
Abstract of “ Theory and Applications of Parallelism with Futures

” by Zhiyu Liu , Ph.D., Brown University, May 2017.

Futures are an attractive way to structure parallel computations. When a thread creates an expres-

sion with a keyword future, a new thread is spawned to compute that expression in parallel. When a

thread later applies a touch operation to that future, it gets the result of the expression if the result

has been computed, and otherwise blocks until the result becomes ready. In this thesis, we explore

different aspects of parallel programs with futures, including their theoretical bounds, scheduling,

and applications.

Researchers have shown futures can have a deleterious effect on cache locality. We will show,

however, that if futures are used in a simple, disciplined way, then their negative impact can be

much alleviated. This structured use of futures is characteristic of many parallel applications.

Futures lend themselves well to dynamic scheduling algorithms, such as work stealing, that

ensure high processor utilization. Implementing work stealing on hierarchical platforms, such as

NUMA systems and distributed clusters, have recently drawn lots of attention. However, little has

been explored on its theoretical bounds. We present lower and upper bounds of work stealing for

fork-join programs, a well-studied subclass of parallel-future programs, on hierarchical systems.

As originally conceived, a future encapsulates a functional computation without side-effects.

Recently, however, futures have been proposed as a way to encapsulate method calls to shared data

structures. We propose a new program model, that supports both normal futures without side-effects

and linearizable futures that exist for their side-effects. Using this model, we propose the lazy work

stealing scheduler that facilitates certain optimizations for linearizable futures and guarantees good

time bounds.

The processing-in-memory (PIM) model has reemerged recently as a solution to alleviating the

growing speed discrepancy between CPU’s computation and memory access, commonly known as

the memory wall. In this model, some lightweight computing units are directly attached to the main

memory, providing fast memory access. We study applications of linearizable futures in the PIM

model: operation requests to concurrent data structures are sent as linearizable futures to those

computing units to execute. These PIM-managed data structures can outperform state-of-the-art

concurrent data structures in the literature.

Theory and Applications of Parallelism with Futures

by

Zhiyu Liu

B. E., Beijing University of Posts and Telecommunications, 2010

Sc. M., Dartmouth College, 2012

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2017

c© Copyright 2017 by Zhiyu Liu

This dissertation by Zhiyu Liu is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Maurice Herlihy, Director

Recommended to the Graduate Council

Date
Rodrigo Fonseca, Reader

Brown University

Date
Eli Upfal, Reader
Brown University

Approved by the Graduate Council

Date
Andrew G. Campbell

Dean of the Graduate School

iii

Vita

Education

• Ph.D in Computer Science, Brown University, September 2012 – 2017

Advisor: Maurice Herlihy

• M.S. in Computer Science, Dartmouth College, September 2010 – June 2012

Advisor: Prasad Jayanti

Thesis: Abortable Reader-Writer Locks Are No More Complex Than Abortable Mutex Locks

• B.Eng. in Computer Science and Technology, Beijing University of Posts and Telecommuni-

cations, September 2006 – July 2010

Work Experience

• Research Intern in System Algorithms Research Group at Microsoft Research Asia, May

2015 – August 2015

Mentor: Thomas Moscibroda

Project: Automatic and efficient scheduling for dependent cloud tasks on Microsoft Azure

• Research Intern at VMware Research Group, June 2016 – August 2016

Mentor: Irina Calciu

Project: Concurrent data structures in the processing-in-memory model

Publications

• PIM-managed Concurrent Data Structures

Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2017

iv

• Well-Structured Futures and Cache Locality

Maurice Herlihy and Zhiyu Liu

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP)

2014

(Best Paper Award)

• Approximate Local Sums and Their Applications in Radio Networks

Zhiyu Liu and Maurice Herlihy

International Symposium on DIStributed Computing (DISC) 2014

• Abortable Reader-Writer Locks Are No More Complex Than Abortable Mutex

Locks

Prasad Jayanti and Zhiyu Liu

International Symposium on DIStributed Computing (DISC) 2012

Manuscripts Related to Thesis

• Theoretical Analysis of Work Stealing on Hierarchical Platforms

Zhiyu Liu and Maurice Herlihy

• Work Stealing for Linearizable Futures

Zhiyu Liu and Maurice Herlihy

v

Acknowledgements

First, I would like to thank my advisor, Maurice Herlihy, who has been a perfect mentor throughout

the five years of my PhD life. He gave me everything I needed in research: guidance, support,

inspiration, vision, and freedom. I was incredibly lucky to be supervised by such a world-class

researcher.

I would also like to thank my thesis committee members, Rodrigo Fonseca and Eli Upfal, for

their support and all the nice discussions. I wish to thank Irina Calciu and Thomas Moscibroda, my

mentors during my internships at VMware and Microsoft Research, for the wonderful experiences

in the two summers.

I want to thank all my colleague students I have worked with: Archita Agarwal, Esha Ghosh, Eli

Rossenthal, Vikram Saraph, and Hammurabi Mendes. I wish we could have even more collaborations

in the future.

I would thank all other faculty members and students in our department. One of the most

enjoyable things to me at Brown was to attend their talks and lectures. It is a great honor for me

to know and learn from them.

I also want to thank all the administrative and technical staff in our department for all their

support over the five years. In particular, my special thanks go to Lauren Clarke and Eugenia

DeGouveia who helped me countless times during the process of scheduling my proposal and defense.

Finally, I thank all my family and friends, in the U.S. and back in China, for everything they

have done for me.

vi

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Background and Motivations . 1

1.2 Overview of Contributions . 3

1.2.1 Well-Structured Futures and Cache Locality 3

1.2.2 Theoretical Analysis of Work Stealing on Hierarchical Platforms 3

1.2.3 Work Stealing for Linearizable Futures . 4

1.2.4 Concurrent Data Structures for Near-Memory Computing 4

2 Well-Structured Futures and Cache Locality 6

2.1 Model . 6

2.1.1 Computation DAG . 7

2.2 Work-Stealing and Cache Locality . 8

2.3 Structured Computations . 9

2.4 Structured Single-Touch Computations . 13

2.4.1 Future Thread First at Each Fork . 13

2.4.2 Parent Thread First at Each Fork . 18

2.5 Other Kinds of Structured Computations . 22

2.5.1 Structured Local-Touch Computations . 23

2.5.2 Structured Computations with Super Final Nodes 24

3 Theoretical Analysis of Work Stealing on Hierarchical Platforms 26

3.1 Related Work . 26

3.2 Fork-Join Model on Hierarchical Systems . 27

3.2.1 Fork-Join Model . 27

3.2.2 S-Bounded Fork-Join Programs . 30

3.2.3 Hierarchical System Model . 31

3.3 Work Stealing on Hierarchical Systems . 32

vii

3.3.1 The Class of Work Stealing Algorithms . 32

3.3.2 Global Work Stealing Algorithm . 33

3.4 Bounds for Fork-Join Programs . 34

3.4.1 Lower Bound for All Algorithms . 34

3.4.2 Upper bounds of Two Work Stealing Algorithms 37

3.5 Bounds for s-Bounded Programs . 39

3.5.1 Lower Bound for Work Stealing Algorithms 39

3.5.2 Unbalanced Work Stealing and Its Upper Bound 42

4 Work Stealing for Linearizable Futures 44

4.1 Related Work . 44

4.2 Linearizable-Futures Model . 45

4.2.1 Normal Futures and Linearizable Futures . 45

4.2.2 The Model . 46

4.2.3 Computation DAG . 47

4.2.4 Combining and Elimination . 48

4.3 Lazy Work Stealing . 51

4.4 Performance Analysis of Lazy Work Stealing . 53

5 Concurrent Data Structures for Near-Memory Computing 65

5.1 Related Work . 65

5.2 Hardware Architecture and Model . 66

5.3 Performance Model . 67

5.4 Low Contention Data Structures . 68

5.4.1 Linked-lists . 69

5.4.2 Skip-lists . 70

5.5 High Contention Data Structures . 74

5.5.1 FIFO queues . 75

5.5.2 Pipelining and Performance analysis . 77

Bibliography 81

viii

List of Tables

5.1 Throughputs of linked-list algorithms. 70

5.2 Throughputs of skip-list algorithms. 73

ix

List of Figures

2.1 Node and thread terminology . 8

2.2 The interesting part of the bound is Ω(CtT∞). Figure 5 in [73] shows a DAG, as a

building block of a worst-case computation, that can incur Ω(T∞) deviations because

of one touch. We can replace it with the DAG in Figure 2.2, which can incur Ω(CT∞)

additional cache misses due to one touch v (if the processor at a fork always chooses

the parent thread to execute first), so that the worst-case computation in [73] can

incur Ω(CtT∞) additional cache misses because of t such touches. This DAG is

similar to the DAG in Figure 2.7(a) in this paper. The proof of Theorem 10 shows

how a parallel execution of this DAG incurs Ω(CT∞) additional cache misses. 10

2.3 A simplified version of the DAG in [73] that can incur high cache overhead. Here, v1

and v2 are touches. Suppose a processor p1 executes the root node, pushes the right

child x of the root node into its deque, and then falls asleep. Now another processor

p2 steals x from p1’s deque and executes the subgraph rooted at x. Thus, v1 and

v2 will be checked (to see if they are available) even before the corresponding future

threads are spawned at u1 and u2. 11

2.4 In this structured (single-touch) computation, the touches v1 and v2 will not be

checked until their corresponding future threads have been spawned at u1 and u2,

respectively. 11

2.5 Two examples illustrating single-touch computations are more flexible than fork-join

computations . 13

2.6 Figure (c) shows a DAG on which work stealing can incur Ω(PT 2
∞) deviations and

Ω(PT 2
∞) additional cache misses. It uses the DAGs in (a) and (b) as building blocks. 16

2.7 DAGs used by Figure 2.8 as building blocks. 19

2.8 A DAG on which work stealing can incur Ω(tT∞) deviations and Ω(CtT∞) if it chooses

parents threads to execute first at forks. This example uses the DAGs in Figure 2.7

as building blocks. 22

3.1 The graph on the left hand side shows a thread in the dashed box spawned by its

parent thread at a fork. The graph on the right hand side shows the join of a thread

in the dashed box and its parent thread. 28

x

3.2 A fork-join DAG, where the main thread is the rightmost directed path in the DAG. 29

3.3 The DAG of Fibonacci(7) of Algorithm 1. The main thread (i.e., the rightmost one)

spawns a child thread x to compute Fibonacci(6) and then continues to compute Fi-

bonacci(5) itself. Thread x spawns a child thread y of its own to compute Fibonacci(5)

and then computes Fibonacci(4) itself. According to the pseudocode, Fibonacci(5)

and Fibonacci(4) will be executed sequentially. Later thread x sums up Fibonacci(4)

and Fibonacci(5) after the join of x and y, and finally the main thread sums up

Fibonacci(5) and Fibonacci(6) after the join of x and itself. 30

3.4 A DAG where a single remote steal can incur a sequence of remote join operations.

Suppose the processor executing the main thread always execute the child thread first

after a fork. At each of the first three joins of the main thread, the processor spawns

and quickly completes a child thread, and then gets back to the main thread. It finally

arrives at the last fork, spawns a child thread and is about to execute v, while u is

pushed into its deque. Now a remote processor steals u and start executing the main

thread. If v is executed before u, the remote processor will have to make a remote

join operation at each of the four joins in the main thread, in order to retrieve the

results of the four child threads. We can imagine if there are a sequence of Θ(T∞)

joins, Θ(T∞) has to be made. 35

3.5 The graph on the left presents a diamond structure and the DAG on the right consists

of a sequence of four diamonds. 36

3.6 A DAG G(T1, T∞), where the subgraph on the left branch of the source node is a

sequence of diamonds, and the subgraph on the right branch of the source node is an

arbitrary DAG. 37

3.7 A hexagon where each thread has s = 4 sequential nodes between the last level of

forks and the first level of joins. 40

3.8 The first two hexagons in a series of hexagons. The s sequential nodes of a randomly

chosen thread in the first hexagon (on the left-hand side) is replaced by the second

hexagon. 41

4.1 Pseudocode for computing the sum of the third and the fifth Fibonacci numbers using

futures. 45

4.2 A main thread t spawns two linearizable futures f1 and f2, both on object o, at forks

v1 and v2 respectively. v3 and v4 are touches of f1 and f2 respectively. By definition,

(v1, v5) and (v2, v7) are future edges. (v6, v4) and (v8, v3) are touch edges. (v6, v7) is

an order edge. All the other edges are continuation edges. 48

4.3 The DAG on the left shows an “original” execution of the program, where each lin-

earizable future fi is executed solely, for any 0 ≤ i ≤ 3. The DAG on the right shows

the DAG of an execution, where f1 and f2 are grouped. 50

xi

4.4 An example illustrating how lazy work stealing works when a processor P is executing

node v in thread t. First, f3 is added to the linked list of ready linearizable futures

on object o created by thread t. Since f3 is the last future on o before the first touch

of the ready futures on o (i.e., the touch of f3), a pointer node to the linked list is

pushed into the bottom of P ’s deque. 52

4.5 A well-formed program obtained by modifying the program in Figure 4.4. The only

modification is moving the touch of f1 to a node before the fork of f4, so that f4 is

created after all f1, f2, and f3 have be touched. 54

4.6 The DAG on the left is a path βi in G. g1, g2, and g3 are linearizable futures on object

o contained in βi, and the other segments of βi are all in the main thread and normal

futures (for simplicity, we assume there is no linearizable futures on other objects).

The DAG on the right is part of G′, where the dotted paths are αo and α′. 58

4.7 Q1 and Q′1 in the proof of Theorem 38 . 62

5.1 The PIM model . 67

5.2 Experimental results of linked-lists. We evaluated the linked-list with Fine-grained

locks and the flat-combining linked-list (FC) with and without the combining opti-

mization. 71

5.3 A PIM-managed FIFO queue with three partitions 72

5.4 Experimental results of skip-lists. We evaluated the lock-free skip-list and the flat-

combining skip-list (FC) with different numbers (1, 4, 8, 16) of partitions. 73

5.5 A PIM-managed FIFO queue with three segments 75

5.6 (a) illustrates the pipelining optimization, where a PIM core can start executing a

new deq() (step 1 of deq() for the CPU on the left), without waiting for the dequeued

node of the previous deq() to return to the CPU on the right (step 3). (b) shows the

timeline of pipelining four deq() requests. 79

xii

Chapter 1

Introduction

1.1 Background and Motivations

Futures [41, 42] are an attractive way to structure many parallel programs. When a thread creates

an expression with a keyword future, a new thread is spawned to compute that expression in parallel

with the thread that created it. When a thread later applies a touch operation to that future, it gets

the result of the expression if the result has been computed, and otherwise blocks until the result

becomes ready. Futures were first proposed by Halstead [41, 42] and have been well studied since

then (e.g., [55, 8, 58, 31, 16, 7, 20, 77, 32, 1, 73]), sometimes under different names.

Futures lend themselves well to sophisticated dynamic scheduling algorithms, such as work

stealing [20] and its variations, that ensure high processor utilization and hence high execution

speedup. Arora et al. [7] proved that (parsimonious) work stealing achieves the asymptotically

optimal speedup for the parallel execution of a program in the future-parallel model.

As originally conceived, a future encapsulates a short-lived functional computation that has

no side-effects, so the order in which futures are execute cannot be observed. Recently, Kogan

and Herlihy [53] proposed an alternative approach, in which futures encapsulate method calls to

long-lived shared data structures, facilitating common optimizations such as combining [37, 39, 46]

and elimination [45, 63, 72]. Since operations on shared objects are typically executed for their side-

effects, they also proposed several variations of linearizability [49] to constrain how the computations

of futures with side-effects can be interleaved.

Despite a rich literature of research on future-parallel programs, we find the following interesting

problems unexplored.

• The asymptotically optimal execution time of programs with futures [7] is proved without

considering cache performance. However, modern multicore architectures employ complex

multi-level memory hierarchies, and technology trends are increasing the relative performance

differences among the various levels of memory. As a result, processor utilization can no

longer be the sole figure of merit for schedulers and the cache locality of a parallel execution

1

2

will become increasingly critical to overall performance.

Several researchers [1, 73] have shown, however, that introducing parallelism through the use

of futures can sometimes substantially reduce cache locality. In the worst case, if we add

futures to a sequential program, a parallel execution managed by a work stealing scheduler

can incur Ω(PT∞+ tT∞) deviations, which implies Ω(CPT∞+CtT∞) more cache misses than

the sequential execution. Here, C is the number of cache lines, P is the number of processors,

t is the number of touch operations, and T∞ is the computation’s span (or critical path). As

technology trends cause the cost of cache misses to increase, this additional cost is troubling.

Therefore, we believe it will be very interesting to study new ways of using futures, such as

constructing parallel programs in structured forms or designing cache-friendly schedulers for

parallel executions, to improve the cache performance of programs with futures.

• As hierarchical platforms, such as NUMA systems and distributed clusters, are becoming more

and more prevalent, implementing efficient work stealing algorithms for parallel programs on

such hierarchical systems have drawn lots of attention recently. Different techniques have been

proposed to improvement the performances of different work stealing algorithms on hierarchical

systems. For example, researchers have found different heuristic strategies on when a processor

should make a remote steal and how much work it should steal (e.g., [62, 70, 65, 76]). Other

people have presented work stealing variants via message passing [29, 71, 78, 2, 57], as opposed

to the traditional ways based on concurrent data structures.

Despite the rich research on the practical implementations and empirical analysis of work

stealing on hierarchical systems, however, little has been explored with respect to their theo-

retical bounds. Quintin and Wagner [70] gave a theoretical bound on the time complexity of

their hierarchical work stealing (HWS) algorithm, in which the leader processors of clusters

first distribute tasks across a system and then the worker processors in each cluster execute

their local tasks. However, without good knowledge of a program, the workloads distributed

to different clusters can be highly unbalanced in theory, and hence the upper bound of HWS

cannot help us figure out the performance bounds of work stealing.

• As we mentioned earlier, Kogan and Herlihy [53] proposed a new type of futures, which we call

linearizable futures, to encapsulate method calls to long-lived shared data structures. Their

original proposal left open the problem of how best to schedule programs that employ lineariz-

able futures with side-effects.

The idea behind the linearizable futures is to delay the executions of data structures’ method

calls, so that certain threads can batch them and apply different optimizations to them, in

order to improve overall throughput. Therefore, another interesting problem is to design new

data structures on certain platforms that can utilize linearizable futures well to achieve good

performance.

3

1.2 Overview of Contributions

This thesis makes fours contributions, as summarized in Sections 1.2.1-1.2.4 blow.

