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This thesis advances visualization design research by developing and evaluating new theoretical

knowledge and computational techniques, which target the rising complexity of data and growing

diversity of visualization users. To ground our research, we focus our study on common design limi-

tations that are found in cancer genomics, which is an exemplar of how research at-large is affected

by the rising ubiquity and democratization of visualization in analysis.

We first identify four cancer genomics task requirements for visual analysis through interviews and

evaluate whether the multiple visualizations in MAGI – a cancer genomics visualization tool – can

support such diversity. Second, we evaluate how simple classifiers trained on annotated mouse inter-

action logs can help designers understand how domain experts use visualizations. Third, we explore

the ways in which the size and perceptual grouping of data in visualization can affect visual search

performance and visual analysis tasks. Last, we discuss a novel tool for creating categorical color

palettes based on user-defined importances of discriminability and aesthetic preference, which can

be a common and difficult task in visualization design independent of application area.

These contributions may help mitigate visualization design barriers by providing guidelines and

techniques to help visualization creators avoid common pitfalls. For example, our evaluation of Col-

orgorical demonstrates that the tool can automatically generate color palettes based on user defined

balances of discriminability and preference, which are comparably discriminable and typically more

preferable compared to industry standards. Colorgorical thus provides an effective alternative to

making categorical palettes by hand, which can be time consuming and require design expertise.

While the contributions in this thesis are grounded in cancer genomics, our contributions are not

limited in application: Many may generalize to other domains, such as using domain expert inter-

action log analysis to better understand how visualization is used by different kinds of researchers

in the brain sciences. Given the visualization design research similarities between cancer genomics

and other domain expert centric applications like brain science, we conclude by hypothesizing how

our findings could be used to investigate open research areas.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Thesis Statement: We hypothesize that visualization design can be broadly empowered and im-

proved through the creation of computational design assistance tools based on new theoretical knowl-

edge of graphical perception and task requirements.

Visualization is a critical component of how humans understand and synthesize information from raw

data. Whether it is looking at galaxies light years away or at the results of human genome sequencing,

visualization is often the lens through which we make and communicate scientific discovery.

Historically, visualization researchers were the gatekeepers and curators for these lenses of dis-

covery, and could leverage years of expertise to provide scientists with effective tools. Now, creating

complex visualizations is no longer restricted to experts with years of tool creation experience, but

is instead open to anyone with enough skill to use Tableau or write a few lines of code thanks

to libraries like VegaLite [164]. Given the number of powerful visualization authoring tools and

prevalence of design inexpertise, it is likely that visualization creators may unintentionally create

ineffective or misleading graphics. Similarly, it has become harder to understand the requirements

of increasingly diverse tool user populations who may view and use the same visualization for a

multitude of purposes.

This dissertation is motivated by these tool design challenges, and provides new knowledge as

well as new techniques to help understand and improve the myriad design issues that are present in

1
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today’s visualization landscape. We ground our research by focusing on design limitations within

cancer genomics, which is an exemplar of the kinds of problems that stem from rising ubiquity of visu-

alization in research at-large (e.g., lack of formal design training). By doing so, we consider research

through the perspective of toolsmiths, which holds that each advancement in our understanding of

computer science and visualization should likewise benefit collaborators and tool users [18].

We actualized this research vision through interdisciplinary collaboration such that each of the

following chapters are products of partnership with experts from computational biology, vision sci-

ence, and human-computer interaction. Our interdisciplinary contributions specifically focus on two

complementary veins of visualization design research. First, we study how visualization can be

used for analysis over heterogeneous and multidimensional data across a variety of research exper-

tise. Grounding our work with an evaluation of a cancer genomics visualization tool called MAGI

(Chapter 2.3), we characterize cancer genomics task requirements that span a diversity of research

sub-specializations (Chapter 3) and then assess how automated interaction log analysis can help

tool designers infer how domain experts naturalistically use tools “in the wild” (Chapter 4). Second,

we consider how graphical perception limitations alter tool design effectiveness. We connect our

visualization task research to graphical perception limitations with a study of how various types

of visualization size can affect search performance and visualization task associations (Chapter 5).

Within this vein we then investigate how vision science principles can be applied in a way to au-

tomate categorical color palette design for information visualization (Chapter 6). Although these

two visualization design research contribution areas are mostly framed in terms of outcomes from

our study of MAGI, they are often equally applicable to other visualization tools irrespective of

application domain.

Our thesis contributions – encompassing theory, technique, and evaluation alike – provide tem-

plates and a foundation for how research into automated visualization design can continue into

open areas of visualization design research. In the conclusion, we overview several hypotheses about

how continued research in this space could help empower current design experts and lower design

personalization barriers to those who would normally have too little expertise (Chapter 7).
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1.2 Contributions and Thesis Organization

This thesis is organized into seven chapters including the introduction, background, conclusion, and

four chapters that pertain to our primary contributions. We introduce and summarize the contri-

butions for each of these four chapters below. Recall that MAGI is a cancer genomics visualization

tool fully described in Chapter 2.3.

Chapter 3: An evaluation of cancer genomics visual analysis with MAGI

In this chapter, we present results from an evaluation that tested to what degree MAGI, a cancer

genomics visual analysis tool, supports a range of cancer genomics research needs. Our evaluation

of MAGI is grounded on a foundational task requirements analysis derived from interviews with

cancer genomics researchers across a diversity of specializations and occupations. We then report

how MAGI supports both community-wide and researcher-specific task requirements using results

from three in-depth MAGI case studies. We also discuss how MAGI’s design helped participants gain

new research insights, and how we discovered several shortcoming that led to the continued iterative

design of MAGI. Using these findings and existing theoretical frameworks, we suggest that MAGI

mostly supported participants’ requirements in part because of its multiple-view-based design, which

shows many orientations of genomics data simultaneously. We also examine how these findings may

apply to other related genomics visualization tools through a design feature comparison We conclude

our study with a discussion of how our in-lab results generalize to real-world research settings by

examining interaction logs collected from online use of MAGI.

C.C. Gramazio, M.D.M. Leiserson, B.J. Raphael, D.H. Laidlaw. “An evaluation of cancer

genomics visual analysis with MAGI.” In review.
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Chapter 4: An Analysis of Visual Analysis:

Modeling the Interactive Visualization Tasks of Cancer Genomics Domain Experts

In this chapter, we show how mouse interaction log classification can help visualization toolsmiths

identify visual analysis tasks through an evaluation of MAGI. Our primary contribution is an evalu-

ation of twelve visual analysis task classifiers, which compares predictions to task inferences made by

pairs of genomics and visualization experts. Our evaluation uses common models that are accessible

to most visualization evaluators: k-nearest neighbors, linear support vector machines, and random

forests. By comparing classifier predictions to visual analysis task inferences made by experts, we

show that simple automated task classification can have up to 73% accuracy and can separate mean-

ingful logs from “junk” logs with up to 91% accuracy. Our second contribution is an exploration

of common MAGI interaction trends using the predictive classification results, which expands cur-

rent knowledge about naturalistic cancer genomics visualization tasks. Our third contribution is a

discussion of how automated task classification can inform iterative tool design. As a whole, these

contributions suggest that mouse interaction log analysis is a viable method for (1) evaluating task

requirements of client-side-focused tools, (2) allowing researchers to study experts on larger scales

than is typically possible with in-lab observation, and (3) highlighting potential tool evaluation bias.

C.C. Gramazio, J. Huang, D.H. Laidlaw. “An Analysis of Visual Analysis: Modeling the

Interactive Visualization Tasks of Cancer Genomics Domain Experts.” In review.

Chapter 5: The relation between visualization size, grouping, and user performance

In this chapter, we make the following contributions: (1) we describe how the grouping, quantity,

and size of visual marks affects search time based on the results from two experiments; (2) we report

how search performance relates to self-reported difficulty in finding the target for different display

types; and (3) we present design guidelines based on our findings to facilitate the design of effective

visualizations. Both Experiment 1 and 2 asked participants to search for a unique target in colored

visualizations to test how the grouping, quantity, and size of marks affects user performance. In

Experiment 1, the target square was embedded in a grid of squares and in Experiment 2 the target

was a point in a scatterplot. Search performance was faster when colors were spatially grouped

than when they were randomly arranged. The quantity of marks had little effect on search time for

grouped displays (“popout”), but increasing the quantity of marks slowed reaction time for random
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displays. Regardless of color layout (grouped vs. random), response times were slowest for the

smallest mark size and decreased as mark size increased to a point, after which response times

plateaued. In addition to these two experiments we also include potential application areas, as well

as results from a small NASA TLX cognitive workload experiment using a visualization from MAGI

where we report preliminary findings that size may affect how users infer how visualizations should

be used. We conclude with a list of design guidelines that focus on how to best create visualizations

based on grouping, quantity, and size of visual marks.

C.C. Gramazio, K.B. Schloss, D.H. Laidlaw. “The relation between visualization size, group-

ing, and user performance.” IEEE Transactions on Visualization and Computer Graphics

(Proceedings of Information Visualization), 2014.

Chapter 6: Colorgorical:

Creating discriminable and preferable color palettes for information visualization

In this chapter, we present an evaluation of Colorgorical, a web-based tool for creating discriminable

and aesthetically preferable categorical color palettes. The motivation for Colorgorical grew out of

MAGI development and the difficulty that is posed by visualizing large numbers of cancer datasets

that are expressed in MAGI’s visualizations through color. Colorgorical uses iterative semi-random

sampling to pick colors from CIELAB space based on user-defined discriminability and preference

importances. Colors are selected by assigning each a weighted sum score that applies the user-defined

importances to Perceptual Distance, Name Difference, Name Uniqueness, and Pair Preference scor-

ing functions, which compare a potential sample to already-picked palette colors. After, a color

is added to the palette by randomly sampling from the highest scoring palettes. Users can also

specify hue ranges or build off their own starting palettes. This procedure differs from previous

approaches that do not allow customization (e.g., pre-made ColorBrewer palettes [17]) or do not

consider visualization design constraints (e.g., ACE [124] and Adobe Color [132]). In a Palette Score

Evaluation, we verified that each scoring function measured different color information. Experiment

1 demonstrated that slider manipulation generates palettes that are consistent with the expected

balance of discriminability and aesthetic preference for 3-, 5-, and 8-color palettes, and also shows

that the number of colors may change the effectiveness of pair-based discriminability and preference

scores. For instance, if the Pair Preference slider were upweighted, users would judge the palettes
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as more preferable on average. Experiment 2 compared Colorgorical palettes to benchmark palettes

(ColorBrewer, Microsoft, Tableau, Random). Colorgorical palettes are as discriminable and are at

least as preferable or more preferable than the alternative palette sets. In sum, Colorgorical al-

lows users to make customized color palettes that are, on average, as effective as current industry

standards by balancing the importance of discriminability and aesthetic preference.

C.C. Gramazio, D.H. Laidlaw, K.B. Schloss. “Colorgorical: Creating discriminable and

preferable color palettes for information visualization.” IEEE Transactions on Visualization

and Computer Graphics (Proceedings of Information Visualization), 2016.

1.3 Aim

These four sets of contributions test whether applied visualization design theory can mitigate vi-

sualization design barriers. As such, the driving aim of this thesis is two-fold: (1) to expand our

present understanding of effective visualization design, and (2) to provide guidelines and techniques

that benefit visualization creators. Accordingly, as we discuss the theoretical implications of each

contribution in this thesis, we also consider how our findings could be applied into practice. To this

end, we conclude with a summary of both primary and secondary contributions, testable hypotheses

on how our work could be built upon in the future, as well as the summative thesis takeaways.



Chapter 2

Background and Significance

Here, we provide a foundation for the research contributions detailed in the following chapters.

Rather than provide a comprehensive survey of entire fields, this chapter’s purpose is to provide an

overview of concepts and definitions that are helpful for understanding the significance of our thesis

contributions. The first section defines what we mean by “visualization” and related concepts such as

“graphical perception.” The second section provides a high-level overview of cancer genomics, which

serves as a motivation for much of our visualization design research. The third section discusses

MAGI, a cancer genomics visualization tool, which also motivates much our thesis contributions.

The fourth section is a summary of color science topics that immediately relate to our chapters on

graphical perception.

2.1 Visualization

Visualization is the process of rendering data as graphical marks on a computer screen or in other

media such as print or as three-dimensional fabrications. It is an inherently interdisciplinary field

and incorporates methodologies and techniques from seemingly disparate areas. The focus of this

thesis is on visualization design research, which broadly studies how to improve visualization tool

usability. In contrast, other areas of visualization research might prioritize the discovery of faster

graph drawing algorithms, real-time rendering techniques, or new algorithms to support emerging

medical imaging technologies. This thesis approaches visualization design research in two related

sub-fields: graphical perception and task requirement analysis.

7
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Graphical perception research often relates to design by quantifying how visual differences can

lead to changes in data comprehension and task performance (e.g., visual search accuracy). In many

ways, it can be thought of as applied vision science. Topics can include perceptual evaluation of bar

chart vs. pie chart usefulness [25, 176], how to best style visualizations to convey uncertainty [54],

how the number of categories in a chart can affect visual search [60], and how animated transitions

can help improve viewers’ understanding of data [72].

In contrast to graphical perception’s focus on vision science, task requirement analysis focuses on

understanding how cognition relates to usable design. Task requirement analysis largely approaches

this problem by investigating the motivations and intent behind tool users’ behavior through ethnog-

raphy or other similar qualitative methodologies. For example, Brehmer et al. performed longitudi-

nal interviews and observations to characterize how visualization tools can best support investigative

journalists’ analysis workflows [15]. However, sometimes tasks are also evaluated through quantita-

tive methods, such as whether one type of visualization technique often causes biologists to make

more research “insights” (“Aha!” moments in analysis) [159].

The following chapters provide novel theoretical contributions to both graphical perception and

task requirements analysis sub-fields, and use established theory to build new computational tech-

niques that assist in visualization tool design.

2.2 Cancer Genomics

Although a detailed knowledge of cancer genomics is not strictly necessary to understand the research

outcomes of the following chapters, it may be helpful to have familiarity with commonly used

genomics terminology to understand our research motivation, evaluation design, and several of our

research contributions.

2.2.1 Genomics foundations

The backbone of cancer genomics is the genome – a string of A, C, G, and T nucleotides that contains

the information needed to create life. Parts of the genome describe how to make proteins, which

are the core building blocks of cells and are one source of what determines cell functionality. The

instruction-filled areas of the genome that describe how proteins are constructed from molecular

soup are called genes. Genetic mutations (hereafter referred to as mutations) are changes to a single
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or sequences of nucleotides in a gene. Cells decide what proteins to make through a process called

transcription. To perform transcription, a cell uses instruction sets called transcripts, which are in

turn created from the information stored in genes. Protein domains are areas on transcripts that

contain important protein information, such as what the 3D protein structure should look like, which

directly affects the protein’s purpose and functionality.

2.2.2 Cancer genomics

From a microbiology perspective, cancer is what happens when cellular growth runs out of control

and a tumor is the physiological region of cells that have grown out of control. Cancerous cell growth

is often caused by drastically increased cellular replication or longevity, both of which can lead to

unsustainable cell populations. One goal of cancer genomics research is to separate the mutations

that drive cancerous growth (driver mutations) from the vast majority of harmless mutations. As

such, cancer genomicists are interested in understanding genes because even simple mutations, such

as changing just one of millions of amino acids, can create malformed proteins that could eventually

lead to cancer. Although these single nucleotide variants (SNVs) are sometimes to blame for cancer

development, other times cancer development can be propagated by larger mutations that encompass

thousands of, or more, base pairs. For example, copy number aberrations (CNAs) cause entire regions

of genetic code to be deleted or amplified (i.e., copied) compared to SNVs, which only change a single

letter (e.g., C→ A). Mutations that reduce the functionality of a protein, or eliminate it entirely, are

called inactivating mutations. Conversely, activating mutations amplify protein functionality.

2.3 MAGI: visualization and collaborative annotation of ge-

nomic aberrations

MAGI is an online visualization tool that allows cancer genomics researchers to explore genetic

mutation data across various cancers [107]. MAGI’s primary functionality allows researchers to

visualize arbitrary sets of genes across a variety of publicly available cancer datasets. Once a query

is loaded by MAGI, it presents the user with five visualizations that show different types of mutation

information. An example MAGI query is shown in Figure 2.1.
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MAGI was originally developed to meet the research requirements of our immediate collabora-

tors. It was this original development that then led to our follow-up task requirements evaluation

(Chapter 3) and interaction log analysis (Chapter 4).

2.3.1 Details about the MAGI query page and its visualizations

The topmost visualization in MAGI’s query page is the aberration matrix, which shows genetic

mutations across different tissue samples from which genetic information was sequenced. Samples

typically refer to separate patients. Each cell of the matrix marks whether a particular sample (col-

umn) had a mutation in a queried gene (row), and color refers to the type of cancer the sample had.

By default, the samples are sorted to emphasize co-occurrence and exclusivity of genetic mutations

across samples, which can be important when interpreting the biological significance for a set of

genes. Co-occurring mutations are those that frequently occur together within a single sample and

are shown as vertical stripes. Exclusive mutations are those that are mutually exclusive across sam-

ples (i.e., only one mutation in a gene query is mutated in each sample) and are shown as “staircase”

patterns. Both co-occurrence stripes and exclusivity staircases are shown in Figure 2.1.

The next visualization is the heatmap which shows how common the products that each gene

(row) makes in each sample (column) (gene expression). Users can also upload other continuous

data such as methylation information to show instead.

The third visualization that MAGI shows for a query is the network view. Network nodes

represent each gene in a MAGI query, where redder nodes represent more frequently mutated genes.

Network edges mark whether the proteins that two genes (nodes) make are known to interact with

one another. For example, two proteins might interact to help a cell decide when to replicate and, if

one or both of the proteins’ genes are malformed from mutations, researchers might form a prediction

that the mutation(s) play a role in the development of cancer.

Next, MAGI renders a transcript chart, which shows the physical location of single nucleotide

variant mutations (SNVs) on genomic transcripts. In addition to SNVs, the transcript chart also

shows protein domains as well as transcript nucleotides if the user zooms in far enough. As in the

aberration matrix, color corresponds to cancer type. The different types of glyphs marking SNVs

correspond to particular types of SNV mutations. Mutations that are shown below the transcript

bar are mutations that are known to reduce or eliminate the functionality of proteins (inactivating

mutations). Users can navigate between different transcripts associated with a MAGI query using a
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drop-down menu.

The last visualization included in MAGI’s query view is the copy number aberration browser,

which displays larger amplification or deletion mutations that affect many nucleotides (opposed to

SNVs, which only affect single nucleotides). As in the transcript chart, users can navigate between

different genes using a drop-down menu. As a user toggles the navigation menu, the copy number

aberration browser will display all copy number mutations that affect the part of the genome where

a given gene is located. For convenience, the gene encoding region is highlighted with a red vertical

bar that bisects each copy number aberration.

2.3.2 Other features of MAGI

Researchers can also use MAGI for analytical tasks other than visually exploring data. Using the

datasets page, users can look at summary information about a particular cancer such as mutation

frequency information in each dataset. On the MAGI annotation page, users can browse, add to,

or vote on MAGI’s annotation database to explore published information about how genes may be

implicated in cancer.

2.4 Color as it relates to visualization

Color is integral to visualization design research given that it is one of the most common ways to

encode information graphically, and there are many ways it can be manipulated to affect tool use.

For example, distinct colors tend to “pop out” in images [193] (e.g., a red dot in a field of light gray

dots), which can greatly improve visual search performance [48]. However, color can also be easily

misused, such as accidentally picking non-discriminable colors [179] or not considering whether there

is sufficient contrast between a color palette and a visualization’s background.

Much of the difficulty surrounding color design stems from the fact that computers and monitors

encode color differently than how humans perceive it: Monitors display color using red, green, and

blue light, and digital color is most often defined using RGB color space. Although human eyes

have cone cells that roughly correspond to those three colors, human color perception ultimately

relies on different color scales. This process is called opponent color processing, where the visual

cortex transforms cone responses into lightness (e.g., black to white), redness-to-greenness, and

blueness-to-yellowness scales [80].
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Figure 2.1: Screenshots of the MAGI launch page (left) and the query-view page (right). On the
launch page, users define what genes they want to query and what cancers they want to look at.
On the query view, five visualizations show genetic mutations across the types of cancers selected
by the user. The visualizations are ordered so that the aberration matrix is on the top followed
by the heatmap. The network view and transcript chart are co-located in the middle and the copy
number browser is on the bottom. A control panel floats to the right of the visualizations on its own
track, which allows the user to perform various actions such as showing/hiding datasets. Detailed
definitions of MAGI’s components are in Section 2.3.1.
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Because visualization color effectiveness ultimately relies on perceptual accuracy, we typically use

a perceptually modeled color space instead of RGB color space. This perceptual color space is called

CIELAB, and is defined by scales similar to those that the human brain uses: L∗ (lightness: black

= 0, white = 100), a∗ (redness-to-greenness), and b∗ (blueness-to-yellowness). Sometimes CIELAB

is modeled in CIELCh with polar coordinates: lightness remains the same (L∗), whereas a∗ and b∗

are translated into chroma (C, colorfulness) and h° (hue angle).

The usefulness of perceptual color spaces such as CIELAB stems from the fact that they approx-

imate perceptual uniformity. Color spaces that are fully uniform are shaped such that all colors that

are equally as distant in color space should also be perceived by humans as equally discriminable.

(Euclidean distance in color space is typically referred to as ∆E or DE.) It is important to note that

CIELAB is an approximation of uniformity, and while CIELAB is better to use than completely

non-uniform RGB, we discuss how approximation error may effect visualization design in Chapter 6.

The difference between perceptually-modeled CIELAB and non-uniform RGB color spaces is

shown in Figure 2.2, which renders all displayable colors in the sRGB color gamut in both spaces.

One practical implication for design between the two is that color interpolation will result in very

different color shifts (Figure 2.3).
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Figure 2.2: The RGB gamut rendered in CIELAB color space characterized with a D65 white point
(left) alongside the gamut rendered in RGB space with the same perspective (right).

White to Black
rgb(255,255,255) to rgb(0,0,0)

White to Blue
rgb(255,255,255) to rgb(0,0,255)

Red to Blue
rgb(255,0,0) to rgb(0,0,255)

Deep Sky Blue to Dark Orange
rgb(0,191,255) to rgb(255,140,0)

CIELAB

RGB

CIELAB

RGB

Figure 2.3: Linear interpolations between two colors in CIELAB (top) color space compared to RGB
(bottom). Note that the color transition is different even for white-to-black achromatic interpolation.



Chapter 3

An evaluation of cancer genomics

visual analysis with MAGI

In this chapter, we present common visual analysis task requirements of the cancer genomics com-

munity at-large and evaluate whether MAGI [107], a multiple-view visual analysis tool, supports

these requirements. Our study is motivated by the visual analysis design challenges presented by

the multidisciplinary nature of cancer research, where researchers with different specializations or

backgrounds may use the same visualizations for different purposes. Consequently, cancer genomics

visual analysis tools often need to support a range of information foraging and sensemaking strate-

gies. For example, a pharmaceutical industry researcher and a basic science researcher might use the

same data for very different purposes. This difficulty is further compounded because many of the

visual analysis community’s task requirement analyses were performed before the advent of next-gen

sequencing [131, 160], which caused a paradigm-shift for genomics analysis due to the lowered cost

and increased amount of sequencing data [45].

Cancer genomics background: Cancer is a disease of mutations, from which cell growth

becomes unsustainable, often because of “driver” mutations that disrupt critical cellular regulation

functionality (e.g., growth-rate [198]). Comparative analysis tools like MAGI [107] enable researchers

to compare mutations across different types of mutations and cancers to understand cancer’s genomic

underpinnings. For example, MAGI allows researchers to study genetic mutation patterns across

patients, which can indicate the biological significance of particular genetic mutations (Fig. 3.2) [197].

15
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MAGI design+development

via interdisciplinary collaboration

Cancer genomics visualization

task requirement analysis
MAGI design study

Exploratory analysis of

MAGI interaction logs

Nature Methods Present study results

Figure 3.1: A timeline to show the division between initial MAGI development and our present
design study contributions.

Contributions: Our primary contribution is a MAGI design study with three cancer researchers,

which tested if, and how, MAGI supports cancer genomics visual analysis needs. The study was de-

signed based on our second contribution: a task requirements analysis that resulted in the discovery

of four tool-agnostic visual analysis tasks. We synthesized these requirements through interviews

with cancer genomics researchers from a variety of specializations (e.g., pharmaceutical industry

vs. basic science research) and occupations (e.g., investigator vs. staff programmer). Our third

contribution is an exploratory analysis of MAGI interaction logs, which suggests that our case study

findings generalize to ecological settings.

Outline: We begin with a brief background of MAGI (Sec. 3.1), which grew organically from

a collaboration with cancer genomics researchers (for more information please see Chapter 2.3 or

Fig. 3.1). In the related work we highlight potential broader impact of our present study by com-

paring the design similarities between MAGI and other genomics visual analysis tools (Sec. 6.1). We

also draw on related visual analysis task theory to hypothesize that MAGI’s multiple-view-based de-

sign would support a variety of tasks and information landscape orientations (Sec. 6.1). We use the

remainder of the paper to present our MAGI design study contributions (see Fig. 3.1 for a timeline).

We first present results from our tool-agnostic task requirements analysis, then provide observations

from our MAGI design study, and conclude with an exploratory interaction log analysis.

3.1 MAGI: cancer genomics visual analysis

MAGI is a web-based cancer genomics visual analysis tool, designed and developed through in-

terdisciplinary collaboration, that allows users to query sets of genes and explore various genetic

information through five views [107]. Our prior Nature Methods work was a short methods paper

detailing MAGI’s architecture, whereas our present work is a design study of MAGI. One of the

formative design objectives of MAGI was to support comparative analysis tasks such as the example

in Figure 3.2.

For more information on MAGI, please consult Chapter 2.3.
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Figure 3.2: Aberration matrices showing gene set mutation mutual exclusivity (top; cancer: GBM)
and co-occurrence (bottom; cancer: LAML). Mutated genes that are mutually exclusive do not often
appear with each other in a single patient. Co-occurrence is opposite: genes in the same set are
often found together. These patterns are one indicator that a set of genes could be biologically
significant. Rows are genes and columns are patients in the above matrix, with filled matrix-cells
showing mutations. Looking for these patterns is a common comparative visual analysis task for
many cancer researchers.

3.2 Related Work

Below we (1) identify potential relevancy that our MAGI evaluation might have to other genomics

analysis tools, (2) motivate our prediction that MAGI will support task requirements based on

previous sensemaking frameworks, and (3) hypothesize that MAGI’s multiple views will support a

variety of tasks.

3.2.1 Evaluation contribution relevancy to other visual analysis tools

Genomics is a rapidly growing field, and a number of surveys review the wide array of visual analysis

tools used to make sense of sequencing data [39, 136, 141, 168].

While our present evaluation specifically concerns MAGI, our findings may also apply to the

many other multiple-view-based visual analysis tools. One example is the Integrative Genomics

Viewer, which leverages multiple views to integrate heterogeneous data [151]. Another example is

the many tools that are part of the Caleydo Project [181], which rely on similar multiple-view-based

designs as MAGI to support analysis. For instance, Lex et al. show that coordinated multiple views

help researchers navigate complex multidimensional genomics data [109]. Although our present work

does not compare multiple- and single-view interfaces, results from our study establish a foundation

on which future comparative evaluations could be built.

We show how our contributions may map onto similar tools with a design comparison in Table 3.1.

Three columns contain information about aberration (mutation) matrix, heatmap, and network

visualization support, which are taken from Schroeder et al.’s survey of multidimensional cancer
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Tool Name Indep
endent multip

le
view

s*

Sim
ulta

neous,
mult.

data
types*

Transcr
ipt Coding Region*

Heatm
aps

Mutatio
n matri

ces

Netw
orks

MAGI* × × × × × ×

cBio × × × × ×

CircleMap × ×

Circos ×

Caleydo
StratomeX

× × ×

Cytoscape × × ×

Genomica × × ×

GiTools × × ×

IGV ×

IntOGen × × ×

NAViGaTOR ×

Regulome Ex-
plorer

× ×

Savant Genome
Browser

×

CGWB × ×

UCSC Can-
cer Genomics
Browser

× ×

Table 3.1: A comparison of MAGI to other multidimensional cancer genomics visualization tools.
The heatmap, mutation matrices, and networks columns are taken from Schroeder et al.’s cancer
genomics visualization survey [168]. Fields marked with an asterisk (*) are newly added in our
present comparisons to MAGI. “independent multiple views” is a subset of “simultaneous, multiple
data types,” marking only tools that render different data types across separate viewports. For
example, Circos can visualize multiple data types, but as concentric circles in a single figure (i.e.,
viewport).
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genomics visualization tools [168]. We also include new information about MAGI as well as three

new columns. One column marks whether tools support transcript coding region visualization.

Another marks whether tools support simultaneous visualization of multiple data types. The last,

“independent multiple views,” is a subset of “simultaneous, multiple data types” and only marks

tools that separate the visualization of different data types across viewports. Our multiple-view

distinction is motivated by previous findings that showed how small visualization differences, such

as circular vs. linear layouts, can lead to different sensemaking procedures and insights [130]. Based

on these findings, we thought it beneficial to mark which tools had multiple-view layouts most similar

to MAGI. For example, Circos simultaneously visualizes different types of data as concentric circles,

but within the same viewport, and could be considered a single figure. In contrast, MAGI renders

linked views across five distinct viewports, which could be viewed as separate figures. The many

design similarities between MAGI and the survey’s tools suggests that findings from our present

work may be applicable to the broader collection of multidimensional cancer visualization tools.

3.2.2 Sensemaking models suggest that MAGI’s design will support task

requirements

O’Day et al. illustrated how differences in sensemaking and information search create many oppor-

tunities for tools research by their qualitative study of researchers who regularly used microarray

sequencing data [131]. They characterized sequencing-based analysis into two key stages: (1) test-

ing statistical significance and (2) identifying biological significance. While automated statistical

tests and predictive analysis may provide multiple hypotheses, it is ultimately up to researchers

to explore statistically significant findings and to filter biologically significant leads. Saraiya et al.

also observed the same analytical distinctions through an insight-based evaluation with genomics

researchers [161]. Separately, Thébault et al. have shown the advantage that visualization gives in

targeting biological significance [189]. MAGI, and our present evaluation, focus on the support of

biological significance testing.

Streit et al. follows this separation of analysis along with tool-use observations to define a

sensemaking model specifically for biological visualization tools that are designed to compare het-

erogeneous data [182]. Their model emphasizes how analytical performance can be improved by

using different views to support different information landscape orientations and different analytical
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paths The design of MAGI is consistent with their findings – each MAGI view was designed to

support different research foci and analytical paths – and supports our hypothesis that MAGI would

support cancer genomics task requirements.

3.2.3 Multiple views may support multiple tasks

Many heterogeneous and comparative genomics analyses are best supported by matching analytical

paths to specific data views [182]. Following this logic, tools with multiple views may support

a wider range of task requirements and strategies for information foraging and sensemaking than

single-view tools. Past task requirements analyses have suggested that “designing only for the

‘average user’ is not realistic” and that coordinated multiple views may not always be useful for all

research procedures [209]. However, others have shown that comparative-analysis-support benefits

from coordinated multiple views [109]. Similarly, Saraiya et al. suggest that coordinated multiple

views may help information landscape orientation in biology-related visual analysis tools [161].

In fact, the potential link between comparative-analysis task affordance and multiple views is

a common research theme across domain application areas. Roberts outlined a prospectus that

surveyed several ways in which coordinated multiple views could improve interactive visual analysis

of complex and varied data [150]. Heer and Agrawala hypothesized that coordinated multiple views

might aid in serendipitous discovery [69]. Liu and Stasko speculated that different configurations of

coordinated views may afford or constrain different analytical processes [113]. Finally, Gehlenborg

and Wong provide design guidelines that emphasize how multiple-view techniques like small multiples

can improve multivariate data visualization [38]. From this collection of research, we predicted that

MAGI would support cancer genomics task requirements.

