumar, Valentina Alaria, Pere

Monclus, Flavio Bonomi, Jean Tourrilhes, Praveen Yalagandula, Sujata Banerjee, Charles Clark, and Rick

McGeer. A Demonstration of Virtual Machine Mobility in an OpenFlow Network. In ACM Sigcomm

(Demo), 2008. Cited on [3]

[28] Nick Feamster and Hari Balakrishnan. Detecting BGP con�guration faults with static analysis. In

Symposium on Networked Systems Design and Implementation (NSDI), 2005. Cited on [39]

[29] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krishnamurthi. Hier-

archical Policies for So�ware De�ned Networks. In Workshop on Hot Topics in SDN (HotSDN), 2012.

Cited on [4, 39]

http://coq.inria.fr/
http://coq.inria.fr/

81

[30] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krishnamurthi. Par-

ticipatory Networking: An API for Application Control of SDNs. In ACM Sigcomm, 2013. Cited on [4,

65]

[31] Andrew D. Ferguson, Arjun Guha, Jordan Place, Rodrigo Fonseca, and Shriram Krishnamurthi. Par-

ticipatory Networking. In Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise

Networks and Services (Hot-ICE), 2012. Cited on [4]

[32] Floodlight. http://www.projectfloodlight.org/floodlight/. Cited on [46]

[33] Nate Foster, Michael J. Freedman, Rob Harrison, Jennifer Rexford, Matthew L. Meola, and David Walker.

Frenetic: A High-Level Language for OpenFlow Networks. InWorkshop on Programmable Routers for

Extensible Services of Tomorrow (PRESTO), 2010. Cited on [4, 13, 19, 39]

[34] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rexford, Alec Story,

and David Walker. Frenetic: A Network Programming Language. In ACM SIGPLAN International

Conference on Functional Programming (ICFP), 2011. Cited on [46, 47, 65]

[35] https://github.com/blog/1346-network-problems-last-friday. Cited on [1]

[36] Simon Godik and TimMoses (editors). eXtensible Access Control Markup Language, version 1.1, August

2003. Cited on [40]

[37] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford, Geo�rey Xie, Hong

Yan, Jibin Zhan, and Hui Zhang. A Clean Slate 4D Approach to Network Control and Management.

ACM Computer Communication Review (CCR), 35:41–54, 2005. Cited on [2, 27, 39, 70]

[38] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfa�, Mart́ın Casado, Nick McKeown, and Scott

Shenker. NOX: Towards an Operating System for Networks. ACM Computer Communication Review

(CCR), 38:105–110, July 2008. Cited on [39, 46]

[39] Arjun Guha, Mark Reitblatt, and Nate Foster. Machine-Veri�ed Network Controllers. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), 2013. Cited on [47]

[40] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. Splendid Isolation: A Slice Abstraction for

So�ware-De�ned Networks. InWorkshop on Hot Topics in SDN (HotSDN), 2012. Cited on [76]

http://www.projectfloodlight.org/floodlight/
https://github.com/blog/1346-network-problems-last-friday

82

[41] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazieres, and Nick McKeown. I Know

What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks. In Symposium on

Networked Systems Design and Implementation (NSDI), 2014. Cited on [76]

[42] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yannis Yakoumis, Puneet Sharma, Sujata Banerjee,

and Nick McKeown. ElasticTree: Saving Energy in Data Center Networks. In Symposium on Networked

Systems Design and Implementation (NSDI), 2010. Cited on [76]

[43] Timothy L. Hinrichs, Natasha Gude, Mart́ın Casado, John C. Mitchell, and Scott Shenker. Practical

Declarative Network Management. InWorkshop on Research in Enterprise Networking (WREN), 2009.

Cited on [39]

[44] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper: Wait free coor-

dination for Internet-scale systems. In USENIX Annual Technical Conference (ATC), 2010. Cited on

[33]

[45] Sushant Jain, Alok Kumar, SubhasreeMandal, JoonOng, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4:

Experience with a Globally-Deployed So�ware De�ned WAN. In ACM Sigcomm, 2013. Cited on [3, 69,

71, 76]

[46] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimizing the ”One Big Switch”

Abstraction in So�ware-de�ned Networks. In Conference on Emerging Networking Experiments and

Technologies (CoNEXT), 2013. Cited on [67, 76]

[47] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing Tables in So�ware-De�ned Networks.

In IEEE Conference on Computer Communications (INFOCOM), 2013. Cited on [67, 76]

[48] Naga Katta, Jennifer Rexford, and David Walker. Logic Programming for So�ware-De�ned Networks.