1.2.1 Well-Structured Futures and Cache Locality

In Chapter 2, we will study the cache performance of future-parallel programs and show that if

futures are used in a simple, disciplined way, then the situation with respect to cache locality is

much better: if each future is touched only once, either by the thread that created it, or by a

thread to which the future has been passed directly or indirectly from the thread that created it,

then parallel executions with work stealing can incur at most O(CPT 2
∞) additional cache misses, a

substantial improvement over the unstructured case. This result provides a simple way to identify

computations for which introducing futures will not incur a high cost in cache locality, as well as

providing guidelines for the design of future parallel computations. (Informally, we think these

guidelines are natural, and correspond to structures programmers are likely to use anyway.) We also

prove that this upper bound is tight within a factor of C.

Our second result is the observation that when a work stealing scheduler has a choice between

running the thread that created a future, and the thread that implements the future, running the

future thread first provides better cache locality.

Finally, we show that certain variations of structured computation also have good cache locality.

1.2.2 Theoretical Analysis of Work Stealing on Hierarchical Platforms

In Chapter 3, we will present lower bounds for all work stealing algorithms as well as upper bounds

for specific work stealing variants in a theoretical hierarchical model. More specifically, we consider a

hierarchical system model of k homogeneous clusters, each having n local processors. The execution

of an instruction of a program and an operation for local communication both take time 1, while

a remote operation, such as a remote steal and a remote join of two threads, takes time Θ(r). We

focus on fork-join programs [15], a well-studied subclass of future-parallel programs. Our hierarchical

system model is kept abstract and general, in order to cover both hierarchical shared-memory and

message-passing systems.

We prove the lower bound on the execution time of any load balancing algorithm in this model

is Ω(min{T1

n + T∞,
T1

p + rT∞
log(nr)}), where T1 and T∞ are the total work and the critical path length

of a fork-join program, respectively, and p = kn is the number of processors in the whole system.

This lower bound indicates that, when T1

T∞
≤ nr

log(nr) , i.e., when the workload of a program is light,

running a single cluster of n processors with the classical work stealing algorithm can achieve an

optimal expected execution time O(T1

n + T∞).

when T1

T∞
> nr

log(nr) , i.e., when the workload is heavy, we show that an algorithm, called global

work stealing algorithm, can achieve an execution time O(T1

p +rT∞) in expectation, which is optimal

within a factor of O(log(nr)). This algorithm is essentially the classical work stealing algorithm with

the “attaching scheme”, which resembles the clone optimization [34], to reduce remote joins. Its

4

upper bound is a little surprising, as processors in the global work stealing algorithm choose victim

processors uniformly at random, which is not considered a good strategy on hierarchical systems.

In most fork-join programs we find in practice, a thread stops splitting into two parallel ones

when the amount of work is small enough and can be quickly done sequentially. Thus to analyze work

stealing on these programs, we also define two subclasses of fork-join programs, called s-bounded

fork-join programs and s-bounded divide-and-conquer programs, where each thread has at least s

nodes of work. We show that a very similar lower bound Ω(min{T1

n + T∞,
T1

p + rT∞
log(nr

s)}) still holds

for all work stealing algorithms, for any s = O(r). On the other hand, we prove that the class of

unbalanced work stealing algorithms can achieve a good upper bound O(T1

p +rT∞), any for s = Ω(r).

This bound is optimal within a factor of log(n), when the workload is heavy, i.e., T1

T∞
> nr

log(n) . We

believe the class of unbalanced work stealing algorithms capture the characteristics of many work

stealing algorithms using the heuristic that processors should make more local steals than remote

steals, a commonly used strategy found empirically effective in practice [62]. Therefore, our result

may imply that this heuristic, combined with the strategy of having threads stop splitting early, is

likely to have good performance guarantees.

1.2.3 Work Stealing for Linearizable Futures

In chapter 4, we will propose a new program model, called the linearizable-futures model, that

supports both futures without side-effects, which we call normal futures, and futures that exist

for their side-effects, which we call linearizable futures. This model requires futures to be used in

certain structured ways. These constraints are reasonable, in the sense that they rule out only

certain pathological uses that seem unlikely to occur in practice.

We use this model to propose a novel scheduler, called lazy work stealing, a variant of the classical

work stealing intended to facilitate combining and elimination optimizations for linearizable futures.

Finally, we prove bounds on program execution time using lazy work stealing. We show that if the

execution time of a program by an optimal offline scheduler is Θ(T1

PA
+ T∞), the expected execution

time by lazy work stealing is O(T1

P ′A
+ (c+ 1)T∞), where c is the containment level of the program,

defined below. Roughly speaking, when the containment level c is a small constant, which is the

case for many programs, the performance of lazy work stealing is close to that of an optimal offline

scheduler. We also show that this bound is asymptotically optimal for non-clairvoyant schedulers,

by proving a matching lower bound.

1.2.4 Concurrent Data Structures for Near-Memory Computing

The performance gap between memory and CPU has grown exponentially. Memory vendors have

focused mostly on improving memory capacity and bandwidth, sometimes even at the cost of in-

creased memory access latencies. To provide higher bandwidth with lower access latencies, hardware

architects have proposed near-memory computing (also called processing-in-memory, or PIM), where

a lightweight processor (called a PIM core) is located close to memory. A memory access from a PIM

5

core is much faster than from a CPU core. Near-memory computing is an old idea, that has been

intensely studied in the past (e.g., [74, 54, 36, 68, 67, 52, 40]), but so far has not yet materialized.

However, new advances in 3D integration and in die stacked memory make near-memory computing

viable in the near future. For example, one PIM design assumes memory is organized in multiple

vaults, each having an in-order PIM core to manage it. These PIM cores can communicate through

message passing, but do not share memory, and cannot access each other’s vaults.

This new technology promises to revolutionize the interaction between computation and data,

as memory becomes an active component in managing the data. Therefore, it invites a fundamental

rethinking of basic data structures and promotes a tighter dependency between algorithmic design

and hardware characteristics.

Prior work has already shown significant performance improvements by using PIM for embarrass-

ingly parallel and data-intensive applications [79, 4, 80, 6], as well as for pointer-chasing traversals [50]

in sequential data structures. However, current server machines have hundreds of cores; algorithms

for concurrent data structures exploit these cores to achieve high throughput and scalability, with

significant benefits over sequential data structures (e.g., [33, 69, 75, 48]).

As we will show, naive PIM data structures cannot outperform state-of-the-art concurrent data

structures. In particular, the lower latency access to memory cannot compensate for the loss of

parallelism. To be competitive with traditional concurrent data structures, PIM data structures

need new algorithms and new approaches to leverage parallelism. In Chapter 5, we will present

some PIM-managed concurrent data structures, where threads send their operation requests as

linearizable futures to PIM cores which execute those requests with certain optimizations.

In particular, we analyze pointer chasing data structures, which have a high degree of inherent

parallelism and low contention, but incur significant overhead due to unpredictable memory accesses.

We propose using techniques such as combining and partitioning the data across vaults to reintroduce

parallelism for these data structures.

Second, we explore contended data structures, such as FIFO queues, which can leverage CPU

caches to exploit their inherent high locality. Therefore, FIFO queues might not seem to be able to

leverage PIM’s faster memory accesses. Nevertheless, these data structures exhibit a high degree of

contention, which makes it difficult even for the most advanced algorithms to obtain good perfor-

mance for many threads accessing the data oncurrently. We use pipelining of requests, which can

be done very efficiently in PIM, to design a new FIFO queue suitable for PIM that can outperform

state-of-the-art concurrent FIFO queues [64, 44].

Chapter 2

Well-Structured Futures and

Cache Locality

In this chapter, we will show that if futures are used in a simple, disciplined way, then their negative

impact on cache locality can be much alleviated, a significant improvement over the previous result.

This chapter is organized as follows. Section 2.1 describes the model for future-parallel computa-

tions. In Section 2.2, we describe parsimonious work-stealing schedulers, and briefly discuss their

cache performance measures. In Section 2.3, we define some restricted forms of structured future-

parallel computations. Among them, we highlight structured single-touch computations, which, we

believe, are likely to arise naturally in many programs. In Section 2.4.1, we prove that work-stealing

schedulers on structured single-touch computations incur only O(CPT 2
∞) additional cache misses, if

a processor always chooses the future to execute first when it creates that future. We also prove this

bound is tight within a factor of C. In Section 2.4.2, we show that if a processor chooses the current

thread over the future thread when it creates that future, then the cache locality of a structured

single-touch computation can be much worse. In Section 2.5, we show that some other kinds of

structured future-parallel computations also achieve relatively good cache locality.

2.1 Model

In fork-join parallelism [15, 13, 17], a sequential program is split into a directed acyclic graph of tasks

linked by directed dependency edges. These tasks are executed in an order consistent with their

dependencies, and tasks unrelated by dependencies can be executed in parallel. Fork-join parallelism

is well-suited to dynamic load-balancing techniques such as work stealing [22, 41, 7, 20, 1, 42, 18,

34, 55, 3, 23].

A popular and effective way to extend fork-join parallelism is to allow threads to create fu-

tures [41, 42, 8, 16, 32]. A future is a data object that represents a promise to deliver the result

of an asynchronous computation when it is ready. That result becomes available to a thread when

6

7

the thread touches that future, blocking if necessary until the result is ready. Futures are attractive

because they provide greater flexibility than fork-join programs, and they can also be implemented

effectively using dynamic load-balancing techniques such as work stealing. Fork-join parallelism

can be viewed as a special case of future-parallelism, where the spawn operation is an implicit fu-

ture creation, and the sync operation is an implicit touch of the untouched futures created by a

thread. Future-parallelism is more flexible than fork-join parallelism, because the programmer has

finer-grained control over touches (joins).

2.1.1 Computation DAG

A thread creates a future by marking an expression (usually a method call) as a future. This state-

ment spawns a new thread to evaluate that expression in parallel with the thread that created the

future. When a thread needs access to the results of the computation, it applies a touch operation

to the future. If the result is ready, it is returned by the touch, and otherwise the touching thread

blocks until the result becomes ready. Without loss of generality, we will consider fork-join paral-

lelism to be a special case of future-parallelism, where forking a thread creates a future, and joining

one thread to another is a touch operation.

Our notation and terminology follow earlier work [7, 20, 1, 73]. A future-parallel computation is

modeled as a directed acyclic graph (DAG). Each node in the DAG represents a task (one or more

instructions), and an edge from node u to node v represents the dependency constraint that u must

be executed before v. We follow the convention that each node in the DAG has in-degree and out-

degree either 1 or 2, except for a distinguished root node with in-degree 0, where the computation

starts, and a distinguished final node with out-degree 0, where the computation ends.

There are three types of edges:

• continuation edges, which point from one node to the next in the same thread,

• future edges (sometimes called spawn edges), which point from node u to the first node of

another thread spawned at u by a future creation,

• touch edges (sometimes called join edges), directed from a node u in one thread t to a node v

in another thread, indicating that v touches the future computed by t.

A thread is a maximal chain of nodes connected by continuation edges. There is a distinguished

main thread that begins at the root node and ends at the final node, and every other thread t begins

at a node with an incoming future edge from a node of the thread that spawns t. The last node of

t has only one outgoing edge which is a touch edge directed to another thread, while other nodes of

t may or may not have incoming and outgoing touch edges. A critical path of a DAG is a longest

directed path in the DAG, and the DAG’s computation span is the length of a critical path.

As illustrated in Figure 2.1, if a thread t1 spawns a new thread t2 at node v in t1 (i.e., v has two

out-going edges, a continuation edge and a future edge to the first node of t2), then we call t1 the

parent thread of t2, t2 the future thread (of t1) at v, and v the fork of t2. A thread t3 is a descendant

8

(a) (b)

Figure 2.1: Node and thread terminology

thread of t1 if t3 is a future thread of t1 or, by induction, t3’s parent thread is a descendant thread

of t1.

If there is a touch edge directed from node v1 in thread t1 to node v2 in thread t2 (i.e., t2 touches

a future computed by t1), and a continuation edge directed from node u2 in t2 to v2, then we call

node v2 a touch of t1 by t2, v1 the future parent of v2, u2 the local parent of v2, and t1 the future

thread of v2. (Note that the touch v2 is actually a node in thread t2.) We call the fork of t1 the

corresponding fork of v2.

Note that only touch nodes have in-degree 2. To distinguish between the two types of nodes with

out-degree 2, forks and future parents of touches, we follow the convention of previous work that

the children of a fork both have in-degree 1 and cannot be touches. In this way, a fork node has two

children with in-degree 1, while a touch’s future parent has a (touch) child with in-degree 2.

We follow the convention that when a fork appears in a DAG, the future thread is shown on the

left, and the future parent on the right. (Note that this does not mean the future thread is chosen

to execute first at a fork.) Similarly, the future parent of a touch is shown on the left, and the local

parent on the right.

We use the following (standard) notation. Given a computation DAG, P is the number of

processors executing the computation, t is the number of touches in the DAG, T∞, the computation

span (or critical path), is the length of the longest directed path, and C is the number of cache lines

in each processor.

2.2 Work-Stealing and Cache Locality

In the paper, we focus on parsimonious work stealing algorithms [7], which have been extensively

studied [7, 20, 1, 73, 19] and used in systems such as Cilk [18]. In a parsimonious work stealing

algorithm, each processor is assigned a double-ended queue (deque). After a processor executes a

node with out-degree 1, it continues to execute the next node if the next node is ready to execute.

After the processor executes a fork, it pushes one child of the fork onto the bottom of its deque and

9

executes the other. When the processor runs out of nodes to execute, it pops the first node from

the bottom of its deque if the deque is not empty. If, however, its deque is empty, it steals a node

from the top of the deque of an arbitrary processor.

In our model, a cache is fully associative and consists of multiple cache lines, each of which holds

the data in a memory block. Each instruction can access only one memory block. In our analysis we

focus only on the widely-used least-recently used (LRU) cache replacement policy, but our results

about the upper bounds on cache overheads should apply to all simple cache replacement policies [1].
1

The cache locality of an execution is measured by the number of cache misses it incurs, which

depends on the structure of the computation. To measure the effect on cache locality of paral-

lelism, it is common to compare cache misses encountered in a sequential execution to the cache

misses encountered in various parallel executions, focusing on the number of additional cache misses

introduced by parallelism.

Scheduling choices at forks affect the cache locality of executions with work stealing. After

executing a fork, a processor picks one of the two child nodes to execute and pushes the other into

its deque. For a sequential execution, whether a choice results in a better cache performance is a

characteristic of the computation itself. For a parallel execution of a computation satisfying certain

properties, however, we will show that choosing future threads (the left children) at forks to execute

first guarantees a relatively good upper bound on the number of additional cache misses, compared

to a sequential execution that also chooses future threads first. In contrast, choosing the parent

threads (the right children) to execute first can result in a large number of additional cache misses,

compared to a sequential execution that also chooses parent threads first.

2.3 Structured Computations

Consider a sequential execution where node v1 is executed immediately before node v2. A devia-

tion [73], also called a drifted node [1], occurs in a parallel execution if a processor P executes v2,

but not immediately after v1. For example, p might execute v1 after v2, it might execute other nodes

between v1 and v2, or v1 and v2 might be executed by distinct processors.

[73] showed that a parallel execution of a future-parallel computation with work stealing can

incur Ω(PT∞ + tT∞) deviations. This implies a parallel execution of a future-parallel computation

with work stealing can incur Ω(PT∞ + tT∞) additional cache misses. With minor modifications in

that computation (see Figure 2.2), a parallel execution can even incur Ω(CPT∞+CtT∞) additional

cache misses.

Our contribution in this paper is based on the observation that such poor cache locality occurs

primarily when futures in the DAG can be touched by arbitrary threads, resulting in unrealistic and

complicated dependencies. For example, in the worst-case DAGs in [73] that can incur significantly

1That is because the upper bounds in this paper are based on the results of [1] that bound the number of drifted
nodes (i.e., deviations), and those results hold for all simple cache replacement policies, even with set associative
caches, as discussed in [1].

10

Figure 2.2: The interesting part of the bound is Ω(CtT∞). Figure 5 in [73] shows a DAG, as a
building block of a worst-case computation, that can incur Ω(T∞) deviations because of one touch.
We can replace it with the DAG in Figure 2.2, which can incur Ω(CT∞) additional cache misses due
to one touch v (if the processor at a fork always chooses the parent thread to execute first), so that
the worst-case computation in [73] can incur Ω(CtT∞) additional cache misses because of t such
touches. This DAG is similar to the DAG in Figure 2.7(a) in this paper. The proof of Theorem 10
shows how a parallel execution of this DAG incurs Ω(CT∞) additional cache misses.

high cache overheads, futures are touched by threads that can be created before the future threads

computing these futures were created. As illustrated in Figure 2.3, a parallel execution of such

a computation can arrive at a scenario where a thread touches a future before the future thread

computing that future has been spawned. (As a practical matter, an implementation must ensure

that such a touch does not return a reference to a memory location that has not yet been allocated.)

Such scenarios are avoided by structured future-parallel computations (e.g. Figure 2.4) that follow

certain simple restrictions.

Definition 1 A DAG is a structured future-parallel computation if, (1) for the future thread t of

any fork v, the local parents of the touches of t are descendants of v, and (2) at least one touch of t

is a descendant of the right child of v.

There are two reasons we require that at least one touch of t is a descendant of the right child of

v. First, it is natural that a computation spawns a future thread to compute a future because the

computation itself later needs that value. At the fork v, the parent thread (the right child of v)

represents the “main body” of the computation. Hence, the future will usually be touched either by

the parent thread, or by threads spawned directly or indirectly by the parent thread.

Second, a computation usually needs a kind of “barrier” synchronization to deal with resource

release at the end of the computation. Some node in the future thread t, usually the last node,

should have an outgoing edge pointing to the “main body” of the computation to tell the main body

that the future thread has finished. Without such synchronization, t and its descendants will be

11

Figure 2.3: A simplified version of the DAG in [73] that can incur high cache overhead. Here, v1

and v2 are touches. Suppose a processor p1 executes the root node, pushes the right child x of the
root node into its deque, and then falls asleep. Now another processor p2 steals x from p1’s deque
and executes the subgraph rooted at x. Thus, v1 and v2 will be checked (to see if they are available)
even before the corresponding future threads are spawned at u1 and u2.

Figure 2.4: In this structured (single-touch) computation, the touches v1 and v2 will not be checked
until their corresponding future threads have been spawned at u1 and u2, respectively.

isolated from the main body of the computation, and we can imagine a dangerous scenario where the

main body of the computation finishes and releases its resources while t or its descendant threads

are still running.