3.3 Preliminary Interviews and Task Requirements

We performed a task requirements analysis through a series of interviews to identify cancer re-

searchers’ typical comparative analysis procedures when using visualization tools. Given the diversity

of cancer genomics, we interviewed biologists, computer scientists, and multidisciplinary researchers

to understand the breadth of requirements necessary to support the cancer genomics community at

large. Participants’ research expertise was similarly diverse, covering topics such as understanding
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the heterogeneity of mutations in tumors, algorithm development to identify mutations that insti-

gate lung cancer, and profiling differences across tumors to define more precise subtypes (e.g., “brain

cancer” can be broken down into subtypes such as glioblastoma and anaplastic astrocytoma). Our

collection of data was guided by three goals:

1. Identify the types of visualizations used to explore data

2. Compile a list of commonly used visualization tools

3. Understand how visualization is frequently used in analysis

Our intent was to gather information that could generalize to all cancer genomics visual analysis

tools, not just MAGI.

3.3.1 Methods

Participants

Our interview participants came from three sources: an annual NIH TCGA meeting, a group in-

terview at a genomics research center, and teleconferencing interviews. In all, we interviewed over

twenty cancer genomics researchers covering a breadth of topics in biology, bioinformatics, and com-

puter science. Participants included principal investigators, consultants, postdoctoral researchers,

PhD students, and staff programmers.

Procedure

We asked questions based on the following lines of inquiry:

Q1 What does your overall analysis process look like?

Q2 What tasks are time consuming and time wasting?

Q3 What visualizations do you use in your analysis?

Q4 What are your short- and long-term research goals?

Interview formats differed slightly across the three types of interviews based on situation-specific

limitations: the TCGA interviews were short and took place during conference breaks; the genomics
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center interviews took place in a group-format, hour-long interview; and the teleconferencing inter-

views each took between 30 and 60 minutes. Data were categorized by hand based on the three

prior goals and by the four question types.

3.3.2 Interview results

Research goals and analysis process

Researchers’ short-term goals typically focused on functional understanding of cancer, whereas long-

term goals typically focused on the transfer of functional, biological knowledge into the clinical

domain.

Interviewees reported that achieving these goals often required them to spend most of their

time visually comparing their own data to related work. For short-term goals, researchers typically

programmed their own wrangling and charting pipelines to visualize their results. In contrast, it was

only after establishing a theoretical foundation for more specific hypotheses in late-stage research

that researchers moved to pre-made visual analysis tools.

We also found differences in visual analysis procedure across research expertise. Computer sci-

entists primarily used visual analysis results to verify the strength of the tools they built, since their

focus was on toolsmithing [18] rather than finding novel insight about cancer genomics. In contrast,

biologists often used visual analysis tools to better understand sequencing results. Many biologists

reported using statistical languages like R to perform visual analysis, though they more commonly

relied on visual analysis tools like cBioPortal to understand the biological context of their findings.

Both bioinformatician and computational biologist procedures involved using visual analysis to find

novel biological contributions and also to evaluate the quality of scripts or tools they had written.

Because of their multidisciplinary roles, bioinformaticians and computational biologists often had

the most complex analysis pipelines, usually written as a series of bash scripts piping together many

charts from predictive algorithms on multiple cancer datasets with prebuilt visual analysis tools to

compare their results against existing findings.

Common tasks that were difficult or frustrating

Data wrangling and reimplementation were cited as two of the most difficult and frustrating tasks

that researchers commonly performed. One reason why this overhead was so problematic is cancer
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research’s fast growth: using a new dataset often requires data conversion and cleaning alongside

writing new visualization scripts. As a result, researchers’ work environments were often disorga-

nized collections of data pipelining, quickly reimplemented visualization code, and constellations of

statistical or visual analysis tools.

A related issue was that many premade visual analysis tools were too narrow in domain focus

or too hard to integrate with the format of data to which researchers had access. This rigidity

often caused researchers to instead write their own customized charting scripts and led to the afore-

mentioned data pipelining complexity. While curated data portals reduced the amount of data

processing, researchers still often had first to wrangle large amounts of data that were cleaned in

different ways. Bioinformatics and computational biology researchers were strongest in their com-

plaints, perhaps in part because their analysis procedures were often the most multidisciplinary.

Nearly all interviewees complained about a lack of interactivity and data migration between visual

analysis tools. Although researchers’ institutions sometimes had tools to support data wrangling

and preliminary data visualization, researchers were often forced to browse hundreds of handmade

charts because they either did not want or could not use premade interactive visual analysis tools.

One reason for this was that researchers often found pre-made visual analysis tools poorly designed

to support their research questions, since the tools were often built with a different set of specific

requirements in mind. Installation complexity was also a challenge: staff programmers reported

that software often could not be deployed internally, or, if it could, deployment proved to be too

complicated to complete. A related issue was difficulties moving data from the intranet of research

centers to remotely hosted tools because of size or because of confidentiality.

Another task researchers found difficult was visualization design. Most researchers were con-

cerned about the clarity of their charts, and many reported talking to resident data-visualization

experts for charting advice.

Frequently-used visualizations & visual analysis tools for testing biological significance

Researchers often cited visualization as an indispensable part of their workflow because what is

of biological significance is often not the same as statistical significance. The difference between

significances suggests that visualization plays a critical role in assessing the biological impact of

automated statistical analyses.

While researchers used a mix of visualizations to test biological significance, we found that most
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Figure 3.3: A diagram of the four task requirements we identified through interviews that pertain to
finding biological significance through visualization. To the left we include other important aspects
of cancer genomics research, but that fall out of the scope of our present inquiry.

relied primarily on basic charts (e.g., scatterplots). This may be related to our observation that most

researchers relied on handmade analysis pipelines in much of their work. While many researchers

created biology-specific visualizations – like signaling pathway diagrams or Circos plots [100] – these

specialized visualizations were often too hard or too complicated to make for day-to-day-research.

The reliance on basic charts like scatterplots possibly occurs because visualization novices are likely

to find them easier to create.

Although basic charts could satisfy researchers’ analytical requirements, most said that they often

had difficulty spotting patterns between images and that parsing results for biological significance

was both mentally demanding and time consuming. This largely stems from our previous observation

that researchers often had to compare and filter up to hundreds of handmade charts in file system

windows. Researchers also used visualization tools like the Integrative Genome Viewer, cBioPortal,

and UCSC’s Genome Browser [92, 151, 168]; however, these tools were mostly used for testing specific

hypotheses that researchers had made with their handmade visualizations. Some researchers also

used design programs like Adobe Illustrator to touch up figures or create illustrations from scratch.

3.3.3 Discussion of requirements analysis

Identification of task requirements

We identified four common comparative visual analysis tasks guided by Brehmer et al.’s task typol-

ogy [14]. Accordingly, we synthesized each task by aggregating and generalizing interviewer responses

based on information about why each task was important, and what each task contributed to the

larger scope of cancer genomics research. Our task requirement analysis focused on comparative

analysis tasks related to finding biological significance across many different datasets and types of

data. Therefore, what follows is not an exhaustive list of all possible cancer genomics research tasks,

but rather a list of tasks found in our interviews that were relevant to comparative data visual
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analysis.

Integrate new visual analysis tools and data. Integration was frequently required for

cancer genomics visual analysis because researchers first needed to produce refined sequencing data

or results from statistical tests to visualize later or to use later in exploring other data. This

task covers the majority of data-wrangling-related operations, such as constructing pipelines and

cleaning data. But it also includes other operations such as implementing charting scripts and

software deployment. The widespread difficulty of pipelining and integrating heterogeneous data

replicates the results of many other previous biology visual analysis evaluations [22, 161, 182].

Establish theoretical foundation and hypotheses. While establishing theoretical founda-

tions to understand their data, researchers might generate hypotheses, assemble related work, and

look at specific trends in charts of statistical tests. In one example of this task, researchers reported

looking through up to hundreds of charts generated through their pipeline to gain an understanding

of the information landscape. Researchers might look up specific genes they specialize in, but might

also browse through the entire catalog of results to shoebox points of interest to explore further. The

output from this task is typically a collection of testable hypotheses about biological significance.

Test hypotheses and explore associations between data. Researchers typically tested hy-

potheses by looking for common associations across data. For some this meant visually comparing

genetic mutations across different variants of cancer. For others, this task meant identifying ge-

netic mutation outliers, such as a specific mutation that might be associated with higher morbidity

rates. The outcome of this stage is typically an assessment of biological significance for a particular

hypothesis.

Communicate results to others. The final task we identified was using visualization to com-

municate biologically significant results to others. We include this step because some researchers

noted that they had to remake visualizations before sharing their results with others because default

visualization output was often too crude. For some, this meant converting basic charts (e.g., scat-

terplots) into biology-specific visualizations; for others, it meant refining charts with design software

(e.g., Adobe Illustrator).
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Typical cancer genomics research workflows

Our results provide further support for O’Day et al.’s separation of statistical and biological signifi-

cance [131] (Sec. 3.2.2): Researchers typically used predictive analysis tools (i.e., statistical signifi-

cance) to filter large data before testing biological significance through visual exploration (the focus

of our analysis).

We also found that while biologists are not first and foremost programmers, it is increasingly

more common for biology researchers to adopt programming-based analysis and charting into their

workflow to aid in comparative analysis. The increased prevalence of programming across research

specializations is reflective not just of genomics, but also of many other analytics-heavy domains [89].

Thus, cancer genomics tools might often need to support research generalists who flexibly draw on

skills from multiple areas. This underscores the desirability of comparative analysis tools that

support a variety of data views and analysis tasks so as to support research generalists.

3.4 In-depth case studies

The purpose of these case studies was to to evaluate whether MAGI supported the previously

identified cancer genomics visual analysis tasks requirements (Sec. 3.3.3). Each case study consisted

of a brief interview about their research process followed by a MAGI-use observation. We focused

our MAGI observations on hypothesis-generation and hypothesis-testing tasks because participants’

institutional policies prevented us from observing participants using private data; however, our

interview responses cover all four task requirements.

Our first case study participant (CS1) was a drug investigator at a major oncology pharmaceu-

tical company who focused on identifying viable target sites for drug treatments. Our second case

study participant (CS2), a postdoctoral researcher at a major biomedical research institute, focused

on understanding the biological reasons how and why a specific type of mutation (copy-number aber-

ration) were associated with certain cancers. Both CS1 and CS2 had graduated from biology-centric

PhD programs. Our third case study participant (CS3) was a PhD student in a computational biol-

ogy program and focused on developing algorithms to identify copy-number aberrations that might

be significantly linked with cancer.
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CS1: Pharmaceutical in-
vestigator

CS2: Biology postdoc-
toral researcher

CS3: Bioinformatics
PhD student

Education PhD, Biomedical Sci-
ences

PhD, Molecular and Cell
Biology

PhD candidate, Bioinfor-
matics

Focus Clinical/Pharmaceutical Biological mechanisms of
cancer

Computational analysis
of cancer

% of week
spent pro-
gramming

33% 30-50% > 60%

Programming
languages

Perl, Python, R Python, R C, Python

Visualization
tools/libraries

GeneGo, OmicsSoft,
Spotfire

Python, R (ggplot) D3, Excel, Python

% of time
using

self-written
analysis

< 5% 75% < 10%

Table 3.2: Background information collected from case study participants.

3.4.1 Methodology

Our methodology was based on contextual design, modified to support time-limited, remote obser-

vations [201]. The main difference in our approach was that we provided a high-level, open-ended

guiding “task” to jump-start observation sessions, as in previous genomics research observation [131].

3.4.2 Methods

Participants

Participants were drawn from a pool of researchers who had basic familiarity with MAGI and were

selected to maximize coverage of cancer expertise, so that we could consider perspectives from basic,

clinical and industry research perspectives. The first two participants participated remotely and the

third participant was co-located.

Design & Procedure

Before scheduling observations we first e-mailed a background questionnaire to participants asking

about their expertise (e.g., clinical, computational research) and research focus. Each participant

was also asked to think of a few gene sets to use in the case study that were interesting in their
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current research.

The case study itself consisted of (1) an interview and (2) a MAGI observation. The interview

questions were:

1. What percent of your work hours is spent programming?

2. What programming languages do you use?

3. What visual analysis software do you use in your research?

4. How do you plot/visualize your data?

5. What percent of your time spent on analysis do you use tools made by yourself?

6. What are the most time-consuming parts of your analysis?

7. What parts of your analysis do you find yourself having to do the most often?

8. What parts of analysis are the biggest wastes of time?

After the interview, participants were asked to query gene sets relevant to their research using

the TCGA data hosted on MAGI. To retain ecological validity, we verified that participants regularly

used TCGA data. The observation’s purpose was described as an opportunity to understand how

researchers used MAGI to “generate hypotheses about the importance of gene sets.” Participants

were asked to self-annotate their analytical process by talking out loud.

3.4.3 Results

Pre-observation interview results

Participant’s education, research focus, programming languages, visual analysis tools, and visual

analysis time allocation are shown in Table 3.2 (Questions 1-5). Below we describe participants’

visual analysis tool use (Sec. 3.4.3, Question 6) and summarize their current analysis procedure

(Sec. 3.4.3, Question 7). We also include a collection of analysis limitations and usability issues

(Sec. 3.4.3, Question 8).

What visual analysis software do you use in your research? When participants were asked

what visual analysis tools they use in place of MAGI, they responded:
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CS1 Mix of their in-house software’s built-in visualizations

CS2 Histograms via R/Python

CS3 Scatterplots via Excel/Python

CS1 reported that their analysis relied almost entirely on prebuilt tools such as OmicSoft and

GeneGo, as their role as investigator minimized their programming responsibilities. They empha-

sized reliance on prebuilt packages in R or Python such as scikit-learn when scripting, and on

stencil code written in earlier research projects. This dependency explains why CS1 reported using

self-written analysis code only 5% of the time, despite spending 33% of their week programming

(Table 3.2).

CS2 reported that their research process relied nearly entirely on their own homemade, pieced-

together assembly of analysis scripts. This pipeline required integrating existing predictive analysis

tools with their own analysis, charting, and data wrangling code written in R and Python. They

did not report a reliance on commercial analysis software packages, like those used by CS1.

CS3 reported a similar strategy to CS2.

Current visual analysis procedure CS1 stated that a large portion of their analysis procedure

involved visually browsing and comparing statistical results from predictive analysis to find impor-

tant new information or hypotheses. They reported that this procedure was often protracted due

to the volume of output generated by their predictive algorithms and because the information they

often search for cannot be found through statistical tests due to low sample sizes.

CS1’s analysis process started by applying predictive analysis techniques on a mixture of in-

house and public datasets to create a general body of results. These results were then filtered by

scripts and then by hand using background knowledge and visualizations to identify useful data.

The resultant data was continually processed until CS1 was left with multiple sets of genes they

considered interesting for hypotheses about biological significance. After acquiring gene sets, CS1

next looked at a chain of visualizations to single out mutation information that might indicate that

a current drug compound in the company’s toolbox might work in a novel application. More rarely,

CS1 said that this process occasionally shed light on new drug treatment opportunities. These

discoveries would be filed away for future discussion with teammates and with the company more

broadly, or used for new gene set queries.
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CS2 detailed an analysis procedure similar to that described by CS1: much of their time was spent

by stitching predictive analysis results together alongside clinical data before starting visual explo-

ration for biological significance. Unlike CS1, CS2 looked through static images of basic charts (e.g.,

scatterplots) they created with their own scripts rather than commercial, interactive visualization

tools, which rendered data as biology-specific visualizations. To sift through information they would

typically go through the entire collection of their catalogue, open up two or more charts concerning

different slices of data in an image viewer, and take notes on patterns in A/B comparisons.

CS3’s procedure differed from those of both CS1 and CS2 because, while they were interested in

cancer genomics, they were first and foremost a tool researcher. Accordingly, the aim of CS3’s visual

analysis procedure was to evaluate whether results from their predictive analysis tool could help

researchers find biological significance. CS3 recently started to incorporate interactive visualizations

that they had written themselves using D3 into their workflow; however, in the past they had used

Microsoft Excel to parse and visualize data.

Current limitations and self-reported usability issues CS1 reported that their largest time-

waste was hypothesis foraging for a “short list of useful hypotheses” by visually foraging through

genetic mutation data to follow up statistically significant patterns. They also stated that data

wrangling was one of the most painful tasks they regularly needed to perform as part of their

analysis, alongside integrating heterogeneous data and tools.

CS2 also reported frustration in spending much of their time piecing together different predictive

algorithms together alongside existing datasets, despite their differing procedure. While CS2 did

not complain about having to write their own visualization code and felt they had a “good enough”

solution, they did comment that there was room for improvement in their process. CS2 stated that

the largest barrier to using interactive tools, opposed to writing their own visualization code, was

piping data. They said that flexible data importing, like in MAGI, would make them more likely to

try out new tools due to lowered startup cost.

Conversely, CS3 was happy to have moved to D3 from Excel, but was dissatisfied with the

amount of time visualization programming took. Like CS1 and CS2, CS3 also complained that data

wrangling and hypothesis foraging took up a large portion of their time.

MAGI tool-use observations
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CS1: Pharmaceutical investigator During the MAGI observation session, CS1 queried three

different sets of genes. Most hypothesis testing and data exploration involved comparisons between

the aberration matrix and a second view with heavy reliance on linked interactions. For each gene set

query, CS1 always used the aberration matrix first because a large amount of their research questions

depended on knowing whether genetic mutations co-occur within a given sample (i.e., patient) or

whether genetic mutations are mutually exclusive across samples1. If CS1 found an interesting

pattern, MAGI’s other visualizations were then used to add further context. For instance, CS1

mentioned that the transcript annotation view was useful for determining whether an existing drug

compound in their company’s arsenal might target a certain mutation.

CS1 said that the largest improvement MAGI provided compared to the commercial visual anal-

ysis tools they already used was the ability to save vector-formatted visualizations. Although this

is a simple feature, they said that they often had to remake their results in Adobe Illustrator when

giving research presentations because the tools they typically used did not export in vector format.

As a whole, CS1 remarked that MAGI performed as well as the set of commercial tools they

used for their job, which they enjoyed using. CS1 also noted that both the tools they used for

their job and MAGI made noticeable improvements in their work compared to the homemade, static

visualization scripts they used while a graduate student and postdoctoral researcher.

CS2: Biology postdoctoral researcher In CS2’s observation they queried genes that they had

identified earlier in the day as interesting and had not yet analyzed. The first visualization CS2 first

consulted the aberration matrix for an overview of the data, and focused only on a subset of mutation

types based on CS2’s research focus on copy number aberrations. To parse the aberration matrix

better, CS2 hid all other visualizations except the copy number browser (which would otherwise

only be visible through constant scrolling back-and-forth) and rapidly went back and forth between

the two visualizations to isolate interesting cases of co-occurring and exclusive mutations. CS2 then

reenabled the hidden visualizations to contextualize their collection of interesting mutations. CS2

finished their analysis and added several functional discoveries by using the transcript annotation

and MAGI’s built-in tooltips that display additional mutation information. Near the end of the

observation, CS2 found a potential breakthrough on a problem they had been stuck on for a week

by using MAGI’s network view, which showed data in a representation not typically included in

1Co-occurrence and exclusivity patterns are one approximation of whether or not a gene is implicated in the
development of cancer.
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their normal workflow.

Afterwards, CS2, who still relied heavily on static visualizations for analysis, said that MAGI

felt less taxing and felt faster to use when forming and testing hypotheses.

CS3: Bioinformatics PhD student CS3’s use of MAGI resembled CS2’s, perhaps in part

because CS3 built tools used in one of CS2’s research areas (copy-number analysis). Throughout

the observation, CS3 iterated through research questions and lines of inquiry faster than CS1 or CS2.

While CS1 and CS2 were deliberate in their approach, sticking with one or two visualizations at a

time, CS3 quickly cycled through many of the visualizations concurrently. Most of CS3’s analysis

hinged on observations made using the copy number browser rather than the aberration matrix.

Their fast, iterative workflow using MAGI’s multiple views was broken by pauses when they checked

the copy-number browser for closer examination. One frustration CS3 experienced was the inability

to refresh gene queries from the analysis page itself. Because they made constant changes to the

gene set they looked at, they often had to return to the query page, enter a new query, and then

wait for the results page to load. Like CS2, CS3 also felt that using MAGI was less taxing then

traditional static chart analysis.

3.4.4 Discussion

Below, we first discuss the interviews to compare our case study participants’ individual, tool-

agnostic task requirements to our earlier requirement findings. Then, we discuss how MAGI supports

both sets of requirements. After, we discuss how multiple views might be one explanation for why

MAGI task requirement support, and why MAGI might also support serendipitous insight.

Tool-agnostic interviews: finding biological significance and current limitations

After interviewing case study participants, we found that their requirements and limitations largely

mirrored our task requirement analysis results (e.g, visualization is important for inferring biological

significance) as well as previous analyses of genomics research procedure (Sec. 3.2.2).

One common limitation for testing biological significance was the inability to quickly forage

biological hypotheses from high volumes of statistically significant results. Each participant faulted

integration task bottlenecks that were caused by both data wrangling and visualization.
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CS2 and CS3 also cited programming their own visualizations as a limitation. In contrast, CS1

was able to access robust commercial visualization pipelines, which they said helped, but suffered

from data integration bottlenecks. The results from CS1’s interview are encouraging because they

show that interactive visualizations help foraging for biological significance through a large number

of statistically-based hypotheses. However, CS2 and CS3’s forced reliance on programming their

own visualizations suggests that a lack of visualization tools that are easily accessible and that also

effectively support researchers’ tasks remains a limitation for visual analysis.

The interview results also highlight the importance of task requirement analyses. Although there

is an abundance of publicly available interactive genomics visual analysis tools, both CS2 and CS3

felt their specific analysis requirements were underserved. The lack of support led CS2 and CS3 to

write their own visualizations, which caused time-consuming A/B comparisons (CS2) and also took

time away from research because of the burden of programming.

Although we were unable to observe user data uploading in our case studies, these interview

responses reinforce our design decision to support custom user data. A possible alternative to

broadening custom data support is to develop novice-friendly declarative interactive visualization

toolkits (e.g., Vega [163]) that are specialized for genomics visualizations, which could address these

limitations by reducing the workload required to create custom interactive visualizations. To this

end, we open-sourced GD3, the visualization library powering MAGI, which makes programming

D3-based interactive genomics visualizations more declarative.

Observations: MAGI supports task requirements

Recall that the two tasks we selected to evaluate MAGI’s effectiveness were (1) generating and

(2) testing hypotheses about biological significance. Our observations suggest that MAGI supports

both. For instance, CS1 was able to test hypotheses about a drug target site, CS2 found a potential

research breakthrough they had been stuck on, and CS3 was able to gain new knowledge about

copy number aberration mutations. Furthermore, participant feedback indicates that MAGI also

supported visual communication tasks by providing a vector-graphic export option.

Each observation also suggests that MAGI addressed many of the participant’s individual analysis

limitations. CS1 was able to sift through hypotheses quickly. CS2 was able to explore existing

datasets with interactive visualizations, rather than having to perform many A/B comparisons.

Last, CS3 could explore results without the burden of programming.
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The participants typically reported that MAGI’s limitations were related to tool-workflow in-

tegration tasks. CS1 reported that the largest difficulty in using MAGI was deployment difficulty,

which led to revisions such that MAGI now supports Docker imaging to reduce deployment overhead.

CS2 reported previous difficulty with data upload, which led to revisions of MAGI’s uploading to

support a wider array of data formats. The only reported limitation in hypothesis generation and

testing was CS3’s feeling that the lack of results-screen query refinement slowed his workflow, which

led to the development of a query menu accessible from any MAGI page.

Task support may stem from multiple views

Our case study observations indicate that MAGI both successfully supports task requirements and

supports different specific analytical procedures. These results suggest that MAGI’s design success-

fully addressed complaints from our preliminary and case study interviews about visual analysis tool

brittleness.

One potential reason that MAGI supported the range of task requirements and procedures is its

multiple-view interface. Our case studies show that participants’ procedure often relied on switching

between many views to converge on analytical insight. For instance, CS3 was a copy number

aberration expert, but frequently compared across all visualizations to refine hypotheses given the

broader biological context. Another example is the many ways in which participants interacted with

the aberration matrix. It was designed to support the types of tasks that CS1 performed, primarily

searching for co-occurrence and exclusivity trends in mutations across patients. However, MAGI’s

open layout made the visualization useful for CS2 and CS3, who often used the mutation matrices to

look only at the frequency and patterns of certain types of mutations shown as glyphs on mutation

cells in the matrix. These examples show that MAGI supports a variety of individual differences in

analytical procedure.

While our suggestion that MAGI’s multiple-view interface supports a variety of analytical pro-

cedures is preliminary, given that it was a byproduct of our task requirement evaluation, it is

supported by many theoretical frameworks. For example, associative browsing benefits from flat-

structured interfaces that can support more various possible analytical paths than more sequential

or rigid interfaces [87]. This may be particularly true in cancer genomics, given that past work has

shown the field is host to a breadth of research foci, multidisciplinary collaboration, and a corre-

spondingly large variety of analytical procedures [131, 182]. Another benefit of using multiple views
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is that familiar views of data can help researchers understand nearby, unfamiliar views [16], which

our observations also show. Similarly, there is preliminary evidence that multiple views lead to

higher usability ratings by case study participants in cancer visualization tool evaluation [146].

Despite these successes, one potential pitfall of multiple view design is the potentially large dis-

tances between visualizations. For example, CS2 was unable to view both the copy number browser

and aberration matrix at the same time with MAGI’s default layout. CS2 was able to solve this by

temporarily hiding the other visualizations in MAGI; however, not supporting layout management

might have made MAGI unusable for CS2’s comparative analysis. As such, supporting a balance

of view-completeness versus view-accessibility is an important design decision when constructing

multiple-view-based tools.

Taken together, these results suggest that cancer genomics visual analysis interfaces that flexibly

allow users to switch among different analysis paths may effectively support a variety of analytical

strategies and hence a variety of task requirements.

MAGI task requirement support led to analytical insight

As part of supporting each participant’s tasks, MAGI supported small incremental insight discovery.

Our interviews also showed that MAGI supported larger, serendipitous insights. While CS2 was

being observed, they solved a research problem they had been stuck on for a week by scanning a

visualization that would normally be tangentially related to their research. Although it is difficult

to understand whether the design of MAGI regularly supports such large leaps in understanding,

our observation certainly motivates further study of multiple views and insight generation.

We suggest that MAGI’s multiple views may afford serendipitous insights for the same reason

that it supports flexible sensemaking: If researchers are exposed to views of data that are outside of

their normal analysis perspective, they may well be exposed to a new, more productive orientation

to the information landscape. Saraiya et al. made similar observations with respect to multiple data

representations and serindiptious insight in a longitudinal study of bioinformatics visualizations [161].

These observations are both consistent with information search research which found links between

flexible interfaces and an increase in creativity and inspiration [190]. Dörk et al., combining many of

these thoughts, demonstrate that supporting curiosity and flexible sensemaking can greatly enhance

the explorative and analytical power of visual analysis tools [27, 28]. Taken together, these case

study observations and theoretical frameworks both indicate that there is a high likelihood that



36

Log 1

Time: 2 mins

Num. Genes: 5         

Num. Datasets: 11       

Log 2

Time: 10 mins

Num. Genes: 5           

Num. Datasets: 11         

Log 3

Time: 1 min

Num. Genes: 2       

Num. Datasets: 1       

Log 4

Time: 1 min

Num. Genes: 5       

Num. Datasets: 11       

Log 5

Time: 4 mins

Num. Genes: 9         

Num. Datasets: 1         

Figure 3.4: Five MAGI mouse interaction logs showing mouse movement over time. Each session
suggests widely differing analytical procedures. The black heatmap overlay shows the frequent
interaction locations. Each rectangle is a different visualization in MAGI. The copy number browser
(bottom) appears short because its height changes based on which gene a user sets the browser to
show. Dark gray lines indicate window size.

multiple views may support serendipitous insight and information landscape reorientation.

3.5 MAGI interaction log analysis

We analyzed a random sample of five online MAGI mouse trace interaction logs (i.e., movement over

time) to explore the generalizability of our case study observations. The samples were drawn from

a dataset with thousands of sessions. The aim of exploring trace samples was to specifically test

whether our case study observations that MAGI supported a variety of analytical procedures trans-

ferred into ecological settings. Although these traces do not preserve analytical intent or context,

they do provide information about how MAGI is typically interacted with. If there were a diversity

of procedures in the traces, it would support our suggestion that it is important to design cancer

genomics visual analysis tools that are flexible enough to support a variety of individual differences.

While it would be possible to examine all mouse traces in the dataset, such an expansive study is

beyond the scope of our present work, and random samples are sufficient to test our specific analysis

aims.

3.5.1 Methods

To better understand how MAGI is used “in the wild,” we collected thousands of anonymized

interaction logs from online use and randomly sampled five for our present evaluation. The logs

were selected after removing time outliers, so that session times were between 1 and 20 minutes.

Each log contained the window resolution, visualization locations and sizes, the number of genes
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and datasets queried, and mouse traces containing clicks and moves.

3.5.2 Results

Mouse movement heatmaps for each session, aggregated over time, are shown in Figure 3.4 along

with each session’s duration and the number of genes and data sets queried.

Interaction log descriptions

The first user (U1) browsed through aberration matrix tooltips, selected a different gene to examine

with the transcript annotation chart, and then used the heatmap to look at brushing and linking

with the aberration matrix. The mouse activation over the subnetwork came from apparent idle

mouse movements.

U2 explored each gene in the subnetwork, pausing to look at tooltips. Then they moved the

mouse over the heatmap, possibly looking at an irregularity. Next, they selected a gene in the copy

number browser. Last, they switched back and forth between cells in the aberration matrix and the

aberration matrix’s legend.

U3 looked at several different genes in the transcript annotation chart and then at several different

cells in the aberration matrix.

U4 browsed through the heatmap and aberration matrix. Interactions suggest that they used the

brushing between both visualizations to keep track of the column (i.e., patient) they were looking

at in each.

U5 spent most of their time looking at specific mutations in the transcript annotation chart.

However, playback also shows that they briefly consulted the mutation matrix and heatmap between

transcript annotation use.

3.5.3 Discussion

While the context of analysis is lost by scraping online tool-use, the trace heatmaps indicate that

users exploit MAGI’s multiple views in very different ways. Each of the five interaction log samples

shows a distinctly different process and different use of visualizations. This task variance supports

our earlier case-study observations and interview responses that analytical procedure varies greatly

in cancer genomics. The lack of context prevents us from linking analysis procedure differentiation
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to the breadth of research foci within multidisciplinary application areas. However, it does support

our claim that it is important to support a diverse set of procedures, and also suggests that multiple

views are an effective design for doing this.

Analytical procedure differentiation persisted regardless of the number of genes or datasets

queried. For single-cancer analysis the information traces show both targeted (U5) and compar-

ative (U2) analysis between the different views in MAGI. U5 spent nearly all 4 minutes in the

session on cycling through genes in the transcript chart, whereas U2 spent 10 minutes going through

a sequence of every visualization but the transcript chart. The multi-cancer logs (U1-3) show similar

diversity, even though their total session time tended to be shorter (1 or 2 minutes rather than 4

and 10).

Thus, mouse traces of online use of MAGI supports our claim that the coordinated-multiple-

view layout of MAGI supports a robust set of sensemaking procedures. These results also show that

many of our case study observations extend into ecological settings. These findings also support

other work studying the relation between multiple views and individual differences. For example,

Marai found that users’ expertise in spatial vs. non-spatial visualizations affected view order-of-use

in visual analysis tools [117]. It is possible that our log analysis supports similar expertise based

differences with respect to expertise.

3.6 Open research areas

Our case studies were designed to focus on whether MAGI supported a set of common cancer

genomics task requirements. As such, while our association between multiple views and robust

task requirement support and insight generation are backed by theoretical foundations, both are

interesting starts for more detailed and tailored research. Another interesting direction would be to

perform a longitudinal study to test whether MAGI can support long-term research gain and task

requirements opposed to short-term insight discovery. Last, one potential limitation is the design

study population size, which stems from domain expert recruitment difficulty.