InWorkshop on Cross-Model Design and Validation (XLDI), 2012. Cited on [46, 47, 65]

[49] Naga Katta, Jennifer Rexford, and David Walker. In�nite CacheFlow in So�ware-De�ned Networks.

Technical Report TR-966-13, Department of Computer Science, Princeton University, October 2013.

Cited on [76]

83

[50] Peyman Kazemian, George Varghese, and Nick McKeown. Header Space Analysis: Static Checking for

Networks. In Symposium on Networked Systems Design and Implementation (NSDI), 2012. Cited on [62,

72]

[51] Hyojoon Kim,�eophilus Benson, Aditya Akella, and Nick Feamster. �e Evolution of Network Con-

�guration: A Tale of Two Campuses. In Internet Measurement Conference (IMC), 2011. Cited on [3, 60,

73]

[52] Hyojoon Kim, Arpit Gupta, Muhammad Shahbaz, Joshua Reich, Nick Feamster, and Russ Clark. Simpler

Network Con�guration with State-Based Network Policies. Technical Report GT-CS-13-04, Georgia

Tech, 2013. Cited on [68]

[53] Wonho Kim, Puneet Sharma, Jeongkeun Lee, Sujata Banerjee, Jean Tourrilhes, Sung-Ju Lee, and Praveen

Yalagandula. Automated and Scalable QoS Control for Network Convergence. In Internet Network

Management Workshop/Workshop on Research on Enterprise Networking (INM/WREN), 2010. Cited on

[3, 38]

[54] Teemu Koponen, Keith Amidon, Peter Balland, Mart́ın Casado, Anupam Chanda, Bryan Fulton, Igor

Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain Lenglet,

Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfa�, Rajiv Ramanathan, Scott Shenker, Alan Shieh,

Jeremy Stribling, Pankaj �akkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. Network Virtu-

alization in Multi-tenant Datacenters. In Symposium on Networked Systems Design and Implementation

(NSDI), 2014. Cited on [47]

[55] Teemu Koponen, Mart́ın Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv

Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix: A Distributed

Control Platform for Large-scale Production Networks. In Symposium on Operating Systems Design and

Implementation (OSDI), 2010. Cited on [28, 39]

[56] Leslie Lamport. �e Part-Time Parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998. Cited

on [33]

[57] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in a Laptop: Rapid Prototyping for So�ware-

De�ned Networks. InWorkshop on Hot Topics in Networks (HotNets), 2010. Cited on [31, 57]

84

[58] Dan Levin, Marco Canini, Stefan Schmid, and Anja Feldmann. Panopticon: Reaping the Bene�ts of

Partial SDN Deployment in Enterprise Networks. Technical report, TU Berlin / T-Labs, May 2013. Cited

on [3, 42, 69, 70]

[59] Ratul Mahajan and Roger Wattenhofer. On Consistent Updates in So�ware De�ned Networks. In

Workshop on Hot Topics in SDN (HotSDN), 2013. Cited on [76]

[60] J. Manner, G. Karagiannis, and A. McDonald. NSIS Signaling Layer Protocol (NSLP) for Quality-of-

Service Signaling. RFC 5974, October 2010. Cited on [6, 38]

[61] James McCauley, Aurojit Panda, Mart́ın Casado, Teemu Koponen, and Scott Shenker. Extending SDN to

Large-Scale Networks. In Open Networking Summit (ONS), 2013. Cited on [76]

[62] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,

Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innovation in Campus Networks. ACM

Computer Communication Review (CCR), 38:69–74, 2008. Cited on [2, 3, 39, 47, 70]

[63] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. A Compiler and Run-time

System for Network Programming Languages. In ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 2012. Cited on [21, 47]

[64] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker. Composing

So�ware-De�ned Networks. In Symposium on Networked Systems Design and Implementation (NSDI),

2013. Cited on [4, 46, 47, 65, 67]

[65] JadNaous, Ryan Stutsman, DavidMazières, NickMcKeown, andNickolai Zeldovich. EnablingDelegation

with More Information. In Workshop on Research in Enterprise Networking (WREN), 2009. Cited on

[37]

[66] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Resonance: Dynamic access control

for enterprise networks. InWorkshop on Research in Enterprise Networking (WREN), 2009. Cited on [3,

39]

[67] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. �e

Margrave Tool for Firewall Analysis. In USENIX Large Installation System Administration Conference