In our DAG model, such a synchronization point is by definition a touch node, though it may

not be a real touch. We follow the convention that the thread that spawns a future thread releases

it, so the synchronization point is a node in the parent thread or one of its descendants. Another

possibility is to place the synchronization point at the last node of the entire computation, which

is the typically case in languages such as Java, where the main thread of a program is in charge of

releasing resources for the entire computation. These two styles are essentially equivalent, and should

have almost the same bounds on cache overheads. We will briefly discuss this issue in Section 2.5.2.

We consider how the following constraint affects cache locality.

Definition 2 A structured single-touch computation is a structured future-parallel computation

where each future thread spawned at a fork v is touched only once, and the touch node is a de-

scendant of v’s right child.

By the definition of threads, the future parent of the only touch of a future thread must be the last

node of the future thread (the last node can also be a parent of a join node, but we don’t distinguish

between a touch node and a join node). The DAG in Figure 2.4 represents a structured single-

touch computation. We will show that work-stealing parallel executions of structured single-touch

computations achieve significantly less cache overheads than unstructured computations.

12

In principle, a future could be touched multiple times by different threads, so structured single-

touch computations are more restrictive structured computations in general. Nevertheless, the

single-touch constraint is one that is likely to be observed by many programs. For example, as

noted, the Cilk [18] language supports fork-join parallelism, a strict subset of the future-parallelism

model considered here. If we interpret the Cilk language’s spawn statement as creating a future,

and its sync statement as touching all untouched futures previously created by that thread, then

Cilk programs (like all fork-join programs) are structured single-touch computations.

Structured single-touch computations encompass fork-join computations, but are strictly more

flexible. Figure 2.5 presents two examples that illustrate the differences. If a thread creates multiple

futures first and touches them later, fork-join parallelism requires they be touched (evaluated) in

the reverse order. MethodA in Figure 2.5(a) shows the only order in which a thread can first create

two futures and then touch them in a fork-join computation. This rules out, for instance, a program

where a thread creates a sequence of futures, stores them in a priority queue, and evaluates them in

some priority order. In contrast, our structured computations permit such futures to be evaluated

by their creating thread or its descendants in any order.

Also, unlike fork-join parallelism, our notion of structured computation permits a thread to pass

a future to another thread which touches that future, as illustrated in Figure 2.5(b): after a future

is created, the future can be passed, as an argument of a new method call or the return value of the

current thread’s method call, to another thread. The thread receiving the future (MethodC in the

figure) can even pass it to another thread, and so on. The only constraint is that only one of the

threads that have received the future can touch it. In a fork-join computation, however, only the

thread creating the future can touch it, which is much more restrictive. We believe these restrictions

are easy to follow and should be compatible with how many people program in practice.

[16] observe that if a future can be touched multiple times, then complex and potentially ineffi-

cient operations and data structures are needed to correctly resume the suspended threads that are

waiting for the touch. By contrast, the run-time support for futures can be significantly simplified

if each future is touched at most once.

We also consider the following structured local-touch computations in the paper.

Definition 3 A structured local-touch computation is one where each future thread spawned at a

fork v is touched only at nodes in its parent thread, and these touches are descendants of the right

child of v.

Informally, the local touch constraint implies that a thread that needs the value of a future should

create the future itself. Note that in a structured computation with local touch constraint, a future

thread is now allowed to evaluate multiple futures and these futures can be touched at different times.

Though allowing a future thread to compute multiple futures is not very common, [16] point out that

it can be useful for some future-parallel computations like pipeline parallelism [16, 18, 38, 35, 56].

We will show in Section 2.5.1 that work-stealing parallel executions of computations satisfying the

local touch constraint also have relatively low cache overheads. Note that structured computations

with both single touch and local touch constraints are still a superset of fork-join computations.

13

void MethodA {
Future x = some computation;
Future y = some computation;
a = y.touch();
b = x.touch();

}

(a)

void MethodB {
Future x = some computation;
Future y = MethodC(x);
......

}
void MethodC(Future f){

a = f.touch();
}

(b)

Figure 2.5: Two examples illustrating single-touch computations are more flexible than fork-join
computations

2.4 Structured Single-Touch Computations

2.4.1 Future Thread First at Each Fork

We now analyze cache performance of work stealing on parallel executions of structured single-touch

computations. We will show that work stealing has relatively low cache overhead if the processor at

a fork always chooses the future thread to execute first, and puts the parent future into its deque.

For brevity, all the arguments and results in this section assume that every execution chooses the

future thread at a fork to execute first.

Lemma 4 In the sequential execution of a structured single-touch computation, any touch x’s future

parent is executed before x’s local parent, and the right child of x’s corresponding fork v immediately

follows x’s future parent.

Proof. By induction. Given a DAG, initially let S be an empty set and T the set of all touches.

Note that

S ∩ T = ∅ and S ∪ T = {all touches}. (2.1)

Consider any touch x in T , such that x has no ancestors in T . (That is, x has no ancestor nodes

that are also touches.) Let t be the future thread of x and v the corresponding fork. Note that x’s

future parent is the last node of t by definition. When the single processor executes v, the processor

14

pushes v’s right child into the deque and continues to execute thread t. By hypothesis, there are

no touches by t, since any touch by t must be an ancestor of x. There may be some forks in t.

However, whenever the single processor executes a fork in t, it pushes the right child of that fork,

which is a node in t, into the deque and hence t (i.e., a node in t) is right below v’s right child in

the deque. Therefore, the processor will always resume thread t before the right child of v. Since

there is no touch by t, all the nodes in t are ready to execute one by one. Thus, when the future

parent of the touch x is executed eventually, the right child of v is right at the bottom of the deque.

By the single touch constraint, the local parent of x is a descendant of the right child of v, so the

local parent of x cannot be executed yet. Thus, the processor will now pop the right child of v out

from the bottom of the deque. Since this node is not a touch, it is ready to execute. Therefore, x

satisfies the following two properties.

Property 5 Its future parent is executed before its local parent.

Property 6 The right child of its corresponding fork immediately follows its future parent.

Now set S = S ∪{x} and T = T −{x}. Thus, all touches in S satisfy Properties 5 and 6. Note that

Equation 2.1 still holds.

Now suppose that at some point all nodes in S satisfy Properties 5 and 6, and that Equation 2.1

holds. Again, we now consider a touch x in T , such that no touches in T are ancestors of x, i.e., all

the touches that are ancestors of x are in S. Since the computation graph is a DAG, there must be

such an x as long as T is not empty. Let t be the future thread of x and v the corresponding fork. If

there are no touches by t, then we can prove x satisfies Properties 5 and 6, by the same argument for

the first touch added into S. Now assume there are touches by t. Since those touches are ancestors

of x, they are all in S and hence they all satisfy Property 5. When the processor executes v, it

pushes v’s right child into the deque and starts executing t. Similar to what we showed above,

when the processor gets to a fork in t, it will always push t into its deque, right below the right

child of v. Thus, the processor will always resume t before the right child of v. When the processor

gets to the local parent of a touch by t, we know the future parent of the touch has already been

executed since the touch satisfies Property 5. Thus, the processor can immediately execute that

touch and continue to execute t. Therefore, the processor will eventually execute the future parent

of x while the right child of t is still the next node to pop in the deque. Again, since the local parent

of x is a descendant of the right child of v, the local parent of x as well as x cannot be executed

yet. Therefore, the processor will now pop the right child of v to execute, and hence x satisfies

Properties 5 and 6. Now we set S = S ∪ {x} and T = T − {x}. Therefore, all touches in S satisfy

Properties 5 and 6, and Equation2.1) also holds. By induction, we have S = {all touches} and all

touches satisfy Properties 5 and 6. ut

[1] have shown that the number of additional cache misses in a work-stealing parallel computation

is bounded by the product of the number of deviations and the number of cache lines. It is easy to

see that only two types of nodes in a DAG can be deviations: the touches and the child nodes of

15

forks that are not chosen to execute first. Since we assume the future thread (left child) at a fork is

always executed first, only the right children of forks can be deviations. Next, we bound the number

of deviations incurred by a work-stealing parallel execution to bound its cache overhead.

Lemma 7 Let t be the future thread at a fork v in a structured single-touch computation. If t’s

touch x or v’s right child u is a deviation, then either u is stolen or there is a touch by t which is a

deviation.

Proof. By Lemma 4, a touch is a deviation if and only if its local parent is executed before its

future parent. Now suppose a processor p executes v and pushes u into its deque. Assume that

u is not stolen and no touches by t are deviations. Thus, u will stay in p’s deque until p pops it

out. The proof of this lemma is similar to that of Lemma 4. After p spawns thread t at v, it moves

to execute t. When p executes “ordinary” nodes in t, no nodes are pushed into or popped out of

p’s deque and hence u is still the next node in the deque to pop. When p executes a fork in t, it

pushes t (more specifically, the right child of that fork) into its deque, right below u. Since a thief

processor always steals from the top of a deque, and by hypothesis u is not stolen, t cannot be stolen.

Thus, p will always resume t before u and then u will become the next node in the deque to pop.

When p executes the local parent of a touch by t, the future parent of that touch must have been

executed, since we assume that touch is not a deviation. Thus, p can continue to execute that touch

immediately and keep moving on in t with its deque unchanged. Therefore, p will finally get to the

local parent of x and then pop u out from its deque, since x is a descendant of u and x cannot be

execute yet. Hence, neither x nor u can be a deviation. ut

Theorem 8 If, at each fork, the future thread is chosen to execute first, then a parallel execution

with work stealing incurs O(PT 2
∞) deviations and O(CPT 2

∞) additional cache misses in expectation

on a structured single-touch computation, where (as usual) P is the number of processors involved

in this computation, T∞ is the computation span, and C is the number of cache lines.

Proof. [7] have shown that in a parallel execution with work stealing, there are in expectation

O(PT∞) steals. Now let us count how many deviations these steals can incur. A steal on the right

child u of a fork v can make u and v’s corresponding touch x1 deviations. Suppose x1 is a touch

by a thread t2, then the right child of the fork of t2 and t2’s touch x2 can be deviations. If x2 is

a deviation and x2 is a touch by another thread t3, then the right child of the fork of t3 and t3’s

touch x3 can be deviation too. Note that x2 is a descendant of x1 and x3 is a descendant of x2. By

repeating this observation, we can find a chain of touches x1, x2, x3, ..., xn, called a deviation chain,

such that each xi and the right child of the corresponding fork of xi can be deviations. Since for

each i > 1, xi is a descendant of x2, x1, x2, x3, . . . , xn is in a directed path in the computation DAG.

Since the length of any path is at most T∞, we have n ≤ T∞. Since each future thread has only one

touch, there is only one deviation chain for a steal. Since there are O(PT∞) steals in expectation in

a parallel execution [7], we can find in expectation O(PT∞) deviation chains and in total O(PT 2
∞)

touches and right children of the corresponding forks involved, i.e., O(PT 2
∞) deviations involved.

16

(a) (b) (c)

Figure 2.6: Figure (c) shows a DAG on which work stealing can incur Ω(PT 2
∞) deviations and

Ω(PT 2
∞) additional cache misses. It uses the DAGs in (a) and (b) as building blocks.

Next, we prove by contradiction that no other touches or right children of forks can be deviations.

suppose there is touch y, such that y or the right child of the corresponding fork of y is a deviation,

and that y is not in any deviation chain. The right child of the corresponding fork of y can not

be stolen, since by hypothesis y is not the first touch in any of those chains. Thus by Lemma 7,

there is a touch y′ by the future thread of y and y′ is a deviation. Note that y′s cannot be in any

deviation chain either. Otherwise y and the deviation chain y′ is in will form a deviation chain too, a

contradiction. Therefore, by repeating such “tracing back”, we will end up at a deviation touch that

is not in any deviation chain and has no touches as its ancestors. Therefore, there are no touches

by the future thread of this touch, and the right child of the corresponding future fork of it is not

stolen, contradicting Lemma 7.

The upper bound on the expected number of additional cache misses follows from the result of

[1] that the number of additional cache misses in a work-stealing parallel computation is bounded

by the product of the number of deviations and the number of cache lines. ut

The bound on the number of deviations in Theorem 8 is tight, and the bound on the number of

additional cache misses is tight within a factor of C, as shown below in Theorem 9.

Theorem 9 If, at each fork node, the future thread is chosen to execute first, then a parallel ex-

ecution with work stealing can incur Ω(PT 2
∞) deviations and Ω(PT 2

∞) additional cache misses on

a structured single-touch computation, while the sequential execution of this computation incurs

O(PT 2
∞/C) cache misses.

Proof. Figure 2.6(c) shows a computation DAG on which we can get the bounds we want to

prove. The DAG in Figure 2.6(c) uses the DAGs in Figures 2.6(a) and 2.6(b) as building blocks.

Let’s look at Figures 2.6(a) first. Suppose there are two processors p1 and p2 executing the DAG in

17

Figure 2.6(a). Suppose p2 executes v, pushes u1 into its deque, and then falls asleep before executing

w. Now suppose p1 steals u1. For each i ≤ k, neither si nor Zi can be executed since w has not been

executed yet. Now p1 takes a solo run, executing u1, x1, Y1, u2, x2, Y2, ..., xk, Yk. After p1 finishes,

p2 wakes up and executes the rest of the computation DAG. Note that the right (local) parent of

si is executed before the left (future) parent of the touch is executed. Thus, by Lemma 4, each si

is a deviation. Hence, this parallel execution incurs k deviations and the computation span of the

computation is Θ(k).

Now let us consider a parallel execution of the computation in 2.6(b). For each i ≤ k, the

subgraph rooted at vi is identical to the computation DAG in 2.6(a) (except that the last node of

the subgraph has an extra edge pointing to a node of the main thread). Suppose there are three

processors p1, p2, and p3 working on the computation. Assume p2 executes r1 and v1 and then falls

asleep when it is about to execute w. p3 now steals r2 from p2 and then falls asleep too. Then

p1 steals u1 from p2’s deque. Now p1 and p2 execute the subgraph rooted at v1 in the same way

they execute the DAG in 2.6(a). After p1 and p2 finish, p3 wakes up, executes r2. Now these

three processors start working on the subgraph rooted at r3 in the same way they executed the

graph rooted at r1. By repeating this, the execution ends up incurring k2 deviations when all the

k subgraphs are done. Since the length of the path r1, r2, r3... on the right-hand side is Θ(k), the

computation span of the DAG is still Θ(k).

Now we construct the final computation DAG, as in Figure 2.6(c). The “top” nodes of the DAG

are all forks, each spawning a future thread. Thus, they form a binary tree and the number of

threads increase exponentially. The DAG stops creating new threads at level Θ(log n) when it has

n threads rooted at S1, S2, ..., Sn, respectively. For each i, the subgraph rooted at Si is identical

to the DAG in 2.6(b). Suppose there are 3n processors working on the computation. It is easy to

see n processors can eventually get to S1, S2, ..., Sn. Suppose they all fall asleep immediately after

executing the first two nodes of Si(corresponding to r1 and v1 in Figure 2.6(b)) and then each two

of the rest 2n free processors join to work on the subgraph rooted at Si, in the same way p1, p2

and p3 did in Figure 2.6(b). Therefore, this execution will finally incur nk2 deviations, while the

computation span of the DAG is Θ(k + log n). Therefore, by setting n = P/3, we get a parallel

execution that incurs Ω(PT 2
∞) deviations, when logP = O(k).

To get the bound on the number of additional cache misses, we just need to modify the graph

in 2.6(a) as follows. For each 1 ≤ i ≤ k, Yi consists of a chain of C nodes yi1, yi2, ..., yiC , where

C is the number of cache lines. yi1, yi2, ..., yiC access memory blocks m1,m2, ...,mC , respectively.

Similarly, each Zi consists of a chain of C nodes zi1, zi2, ..., ziC . zi1, zi2, ..., ziC access memory blocks

mC ,mC−1, ...,m1, respectively. all si access memory block mC . For all 1 ≤ i ≤ k, ui and xi both

access memory block mC+1. It does not matter which memory blocks the other nodes in the DAG

access. For simplicity, assume the other nodes do not access memory. In the sequential execution,

the single processor has m1,m2, ...,mC in its cache after executing v, w, u1, x1, Y1, Z1 and it has

incurred (C+1) cache misses so far. Now it executes u2 and x2, incurring one cache miss at node u2

by replacing mC with mC+1 in its cache, since mC is the least recently used block. When it executes

18

Y2 and Z2, it only incurs one cache miss by replacing mC+1 with mC at the last node of Y2, y2C .

Likewise, it is easy to see that the sequential execution will only incur cache misses at nodes ui and

at the last nodes of Yi for all i. Hence, the sequential execution incurs only O(k +C) cache misses.

When k = Ω(C), the sequential execution incurs only O(k) cache misses.

Now consider the parallel execution by two processors p1 and p2 we described before. p2 will

incur only C cache misses, since Zi and si only access m different blocks m1,m2, ...,mC and hence

p2 doesn’t need to swap any memory blocks out of its cache. However, p1 will incur lots of cache

misses. After executing each Yi, p1 will execute ui+1. Thus at ui+1, one cache miss is incurred

and m1 is replaced with mC+1, since m1 is the least recently used block. Then, when p1 executes

the first node y(i+1)1 in Yi, , m1 is not in its cache. Since m2 now becomes the least recently used

memory block in p1’s cache, m2 is replaced by m1. Thus, m2 will not be in the cache when it is

in need at y(i+1)2. Therefore, it is obvious that p1 will incur a cache miss at each node in Yi and

hence incur Ck cache misses in total in the entire execution. Note that the computation span of

this modified DAG is Θ(Ck), since each Zi now has C nodes. Therefore, the sequential execution

and the parallel execution actually incur Θ(T∞/C) and Θ(T∞), respectively, when logP = O(k).

Therefore, if we use this modified DAG as the building blocks in 2.6(c), we will get the bound on

the number of additional cache misses stated in the theorem. ut

2.4.2 Parent Thread First at Each Fork

In this section, we show that if the parent thread is always executed first at a fork, a work-stealing par-

allel execution of a structured single-touch computation can incur Ω(tT∞) deviations and Ω(CtT∞)

additional cache misses, where t is the number of touches in the computation, while the correspond-

ing sequential execution incurs only a small number of cache misses. This bound matches the upper

bound for general, unstructured future-parallel computations [73]2. This result, combined with the

result in Section 2.4.1, shows that choosing the future threads at forks to execute first achieves better

cache locality for work-stealing schedulers on structured single-touch computations.

Theorem 10 If, at each fork, the parent thread is chosen to execute first, then a parallel execution

with work stealing can incur Ω(tT∞) deviations and Ω(CtT∞) additional cache misses on a structured

single-touch computation, while the sequential execution of this computation incurs only O(C + t)

cache misses.