Our task requirements analysis highlighted the difficulty that researchers have wrangling data

and integrating new software into analysis pipelines. These findings echo Kandel et al.’s findings from

interviewing data scientists in many industry sectors [88, 89], and, together, suggests that integration

issues in cancer genomics are one instance of larger data processing open research problems.
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Another open area of research is testing the extent to which remote interaction log collection

can be used to test task requirement analyses. For instance, is it possible to infer task requirements

from interaction logs alone?

3.7 Conclusion

We presented a design study of MAGI, a cancer genomics visualization tool. We first performed

a task requirements analysis and identified four common tool-agnostic visual analysis tasks after

interviewing over twenty researchers and programmers working within cancer genomics (Sec. 3.3).

We also found a distinction between biological and statistical significance, which is consistent with

previous genomics tools research (Sec. 3.2.2). In our case study observations we found that MAGI

supported both these four common tasks and also the specific procedures regularly performed by

the case study participants as part of their normal workflow (Sec. 3.4). MAGI provided a useful

alternative to their established workflows for a variety of reasons including interactive exploration,

providing vector graphics that could be exported for high-quality printing and slideshows, and

facilitating serendipitous insight. We suggest that MAGI’s success might be traced to its multiple-

view-based design. This suggestion is supported by many past theoretical stipulations (Sec. 3.2.3),

and is based on observations that demonstrate how using multiple views aided researchers in testing

hypotheses and making serendipitous insights. Finally, our exploratory analysis of how MAGI is

used online indicates that MAGI is able to support a variety of analytical procedures in ecological

research settings (Sec. 3.5).

While our list of task requirements and evaluation focused on cancer genomics and MAGI, we

believe that these results are applicable to other tools within cancer genomics, given that MAGI’s

interface design is similar to other cancer genomics visual analysis tools (Sec. 6.1).



Chapter 4

Evaluating visual analysis task

classification to improve

understanding of cancer genomics

domain expert use of MAGI

In this work we advocate that interaction log classification can serve as a new, effective visualiza-

tion tool design evaluation methodology, and focus on how it can augment traditional qualitative

approaches by providing additional context for previously determined tasks. We also explore how

predictive task inferences can be used to improve the iterative design process of interactive visual-

ization tools for domain experts. To accomplish this, we ground our exploration in an analysis of

MAGI [107] – a cancer genomics visualization tool. These contributions extend current tool evalu-

ation methodologies, which typically focus on field studies and other similar, typically qualitative,

types of observation [103]. Although working side-by-side with domain experts in field research

yields high levels of detail about analysis workflows, as Carpendale notes, these types of studies are

typically smaller in scale and lack precision [20]. Our contributions could provide an important ad-

dition to current evaluation methodologies because interaction logs can be passively collected as part

of domain experts’ natural workflows and also contain precise, quantitative descriptions of visual

40
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analysis. Because of this, interaction log analysis can circumvent several common limitations present

in more focused and contextual-rich methodologies (e.g., ethnographies). For example, through in-

teraction log analysis, it is easier to study larger populations of domain experts while retaining

naturalistic, ecological validity and without potential interference caused from direct observation.

Likewise, analyzing large collections of interaction logs may help thwart bias caused from observing

small in-lab populations.

Another motivation of our present work was to understand the degree to which anonymized

interaction logs could be used to understand analytic intent given the complete omission of context.

Our evaluations of visual analysis task inference by humans and computers rely on interaction

logs that contain the size and location of each visualization in MAGI and the sequence of mouse

events caused by user interaction (i.e., clicks, movements, and scrolls).

Contributions: Our first contribution is a discussion that compares the accuracies of twelve

automated visual analysis task classification models to hand-coded task inferences made by pairs

of genomics and visualization experts. Rather than focusing on sophisticated classification models,

our evaluation focuses on classifiers that most visualization researchers could implement themselves:

k-nearest neighbors, linear support vector machines (SVMs), and random forests. This way, our

findings are more easily applicable to visualization researchers and practitioners at-large. We discuss

the potential benefits that might come from evaluating more complex models in Section 4.6. Our

second contribution is an exploration of common MAGI interaction trends using the predictions

from task classification, which expands our present understanding of how visualization is used in

naturalistic settings by cancer genomics domain experts. As part of this investigation, we make our

last contribution by exploring how mouse interaction modeling can be used to inform iterative tool

design. We also provide design principle hypotheses that can be used to guide future design studies.

Outline: We begin with interaction log mining background and related work (for more infor-

mation about MAGI and cancer genomics as an application domain, please see Chapter 2). We also

explain what types of information we collected in the MAGI interaction logs. Next, we discuss results

from a preliminary task inference study in which we worked with two MAGI developers to identify

eight common MAGI analysis tasks. We then discuss the results from a task labeling experiment

that provided training data to evaluate the performance of MAGI analysis classifiers. Following our

in-lab experiments we then move on to our classifier evaluation and explore the potential effect that

interaction log mining might have on domain expert tool iterative design. Last, we present open
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research questions and consider potential broader impact of our contributions.

4.1 Background and Related Work

4.1.1 Understanding users: contribution differences

While our present work is related to previous research “clickstream” interaction analysis, our contri-

butions differ because of our focus on visualization tools for domain experts: we aim to model less

deterministic visual analysis behavior of experts instead of modeling typical navigation behavior of

the general population through a sequence of URLs (e.g., to optimize search ranking [4] or com-

merce [56]). (A more thorough discussion of clickstream research is included in the supplemental

material.) Such clickstream tasks are more deterministic because a user’s goal is to find the most

relevant search result and will end with a success (search result click) or a failure (search termina-

tion or another query). In contrast, visual analysis is typically driven by deriving “insight,” which is

subjective and variable across applications [44]. Because of potential empirical differences like these,

we test whether clickstream features from the information retrieval community can accurately model

visualization interaction. Hence, another contribution of this work is to assess whether features that

were advantageous for classifying these simpler, more deterministic interactions in web search apply

equally as well to more open-ended visual analysis scenarios. However, further evaluating how visual

analysis interaction procedure may differ from better-studied and modeled areas of human-computer

interaction remains an important area for future research.

4.1.2 Understanding analytic intent via interaction logs

Our present research compliments and expands on automated analytical task inference techniques

within visualization and across the broader human-computer interaction community. Although

manual interaction analysis has proven useful in smaller case studies such as studying visual analysis

in investigative journalism [15] and in understanding collaborative analysis [81], Guo et al. note that

hand-coding users’ interactions faces myriad scalability issues [55]. As such, many researchers have

investigated the automation of visual analysis interaction log evaluation. These techniques often seek

to identify design requirements by leveraging interactions as a record of “analytical provenance,”

which can be loosely defined as a collection analytical steps undertaken during a visualization’s use.
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Given the scope of provenance research, rather than survey it here, we recommend Ragan et al.’s

survey [145].

Within the context of interaction history mining, much of this research has focused on action log

analysis, which relies on basic software interaction sequences (e.g., filter → sort → select).

For example, Zgraggen et al. showed how extracting interaction patterns using regular-expression-

like queries from large action datasets helped usability researchers at a large technology company

identify key issues in their products [208]. Other visual analysis task reconstruction methods draw

on techniques such as multiple sequence alignment [8, 34, 203, 204], graphical modeling [75], and

human-in-the-loop qualitative exploration [129]. Etemadpour et al.’s investigation into genomics

analysis workflows is more similar to our inquiry into domain expert analysis, but also uses an

action representation akin to other previous work [33]. Our present work differs from these efforts

because we focus on lower-level mouse event analysis (e.g., mouse dwell time) to infer analytic intent,

rather than focusing on higher-level action data. In this way, our investigation differs from much

of the past work in analytical provenance, which typically models interaction at these higher-level

representations (e.g., “undo” in a graph-like structure representing workflows [145].

One benefit to analyzing lower-level mouse events opposed to higher-level representations is the

close relationship between mouse movement and gaze, which is a well-studied physiological indicator

of intent [77]. Huang et al., as well as Rodden and Fu, explore how the relation between gaze

and mouse movement can be used to improve web search [78, 152], and Gomez et al. show that

the relation also holds for visualization [43]. We utilize this similarity later in our classification

evaluation by creating a new feature set inspired by these similarities (Sec. 4.5.1).

Martín-Albo et al. build on the association between intent and mouse interactions to show that

intent can be inferred from mouse movement alone without the aid of eyetracking by testing the

geometric and temporal similarity between mouse traces [118]. Others like Edmonds et al. and

Matejka et al. developed tools to qualitatively analyze mouse traces and intent through heatmaps

of frequently interacted-with interface regions [30, 119]. Blascheck et al. pursued a hybridized in-lab

approach and tested how event-level interaction logs can be combined with talk-aloud transcripts and

eye-tracking to understand interaction [8]. Noting the potential benefits of using higher-resolution

interaction logs, Atterer et al. performed a case study to show how interaction strategies and intent

can be reconstructed from low-level event logs [6]. Our present work extends knowledge of user

analytic intent by analyzing how interaction log classification can lead to insights about domain
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experts’ naturalistic visual analysis behavior.

4.1.3 Relation to past biology visualization task analyses

Our present contributions extend previous research that also used biology visualization as a test

bed for new evaluation methodology and task modeling. For example, Saraiya et al. developed an

evaluation methodology to measure visualization effectiveness based on how many analytical insights

it may support [159] and then explored how insights could be used to longitudinally understand

visual analysis tasks [161]. O’Brien et al. then extended insight-based methodology to improve its

precision while also evaluating another biology-visualization-motivated application [130]. Instead

of just tallying the total number of insights, they suggested that insights – and the tasks that

produced them – could be better understood by also measuring a variety of other information such

as hypothesis-driven insights and insight complexity. Unlike these past methodological contributions,

which rely on hand-coding data, our present line of inquiry investigates how automated modeling

can empower initial human classification. Not only does this continue O’Brien’s line of research

toward quantifying task analysis, but it also allows these labor-intensive methodologies to scale to

much larger collections of data thanks to automated task inference.

Others, like Streit et al., used biology visualization as a way to study visual analysis in areas

where there is diverse types and formats of data [182]. Whereas Streit et al. focused on constructing

a model for heterogeneous biological data analysis, Murray et al. synthesized common analysis tasks

in biological network analysis [128] Although both sought to explain cancer genomics visual analysis,

the aims of our present work are distinct. Differences between our present contributions and these

past two models might be best understood through Brehmer and Munzner’s task typology [14]:

Streit et al. primarily focused on “what” each task was operating on, Murray et al. primarily

focused on “why” each task was being performed, and our present research primarily focuses on

“how” each task was performed.

4.2 MAGI and Log Collection

Our present investigation into visual analysis task classification is anchored by studying MAGI mouse

interaction logs. MAGI is an online visualization tool that allows cancer genomics researchers to ex-

plore a variety of genetic mutation data across many cancers in five visualizations [107]. Given cancer
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genomics specialization variety, MAGI was designed to support a diversity of expertise through its

multiple views (e.g., basic science vs. pharmaceutical research; wet lab biologist vs. bioinformati-

cian). A screenshot of a query in MAGI is shown in Figure 4.1, and Chapter 2.3 provides detailed

background information about the tool.

Like with many other visual analysis tools for domain experts, one difficulty in evaluating MAGI

is that cancer genomics researchers are geographically distant and are often hard to schedule for

observation. This poses a hurdle for user-centered design because these limitations often result

in studies that consider only small numbers of tool users. Although small case studies can provide

useful information about tool-use, they can be susceptible to sample bias without careful recruitment

consideration. This is particularly true in cancer genomics, which has many distinct foci that use

the same data (e.g., applied pharmaceutical vs. basic science research). As such, it is possible that

relying on small population observations could cause iterative design decisions to overfit a tool to

the requirements of a small number of users at the expense of a large, unstudied sub-population.

If successful, interaction log classification would provide a way for understanding task requirements

of entire populations in naturalistic settings, and would provide a way to help counter sample bias

using the smaller scale, in-lab methodologies that tool evaluators already utilize.

4.2.1 Mouse interaction log schema

Our evaluation of interaction log classification focuses on analyzing mouse interaction logs collected

on MAGI’s gene set query results page. We provide an example query about the Notch pathway,

which is implicated in a variety of cancers [175], in Figure 4.1. For each session, we collected

all mouse events, information about each visualization’s size and location, the window size, and

anonymized information about the query. In addition to the five visualizations, we also collected

the size and location of MAGI’s control panel and tracked when tooltips were activated in each of

MAGI’s visualizations. Given that users can toggle visualization visibility, we also tracked how size

and location of the visualizations might have differed over time. The full collection of log attributes

is listed in Table 4.1.
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Figure 4.1: A screenshot of MAGI showing the aberration matrix (top), heatmap (second top), net-
work view (middle-left), transcript chart (middle-right), copy-number aberration browser (bottom),
and control panel (right).



47

Type of information Attributes

Mouse events {click, move, scroll}, time, x, y
Tooltip events x, y, width, height
MAGI components (×6) x, y, width, height
Window state width, height
Query number of genes and datasets

Table 4.1: Data contained in each MAGI mouse trace interaction log. MAGI components refer to
the five visualizations and control panel.

4.2.2 Log culling

We applied a two-step culling process to remove interaction logs that were unlikely to contain

important information about visual analysis tasks. The first step in log culling involved the removal

of logs without mouse interactions, which were created by web crawlers. This removal resulted

in 1,616 logs with mouse event data. Afterwards, we then removed 63 logs that were deemed to

have too few events to describe visual analysis tasks. For example, a user might realize that they

typed in their query wrong and immediately navigate backward. While this scenario might provide

important usability information about tool-use, it does not express information about the analytic

intent of what the user hoped to accomplish. We defined “too few events” as any log with a mouse

event count under the central 95% interval’s lower bound. To compute the central 95% interval,

we used an estimated lognormal distribution after visually analyzing the data’s distribution with a

quantile-quantile plot (µ = −71.99, σ = 773.38, threshold=38.5 events).

4.3 Task identification with MAGI creators

Our first analysis of the MAGI interaction log data involved a free-text labeling task with two of the

developers of MAGI. The purpose of this was twofold: (1) to pilot the feasibility of labeling analysis

tasks from interactions alone, and (2) to derive a shortlist of categories, which could be used as

classifier labels and as multiple choice options in our planned follow-up user study.

Here, we use “task” to refer to Gotz and Zhou’s interaction characterization for visual analysis

tools [46], which defines tasks and sub-tasks as “high-level, logical structures of a user’s analytic

process, such as the user’s cognitive goals and sub-goals.” For convenience, and due to their similarity,

we refer to both as “task” for the remainder of the manuscript as their distinction is not critical for

our present contributions.
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4.3.1 Methods

Participants

Two participants remotely completed the free text log labeling task through screen sharing software.

Each participant was involved with the development of MAGI and was familiar with MAGI’s interface

and the full range of ways MAGI could be interacted with.

Design and Displays

Instead of predefining a set number of interaction logs for participants to label, the experimental en-

vironment created trials on-demand by randomly sampling as many interaction logs as a participant

could label within 45 minutes.

In each trial, an interaction log summary visualization was rendered alongside playback controls

(Fig. 4.2). In the visualization, each of MAGI’s charts were shown as a differently colored rectangle.

A heatmap was overlaid on top of the visualization rectangles, which showed regions that users

commonly interacted with. Participants could also watch the mouse move (orange crosshair) and

tooltips appear (red rectangles) throughout the log’s duration by either clicking a 10×-speed play

button, or by dragging one of two sliders that controlled the playback time. The top slider was

used to make large changes, and the bottom slider was used to fine-tune time navigation, which was

useful for longer logs. Below the sliders we included a small timeline showing click, movement, and

scroll events. Additionally, the number of genes and datasets in each MAGI query was shown above

the interaction log visualization.

Procedure

Each participant was instructed to work with the experimenter to infer the predominant analytical

task for as many interaction logs as possible within 45 minutes. For each log, the participant

would brainstorm with the experimenter about what type of task the trial’s interaction log depicted.

Afterwards, the experimenter would write a 1-2 sentence description of the task and verify with the

participant that the description summarized the brainstormed task. If there was no recognizable

task, or if the task wasn’t considered useful, the log would be labeled as “junk.” After entering the

log description, participants continued to the next trial.
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(10x)

1 gene(s) and 11 datasets(s)

Is junk? Next

Figure 4.2: Example free-text label trial where participants were asked to provide a 1 to 2 sentence
description of what type of task was performed in the visualized interaction log. Interaction logs
were summarized in a visualization in each trial, which showed the location for each of MAGI’s five
visualizations in differently colored rectangles, and mouse activity with a black heatmap overlay.
Users could watch the mouse and tooltips appear/disappear by using the playback button and two
sliders to change time. The timeline below the sliders showed mouse movement (orange), click (red),
and scroll (purple) events. Users could play the log by clicking on a 10× playback button or manually
control playback with two sliders (top: whole-log, bottom: small adjustments to top).
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4.3.2 Results and Discussion

We collected 50 labels in total (25/participant). Because we were interested in identifying a short-

list of commonly performed analytical tasks we then performed two rounds of manually grouping

similar labels. To accomplish this, we printed out cards for each label response that contained the

written description and accompanying interaction log visualization, along with a unique ID. Then,

referencing the text summary for each card, we grouped similar cards in a manner similar to hierar-

chal clustering. After, we performed a second round of grouping to consolidate thematically similar

groups. The resultant categories were as follows (see Fig. 4.1 for examples of each visualization):

Aberration matrix and transcript chart cross-referencing: Frequent back-and-forth analysis

between the transcript chart and aberration matrix. For conciseness, we will refer to this task as

“cross-referencing” unless otherwise noted.

All-encompassing or undirected browsing: Interactions with MAGI that appear undirected,

that are typically diffuse, and that use many or all of MAGI’s visualizations.

Co-occurrence or exclusivity analysis: Interactions that concern the aberration matrix, typi-

cally characterized by mousing over columns (co-occurrence) or exclusivity (staircases from column-

exclusivity; Fig 4.1).

Copy-Number-Focused Analysis: Analysis characterized by heavy use of the copy-number aber-

ration browser.

Junk: Logs that have no discernible analysis behavior (e.g., immediate page refresh after < 1

second or short, temporally distant bursts of movement).

Targeted gene, mutation, or annotation lookup: Targeted search behavior when a user has a

specific piece of information they want to find (e.g., a particular patient-column in the aberration

matrix).

Transcript mutation distribution analysis: If users interact with the transcript chart, they

typically focus on certain distributional characteristics such as towers of mutations at a single point

in the transcript (“hotspots”) or at mutations that fall along coding regions.

Other: Behavior that falls outside of what was labeled in this experiment (e.g., use of the network

view).



51

Informed

Consent

[TOOL]

Description + Demo
Task Description

Task Familiarization

via Quiz
Practice Trials (5) Test Trials (96)

INSTRUCTIONS PRACTICE TEST

+ Demographic

Questionnaire

Figure 4.3: The procedure for our pair-participant task labeling study.

This procedure was guided by previous analyses that were part of MAGI’s formative iterative

design, which identified hypothesis formation and testing tasks targeted on biological significance as

two of MAGI’s largest use cases.

One question that arises from these results is how consistently these tasks can be inferred using

only low-level interaction logging data, which is critical for reliable classification. We test this in the

next study.

4.4 User Study: Log Task Labeling

The primary goal of this experiment was to collect labels to train, validate, and test interaction log

classifiers. We also wanted to test whether humans could reliably infer analytical tasks from mouse

interaction logs alone. Our prediction was that interaction-task inference would be reliable between

interaction log observers. To these ends, we asked five pairs of visualization and genomics experts (1

of each/pair) to label tasks in a series of MAGI logs using the eight labels from our prior evaluation

(Sec. 4.3).

4.4.1 Methods

Participants

10 participants (5 pairs) completed the study. Five subjects were recruited through university mailing

lists for graduate students and had formal knowledge of genomics. The remaining five subjects were

recruited from human-computer interaction research groups in our institution. Each subject had

at least one year of academic or professional experience in either genomics or visualization. The

median number of years each participant had spent in their degree program was 2 years (range: 0-5).

Figure 4.4 shows participant expertise. There were equal numbers of male and female participants

(3 female genomics experts, 2 female computer scientists) and the median age was 27 (range: 22-33).
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Figure 4.4: User study participant demographics. Non-circle degree glyphs relate to genomics exper-
tise. Shaded cells mark currently-pursued degrees. “G” columns refer to genomics experts, whereas
“V” refers to human-computer interaction (HCI) and/or visualization experts. “R” expertise entries
refer to hands-on research experience, whereas “C” refers to coursework exposure.

Each was compensated $10/hour. The experimental protocol was approved by our university’s IRB.

Design and Displays

The user study was held in pairs such that each session had one genomics expert and one visualization

expert. The study was designed for pairs of participants rather than single participants because we

believed pair coding would help control labeling variance and because the experiment required expert

knowledge of visualization and genomics, which presented single-person recruitment limitations.

Another motivation was that fatigue was too prohibitive in an earlier pilot study that tested single

participants.

Each pair of participants saw 96 random-order trials, which consisted of 2 replications of a 48-

trial design. One replication contained a unique set of interaction logs while the second replication

contained logs that were identical between subjects to analyze inter-rater reliability (IRR). We settled

on a 48-trial design after performing a power analysis for Fleiss’ kappa [157] (κ0 = 0.6, κ1 = 0.4, α =
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0.05, β = 0.2 with 5 raters), which suggested including at least 41 trials.

The 48-trial design consisted of 24 randomly sampled logs and another 24 logs that were sampled

based on three feature sets we had planned to use in our eventual classification evaluation (Sec. 4.5.1).

To sample the 24 feature-based trials, we first had a MAGI expert create example ground truths for

each of the eight previously defined task labels, where we knew the full context of each query (e.g.,

“the expert was interested in exploring a particular biological pathway”). Then, using each of the

three feature sets and eight ground truths, we sampled 24 nearby neighbors.

To create the six unique sets of logs (5 pairs + 1 IRR), we generated all of the feature-set-based

trials at the same time by picking the 6-closest logs for each of the 24 {feature set} × {label}

combinations. Next, we semi-randomly shuffled the samples so that each pair of participants would

be given an unordered, complete collection of the 24 combinations. For example, the first participant

would be given one of each 24 combinations, but these 24 logs would not always be the first-closest-

neighbors. This procedure was designed to control for potential bias stemming from nearest-neighbor

ordering while still including all 24 conditions.

The remaining 144 random-sample logs were then sampled without replacement from the set of

remaining logs.

Procedure

Following informed consent, the study took place over three stages: instructions, practice, and test

(Fig. 4.3). All participants took between 1.5 and 2 hours to complete the study.

Instructions: In the MAGI overview, each pair read through an overview that detailed each of

MAGI’s charts and saw a short demo of MAGI. In the study overview, participants were provided

text descriptions for each of the task labels and were shown example stimuli.

Practice: The short quiz presented a grid of 8 example ground-truth logs at the same time along

with the earlier text description of each task label. Participants were asked to discuss with their

partner which label they believed should be assigned to each log. After guessing, participants could

reveal the answer by clicking on a “show” button. Following the quiz, participants then completed

five practice trials per the test procedure below.

Test: For each practice test trial, participants were provided a single log and were asked to mark

which task label they thought was most characteristic of the log. If the participants selected the

“other” category they were required to enter a short text description of the task. When satisfied with
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their response, participants then clicked the “done” button to advance to the next trial. Each trial

included label descriptions and earlier quiz examples to the right of the experimental display and

in printed handouts as reminders. To help participants finish within two hours, each trial displayed

a timer and a beep would play after 45 seconds; however, participants could take as long as they

needed to respond.

4.4.2 Results and Discussion

Inter-rater reliability and accuracy: similar strategies

Our planned-analysis of inter-rater reliability (IRR) using Fleiss’ κ was 0.405, which was calculated

using the 48 IRR trial responses for each participant-pair. According to Landis and Koch, this

maps onto fair-to-good reliability [84]. Fair-to-good reliability suggests that there was a moderate

amount of subjectivity between pair responses, but that the individual differences across trials was

low enough to be confident in the response reliability. To supplement Fleiss’ κ we also measured the

modal accuracy of each participant, which defines a correct response as any response that matches

the most frequently assigned label(s) for a given interaction log. Participant accuracies, in order of

study completion date, were: 69%, 73%, 73%, 65%, and 77%. Both Fleiss’ κ and accuracies suggest

that all participants had similar, consistent labeling strategies.

Task label diversity and frequency shows consistency

To understand participant-pair task labeling strategy similarity we analyzed labeling frequencies

and labeling consistency across participant-pairs (Fig. 4.5).

To measure similarity we calculated Shannon diversity indexes for each pair-participant using

label frequencies. The diversity indexes were 1.90, 1.97, 1.86, 1.76, and 1.91. Values closer to ln 8 ≈ 2

refer to more uniform label frequency distributions and values closer to 0 refer to skewed distributions

with fewer labels and greater frequencies. Diversity indexes are calculated through Shannon entropy:

H ′ = −
∑L

i=1 pi ln pi. L is the number of labels and pi is the ith label frequency’s proportion of

the 96 total labels for a given participant-pair. Each diversity index fell within the top 15% of the

potential range of diversity ([0, ln(8)]), which suggests that all participants applied similarly uniform

task labeling strategies. These results also support our initial task selection methodology because

our synthesized task labels were used with little favoritism.
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Figure 4.5: Task label frequencies (top) and ordered labeling consistency between participants for
each interaction log (bottom; rows: participants, columns: interaction logs).
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We also made several qualitative observations based on labeling frequency to drill down beyond

reliability summary statistics. First, participant-pair 4’s poor accuracy may stem from slightly-

deviant labeling proportions: they never provided a cross-referencing task label IRR response, had

only one targeted analysis response, and over half of their responses were either “junk” or undirected

labels. This skew is the likely source for their comparatively lower accuracy and Shannon diversity

index. Another distinction is that participant-pair 3 never provided an “other” response, though

this is not necessarily abnormal given the relatively low “other” response rates of the other pairs.

Aside from these two deviations, participants’ strategies were largely consistent; 20 of the 48 IRR

trials had 4 or 5 identical labels out of the 5 labels given by participant-pairs, and 17 IRR trials

had 3 identical labels across the participant-pair responses. There were no trials where each pair

provided different labels.

We also found no significant difference between modally correct labels between random and

feature-based sampling methods through a two-sided Fisher’s exact test (p = 0.57; feature-set:

73%, 88/120; random: 69%, 83/120).

“Other” label descriptions

There were 23 “other” labels (< 5%) across the 480 total responses. The most frequent reason for

selecting “other” was to report different types of cross-referencing task behavior (9), given that the

provided cross-referencing task label only pertained to interactions between the aberration matrix

and transcript chart. Other responses pertained to other MAGI features not covered by the 8

labels (e.g., the network visualization and control panel) (11), or to simple page exploration without

analytic purpose (2). Only once did participants respond that they were unable to determine what

type of task a user was pursuing.

These results support observations from our initial task identification: while it is possible that

users will use MAGI for tasks other than the eight we identified, these other tasks are likely to be

rare outliers. Similarly, the comparative scarcity of “other” responses suggests that our eight task

categories were effective at describing the majority of MAGI interactions.

“Junk” assignment strategies

One concern we had while designing the experiment was whether participants would put potentially

meaningful logs in “junk.” Our intent was for junk to be a catch-all for logs that slipped past our
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prefiltering, which eliminated empty or near-empty logs. For example, there was one log that we

would have considered to be undirected exploration due to its diffuse interactions; however, the

pair of participants could not identify a behavior and marked it as junk (opposed to marking it as

“other” as one other participant did). Although we saw some instances of undesirable junk labeling

while proctoring the study, we found that participants were overall consistent with our junk-labeling

expectations.

Takeaway: reliable, consistent human task inference

Overall, these quantitative and qualitative trends both point to similar conceptual understanding

of how each task mapped onto mouse interactions and suggest that participant-pairs used similar

labeling strategies. This is an important discovery because it shows that tool evaluators can re-

construct meaningful information about tool use from interaction logs alone. The reliability and

presumed reproducibility of these findings establishes a foundation for our next evaluation. Using

these results from our human-centered evaluation we can establish a baseline from which automated

machine classification can be compared against.

4.5 Log-Task Classification

We evaluated 12 classifiers to test whether automated classification could predict visual analysis

tasks with comparable accuracy to domain experts from the previous experiment. Each classifier

was built from a selection of three models (k-nearest neighbors, linear support vector machines,

random forests) and four feature sets, as described below. Our evaluation predictions focus on

identifying a best-performing classifier to use in a follow-up exploratory analysis of the entire MAGI

interaction log corpus. To test each model’s effectiveness we used the 48 IRR trials from our previous

in-lab experiment and used the non-IRR trials for training and cross-validation.

Our model selection was guided by selecting models that would be accessible to typical visual-

ization tool developer/designers. We determined accessibility by how widely classification models

were used in-practice and how readily they could be used “out of the box” with well-documented

machine learning libraries (e.g., Python’s scikit-learn). Another selection criterion was to select

models that would perform well given few training data, which can be a common-place limitation in

domain-expert-focused research. It is important to note that there are a number of important and
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ROI Transition [19] Dwell [4] Mouse Tracking [99]

transition count total time stationary H

transitioned-to count µ dwell time transition H

σ dwell time total time ∀ ROI
# datasets active time ∀ ROI
# genes dwell time ∀ ROI

µ active time ∀ ROI
µ dwell time ∀ ROI

Table 4.2: An overview of three feature sets used in our classification (not shown: “all,” the com-
bination of these sets). ROI transition count is short-hand for the complete adjacency matrix of
transition features between each ROI. Transitioned-to count sums one dimension of the complete
matrix. µ: mean, σ: deviation, H: entropy.

immediately actionable research directions that could be pursued, which might result in more accu-

rate predictions (Sec. 4.6). We opted to pursue simpler models for two reasons. First, we wanted

to pursue a systematic approach to studying classifiers’ potential use in evaluation, and thought

their might be too great a number of unbound decisions given our present knowledge of interaction

mining within visualization. Second, we wanted to focus our evaluation on models that would not

be too elaborate for much of our target audience to easily use.

4.5.1 Feature Sets

In our present classification evaluation we consider three feature sets: dwell, region-of-interest (ROI)

transition, and a novel “mouse tracking” approach. A summary of each feature set is listed in

Table 4.2. In our present analysis of MAGI, “region of interest” (ROI) corresponds to MAGI’s five

visualizations and control panel (Fig. 4.1). For the remainder of the paper we will refer to these

feature sets as dwell, ROI transition, and mouse tracking.

Dwell

The features in dwell are: total session time; mean and standard deviation of dwell time; and the

number of datasets and genes in a query. Each feature is taken from a subset of Agichtein et

al.’s features for modeling web search ranking [4]. We include only a subset due to differences in

application areas and in interaction log schemas (multiple-page vs. single-page sessions).

One difficulty raised by the dwell feature set was how to best quantize mouse traces into active

and dwell periods. To accomplish this, we chose a dwell threshold (100ms) using the interquartile

mean of all contiguous-event time differences across all interaction logs. We operationalized the
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threshold using the interquartile mean opposed to other methods (e.g., median split) because the

distribution of time differences had a long right tail that skewed whole-range averages. A common

issue causing the skewed distribution were sessions where a user would leave MAGI open for days,

whereas most differences were fractions of a second.

ROI Transition

The ROI transition feature set is comprised of the adjacency matrix describing transition frequencies

between ROIs and the total number of transitions to each ROI. The two groups of features are

adapted from Brown et al.’s features for modeling visual search task completion time and personality

factors such as locus of control [19]. Although Brown et al. tested several predictive models, we

use only their state-based feature set, which had the highest predictive accuracy for task completion

time (83%).

Mouse Tracking

The mouse tracking feature set includes five types of times for each ROI and two types of entropy

that measure how users transitioned between ROIs. The name “mouse tracking” alludes to its

adaptation of eye tracking features.

The first three types of time included in mouse tracking are the total cumulative time spent in

each ROI, the cumulative active time spent in each ROI, and the cumulative dwell time spent in

each ROI. The last two times are the mean active and dwell times for each ROI. These measures

are loosely inspired from distance-based region-of-interest analysis in historical scan path clustering

analyses [5, 42], and were calculated with the same methods as the dwell feature set.