(LISA), 2010. Cited on [39, 53, 61, 71]

85

[68] Timothy Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishnamurthi. Tierless

Programming and Reasoning for So�ware-De�ned Networks. In Symposium on Networked Systems

Design and Implementation (NSDI), 2014. Cited on [4, 41, 46, 47, 65, 71]

[69] Peter Peresini, Maciej Kuzniar, Nedeljko Vasic, Marco Canini, and Dejan Kostic. OF.CPP: Consistent

Packet Processing for OpenFlow. InWorkshop on Hot Topics in SDN (HotSDN), 2013. Cited on [76]

[70] Phillip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and Guofei Gu. A

Security Enforcement Kernel for OpenFlow Networks. InWorkshop on Hot Topics in SDN (HotSDN),

2012. Cited on [76]

[71] POX. http://www.noxrepo.org/pox/about-pox/. Cited on [46]

[72] Google Protocol Bu�ers. https://code.google.com/p/protobuf/. Cited on [58]

[73] Barath Raghavan, Kashi Venkatesh Vishwanath, Sriram Ramabhadran, Ken Yocum, and Alex C. Snoeren.

Cloud Control with Distributed Rate Limiting. In ACM Sigcomm, 2007. Cited on [12, 38]

[74] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions for

Network Update. In ACM Sigcomm, 2012. Cited on [28, 76]

[75] Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio Salvador, Carlos Nil-

ton Araujo Corrêa, Sidney Cunha de Lucena, and Robert Raszuk. Revisiting Routing Control Platforms

with the Eyes andMuscles of So�ware-de�nedNetworking. InWorkshop onHot Topics in SDN (HotSDN),

2012. Cited on [69, 71]

[76] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and AndrewW. Moore. OFLOPS: An

Open Framework for OpenFlow Switch Evaluation. In Passive and Active Measurements Conference

(PAM), 2012. Cited on [60, 64, 76]

[77] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zeldovich.

Energy Management in Mobile Devices with the Cinder Operating System. In European Conference on

Computer Systems (EuroSys), 2011. Cited on [39]

[78] Scott Shenker. �e future of networking and the past of protocols. Talk at Open Networking Summit,

Oct. 2011. Cited on [67]

http://www.noxrepo.org/pox/about-pox/
https://code.google.com/p/protobuf/

86

[79] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Mart́ın Casado, Nick McKeown, and

Guru Parulkar. Can the Production Network Be the Testbed? In Symposium on Operating Systems Design

and Implementation (OSDI), 2010. Cited on [3, 39, 76]

[80] Alan Shieh, Emin Gün Sirer, and Fred B. Schneider. Netquery: A Knowledge Plane For Reasoning About

Network Properties. In ACM Sigcomm, 2011. Cited on [13]

[81] Seungwon Shin, Phil Porras, Vinod Yagneswaran, Martin Fong, Guofei Gu, and Mabry Tyson. FRESCO:

Modular Composable Security Services for So�ware-De�ned Networks. In Network and Distributed

System Security (NDSS) Symposium, 2013. Cited on [76]

[82] Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh, Dan Williams, and

Fred B. Schneider. Logical Attestation: An Authorization Architecture For Trustworthy Computing. In

Symposium on Operating System Principles (SOSP), 2011. Cited on [17]

[83] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Traditional NAT). RFC 3022,

January 2001. Cited on [65]

[84] Ion Stoica, Hui Zhang, and T. S. Eugene Ng. A hierarchical fair service curve algorithm for link-sharing,

real-time and priority services. In ACM Sigcomm, 1997. Cited on [38]

[85] Yu-Wei Eric Sung, Xin Sun, Sanjay Rao, Geo�rey Xie, and David A. Maltz. Towards Systematic Design

of Enterprise Networks. IEEE/ACM Transactions on Networking, 19(3):695–708, 2011. Cited on [3]

[86] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David Wetherall, and Gary Minden. A

Survey of Active Network Research. In IEEE Communications Magazine, January 1997. Cited on [6, 37]

[87] Amin Tootoonchian and Yashar Ganjali. HyperFlow: A Distributed Control Plane for OpenFlow. In In-

ternet Network Management Workshop/Workshop on Research on Enterprise Networking (INM/WREN),

2010. Cited on [76]

[88] UPnP Device Architecture version 1.1. UPnP Forum., Oct. 2008. Cited on [38]

[89] Andreas Voellmy and Paul Hudak. Nettle: Taking the Sting Out of Programming Network Routers. In

Practical Aspects of Declarative Languages (PADL), 2011. Cited on [27, 39, 46, 65]

[90] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A Language for High-Level Reactive

Network Control. InWorkshop on Hot Topics in SDN (HotSDN), 2012. Cited on []

87

[91] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan Ford, and Paul Hudak. Maple: Simplifying

SDN Programming Using Algorithmic Policies. In ACM Sigcomm, 2013. Cited on [46, 47, 65]

[92] Guohui Wang, T. S. Eugene Ng, and Anees Shaikh. Programming Your Network at Run-time for Big

Data Applications. InWorkshop on Hot Topics in SDN (HotSDN), 2012. Cited on [37]

[93] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based server load balancing gone wild.

In Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services

(Hot-ICE), 2011. Cited on [3]

[94] Christo Wilson, Hitesh Ballani, �omas Karagiannis, and Ant Rowstron. Better never than late: Meeting

deadlines in datacenter networks. In ACM Sigcomm, 2011. Cited on [13]

[95] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldman. OFRewind: Enabling Record

and Replay Troubleshooting for Networks. In USENIX Annual Technical Conference (ATC), 2011. Cited

on [76]

[96] Hong Yan, David A. Maltz, T. S. Eugene Ng, Hemant Gogineni, Hui Zhang, and Zheng Cai. Tesseract:

A 4D Network Control Plane. In Symposium on Networked Systems Design and Implementation (NSDI),

2007. Cited on [39]

[97] Ziaowei Yang, David Wetherall, and Tom Anderson. A DoS-limiting Network Architecture. In ACM

Sigcomm, 2005. Cited on [38]

[98] Kok-Kiong Yap, Te-Yuan Huang, Ben Dodson, Monica S. Lam, and Nick McKeown. Towards So�ware-

Friendly Networks. In Asia-Paci�c Workshop on Systems (APSys), 2010. Cited on [38]

[99] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A Framework for Ef8cient and Scalable Of9oading

of Control Applications. InWorkshop on Hot Topics in SDN (HotSDN), 2012. Cited on [76]

[100] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable �ow-based networking with

difane. In ACM Sigcomm, 2010. Cited on [76]

[101] Minlan Yu, Xin Sun, Nick Feamster, Sanjay Rao, and Jennifer Rexford. A Survey of virtual LAN usage

in campus networks. Network & Service Management Series, IEEE Communications Magazine, July 2011.

Cited on [3]

88

[102] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and Ion Stoica.

Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling. In

European Conference on Computer Systems (EuroSys), 2010. Cited on [35]

[103] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic Test Packet Gener-

ation. In Conference on Emerging Networking Experiments and Technologies (CoNEXT), 2012. Cited on

[3, 59, 62, 72]

[104] Shuyuan Zhang, AbdulrahmanMahmoud, SharadMalik, and Sanjai Narain. Veri�cation and Synthesis of

Firewalls using SAT and QBF. IEEE International Conference on Network Protocols (ICNP), 2012. Cited

on [61, 71]

	List of Figures
	Introduction
	The Need for Delegated Network Management
	Software-Defined Networking
	Migrating to Software-Defined Networks
	Summary of Contributions

	Participatory Networking: An API for Application Control of SDNs
	The PANE Controller

	Interacting with PANE
	Requests
	Queries
	Hints

	The Two Challenges
	Privilege Delegation
	Conflict Resolution
	Semantics of HFT
	Compiling Policies
	Conflict-resolution Operators in PANE
	Strict vs Partial Fulfillment
	Compiler Complexity

	The PANE Controller
	PANE's Network Information Base
	Additional Features
	Fault Tolerance and Resilience

	Evaluation of Participatory Networking
	Application Usage
	Ekiga
	SSHGuard
	ZooKeeper
	Hadoop

	Implementation Practicality
	Related Work

	Exodus: Toward Automatic Migration of Enterprise Network Policies to SDNs
	Background: Cisco IOS
	Choosing a Target Language
	Flowlog

	From IOS to SDN
	Network Configuration
	Code Generation
	Prototyping the Network

	Evaluation of Exodus
	Feasibility
	Utility
	Compiler Validation

	Discussion of SDN Migration
	Language Limitations
	OpenFlow Shortcomings
	Lessons for SDN Language Designers
	Flowlog Deficiencies

	Architectural and Physical Tradeoffs
	The Route Ahead
	Related Work

	Conclusion
	Bringing PANE to Flowlog
	Limitations of the ``One Big Switch'' Abstraction
	Lessons from Building SDN Controllers