Proof. The final DAG we want to construct is in Figure 2.8. It uses the DAGs in Figure 2.7 as

building blocks. We first describe how a single deviation at a touch u3 can incur Ω(T∞) deviations

and Ω(CT∞) additional cache misses in Figure 2.7(a). In order to get the bound we want to prove,

here we follow the convention in [1, 73] to distinguish between touches and join nodes in the DAG.

More specifically, yi is a join node, not a touch, for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, node

2The bound on the expected number of deviations in [73] is actually O(PT∞ + tT∞). However, as pointed out
in [73], a simple fork-join computation can get Ω(PT∞) deviations. Hence we focus on the more interesting part
Ω(tT∞).

19

(a) (b)

Figure 2.7: DAGs used by Figure 2.8 as building blocks.

20

xi accesses memory block m1 and yi accesses memory block mC+1. Zi consists of a chain of C

nodes zi1, zi2, ..., ziC , accessing memory blocks m1,m2, ...,mC respectively. All the other nodes do

not access memory. Assume in the sequential execution a single processor p1 executes the entire

DAG in Figure 2.7(a). Suppose initially the left (future) parent of u3 has already been executed.

p1 starts executing the DAG at u1. Since p1 always stays on the parent thread at a fork, it first

pushes s into its deque, continues to execute u2, u3, u4, and then executes x1, x2, ..., xn while pushing

z11, z21, ..., zn1 into its deque. Since v cannot be executed due to s, p1 pops zn1 out of its deque and

executes the nodes in Zn. Then p1 executes all the nodes in Zn−1, Zn−2, ..., Z1, in this order. So far

p1 has only incurred C cache misses, since all the nodes it has executed only access memory blocks

m1, ...,mC and hence it did not need to swap any memory blocks out of its cache. Now p1 executes

s, v and then yn, yn−1, ..., y1, incurring only one more cache miss by replacing m1 with mC+1 at yn.

Hence, this execution incurs O(C) cache misses in total. Note that the left parent of yi is executed

before the right parent yi for all i.

Now assume in another execution by p1, the left parent of u3 is in p1’s deque when p1 starts

executing u1. Thus, u3 is a deviation with respect to the previous execution. Since u3 is not ready

to execute after p1 executes u2, p1 pops s out of its deque to execute. Since v is not ready, p1 now

pops the left parent of u3 to execute and then executes u3, u4, x1, x2, ..., xn, v. Now p1 pops zn1 out

and executes all the nodes Zn. Note that yn is now ready to execute and the memory blocks in p1’s

cache at the moment are m1,m2, ...,mC . Now p1 executes yn, replacing the least recently used block

m1 with mC+1. p1 then pops z(n−1)1 out and executes all the nodes z(n−1)1, z(n−1)2, ..., z(n−1)C in

Zn−1 one by one. When p1 executes z(n−1)1, it replaces m2 with m1, and when it executes z(n−1)2,

it replaces m3 with m2, and so on. The same thing happens to all Zi and yi. Thus, p1 will incur

a cache miss at every node afterwards, ending up with Ω(Cn) cache misses in total. Note that the

computation span of this DAG is T∞ = Θ(C+n). Thus, this execution with a deviation at u3 incurs

Ω(CT∞) cache misses when n = Ω(C). Moreover, all yi are deviations and hence this execution

incurs Ω(T∞) deviations.

Now let us see how a single steal at the beginning of a thread results in Ω(T∞) deviations and

Ω(CT∞) cache misses at the end of the thread. Figure 2.7(b) presents such a computation. First we

consider the sequential execution by a processor p1. It is easy to see p1 executes nodes in the order

r, u1, w1, s2, s1, v1, u2, w2, v2, u3, w3, s4, s3, v3, u4, The key observation is that wi is executed

before si is executed for any odd-numbered i while wi is executed after si is executed for any even-

numbered i. This statement can be proved by induction. Obviously, this holds for i = 1 and i = 2,

as we showed before. Now suppose this fact holds for all 1, 2, ..., i, for some even-numbered i. Now

suppose p1 executes ui−1. Then p1 pushes si into its deque and executes wi−1. Since we know wi−1

should be executed before si−1, si−1 has not been executed yet. Moreover, si−1 must already be in

the deque before si was pushed into the deque, since si−1’s parent ui−2 has been executed and si−1

is ready to execute. Now p1 pops si out to execute. Since vi is not ready to execute, p1 pops si−1

out and then executes si−1, vi−1, ui, and pushes si+1 into the deque. Now p1 continues to execute

wi, vi, ui+1 and pushes si+1 into its deque. Then pi executes wi+1 and pops si+2 out, since vi+1 is

21

not ready due to si+1. Now we can see wi+1 and si+2 have been executed, but si+1 and wi+2 not

yet. That is, wi+1 is executed before si+1 and wi+2 is executed after si+2. Therefore, the statement

holds for i+ 1 and i+ 2, and hence the proof completes.

The subgraph rooted at uk is identical to the graph in Figure 2.7(a), with vk corresponding to

u3 in Figure 2.7(a). Therefore, if k is an even number, vk’s left parent has been executed when wk

is executed and hence the sequential execution will incur only O(C) cache misses on the subgraph

rooted at uk.

Now consider the following parallel execution of the DAG in Figure 2.7(b) by two processors

p1 and p2. p1 first executes r and pushes s1 into its deque. Then p2 immediately steals s1 and

executes it. Now p2 falls asleep, leaving p1 executing the rest of the DAG alone. It is easy to see

p1 will execute the nodes in the DAG in the order u1, w1, v1, u2, w2, s3, s2, v2, u3, w3, v3, u4, s4, ... It

can be proved by induction that wi is executed after si is executed for any odd-numbered i while

wi is executed before si is executed for any even-numbered i, which is opposite to the order in

the sequential execution. The induction proof is similar to that of the previous observation in the

sequential execution, so we omit the proof here. If k is an even number, wk will be executed before

the left parent of vk and hence this execution will incur Ω(T∞) deviations and Ω(CT∞) cache misses

when n = Ω(C) and n = Ω(k).

The final DAG we want to construct is in Figure 2.8. This is actually a generalization of the

DAG in Figure 2.7(b). Instead of having one fork ui before each touch vi, it has two forks ui and

xi, for each i. After each touch vi, the thread at yi splits into two identical branches, touching the

futures spawned at ui and xi, respectively. In this figure, we only depict the right branch and omit

the identical left branch. As we can see, the right branch later has a touch vi+1 touching the future

si+1 spawned at the fork xi. If we only look at the thread on the right-hand side, it is essentially

the same as the DAG in Figure2.7(b). The sequential execution of this DAG by p1 is similar to

that in Figure2.7(b). The only difference is that p1 at each yi will execute the right branch first

and then the left branch recursively. Similarly, it can be proved by induction that wi is executed

before si is executed for any odd-numbered i while wi is executed after si is executed for any even-

numbered i. Obviously this also holds for each left branch. Now consider a parallel execution by

two processors p1 and p2. p1 first executes r. p2 immediately steals s1 and executes it and then

sleeps forever. Now p1 makes a solo run to execute the rest of the DAG. Again, we can prove by

the same induction argument that wi is executed after si is executed for any odd-numbered i while

wi is executed before si is executed for any even-numbered i, which is opposite to the order in the

sequential execution. The above two induction proofs are a little more complicated than those for

the DAG in Figure2.7(b), but the ideas are essentially the same (the only difference is now we have

to prove the statements hold for the two identical branches split at fork yi at the inductive step)

and hence we omit the proofs again.

By splitting each thread into two after each yi, the number of branches in the DAG increases

exponentially. Suppose there are t touches in the DAG. Thus, there are eventually Θ(t) branches

and the height of this structure is Θ(log t). At the end of each branch is a subgraph identical to the

22

Figure 2.8: A DAG on which work stealing can incur Ω(tT∞) deviations and Ω(CtT∞) if it chooses
parents threads to execute first at forks. This example uses the DAGs in Figure 2.7 as building
blocks.

DAG in Figure 2.7(a). Therefore, the parallel execution with only one steal can end up incurring

Θ(tn) deviations and Θ(Ctn) cache misses. The sequential execution incurs only Θ(C + t) cache

misses, since the sequential execution will incur only 2 cache misses by swapping mC+1 in and out at

each branch, after it incurs C cache misses to load m1,m2, ...,mC at the first branch. hence, when

n = Ω(log t) and n = Ω(C), we get the bound stated in the theorem. ut

2.5 Other Kinds of Structured Computations

It is natural to ask whether other kinds of structured computations can also achieve relatively good

cache locality. We now consider two alternative kinds of restrictions.

23

2.5.1 Structured Local-Touch Computations

In this section, we prove that work-stealing parallel executions of structured local-touch compu-

tations also have relatively good cache locality, if the future thread is chosen to execute first at

each fork. This result, combined with Theorems 8 and 10, implies that work-stealing schedulers for

structured computations are likely better off choosing future threads to execute first at forks.

Lemma 11 In the sequential execution of a structured local-touch computation where the future

thread at a fork is always chosen to execute first, any touch x’s future parent is executed before x’s

local parent, and the right child of any fork v immediately follows the last node of the future thread

spawned at v, i.e., the future parent of the last touch of the future thread.

The proof is omitted because it is almost identical to that of Lemma 4. (We first consider a

future thread whose touches are the “earliest” in the DAG, that is, no other touches are ancestors

of them, and we can easily prove the statement in Lemma 11 holds for those touches. Then by

the same induction proof as for Lemma 4, we can prove the statement holds for all future threads’

touches.)

Theorem 12 If the future thread at a fork is always chosen to execute first, then a parallel execution

with work stealing incurs O(PT 2
∞) deviations and O(CPT 2

∞) additional cache misses in expectation

on a structured local-touch computation.

Proof. Let v be a fork that spawns a future thread t. Now we consider a parallel execution. Let p

be a processor that executes v and pushes the right child of v into its deque. Suppose the right child

of v is not stolen. Now consider the subgraph G′ consisting of t and its descendant threads. Note

that G′ itself is a structured computation DAG with local touch constraint. Now p starts executing

G′.

According to local touch constraint, the only nodes outside G′ that connect to the nodes in G′

are v and the touches of t, and c is the only node outside G′ that the nodes in G′ depend on. Now v

has been executed and the touches of t are not ready to execute due to the right child of v. Hence,

p is able to make a sequential execution on G′ without waiting for any node outside to be done or

jumping to a node outside, as long as no one steals a node in G′ from p’s deque. Since we assume

the right child of v will not be stolen and any nodes in G′ can only be pushed into p’s deque below v,

no nodes in G′ can be stolen. Hence, G′ will be executed by a sequential execution by p. Therefore,

there are no deviations in G′. After p executed the last node in G′, which is the last node in t, p

pops the right child of v to execute. Hence, the right child of v cannot be a deviation either, if it

is not stolen. That is, those nodes can be deviations only if the right child of v is stolen. Since

there are in expectation O(PT∞) steals in an parallel execution and each future thread has at most

T∞ touches, the expected number of deviations is bounded by O(PT 2
∞) and the expected number

of additional touches is bounded by O(CPT 2
∞). ut

24

2.5.2 Structured Computations with Super Final Nodes

As discussed in Section 2.3, in languages such as Java, the program’s main thread typically releases

all resources at the end of an execution. To model this structure, we add an edge from the last node

of each thread to the final node of the computation DAG. Thus, the final node becomes the only

node with in-degree greater than 2. Since the final node is always the last to execute, simply adding

those edges pointing to the final node into a DAG will not change the execution order of the nodes

in the DAG. It is easy to see that having such a super node will not change the upper bound on the

cache overheads of the work-stealing parallel executions of a structured computation.

For structured computations with super final nodes, it also makes sense to slightly relax the

single-touch constraint as follows.

Definition 13 A structured single-touch computation with a super final node is one where each

future thread t at a fork v has at least one and at most two touches, a descendant of v’s right child

and the super final node.

In such a computation, a future thread can have the super final node as its only touch. This

structure corresponds to a program where one thread forks another thread to accomplish a side-

effect instead of computing a value. The parent thread never touches the resulting future, but the

computation as a whole cannot terminate until the forked thread completes its work.

Now we show that the parallel executions of structured single-touch computations with super

final nodes also have relatively low cache overheads.

Lemma 14 In the sequential execution of a structured single-touch computation with a super final

node, where the future thread at a fork is always chosen to execute first, any touch x’s future parent

is executed before x’s local parent, and the right child u of any fork v immediately follows the last

node of the future thread spawned at v, i.e., the future parent of the last touch of the future thread.

Lemma 15 Let t be the future thread at a fork v in a structured single-touch computation with a

super final node. If a touch of t or v’s right child u is a deviation, then either u is stolen or there

is a touch by t which is a deviation.

Proof. The proofs of Lemma 4 and Lemma 7, with only minor modifications, also apply to the

above two lemmas, respectively. That is because introducing the super final node into a computation

doesn’t affect the order in which other nodes are executed, since no other nodes need to wait for

the super final node and the super final node is always the last node to execute. More specifically,

when a processor executing any thread t reaches a node that is a parent of the super final node, the

processor will continue to work on t if that node is not the last node of t, and otherwise try popping

a node out of its deque. Therefore, by the same proof techniques as for Lemmas 4 and 7, we can

show that a processor will execute the right child u of a fork v and the parents of the touches of the

future spawned at v in the order stated in Lemmas 14 and 15. ut

25

Theorem 16 If, at each fork, the future thread is chosen to execute first, then a parallel execution

with work stealing incurs O(PT 2
∞) deviations and O(CPT 2

∞) additional cache misses in expectation

on a structured single-touch computation with a super final node.

Proof. The proof is similar to that of Theorem 8. The only difference is that if a touch by a

thread t is a deviation, now the two touches of t can both be deviations, which could be a trouble

for constructing the deviation chains. Fortunately, one of these two touches is the super final node,

which is always the last node to execute and hence will not make the touches of other threads become

deviations. Therefore, we can still get a unique deviation chain starting from a steal and hence the

proof of Theorem 8 still applies here. ut

Similarly, we can also introduce a super final node to a structured local-touch computation as

follows.

Definition 17 A structured local-touch computation with a super final node is one where each future

thread t spawned at a fork v can be touched only by the super final node and by t’s parent thread at

nodes that are descendants of the right child of v.

It is obvious that by the same proof as for Theorem 12, we can prove the following bounds.

Theorem 18 If the future thread at a fork is always chosen to execute first, then a parallel execution

with work stealing incurs O(PT 2
∞) deviations and O(CPT 2

∞) additional cache misses in expectation

on a structured local-touch computation with a super final node.

Chapter 3

Theoretical Analysis of Work

Stealing on Hierarchical Platforms

In this chapter, we will discuss the performance of fork-join programs on hierarchical platforms. We

present lower bounds for their executions by all work stealing algorithms as well as upper bounds for

specific work stealing variants in a theoretical hierarchical model. We first discuss the related work

in Section 3.1. Then in Section 3.2, we introduce the theoretical model for hierarchical systems and

the computation models for fork-join and divided-and-conquer programs, as well as their s-bounded

subclasses. In Section 3.3, we define the class of work stealing algorithms, and introduce the global

work stealing algorithm with its attaching scheme. Section 3.4 presents upper and lower bounds

of work stealing algorithms on general fork-join programs, while Section 3.5 shows their bounds on

s-bounded fork-join and s-bounded devide-and-conquer programs.

3.1 Related Work

Work stealing [20] on traditional shared-memory systems has been an active research area for

decades. On the theoretical side, its time and space bounds [15, 7, 19, 20] as well as its cache

locality [1, 73, 47] for different parallel program models, such as fork-join parallelism (i.e., nested

parallelism) [15] and future parallelism [41, 42], have been extensively studied.

To implement efficient work stealing algorithms on hierarchical platforms such as NUMA systems

and distributed clusters, different heuristic strategies for choosing victim processors to steal from

have been discussed. A heuristic people have found effective is that processors should be in favor of

local steals if neighboring processors have enough work to be stolen, in order to reduce the number

of costly remote steals. A commonly used method is to have a processor first make one or more

steal attempts locally and then try remote steals only if all the local steal attempts have failed

[62]. Another method is to have each processor make a local steal with a higher probability than

a remote steal [70]. Other implementations [24, 66] only allow leaders of sockets/clusters to make

26

27

remote steals.

Researchers have also examined the appropriate amounts of work a processor should steal. Many

papers (e.g., [62, 65, 76]) suggested the StealHalf policy for remote steals, that is, a thief should

steal half of the tasks from a remote processor’s task pool, as opposed to stealing only one task in

the classical work stealing algorithm.

Work stealing is usually implemented using concurrent deques in traditional shared-memory

systems. However, in some hierarchical platforms such as distributed clusters, concurrent deques for

remote steals can be very inefficient or even impossible to implement. For this reason, researchers

[29, 71, 78, 2, 57] have proposed work stealing variants with non-concurrent deques via message

passing.

In contrast to the large body of research on the systems side we just mentioned above, the theo-

retical analysis of hierarchical work steal has been much less discussed. The only theoretical bound

we are aware of is given by Quintin and Wagner [70], on the time complexity of their hierarchical

work stealing (HWS) algorithm. The leader processors of clusters in HWS first distribute tasks

across a system, and then the worker processors in each cluster execute their local tasks. However,

the time bound of HWS can be very bad in theory, since the workloads in different clusters can

be highly unbalanced unless HWS knows the structure of the target program very well in advance.

Therefore, the upper bound of HWS cannot help us figure out the real bounds of the class of all

work stealing algorithms.

Some hierarchical cache models, such as parallel cache-oblivious (PCO) model [14], hierarchical

multi-level multicore (HM) model [25], and Threaded Many-core Memory (TMM) model [61], have

been proposed. They focus on the cache locality of parallel programs, while the results of this

paper focus more on the costs of remote communications caused by remote steals and joins. The

performance of work stealing in these models has not be studied yet, and we consider it an interesting

open problem.

3.2 Fork-Join Model on Hierarchical Systems

3.2.1 Fork-Join Model

Fork-join parallelism is also called nested parallelism. As in previous work (e.g., [1] [20]), we model

a program as a directed acyclic graph (DAG), where each node represents a single instruction of the

program that can be executed by a processor and each directed edge (u, v) indicates that v cannot

be executed until u has been executed. Both the indegree and outdegree of a node in a DAG are at

most two.

There are three types of edges in the model—continuation edges, spawn edges, and join edges.

At most one of the incoming edges and one of the outgoing edges of a node are continuation edges.

A thread is represented as a maximal sequence of nodes connected by continuation edges in a DAG.