The other two mouse tracking features describe different kinds of entropy to summarize how

users interacted with MAGI at a more global scale. Within the context of MAGI, entropy can be

thought of as how deterministic a user’s interactions are between ROIs (i.e., targeted vs. diffuse). To

calculate entropy, we consider MAGI ROIs (ℜ), the transition frequency probabilities between each

ROI (M), and the stationary distribution of each ROI (π). The stationary distribution (i.e., the

limiting probability distribution) represents the probability that the mouse will be over a given ROI

at any point in time [188, p. 199]. Both entropies are based on Krejtz et al. scanpath classification

methods [99].

The first measurement of entropy uses Shannon entropy to calculate whether the distribution of
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Classifier Feature Set Parameters

k-nearest All k = 9, w=distance
k-nearest Dwell k = 10, w=uniform
k-nearest ROI Transition k = 5, w=distance
k-nearest Mouse Tracking k = 7, w=uniform
Linear SVM All c = 69.519
Linear SVM Dwell c =< 0.001
Linear SVM ROI Transition c = 0.001
Linear SVM Mouse Tracking c = 0.004
Random Forest All estimators=75
Random Forest Dwell estimators=40
Random Forest ROI Transition estimators=40
Random Forest Mouse Tracking estimators=40

Table 4.3: Parameter selection for each tested classifier. w: weight

ROI transitions is equal, where entropy values closer to 1 represent equal distributions and values

closer to 0 represent focal distributions. Our use of log10 constrains entropy to a unit scale:

HShannon = −
∑

i∈ℜ

πi log πi (4.1)

The second measurement of entropy is similar, but also considers the transition frequency prob-

abilities to understand whether interaction was more random (closer to 1) or more deterministic

(closer to 0):

HT ransition = −
∑

i∈ℜ

πi

∑

j∈ℜ

Mij log Mij (4.2)

All: Dwell + ROI Transition + Mouse Tracking

We also tested a composite “all” feature set, which combined the features from all three aforemen-

tioned sets.

4.5.2 Classification Evaluation Methods

Our final experimental design consisted of twelve classification models (3 classifiers × 4 feature

sets), all of which were implemented in Python’s scikit-learn. For each model we performed an

exhaustive search for all parameter combinations using 3-fold cross validation to select parameters.

Parameter selections for each model are listed in Table 4.3. To examine predictive variance we

evaluated each model fifty times using the same parameters across runs for each model.
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4.5.3 Classification Evaluation Predictions

Before conducting the comparative classifier evaluation we made the following predictions:

P1 Random forest models would be more accurate compared to k-nearest neighbor and linear SVM

accuracies.

P2 Mouse tracking features would be more accurate compared to dwell and ROI transitions for

predicting task labels.

We predicted that random forests would be the most accurate because it was unclear whether

our feature sets were linearly separable. Further, random forests provide a way to down-weight less

effective features based on how their decision trees are trained, whereas k-nearest neighbors treats all

features equally because it uses Euclidean distance. We predicted that mouse tracking would be the

most accurate feature because it considered both time and transition, but at multiple levels of detail.

In contrast, dwell considers only entire-session times and ignores regions of interest. Similarly, ROI

transition focuses only on individual transitions, ignores more global descriptions of behavior, and

does not consider interaction times.

4.5.4 Classification Evaluation Results and Discussion

Analysis of classifier performance

Because our test data has five “correct” labels for each interaction log (1 label/participant) we tested

P1 and P2 with two types of accuracies: match-any and modal accuracy.

Match-any accuracy is calculated based on whether a classifier prediction matches any of the five

labels provided by any of the participants and is a lower-bound measure of classifier performance.

Modal accuracy is the same accuracy that was used to measure participant accuracy in our

previous user study: predictions are correct only if they match the most frequently assigned label(s)

for each interaction log.

We used two accuracies — one loose and one strict — due to the qualitative, under-defined nature

of what a “reasonably correct” prediction could be. It is important to note that the difference between

the two accuracies is also meaningful: if match-any accuracy is 75% and modal accuracy is 50%,

then 2/3 of the match-any-correct labels are also modally-correct responses and 1/3 are modally
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Figure 4.6: Means and standard deviations of classifier accuracies after running each model 50 times.
Match-any accuracy is calculated based on whether predictions matched any label assigned to an
interaction log by participants. Modal accuracy is calculated based on whether predictions match
the most frequently assigned label(s) for an interaction log. Higher accuracies with smaller accuracy
intervals are better. k-Nearest Neighbors has no standard deviation because successive runs will
always select the same k shortest Euclidean-distance points. Below the three models we also include
modal accuracies for each of the five participant-pairs for easier comparison (stacked glyphs represent
multiple participants with the same accuracy).
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incorrect responses. For this reason we planned our analyses to first examine match-any accuracy

and use modal-accuracy as a mechanism to break match-any accuracy ties.

The twelve models’ match-any accuracies ranged from 38% (linear SVM, dwell) to 73% (random

forest, mouse tracking) and the modal accuracies ranged from 18% (k-nearest neighbors, dwell) to

56% (random forest, mouse tracking). The full-range of results are shown in Figure 4.6.

Previous visual analysis interaction modeling has achieved similar accuracies. For example,

Brown et al.’s task completion time predictive models [19] had between 62% and 83% accuracy and

their personality-attribute models had between 61% to 67% accuracy when testing for traits like

locus of control and neuroticism. In comparison, our models were similarly accurate, but modeled a

more complex and nuanced characterization of interaction (e.g., binary vs. octenary models).

Before testing our predictions, we first analyzed the variance of model type and feature set with

respect to match-any accuracy, and found a significant main effect for each (model: F (2, 588) =

483.74, p < 0.001; feature: F (3, 588) = 164.39, p < 0.001) as well as a significant interaction between

the two (F (6, 588) = 95.53, p < 0.001).

The significant interaction between model type and feature set likely refers to the dissimilarities

in accuracy for k-nearest neighbors and linear SVM models compared to random forest models.

Match-any accuracy across model types was largely fixed for ROI transition features and varied for

the other three such that ROI transition features were most-accurate for k-nearest neighbors and

linear SVM models and were least-accurate for random forests. This suggests that dwell and mouse

tracking are not linearly separable and, for similar reasons, are not well-suited for simple Euclidean-

distance-based classification models. The lack of separability is supported by close-to-zero SVM

margin parameter selections, which suggests that across all feature sets, the data was too noisy to

define a hyperplane that cleanly separated data. It would be interesting to test whether certain

subsets of data are more easily separated as a way to achieve better performance; however, such

analysis falls outside the present comparative model analysis goals.

To better understand the performance differences between model types and feature sets we

systematically tested our planned predictions for match-any accuracy using 2-sample Welch’s t-

tests. We first tested match-any accuracy by model type (P1) and found that random forests were

significantly better than both k-nearest neighbor (t(291.26) = 15.03, p < 0.001) and linear SVM

models (t(242.83) = 17.99, p < 0.001), and also that k-nearest neighbor models were better than

linear SVM models (t(348.73) = 6.37, p < 0.001). Thus, random forests were best, followed by
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k-nearest neighbors and then by linear SVM models.

After finding that random forests were the most match-any accurate classifiers, we then tested

whether mouse tracking was the most accurate feature set (P2) using only random forest predictions.

Our second prediction partially held: mouse tracking was significantly more accurate than dwell

(t(93.01) = 2.17, p = 0.03) and ROI transition (t(97.99) = 13.09, p < 0.001), but was not significantly

different compared to all (t(97.83) = 1.68, p = 0.1). The non-significant difference between all and

mouse tracking may suggest that “all” accuracy primarily stems from mouse tracking and has nearly

no benefit from dwell and ROI transition features. Another important result was that the ROI

transition feature set performed significantly worse than the three other feature sets (all: t(97.91) =

11.67, p < 0.001; dwell: t(93.43) = 12.35, p = 0; ROI transition: t(97.99) = 13.09, p < 0.001).

While random forest mouse tracking classifiers were significantly more match-all accurate com-

pared to the other random forest classifiers, we also compared modal accuracies due to the small

in-practice accuracy differences between all, dwell, and mouse tracking features (Fig. 4.6). As before,

mouse tracking was significantly more modally accurate than dwell (t(86.93) = 25.97, p < 0.001)

and ROI transition (t(96.99) = 26.29, p < 0.001), and was also significantly more modally accurate

than “all” (t(96.88) = 7.45, p < 0.001). Although “all” includes mouse tracking features, mouse

tracking may have performed better because the ROI transition and dwell features could have been

maladaptive for predicting modal task labels.

Thus, these analyses indicate that random forest mouse tracking classification models were best.

Binary classification: detecting visual analysis

One remaining question after comparing model accuracies was whether certain task labels were more

difficult to predict than others. The previous analysis provided overall model accuracies compared to

expert-coded “groundtruth,” but did not elaborate on why model accuracies differ. Unfortunately,

answering “why” is challenging with our present results because of the number of labels. Therefore,

we framed our analysis of why accuracies might differ based on how easy it was for the classifiers

to detect the presence vs. absence of visual analysis tasks. Rather than consider 8 labels, classifiers

that use this simplified task/no-task representation need only consider two. We tested task/no-task

classification accuracy by retaining “junk”-label predictions as “no-task” labels and by transforming

the rest to “task-present” labels. If accuracies across the twelve binary models were to be universally

higher, it would signify that it is easier to distinguish whether there was salient visual analysis
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Figure 4.7: Means and standard deviations of task/no-task classifier accuracies after running each
model 50 times. Predictions were taken by transforming the earlier multi-class predictions into
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compared to differentiating what specific visual analysis task a user was undertaking. We predicted

that

P3 Binary task-present/no-task classification would result in higher accuracies.

We based P3 on qualitative inferences that “junk”-labeled logs generally have different looking

mouse trails compared to the other seven labels. For example, it is easier to differentiate an empty

log from one with lengthy interaction sequences, but it may be much harder to identify whether a

lengthy interaction sequence depicts undirected exploration or cross-referencing tasks.

We report both match-any and modal binary classification accuracies in Figure 4.7. As predicted

(P3), ranges for match-any and modal accuracies were both higher (match-any: 56%–91%; modal:

65%–85%). Random forest mouse tracking classifiers had the same match-any accuracy as modal

accuracy (82%). The best performing task-present/no-task classifier was random forest dwell, which

had both the best match-any accuracy (91%) and a modal accuracy (85%).

The smaller task-present/no-task accuracy intervals between match-any and modal accuracies

compared to octenary classification suggests that most of octenary modal error was due to er-

ror between non-junk labels opposed to confusion between the “junk” label vs. other labels (P3).

For example, random forest mouse tracking classification had no difference between accuracies in

task-present/no-task classification unlike in octenary classification. This difference in labeling confu-

sion between task-present/no-task and octenary classification is an important distinction because it

means that both binary and multi-class classifiers can be used as a method for pruning uninteresting

interaction logs that lack visual analysis tasks.

The support for P3 also suggest that it is more difficult to differentiate visual analysis tasks

from one another opposed to deciding whether an interaction log contains a visual analysis task.

We qualitatively validated this by visually exploring predicted “junk” labels and found that most

histories showed short or otherwise sparse interactions compared to more lengthy or short, but

consecutive, sequences of mouse events. Most often we found that no-task “junk” logs contained

interactions indicative of user-error such as “quickbacks:” logs where users immediately navigated

backward. In contrast, the other labels were often associated with longer-duration logs with greater

numbers of events, which creates a separable boundary between the “junk” and non-junk labels.
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Figure 4.8: Distribution of predicted task labels for the 1,267 logs that were not included in our
in-lab labeling study using a random forest classifier and “mouse tracking” feature set.

4.5.5 Exploring possible classification benefits to design

In this section we explore several possible ways that automated visual analysis task classifiers can

improve the iterative design process. Our aim is to provide insight about how MAGI is used,

to identify how this insight can be incorporated into iterative design, and to enumerate testable

hypotheses about cancer genomics visualization interaction, which can be used to inform future

design studies. Our discussion is based on exploratory analysis after using random forest mouse

tracking classification to predict analysis tasks for the remaining 1,267 logs that were not part

of our prior in-lab study (Sec. 4.4). While interpretation of these results is limited by a lack of

ground-truth, our previous analyses show that task/no-task separation, and therefore comparison,

is reliable. Additionally, we can be sufficiently confident in comparisons where there are large label-

count differences given classification error rates.

Prediction results are shown in Figure 4.8. Junk labels were the most common (326) followed by

cooccurrence and exclusivity analysis (287), undirected or all-encompassing exploration (253), and

targeted analysis (226). The other tasks were assigned smaller label amounts: copy number analysis

(2), other (12), cross referencing (45), and transcript chart analysis (113).

Understanding behavior via interaction frequency

Figure 4.8 shows that the aberration matrix was interacted with most frequently compared to the

other visualizations. This information provides several testable hypotheses about user behavior that
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can be used to inform future iterative design decisions. One possibility is that most researchers

use MAGI to test co-occurrence and exclusivity predictions and therefore use the aberration matrix

more than the other features of MAGI. Another possibility is that the aberration matrix is used

most frequently because its spatial positioning at the top of MAGI causes an availability or similar

spatial cognitive bias since it is the first chart users see on the query. Or, it could be that the

aberration matrix is used most often because of a combination of the two other possibilities. These

classification-based hypotheses lend themselves naturally to established iterative design evaluation

methodologies such as A/B testing, which could help MAGI designers understand whether the spatial

positioning of the aberration matrix is a large factor for its frequent use.

This location proximity effect might also be supported by the comparatively low interaction

frequencies associated with the copy number analysis task, which is located at the bottom of the

page. One possible explanation for this difference is that it may be partially subsumed by the

interactions in targeted look up or undirected or all-encompassing exploration given that the mouse

would need to move to access the visualization; however, anecdotally, we did not find that a large

number of interaction logs in those two labels displayed copy number exclusive behavior.

Which exploration strategy is more common: Top-down or bottom-up?

Two common visualization design heuristics are to support either top-down or bottom-up explo-

ration. Top-down strategies refers to Ben Schneiderman’s popular tool design mantra: “overview

first, zoom and filter, then details-on-demand” [173]. In contrast, bottom-up strategies refer to div-

ing into details first: “search, show context, [then] expand on demand” [196]. This is a critical point

for tool design because supporting detail-oriented, bottom-up exploration can often be at odds with

supporting top-down exploration.

The predictive classification results show it is likely that cancer genomics researchers use MAGI

for both top-down analysis tasks (e.g., “undirected exploration”) in similar proportion to bottom-up

strategies (e.g., “targeted search”). This is of interest because typical visualization design patterns

maintain that it is best to focus on dominant tool use patterns (e.g., Ziemkiewicz et al.’s evaluation

of immunobiology visualization [209]). Given this pattern, If MAGI were to be iteratively designed

using only typical in-lab methods with small samples, and evaluators found similar equivalence, the

results might seem suspect. In contrast, if designers found evidence of only one search behavior they

might be likely to use a representativeness heuristic and assume MAGI is only used in one way given
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typical design/evaluation perspectives.

However, through classifying our large collection of online tool logs, we avoid these pitfalls and can

see bottom-up and top-down use of MAGI are near-equal in occurrence. As such, both exploration

procedures should be supported in future design iterations. This raises an important design question

given the previous research by Ziemkiewicz et al., who suggested that visual analysis tools that seek

to support all analysis behavior may lead to substandard designs [209]. What, then, is the best

strategy for supporting tasks that are equally as common without creating two separate tools?

To address this open research question in the design of MAGI, we implemented and deployed a

new resizable and repositionable layout so that researchers can alter MAGI’s components to better

match their individual requirements.

Can classification counter incorrect generalization?

The predictive classification results were in many ways a surprise to us given past observations of

MAGI, which led us to expect that cross-referencing was a common and important task requirement;

however, our modeling suggests that this might not be true. The surprise that our prior observations

did not generalize to the larger collection of interaction logs is an example of how bias can affect

experimental analysis, which we also discuss in Section 4.5.5 with respect to overfitting search task

support. In particular, our revelation about cross-referencing task frequency highlights how human

tendency to use a representativeness heuristic when generalizing information [86] can be maladaptive

in design evaluation. The difficulty lies in the fact that most design studies typically rely on field

studies with small populations [20]. Because humans tend to generalize through representativeness,

which does not take sample size into consideration, it means that evaluators are likely to overfit task

requirements if they do not take extraordinary care. Based on our present findings we hypothesize

that interaction log classification can benefit iterative design and task requirement analysis by helping

counter sample biases in tool evaluation by showing the distribution of tasks for larger sample

sizes than what it typically attainable through in-person observation. By showing an alternative

hypothesis to tool evaluators, it is possible that evaluators could not just avoid jumping to incorrect

conclusions about tool use, but they might also make new discoveries about qualitative in-person

observations.

For this reason, we suggest supplementing in-lab observation with interaction log analysis of how

a tool is used remotely by a larger sample of users. By using both, designers can make detailed
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predictions with in-lab observations and better identify potential sources of bias by consulting the

interaction logs of larger tool-use samples. Pursuing this mixed-method evaluation design would

preserve the realism of field observations while also affording designers greater generalizability con-

fidence.

We advocate for a mixed evaluation approach given the relative strengths and weaknesses of

classification compared to historical qualitative inquiry. Classification can critically serve as a tool to

test in-lab ecological validity, and with the right data can paint a comprehensive picture of the types

of tasks a tool is most used for across its entire user population. We believe this will be even more

true if our simple classification approaches are replaced with more advanced approaches discussed in

Section 4.6. However, knowledge acquisition from such automated approaches is inherently limited

by the lack of context of interaction logs. Environmental factors, true ground truth, and the cognitive

state cannot be known — only inferred. In contrast, these shortcomings are what talk-out-loud

qualitative methods excel at collecting. Hence, even with the advent of more powerful task data

mining techniques, we believe qualitative evaluation will remain an equally as valuable, rather than

replaceable, aspect of tool design. The strength of classification should therefore not be tested by

whether such approaches can serve as a replacement to qualitative inquiry, but rather how they can

supplement it.

4.6 Broader impact and remaining questions

4.6.1 Generalizability of contributions

Our evaluation findings demonstrate that the usefulness of mouse interaction analysis generalizes

from text-dominant applications, like search, to more open-ended and unstructured scenarios that

are characteristic of visual analysis applications. We also note that while our evaluation used the

study of MAGI as a case study, our contributions are not limited in domain, and could be used

irrespective of application area.
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4.6.2 More accurate modeling may result in different types of generaliz-

ability and implications for design

While classification error is low enough in our evaluation to infer user behavior and possible design

implications, the development of more accurate classification could lead to more precise predictions

and discussion about the relation between tasks and effective design. One potential way to achieve

higher accuracy is to include an explicit feature selection step in future task classification pipelines.

An alternative potential approach to increase accuracy is to model tasks as mixtures. For example,

mixture models would break away from modeling only the most dominant session interactions, and

could provide more robust understanding of likely-heterogeneous tasks such as “all-encompassing

exploration.”

4.6.3 Can unsupervised learning achieve comparable accuracy?

Our present evaluation only considers supervised learning approaches, which leaves the potential

effectiveness of unsupervised approaches an open problem. This open problem can be tested in

the future by evaluating whether clustering based on geometric-temporal distances of interaction

segments [118] can accurately predict visual analysis tasks. However, one barrier to this approach,

which must also be examined, is how to best segment interaction logs into discrete components

that accurately represent stages of visual analysis. While it is possible that segmentation could be

skipped, it is unlikely that clustering would produce accurate results without it because of the large

geometric-temporal variability of entire minutes-long mouse movement between users. One benefit

to clustering, opposed to classification, is that the phylogenies produced by hierarchical approaches

could be used to test the quality of existing theoretical interaction taxonomies that are either based

on literature surveys or qualitative observation.

4.7 Conclusion

Our findings illustrate the potential utility of mouse interaction log analysis as a new method for

analyzing typically hard-to-access domain expert populations.

Using 1,553 interaction logs of MAGI, an online cancer genomics visualization tool, we first

showed through in-lab evaluation that low-level interaction data alone is sufficient for reliable task
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inference. We then discussed how accessible classification methods matched our in-lab study in-

ferrences with up to 73% accuracy and could separate interaction logs with visual analysis tasks

from those without with up to 91% accuracy. Unlike previous interaction log analysis research,

our investigation considered whether interactions could be inferred by humans and machines from

mouse event data opposed to higher level representations of interaction that explicitly contain richer

semantic information.

We advocate that domain expert tool evaluation can be improved by combining contextually-rich

qualitative observation with larger-scale interaction log analysis. By leveraging a mixed-methods

approach, tool designers can retain a deep understanding of the environment that their tool is used in

and the analytical goals their tool is used to achieve; they can then test specific task-based predictions

based on qualitative observation by analyzing interaction logs of larger population samples to assess

the ecological validity of their in-lab findings.



Chapter 5

The relation between visualization

size, grouping, and user

performance

A common goal when designing visualizations to support certain tasks is to consider how stylistic

choices might affect the legibility of information. Within the context of MAGI, for example, how

might increasing the number of samples in the aberration matrix – which decreases the horizontal

width of each column – affect a researcher’s ability to interpret information? The main contribution

of this chapter is the evaluation of how various types of visualization “size” can affect visual search

performance, which in turn is used to inform several guidelines to promote visualization design

legibility.

Our work is part of a broader effort to establish a theoretical definition of “effective visualization

design” by understanding how principles from visual perception can be applied to visualization [9, 12,

60, 70, 74, 96, 104, 186, 192, 206]. By establishing theoretical foundations such as how chart height

affects slope comparisons [185], we pave the way for future automated visualization style design

based on human-centered analysis considerations. For example, our later chapter on Colorgorical

(Chapter 6) applies previous theoretical foundations in color to create a tool that allows users without

This chapter is an extended version of a work that originally appeared in the Proceedings of Information Visual-
ization 2014 and in IEEE’s Transactions on Visualization and Computer Graphics as [48].

73
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design expertise to control the balance between color discriminability and preference.

Establishing the theoretical groundwork for such design recommenders is critical given the in-

creasing numbers of visualization design novices with the popularization of easy-to-use charting

software like SPSS, Excel, and Tableau. While on one hand these tools can be empowering, on

the other, design novices can easily create hard-to-read or misleading charts by making uninformed

design decisions (e.g., rainbow color maps [10, 153]).

In our evaluation of visualization “size” and search performance, we were interested in under-

standing how styling “size” could improve visualization tools that are used for rapid serial viewing,

in which search speed is especially important. For example, cancer genomics researchers typically

search through many charts using file system windows (Chapter 3) as quickly as possible when form-

ing hypotheses about certain genetic mutations. Improving target detection speed may help these

researchers spend less time weeding through data and more time on advancing our understanding

of cancer.

We tested this relation through two experiments. In the first experiment, we tested participants’

visual search performance when asked to find a uniquely colored square in a field of distractors. In

the second experiment, we tested search performance using the same task but with scatterplots.

One way that we apply the empirical relation between size and search performance to design

is through the creation of guidelines: Each guideline offers a method for visualization designers to

determine informed, scenario-specific balances between how much information is shown in a chart

while sustaining an acceptable level of legibility.

To better establish how these guidelines may map on to situation-specific visual analysis tasks

in cancer genomics research we also conducted a NASA TLX cognitive workload experiment with

three cancer genomics researchers.

Across these experiments, we make the following primary contributions:

• We describe how the grouping, quantity, and size of visual marks affects search time based on

the results from two experiments

• We report how search performance relates to self-reported difficulty in finding the target for

different display types

• We present design guidelines based on our findings to facilitate the design of effective visual-

izations
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• We present the results of a NASA TLX cognitive workload study that examined how size

affected the use of aberration matrix cancer genomics visualizations

In addition, we report the results of a multiple linear regression model constructed from stimulus

parameters, which explains 89% of the variance in response times from searching though grids

(Experiment 1). This model generalizes to response times from searching through scatterplots in

Experiment 2 (86% of the variance explained).

5.1 Related Work

The experiments described in this chapter contribute to the study of graphical perception – how

visualization usability is affected by visual attributes like grouping by color similarity, shape, and

size [25]. This section surveys the prior literature on graphical perception that forms the basis for

our research on size and grouping.

According to Eick and Karr, seven categories of scalability issues arise in data visualization: hu-

man perception, monitor resolution, visual metaphors, interactivity, data structures and algorithms,

and computational infrastructure [31]. Our work lies in their human perception and monitor resolu-

tion categories. Within the category of size perception, we define three subcategories: 1) scale, the

physical size of elements (i.e., zoom level); 2) quantity, the number of elements; and 3) aspect ratio,

scaling one dimension to shrink or expand elements. Each of these subcategories pertains both to

individual marks and whole visualizations.

The size of marks in visualizations has substantial effects on performance [178]. Studies of how

visual scale (i.e., zooming) influences user performance often focus on tasks involving navigational

maps. Work in this area dates back to cartographic research, predating information visualization.

For instance, Enoch found that visual search performance had steeper performance declines based

on visual angle when map size was 9◦ or less, compared to a shallower performance difference when

map size was greater than 9◦ [32]. More recently, Jakobsen and Hornbæk compared user navigation

performance when maps were displayed on monitors of varying sizes, causing the maps’ visual angle

to vary across displays [154]. Participants were asked to complete map-based navigation tasks across

various zoom levels. Performance was similar for users with medium-sized and large monitors, but

was better for those with larger monitors than with small monitors. This was true even after

controlling the quantity of information displayed [85]. They report dissimilar findings from Yost
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and North, who varied the number of elements relative to the monitor size and found no effect on

normalized performance time [206]. Jakobsen and Hornbæk suggest that the difference might be

due to variance in task difficulty.

A large body of literature in the psychology of attention reports how the quantity of elements

in visual displays influences people’s ability to find targets. Treisman and Gelade found that the

quantity of distractor elements had differential effects on search time, depending on the relation

between the visual features of the targets and distractors [194]. If a target (e.g., blue circle) differs

from a homogeneous set of distractor elements (e.g., red circles) on a single feature (e.g., color), the

number of elements has little to no effect on search performance. Visual search under such conditions

is considered to be preattentive, where all the elements are surveyed in parallel and the target “pops

out” (i.e., parallel visual search). If the target differs from a heterogeneous distractor set on multiple

features (e.g., a blue circle target among red circle and blue square distractors), visual search is serial

– people must exhaustively search all elements until they find a target. Parallel search is marked by

reaction time functions that have little to no slope as distractor set increases, whereas serial search

is marked by reaction times that follow robust positive slopes over set size. This distinction is useful

in evaluating users’ ability to “automatically” find target information in visualizations, given the

display parameters.

Further, visual search is more difficult when: 1) distractors more closely resemble possible targets

and 2) distractors have higher variability in visual appearance [29]. This difficulty due to increased

distractor variability is consistent with the claim that decreased coherence or order in a visualiza-

tion impairs performance [65, 98]. Additional evidence from studies using node-link diagrams and

adjacency matrices also indicate that response time increases as the set size and data density in-

creases [40]. Our study builds on these results by: 1) looking at a greater range and total number

of set sizes, and 2) investigating how set size could interact with grouping by color similarity [200]

and the size of marks.

Relating to this work, Haroz and Whitney provide visualization design guidelines based on how

color variability (i.e., the number of colors) and grouping affected the ability to find a target in a grid

of colored squares [60]. They found that participants were faster at finding targets in displays where

marks were grouped by color rather than randomly distributed. Adding additional color variability

to displays had little affect for grouped displays. However, the affect of adding color variability for

random displays depended on whether the target type was known before the start of each trial.
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If the target was unknown (“odd ball” task), performance slowed substantially as color variability

increased, whereas the performance decay was minor if the target was known. Unlike Haroz and

Whitney who focus on color variety and grouping, we investigated how effects of grouped vs. random

layouts influence performance as the size and quantity of marks increased. We predicted that the

minor difference in search time for grouped and random layouts found by Haroz and Whitney for

grids of 64 elements would increase dramatically as the number of elements increased.

Wolfe provides a survey on many other important visual search considerations when detailing his

“Guided Search 2.0” model [202]. Perhaps most relevant to this work, Wolfe discusses how the density

of marks influences search performance. For instance, greater density facilitates search performance

when the target type is unknown, but has little effect when the target type is known [13]. Related to

density, Palmer notes that set size can have a varying effect on performance due to numerous other

related factors such as eccentricity [137]. Our first experiment varies total display size with mark

size as spacing between marks was kept fixed across all conditions, however we have provided a view

of our results that highlights the relation between total display size and response time (Figure 5.4).

Our second experiment has a fixed display size for all trials. The present study adds to our knowledge

of how search factors such as set size can affect task performance; however, as Wolfe and Palmer

have shown, there are many remaining factors that information visualization researchers can use to

study performance.

Further research has examined how constraints in the visual system affect how observers interpret

scatterplots. Gleicher et al. show that users can effectively compare average values in multiclass

scatterplots even with dissimilar number of points between classes, additional distractor classes, and

with conflicting cues [41]. Fink et al. take a complementary approach to improving scatterplot

efficacy [36]. They found that their method for selecting scatterplot aspect ratio, based on Delaunay

triangulation, improved the accuracy of correlation and cluster detection within scatterplots. Where

Gleicher et al. examined value comparison in scatterplots and Fink et al. examined aspect ratios,

our study examines how the number and size of marks influences visual search performance.

Studies have also revealed that the aspect ratio of graphical elements affects user performance.

Looking at individual rectangles, Heer and Bostock found that people were more accurate at com-

paring the area of two rectangles when they departed from a 1:1 aspect ratio [70], although Kong et

al. found that performance was also poor for extreme aspect ratios [96]. Looking at whole graphs,

Talbot et al. found that the aspect ratio of line charts influenced people’s ability to compare slopes
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of lines [185]. Participants had more difficulty comparing two large slopes than two shallow slopes;

however, reducing chart height to reduce the physical angle of the two lines improved accuracy. In

contrast, Heer et al. found that people are better at comparing values in horizon graphs – a type of

time series visualization – with taller graphs rather than shorter ones [74]. Heer and Bostock found

similar results when looking at bar chart height, and further found that benefits of increasing height

plateaued with successively greater height increments [70]. Taken together, these studies suggest

that when the goal is to compare angles, visualizations should be shorter, and when the goal is to

compare area, visualizations should be taller.

An often challenging part of graphical perception research is designing experiments that capture

the complexity of real-world information visualizations. In an effort to improve the ability to capture

and account for such complexity in full, Rosenholtz et al. show how they were able to use compu-

tational approaches to assess grouping in design and demonstrate how their computational results

relate to traditional design rules [156]. We believe work such as this can provide the foundation for

creating computational techniques that give designers indicators when it would be useful to apply

certain guidelines discovered from graphical perception research.

5.2 Experiment 1: Searching through grids

In this experiment, we studied how visual mark size, the number of visual marks (set size), and

the color layout (grouping) influence the time taken to find a known target in a grid of squares.

In the experiment, participants were presented with colored grids (Figure 5.2) and were asked to

indicate which quadrant contained the purple target. This task is similar to Haroz and Whitney’s

“Find a Known Target” task, except they varied the target color across trials and their participants

indicated whether a known target was present/absent (without reporting its location) [60]. We

fixed the target color and used the quadrant localization task because the types of everyday search

tasks we are interested in optimizing involve localizing a single target type. For instance, cancer

genomics researchers routinely try to localize specific mutations in many types of visualizations such

as transcript charts and various distribution plots.

We note that although the use of response time as a dependent measure in visualization research

is controversial [79], it is an appropriate measure for our present objectives. We are most concerned
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Figure 5.1: Examples of experimental displays. Participants were asked to find a target (purple
square) in visualizations with varying mark sizes, set sizes, and color configurations. Figures not
drawn to scale.

Figure 5.2: Three example grids that were presented in Experiment 1. The left shows the single-
colored layout, the middle shows the group-colored layout, and the right shows the random-colored
layout.
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with understanding and optimizing tasks where users need to look through many series of visualiza-

tions and find a target as quickly as possible. We acknowledge that other measures (e.g., long-term

memory) are important in improving our knowledge of visualization usability, and that the goal of

a given study is paramount in choosing a dependent measure.

We predicted the following:

P1 Participants take longer to find targets in random-colored grids than in grouped- and single-

colored grids

P2 Set size and mark size influence responses to random-colored grids to a larger degree than to

grouped- and single-colored grids

P3 Responses are slowest when grids have large quantities of visual marks of very small or very

large mark sizes (e.g., a 14×14, 50 px condition)

We derive P1 and P2 from our prediction that visual search response time trends, due to pop-

out, will be uniform and parallel for single and grouped colored grids independent of changes to

visual mark size and set size. Related, we believe that random grids – which we predict do not

afford pop-out effects – will be influenced by changes in visual mark size and set size. We derive P3

from our belief that processing many small marks requires effort to differentiate and parse and that

processing many large marks requires effort from gaze shifting during search.

5.2.1 Methods

Participants

There were 15 participants (mean age 24.2 years, range 19-30 years) recruited from on-campus fliers

and university mailing lists. All had normal color vision (assessed with H.R.R. Pseudoisochromatic

Plates [59]). All gave informed consent and were compensated for their participation. The Brown

University Institutional Review Board approved the experiment protocol.

Design and Displays

Experiment 1 included two size factors: visual mark size (length of one edge of the square marks)

and mark set size (the total number of visual marks). The levels for mark sizes and set size were:

Mark size: {.254 ◦ (10px), .508 ◦ (20px), .762 ◦ (30px), 1.016 ◦ (40px), 1.271 ◦ (50px)}
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Set size: {6× 6, 8× 8, 10× 10, 12× 12, 14× 14}

Mark size is given in terms of visual angle, where 1 ◦ is roughly equivalent to 1.064cm. We limited

the maximum set size to 14×14 due to the resolution constraints of the testing environment’s monitor

while trying to maintain a diversity of set size and mark size conditions. We also tested three color

layout variations (Figure 5.2): 1) single-color, 2) 4-color grouped, and 3) 4-color random layouts.

In the single-color layout (Figure 5.1, left), the distractor marks were all the same color (see below

for color details). In the 4-color grouped layout, the distractor marks were spatially grouped by

color into four quadrants (Figure 5.1, center). In the 4-color random layout (Figure 5.1, right), the

distractor marks were randomly colored (equal numbers of each color except one color in which one

square became the target). The three color layouts crossed with the 25 combinations of set size and

mark size created the 75 main conditions. Henceforth, the 4-color grouped condition is referred to

as “grouped” and the 4-color random condition is referred to as “random.”

Within each color layout there were four variants. In the single-color layout condition the variants

were four distractor colors (red, yellow, green or blue). In the grouped layout the variants were

four different permutations of color group placement (e.g., in one condition red was in the top-left

quadrant but in another it was in the top-right). In the random layout the variants were for random

assignment of color positions. These variants were treated as replications because they were not

central to the aims of this study. We had an equal number of colored squares in the grouped and

random conditions (e.g., 10×10 grids had 25 squares of each color). This constraint guaranteed

that each quadrant in the grouped condition corresponded to a unique color. We placed the same

constraint on the random condition for comparability.

Each display type described above was presented four times so the target would appear an equal

number of times in each quadrant for each display type. The four target locations were treated as

replications.

The full experiment design included 1200 displays (5 mark sizes × 5 set sizes × 3 color layouts

× 4 color variants × 4 target locations). There was one replication of the full design (total of 2400

trials) to ensure that there were enough data to analyze participant reaction times. When averaging

all replications, there were 32 trials for each of the 75 main conditions for each participant.



82

Grid creation

The grids were generated individually for each participant using a Python script to create grid

data, which were rendered with a D3/Node.js script [11, 191]. The rendered squares were always

separated by a .127 ◦ (5px) gap, regardless of the other size conditions. The target location within

each quadrant was randomly assigned for each trial. However, we added a constraint that targets

could not exist on any of the four edges of the quadrant because targets falling on a border elicit

different results from those one or more marks away [193].

Color selection

Many researchers have shown how color selection is an important consideration when designing

visualizations. For instance, Healey et al. found that encoding search targets with a differing

hue can lead to more accurate responses [68]. Because of the relation between performance and

color selection, many have suggested color selection techniques to improve the usability of visualiza-

tions [65, 73, 104, 111]. Healey suggests a method to pick colors using the Munsell color model [67],

which closely resembles our color selection process. The colors we selected were: red, yellow, green

(Healey used green-yellow in his method), blue, and purple. We arrived at our similar colors in-

dependently. We achieved this by choosing a purple that had the most intermediate luminance,

chroma, and hue arc values of the chosen palette.

In Experiment 1, the target color was always purple and the distractors were blue, green, yellow,

and red (see Table 5.1 for CIE xyY and LCH coordinates). The reason for using only one target color

was described above (Section A.5), and the choice to make the target hue purple was arbitrary. All of

the colors were nameable and categorically different. The colors were all assigned different luminance

values, given that incorporating luminance contrast between elements facilitates legibility [178].

The purple target was set to have a mid-level luminance (30 cd/m2) with respect to the distractor

colors. The Michelson contrasts between the purple target and the blue and red distractors was +/-

16.5%, and the contrast between the purple targets and the yellow and green distractors was +/-

33% (see Table 5.1 for luminance values). The purple had a mid-level chroma, situated halfway

between the higher chroma red and yellow and the lower chroma blue and green (see Table 5.1).

The CIE L*u*v* coordinates were translated into CIE 1931 xyY space using an Illuminant D65

white point (x = .3127, y = .3290, Y = 100). These device-independent coordinates were translated
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Color x y Y Lightness Chroma Hue

Yellow 0.4393 0.4769 60.0 81.838 95 75
Red 0.4335 0.2982 42.0 70.871 95 5
Purple 0.2899 0.1933 30.0 61.654 83 295
Blue 0.1768 0.2373 21.5 53.492 71 225
Green 0.1903 0.4681 15.0 45.634 71 155

Table 5.1: Colors used in the study expressed in xyY color space and each color’s corresponding
lightness, hue angle, and chroma (LCH)

to monitor-specific RGB values so they could be accurately rendered on our calibrated monitor.

Each grid was displayed on a black background. Dark gray lines delineated the borders between

the four quadrants (CIE x=.3021, y=.3121, Y=12.43).

Procedure

The monitor was warmed up for 30 minutes before each test session to prevent color shifting dur-

ing the experiment. Participants first gave consent, completed the H.R.R. Pseudoisochromatic

Plates [59] color vision test, and filled out demographic information. The lights were then turned

off in the testing booth. The participants were told that they would be presented with a series of

grids, each containing a purple target, and their task was to indicate which quadrant contained the

target (i.e., top-left, top-right, bottom-left, bottom-right). To respond they used four labeled keys

on the keyboard numpad (one for each quadrant). The experimenter remained in the room while

participants completed 10 practice trials to answer questions, after which the experimenter left the

room. During the experiment participants were shown each of the 2400 grids one at a time in a

random order. Each grid remained on the screen until participants made their response. Each trial

was separated by a 500ms intertrial interval during which the screen was black except for a fixation

cross of the same color as quadrant grid lines. Short breaks were given after every set of 15 displays

and long breaks were given 25%, 50%, and 75% of the way through the study. Participants were

seated approximately 60 cm away from the screen and were asked to reduce any movement towards

or away from the screen; this was reinforced throughout the practice trials.

Equipment

We used an ASUS ProArt Series PA246Q Black 24.1” monitor (1920 × 1200 pixel resolution).

The monitor was characterized with a Konica Minolta CS-200 Luminance and Color Meter. The
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experiment was conducted through a locally hosted instance of Experimentr [62].

5.2.2 Results and Discussion

Before analyzing results we filtered the data using standard procedures for reaction-time datasets [148].

We first removed all trials where participants made incorrect responses because we were interested

in participants’ reaction times when they were successful in finding the target. The mean accuracy

across participants was 92% (range: 90%-93%). Upon inspection, the errors appeared evenly divided

across conditions, but there were too few errors for systematic statistical analysis.

We next removed outlier trials for each participant, defined as response times more than two

standard deviations away from the mean of all trials for that participant. The mean number of outlier

trials across participants was 89 trials (range 32-103 trials). Given that participants completed 32

trials for each critical condition, ample data remained after outliers and incorrect responses were

removed. Across all subjects and conditions 28 out of 34 trials were considered on average (range:

9-32).

Interaction between mark-set size and color layout

Figure 5.3 (left) shows the effect of set size on response time for each color layout condition, averaged

over mark size. For each color layout condition, we tested whether set size influenced performance

by first calculating the best-fit line for each subject and then using t-tests to compare the mean

slope of the best fit lines with zero. There was a robust effect of set size for the random color

condition (t(14) = 7.17, p < .001): participants took longer to find the target as the set size

increased. The positive slope indicates that participants used serial search until they found the

target. In contrast, the slope for the grouped- and single-color conditions did not differ from zero

(t(14) = 1.49, 1.76, ps > .05, respectively), indicating that participants used parallel search and the

target “popped out,” regardless of the number of distractors.

We next compared the random and grouped conditions to look at effects of grouping and set

size when the number of distractor colors was held constant at four. There was a robust effect of

color layout: response times were significantly faster in the grouped than in the random condition

(F (1, 14) = 403.96, p < .001). The magnitude of this difference varied with set size, as indicated by

a layout × set size interaction (F (4, 56) = 98.75, p < .001). The extent to which the random layout

slowed performance increased as the number of elements increased. Recall Haroz and Whitney’s
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Figure 5.3: Averaged response times for all color layouts for each set size. Bars show standard error.

report that grouping had a minor effect in their known-target condition (difference of roughly 100

ms) for their displays of 64 elements. We found a comparable difference for our displays containing

64 elements (91.2ms averaged over mark size), but the difference increased to 180.4ms for our

largest set size of 196 elements. Thus, color layout has a larger impact on displays with more data,

complementing Haroz and Whitney’s finding that layout has a larger impact on displays with higher

color variety.

This difference between the random and grouped conditions can be understood by considering

how the “number of distractors” is defined by the visual system. In the grouped condition, the same-

colored elements are grouped by color similarity and by common region (due to grid lines), causing

them to form four global “objects.” In this interpretation, the small squares can be considered

texture elements that comprise the four global objects [94]. Adding more texture elements (which

we have been describing as increasing set size) does not change the perceived number of distractors,

which is still four – one for each color group. If the number of global objects remains constant,

previous work on texture predicts little to no increase in response time with the addition of more

elements. Consistent with this interpretation, the average response time in the single-color layout

condition was faster than in the 4-color grouped condition (F (1, 14) = 6.09, p < .05).

Effects of mark size and its interaction with set size

Figures 5.4A,D, and G show the data from Figure 5.3 separated by mark size, with an individual

chart for each color layout condition. We see two main patterns in these data. The first is that

the lines within each color layout condition are roughly parallel, indicating that the effect of set
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size is similar for the different mark sizes. We tested this observation by first calculating the best-

fit line of each participant’s response time as a function of set size for each square length in each

color layout condition (the 15 lines in Figure 5.4A,D,G). We then conducted a one-way repeated-

measures ANOVA for the five slopes within each color-layout condition. The slopes for the different

mark sizes did not differ significantly within the single, grouped, or random color layout conditions

(F (4, 56) = 2.10, 1.64, .74, ps > .05, respectively). This analysis suggests that the effects of mark

size are independent of the effects of set size within each color-layout condition.

The second pattern is that response times for the smallest mark size were the greatest for all color

layout conditions, and that the effect of mark size on response time plateaus as mark size increases.

This pattern is clearer in Figure 5.4B,E,H where the rate of decline between adjacent mark sizes

decreases as mark size increases. For all color layouts we see the sharpest decline in response time

between .254 ◦ and .508 ◦ mark sizes, with subsequent slopes between other neighboring mark sizes

about half or less. This observation is supported by robust linear and quadratic contrasts in the

mark size factor for all three color layout conditions: random-linear F (1, 14) = 76.87, p < .001;

random-quadratic F (1, 14) = 56.10, p < .001); grouped-linear F (1, 14) = 11.54, p < .001; grouped

quadratic F (1, 14) = 83.71, p < .001; single-linear F (1, 14) = 95.21, p < .001; single-quadratic

F (1, 14) = 86.06, p < .001. The finding that performance is worst when marks are small and that

performance improvement plateaus as mark size increases is consistent with prior results. Heer and

Bostock found that comparing bar-chart values had similar plateauing advantages when increasing

chart height [70], and Jakobsen et al. found similar plateaus when increasing physical displays for

map navigation tasks [85, 154]. These findings only partially fulfill P3, as .254 ◦ lengths do have the

highest response time; however, 1.271 ◦ mark sizes have roughly the same response time as 1.016 ◦

mark sizes for all conditions. It is possible that P3 may still be supported by examining larger set

sizes.

We also plotted response time as a function of total grid length to examine the impact of adding

more data points given a fixed frame (Figures 5.4C,F,I). If a designer is working with a small

amount of screen real estate and with ungrouped data, our results show that while you can fit 196,

.254 ◦ elements in a slightly greater space as 36, .508 ◦ elements, doing so instills a large penalty to

performance.

The difference in search type (parallel vs. serial) shows that increasing set size is a barrier

to efficiency in noisily colored visualizations but a negligible influence in ordered or simply colored
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visualizations. There is also a significant interaction between mark size and color layout (F (8, 112) =

17.773, p < .001), where participants perform significantly worse in the random condition. These

two results taken together support P2, as increasing set size and mark size will slow response time

for randomly colored grids at a faster rate in comparison to grouped and single colored grids. As

seen in Figure 5.4, random layouts as a whole elicit slower response times in comparison to grouped

and single colored grids thus supporting P1.

It is possible that the response time trend in our results could be in part due to interactions

that Stone notes between color discriminability and size [178], however further testing is required to

determine such an interaction. The results of this experiment indicate that if data can be grouped

(e.g., by color) then search performance is not affected by the quantity of data marks. However, it

is not always possible to group data, such as in scatterplots where ordering cannot be altered. We

will will investigate the effects of mark and set size in less ordered displays in Experiment 2.

Predicting Search Time: Experiment 1

We used multiple linear regression analysis to better understand the relative importance of the main

factors in our study. The factors we used were grouping (1 or 0), set size (total number of marks),

log of mark size, and the number of colors (1 or 4). We chose to take the log of mark size for our

model because of the decreasing response time trend seen in Figure 5.4.

The model accounted for 89% of the variance in the data from Experiment 1. Grouping accounted

for the most variance (75%), log mark size accounted for an additional 7%, set size an additional

6%, and the number of colors did not account for additional variance. From this model we obtained

a regression equation, where RT is response time, g is grouping, l is the log mark size, and s is set

size: RT = 62.31− 127.36g − 83.17l + .30s.

Results in context

Haroz and Whitney showed that grouping counteracts large increases in response time for increasing

color and motion complexity; we corroborated this and add that grouping negates large changes in

performance for mark size and set size variation. Our results show that random grids are affected

by mark size and set size manipulation whereas single and grouped grids are not. We disagree with

Haroz and Whitney’s statement that the variety of visual features has a weak effect on response

time when people know what they are looking for. We think it more appropriate to say that prior
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Figure 5.4: Charts showing response times for each color layout in relation to set size (column 1),
mark length (column 2), and total grid length (column 3). The first row is random-, the second row
is grouped-, and the last is single-colored grids. Bars show standard error.

knowledge can reduce the magnitude of the difference created by pop-out, rather than that prior

knowledge eliminates pop-out and thus eliminates the differences between random and grouped

layouts.

5.3 Post-Experiment-1 Survey Results

We were also interested if participants’ perception of search difficulty mirrored their response times.

In particular we asked if, after completing the experiment, participants could intuit which grid

configurations were easier to use. To investigate this question, we gave participants a post-test

survey asking them to rate how difficult it was to search for the target in each grid. We tested the

orthogonal combination of all color layouts, mark sizes, and set sizes (3× 5× 5 = 75 trials). Grids

were rated from 1 (very easy) to 7 (very difficult). Grids were presented in a random order and had

randomized target location.

Results show that participants thought that grouped- and single-colored grids were always easier
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than random-colored grids (group vs. random: t(14) = 54.93, p < .001; single vs. random: t(14) =

73.93, p < .001). The most difficult grids were those with small marks or with large set sizes.

We evaluated how accurately participants could gauge visualization difficulty by correlating each

participant’s mean response time for the 75 grid types with their ratings of perceived difficulty. The

average correlation was .80 (range: .42-.92). We then tested whether the mean correlation was dif-

ferent from zero by first calculating the arc-hyperbolic tangent transformation on each participant’s

correlation coefficients to unconstrain their limits and then conducting a one-sample t-test. The

participants’ correlations were significantly greater than zero (t(14) = 12.17, p < .001), indicating

that visualization users can provide accurate feedback on difficulty relating to scale even if they are

not necessarily visualization designers. We believe that this means that asking novice visualization

creators – even those without design expertise – about usability issues relating to size can provide

accurate design suggestions. For instance, even if cancer genomicists might have difficulty designing

visualizations from scratch, if they are familiar with using the visualizations their assessment of

what is too small to use will be accurate. Researchers, such as Levin [108], have shown that people

are often poor at self-assessment. It is possible that this discrepancy could be due to the perception

of visual clutter (e.g., Rosenholtz et al. [155]) or graph complexity (e.g., Carpenter and Shah [21]).

However more research is required to deduce any such relations.

5.4 Experiment 2: Searching through scatterplots

In Experiment 2 we studied how search for a target data point in scatter plots is affected by variations

in the same factors from Experiment 1: 1) visual mark size, 2) the number of visual marks (set size),

and 3) color grouping. We designed this experiment to investigate smaller mark size and larger set

size combinations we thought might have greater performance differences based on our findings from

Experiment 1. While most of the set and mark size combinations in Experiment 2 are distinct from

those in Experiment 1, we included one overlapping condition to serve as a reference point. To test a

greater number of set size and mark size combinations, we omitted the single color condition tested

in Experiment 1 because the results from the single and grouped conditions were similar. We also

changed the grouped condition tested in Experiment 1 to a “semi-grouped” condition where there

is partial overlap between groups to make the data look more like natural scatterplots (rather than

distinct clusters). The colors in Experiment 2 are the same used in Experiment 1. Examples of the
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scatterplots used are shown in Figure 5.5. Our predictions for Experiment 2, based on the results

of Experiment 1, include:

P1 Random conditions will yield slower response times compared to semi-grouped conditions

P2 Response time will increase as set size increases

P3 Response time will decay as mark size shrinks

Although finding unique targets might be only a subset of analysis tasks in scatterplot use (e.g.,

brushing and linking), using scatterplots as stimuli has several advantages. The scatterplots we

created have high visual similarity to the grids used in Experiment 1. Ignoring the data that fuels

each type of visualization, if you eliminate row and column alignment of a grid and then vary mark

spacing, you get a scatterplot. This similarity is beneficial as it gives us a glimpse into how the

spatial ordering of marks might affect performance.

5.4.1 Methods

Participants

There were 16 participants (mean age 25, range 20-31 years) recruited from on-campus fliers and

a university mailing list. All participants had normal color vision as assessed using H.R.R. Pseu-

doisochromatic Plates [59]. All gave informed consent and were compensated for participation. The

experimental protocol was approved by the Brown University Institutional Review Board. One par-

ticipant was excluded from analysis because s/he took over two hours to complete the experiment

whereas other participants needed only 30-50 minutes.

Design

As in Experiment 1, we varied mark size and set size, but the values were different:

Length: {.102 ◦ (4px), .152 ◦ (6px), .203 ◦ (8px), .254 ◦ (10px)}

Set Size: {14× 14, 22× 22}

There were two color layouts, one in which the colors were semi-grouped and one in which

they were random. In the semi-grouped condition, the distractors that were the same color were

clustered together (see Plot Creation, Section 5.4.1, below and Figure 5.5) but were not perfectly
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grouped and separate from one another as in the grouped condition of Experiment 1 (see Figure 5.2).

As in Experiment 1, there were equal amounts of marks assigned to each color. The orthogonal

combination of these three factors created the 16 main conditions of interest. Other factors included

slope (positive, negative) and, as in Experiment 1, target quadrant location. Those factors were

included to provide additional control but were treated as replications because they were not of

central interest.

The full design included 128 conditions (4 mark sizes × 2 set sizes × 2 color layouts × 2 slopes ×

4 target locations). We included a 4x replication of the full design so that each of the main conditions

in Experiment 2 had 32 trials – the same number as for the main conditions in Experiment 1. With

replications the experiment had 512 trials. We chose a reduced number of trials after discovering

that a 1000-trial pilot study took prohibitively long. The 512 trial variant took participants up to

an hour to complete.

Plot Creation

The plots described above were generated individually for each participant using the same Python

and D3/Node.js pipeline as in Experiment 1. All data were generated from sampling a multivariate

normal distribution with four clusters. The data were then rotated to have a slope of y = x or

y = −x. After rotation we also imposed the constraint that no data point may overlap or touch.

This constraint ensured that each square corresponded to a distinct perceived object and that set

size remained constant within a given condition. Any points violating the constraint were removed

and new marks were generated until the desired condition for the grid was met. The target location

within each plot was randomized, and target placement was less restricted than in Experiment 1 for

greater ecological applicability. In Experiment 1 targets could only be placed in non-quadrant-edge

locations, whereas in Experiment 2 a target could be placed at any location. Color assignment for

grouped conditions was randomly decided for each group-colored plot. Frame size was fixed for all

plots at 20.612 ◦.

Color Selection and Equipment

The same colors and equipment were used as in Experiment 1.
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196 marks 484 marks

Figure 5.5: Two example scatterplots that were presented in Experiment 2. The left has 196 marks
and the right has 484.

Procedure

The procedure was identical to that in Experiment 1 except short breaks were given after every set

of 10 displays. We reduced the number of trials between breaks from Experiment 1 to account for

longer task completion time.

5.4.2 Results and Discussion

Before analyzing results we applied the same data filtering procedure as in Experiment 1. Accuracy

was lower in Experiment 2 (mean: 86%, range: 84%-87%), but still acceptable. The average number

of outlier trials across participants was 17 trials, with a range 10-26 trials. As in Experiment 1,

ample data remained after removing outliers and incorrect responses.

Interaction between set size and color layout

Figure 5.6A,C shows the effect of set size on response time for each mark size separately for the

random (A) and grouped (C) layouts. Like in Experiment 1, we tested whether set size influenced

performance by first calculating the best-fit line for each subject and then using t-tests to compare

the mean slope of the best fit lines with zero. Results match those from Experiment 1: there was an

effect for grouped color layouts (t(14) = 4.842, p < .001) and also for random color layouts (t(14) =
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Figure 5.6: Results from experiment 2 showing random layouts (top) and grouped layouts (bottom).
Bars show standard error.

3.813, p = .002). We also found a difference between the two color layouts (t(14) = 2.630, p = .020),

where random color layouts took longer. This supports P1.

We next compared random and grouped conditions to look at effects of grouping and set size.

As in Experiment 1 there was a robust effect of color layout, where response times were significantly

lower in the grouped than in the random condition (F (1, 14) = 19.803, p = .001). There was a

layout × set size interaction (F (1, 14) = 6.917, p = .02), in which the difference in response time

as set size increased was greater for the random condition than for the semi-grouped condition (see

Figure 5.6A,C). These findings support P2.

Effects of mark size and its interaction with set size

Figure 5.6B,D shows the effect of mark size on response time for each set size separately for the

random (B) and grouped (D) layouts. In Figure 5.6, we see the same main patterns in Experiment 1.

First, lines within each color layout are roughly parallel. Second, the response times for the smallest

mark sizes were the longest in both color layout conditions, and the effect of mark size plateaus as

mark size increases.

To test our first observation we calculated the best-fit line for each participant’s response times as

a function of set size for each square length in each color layout condition. We then conducted a one-

way repeated-measures ANOVA for the four slopes within each color-layout condition. The slopes for
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different mark sizes did not differ significantly within either layout condition (F (3, 42) < 1, p > .05,

for both layouts). As in Experiment 1, this analysis suggests that the effects of mark size are

independent of the effects of set size within each color-layout condition.

To examine our second observation we tested for linear and quadratic contrasts as a function

of mark size for each color layout condition. There were robust linear contrasts for both layouts

(grouped:F (1, 14) = 22.224, p < .001; random:F (1, 14) = 23.796, p < .001). There was also a

quadratic contrast for the random layout (F (1, 14) = 7.423, p = .016), and a marginal effect for the

grouped layout (F (1, 14) = 4.348, p = .056). These two observations support P3.

Self-Reported Experiment 2 Feedback

Many participants said that it was harder to find the purple dot when: (1) it was close to the axis,

(2) it was surrounded by various different colors (as opposed to within a cluster), and (3) it was

not an outlier. The comment that some found it easier to find a target when it was surrounded

by different colors was surprising given the results in Haroz and Whitney [60]; however, the other

feedback supports existing visual search knowledge proposed by Treisman [193].

Predicting search time

We applied the equation generated from the regression model in Experiment 1 (Section 5.2.2) to

test whether it generalized to predict response times in Experiment 2. We did not include the

number of colors as a factor because color was not varied in Experiment 2. The Experiment 1

model fit the Experiment 2 data well, accounting for 86% of the variance. Despite changing the

type of visualization, the set sizes, and mark sizes, both datasets reveal similar patters, in that both

show higher relative response times for random visualizations compared to grouped visualizations.

Although the exact equation generated from Experiment 1 might not be applicable to more complex

visualizations, we believe that the relative ordering of the factors (grouping, mark size, and set size)

suggested by our analysis will generalize. In future work, it would be beneficial to determine how

our findings might be incorporated into more robust predictive modeling, such as Rosenholtz et al.’s

model that detects groups in visualizations [156]. Other interesting directions related to a more

robust measure of grouping are to look at color surround of targets and to investigate how semantic

ramifications of groupings may influence target search in information visualizations.



95

5.5 Application Area Evaluation:

Cancer Genomics Visualization

One relevant domain is cancer genomics analysis. cancer genomics To understand the role of mark

size in this domain, we conducted a case study with two pairs of cancer genomic researchers

These particular scientists work with genome mutation matrices, which are tabular visualizations

where rows indicate genes of interest, columns indicate patients, and each cell indicates whether there

is a mutation (filled color indicates mutation present and the particular color codes cancer type) (see

Chapter 2.3). The data are from the TCGA Pan-Cancer initiative. To increase ecological validity we

used MAGI to present the mutation matrices, which all participants used in their everyday research

activities. During the study we varied the size of the visualizations and observed how they affected

perceptions of usability.

5.5.1 Methods

Participants

Four cancer researchers participated in the case study. All were either graduate students or post-

doctoral researchers in a computational biology program. We worked with participants in pairs (two

groups of two people) because that procedure has been shown to encourage dialogue and generate

more information from user studies [1]. The experimental protocol was approved by the Brown

University institutional review board.

To test how changes in size affected usability perceptions we used NASA’s TLX evaluation, which

measures an estimate of workload by participants to rate workload via six different factors [66]. We

also asked participants to rate the difficulty of each condition using the same 7-point Likert difficulty

rating scale from Experiment 1.

Design

We tested two mutation matrix cell sizes (.102 ◦ and .254 ◦ visual angle). The size order was coun-

terbalanced across participants. We selected these particular visual angles because (a) they corre-

sponded to the smallest and largest mark sizes in Experiment 2 and (b) they were the zoom limits of

the analysis tool. The mutation matrices are grouped by color (cancer type) in the tool we modified.
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Equipment and Materials

We used the same monitor as in Experiments 1 and 2 to present the visualizations and used printed

copies of NASA’s TLX evaluation and Likert scales. We additionally used Camtasia screen and

audio recording software to log tool use.

Procedure

After participants gave consent, we turned on the screen and audio recording software. We began by

interviewing the researchers about the type of tasks for which they used the analysis tool. We then

asked them to list sets of genes they found interesting and/or worked with frequently. Before looking

at their tool usage we asked each pair to go through a TLX familiarization task using displays from

Experiments 1 and 2, so that participants could ask questions about and become familiar with the

questionnaire. We then asked each pair to perform some of the tasks they listed earlier for each size

condition. After participants used both versions of the tool, we asked them to complete two TLX

evaluation sheets – one for each condition – and our Likert rating sheet. At the end of the study we

asked if the participants had any additional feedback.

5.5.2 Results & Discussion

All participants reported that they used mutation matrices for different analytical purposes based

on the size of the matrices’ cells. The smallest mark was always associated with global, overview

tasks (e.g., find exclusively occurring mutations), whereas a 6 px difference on our screen (.152

degrees) was always associated with detail tasks (e.g., what mutations a specific patient had). All

participants reported that it was undesirable to search through small marks for detailed information.

One participant even said that to avoid this issue in publications they use overview+detail views of

mutation matrices in figures. Similarly, it was equally undesirable to try to identify global patterns

like mutation exclusivity with large marks because participants would have to pan the viewport.

Nearly all of the tasks listed involved using multiple visualizations in the tool.

Further, all participants had difficulty assigning workload ratings given the dissimilarity of their

experience in the two conditions. On an evaluation, one participant wrote, “the two [sizes] provide

different views of the same data. I find that they are equally useful when applied appropriately to

relevant questions.” Because of this, we could not draw conclusions from the data. Likert scales
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showed little difference between conditions – the small condition mean was 1.75, the large condition

mean was 1.5, and all ratings were either 1 or 2. The average rating for grouped displays was 2.27 in

the post-Experiment 1 survey, which is similar to our findings given that the mutation matrices were

grouped by color. After the experiment, one participant said that in his/her research, the ordering

of mutation matrices had a large affect on how quickly he/she was able to find information in the

visualization.

The participants’ reports about task-switching based on the visualization size is consistent with

what is known about global vs. local processing. For example, when people are presented with

Navon letters (e.g., a global “H” constructed from small local “S”s) they are faster at reporting the

global letter when the display occupies a small visual angle and faster at the local letter when the

display occupies a large visual angle [93, 95]. This idea predicts that people should be faster at

finding local targets when the marks are large (as reported in Experiments 1 and 2 and described by

the case study participants), but conversely they should be faster at detecting global trends when

the marks are small. This also suggests that inappropriately sized marks create usability issues in

software and that size is an important design consideration for visualizations.

5.6 Other Potential Application Areas

Although the present study involved the evaluation of simple visualizations in a lab setting, we

believe our results can be applied to various tools currently used by analysts. One application area

of our results is in complex analysis environments such as those provided in Bloomberg Professional.

In Bloomberg Professional analysts often perform tasks involving multiple displays, multiple types

of charts and data, and must make decisions with time sensitive data. We hypothesize that in

complex analysis environments, fast search time can improve the analysis process by reducing the

time analysts spend weeding through data in favor of time spent on using located information to

generate hypotheses. It is possible that other financial software packages that do not rely on as

complex monitor configurations (e.g., Palantir Metropolis) can still benefit equally as much from

our findings. Other application areas include, but are not limited to, network security applications

(e.g., Traffic Circle [7]), financial security monitoring (e.g., WireVis [23]), and intelligence analysis

environments (e.g., Palantir Gotham).
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5.7 Design Guidelines

5.7.1 Group similar marks

People are faster at search through visualizations in which similar marks are grouped together (e.g.,

grouping by color similarity) compared to visualizations with little grouping. In some types of

visualizations it is impossible to group similar marks (e.g., one cannot decide where data are placed

in scatterplots). However, if the ordering does not matter in the visualization, such as in cancer

mutation matrices, treemaps, and even bar graphs, it is beneficial to group marks by similarity.

Designers should, however, be careful when applying this guideline that the ordering does not cause

other detrimental effects. For example, given a set of colors that encode data in a categorical

heatmap, the ordering of color may give the illusion of a continuous gradient even though the data

is categorical. It would be interesting to study if the benefits of ordering outweigh such illusions.

Another effect of ordering can be seen in our comparison of Experiments 1 and 2. The scatterplot

stimuli we tested in Experiment 2 were very similar to the grid stimuli from Experiment 1, with the

main difference being spatial location: rather than being arrayed in a tight grid, our scatter plots

had squares with varying distances and alignments to one another. Our preliminary comparisons

between types of visualizations suggest that spatial ordering of marks magnifies usability issues

related to the number and size of visual marks.