Obviously, the nodes, i.e., the instructions, in a thread can only be executed sequentially.

If a node has two outgoing edges, we call it a fork node. One outgoing edge of a fork is a

28

Figure 3.1: The graph on the left hand side shows a thread in the dashed box spawned by its parent
thread at a fork. The graph on the right hand side shows the join of a thread in the dashed box and
its parent thread.

continuation edge and the other is a spawn edge. A thread x spawns a new thread y at a fork node u

in x: the spawn edge of u points to the first node of thread y (see Figure 3.1). We call x the parent

thread of y, and y a child thread of x. For a better illustration, we always put the spawn edge of a

fork to the left of its outgoing continuation edge in a figure in the paper.

If a node has two incoming edges, we call it a join node, representing the join of a thread and its

parent thread. (In the fork-join model, only a thread and its parent thread can join, but in the more

general future-parallel model [41, 42], any two threads can join in principle.) One incoming edge

(on the right-hand side in a figure) of a join is a continuation edge and the other (on the left-hand

side) is a join edge (see Figure 3.1). The node that the join edge comes from is in the child thread.

This node must be the last node of the child thread, since the node has no outgoing continuation

edge. (If the node has an outgoing continuation edge, it must be a fork by definition. However, a

fork cannot have an outgoing spawn edge, a contradiction.) A node cannot be both a fork and a

join, since it represents only a single instruction of a thread.

In a typical fork-join program in practice, when a thread wants to partition some computation

into two parts to execute in parallel, it makes a fork operation, creating a child thread for one part

and working on the other itself. When the thread finishes its work, it calls a join, retrieving the result

of the child thread if the child thread has completed, and waiting for the child thread otherwise.

There is only one node of indegree 0 in a DAG, called the source node, and only one node of

outdegree 0, called the sink node. The source node and the sink node are the first and the last nodes

of the main thread respectively. All the other threads are spawned directly or indirectly by the main

thread (see 3.2 for an example). It is easy to see the source node is the first node to execute in the

DAG and the sink node is the last.

29

Figure 3.2: A fork-join DAG, where the main thread is the rightmost directed path in the DAG.

Another requirement for fork-join DAGs is that if a thread spawns some child threads at different

forks before joining any of them, these child threads must join in a reverse order. This constraint

guarantees the forks and joins of threads in a DAG are in a “nested form” and that is why fork-join

programs is also called nested-parallel programs. 1

As Acar et al. [1] pointed out, a fork-join DAG can also be defined by induction: if we only

consider the nodes between a fork and its corresponding join, the two threads derived at the fork

can be thought of as the main threads of two independent DAGs that eventually merge at the join.

Algorithm 1 Fibonacci(n)

if n > 5 then
fork f1 = Fibonacci(n-1);
f2 = Fibonacci(n-2);
join f1;
return f1 + f2;

else
return Sequential Fibonacci(n);

1Another common way to create parallel threads is by calling a parallel-for loop, where each iteration of a for-loop
in a parent thread creates a parallel child thread and the parent later makes a single join call to collects the results
of all child threads. In fact, a parallel-for loop can also be thought of as a fork-join DAG, if we model the single
join as a sequence of consecutive joins for those child threads, in a reverse order.

30

Figure 3.3: The DAG of Fibonacci(7) of Algorithm 1. The main thread (i.e., the rightmost one)
spawns a child thread x to compute Fibonacci(6) and then continues to compute Fibonacci(5) itself.
Thread x spawns a child thread y of its own to compute Fibonacci(5) and then computes Fibonacci(4)
itself. According to the pseudocode, Fibonacci(5) and Fibonacci(4) will be executed sequentially.
Later thread x sums up Fibonacci(4) and Fibonacci(5) after the join of x and y, and finally the
main thread sums up Fibonacci(5) and Fibonacci(6) after the join of x and itself.

Algorithm 1 is the pseudocode for computing the nth Fibonacci number recursively and Figure

3.3 illustrates how Fibonacci(7) is modeled as a fork-join DAG.

We use T1 to denote the total number of nodes in a DAG and T∞ to denote the number of nodes

in a longest directed path in the DAG. T∞ is called the critical path length (or the span) of the

DAG. Since we will focus on the theoretical bounds of DAGs with different ratios of T1

T∞
, we use

G(T1, T∞) to denote a DAG of T1 nodes with critical path length T∞.

A well-studied subset of fork-join programs are divided-and-conquer programs. In a divided-and-

conquer program, a thread has no forks after the first join node in the thread. In other words,

threads in a divided-and-conquer program first keep forking to compute things in parallel and later

join in pairs recursively. Most fork-join programs discussed in the literature, such as the Merge-Sort

algorithm, the N-Queens algorithm, and the Fibonacci algorithm shown in Figure 3.3, are in fact

divide-and-conquer programs.

3.2.2 S-Bounded Fork-Join Programs

Prior research (e.g., [60]) has found it beneficial empirically to prevent a computation from splitting

into too small tasks. This is because the extra parallelism provided by splitting a sequential com-

putation into tiny parallel subroutines may not pay off the costs of spawning and joining threads,

31

as well as the communication costs among processors, especially on a hierarchical system where

remote operations and communications are expensive. For instance, it is common that a Merge-Sort

program stops partitioning an array of numbers into smaller ones when the size of the array is a

few kilobytes [70]. Another example is the recursive 8-Queens algorithm in [70]. The algorithm first

spawns a thread for each feasible position of the queen on the first line. Then each thread spawns

a new thread for each feasible position of the queen on the second line and so on. When a thread

reaching a feasible position of the queen on the fourth line, it stops splitting and the rest of the work

is executed sequentially in the thread.

To analyze the performance of work stealing on these algorithms, we define the class of s-bounded

fork-join programs. We say a DAG is s-bounded, if each thread in it has at least s nodes. We use

G(T1, T∞, s) to denote an s-bounded DAG G(T1, T∞).

We will show in Section 3.5 some upper and lower bounds for s-bounded fork-join programs and

s-bounded divide-and-conquer programs.

3.2.3 Hierarchical System Model

The hierarchical system model we consider in the paper consists of k distributed, homogeneous

clusters. Each cluster has n processors and there are in total p = kn processors in the system. A

processor can execute nodes in a DAG, one at a time, and communicate with other processors in

order to distribute nodes across the system or share information. The cluster a processor belongs to

is the local cluster and the other clusters are remote clusters to it. Processors within a cluster are

local to each other while Processors in different clusters are remote to each other.

Communication is efficient in time within a cluster and inefficient across different clusters. More

specifically, there is a global clock on a hierarchical system, which processors may or may not be

aware of it. A tick of the global clock is the minimum unit of time. The execution of a node in a DAG,

as well as one round of one-way communication between two local processors, takes time 1, while one

round of one-way communication between two remote processors, called a remote operation, takes

time r. Our communication model can be thought of as a simplified version of the LogP model [27].

We keep the communication model abstract in order to cover both hierarchical shared-memory

and message-passing systems. In a hierarchical shared memory system, for instance, each cluster

has its local shared memory that can be efficiently accessed by processors in the cluster: we can

assume it takes a processor time 1 to make a read or write on the memory of the local cluster, while

it takes time r to do so on the memory of a remote cluster. In a hierarchical message-passing model,

it takes time 1 for a message sent by a processor to arrive at a local processor, while it takes time r

for a message to arrive at a remote processor.

For any load balancing algorithm executing a fork-join program, there are at least two scenarios

where a remote operation has to be incurred. First, if a thread executed by a processor in a cluster

Ca spawns a new thread at a fork and later a remote processor in another cluster Cb wants to take

the spawned thread to execute, a remote operation must be made. That is because the information

32

about the new thread has to be transferred to Cb, either by a message sent to Cb in the message-

passing model, or by a remote read from Ca and/or a remote write to Cb in the shared-memory

model. In either case, it takes at least time r.

Second, if a thread and its parent thread are held in two different clusters, then at least one

remote operation has to be made by the time the join node of the two threads is executed, so that

a processor can combine them at the join and continue to execute the parent thread. This remote

operation is usually made when one of the two threads arrive at the join, but in principle it can

happen at any time before the join is executed.

3.3 Work Stealing on Hierarchical Systems

3.3.1 The Class of Work Stealing Algorithms

An algorithm is a work stealing algorithm if processors always follow the rules below:

• Each processor maintains its own pool to store threads it creates.

• A processor currently executing a thread will continue until it arrives at a fork or a join.

• When a processor executing thread x arrives at a fork that creates a new thread y, it puts

either x or y in its pool and continues to execute the other.

• When a processor reaches a join, it executes the join if the join is ready to be executed and

otherwise tries to pick a thread from its pool to execute.

• If the pool of a processor is empty when the processor tries to take a thread from it, the

processor “steals” some threads from the pool of another processor, executes one of them and

puts the other in its own pool.

A processor making a steal is a thief processor and the processor a thief steals from is a victim

processor. A steal is a local steal if the thief and the victim processor are in the same cluster, and

otherwise it is a remote steal. A local steal takes time 1 to complete while a remote steal takes at

least time r. We assume programs are compute-intensive, but not very data-intensive, such that a

remote steal of time Θ(r) is enough to transfer all necessary information of a thread from one cluster

to another.

In order to keep the class of work stealing algorithms as general as possible, we do not put any

constraints on which thread a processor takes out from its pool to execute or which threads of which

processor a “thief” processor steals.

We will show lower bounds for the class of work stealing algorithms on s-bounded divide-and-

conquer programs in Section 3.5. Keeping the class of work stealing algorithms general makes our

lower bounds stronger.

33

3.3.2 Global Work Stealing Algorithm

The classical work stealing algorithm [20] has been proved to perform well in the traditional shared-

memory model, both theoretically and empirically. However, little was known about its theoretical

time bounds on hierarchical platforms. In this section, we introduce the global work stealing algo-

rithm, a variant of the classical work stealing algorithm modified for the hierarchical system model.

We will show how to modify the classical work stealing algorithm so that it has a good upper bound

on the expected execution time for any fork-join program in the hierarchical system model.

As in the classical work stealing, the pool of a processor to store threads is a doubly-ended queue

(deque) in the global work stealing algorithm. When the processor executing thread x arrives at a

fork u that creates a new thread y, it pushes either x or y into the bottom of its deque and continues

to execute the other. When a processor needs to take a thread out of its deque, it always pops the

first one from the bottom of the deque, i.e., the one pushed into the deque at the last fork. When

a processor makes a steal, it chooses a processor in the whole system uniformly at random as the

victim and steals only the first thread from the top of the deque of the victim.

As we discussed before, a remote steal incurs a remote execution. To be more concrete, we

assume a remote steal takes time 2r to complete. In the first time r, the thief makes a steal attempt

(e.g., by sending a request message to the victim) during which the node to be stolen stays in the

victim’s deque. At the first time slot of the second interval of time r, the actual steal action is

made. If there are multiple steal actions made at the same moment, an arbitrary one will succeed

and others fail. No matter if a remote steal succeeds or not, it takes time r for the thief to get the

result. Therefore, if the remote steal succeeds, the stolen node is in transition during the second

interval of time r, and hence no processor can execute it until it arrives at the thief at the end of

the interval.

The algorithm also needs to deal with joins carefully. When a processor in cluster Ca executes

thread x and spawns thread y at a fork, some space in Ca (e.g., some memory location in Ca) is

reserved for the join of x and y. When the processor executing x reaches the join, it first checks

the reserved space to figure out if y has already arrived at the join. If so, the processor retrieves

the information of y and executes the join. Otherwise, it blocks x and puts x in the reserved space.

The processor executing y behaves similarly and the only difference is that the information of y to

be written is the result (output) of the computation of y, as y is finished at the join.

As we can see, if x and y are executed by two threads in different clusters, Ca is remote to at

least one of the threads. We say a processor makes a remote join operation at the join if Ca is

remote to it. Like a remote steal, a remote join operation takes time 2r (it could be up to 4r if the

processor didn’t combine its operations. We keep it simple, as the constant factor doesn’t affect our

theoretical analysis).

In the classical work stealing algorithm, a steal only takes the thread to be stolen from the victim.

Here we make an important change in the global work stealing algorithm: when a processor steals

a thread x, it also steals the threads that have been attached to x. A thread y can be attached to x

only in the following scenario: If a processor executing thread y arrives at the join of thread x and

34

y, and finds x has not reached the join yet, the processor pops a thread from the bottom of its deque

as usual. If the thread popped out happens to be x, the processor attaches y to x, by attaching to x

everything needed for the join of x and y. Since it is an operation within the same cluster, it takes

time 1 in our theoretical model. Now that y has been attached to x, the processor executing x can

retrieve y locally when it later reaches the join of x and y, without the need to check the reserved

space for the join, and hence avoiding the potential risk of making a remote join operation. This

attaching scheme resembles the clone optimization [34] in the classic shared-memory setting: the

high-level idea of the clone optimization is that, when thread x is completed while thread y has not

been stolen yet, y can be modified to a fast version such that when reaching the join of x and y, it

can simply resolve the join using the result of x.

Now assume the global work stealing algorithm is work-first at forks. That is, a processor at a

fork always puts the parent thread into its deque and continues to execute the child thread. Then

we can prove that only the child thread can be attached to the parent thread in this case, not vice

versa. 2 Therefore, when a thread is completed by a processor and the next thread popped out is

the parent thread of the completed thread, the processor can just attach the result of the completed

thread to its parent thread. Although the choice at a join doesn’t affect the theoretical bounds in

the paper, we think attaching only the result of a thread to its parent is easier to implement in

practice.

The attaching scheme can largely reduce the number of remote join operations in an execution.

Roughly speaking, without this trick, a processor can incur Θ(T∞) remote join operations after a

single remote steal of a thread in the worst case. For instance, if all the Θ(T∞) threads spawned

by thread x have already been executed by the time x is stolen by a remote processor, that remote

processor has to make a remote join operation whenever it reaches the join of x and one of the

Θ(T∞) threads. Figure 3.4 shows an example of a single remote steal incurring a sequence of remote

joins. As we will show in Lemma 22, the attaching scheme helps us bound the number of remote

join operations in an execution, which is critical in the proof of the upper bound on the algorithm’s

execution time.

3.4 Bounds for Fork-Join Programs

3.4.1 Lower Bound for All Algorithms

We now prove the lower bounds in the following theorem hold for any load balancing algorithm on

fork-join programs.

Theorem 19 Given any T1 and T∞, there is a fork-join DAG G(T1, T∞) that any algorithm takes

time Ω(min{T1

n + T∞,
T1

p + rT∞
log(nr)}) to execute on a hierarchical system.

2Lemma 3 in Arora et al.’s paper [7] implies that if the algorithm follows the first-first strategy, the first thread
in the bottom of a processor’s deque must be an ancestor thread of the thread the processor is executing. This
rules out the possibility that the thread popped out from its deque is a child thread of the thread that got just
blocked.

35

Figure 3.4: A DAG where a single remote steal can incur a sequence of remote join operations.
Suppose the processor executing the main thread always execute the child thread first after a fork.
At each of the first three joins of the main thread, the processor spawns and quickly completes a
child thread, and then gets back to the main thread. It finally arrives at the last fork, spawns a child
thread and is about to execute v, while u is pushed into its deque. Now a remote processor steals
u and start executing the main thread. If v is executed before u, the remote processor will have to
make a remote join operation at each of the four joins in the main thread, in order to retrieve the
results of the four child threads. We can imagine if there are a sequence of Θ(T∞) joins, Θ(T∞) has
to be made.

Proof. Let us first discuss the case when T1

T∞
≤ nr

2 log(nr)−1 . We will prove the lower bound in this

case is Ω(T1

n +T∞). Without loss of generality and for simplicity, assume T1

T∞
= 2t+2t−1−2

2t−1 , for some

integer t. Note that 2t ≤ nr.
Consider a fork-join DAG G(T1, T∞) consisting of a sequence of “diamond” structures, as illus-

trated in Figure 3.5. The first half of each diamond is a complete binary tree of 2t − 1 nodes and

the second half is the reverse of the first half—nodes keep joining in pairs until it becomes a single

node. Obviously, each diamond has 2t + 2t−1 − 2 nodes and height h = 2t − 1. The DAG consists

of T∞
h such diamonds.

Now consider an arbitrary algorithm that executes this DAG. Suppose the first node of a diamond

is executed by a processor in a cluster at time t0. Since all other nodes of the diamond are descendants

of its first node. If there is no remote steal successfully stealing a node of the diamond from that

cluster, then the diamond will be executed only by the n processors in the cluster. Thus it takes

time Ω(2t

n +h) to complete the diamond. If one node of the diamond is stolen by a remote processor,

it will take the algorithm at least time r to complete the diamond, as it is the cost to make a remote

operation. Since 2t

n ≤ r and h = 2t − 1 < r, we conclude that the execution time of the diamond

36

Figure 3.5: The graph on the left presents a diamond structure and the DAG on the right consists
of a sequence of four diamonds.

is Ω(2t

n + h). Since the T∞
h diamonds have to be executed sequentially, the execution time of the

entire DAG is Ω(T∞h · (
2t

n + h)) = Ω(T1

n + T∞).

Now we discuss the case when T1

T∞
> nr

2 log(nr)−1 . The DAG G(T1, T∞) we want to construct is

shown in Figure 3.6. The first node of the DAG forks into two parallel subgraphs that join at the

end of the DAG. The left subgraph is a sequence of T∞−2
h diamonds, each having nr nodes, where

h is the height of each diamond and we know h = Θ(log(nr)) (again, without loss of generality and

for simplicity, assume T∞−2
h is an integer and nr nodes are just enough to construct a diamond).

The right subgraph consists of the rest (T1−2− nr(T∞−2)
h) nodes in an arbitrary form with only one

requirement that its critical path length is at most T∞ − 2. As we analyzed before, the execution

time of the left subgraph is Ω(T∞−2
h · (nrn + h)) = Ω(rT∞

log(nr)). On the other hand, since there are p

processors in the system, the execution time of the entire DAG is Ω(T1

p). Hence the lower bound on

the execution time is Ω(T1

p + rT∞
log(nr)).

Now combining the lower bounds in the two cases we have discussed above, we complete the

proof. ut

37

Figure 3.6: A DAG G(T1, T∞), where the subgraph on the left branch of the source node is a sequence
of diamonds, and the subgraph on the right branch of the source node is an arbitrary DAG.

3.4.2 Upper bounds of Two Work Stealing Algorithms

In this section, we will show two work stealing algorithms, the local work stealing algorithm and the

global work stealing algorithm, achieve good uppers for different ratios of T1

T∞
.

In the local work stealing algorithm, a processor steals uniformly at random from a processor

within the same cluster and hence all steals are local. Since in our theoretical model, a DAG is

induced from a single source node held by a processor in a cluster at the start of an execution, the

DAG will be executed only by the n processors in the cluster in the local work stealing algorithm.

Therefore, the local work stealing algorithm is essentially the classical work stealing running in a

single cluster. (Although in practice, different programs that have synchronization points with each

other can initially be assigned to different clusters, and those programs together may be considered

as a DAG.) Thus, the upper bound of the classical work stealing algorithm in the shared memory

model by Arora et al. [7] immediately gives the following bound.

Claim 20 The local work stealing algorithm executes any DAG G(T1, T∞) in expected time O(T1

n +

T∞) on a hierarchical system.

Comparing Claim 20 with Theorem 19, we know the local work stealing algorithm is optimal

when T1

T∞
≤ nr

log(nr) .

38

Since most of the steals in the global work stealing algorithm are remote, each taking time 2r, one

may think the algorithm should be quite inefficient for many programs. Surprisingly, the theorem

below shows the global work stealing algorithm actually achieves a very good upper bound, when

the the workload of a program is heavy (i.e., T1

T∞
is large).

Theorem 21 The global work stealing algorithm executes any DAG G(T1, T∞) in expected time

O(T1

p + rT∞) on a hierarchical system.

It is easy to see that, when nr
log(nr) ≤

T1

T∞
≤ pr, the global work stealing algorithm is optimal

within a factor of Θ(log(nr)), and when T1

T∞
≤ pr, the global work stealing algorithm is optimal.

Intuitively, doing remote steals frequently can quickly balance the workload across the system.

Also, when the workload is heavy, the cost of remote steals will be negligible compared to the cost

of executing the program itself.

The rest of the section is the proof of Theorem 21. We start with the following lemma that

bounds the number of remote joins in an execution.

Lemma 22 In any execution of a fork-join program by the global work stealing algorithm on a

hierarchical system, the number of remote join operations is at most twice the number of successful

steals.

Proof. Suppose a thread x creates a new thread y at a fork u and the two thread will join at

node v. Without loss of generality, assume the processor p0 currently executing x pushes x into the

bottom of its deque and then starts executing y. Since it is a fork-join program, we know that the

subgraph induced from y is a fork-join DAG, denoted by Gy, whose source and sink nodes are u and

v respectively. Assume x is not stolen by any other processor. If p0 needs to push nodes at forks

in Gy into its deque, the nodes will be put below x in its deque. Since other processors steals nodes

from the top of the deque, no nodes in Gy can be stolen and hence p0 will execute all nodes in Gy
and finally completes y. Now p0 will immediately pop x from its deque and attach the result of y to

x. Therefore, if x is not stolen, neither of the two join operations for v is remote. In other words,

the two join operations for v can be remote only if x is stolen. Therefore the number of remote join

operations is at most twice the number of successful steals. ut

Lemma 23 In any execution of G(T1, T∞) by the global work stealing algorithm on a hierarchical

system, the expected number of steals is O(pT∞).

Proof. (Sketch) The proof is a variant of the well-known proof (of Corollary 4 and Lemmas 6–8)

in Arora et al.’s paper [7]. The main idea of the proof in Arora et al.’s paper [7] is to analyze the

decrease of the potential Φ which is 3Θ(2T∞) at the beginning of an execution. The decrease of Φ can

be caused by making steals and executing nodes. The proof by Arora et al. shows that Φ decreases

by a constant factor with a constant probability after a period in which p steals are made. Therefore,

Φ becomes 0, which indicates the end of the execution, after O(pT∞) steals in expectation.

39

We only have to make one change to Arora et al.’s proof, in order to apply it to the global work

stealing algorithm on a hierarchical system: we show that Φ decreases by a constant factor with a

constant probability after a period in which 2p remote steals are made (instead of p steals). The

idea behind it is that each remote join operation takes time 2r on a hierarchical system and hence

the decrease of Φ caused by a remote join operation takes affects in time 2r. Since each remote steal

also takes time 2r, we know that after 2p remote steals have been made, all the remote joins that

occurred during the period in which the first p of the 2p remote steals were done must have been

completed. The rest of the proof is identical to those of Corollary 4 and Lemmas 6–8 in Arora et

al.’s paper [7] and hence we omit it due to space limits.

We complete the proof by observing that the total number of steals has the same bound, as in

expectation the number of remote steals is k−1
k of the total number of steals. ut

Now we are ready to prove Theorem 21.

Proof of Theorem 21. Processors in a work stealing algorithm only have three kinds of actions—

executing a node, making a steal, and doing a remote join operation. Suppose an execution finishes

in time T . Thus, we know that pT ≤ T1 + 2r · (Ns + Nj) and hence T ≤ T1

p +
2r(Ns+Nj)

p , where

Ns is the number of steals and Nj is the number of remote join operations. By Lemmas 22 and 23,

Ns = O(pT∞) in expectation and Nj ≤ Ns. Therefore T = O(T1

p + rT∞) in expectation. ut

3.5 Bounds for s-Bounded Programs

3.5.1 Lower Bound for Work Stealing Algorithms

We now discuss the bounds for work stealing on s-bounded programs which we think are the programs

we encounter most in practice.

Theorem 24 below shows that no work stealing algorithm can beat the lower bound in Theorem

19 even for s-bounded divide-and-conquer algorithms, a sublass of s-bounded fork-join programs.

Theorem 24 Given any T1 ≥ 8nr and T∞, and any positive integer s = O(r), there is a divide-

and-conquer DAG G(T1, T∞, s) that any work stealing algorithm takes expected time Ω(min{T1

n +

T∞,
T1

p + rT∞
log(nr

s)}) to execute on a hierarchical system.

Proof. When T1 = O(nT∞), T1

n + T∞ = O(T∞). Therefore the bound Ω(T1

n + T∞) holds in this

case, as Ω(T∞) is a lower bound for any DAG whose critical path length is T∞. The rest of the

proof will focus on the case when T1 > nT∞.

For simplicity, we will hide some annoying constants in the proof and use asymptotical notations

(usually the Θ notation) instead, as the lower bounds we want to prove won’t be affected this way

and our proof is essentially similar to that of Theorem 19.

The main idea is to construct a series of “hexagon” structures recursively. As shown in 3.7, the

first part of a hexagon is a complete binary tree of max{ 4nr
s , 4n} leaves and of height Θ(log(nrs)).

For simplicity, we assume s ≤ r and hence there are 4nr leaves. (When s > r, the proof is almost

40

Figure 3.7: A hexagon where each thread has s = 4 sequential nodes between the last level of forks
and the first level of joins.

identical and hence we omit it in the paper.) All the 4nr
s leaves each spawn a sequence of s nodes,

representing 4nr
s threads each having s nodes to execute after their last forks. Finally, the threads

join in pairs at recursively and eventually join into a single node.

The series of hexagons we want to construct is illustrated in Figure 3.8. We choose one of the
4nr
s threads in the first hexagon uniformly at random, and replace its s nodes between the last fork

and the first join with another hexagon. recursively, we replace the s sequential nodes of a random

thread in the ith hexagon with the (i + 1)th hexagon until we reach the last hexagon we want to

create. If there are t hexagons, it is not hard to see that the whole structure has St = Θ(tnr) nodes

and height Ht = Θ(t log(nrs)), for t ≥ s
log(nr

s) .

Now consider the case when 8nT∞ < T1 ≤ nrT∞
log(nr

s) . Suppose T1 = Θ(dnT∞
log(nr

s)), for some integer

d such that log(nrs) < d < r. Let t be the largest integer such that St < T1, where, as we defined

before, St is the number of nodes in a series of t hexagons. The DAG we construct is a series of t

hexagons, with the last node of the first hexagon followed by an arbitrary DAG G′(T1−St, T∞−Hk)

in order to make the entire DAG a G(T1, T∞, s). It is not hard to prove that St = Θ(T1) and

t = Θ(dT∞
r log(nr

s)), when T1 > 8nr (so that the nodes are enough to construct a DAG with as least

one hexagon).

We will now prove that the expected execution time of the t hexagons by any work stealing

algorithm is Ω(dT∞
log(nr

s)) and hence the bound Ω(T1

n + T∞) = Ω(dT∞
log(nr

s)) holds in this case. It suffices

to prove that, after reaching the first node of a hexagon, it takes any algorithm expected time Ω(r)

to reach the next hexagon.

41

Figure 3.8: The first two hexagons in a series of hexagons. The s sequential nodes of a randomly
chosen thread in the first hexagon (on the left-hand side) is replaced by the second hexagon.

Suppose the first node of a hexagon is about to be executed by a processor in a cluster. If a

remote processor steals a node that is an ancestor of the next hexagon, it is obvious that it takes

at least time r for the node to get to the remote processor, and hence time Ω(r) to reach the next

hexagon in this case. Since there are 4nr
s threads in the hexagon and those threads are identical

before the last layer of forks, we can conclude that if the first node of the next hexagon has not

been reached and remote processors have stolen nodes that will spawn more than 2nr
s threads of the

current hexagon, then with probability at least 1
2 the thread spawning the next hexagon is in those

threads. Hence the lower bound of expected time Ω(r) holds in this case.

On the other hand, suppose remote processors only steal nodes that will spawn no more than 2nr
s

threads and the one spawning the next hexagon remains in the cluster. Now the n processors in the

cluster will have to find out the thread containing the next hexagon out of more than 2nr
s seemingly

identical threads. Note that if a processor in a work stealing algorithm reaches the first node of a

thread after the last fork, it won’t do anything else until it finishes all the s nodes. Therefore, with

probability at least 1
2 the first nr

s threads whose nodes after the last layer of forks are executed do

not include the one spawning the next hexagon and the execution time is already Ω(nr·ss·n) = Ω(r).

This completes the proof for the case when 8nT∞ < T1 ≤ nrT∞
log(nr

s) .

Now we prove the bound Ω(T1

p + rT∞
log(nr

s)) for the case when T1 >
nrT∞

log(nr
s) . Since Ω(T1

p) always holds

for any system of p processors, we will prove Ω(rT∞
log(nr

s)). The proof is similar to that of Theorem 19

and hence we will keep it brief. The DAG G(T1, T∞, s) we want to construct is similar to the one

in Figure 3.6: a single node forking into two subgraphs that eventually join. The left subgraph is

a series of Θ(T∞
log(nr

s)) hexagons that we explained above and the right subgraph contains the rest

of nodes in an arbitrary form. As we proved before, it takes any work stealing algorithm expected

42

time Ω(r · T∞
log(nr

s)) to execute the left subgraph, which completes the proof. ut

3.5.2 Unbalanced Work Stealing and Its Upper Bound

We say a work stealing algorithm is an unbalanced work stealing algorithm, if in any execution, 1)

each processor pushes and pops threads through the bottom of its deque, 2) each local steal of a

processor chooses a victim processor uniformly at random from the same cluster, 3) each remote steal

of a processor chooses a victim processor uniformly at random from other clusters, 4) each steal takes

only the first thread from the top of the victim’s deque, 5) after a processor made a remote steal, its

next steal is a local steal with probability at least c, for a constant c, and 6) Nrem ≤ Nloc ≤ λ ·Nrem,

where λ = Θ(r), Nrem is the number of remote steals and Nloc is the number of local steals in the

execution.

The first three rules are standard in most work stealing algorithms in the literature. Rule 4 is

also the strategy many existing algorithm uses. However in other algorithms, a thief processor can

steal multiple threads (e.g., half of the threads) from a deque. Rule 5 implies that after making a

remote steal, a processor is likely to make a local steal. Rule 6 means intuitively that the algorithm

has a bias towards local steals while still making enough remote steals.

The most common heuristic we find in the existing work stealing algorithms for hierarchical

systems is to have each processor make more local steals than remote steals, hoping that this can

reduce the number of costly remote operations while most processors can have enough work to do

by only balancing workloads locally most of the time [62].

Algorithms using this heuristic usually behave like unbalanced work stealing algorithms, at least

when running on unbalanced programs in which workloads cannot keep evenly distributed among

clusters for long without remote steals. Since unbalanced programs are usually the ones on which

algorithms performance worst in practice, we believe we can measure the performance bounds of

many work stealing algorithms using this heuristic, by proving the bounds of the class of unbalanced

work stealing algorithms.

When the workload is light, the local work stealing algorithm has an optimal upper bound, as

we showed before. Since algorithms with this heuristic are in favor of local steals, they should work

well in this case. Theorem 25 indicates that algorithms using this heuristic are likely to have good

performance guarantees for Ω(r)-bounded fork-join programs, when the workload is heavy, i.e., T1

T∞

is big, and each thread contains a relatively large amount of work.

Theorem 25 An unbalanced work stealing algorithm executes any s-bounded DAG G(T1, T∞) in

expected time O(T1

p + rT∞) on a hierarchical system, for any s = Ω(r).

The proof of Theorem 25 is based on the following lemma.

Lemma 26 In any execution of a DAG G(T1, T∞, s) by any work stealing algorithm on a hierarchical

system, the number of joins is no more than T1

s .

43

Proof. The proof is simple. Since each thread in an s-bounded DAG G(T1, T∞) has at least s nodes

and there are in total T1 nodes in the DAG, the number of threads is at most T1

s . Since a join in a

fork-join DAG is the end of a thread, the number of joins is bounded by the number of threads in

the DAG and hence is at most T1

s . ut

Proof of Theorem 25. By the definition of unbalanced work stealing algorithms, after a processor

made a remote steal, its next steal is a local steal with probability at least c, for some constant c.

Suppose a processor makes m remote steals in an execution. We call each odd-numbered one of

these m remote steals and the steal of the processor after it (which is a local steal with probability

at least c) a steal couple. Thus, the processor has dm/2e steal couples and they don’t overlap. It is

easy to see that by making a steal couple, the processor steals each other processor in the system

with probability at least min{ 1
n(k−1) ,

1
c(n−1)} >

1
cp . Therefore, by the same proof of Lemma 23, we

can prove that the expected number of steal couples by all processors in an execution is O(pT∞).

Hence, the expected number of remote steals in an execution is also O(pT∞).

The rest of the proof is similar to that of Theorem 21. The execution time of an unbalanced

work stealing algorithm is T ≤ T1

p +
2r(Nrem+Nj)+Nloc

p , where Nrem is the number of remote steals,

Nloc is the number of local steals, and Nj is the number of remote join operations. Since Nrem =

O(pT∞) in expectation, Nloc = O(rNrem) by definition, and Nj = O(T1

r) by Lemma 26, we have

T = O(T1

p + rT∞) in expectation. ut
As a byproduct, the following theorem shows that The global work stealing algorithm, even

without the attaching scheme, has the same upper bound for Ω(r)-bounded fork-join programs.

Theorem 27 The global work stealing algorithm, even without the attaching scheme, executes any

DAG G(T1, T∞, s) in expected time O(T1

p + rT∞) on a hierarchical system, for any s = Ω(r).

Proof. The proof is similar to that of Theorem 21. Lemma 26 indicates any work stealing algorithm

incurs only O(T1

r) remote join operations in an execution of a DAG G(T1, T∞, s), when s = Ω(r).

Also note that Lemma 23 still holds for s-bounded DAGs. The execution time of the global work

stealing algorithm without the attaching scheme is T ≤ T1

p +
2r(Ns+Nj)

p , where Ns is the number

of steals and Nj is the number of remote join operations. Since Ns = O(pT∞) in expectation and

Nj = O(T1

r), we have T = O(T1

p + rT∞) in expectation. ut

Chapter 4

Work Stealing for Linearizable

Futures

This chapter presents our work on linearizable futures, a new type of futures invented recently [53]

to handle functions with side effects, especially for method calls to long-lived shared data structures.

we propose a new program model, called the linearizable-futures model, that supports both futures

without side-effects, which we call normal futures, and futures that exist for their side-effects, which

we call linearizable futures. We use this model to propose a novel work-stealing scheduler that

facilitates the kind of combining and elimination optimizations supported by linearizable futures.

The rest of the chapter is organized as follows. Section 4.1 shows the related work. In Section 4.2,

we explain our new program model, linearizable-futures model, in detail. In Section 4.3, we show

how to modify work stealing for linearizable-futures model, in order to make good use of combining

and elimination optimizations. Finally we prove in Section 4.4 that the modified work stealing,

combined with combining and elimination, achieves very good performance bounds with respect to

its execution times on programs in linearizable-futures model.

4.1 Related Work

Futures were first proposed by Halstead [41, 42] and have been well studied since then (e.g., [55, 8,

58, 31, 16, 77, 32]), sometimes under different names. They are a flexible way to structure parallel

programs, as the future-parallel model is a generalization of the widely used fork-join model (also

called nested-parallel model) [13, 15, 17].

Futures are well suited to dynamic load-balancing techniques such as the popular work stealing

scheduler [20]. Arora et al. [7] proved that (parsimonious) work stealing achieves the asymptotically

best speedup for the parallel execution of a program in the future-parallel model. If a program in the

future-parallel model is written in a natural, structured way [47], its parallel execution using work

stealing also guarantees good cache locality, much better than a worst-case unstructured program [1,

44

45

73].

Kogan and Herlihy [53] recently proposed futures for side-effects, intended to facilitate batching

optimizations such as combining [39, 37, 46] and elimination [45, 63, 72]. An operation on a shared

data structure immediately returns a future, and a later touch will retrieve the return value of the

operation, as soon as that value is ready. Since operations on shared objects have side-effects, it

is necessary to specify when these side-effects might be observed. Three alternative correctness

conditions were proposed: strong, medium, and weak futures linearizability. These conditions should

be thought of as extensions to linearizability [49], a widely used correctness condition in distributed

and parallel computing.

Here, we restrict out attention to medium futures linearizability, arguably the most useful of the

futures-based extensions to linearizability. For brevity, futures satisfying this condition are called

linearizable futures here.

4.2 Linearizable-Futures Model

4.2.1 Normal Futures and Linearizable Futures

As noted, futures [41, 42] are an attractive way to structure parallel computation. When a thread

creates an expression (usually a method call) with a keyword future, a new thread, called a future

thread or a future for short, is spawned to compute that expression in parallel with the thread that

created it. When a thread needs the result of that expression, it applies a touch operation to that

future. If the result is ready, it is returned to the touching thread, and otherwise the touching thread

blocks until the result becomes ready (see Figure 4.1 for an example). A future thread itself can

even create new futures.

Figure 4.1: Pseudocode for computing the sum of the third and the fifth Fibonacci numbers using
futures.