5.7.2 Avoid large mark quantities when data cannot be grouped

When marks are strongly grouped (e.g., by color similarity), search time is not affected by the

quantity of data. However, as visualizations become less ordered, the quantity of data marks becomes

scalar for search response time. Visualization summarization is often used to compensate for the

impossibility of showing all data in a visualization at once. Such scenarios can occur when there

is more data than pixels or when node-link diagrams become “hairballs” from a large number of

nodes and high connectivity. Our results suggest that even if all data can be shown at once, such

data reduction methods can be beneficial if the marks cannot be grouped. While summarizing data

might not make sense in every scenario – as summarizing the data could limit tasks other than

visual search that require a fuller representation of data – this guideline nonetheless gives designers

another tool.
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5.7.3 Use large (enough) mark sizes

In tasks that involve finding a target, avoid using small mark sizes (i.e., ≤ .508 ◦ visual angle) because

of the slow performance. The range of mark sizes most susceptible to slowing performance happen

to be the range of mark sizes used in typical scatterplots and marked line graphs. The importance of

choosing size is even greater when considering Stone’s findings that perceived color can differ based

on mark size [178]. However, the usefulness of increasing mark size plateaus with increasingly larger

mark sizes (Figure 5.4). Performance was roughly equivalent for marks whose visual angle ranged

from .762 ◦ to 1.271 ◦.

It is unclear what the effect of increasing mark size is beyond that tested in Experiment 1. One

possibility is that as sizes become larger there is a point at which response time increases due to the

need for users to move their head to view different parts of the display. This can become an issue

for large format visualizations, such as those that can be found in virtual reality.

We note that this design recommendation pertains to finding a single target within a visualization.

User reports from our case study suggest that if the goal for the visualization is to discern a global

pattern, then smaller marks can be better.

5.8 Limitations

Although our study examines the relation between grouping, mark size, and set size in depth, there

are numerous other factors that are involved in visual search performance for information visual-

ization. For instance, Stone has claimed that color can interact with size to affect legibility [178],

and it is unclear from the present results to what degree size was a problem due to its affect on

discriminability. One way to test this potential interaction is to control for color discriminability

at different sizes and see if the response times are similar to those found in Experiments 1 and 2.

There is also the question of target saliency in search. If the target in a grid were encoded with a

bright white, another salient color (e.g., pink [102]), or were blinking, then it is possible that current

effects of set size, mark size, and grouping would be diminished. Other potentially relevant factors

include density [13] or the amount of marks assigned to each color category.

Another concern is that we tested only a subset of sizes given our monitor, and it is unclear

how our results extend to larger visualizations (e.g., virtual reality). It could be that the observed

performance plateau extends into larger display configurations. If the curve is only due to color
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discriminability then the plateau should remain. However, it is possible that for sufficiently large

sizes there could be another factor that causes a dip in performance (e.g., head movement in virtual

reality). The slight upturn in the data for large set sizes in random displays (Figure 5.4B,C) hint to

this phenomena. Related, although we tested both fixed and varied spacing of marks (Experiment

1 and 2, respectively) the effects of spacing warrants further investigation.

We also note that the guidelines here apply directly to target search tasks, and further study

is necessary to determine whether they generalize to other types of tasks (e.g., average comparison

tasks [41] and correlation and cluster detection [36]). For tasks that consider global pattern un-

derstanding, it is possible that ideas from the ensemble statistics literature may prove useful (e.g.,

Haberman and Whitney [57]), as it is possible that ensemble parameters could influence global pat-

tern task type performance. Finally, how might our results transfer to continuous, not categorical,

data? We believe all of these points provide interesting future lines of research.

5.9 Conclusion

We explored how the color layout, quantity, and size of marks in a visualization can impact visual

search time based on the results of two experiments. Each experiment asked participants to search

for a unique target in colored visualization, where the first experiment tested various colored grids

and the second tested various scatterplots. We found that search performance was faster when colors

were spatially grouped. We also found that the number of marks had little effect on search time when

colors were grouped, but had a robust effect when colors were laid out randomly. Finally, we found

that the smallest mark size was always slower and that increasing mark size led to plateauing response

times. We assessed the difficulty associated with mark size beyond our quantitative experiments

through a post-experiment survey, finding that participants were accurate in rating how difficult

visualizations were. We also conducted a small NASA TLX cognitive workload study with cancer

researchers and found that even small design changes in size can have notable effects on usability by

altering what task associations users have with a visualization. These results led to several design

guidelines for improving visualization search performance. In full these contributions expand our

present knowledge of effective visualization design practices with respect to altering data density

and visualization size so as to support search tasks.



Chapter 6

Colorgorical: Creating

discriminable and preferable color

palettes for information

visualization

As described in our study of how visualization size can affect performance, visualization creators

often lack design expertise to make informed style adjustments to charts (Chapter 5). Rainbow

colormaps are perhaps the most extreme example of this, where people’s preference for creating

visualizations that are aesthetically pleasing to them without design expertise can lead to misleading

and hard-to-interpret charts [10, 153]. For example, Borkin et al. evaluated doctors’ accuracies with

different color maps when looking for a symptom of heart disease called endothelial shear stress

sites [9]. Using conventional rainbow-colored 3D imaging charts, doctors had 39% accuracy and had

62% accuracy when using 2D charts. In contrast, doctors’ accuracies were 71% (+32%) and 91%

(+29%), respectively, when they performed the same search task using better designed, non-rainbow

diverging color maps.

In this chapter we tackle a related, but separate, open research problem: automated categorical

This chapter is an extended version of a work that originally appeared in the Proceedings of Information Visual-
ization 2016 and in IEEE’s Transactions on Visualization and Computer Graphics as [49].
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palette design. As in other areas of design, it is important that a visualization color palette is

aesthetically pleasing; but, unlike many other areas of design, visualization color palettes must

also be highly discriminable. For example, it is important in MAGI that each cancer category

that is encoded with color is distinct from one another. Balancing discriminability and aesthetic

preference is challenging because they can be inversely related (i.e., preference increases with hue

similarity [165], whereas discriminability decreases). Navigating this tradeoff requires design skill

and experience, both beyond those of many visualization creators. Our primary contribution is

twofold. First, we discuss Colorgorical (Fig. 5.1) – a novel tool that can create arbitrarily sized

color palettes designed for visualization based on how important discriminability vs. preference is

for any given user. Second, we evaluate various Colorgorical settings and compare to tool to existing

industry standards.

Colorgorical operationalizes effective color palette selection with three color-scoring functions to

balance discriminability and aesthetic preference: Perceptual Distance (CIEDE2000) [172], Name

Difference [73], and a quantified model of color Pair Preference [165] (Sec. 6.2). A fourth, Name

Uniqueness, was originally included, but was later removed because it had little effect on behavior

(Sec. 6.5). With Colorgorical, color palette creation is simplified so that users need only specify the

number of desired colors and drag sliders controlling color-scoring function importance to (1) create

custom palettes that the average individual would find preferable while maintaining discriminability,

and (2) explore how relative weights on discriminability vs. preference affect palette appearance.

Users can further customize palettes by specifying desired hues and by building onto existing palettes

(Sec. 6.3).

We evaluated Colorgorical’s effectiveness in four ways: (1) runtime benchmarks (Sec. 6.3), (2)

discriminability and preference score analysis (Sec. A.5), (3) human-subject evaluation of different

model settings (Sec. 6.5), and (4) human-subject evaluation of Colorgorical compared to industry

standards (Sec. 6.6). We make the following contributions:

• We provide a technique to generate custom color palettes via user-defined importance of dis-

criminability and preference

• We detail the relations between Perceptual Distance, Name Difference, Name Uniqueness, and

Pair Preference scoring functions

• We show how varying the relative weights of discriminability and preference sliders affects
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human discrimination performance and preference ratings

• We present evidence that Colorgorical palettes are as discriminable and often more preferable

than industry standard, professionally hand-made color palettes

Colorgorical combines three features, making it a novel approach to palette design. First, it

is designed specifically for visualization rather than for general art and design applications. Sec-

ond, it uses empirically derived color preference data to inform categorical palette generation [165].

Third, it approaches visualization palette design by balancing categorical palette discriminability

and preference.

6.1 Related Work

Current color palette tools are typically designed based on three types of strategies: discriminability

optimization, color-term association mapping, or harmonic template application. We describe these

approaches and discuss how Colorgorical targets limitations of past research.

6.1.1 Palette discriminability methods

A key issue in palette discriminability is whether a graphical mark can be quickly and accurately

identified. Healey demonstrated that this problem can be addressed by using palettes whose col-

ors are named with the 10 Munsell hues and that maximize perceptual distance between colors

(CIEDE1976, Sec. 6.2) [67]. Maxwell also developed a discriminability-based technique to create

categorical color palettes for multidimensional datasets based on classification dissimilarity of cate-

gories [122]. These approaches created discriminable palettes, but each has multiple limitations for

design more broadly: (1) they do not address aesthetics, (2) Healey’s technique is constrained to

10 or fewer color terms, and (3) they define perceptual distance using Euclidean distance (Healey)

or maximum scaled difference (Maxwell) in CIELAB color space, which can be problematic due to

perceptual uniformity limitations [116] (i.e., the same distance can have different perceptual conse-

quences depending on the sampled region).

Colorgorical addresses these issues by (1) considering aesthetics in addition to discriminability

(Sec. 6.2) [165], (2) using 153 crowdsourced color terms compared to the 10 Munsell hues in Healey’s
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method, and (3) using an updated perceptual distance function (CIEDE2000) that improves per-

ceptual uniformity in the distance metric [172].

The color-name associations in Colorgorical are based on Heer and Stone’s color-name statis-

tics (Sec. 6.2) [73], which are derived from color-name association frequencies from the 153 most

commonly-used names from the XKCD color-name crowdsourcing survey [126]. Name Difference

measures the difference in color-name association frequency distributions between two colors. For

example, green and red colors have large name differences because green colors have few associations

with red names and vice versa. Presumably Name Difference is related to Perceptual Distance, but

it is possible that they differ systematically, which we test in Sections A.5 and 6.5. Name Salience,

which we call Name Uniqueness to avoid confusion with color salience, captures the degree to which a

color is specifically named (highly associated with only a few colors) vs. broadly named (moderately

associated with many colors) (Fig. 1 in Supp. Mat.).

Another approach to designing discriminable palettes is for color experts to make pre-defined

palettes (e.g., ColorBrewer [64]). Typically made through iterative design, experts construct these

palettes by selecting colors that are discriminable under a variety of viewing conditions (e.g., after

photocopying) and that support specialized tasks (e.g., ColorBrewer’s “Accent” palettes emphasize

certain colors). Although pre-made palettes are easy to use, they do not give visualization creators

design flexibility or customizability. And although guidelines for hand-designing palettes exist [207],

a visualization creator might not want to spend time or effort to learn about palette design. Color-

gorical addresses this problem by allowing customization while building in constraints on aesthetics

and discriminability; however, we leave support for specialized palettes (e.g., accent colors) for future

research.

6.1.2 Color-term tools

Another way to create categorical palettes is through color-term associations. Crowdsourcing and

linguistics-based approaches can produce color-term associations that create semantically meaningful

palettes (e.g., a “mango ice cream” category might produce a light orange) [111, 171]. Setlur and

Stone show that various natural language processing techniques can be used to mine color-semantic

pairings from large text datasets [171]. Colorgorical does not currently support semantic mappings,

but it is an exciting future direction.
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6.1.3 Harmonic template tools

Many harmony-based categorical color palette tools are targeted for general-purpose design and do

not focus on visualization design constraints (e.g., discriminability). These tools create palettes

based on harmony principles in color theory [127, 133]. A common implementation of harmony

is through harmonic templates based on hue relations [120], such as the two-color complementary

relation that stems from Itten’s version of harmony (e.g., blue and orange) [82]. For example, Adobe

Color creates 5-color palettes based on harmonic templates and optional image color analysis [132].

Similarly, Dial-a-color, uses harmonic templates as a starting point and allows users to alter color

properties like lightness and saturation [123]. ACE lets users manipulate discrimination and harmony

importance for interface design by answering a series of questions in a text interface about each

colored interface component [124] (unlike ACE, Colorgorical is not limited to interface coloration

and uses sliders to balance discrimination and aesthetic preference rather than a text interface).

Finally, the Harmonious Color Scheme Generator constructs color palettes through familial factors

(promoting similarity along hue, saturation, or lightness dimensions) and rhythmic spans (sampling

colors using a fixed uniform interval along a color dimension) [76].

Harmonic templates were generated from color theory in art without empirical validation [82],

and do not necessarily correspond to human judgments of harmony. For example, the notion that

complementary colors are harmonious is key to the notion of harmonic templates. Yet humans judge

complementary hues as among the least harmonious and instead judge more similar hues as more

harmonious [134, 135, 165, 184].

Although the term “harmony” is often used interchangeably with aesthetic preference [24], the

two are not the same [134, 165]. Schloss and Palmer demonstrated how they differ, where harmony

was defined as “how strongly an observer experiences the colors in the combination as going or

belonging together, regardless of whether the observer likes the combination or not,” and preference

is “how much an observer likes a given pair of colors as a Gestalt, or whole” [165]. Although

both increased with hue similarity, pair preference relied more on preference ratings for individual

colors and on lightness contrast, whereas harmony relied more on desaturation (i.e., pairs with less

saturated colors were more harmonious).

Colorgorical uses Schloss and Palmer’s pair preference model (Sec. 6.2) [165] rather than harmony

because we reasoned that how much people like visualization palette colors is more central to the
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present aims than how well they feel the colors go together.

6.2 Background: model scoring functions

Colorgorical iteratively samples colors using three color discriminability scores (Perceptual Distance,

Name Difference, Name Uniqueness) and a color preference score (Pair Preference). Colorgorical

assumes that discriminability and preference for large combinations of colors can be predicted by

these lower-order scores. Name Uniqueness was ultimately removed from the model because it had

little effect on discriminability performance or preference (Sec. 6.5).

Each score operates in CIELAB. The L∗ axis of CIELAB approximates a color’s lightness,

the a∗ axis approximates its redness-to-greenness, and the b∗ axis approximates its blueness-to-

yellowness. To support Name Difference and Name Uniqueness, we use a modification of CIELAB

that quantizes the space into 8,325 discrete colors by sampling every 5 units along each axis starting

at the origin [73]. Some scores also depend on CIE LCh, which is a polar representation of the

Euclidean CIELAB space. In CIE LCh, L∗ is the same as in CIELAB, but the a∗ and b∗ axis are

converted to chroma (C, radius) and hue (h, angle).

6.2.1 Color discriminability scores

We used multiple discriminability scores because perceptual difference might differ from name dif-

ference. For instance, a chartreuse (yellow-green) might be perceptually distinct from a green or

yellow but might be called green or yellow, making it easy to confuse with other greens or yellows

in a visualization when referenced by name.

CIEDE2000: Perceptual Distance

To calculate Perceptual Distance between two colors we use CIEDE2000 (DE00) [172]. It is similar

to the original CIEDE, DE76 (Euclidean CIELAB), but DE00 calculates distance in CIE LCh with

a hue rotation term (RT ) and corrections for lightness (SL), chroma (SC), and hue (Sh) to improve

perceptually uniformity [115].
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Figure 6.1: A Colorgorical screenshot. Here a user has specified a hue filter (left) and has generated
a 4-color palette (detail). Users can list colors in many color spaces and render colors in a variety
of charts.

DE76 =
√

∆L2 + ∆a2 + ∆b2 (6.1)

DE00 =

√

(

∆L

SL

)2

+

(

∆C

SC

)2

+

(

∆H

SH

)2

+ RT
∆C

SC

∆H

SH
(6.2)

Name Difference

Name Difference (ND) captures the degree to which two colors have distinct color-name association

frequency distributions [73]. Color-name associations are mappings between colors and names (e.g.,

rgb(255,0,0)→ “bright red”). The name data are composed of the discretized CIELAB color space

(C) described earlier, a list of 153 popular color names (W ), and a color-name association frequency

matrix (T ) that has C rows and W columns. The scores also rely on the conditional probability of

a color name w given any color in C:

p(w|c) = Tc,w/
∑

w

Tc,w (6.3)
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We calculate Name Difference using Hellinger distance [73]:

ND(c1, c2) =

√

1−
∑

w∈W

√

p(w|c1)p(w|c2) (6.4)

Name Uniqueness

Name Uniqueness (NU) captures the degree to which colors have uniform distributions of color-name

association frequencies. Colors that have few strongly associated names (i.e., a focal distribution)

result in lower scores, whereas colors that have many weakly associated names (i.e., a more-uniform

distribution) result in higher scores. Name Uniqueness is calculated by using the negative entropy

of a color’s name-association frequency distribution from the color-name-association matrix (T ) and

the list of color names (W ):

NU(c) = −H(p(W |c)) =
∑

w∈W

p(w|c)logp(w|c) (6.5)

Unlike the other two discriminability measures, Name Uniqueness relies on individual colors

rather than relations between other colors within the palette. We believe this is a key reason why it

was not useful in the Colorgorcial model (Sec. 6.5).

6.2.2 Aesthetic preference score: Pair Preference

Pair Preference (PP) is based on a linear regression model used to predict pair preferences from

three color-appearance and color-relation factors, which was previously operationalized in Munsell

space [165]. The best-fit model explained 53.5% of the variance in pair preference judgments with

three factors: coolness (κ), hue similarity ∆H, and lightness contrast ∆L. We have altered the

original equation to use CIE LCh rather than Munsell color space coordinates, as is reflected in

the hue similarity and lightness contrast terms1. Coolness scores are calculated in CIE LCh using

a linear interpolation of the original 32 color-coolness mappings, which approximates the number

of hue-steps a color is from Munsell 10R, such that greenish blues are cool and orangish reds are

not cool (Supp. Mat.). The Pair Preference scoring function reflects people’s preference for color

1The CIE LCh model explains 51.8% of the variance in Schloss and Palmer’s preference data (their Munsell-based
model explains 53.5%).
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combinations that contain cool colors that differ in lightness and are similar in hue.

PP(c1, c2) = 75.15(κ1 + κ2) + 47.61|∆L| − 46.42|∆H| (6.6)

6.3 Colorgorical model

Colorgorical generates color palettes using iterative semi-random sampling. Users specify the number

of desired colors and use sliders to set the relative balance of aesthetic preference and discriminability

(Sec. 6.2). Generated palettes are displayed to the user as a swatch, map, bar chart, and scatter-

plot, which highlights how the discriminability may shift with different types and sizes of graphical

marks [48, 179].

6.3.1 Minimum discriminability & preference assertions

Each palette is built from an 8,325-color discretized D65 CIELAB space (Sec. 6.2) and is additionally

filtered in three ways to help increase discriminability and preference, which we describe below: (1)

noticeable difference; (2) lightness clamping (from L∗ = 25 to L∗ = 85) and (3) filtering the dark

yellow (generally disliked) region of color space. Although the same RGB coordinates can result in

different CIELAB colors on different monitors if monitors are uncalibrated, Stone et al. show that

using a fixed correspondence between D65 CIELAB and RGB can be used effectively for online tools

in practice [179].

Discriminability The model enforces a lower discriminability bound by sampling noticeably dif-

ferent colors using Stone et al.’s noticeable difference function, which provides a minimum CIELAB

interval required to discriminate the colors of two graphical marks more than 50% of the time (based

on their physical size) [179]. We use a small, conservative visual angle in our calculations (1/3
◦
)

and multiply the function’s suggested interval by three for extra caution.

To ensure discriminability we also exclude colors that are lighter than L = 85 and darker than

L = 25 so that all colors are visible on black or white backgrounds (Lblack = 0, Lwhite = 100).

Colorgorical only includes RGB-valid colors.

Preference Colorgorical excludes the dark yellowish-green region of CIE LCh, which has strongly

disliked colors, on average, across many cultures [139, 187, 205]. We define this region as L ∈ [35, 75]
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and H ∈ [85◦, 114◦]. While there are individual differences in preference [138, 165] and some observers

may like these colors [167], the goal is to cater to the average observer. This filter was especially

important for generating aesthetically preferable discriminable palettes because of the way Pair

Preference and discriminability functions interact. In the Pair Preference equation, the coolness term

biases selection toward bluish hues and the lightness term biases selection of contrasting lightness.

The discriminability functions bias selection for colors that are far apart in CIELAB color space (i.e.,

contrasting hue and lightness). Once bluish hues are selected, discriminability would be promoted in

subsequent color selections by selecting opposite, yellowish hues of a different lightness level (opposite

ends of the b∗ and L∗ axes). If the blues are remotely light, then selected yellows will be the dark

yellows that people generally dislike. The removal of this region still retained a large region of color

space that was sufficiently discriminable to pair with blues, while increasing typical aesthetic palette

preference.

To maximize preference within a defined balance, the model generates 10 palettes and returns

the palette with the highest minimum-Pair-Preference given all color pairings in each palette.

6.3.2 User-defined model parameters

In addition to specifying the number of colors and manipulating discriminability and preference

sliders, users can also configure two optional parameters. First, they can limit color sampling to

certain hue ranges (e.g., reds only, or reds and blues), which supports tasks such as designing

around brand colors. Second, users can supply an existing palette for Colorgorical to build on. If

users provide a palette, Colorgorical rounds the input to the nearest quantized CIELAB color and

adds new colors until the palette reaches the desired size.

6.3.3 Palette construction process

Palettes are generated in three steps: (1) initialize, (2) start a palette with the first color, and (3)

iteratively add new colors (Fig. 6.2). Colorgorical can typically generate palettes with up to 22 colors

before exhausting color space. However, it is inadvisable to use that many colors due to perceptual

limitations [60]. If no more colors can be sampled, Colorgorical returns a partial palette and an

error message.
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INITIALIZE MODEL + QUERY

Load Data

Query
• Define the scoring function weights (Eq. 8) 

• Define noticeable difference

• Filter color space and start-color subspace

START PALETTE WITH FIRST COLOR

Filter starting colors to most preferable

Randomly sample start color, add to palette +

Remove indiscriminable neighbors from space

ITERATIVELY ADD TO PALETTE

Score all remaining colors in color space to palette
• Calculate scores for each color paired with each palette color

• Each color’s final score is the minimum of its palette-pairings

Filter color space to only the highest scoring colors

Randomly sample color and add to palette +

Remove indiscriminable neighbors from color space

RETURN PALETTE

IF palette complete

OR color space is empty

ELSE add another color

Figure 6.2: Diagram of Colorgorical palette construction procedure.

Step 1: Initialize

Initialization starts by loading CIELAB space, color coolness scores, and color-name associations

into memory. A CIELAB subspace is also loaded into memory, which samples every 15 units along

each CIELAB axis and is used along with a precomputed Pair Preference score matrix to pick the

first palette color. We use a coarser subspace to select the first color because using precomputed

Pair-Preference scores for all pairs of 8,325-colors takes too long for interactivity due to combinatorial

explosion. Color space can be filtered based on parameters provided by the user (e.g., hue filters).

After applying optional filters, the model limits the subsampled space colors (c) and the color pair

preference matrix (Φ) to highly preferable colors (i.e., no dark yellows) using a standard deviation

(SD) preference threshold (Eq. 6.7). The threshold removes any color-pair row from Φ whose pair

preference score is less than the standard deviation-based limit. Then, the starting color is sampled

from the unique colors remaining in Φ’s color-pair rows.

threshold(c) = Φc > max(Φ)− 0.75 ∗ SD(Φ) (6.7)

The last initialization step also defines a noticeable difference with Stone et al.’s CIELAB intervals

described above, which removes colors that are too similar to each sampled color. Sampled color

differences must have at least one axis above the following intervals: ∆L = 22.747, ∆a = 31.427, ∆b =
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44.757.

Step 2: Start palette

The first color of a palette is selected by randomly sampling a seed color from the remaining colors

after Step 1. Next, all colors that are not noticeably different from the seed are removed from color

space using the CIELAB intervals defined in Step 1. Sampling is skipped if users provide their own

seed color(s), but indiscriminable neighboring colors are still eliminated.

Step 3: Add to palette

To add a new color, the model computes scores for all remaining colors using a weighted sum

(Eq. 6.8). This function sums each of the four minimum palette scores (~Ψ) with user-defined weights

(~w), given all possible scores between a potential new color (c) and the already picked colors (P ). The

model uses minimum palette scores assuming that a palette is only as discriminable or preferable as

its lowest score. There is also a hue-dependent penalty term (τ) to reduce the likelihood of sampling

a color bordering the dark yellow filter region. The new color is then randomly sampled from colors

that fall above a score threshold (Eq. 6.7, where Φ is now weighted-sum scores). Non-discriminable

colors are removed after sampling.

score(c, P ) = τ(~w · ~Ψ)

τ =















































0.75, if 115◦ < chue < 138◦ ∧ cL ≤ 45

0.8, if 70◦ ≤ chue ≤ 115◦ ∧ 45 < cL ≤ 75

0.85, if 70◦ ≤ chue ≤ 115◦ ∧ cL > 75

1, otherwise

(6.8)

6.3.4 Implementation and Performance

Colorgorical is implemented in C-accelerated Python. To evaluate average model runtime (50 runs)

as a function of palette size (1 to 20 colors), we profiled single-palette generation on a Mid 2012

MacBook Pro Retina with a 2.6 GHz Intel Core i7 CPU and 16GB 1600MHz DDR3 RAM. Average

initialization time was 140ms (SEM = 0.004). If a palette was returned before reaching the required

number of colors, it was discarded and the test was run again. Runtime performance increased
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linearly in the number of colors such that adding a color increased runtime by 17.6ms on average

(Supp. Mat.).

6.4 Palette Score Evaluation

Before conducting human-subject testing, we first tested whether any of Colorgorical’s scoring func-

tions (i.e., Perceptual Distance, Name Difference, Name Uniqueness, and Pair Preference) could be

removed from the model to simplify its design without significantly affecting palette output. For

instance, if Perceptual Distance were to explain most of the variance in Name Difference scores, then

the Name Difference scoring function could be removed from the model with little effect on palette

output.

We examined the similarity among the four Colorgorical scoring functions using multiple linear

regressions to predict 39,600 palette scores for each palette scoring function (Sec. 6.2) from the three

remaining functions (e.g., predicting Perceptual Distance from Name Difference, Name Uniqueness,

and Pair Preference). Palette scores are the minimum palette scoring function output given all

color pairs in a palette. We use the minimum score because we assumed that a palette is only

as preferable or discriminable as its lowest pair. The number 39,600 stems from the full range of

possible Colorgorical slider settings and 3 palette sizes (66 settings, {3,5,8}-colors, 200 repeats). The

66 settings were made from the different unique combinations from dragging each of the four sliders

to 0%, 50%, or 100%, which ignore duplicate settings encountered when moving one or more sliders

to 0%.

We also examined how the four palette scores changed with palette size. Below we highlight

results and implications from our analyses, and the methods and full results are in Supplementary

Material.

Both Perceptual Distance and Name Difference were strong positive predictors of one another.

Name Uniqueness was always a weak negative predictor of the other scores. Pair Preference was

always a strong negative predictor of Perceptual Distance and Name Difference. Further, Pair

Preference was more strongly related to Name Difference than to Perceptual Distance. Given that

palette scores in each palette scoring function were significantly predicted by all three of the other

palette scoring functions, we concluded that each scoring function measured sufficiently different

color information to justify keeping them all in the model for Experiment 1.
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6.5 Exp. 1: Model human-subject evaluation

Experiment 1 tested how palette discriminability performance and preference ratings varied as the

relative weights on the Colorgorical sliders varied (i.e., the relative importance of each scoring

function; Sec. 6.3). We also identified which slider settings produced the most discriminable or

preferable palettes to prepare for a comparison between Colorgorical and current industry standards

in Experiment 2 (Sec. 6.6).

Experiment 1 used the same representative palettes as in Section A.5, which were analogous

to the slider settings produced by moving each to either 0%, 50%, or 100% for 3-, 5-, and 8-color

palettes.

Discrimination performance and preference were assessed using two difference tasks (Fig. 6.3).

In the discrimination task, participants reported which side of a map had more counties of a target

color, providing data on number of errors and response time (RT). In the aesthetic preference task,

participants rated how much they liked the color combinations in each palette. We predicted that:

P1 Palettes with fewer color would be more discriminable

P2 Discrimination RT and error would correlate in a strong negative direction with Perceptual

Distance and in a strong positive direction with Pair Preference, whereas preference ratings

would show the opposite pattern

P3 Palette size would modulate the discriminability and preference ratings associated with each

slider setting.

P4 Slider settings would significantly predict discrimination performance and preference ratings

P1 is based on previous evidence that visualizations with more colors are harder to process [60].

P2 extends Palette Score Evaluation findings that Perceptual Distance and Name Difference neg-

atively predicted Pair Preference. P3 builds on the first two predictions: based on P1 we expect

that palette size will modulate the discriminability of slider settings, and based on P2 we expect

that preference will be negatively correlated with discriminability. P4 makes two strings of assump-

tions based on the Palette Score Evaluation: (1) the trade-off between discrimination and preference

palette scores will extend to behavior (P2) and (2) the relative importance of scoring functions (i.e.,

slider settings) would affect behavior in the same manner as palette scores (e.g., a higher relative
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importance of Pair Preference will produce higher Pair Preference palette scores). By transitivity,

we predict that slider settings will be indicative of behavior.

6.5.1 Methods

Participants

77 participants completed the discrimination task and 60 completed the preference rating task

(recruited through Amazon Mechanical Turk, $3 compensation). Palette size (3-, 5-, 8-colors) was

a between-subjects factor. For quality control, we determined a priori to discard participants who

were < 60% accurate across all trials in the discriminability task (3-color: n = 3; 5-color: n = 6;

8-color: n = 8). No participants were discarded in the preference task. In the final datasets there

were 20 participants per palette size in each task, and discard frequency did not significantly differ

between palette size conditions (χ2(2) = 1.793, p = 0.408). All self-reported having normal color

vision and gave informed consent. The Brown University IRB approved the experiment protocol.

Design & Displays

The experimental designs for the discrimination and preference tasks were similar. In both, each

participant saw 660 palettes from 66 slider settings (see Sec. A.5.1 for setting information) with 10

different color palettes within each slider setting (treated as repetitions). The specific colors in each

palette varied across participants (simulating different runs of Colorgorical), but were generated

with the same experimental design. Palette size varied between-subjects (3, 5, or 8 colors).

The palettes that comprised the displays for the discrimination task were also used for the

preference task, such that each discrimination participant was yoked to a preference participant

(i.e., both saw the same palettes). Palettes were displayed on a predefined map of 554 counties in

the U.S. (300× 300 pixels). The map itself differed slightly based on the task (Fig. 6.3).

For the discrimination task, a 5-pixel-wide contour bisected the map (adhering to county bor-

ders). The contour was black and the county borders were white so that both would fall outside of

Colorlogical’s default lightness sampling range (L ∈ [25, 85]; LBlack = 0; LWhite = 100). The size of

the counties on each side were slightly altered so they were approximately equal (left: 165 px; right:

163 px). A legend rendered to the right of each map assigned each palette color to a nonsense word

category. The target “Neek” color was always at the top of the legend to prevent participants from
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Discrimination Example Preference Rating Example

not at all neutral very much

Neek

Blee

Kwim

Figure 6.3: Discrimination and preference rating task stimuli. The discrimination task asked users
which side had more “Neek” counties (← and → keys). The preference rating task asked users to
click on the slider.

having to search for the target color. One side of the map had over-represented target color (“Neek”;

1.5× more frequent on one side than the base rate) and the opposite side had an over-represented

distractor color (1.3× more frequent). The target side was left/right balanced across trials. Based on

our assumption that a palette is only as effective as its least discriminable pair of colors, the target

and distractor colors were always the palette colors with the lowest and second-lowest Perceptual

Distance scores compared with all other colors in the palette, respectively.

In the preference task, there was no dividing contour and no legend, the colors were roughly

equal in proportion, and they were randomly assigned to positions across the map (no left/right

asymmetry). Below the map there was a 300-pixel-wide continuous response slider scale ranging

from -100 to 100 with labeled extrema and midpoint (left: “not at all”; right: “very much”; mid-

point: “neutral”) [165]. The scale was initialized with the slider set to “neutral” to avoid biasing

participants.