In prior models, futures are deterministic in a program (with a given input): the sequence

of a future thread’s instructions are fixed in all executions, no matter how those instructions are

interleaved with other threads. Once we introduce threads with asynchronous side-effects, we can

no longer guarantee determinism. Instead, we allow future threads to be regular : in any execution

of a program, (1) the number of a regular thread t’s instructions is fixed, (2) the futures and touches

46

t creates, as well as their positions in t, are fixed,1 and (3) the instructions between two successive

touch operations in t take effect as if they were executed atomically at the moment the first of the

two touches is executed.2 We call futures that are regular normal futures, to distinguish them from

linearizable futures introduced next.

Kogan and Herlihy [53] recently proposed a new way of using futures to encapsulate operations

on shared mutable data structures. When an operation is applied to a shared data structure, it

immediately returns a future. Touching that future later returns the operation’s result, along with

implicit confirmation that the operation has taken effect. We call futures for operations on shared

objects linearizable futures. A linearizable future for an operation on a shared object o is also called

a linearizable future on o, for short.

In the presence of concurrency, it is important to specify when a future-returing operation can

take effect. Three alternative correctness conditions have been proposed: strong, medium, and weak

futures linearizability [53]. In this paper, we focus on medium futures linearizability, which appears

to be the most useful.

Medium futures linearizability requires that (1) the operation associated with a linearizable future

should appear to take effect at some instant between when that future is created, and when it is

touched, and (2) linearizable futures created by the same thread on the same object should take

effect in the same order as their creation operations. Informally, these conditions mean that (1) the

creation of a linearizable future and its matching touch fill the roles of operation invocation and

response in the classic linearizability condition, and (2) the order of operations called by a thread

on the same shared object is preserved.

4.2.2 The Model

In this paper, we propose a new parallel program model, called linearizable-futures model, that

exploits both normal futures and linearizable futures in a structured way. Suppose there are multiple

main threads (which represent multiple independent programs in practice) in a program, each having

its own, side-effect free computation. The main threads also need to communicate with each other

by accessing shared objects in the shared memory. As we can imagine, an efficient way to run this

program is to have each main thread spawn “worker threads” to execute its local, computationally

heavy work in parallel, and also have each main thread create linearizable futures to apply operations

to shared objects in order to communicate with other main threads. Our linearizable-futures model

captures this scenario.

More specifically, a program in linearizable-futures model consists of some independent main

threads and their descendant threads which are normal futures and linearizable futures. The main

1In fact, the number of instructions of a thread is allowed to vary within a constant factor, and the positions of
futures and touches can move within a constant number of instructions, as long as their order is preserved. We
ignore these variations, as they are negligible in our theoretical performance analysis, and do not seem useful in
practice.

2Intuitively, the instructions between two successive touches are required to be side-effect free. We define it this
way, because in our new program model, introduced later, only the touch operations in a regular thread can return
data from shared objects, causing nondeterminism in the thread.

47

threads and the normal futures are regular. A main thread can spawn and touch both normal

futures and its own linearizable futures. A normal future thread, which is spawned directly or

indirectly by a main thread, can only create and touch normal futures, but not linearizable futures,

as linearizable futures are designed for operations on shared objects by main threads. A linearizable

future thread can neither create nor touch any type of futures, since in practice an operation on a

shared object is executed by a single thread. We also require each future to be touched only once

(note that the thread touching a normal future doesn’t have to be the one that created that future).

This requirement is beneficial in practice for reasons such as that it makes the implementations

of future/touches simpler and have lower overheads [16], and that the requirement, together with

another practical constraint proposed in the well-structured future-parallel model in [47], guarantees

good cache locality bounds for parallel executions by work stealing scheduler.

We believe that writing a parallel program in linearizable-futures model is easy and natural:

When we want to execute some side-effect free computation in a thread in parallel, or when we

want to split a thread into two or more to run different parts of a program later, we create a normal

future in that thread, and we may have the newly spawned normal future thread create more normal

futures further, if necessary; When a main thread needs to exchange information with other main

threads, we have it create a linearizable future to apply an operation to a shared object, which is

the standard way of communication in shared-memory systems.

Unlike the previous future-parallel models, our model supports nondeterminism by the use of

linearizable futures, with a clear correctness condition—medium futures linearizability. Although

the requirement that main threads and normal futures must be regular limits the degree of non-

determinism, in return it avoids a program to be notoriously hard to reason about and debug, by

forcing nondeterminism to be caused only by single-purpose linearizable future threads and keeping

the structure of the program unchanged in all parallel executions.

4.2.3 Computation DAG

For theoretical analysis, an execution of a program is modeled as a directed acyclic graph (DAG).

A node in a DAG represents an instruction and a directed edge (u, v) represents the dependency

constraint that v must be executed after u. Therefore, a node is able to execute when all its parent

nodes have been executed. A node that creates a future is called a fork and a node that touches

a future is called a touch. The most common edges in a DAG are continuation edges, which point

from one node to the next in the same thread. Thus, a thread is a maximal chain of nodes connected

by continuation edges. There are three other types of edges (Figure 4.2 shows a DAG consisting of

edges of all these types):

• future edges, which point from a fork u to the first node of the future thread spawned by u.

• touch edges, which point from the last node of a future thread f to a touch v in another thread

that touches the future computed by f .

48

• order edges, which point from the last node of a linearizable future f1 on object o created by

a thread t to the first node of the next linearizable future f2 on o created by t, indicating that

f2 cannot be executed until f1 has be finished, according to medium futures linearizability.

Figure 4.2: A main thread t spawns two linearizable futures f1 and f2, both on object o, at forks
v1 and v2 respectively. v3 and v4 are touches of f1 and f2 respectively. By definition, (v1, v5) and
(v2, v7) are future edges. (v6, v4) and (v8, v3) are touch edges. (v6, v7) is an order edge. All the other
edges are continuation edges.

A DAG consists of some main threads that don’t have dependency constraints on each other,

and some normal futures and linearizable futures spawned directly or indirectly by them. Since each

node is a single instruction, it cannot spawn multiple futures or touch multiple futures. Combining

this with the fact that each future can be touched only once, we can conclude that each node has

in-degree and out-degree either 1 or 2, except that the first and the last nodes of each main thread

have in-degree 0 and out-degree 0, respectively. A critical path of a DAG is a longest directed path

in the DAG and the length (i.e., the number of nodes) of a critical path is sometimes called the

computation span of the DAG. In the next subsection, we will show how to generalize the DAG

model to represent programs that support combining and elimination optimizations.

4.2.4 Combining and Elimination

Kogan and Herlihy [53] shows that if shared object operations are created as futures, some powerful

optimizations, such as combining and elimination, can be applied to a program. Since a linearizable

49

future doesn’t have to be executed immediately after its creation, a clever scheduler can delay its

execution until it can be done efficiently. For instance, consider a shared queue implemented as a

linked list and k enqueue operations created as k linearizable futures by a thread. If a thread can

execute those k enqueue operations together, it can locally make them a linked list in the same

order as they were created, and then append them to the linked list of the shared queue by only

one CAS operation. Since local operations are usually much faster than operations on a shared

object, this combining optimization will largely boost the performance of the execution, compared

to simply enqueuing k elements one by one. Similarly, if a push operation and a pop operation on

the same shared stack object can be combined locally, they can be canceled out by an elimination

optimization, without even accessing the shared stack.

As the main results of the paper, we will show in Section 4.4 that work stealing scheduler, with

some modifications, can make good use of combining and elimination optimizations in our model.

As Kogan and Herlihy did in [49], we only consider combining and eliminating linearizable futures on

the same object created by the same thread. Modeling and analyzing the performance of combining

and eliminating linearizable futures created by different threads is out of the scope of the paper, and

we consider it an interesting open question for future work.

Since we focus on the analysis of “local” combining and elimination, we make a simplification to

our model to assume that the length of the thread that groups some linearizable futures to execute

together (with possible combining and elimination) is fixed, regardless of the execution of any other

part of the program. For instance, let f0, f1, f2 and f3 be the linearizable futures on object o created

by the same thread t. Grouping f1 and f2 to execute together will replace these two future threads

by a new thread g(f1 ∪ f2) in the DAG, as illustrated in Figure 4.3, and the length of g(f1 ∪ f2) is

fixed in all executions where f1 and f2 are grouped with no other futures. Since we cannot group

f1 and f2 until f2 is created, g(f1 ∪ f2) is spawned at the fork of f2. The touch of g(f1 ∪ f2) is the

same as the earlier one of the touches of f1 and f2, which is the touch of f2 in this case. Because of

medium futures linearizability, there is an order edges from the last node of f0 to the first node of

g(f1∪ f2), and an order edges from the last node of g(f1∪ f2) to the first node of f3. Note that only

consecutive linearizable futures can be grouped, according to medium futures linearizability (e.g., if

f0 and f2 are grouped, then executing f1 either before or after g(f0 ∪ f2) violates medium futures

linearizability).

Formally, let f0, f1, ..., fn denote all the linearizable futures on object o created by thread t

in a program, where fi is created before fi+1 for all 0 ≤ i ≤ n − 1. If a thread, denoted by

g(fi∪fi+1∪ ...∪fj), takes fi, fi+1, ..., fj to execute together in an execution, for some 0 ≤ i ≤ j ≤ n,

we say g(fi ∪ fi+1 ∪ ... ∪ fj) is a future group (or a group for short) in that execution. In the DAG

of that execution, future threads fi, fi+1, ..., fj are replaced by thread g(fi ∪ fi+1 ∪ ... ∪ fj), where

g(fi ∪ fi+1 ∪ ... ∪ fj) is created at the fork that creates fj and touched by the earliest one among

the touches of fi, fi+1, ..., fj . If i > 0, there is an order edge from the last node of the group fi−1 is

in, to the first node of g(fi ∪ fi+1 ∪ ... ∪ fj). If i < n, there is an order edge from the last node of

g(fi ∪ fi+1 ∪ ... ∪ fj) to the first node of the group fj+1 is in.

50

Figure 4.3: The DAG on the left shows an “original” execution of the program, where each lineariz-
able future fi is executed solely, for any 0 ≤ i ≤ 3. The DAG on the right shows the DAG of an
execution, where f1 and f2 are grouped.

If a linearizable future fk is executed solely in an execution, we still consider it as a future group

g(fk), in order to keep notations consistent. Thus, all linearizable futures are replaced by future

groups in the DAG of an execution. When we say the fork (resp. the touch) of a linearizable future f

in a DAG, we refer to the node where f is created (resp. touched) in the original program, although

that node is not necessarily the fork (resp. the touch) of a future group in the DAG. When we say

the DAG of a program, we refer to the DAG of an execution of the program where each linearizable

future is executed solely as a group.

Let T (g) denote the number of nodes of group g, i.e., the length or the execution time of g.

If both combining and elimination can be applied to the program whenever possible, we assume

T (g(fi ∪ fi+1 ∪ ... ∪ fj)) is fixed in any execution of the program and satisfies the inequalities of

combining and elimination:

0 ≤ T (g(fi ∪ fi+1 ∪ ... ∪ fj)) ≤ T (g1) + T (g2) + ...+ T (gk)

where g1, g2, .., gk are a partition of fi, fi+1, ..., fj , i.e., future groups that execute disjoint subsets of

fi, fi+1, ..., fj and collectively execute all fi, fi+1, ..., fj , such that if fa is in gc and fb is in gd for

some i ≤ a < b ≤ j, then 1 ≤ c ≤ d ≤ k.

The two bounds in the inequalities of combining and elimination show that (1) in the best case,

where fi, fi+1, ..., fj can be entirely canceled out, no work is needed, (2) executing fi, fi+1, ..., fj

together in a single group won’t be less efficient than splitting them into subgroups to execute one

by one (because a group can always simulate the execution of its subgroups if that is the most efficient

way), and (3) in the worst case T (g(fi ∪ fi+1 ∪ ... ∪ fj)) = T (g(fi)) + T (g(fi+1)) + ... + T (g(fj)),

where no optimization can be applied to those futures, then g(fi ∪ fi+1 ∪ ... ∪ fj) has to execute

51

those linearizable futures one by one. Note that the inequalities of combining and elimination is a

very weak assumption, allowing the performance of a future group be to anything between the two

extreme cases.

If only combining is applied to the program, then we assume T (fi ∪ fi+1 ∪ ... ∪ fi+k) is fixed in

any execution and satisfies the inequalities of combining :

T (g∗) ≤ T (g(fi ∪ fi+1 ∪ ... ∪ fj)) ≤ T (g1) + T (g2) + ...+ T (gk)

where g∗ is a subgroup of g(fi ∪ fi+1 ∪ ... ∪ fj), i.e., a future group g(fa ∪ fa+1 ∪ ... ∪ fb), for some

i ≤ a ≤ b ≤ j.
The inequalities of combining capture the fact that if we cannot cancel out operations, combining

a group of linearizable futures to execute usually takes at least the time needed for executing any

subgroup of them (in the best case, it takes the time needed for executing a single linearizable

future in the group). Although the inequalities of combining are slightly more restricted than

the inequalities of combining and elimination, we believe they are still a reasonable assumption in

many cases in practice, as efficient elimination is feasible only for specific data structures in specific

situations.

4.3 Lazy Work Stealing

Given a program with futures, we still need a scheduler to assign the threads of the program to

different processors in order to run them in parallel. Work stealing [20, 7] is the most popular

scheduler for programs in the original future-parallel model, achieving very good load balancing and

low scheduling overheads. In this section, we propose a modified work stealing scheduler, called lazy

work stealing, for programs in linearizable-futures model. We will show in the next section that lazy

work stealing can make good use of combining and elimination, by proving good theoretical bounds

on its performances.

As in the original work stealing scheduler, each processor in lazy work stealing has its own double-

ended queue (deque) to store the threads it created that are ready to execute (in fact, the deque

stores the next available nodes of those threads). When a processor executing a thread spawns a

normal future thread at a fork, it chooses either the current thread or the newly spawned thread to

execute, and push the other into the bottom of its deque. When a processor doesn’t have a thread

to work on, it pops the first thread from the bottom of its deque to execute if the deque is not

empty, and otherwise it randomly chooses another processor and steals the first thread from the top

of that thread’s deque to execute. At the beginning of an execution of a program, the main threads

of the program are stored in the deques of some arbitrary processors, so active processors can start

popping them out to execute. The execution finishes when all threads (all nodes) in the program

have been executed.

To deal with linearizable futures and make good use of combining and elimination, lazy work

stealing also does the following:

52

• For each thread t and each shared object o, all the ready linearizable futures on o created

by t are stored together in the shared memory, forming a linked list ` in the order they were

created. (Note that linearizable futures in the same linked list can be created by different

processors, as t can be executed by different processors at different times.)

• When a processor executing t spawns a linearizable future f on o at a fork, it always continues

to execute the current thread t and appends f to the linked list ` of the ready linearizable

futures on o created by t. If f is the last linearizable future on o created by t before the first

of the touches of all the ready linearizable futures (including f) on o by t, the processor also

creates a pointer node pointing to the head of ` and pushes the pointer node to the bottom of

its deque (see Figure 4.4).

• When the node a processor pops or steals from a deque is a pointer to the linked list of the

ready linearizable futures on o created by t, the processor groups those linearizable futures to

execute together, with combining and elimination if possible.

Figure 4.4: An example illustrating how lazy work stealing works when a processor P is executing
node v in thread t. First, f3 is added to the linked list of ready linearizable futures on object o
created by thread t. Since f3 is the last future on o before the first touch of the ready futures on o
(i.e., the touch of f3), a pointer node to the linked list is pushed into the bottom of P ’s deque.

We can observe that using lazy work stealing, linearizable futures can be executed only if the

53

pointer to the linked list containing them has been pushed into a deque. It is also easy to see that

in any execution linearizable futures are always partitioned into the same groups to execute.

Now we explain why a linked link described above can be easily and efficiently implemented. We

can, for example, maintain a hash table and use t and o as the key to quickly find the location of

the linked list for ready linearizable futures on o created by t. The linked list is created dynamically

only when a linearizable future on o is created by t, and its memory can be freed when all the ready

linearizable futures have been executed, so lazy work stealing won’t take much extra memory in

general. Also note that (1) only one processor takes control of thread t at a time and (2) when a

processor executes the future group for the ready linearizable futures on o created by t, no more

linearizable futures on o will be added to that linked list, as the creation (fork) of the next linearizable

future on o created by t is after the touch of that future group. Therefore, we can conclude that

only one processor at a time can update the linked list and hence a simple implementation of the

linked list without supporting concurrency will suffice.

The only tricky part in the implementation of lazy work stealing is to figure out whether a

linearizable future on o is the last one before the first touch of the ready linearizable futures on o

in the same thread. To achieve that, we can, for example, have the compiler find out and mark

all the linearizable futures of that kind when it compiles the program. Alternatively, we can have

the programmer (or the IDE automatically) mark those linearizable futures when the programmer

is writing the program. Given that futures and touches are key words explicitly written in the

program, Both methods should be easy and convenient.

4.4 Performance Analysis of Lazy Work Stealing

One may concern that lazy work stealing is very inefficient in some scenarios, as lazily waiting for

all linearizable futures to be created before executing them can sometimes waste too much CPU

time of the idle available processors. In this section, we prove that lazy work stealing performs well

in linearizable-futures model, having the best bounds on execution times that any non-clairvoyant

scheduler can achieve. Moreover, we prove that in many cases, the performance of lazy work stealing

is also close to that of an optimal offline scheduler. Note that in our analysis, we assume each

processor can execute different main threads and future threads in an execution, but our results

also applies to the case where each processor is assigned to only one main thread and its descendant

threads all the time, which is usually the case in hierarchical shared memory systems.

Consider a group g of linearizable futures on object o created by thread t in an execution of a

program. We define the span of g as the path in thread t from the fork that creates the first future

in g to the last touch of the futures in g. The span of g is divided into three segments—the creation

span, the middle span, and the touch span. The creation span of g is from the the fork that creates

the first future in g to the fork that creates the last future in g. The middle span of g is from the

fork that creates the last future in g to the first touch of the futures in g. The touch span of g is from

the first touch to the last touch of the futures in g. For instance, in any execution of the program

54

in Figure 4.4 by lazy work stealing, f1, f2 and f3 are grouped, and the creation, middle and touch

spans of group g(f1 ∪ f2 ∪ f3) are the paths from the fork of f1 to v, from v to the touch of f3, and

from the touch of f3 to the touch of f1, respectively, in thread t.

We will prove theoretical bounds for programs in general form and programs in a special form,

called well-formed programs, in linearizable-futures model. A program in linearizable-futures model

is well formed, if in the DAG of any execution by lazy work stealing, the spans of future groups on

the same object created by the same thread don’t overlap. Intuitively, this means that once a thread

touches a linearizable future on object o, it has to touch all the other ready linearizable futures on

o it has created, before it can create new linearizable futures on o (see Figure 4.5). It is easy to see

that a well-formed program implicitly divides linearizable futures into the same groups as lazy work

stealing does.