Procedure

Discrimination Task. Participants were first presented with an example display and were told

that their task would be to indicate which half (left/right) of a map had more Neek counties using

the left/right arrow keys. They were also told that the target Neek color would always be shown at
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the top of a legend and that answers would be marked incorrect if they did not respond within 3.5

seconds. Participants completed five practice trials using distinct displays from the 660 test maps

they would see in the experiment, followed by 660 test trials. Maps were shown in random order in

the center of the window. Trials were separated by a 500-ms inter-trial interval with a fixation cross

displayed at the center of the screen. Optional breaks were given every 20 trials. This task took ∼30

minutes to complete.

Preference Task. Participants were asked to rate their aesthetic preference for the color combi-

nation in each palette by clicking a point on a slider between the left (“not at all” preferable) and

the right (“very much” preferable) ends (Fig. 6.3). To help them gauge what liking “not at all” and

“very much” meant to them in the context of these color combinations, participants were shown an

anchoring page containing 66 representative maps. They scrolled through the maps and considered

how they would rate each map while using the full range of the scale. During the experiment, each

map was presented one at a time in a random order (separated by a 250-ms blank pause screen). The

preference slider appeared 1 second after the map appeared to encourage participants to consider

their preference carefully before responding. This task took ∼40 minutes to complete.

6.5.2 Results and Discussion

Before analysis, we pruned response time (RT) data by removing incorrect trials and then eliminating

trials for each subject that were more than ±2.5 standard deviations away from their mean RT [147].

On average, 129 errors (19.5%) and 24 outliers (3.6%) were removed.

Overall participant accuracy decreased as palette size increased (3-color average error: 79/660;

5-color: 119/660; 8-color: 190/660), indicating that displays with smaller color palettes were more

discriminable (P1, P3). This result mirrored the increased participant discard rate for larger palette

size conditions due to high error rates (Sec. 6.5.1) and is consistent with previous findings that showed

visualizations with fewer color categories are more effective [60]. Between-subjects one-way ANOVAs

testing for effects of palette size (3, 5, 8) within each measure indicated significant effects for number

of errors (F (2, 57) = 30.801, p < .001) but not for RT or preference (F (2, 57) = 1.574, 1.035; p =

0.216, 0.362, respectively).
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Figure 6.5: Variance explained (R2) for the 9 models decomposed to look at the variance explained
of behavioral data in terms of slider settings (i.e., palette score relative importance).

Palette score and behavioral measure correlations

Figure 6.4 shows the correlations between each type of palette score (Perceptual Distance, Name

Difference, Name Uniqueness, and Pair Preference) and the three behavioral measures (RT, error

rate, and preference ratings), averaged over participants. Palette score refers to the lowest palette

scoring function value (Sec. 6.2) given all color pairs in a palette. To conduct these analyses, we

first binned the behavioral data for each measure according to palette scores (15 equally-spaced

bins) for each subject2. After, we averaged the data for all palettes that scored in the same bin and

then averaged those values across participants. This binning was necessary prior to averaging across

participants because each participant saw different palettes with slightly different scores (Supp.

Mat.). For example, RT for palettes with a Pair Preference scores of 30.03 and 30.05 would be

binned together.

We cross-checked the binned-score correlations by calculating the within-subject correlations for

each behavioral measure and palette score and then used Fisher’s Z transform prior to calculating

the between-subject average Pearson’s r for each measure and score combination. For the most part,

these analyses showed the same pattern of results as the binned correlation statistics (Supp. Mat.).

The binned-score correlations are presented below (see Supp. Mat. for individual correlations

2The degrees of freedom for 8-color perceptual distance correlations is one less due to an empty bin, which is shown
in the Supplementary Material.
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on non-binned data). In summary, the Perceptual Distance, Name Difference, and Pair Preference

scores had the predicted effects: RT and error rates decreased (i.e., better performance) as Per-

ceptual Distance and Name Difference increased, but they increased (i.e., worse performance) as

Pair Preference increased (P2). In contrast, preference decreased as Perceptual Distance and Name

Difference increased and they increased as Pair Preference increased. Name Uniqueness had little

to no effect.

RT. RT decreased as Perceptual Distance and Name Difference increased for 3- and 5-color palettes

(Perceptual Distance: r(13) = −0.926, r(13) = −0.757; p 6 0.001 respectively; Name Difference:

r(13) = −0.893, r(13) = −0.689; p 6 0.005 respectively). Similarly, Pair Preference followed P2 for

3- and 5-color palettes with strong positive correlations with RT (r(13) = 0.755, 0.776; p = 0.001).

Name Uniqueness was significantly correlated with RT for 3-colors (r(13) = 0.521; p = 0.046), but

not for 5-colors (r(13) = 0.306; p = 0.268). No scores were significantly correlated with RT for 8-color

conditions (r(12) = 0.496, r(13) = 0.251,−0.071,−0.193; p > 0.071 for Perceptual Distance, Name

Difference, Name Uniqueness, and Pair Preference respectively). These findings largely support P2

for 3 and 5 colors; however, 8-color palette correlations were not significant.

Error. Error rate correlations were significant for all sizes with Perceptual Distance (r(13) =

−0.887,−0.898, r(12) = −0.731; p 6 0.003, for 3-, 5-, and 8-colors respectively), Name Difference

(r(13) = −0.874,−0.892,−0.838; p < 0.001), and Pair Preference (r(13) = 0.697, 0.945, 0.761; p 6

0.004). Similar to RT correlations, Name Uniqueness was not significantly related to error measures

(r(13) = −0.016,−0.141,−0.126; p > 0.616).

Preference Rating. Preference rating trends were the opposite of error and RT, and consis-

tent with P2. Increasing 3- and 8-color Perceptual Distance reduced preference ratings, (r(13) =

−0.897, r(12) = −0.751; p 6 0.002) but not significantly so for 5-color palette (r(13) = 0.412; p =

0.127). Preference ratings also decreased as Name Difference increased for 3-, 5-, and 8-colors

(r(13) = −0.969,−0.57,−0.891; p 6 0.026, respectively). Increasing Pair Preference increased pref-

erence ratings (r(13) = 0.971, 0.57, 0.796; p 6 0.026). Again, Name Uniqueness was not significantly

related (r(13) = 0.346,−0.333, 0.073; p > 0.207).
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Predicting behavioral measures from slider settings

To test whether slider settings (i.e., relative importance of the palette scoring functions) significantly

predict behavior (P4), we performed a series of multiple linear regressions that predicted behavioral

measures as a function of changing sliders to 0%, 50%, or 100% (Fig. 6.5). Given that the corre-

lational analyses above suggested that Name Uniqueness had little effect on behavior, we averaged

slider configurations that would be equivalent if Name Uniqueness were ignored. For example, if Per-

ceptual Distance and Name Uniqueness were both set to 50%, the new setting would be Perceptual

Distance as 100% and would be averaged with other palettes where Perceptual Distance is 100%.

This reduced the regression analysis to predict 20 unique slider settings rather than the previous 66.

The data that were input to the correlations are graphed in the Supplementary Material.

Below we detail the results of the multiple linear regressions using slider relative importance to

predict the three behavioral measures. More information about the relation between sliders, size,

and behavioral measures is provided in the Supplementary Material. In summary, the slider settings

were typically able to significantly predict the behavioral measures (P4).

RT. RT decreased (improved) as Perceptual Distance and Name Difference slider weights increased

and RT increased (got worse) as Pair Preference slider weights increased (P4; Supp. Mat.). Name

Difference was always the most predictive and Perceptual Difference and Pair Preference were simi-

larly less predictive (Fig. 6.5). Although this pattern was present for all three palette sizes, the mod-

els were significant for the 3- and 5-color palettes (F (3, 16) = 23.442, 11.447; R2 = 0.815, 0.682; p <

0.001, respectively), but not the 8-color palettes (F (3, 16) = 1.267, R2 = 0.192, p = 0.319). The

lack of significance for 8-color palettes coincides with the oddity that response time was typically

faster for 8-color palettes than 5-color ones; this is unexpected, given (1) past visual search research

finding that more colors take longer to discriminate [60] and (2) the previously discussed palette size

relation with accuracy. We suspect that this difference may be because participants tried less hard

or the task became too difficult in the 8-color condition because they had higher overall error rates.

Another possibility is that pair-based color discriminability scores (e.g., Perceptual Distance) may

break down as the number of colors increases, which would create a need for higher-order combina-

tion discriminability scores. Each of these possibilities raise interesting future directions for studying

the relation between palette effectiveness and number of colors.
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Error. Slider relative importance analysis mirrored RT (P4; Supp. Mat.), except that Pair Pref-

erence was more important than Perceptual Distance (Fig. 6.5 and Supp. Mat.). The reason for this

difference is unknown. The multiple linear regressions for all 3-, 5-, and 8-colors were all significant

(F (3, 16) = 13.186, 11.964, 6.192; R2 = 0.712, 0.692, 0.537; p 6 0.005, respectively).

Preference Rating. Preference ratings increased with weights on the Pair Preference slider and

decreased with weights on the Perceptual Distance and Name Difference sliders (P4; Supp. Mat.

slider-behavior figure). Pair Preference was the most predictive slider for 3-colors, but not for

5- and 8-colors (Fig. 6.5 and Supp. Mat.); instead, Name Difference was most predictive. Per-

ceptual Distance was more important than Pair Preference for 5-colors, but was otherwise the

least important slider. The multiple linear regressions for 3-, 5-, and 8-colors were all significant

(F (3, 16) = 35.089, 7.396, 5.228; R2 = 0.868, 0.581, 0.495; p 6 0.01, respectively).

It is noteworthy that the model’s ability to predict preference ratings decreased for 5-colors rel-

ative to 3-colors, suggesting that the mechanism behind human aesthetic preference ratings may

deviate from pair-based preference predictions as the number of palette colors changes. Another

difference for 5-color palettes, compared to 3- and 8-colors, was that all settings were rated ei-

ther neutral or slightly negative. These results suggest that the assumption that pair-wise based

preference models generalize to palettes of three colors might break down for larger palettes. The

differences in preference ratings over palette sizes motivates the need for further research on the

aesthetics of higher-order color combinations.

We also found that preference ratings decreased faster as Name Difference relative importance

was increased compared to increases in Perceptual Distance relative importance (see Supp. Mat.).

This asymmetry might be caused by differences in how Perceptual Distance and Name Difference

measure distances in color space. It could be that Perceptual Distance is more supportive because

it can generate color pairs that differ primarily in lightness (which is one of the terms in Pair

Preference), whereas Name Difference might be more likely to favor differences in hue, which would

be in opposition to Pair Preference’s hue similarity term.

Lowest-Error and Highest-Preference settings

A main goal of Experiment 1 was to determine which Colorgorical settings to use to generate color

palettes for comparison against current standards (Experiment 2). The combinatorial explosion of
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conditions prevented comparing all slider combinations to current standards. Therefore, we chose

to select slider settings that either produced highly discriminable or highly preferable palettes (i.e.,

at either end of the previously-discussed discriminability-preference trade-off). Figure 6.7 shows

the lowest discrimination error setting (subsequently called “Low-Error” palettes) and the highest

preference rating setting (“Preferable” palettes) for each palette size. There were significantly fewer

errors for Low-Error palettes than for Preferable palettes (t(19) = 3.322, 7.589, 3.15; p 6 0.005, 3-,5-

,8-colors). Preference ratings were significantly greater for Preferable palettes than for Low-Error

palettes for 3- and 8-colors (t(19) = 4.610, 2.841, p 6 0.01), but not for 5-colors (t(19) = 0.499, p =

0.623) (consistent issues about 5-color palettes discussed above).

Summary

Experiment 1’s results largely support each of our four predictions and suggest that Colorgorical’s

sliders are effective at controlling the discriminability and preference of color palettes, although

some 5- and 8-color conditions led to unexpected behavioral results. Discriminability performance

typically improved (faster RT, fewer errors) as the Perceptual Distance and Name Difference palette

scores increased (and with greater weight on their corresponding sliders) and Preference judgments

typically increased as Pair Preference palette scores increased (with greater weight on its slider)

(P2). There was also evidence for a tradeoff – discriminability decreased as both Pair Preference

scores and scoring function weights increased, and preference judgments decreased as Perceptual

Difference and Name Difference increased. This finding supports our earlier claim that care must be

taken to design palettes that balance both discriminability and aesthetic preference. We also found

that Name Difference, not Perceptual Distance, might better predict discriminability. This would

also support Demiralp et al.’s previous findings that suggested Name Difference is a better measure

of color distance than Perceptual Difference [26].

Additionally, our results suggest that smaller palettes are more discriminable (P1), that palette

size modulates discriminability and preference ratings (P3), and that slider configurations signifi-

cantly predict behavior (P4). We provide additional analysis and discussion for each prediction in

the Supplementary Material.

Last, differences in discriminability and aesthetic preference trends across palette sizes motivate

additional research beyond pairwise theoretical models of color discrimination and preference rating.
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6.6 Exp. 2: Colorgorical-Others benchmark

Experiment 2 compares palettes generated by Colorgorical Low-Error and Preferable slider settings

to commonly used “benchmark” palettes (ColorBrewer, Microsoft Excel, and Tableau; Fig. 6.6).

We also included randomly sampled palettes with noticeably different colors to simulate palettes

made by someone without design expertise who tried to choose colors that were not confusable. We

predicted that:

P Colorgorical Low-Error and Preferable settings would produce palettes that are at least as dis-

criminable and typically more preferable compared to the majority of benchmarks

We based this prediction on expected outcomes of Colorgorical and benchmark palettes by applying

regressions modeled on Experiment 1 palette scores and behavioral responses to the palette scores of

Experiment 2 palette sets. As shown in Figure 6.7, Colorgorical palettes were expected to create more

preferable palettes, with the exception of Microsoft 5- and 8-color palettes, which were predicted to

outperform both Colorgorical settings. We also expected that Colorgorical would produce palettes

with error rates similar to Tableau across all three sizes. We specified planned comparisons to test

these predictions with the human-subject data from Experiment 1.

6.6.1 Methods

Participants

75 participants (recruited through Amazon Mechanical Turk; paid $1) completed the discrimination

task and 60 completed the preference task. All gave informed consent, and the Brown University IRB

approved the experiment protocol. All self-reported having normal color vision. 15 discrimination

participants were less than 60% accurate and were discarded, per Experiment 1 procedure (3-colors:

n = 0, 5-colors: n = 7, 8-colors: n = 8). Participants were divided equally across size conditions

(n = 20 per size), and there was a significant effect between discard rate and size (χ2(2) = 6.878, p =

0.032).

Design, Displays, & Procedure

Palette size (3,5,8) varied between subjects and the rest of the factors varied within-subject. Par-

ticipants in the discriminability task completed 96 trials (6 palette sets {Colorgorical Low-Error
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Palette Sets

3

5

8

ColorBrewer Microsoft Tableau Random Low-Error Preferable

ColorgoricalIndustry Standards

Figure 6.6: Exp. 3 palettes: ColorBrewer (Dark2, Pastel1, Set1, Set2); Microsoft (all); Tableau
(10, Blue-Red, Green-Orange, Purple-Gray); Colorgorical and Random palettes varied across par-
ticipants.
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and Preferable, ColorBrewer, Microsoft, Tableau, Random} × 4 palettes taken from each set × 4

repetitions). Participants in the preference rating task were presented with 24 trials (6 palette sets

× 4 palettes, no repetition).

The benchmark palette sets included four palettes from each palette group’s larger collection

(Fig. 6.6). Microsoft palettes included all four available palettes in Microsoft Excel for Mac (v.15.8).

ColorBrewer palettes included four of the eight available palettes, including those with the greatest

minimum Perceptual Distance and excluding palettes with niche purposes (e.g., “Paired”) [64].

Tableau palettes included the default Tableau 10 and the three palettes that were not designed

for niche applications. We created random palettes by randomly sampling discriminable colors in

RGB space for each participant (Sec. 6.3.3). All participants saw the same benchmark palettes

aside from random. Each participant was given different random and Colorgorical palettes to test

each palette type’s full potential variance. The Low-Error and Preferable palettes were made with

settings described at the end of Section 6.5 (Fig. 6.7). Otherwise, the design, stimuli, and procedure

were the same as Experiment 1. The discrimination task took ∼5 minutes to complete and the

preference rating task took ∼10 minutes to complete.

6.6.2 Results and Discussion

We focused only on error and preference rating data (not RT) because error and RT results in

Experiment 1 were similar and because we chose the Colorgorical palettes based on error rates and

preference ratings. All reported t-tests were paired sample and two-tailed.

We first conducted two 6 palette set (within-subject) × 3 palette size (between-subject) mixed-

design ANOVAs: one for error rates (averaged over replications) and a second for preference rat-

ings. For error, there were main effects of palette set (F (5, 285) = 3.538, p = 0.004), palette size

(F (2, 57) = 59.34, p < 0.001), and a 2-way interaction between them (F (10, 285) = 5.896, p = 0.01).

For preference ratings, there was a main effect of palette set (F (5, 285) = 13.235, p < 0.001) with no

effect of palette size (F (2, 57) = 0.258, p = 0.773) and no interaction (F (10, 285) = 1.283, p = 0.239).

As shown in Figure 6.7, error increased with size, but preference ratings were more stable as size

increased. Palette set differences are shown through the vertical separation of behavioral responses

across palette sets. Our planned comparisons below delve into these effects, and they largely support

the trends in our predictive models based on palette score with (although size does not show the

predicted effect for preference ratings).
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Colorgorical Low-Error vs. Preferable Palettes

We first tested whether the error and preference differences between Colorgorical-Low-Error and

-Preferable palettes replicated the results of Experiment 1. As in Experiment 1, the Preferable

palettes were preferred to the Low-Error palettes for 3- and 8-color palettes (t(19) = 3.573,−3.79; p =

0.002, 0.001;), but not for 5-color palettes (t(19) = −0.405, p = 0.690). There were fewer errors for the

3-color Low-Error palettes than for the Preferable palettes (t(19) = 3.286, p = 0.004), but there was

no difference for the 5-color palettes (t(19) = 0.195, p = 0.847). The only test that was inconsistent

with our previous findings was that error rates for 8-colors were lower for Preferable palettes than

for Low-Error palettes (t(19) = 2.113, p = 0.048). The reason for this result is unknown.

Comparing Colorgorical to industry standard palettes

We next tested our prediction that Colorgorical palettes would be as discriminable and typically

more preferable than the benchmark palettes. The tests were planned a priori based on predictions

from Colorgorical and benchmark palette scores described below (Fig. 6.7). We conducted 48 paired

two-sample t-tests comparing participants’ discrimination error and preference ratings within the

Colorgorical palettes and between the Colorgorical palettes and the four benchmark palette sets

within each palette size (Fig. 6.7).

Error rate. Based on the model predictions (Fig. 6.7), we expected that error would not signifi-

cantly differ between Colorgorical Low-Error palettes and all benchmarks except for Microsoft, where

we predicted that Low Error palettes would elicit fewer errors. For 5- and 8-colors we predicted that

Low-Error errors would be similar to Tableau, worse than ColorBrewer and Random, and better

than Microsoft. We made the same predictions for Preferable palettes, except that 3-color error

might only be as good as Microsoft, and 5- and 8-color error might be worse than Tableau.

Performance for Low-Error palettes was slightly better than expected. There were significantly

fewer errors for 5-color Low Error than for 5-color Microsoft (t(19) = 2.396, p = 0.027) and no

significant difference from the other benchmarks (t(19) < 1.628, p > 0.12).

Colorgorical-Preferable error also matched our predictions because there was always at least

one benchmark that had non-significantly different error rates compared to the setting (t(19) 6

1.898, p > 0.073). Unexpectedly, Colorgorial-Preferable palettes led to significantly lower error than

8-color ColorBrewer and Microsoft palettes (t(19) > 2.910, p 6 0.009). However, consistent with
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our predictions, 3-color Colorgorial-Preferable led to significantly more errors than ColorBrewer,

Tableau, and Random benchmarks (t(19) = 2.531, 3.644, 3.047; p = 0.020, 0.002, 0.007, respectively).

The fewer errors for random than for Colorgorical preferable may be surprising, but it is consistent

with our earlier observations. There is a high likelihood that three randomly sampled colors will

be far apart in our quantized CIELAB space, leading to very high discriminability but also low

preference. As the number of randomly sampled colors increases, discriminability decreases, as

shown in the non-significant comparisons to 5- and 8-color Colorgorical Preferable. Although the

Colorgorial-Preferable settings produced less discriminable results in some conditions (e.g., 3-color

error), there was always at least one benchmark that lacked significantly different error rates.

Preference ratings. We predicted that both Low-Error and Preferable palettes would be more

preferable in all comparisons except to 5- and 8-color Microsoft palettes (Fig. 6.7).

Low-Error was significantly more preferred than 5-color ColorBrewer and 8-color Random (t(19) =

2.784, 2.279, p = 0.012, 0.034, respectively) and was never significantly less preferred than the other

benchmarks (t(19) 6 1.781, p > 0.091). Colorgorial-Preferable palettes often led to significantly

more preferable palettes (8 of 12, all but 5- and 8-color Microsoft, 5-color Random, and 8-color

Tableau; t(19) > 2.105, p < 0.05).

Summary. Colorgorical Low-Error and Preferable palettes are almost always as discriminable and

often more preferable than the current standard visualization-specific categorical color palettes (P).

Low-Error palettes were sometimes more discriminable and more preferable or otherwise not signifi-

cantly different than the benchmark palettes. Similarly, Preferable palettes often led to significantly

higher preference ratings, and discriminability was not significantly different compared to at least

one industry standard for all sizes. Thus, Colorgorical allows users without design expertise to create

discriminable and preferable palettes that often do not have significantly different discriminability

and that sometimes are more preferable than current pre-made standards.

6.7 Open research areas

We found that Colorgorical palettes, based on models of aesthetics and discriminability, can be as

effective as expert-made visualization palettes and even more aesthetically preferable. These find-

ings lead to several future research directions. First, given that color combination discriminability
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and preference can be inversely related, how can discriminability and preference be automatically

optimized? Second, what alternatives to the current pairwise theoretical models might better pre-

dict discriminability and aesthetic preference for higher-order combinations (e.g., 5- or 8-colors)?

Third, how would color preference models that diverge from figure/ground preference alter palette

construction? For instance, how might Lin et al.’s preferable palette generation technique that learns

from artist-generated training palettes [112] compare to palettes made with Pair Preference? Fourth,

would the same results hold if hue filters are applied when constructing Colorgorical palettes? Fifth,

how might Colorgorical help designers foresee palettes that might be indiscriminable given color

deficiencies [149]?

6.8 Conclusion

We presented Colorgorical, a model-driven approach to generating categorical color palettes for

information visualizations by configuring palette discriminability and preference. Colorgorical uses

an iterative, semi-random-sampling procedure to generate palettes of a specified size. User-defined

configurations work by changing the relative importance of Perceptual Distance, Name Difference,

and Pair Preference scoring functions. Users can further customize palette creation by modifying

the number of colors, by defining which hues to sample from, and by providing an existing palette

to build upon.

The novelty of our approach stems from our departure from previous palette creation strate-

gies. Whereas previous palette creation tools focused primarily on discriminability or favored color

relations in harmonic templates whose empirical validity is questionable (e.g., Adobe Color [132]),

Colorgorical generates palettes with user-defined relative importances for discriminability and aes-

thetic preference (Sec. 6.2). Our color sampling approach also differs in strategy from pre-made

palette sets such as ColorBrewer, in which categorical palettes are generated by first choosing colors

representing different names and then varying each palette color’s value [17].

Empirical tests show that each of Colorgorical’s sliders, which are used to balance palette discrim-

ination and preference, measure different aspects of color (Sec. A.5) and modulate behavior as they

were designed to do (e.g., weighting discriminability sliders increases discriminability performance)

(Sec. 6.5).

Empirical tests that compare Colorgorical palettes and industry standards revealed that our
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model-derived palettes are as effective as, and sometimes better than, current categorical color

palette standards. Our findings also indicate that the number of colors may alter the effective-

ness of pair-based discriminability and preference scores. Colorgorical also improves upon industry

standards by giving users the flexibility to create their own discriminable and preferable palettes

while enforcing visualization design constraints. These results indicate that Colorgorical provides

an effective way to create categorical visualization color palettes. Colorgorical is open-sourced at h

ttp://vrl.cs.brown.edu/color.

http://vrl.cs.brown.edu/color
http://vrl.cs.brown.edu/color


Chapter 7

Conclusion

The purpose of this chapter is to integrate each thesis contribution into the larger context of vi-

sualization design research posed by our thesis statement, and to identify related future research

opportunities. We begin with brief closing remarks that discuss the potential broader impact of

this thesis. Afterwards, we explore how this thesis provides a platform to investigate topics such as

automating visualization stylization, expanding common definitions of “effective design,” and sup-

porting adaptive visualization design. We end with a discussion of the summative contributions of

this thesis, and how the contributions in this thesis support our thesis statement: “that visualiza-

tion design can be broadly empowered and improved through the creation of computational design

assistance tools based on new theoretical knowledge of graphical perception and task requirements.”

7.1 Closing Remarks

This thesis expands our knowledge of visualization design research and explains how graphical per-

ception and task requirements theory can be used to build effective design assistance techniques.

While expanding this knowledge, we also increased our present understanding of how visualization

is used in cancer genomics research and how to better design visualization tools to support cancer

researchers’ analytical workflows. Rather than replace the role of designers, we believe the advances

described in this thesis instead augment and enhance designers’ abilities to do their jobs by reducing

the need to perform under-defined, time-intensive, and often menial tasks. For example, design-

ers can quickly iterate through discriminable and preferable palettes with Colorgorical rather than

132
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spending a day trying to manipulate many colors in CIELAB color space. Although this thesis is

only a step towards realizing more complete visualization design automation, we believe it provides

a solid foundation from which future endeavors within and outside visualization design research can

be built from.

7.2 Looking forward: research opportunities and directions

In the closing of each previous chapter we briefly outlined testable predictions and other actionable

open research questions. Here, we hypothesize about additional, long-term open research problems

that extend beyond the smaller-scale possibilities we previously discussed and that immediately

build off of our thesis contributions.

7.2.1 Visualization tool design automation

Hypothesis: evaluating vision science principles in the context of visualization will im-

prove our understanding of how effective visualization design can be quantified. Psy-

chophysical phenomena like Weber’s law [63, 90] and Treisman’s “pop out” effect [48, 60] alongside

many other vision science principles have made it possible to begin quantifying what makes visual-

ization effective. We believe that these inquiries are only just scraping the surface of how we can

leverage psychophysical explanations to systematically understand what does and does not promote

effective visualization design. Future directions could cover topics such as potential interactions be-

tween attributes of visual appearance or into perception of changing visualizations. One possibility

might be further exploring the relationship between the size of visualization and various effects it

has on design effectiveness. In addition to the visual search work explained in Chapter 5, Stone

et al. investigated visual angle’s effect on color discriminability with similar “diminishing returns”

benefits as size is increased [177]. It would be interesting to further investigate this phenomena to

see if this is a more widespread psychophysical phenomena in graphical perception.

Hypothesis: graphical perception and scene decomposition can be leveraged to create

helpful style checking and recommendation techniques. Is is now possible to decompose vi-

sualizations into their graphical primitives [61], use these primitives to power novice-friendly design



134

tools [162], and to automatically recommend categorical color palettes that satisfy users’ own defi-

nitions of effectiveness (Chapter 6) [49]. Based on preliminary experimental data [169], we believe

that this line of research can be further extended to more robustly recommend visualization design.

Pursuing design automation along this vein could result in new scene-aware usability predictions

(e.g., accuracy), “style checking” warnings, and perhaps even provide alternative designs akin to

what Bricolage did for web design by automatically redesigning website themes [101]. While fully

automated redesign might be far away, it is possible that learning algorithms could decompose vector

formatted visualizations to predict visual analysis task accuracy, similar to how we predicted color

discriminability in Chapter 6. Similar techniques might be also used in conjunction with empirically

derived functions, such as Stone et al.’s noticeable difference work [179], to implement legibility

warnings or to identify designs that might not be viewable by those with color vision deficiencies.

7.2.2 Expand the usefulness of design principle contributions

Hypothesis: inclusive perspectives on “effective design” will better characterize the

growing diaspora of visualization audiences. Given that the field of visualization was largely

founded to support medicine, science, and intelligence operations, the bulk of design studies [170] and

other visualization tool evaluations have led us to formalize design recommendations skewed heavily

for domain expert populations. For example, in Chapters 3 and 4 we evaluated how domain expertise

diversity can affect cancer genomics research tool design. While important, it is unclear how domain

expert centered contributions apply to the growing prevalence of visualization in the day-to-day lives

of the general public (e.g., in The New York Times or at the doctor’s office). For example, Hakone

et al. found that although visualization interaction is often viewed as a safe way to improve data

comprehension, it instead limited elderly cancer patients’ understanding of personalized predictive

mortality models [58]. Similarly, visualization accessibility remains a significant issue: individual

differences such as color vision deficiencies or visual acuity are rarely studied despite the fact that

these differences can profoundly affect how data is understood, or if data can be understood at all.

Evaluating how effective design may differ for non-domain-expert, non-WEIRD (Western, educated,

industrialized, rich, and democrat), or otherwise atypical populations is both largely under-explored

and a critical area of study.
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Hypothesis: the utility of interaction task taxonomies can be evaluated through com-

putational interaction log classification. Organizing visualization interaction into taxonomies

and other structures is a perennially topical visualization design research area [14]. However, a grow-

ing point of discussion within the visualization research community is how to measure the utility of

these structures. These concerns largely pertain to how often taxonomies are predictively applied

and whether they are useful research contributions [97]. We believe it is possible to answer open

questions like these and work towards better and more effective interaction characterizations by im-

plementing established taxonomies into classification models or other machine learning techniques,

which in turn can be systematically evaluated. Such attempts could resemble our interaction log clas-

sification research and might also help address the aforementioned design generalizability concerns

by modeling requirements on larger, more representative tool user populations.

7.2.3 Dynamic and adaptive visualization design.

Hypothesis: combining design automation with task modeling will allow evaluators to

systematically test perceptual-behavioral nudging for visual analysis. Human decision

making is feathered with different kinds of heuristics that enable us to navigate uncertainty in the

world around us [195]. Finding ways to counter potentially maladaptive subconscious use of these

heuristics (cognitive biases) could improve the effectiveness of visual analysis and of visualization

design evaluation. For example, humans often use representativeness assumptions when looking at

data, which can lead to judgements affected by sample bias [86]. Chapter 4 provides preliminary

work in this direction within the context of performing more representative evaluation. Working at

a psychophysical level, Feng et al. also studied how visual cues could serve as nudges that increase

information space exploration during visualization use [35]. It would be interesting to incorporate

nudging with A/B testing to test whether cognitive biases can be avoided throughout the visual

analysis workflow by leveraging interaction log analysis.

Hypothesis: design automation and task modeling techniques can provide adaptive

support for situation-dependent task demands. Although computational design techniques,

such as those outlined in Chapters 4 and 6, help tool creators improve visualization design, this

iterative design process is still bottlenecked by revision and deployment speed. One interesting

direction would be to test whether this knowledge could be integrated into intelligent, adaptive
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visualization applications, such that interfaces could change along with a user’s environment. These

algorithms could build on existing augmented reality platforms, where visualization appearance could

dynamically updated as viewing conditions change. Another possibility would be to use measures

of cognitive workload, as explored in Peck et al.’s brain-visualization interface studies [142, 143], to

dynamically update visualizations.

7.3 Research Contributions

7.3.1 Overview of primary contributions

We provide a “Table of Contributions” in Table 7.1 to highlight each preceding chapter’s contribu-

tions and to highlight how each chapter supports our thesis statement. These research contributions

are founded on both qualitative (C1, C2, C9) and quantitative evaluation results (C4, C7, C11,

C12). The remaining primary contributions focus on how our improved theoretical understanding

of visualization design can be applied. In full, these primary contributions improve visualization

design by examining and developing new techniques to analyze visual analysis tasks within cancer

genomics research (C1–C6) and by evaluating graphical perception phenomena to discover effective

visual design practices (C7–C13).

In Chapter 3, our contributions extend the theoretical understanding of visualization tool design

challenges posed by the diverse research backgrounds and research goals that exist within cancer

research. This advancement is a product of a design study and task requirement analysis evaluation

that characterized how visualization tool design can better support cancer genomics researchers’

exploratory visual analysis workflows. Using this new understanding we also discuss how the design

of visualization tools might robustly support such diverse sets of requirements by analyzing direct

observations of how several cancer genomics researchers interacted with MAGI.

Chapter 4 expands Chapter 3 by evaluating how task requirements can be analyzed using simple

classifiers trained on annotated mouse interaction logs. Our findings validate that classification is a

reliable methodology for task requirement analysis and likewise show that humans are also reliable

at task inference from mouse interaction logs even without full analytical context. Importantly, the

classifier evaluation used MAGI interactions collected over a year, which simultaneously enhances our

knowledge of naturalistic cancer genomics visual analysis. Another key finding was that our newly

proposed “mouse tracking” features based on eye tracking methodologies outperformed established
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Chapter 3: A cancer genomics visualization task requirements analysis and design

study of MAGI.

C1 A MAGI design study that explains how MAGI supports cancer genomics visual-
ization needs.

C2 A task requirements analysis that identifies cancer genomics researchers’ visual
analysis needs across a variety of specializations (e.g., pharmaceutical industry vs.
basic science research).

C3 An exploratory analysis of MAGI interaction logs that suggest the design study
findings generalize to ecological settings.

Chapter 4: Evaluating visual analysis task classification to improve understanding

of cancer genomics domain expert use of MAGI.

C4 An evaluation of twelve automated visual analysis task classification accuracies
that found similar accuracy when compared to hand-coded task inferences made
by pairs of genomics and visualization experts.

C5 An exploration of common MAGI interaction trends using the predictions from
task classification, which supplements C3 to further our understanding of how
visualization is used in naturalistic settings by domain experts.

C6 A discussion of how iterative visualization tool design can be improved by our
mouse interaction log analysis contributions.

Chapter 5: The relation between visualization size, grouping, and user perfor-

mance.

C7 An evaluation of how human perception of grouping, quantity, and size affects
visualization search performance (i.e., one measure of visualization design effec-
tiveness).

C8 An analysis of how search performance relates to self-reported difficulty for differ-
ent types of visualization.

C9 A discussion of a NASA TLX cognitive workload study that found size can mod-
ulate perceived visualization-task associations.

Chapter 6: Colorgorical: Creating discriminable and preferable color palettes for

information visualization.

C10 An automated visualization design technique that creates categorical color palettes
based on user-defined balances of discriminability and preference.

C11 An analysis of how Perceptual Distance, Name Difference, Name Uniqueness, and
Pair Preference color appearance functions systematically differ.

C12 A first evaluation of how varying user-defined balances of discriminability and
preference affects palette creation and also human discrimination performance and
preference ratings.

C13 A second evaluation that found Colorgorical palettes are as discriminable and
typically more preferable compared to ColorBrewer, Microsoft, and Tableau color
palettes.

Table 7.1: A table of primary contributions for all preceding chapters, which highlights the ways in
which each chapter expands our present knowledge of information visualization.
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interaction models adapted from previous work in information retrieval and visual analytics.

In Chapter 5, we established several design principles to promote visualization legibility while

maintaining a high level of data density. These principles are founded on in-lab evaluations that

tested how the physical size of visualizations and how perceptual grouping of rendered data can

affect visualization search performance. To investigate how these low-level psychophysical findings

might effect analysis on a broader scale, we designed a study using NASA’s TLX methodology [66]

to measure cognitive workload. Our findings show that size can affect the types of tasks that users

might associate with visualization.

Last, in Chapter 6, we described a new technique for generating categorical color palettes based

on user-defined balances of color discriminability and aesthetic preference. The goal of this technique

was to reduce design barriers for visualization creators without design expertise who might struggle

to select custom color palettes when coloring many categories (e.g., cancer types or genes). We found

that this new tool and technique – Colorgorical – could make palettes that were as discriminable

and often more preferable compared to current industry standards (Microsoft, ColorBrewer, and

Tableau). As such, Colorgorical provides immediate benefits to visualization creators and expands

our conceptual understanding of visualization color palette effectiveness. It also establishes that

principles from vision science can be directly applied in computational tools in ways that reduce

barriers for novices to create their own custom visual stylizations while also minimizing the risk of

making poor visualization design decisions.

7.3.2 Supplementary thesis contributions

In addition to publication-focused contributions, we made a number of additional supporting contri-

butions that helped encourage the practice of effective visualization design. Although these efforts

did not necessarily expand human understanding of information visualization, they did improve prac-

titioner access to the frontiers of visualization design research. These types of technology transfers

are essential if visualization research discoveries are to improve tool development [18].

The first supplementary contribution is the creation of GD3, a genomics visualization library

that reduces implementation barriers for genomics researchers to create complex and interactive

genomics-specific charts. This library explored declarative visualization design patterns similar to

those that were later published as part of the Vega visualization programming language research

projects [164]. Related, we also aided in the development of MAGI (Chapter 2.3) by iteratively
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designing various interfaces and visualizations. Last, we released Colorgorical as an open-sourced

tool, which has seen widespread use by practitioners since its publication.

7.3.3 Summative thesis contributions

The overarching contribution of this thesis work is support for our thesis statement. Each primary

and secondary contribution above shows by example how research into visualization theory can in-

spire and inform visualization design assistance technique development. Specifically, we illustrate this

relation between discovering new knowledge and developing novel techniques for task requirement

analyses and graphical-perception-inspired visual design while working within a cancer genomics

visualization application area. Our primary contributions expand the frontiers of human knowledge

about visualization design research, and our secondary contributions help make these expansions

accessible to visualization practitioners by providing open sourced implementations. By adopting

a multidisciplinary and collaborative approach to research, the outcomes of this thesis provide new

tools and knowledge for fellow toolsmiths to improve their users’ visual analysis workflows.
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Appendix A

Supplementary Material,

Colorgorical: Creating

discriminable and preferable color

palettes for information

visualization

A.1 Overview

We present (1) additional, more thorough explanations of how each of Colorgorical’s palette scores

operate; (2) an analysis of how the scores are related to one another; (3) extended analysis of Exper-

iments 1 and 2; and (4) example palettes made with 20 representative Colorgorical slider settings.

We include supplementary figures and the tables presenting the statistics from our analyses.

This chapter is the supplementary material for an extended version of a work that originally appeared in the
proceedings of InfoVis’16 as [? ].
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Figure A.1: Name Uniqueness and Name Difference. High Name Uniqueness scores are focally
distributed color-name associations, whereas low Name Uniqueness scores are more uniform distri-
butions. Name Difference scores are proportional to the difference between color-name association
distributions. The blue and red example is large because there is little color-name association over-
lap.

A.2 Name Uniqueness and Difference score explanations

Both Name Uniqueness and Name Difference are color-term association statistics that were origi-

nally created by Heer and Stone [73]. The color-name associations map every color in a quantized

8,325-color CIELAB space to 153 popular color names, which was based on data from an XKCD

crowdsourcing experiment. Name Uniqueness refers to their “name saliency” statistic, which we

renamed to avoid confusion with color saliency.

Name Difference can be thought of as how much two colors’ association mappings overlap,

whereas Name Uniqueness can be thought of as how uniformly distributed a colors’ associations

are to the 153 names. Each scoring function is illustrated in Supplementary Figure A.1.
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Figure A.2: Interpolated coolness layered on chroma and hue from CIE LCh. The original Schloss
& Palmer coolness values are derived from how many steps each color used in the experiment used
to derive Pair Preference is from the color 10R in Munsell color space.

A.3 Interpolating the Pair Preference Coolness term

In Supplementary Figure A.2 we show the linear interpolation results that calculate coolness values

for CIE LCh space. The interpolated values are derived from the coolness values of the 32 Munsell

colors used in the original Schloss and Palmer pair preference in-lab experiment [165]. These values

were calculated by counting the number of steps each of the colors was from the color 10R in Munsell

color space.

A.4 Runtime performance

To evaluate model runtime with respect to palette size, we profiled single-palette generation with 1

to 20 colors 50 times each on a Mid 2012 MacBook Pro Retina with a 2.6 GHz Intel Core i7 CPU

and 16GB 1600MHz DDR3 RAM. Average initialization time was 0.14 seconds (SEM = 0.004). If

a palette was returned before reaching the required number of colors, it was discarded and the test
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Figure A.3: Runtime performance of Colorgorical for 20 palette sizes. Error bars show standard
error for each number of colors’ 50 tests.

was run again. Runtime performance increased linearly in the number of colors (S.Fig. A.3).

A.5 Palette Score Evaluation

The aim of this experiment was to assess whether the model could be simplified by removing redun-

dant scoring functions. For instance, if Perceptual Distance were to explain most of the variance

in Name Difference scores, then the Name Difference scoring function could be removed from the

model with little effect on palette output.

To examine how similar the four Colorgorical scoring functions were to one another, we tested

the degree of independence between palette scores. Palette scores are derived by taking the minimum

scoring function output given all color pairs in a palette. We use the minimum score based on our

model’s assumption that a palette is only as preferable or discriminable as its lowest pair.

We also tested (1) how the three discriminability palette scores compare to Pair Preference, and

(2) how each of the four palette scores changes with the number of colors in a palette. We predicted

that:

P1 All palette scores measure different color-relation information and are not redundant
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P2 Pair Preference would be a negative predictor of the Perceptual Distance and Name Difference

A.5.1 Methods

To test the full range of Colorgorical output, we created a representative set of 39,600 palettes.

This collection was made using 66 unique slider settings, which tested different relative importance

of scoring functions, and palettes of 3, 5, and 8 colors. The 66 settings are the different unique

combinations a user could make by dragging each slider to 0%, 50%, or 100%. The combinations

ignore duplicate settings encountered when moving one or more sliders to 0%. For instance, if three

sliders are turned to 0%, any non-0% position of the fourth slider would give it a relative importance

of 100%.

A.5.2 Results & Discussion

Before testing the relation between each of the four palette scores, we first plotted the distribution

for each of the palette scores across the different palette sizes (S.Fig. A.4). One noticeable trend is

that the palette scores decrease as a whole with respect to palette size. To test whether this trend

was significant we correlated each collection of palette scores with palette size ({3,5,8}-colors) and

found that each trend was significant (Pearson’s r(39598) = −0.667 (PD), -0.429 (ND), -0.267 (NU),

-0.727 (PP); p < 0.001). These trends might originate from a combination of two sources. First,

increasing the number of colors leaves successively fewer regions of available color pace to sample

from. Second, using wider swaths of color space increases the likelihood that there is a low score in

the exponentially growing number of color pairs in a palette. Using different aggregation techniques

(e.g., leave-lowest-out or averaging) might result in higher palette scores, but would also go against

our assumption that a palette is only as discriminable or preferable as the worst-performing pair

of colors in a palette. However, we believe that testing this assumption would be an interesting

direction for future research.

After, we tested whether Perceptual Distance, Name Difference, Name Uniqueness, and Pair

Preference palette scores were independent (P1). To evaluate this prediction we used multiple

linear regression analyses to predict palette scores as a function of the other three (e.g., predicting

Perceptual Distance with Name Difference, Name Uniqueness, and Pair Preference). We conducted

separate regressions for each palette size, resulting in 12 regressions (4 palette scores × 3 sizes)
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used to predict 13,200 palettes. For each regression, all predictors explained a significant amount of

variance (all F (3, 13196) > 1007.676, all p < 0.001; all t(13196) > 16.26, all p < 0.001).

Supplementary Figure A.5 shows the relative importance of the predictors in each regression

model [53]. Perceptual Distance and Name Difference showed similar trends in that both were posi-

tive predictors of one another, Name Uniqueness was a small negative predictor, and Pair Preference

was a large negative predictor. The largest difference between Perceptual Distance and Name Dif-

ference was that Pair Preference explained a much larger portion of Name Difference’s variance (and

vice versa; 3-Color ND predicted by PP = 46.1%; 3-Color PP predicted by ND = 48.9%). This

strong negative association could be linked to the hue similarity term in Pair Preference, which

might sometimes create a discrimination-preference trade-off (P2). These findings suggest that Pair

Preference is more strongly related to the Name Difference of colors than to Perceptual Distance.

We concluded from these results that each function measured sufficiently different color infor-

mation (P1) because a single palette score never predicted greater than 50% of variance in another.

Therefore, we kept all of the four scores in the model while generating the stimuli for Experiment 1.
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A.6 Exp. 1: palette score correlation with behavior

A.6.1 Selecting palette score binning widths

A large problem when correlating palette scores with behavior is the individual differences that occur

between subjects. Another problem is that near-scores are treated as separate values, leading to

uninformative correlations. To avoid both problems, we quantized each palette score into 15 bins.

Bin widths were calculated using the full range values over 3-, 5-, and 8-colors for each score. Our

goal when selecting the number of bins to use was to maximize the number of subjects who were

shown all bins. In other words, we wanted to avoid having bins with few subjects in them to improve

the consistency of analyses.

We first attempted binning using the Freedman-Dianconis rule, which resulted in 29 bins:

number of bins =

⌈

max(x)−min(x)

h

⌉

(A.1)

hF-D = 2
IQR(x)

n1/3
(A.2)

We also attempted binning using Sturge’s formula, which resulted in 13 bins:

hSturge = ⌈log2n + 1⌉ (A.3)

Our ultimate selection method relied on picking bins after charting different widths because the

Freedman-Diaconis rule resulted in many bins with few subjects for some sizes, and Sturge’s formula

was too coarse of a score description. We tested 10 to 30 bins in increments of 5, reflecting the

range between rounded Sturge and Freedman-Dianconis bin suggestions. The chart is shown in

Supplementary Figure A.6.

A.6.2 Correlation results

Binned palette score correlation results are shown in Supplementary Figure A.8 (Pearson’s r). An

alternative to our binning approach is to correlate within-subject unbinned palette scores with

behavioral measures, and then apply Fisher’s Z transform to average Pearson’s r between subjects1.

1Fisher’s Z transform converts correlation coefficient distributions to be more normal-like [125]
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A side-by-side comparison of the correlation results for each method is shown in Supplementary

Figure A.7. To test for significance in the individual correlations, we conducted one-sample t-tests

for each palette score within each size to compare the mean of the individual subjects’ correlations

against zero. The magnitude of Pearson’s r was smaller for the mean of the individual correlations

(S.Fig. A.7, left) compared to the correlations across means between the mean data (S.Fig. A.7,

right). The difference in magnitude is expected, given that averaging between subjects reduces

the noisy variance stemming from individual differences. Nonetheless, the pattern of results is

similar: 8 bars (of 36) are significant with binning that are not with Fisher’s transform, and 4 bars

are significant with Fisher’s transform that are not with binning (12 of 36 total). Both methods

show few significant Name Uniqueness correlations despite the number of false negatives and false

positives. Therefore, both correlation methods support our decision to remove Name Uniqueness

from further analysis.

A.6.3 Slider settings’ mapping onto behavior

To capture how manipulating sliders’ relative importances mapped onto the behavioral data captured

in Experiment 1, we created a set of Barycentric plots (S.Fig. A.9). Each facet of the plot shows a

different size × behavioral measure condition, and each circle is one of the 20 tested slider settings.

The triangle fill colors are the Barycentric interpolated values between each tested setting and

a thicker stroke indicates the Experiment 2 Low-Error and Preferable palette settings. Of note,

Perceptual Distance was more amenable to preserving preference ratings when increased. The neutral

preference rating trend across 5-color slider settings discussed in the primary manuscript is also

reflected, as is the 8-color response time drop off compared to 3- and 5-color response times.

A.7 Exp. 2: Supplementary Material

The full list of palette set means and standard errors for the Experiment 2 palettes are listed in

Table A.1.
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Figure A.8: Results from Exp.1 correlations between palette scores and behavioral measures for 3-,
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Size Palette Set Measure Mean Std. Error

3 ColorBrewer Error 1.1 0.27
3 Low-Error Error 1.05 0.303
3 Preferable Error 2.2 0.427
3 Microsoft Error 1.7 0.341
3 Random Error 1.25 0.307
3 Tableau Error 1 0.192
5 ColorBrewer Error 3 0.465
5 Low-Error Error 3.25 0.532
5 Preferable Error 3.35 0.319
5 Microsoft Error 4.3 0.459
5 Random Error 2.95 0.51
5 Tableau Error 3.3 0.493
8 ColorBrewer Error 5.8 0.421
8 Low-Error Error 5.45 0.359
8 Preferable Error 4.3 0.363
8 Microsoft Error 6.25 0.376
8 Random Error 4.6 0.505
8 Tableau Error 5.7 0.548
3 ColorBrewer RT 1474.66 78.458
3 Low-Error RT 1479.618 79.75
3 Preferable RT 1542.629 87.427
3 Microsoft RT 1568.527 94.217
3 Random RT 1454.229 79.477
3 Tableau RT 1453.156 81.904
5 ColorBrewer RT 1824.114 81.677
5 Low-Error RT 1875.154 83.546
5 Preferable RT 1858.203 79.526
5 Microsoft RT 1955.883 88.54
5 Random RT 1837.006 70.413
5 Tableau RT 1865.575 75.587
8 ColorBrewer RT 1769.46 78.733
8 Low-Error RT 1780.639 73.004
8 Preferable RT 1772.981 68.538
8 Microsoft RT 1755.502 96.269
8 Random RT 1719.034 77.138
8 Tableau RT 1770.159 87.515
3 ColorBrewer Pref. Rating -19.744 6.249
3 Low-Error Pref. Rating -11.369 8.321
3 Preferable Pref. Rating 32.644 8.56
3 Microsoft Pref. Rating -3.806 6.352
3 Random Pref. Rating -16.663 6.724
3 Tableau Pref. Rating -2.444 5.897
5 ColorBrewer Pref. Rating -22.837 8.374
5 Low-Error Pref. Rating 5.787 6.845
5 Preferable Pref. Rating 8.55 8.364
5 Microsoft Pref. Rating 9.312 8.181
5 Random Pref. Rating -7.1 7.205
5 Tableau Pref. Rating -6.45 5.692
8 ColorBrewer Pref. Rating -16.788 8.818
8 Low-Error Pref. Rating 3.25 8.119
8 Preferable Pref. Rating 24.038 7.715
8 Microsoft Pref. Rating 7.312 6.776
8 Random Pref. Rating -13.375 9.262
8 Tableau Pref. Rating -0.012 7.65

Table A.1: The mean and standard error responses for each palette set × size combination. Low-
Error and Preferable palette sets are the two Colorgorical settings included in Experiment 2.
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Size Measure t(19) p

3 Pref. Rating -3.573 0.002
5 Pref. Rating -0.405 0.69
8 Pref. Rating -3.79 0.001
3 Error -3.286 0.004
5 Error -0.195 0.847
8 Error 2.113 0.048
3 RT -1.513 0.147
5 RT 0.309 0.761
8 RT 0.221 0.828

Table A.2: Experiment 2 t-tests between Colorgorical Low-Error and Preferable settings. Negative
t-values favor Preferable.

A.8 Predictive comparison: Colorgorical vs. Tableau v.10

palettes

A year after running our Colorgorical evaluation, Tableau released an entirely redesigned collection

of palettes. To predict how these palettes might perform compared to Colorgorical, we applied our

previously described palette score linear regression models to these new palettes. We show results

in Figure A.10 alongside Experiment 2 data. Recall that in Experiment 2 we tested only a subset of

Tableau color palettes. As such, the predictive modeling results in Figure A.10 show predictions for

the tested subset, the entirety of old Tableau color palettes, and the entirety of new Tableau color

palettes. These results suggest that the new Tableau color palettes are predicted to, overall, have

similar error rates and preference ratings as the old Tableau color palettes.

A.9 Linear regression and t-test analysis results

The tables for Palette Verification and Experiments 1 and 2 linear regressions and t-tests are shown

in the tables below. All t-tests were paired and two-tailed.

A.10 Colorgorical output examples

Below are examples of the 20 slider settings that can be made by changing Perceptual Distance

(PD), Name Difference (ND), and Pair Preference (PP) sliders to 0%, 50%, and 100%. We left

Name Uniqueness at 0% given Experiment 1 results. Note that color appearance is slightly off,
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Figure A.10: A comparison of predicted error rate and preference ratings based on the new Tableau
color palette scores. The two left columns are the previously reported Experiment 2 results. The
right-most column are predicted results based on palette score. These predictions were generated
with the same linear regressions that we previously described in Experiment 2. Error bars show
standard error.
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Measure Colors Setting Benchmark t(19) p

Error 3 Low-Error ColorBrewer -0.139 0.891
Error 3 Low-Error Microsoft -1.628 0.12
Error 3 Low-Error Tableau 0.181 0.858
Error 3 Low-Error Random -0.525 0.606
Error 5 Low-Error ColorBrewer 0.665 0.514
Error 5 Low-Error Microsoft -2.396 0.027
Error 5 Low-Error Tableau -0.103 0.919
Error 5 Low-Error Random 0.603 0.554
Error 8 Low-Error ColorBrewer -0.649 0.524
Error 8 Low-Error Microsoft -1.417 0.173
Error 8 Low-Error Tableau -0.366 0.719
Error 8 Low-Error Random 1.342 0.196
Error 3 Preferable ColorBrewer 2.531 0.02
Error 3 Preferable Microsoft 1.097 0.287
Error 3 Preferable Tableau 3.644 0.002
Error 3 Preferable Random 3.047 0.007
Error 5 Preferable ColorBrewer 0.78 0.445
Error 5 Preferable Microsoft -1.727 0.1
Error 5 Preferable Tableau 0.101 0.921
Error 5 Preferable Random 0.867 0.397
Error 8 Preferable ColorBrewer -2.91 0.009
Error 8 Preferable Microsoft -3.456 0.003
Error 8 Preferable Tableau -1.898 0.073
Error 8 Preferable Random -0.501 0.622
RT 3 Low-Error ColorBrewer 0.163 0.872
RT 3 Low-Error Microsoft -2.935 0.008
RT 3 Low-Error Tableau 1.004 0.328
RT 3 Low-Error Random 0.825 0.42
RT 5 Low-Error ColorBrewer 1.311 0.205
RT 5 Low-Error Microsoft -2.147 0.045
RT 5 Low-Error Tableau 0.27 0.79
RT 5 Low-Error Random 0.594 0.559
RT 8 Low-Error ColorBrewer 0.309 0.761
RT 8 Low-Error Microsoft 0.457 0.653
RT 8 Low-Error Tableau 0.223 0.826
RT 8 Low-Error Random 1.639 0.118
RT 3 Preferable ColorBrewer 2.008 0.059
RT 3 Preferable Microsoft -0.536 0.598
RT 3 Preferable Tableau 2.171 0.043
RT 3 Preferable Random 2.009 0.059
RT 5 Preferable ColorBrewer 0.779 0.446
RT 5 Preferable Microsoft -1.804 0.087
RT 5 Preferable Tableau -0.156 0.878
RT 5 Preferable Random 0.312 0.758
RT 8 Preferable ColorBrewer 0.105 0.918
RT 8 Preferable Microsoft 0.349 0.731
RT 8 Preferable Tableau 0.063 0.95
RT 8 Preferable Random 1.761 0.094
Pref. Rating 3 Low-Error ColorBrewer 1.075 0.296
Pref. Rating 3 Low-Error Microsoft -0.697 0.494
Pref. Rating 3 Low-Error Tableau -1.193 0.248
Pref. Rating 3 Low-Error Random 0.629 0.537
Pref. Rating 5 Low-Error ColorBrewer 2.784 0.012
Pref. Rating 5 Low-Error Microsoft -0.385 0.705
Pref. Rating 5 Low-Error Tableau 1.687 0.108
Pref. Rating 5 Low-Error Random 1.781 0.091
Pref. Rating 8 Low-Error ColorBrewer 1.768 0.093
Pref. Rating 8 Low-Error Microsoft -0.372 0.714
Pref. Rating 8 Low-Error Tableau 0.301 0.767
Pref. Rating 8 Low-Error Random 2.279 0.034
Pref. Rating 3 Preferable ColorBrewer 4.439 < 0.001
Pref. Rating 3 Preferable Microsoft 3.375 0.003
Pref. Rating 3 Preferable Tableau 3.252 0.004
Pref. Rating 3 Preferable Random 4.416 < 0.001
Pref. Rating 5 Preferable ColorBrewer 3.434 0.003
Pref. Rating 5 Preferable Microsoft -0.064 0.95
Pref. Rating 5 Preferable Tableau 2.105 0.049
Pref. Rating 5 Preferable Random 1.821 0.084
Pref. Rating 8 Preferable ColorBrewer 3.072 0.006
Pref. Rating 8 Preferable Microsoft 1.581 0.13
Pref. Rating 8 Preferable Tableau 2.04 0.056
Pref. Rating 8 Preferable Random 5.2 < 0.001

Table A.3: Experiment 2 t-tests between Colorgorical and benchmarks.



Measure Colors R2 F (3, 13196) p βPD tPD pPD βND tND pND βNU tNU pNU βPP tPP pPP RIPD RIND RINU RIPP

PD 3 0.492 4262.806 * NA NA NA 0.16 36.358 * -0.083 -24.822 * -0.165 -23.019 * NA 0.248 0.052 0.191

ND 3 0.738 12411.646 * 0.571 36.358 * NA NA NA -0.215 -34.622 * -1.138 -117.653 * 0.233 NA 0.043 0.461

NU 3 0.186 1007.676 * -0.537 -24.822 * -0.388 -34.622 * NA NA NA -0.646 -36.408 * 0.065 0.076 NA 0.043

PP 3 0.701 10310.915 * -0.234 -23.019 * -0.45 -117.653 * -0.141 -36.408 * NA NA NA 0.193 0.489 0.018 NA

PD 5 0.343 2295.15 * NA NA NA 0.087 26.478 * -0.038 -16.259 * -0.206 -38.652 * NA 0.15 0.024 0.167

ND 5 0.508 4537.629 * 0.579 26.478 * NA NA NA -0.263 -47.172 * -0.884 -72.06 * 0.143 NA 0.086 0.277

NU 5 0.2 1096.931 * -0.521 -16.259 * -0.549 -47.172 * NA NA NA -0.808 -41.001 * 0.028 0.117 NA 0.053

PP 5 0.486 4155.721 * -0.494 -38.652 * -0.319 -72.06 * -0.14 -41.001 * NA NA NA 0.162 0.286 0.036 NA

PD 8 0.328 2148.682 * NA NA NA 0.042 17.753 * -0.058 -41.791 * -0.14 -40.325 * NA 0.1 0.108 0.119

ND 8 0.387 2775.101 * 0.561 17.753 * NA NA NA -0.211 -41.174 * -0.701 -58.12 * 0.099 NA 0.093 0.193

NU 8 0.274 1662.23 * -2.011 -41.791 * -0.54 -41.174 * NA NA NA -0.866 -42.72 * 0.115 0.105 NA 0.052

PP 8 0.369 2577.387 * -0.785 -40.325 * -0.291 -58.12 * -0.14 -42.72 * NA NA NA 0.121 0.201 0.046 NA

Table A.4: Linear regression tables for the 12 Palette Verification regressions that predicted palette scores in terms of the other three.
Relative importance is calculated with lmg in the “relaimpo” R package [53]. ∗ : p < 0.001
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Measure Colors R2 F (3, 16) p βPD tPD pPD βND tND pND βPP tPP pPP RIPD RIND RIPP

RT 3 0.815 23.442 < 0.001 -137.624 -4.485 < 0.001 -165.412 -5.39 < 0.001 17.627 0.574 0.574 0.211 0.357 0.246

RT 5 0.682 11.447 < 0.001 -81.807 -2.84 0.012 -126.571 -4.394 < 0.001 -2.646 -0.092 0.928 0.113 0.411 0.158

RT 8 0.192 1.267 0.319 -5.719 -0.411 0.687 -22.447 -1.613 0.126 -18.198 -1.308 0.209 0.029 0.108 0.054

Error 3 0.712 13.186 < 0.001 -0.488 -2.251 0.039 -0.85 -3.921 0.001 0.227 1.049 0.31 0.09 0.375 0.248

Error 5 0.692 11.964 < 0.001 -0.486 -2.001 0.063 -0.934 -3.85 0.001 0.224 0.924 0.369 0.073 0.39 0.228

Error 8 0.537 6.192 0.005 -0.267 -1.157 0.264 -0.568 -2.466 0.025 0.241 1.048 0.31 0.049 0.277 0.211

Pref. Rating 3 0.868 35.089 < 0.001 -6.754 -1.068 0.301 -20.665 -3.268 0.005 32.271 5.103 < 0.001 0.067 0.275 0.526

Pref. Rating 5 0.581 7.396 0.003 5.527 2.208 0.042 -4.013 -1.603 0.128 2.959 1.182 0.254 0.235 0.282 0.065

Pref. Rating 8 0.495 5.228 0.01 -0.876 -0.103 0.919 -15.615 -1.837 0.085 12.843 1.511 0.15 0.021 0.254 0.22

Table A.5: Linear regression tables for Experiment 1 that predicted participants’ Response Time, Error, and Preference Rating as a function
of Perceptual Distance (PD), Name Difference (ND), and Pair Preference (PP) slider settings. Relative importance is calculated with lmg in
the “relaimpo” R package [53].
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given that Colorgorical designs RGB palettes (figures in both this document and in the primary

manuscript are rendered in CYMK). As such, we include palette color D65 CIELAB coordinates to

the right of all palettes.
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Appendix B

Supplementary Material,

Evaluating visual analysis

interaction classification to improve

understanding of cancer genomics

domain experts and their tasks

B.1 Overview

In this supplemental material we provide additional context for related background material and

our log culling procedure.
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B.2 Additional background on historical log analysis tech-

niques

In Chapter 4.1 we briefly mentioned previous clickstream research. Here, we specifically enumerate

previous contributions given their importance in the development of interaction analysis and their

important historical context.

The rise of internet search engines caused a large effort in understanding users online behavior

as a way to optimize search ranking results for individual users. Although clickstreams are funda-

mentally different than our mouse-based approach, it is important to mention this past work given

their historical importance. Clickstream analysis typically models user navigation as a graphical

representation, similar to our region of interest feature set, and has modeled web page browsing

through a variety of methods. Researchers have modeled web browsing behavior with clickstream

data using techniques such as longest repeating subsequence analysis [144], decision trees [37], pat-

tern extraction [37], various types of Markov and other graphical models [75, 158], neural nets [4],

and clustering [71, 199]. Some, like Liu et al., have also explored how these pattern extraction

techniques can be paired with visual analysis to empower analysts’ abilities to uncover important

user behavior [114]. Given the breadth of clickstream research, and its importance to search, these

are but a few articles from a much larger literature. For an overview of other historical clickstream

and related server-based log analysis contributions, we recommend Ivory and Hearst’s survey [83].

B.3 Additional interaction log culling information

One caveat with our MAGI interaction log collection was that we also collected a large amount of

logs with few or no interaction events over our year-long data collection period. While it was easy

to remove logs without any events, identifying a “too few” threshold was not obvious.

As noted in the main text, our ultimate strategy was to remove any logs with fewer than 39 events.

We derived this threshold in a three-step process after discovering that typical, simple thresholding

methods (e.g., standard deviation) did not give satisfactory results. First, we generated quantile-

quantile plots to examine the distribution of event totals across all logs in an effort to discover

why typical approaches were failing. Second, after initially plotting against a normal distribution

we believed the skew was so severe that it would be better to derive the threshold through a
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Figure B.1: A quantile-quantile plot shows that number of mouse events has a strong lognormal fit
(lognormal parameters: µ = −71.99, σ = 774.48).

lognormal distribution (Figure B.1). Last, while the lognormal quantile-quantile plot supported our

prediction, we also ran a follow up Kolmogorov–Smirnov for further validation. Given the close fit

(D = 0.04, p = 0.006) we then settled on using the lower boundary of the central 95% interval as

the threshold point. We did not remove outliers in the top 5% given that they were likely to contain

analytical tasks.

Because only 63 logs were removed, and our ultimate classification results showed a high propor-

tion of junk logs that were too short, it is likely that we could have used a less conservative bound.

However, less conservative filtering comes with added risk of removing useful logs. While future

applications of our proposed interaction analysis methods could take advantage of less restrictive

filtering, we did not feel comfortable doing so in this work given that we were investigating a new

methodology rather than applying an established one.
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