Figure 4.5: A well-formed program obtained by modifying the program in Figure 4.4. The only
modification is moving the touch of f1 to a node before the fork of f4, so that f4 is created after all
f1, f2, and f3 have be touched.

Recall that in all executions of a program by lazy work stealing, linearizable futures are par-

titioned into the same groups and all those executions can be represented as the same DAG. We

55

define the containment level of a program with respect to the DAG G of its executions by lazy work

stealing as follows. Let the size of a future group be the number of linearizable futures in that group.

We define the containment level of the creation span (resp. the touch span) of a group g in G as the

number of different shared objects on which there are future groups of size at least 2 whose middle

spans are contained in the creation span (resp. the touch span) of g. The containment level of g is

the maximum of the containment level of the creation span of g and the containment level of the

touch span of g. Finally, the containment level of a program is the maximum of the containment

levels of all the future groups in G. We will show later in the section that the containment level of

a program is often a small constant in practice.

The main results about the performance of lazy work stealing are as follows:

Theorem 28 Given a program with combining optimization in linearizable-futures model, its exe-

cution time by an optimal offline scheduler is Θ(T1

PA
+ T∞), where T1 and T∞ are the number of

nodes and the length of a critical path in the DAG of the execution respectively, and PA is the av-

erage number of available processors in the execution. Its execution time by lazy work stealing is

O(T1

P ′A
+ (c + 1)T∞) in expectation, where c is the containment level of the program and P ′A is the

average number of available processors in the execution.

Theorem 29 Given a well-formed program with combining and elimination in linearizable-futures

model, its execution time by an optimal offline scheduler is Θ(T1

PA
+ T∞), where T1 and T∞ are the

number of nodes and the length of a critical path in the DAG of the execution respectively, and PA is

the average number of available processors in the execution. Its execution time by lazy work stealing

is O(T1

P ′A
+ (c+ 1)T∞) in expectation, where c is the containment level of the program and P ′A is the

average number of available processors in the execution.

We start with the proofs of the lemmas for proving Theorem 29.

Lemma 30 Let T1 be the number of nodes in the DAG G of any execution of a well-formed program

by lazy work stealing. The number of nodes in the DAG of any execution of that program by any

scheduler is at least T1.

Proof. Consider a linearizable future f on object o created by a main thread t and the group g that

f is in in G. Since the program is well formed, any linearizable future on o created by t that is not in

g cannot be grouped with f in any execution by any scheduler. This implies any scheduler can either

group all the linearizable futures in g to execute together or split them into subgroups to execute

one by one. According to the inequalities of combining and elimination, the number of nodes in the

g is no more than the number of all the nodes in the those subgroups of g in any execution. Since

the number of nodes in normal futures are fixed in all executions and the work stealing scheduler

incurs the smallest total number of nodes in linearizable futures, we can conclude that T1 is the

lower bound for any execution by any scheduler. ut
The following lemma holds not only for well-formed programs, but also for programs in the

general form.

56

Lemma 31 Let G be the DAG of an execution of a program of containment level c by lazy work

stealing and let g1, g2, ..., gn denote all the future groups contained in a path in G. If g1, g2, ..., gn are

on 2c+4 or more different shared objects, then any linearizable future in g1 precedes any linearizable

future in gn in the program.

Proof.

Since g1, g2, ..., gn are on 2c+ 4 or more different shared objects, there must be a group gi whose

touch u divides the path into two segments such that the future groups contained in each of the two

segments are on at least c+ 2 different shared objects. Note that g1, g2, ..., gn must be spawned and

touched by the same main thread. Therefore, we know that the touch of any linearizable future in g1

must be a node in that main thread before u, because otherwise the touch span of g1 will contain all

the middle spans of g2, g3, ..., gi which are on at least c+1 different shared objects, contradicting that

the containment level of the program is c. Similarly, the fork of any linearizable future in gn must

be a node in that main thread after u, because otherwise the creation span of gn will contain all the

middle spans of gi+1, gi+2, ..., gn−1 which are on at least c+ 1 different shared objects, contradicting

that the containment level of the program is c. Therefore, we can conclude that any linearizable

future in g1 must precede any linearizable future in gn in the program. ut

Lemma 32 Let G be the DAG of an execution of a well-formed program by lazy work stealing, and

let g1, g2, ..., gn be all the future groups on object o created by a main thread in G. In the DAG of

any execution of the program by any scheduler, there exists a path from u to v such that the path is

not shorter than the sum of the lengths of ga, ga+1, ..., gb for any 1 ≤ a ≤ b ≤ n, where u is the fork

of a linearizable future in ga and v is the touch of a linearizable future in gb.

Proof. As we pointed out in the proof of Lemma 30, since the program is well-formed, for any

1 ≤ i ≤ n, the linearizable futures in gi have to either be grouped together or be partitioned into

subgroups of gi in any execution by any scheduler. By the inequalities of combining and elimination,

the sum of the lengths of those subgroups is not smaller than the length of gi. Therefore in any

execution by any scheduler, the groups consisting of all the linearizable futures in ga, ga+1, ..., gb

form a path αu,v from the fork u of the first group to the touch v of the last group, through all the

nodes in those groups (with order edges connecting successive groups), and the length of αu,v is not

shorter than the sum of the lengths of ga, ga+1, ..., gb. It is obvious that u is the fork of a linearizable

future in ga and v is the touch of a linearizable future in gb, so αu,v suffices. ut

Lemma 33 Let G be the DAG of an execution of a well-formed program of containment level c by

lazy work stealing. If the length of a critical path in G is T∞, then there is a path of length Ω(T∞c+1)

in the DAG of any execution of the program by any scheduler.

Proof. Consider any critical path in G and all the future groups contained in the path. We partition

the critical path into segments as follows. The first segment of the path is from the first node of

the path to the touch of the first future group contained in the path, such that the future groups

contained in this segment are on 2c + 4 different objects. Then by induction, the next segment is

57

from the end of the previous segment to the touch of the first future group in the rest of the path,

such that the future groups contained in this segment are on 2c+ 4 different objects. This partition

completes when we reach the end of this critical path and hence the last segment is from the end of

the previous segment to the end of the path. Let β1, β2, ..., βn denote the segments. Without loss of

generality, assume n = 2k is an even number.

Now we consider βi, for any 1 ≤ i ≤ n. By Lemma 32, for an object o on which there are future

groups in βi, there exists a path αo from u to v in the DAG G′ of any execution by any scheduler,

such that αo is not shorter than the sum of the lengths of all the groups on o in βi in G, where u

is the fork of a linearizable future in the first group on o in βi and v is the touch of a linearizable

future in the first group on o in βi. In G′, we can also find a path α′ from the start of βi to the end

of βi, such that α′ contains all the segments of βi that are in normal futures and the main thread,

and goes through the nodes in the main thread between the fork and the touch of each linearizable

future group instead of going through that group (see Figure 4.6). Since α′ contains all the nodes

in the normal futures and the main thread in βi, and for each object o, αo is not shorter than the

sum of the lengths of all the linearizable future groups on o in βi in G, we know that the sum of the

lengths of α′ and all the paths αo is not smaller than the length of βi. Since the future groups in

βi are on at most 2c+ 4 different objects, there is a path αβi
among α′ and all αo, such that αβi

is

not shorter than 1
2c+5 of the length of βi.

Note that the first node of α′ is the first node of βi, which is essentially the touch of a linearizable

future in the last group in βi−1. Also note that the first node of any αo is the fork of a linearizable

future in the first group on o in βi. Hence, we know the first node of αβi
is either the touch of a

linearizable future in the last group in βi−1 or the fork of a linearizable future in a group in βi. Since

both the last node of α′ (which is the last node of βi) and the last node of any αo are the touches

of linearizable futures in groups in βi, we know the last node of αβi is the touch of a linearizable

future in a group in βi (note that the last node of αo may be after the last node of βi).

For any 1 ≤ i ≤ k − 1, since the future groups in β2i are on 2c+ 4 different objects, by Lemma

31, any linearizable future in a group in β2i−1 precedes both any linearizable future in the last group

in β2i and any linearizable future in a group in β2i in the program. Since (1) the last node of αβ2i−1

is the touch of a linearizable future in a group in β2i−1 and (2) the first node of αβ2i+1
is either the

touch of a linearizable future in the last group in βi−1 or the fork of a linearizable future in a group

in βi, we can conclude that in G′, the last node of αβ2i−1 is before the first node of αβ2i+1 . Hence,

in G′, there is always a path αodd containing the paths αβ2i−1 for all 1 ≤ i ≤ k and the length of

the path is at least 1
2c+5 of the sum of the lengths of the paths β2i−1 for all 1 ≤ i ≤ k. Similarly, we

can prove that in G′, there is always a path αeven containing the paths αβ2i
for all 1 ≤ i ≤ k and

the length of the path is at least 1
2c+5 of the sum of the lengths of the paths β2i for all 1 ≤ i ≤ k.

Therefore, the sum of the lengths of αodd and αeven is at least 1
2c+5 of the length of the union of βi

for all 1 ≤ i ≤ 2k, which is the critical path in G. Hence, at least one of αodd and αeven is of length

Ω(T∞c+1). ut

Proof of Theorem 29. It is a well-known result that any execution of a program by any scheduler

58

Figure 4.6: The DAG on the left is a path βi in G. g1, g2, and g3 are linearizable futures on object
o contained in βi, and the other segments of βi are all in the main thread and normal futures (for
simplicity, we assume there is no linearizable futures on other objects). The DAG on the right is
part of G′, where the dotted paths are αo and α′.

takes time Ω(
T∗1
P∗A

+T ∗∞), where T ∗1 and T ∗∞ are the number of nodes and the length of a critical path

in the DAG of the execution respectively, and P ∗A is the average number of available processors in

the execution. It has been proved that the (nonblocking) work stealing scheduler is asymptotically

optimal, achieving Θ(
T∗1
P∗A

+ T ∗∞) execution time in expectation for any program with only normal

futures (i.e., a deterministic program whose DAG is fixed) [7]. A key observation is that lazy work

stealing behaves the same as the ordinary work stealing scheduler with respect to G, the DAG of

any execution of the program by lazy work stealing. This implies that the expected execution time

of a program in our model by lazy work stealing is Θ(
T ′1
P ′A

+ T ′∞), where T ′1 and T ′∞ are the number

59

of nodes and the length of a critical path in G, respectively.

By Lemmas 30 and 33, in the DAG of any execution of the program by an optimal offline

scheduler, the number of nodes T1 is at least T ′1 and the length of a critical path T∞ is Ω(
T ′∞
c+1),

where c is the containment level of the program. Hence, we can conclude that the expected execution

time of the program by lazy work stealing is O(T1

P ′A
+ (c+ 1)T∞). ut

Now we prove Theorem 28 with the help of the lemmas below.

Lemma 34 Let G be the DAG of any execution of a program by lazy work stealing, and let g1, g2, ..., gn

be all the future groups on an object o created by a main thread in G. For any 1 ≤ a ≤ b ≤ n, let

fa and fb denote the first future in ga and the last future in gb, respectively. In the DAG G′ of any

execution of the program by any scheduler, the groups g′a′ , g
′
a′+1, ..., g

′
b′ that contain all the futures in

ga, ga+1, ..., gb satisfy T (g′a′) + T (g′a′+1) + ...+ T (g′b′) ≥ 1
2 (T (ga) + T (ga+1) + ...+ T (gb)), where g′a′

contains fa and g′b′ contains fb.

Proof. We first prove that no group in G′ can contain both a linearizable future in gi and a

linearizable future in gj , for any 1 ≤ i, j ≤ n and j ≥ i + 2. To see that, suppose by way of

contradiction that a group g′ contains both a linearizable future in gi and a linearizable future in gj .

By medium futures linearizability, g′ must contain all the linearizable futures in gi+1. However, we

know that the touch of some linearizable future in gi+1 is before the fork of any linearizable future in

gj (because of the way work stealing groups linearizable futures), contradicting that g′ can contain

a linearizable future in gj .

Without loss of generality, suppose b = a+ 2k for some k ≥ 0. For any a ≤ i ≤ b, let S′i denote

the set of groups in G′ that contain linearizable futures in gi. What we just proved above implies

that S′i ∩ S′j = ∅ for any j ≥ i+ 2. Let S′a+2i = {g′c, g′c+1, ..., g
′
d} be the subset of {g′a′ , g′a′+1, ..., g

′
b′},

for some 0 ≤ i ≤ k, where g′c and g′d contain the first and the last linearizable futures in group

ga+2i, respectively. By the inequalities of combining and elimination, we have
∑
g′∈S′a+2i

T (g′) =

T (g′c) +T (g′c+1) + ...+T (g′d) ≥ T (g∗c) +T (g′c+1) +T (g′c+2) + ...+T (g′d−1) +T (g∗d) ≥ T (ga+2i), where

T (g∗c) and T (g∗d) are the subgroups of T (g′c) and T (g′d), respectively, that contain only the futures

in ga+2i. Since S′a+2i ∩ S′a+2j = ∅ for any i 6= j, we have

k∑
i=0

∑
g′∈S′a+2i

T (g′) ≥
k∑
i=0

T (ga+2i).

Similarly, we can prove
k−1∑
i=0

∑
g′∈S′a+2i+1

T (g′) ≥
k−1∑
i=0

T (ga+2i+1).

Therefore, we can conclude that either the total number of nodes in the future groups in
⋃k
i=0 S

′
a+2i

or the total number of nodes in the future groups in
⋃k−1
i=0 S

′
a+2i+1 is not smaller than 1

2 (T (ga) +

T (ga+1) + ... + T (gb)). Since both the future groups in
⋃k
i=0 S

′
a+2i and the future groups in⋃k−1

i=0 S
′
a+2i+1 are among g′a′ , g

′
a′+1, ..., g

′
b′ , we complete the proof. ut

60

Lemma 35 Let T1 be the number of nodes in the DAG of any execution of a program by lazy work

stealing. Then the number of nodes in the DAG of an execution of the program by any scheduler is

at least T1/2.

Proof. Lemma 34 implies that in the DAG of any execution of the program by any scheduler, the

total number of nodes in linearizable groups on an object o created by a main thread is at least half

of that in the DAG of an execution by lazy work stealing. Given that the total number of nodes in

the main threads and the normal futures in the program is fixed in all executions, we can conclude

that the number of nodes in the DAG of any execution by any scheduler is at least T1/2. ut

Lemma 36 Let G be the DAG of an execution of a program by lazy work stealing, and let g1, g2, ..., gn

be all the future groups on object o created by a main thread in G. In the DAG of any execution of

the program by any scheduler, there exists a path from u to v such that the path is not shorter than

half of the sum of the lengths of ga, ga+1, ..., gb for any 1 ≤ a ≤ b ≤ n, where u is after the fork of

some linearizable future in ga and v is before the touch of some linearizable future in gb.

Proof. By Lemma 34, we know the path from the fork of g′a to the touch of g′b through all the nodes

in groups g′c, g
′
c+1, ..., g

′
d is not shorter than half of the sum of the lengths of ga, ga+1, ..., gb. Now

the only thing we need to prove is that the fork of g′c is after the fork of some linearizable future in

ga and g′d is before the touch of some linearizable future in gb. This follows from the fact that g′c

contains the first future in ga and g′d contains the last future in gb. ut

Lemma 37 Let G be the DAG of an execution of a program of containment level c by lazy work

stealing. If the length of a critical path in G is T∞, then there is always a path of length Ω(T∞c+1) in

the DAG of any execution of the program by any scheduler.

Proof. The proof is almost identical to that of Lemma 32. The only difference is this proof is based

on Lemma 36, instead of Lemma 32. ut

Proof of Theorem 28. The proof is almost identical to that of Theorem 29. ut
We argue that many programs in practice have small containment levels. For example, if a

program makes operation calls to only c different shared objects, for some small constant c, its

containment level is at most c. Moreover, since containment level is only related to the interleaving

of linearizable futures in a very restricted form—the creation or touch span of a future group of size

at least 2 containing the middle span of another future group of size at least 2, interleaving in other

forms doesn’t affect the containment level of a program at all. For instance, a program can have a

very small containment level even if (1) a thread creates a large number of linearizable futures first

and then touches them later, since their interleaving is not in the form related to the containment

level, (2) the creation/touch span of a group contains the middle spans of a lot of groups that are

only on a few different shared objects, and (3) the creation/touch span of a group contains the

middle spans of a lot of groups of size 1 (i.e., single linearizable futures).

61

The theorem below shows that no non-clairvoyant scheduler can achieve better bounds than lazy

work stealing. A scheduler is non-clairvoyant if it cannot know the part of the DAG that has not been

executed yet. Here we give a non-clairvoyant scheduler extra power to know whether a linearizable

future on object o is the last one in a thread before the first touch of the ready linearizable futures

on o in the thread, as lazy work stealing knows that information.

Theorem 38 Given a non-clairvoyant scheduler A, an integer c ≥ 0, and the set of available

processors at each step of time, there exists a well-formed program of containment level at most

c with combining optimization in linearizable-futures model, such that its execution time using an

optimal offline scheduler is Θ(T1

PA
+ T∞) and its execution time using A is Ω(T1

P ′A
+ (c + 1)T∞) in

expectation, where PA and P ′A are the average numbers of available processors in the two executions

respectively, and T1 and T∞ are the number of nodes and the length of a critical path in the DAG of

the execution by the optimal offline scheduler respectively.

Theorem 38 (the existence of such a well-formed program with only combining) covers both The-

orem 28 (a program with only combining) and Theorem 29 (a well-formed program with combining

and elimination), and hence the upper bounds in the two theorems are tight. Its proof is presented

below.

Proof of Theorem 38. When c = 0, the theorem is trivially true. Now we consider c > 0. Since

A is non-clairvoyant, we will adaptively construct a program Q, based on the probabilities of the

choices A has made in the execution of the part of Q that has been generated, such that the expected

number of nodes and the expected length of a critical path in the DAG of an execution of G by A
are Ω(T1) and Ω(cT∞), respectively.

We construct Q in c steps. In the first step, we construct Q∗1, a subgraph of Q. we first let A
execute a program Q1, whose DAG is shown in Figure 4.7. Q1 has only one main thread, in which

c linearizable futures f1,1, f1,2, ..., f1,c, all on object o1, are created consecutively and then touched

consecutively in the same order as they are created. We assume that grouping any linearizable

futures takes time t, for some fixed number t, that is, T (g(f1,i ∪ f1,i+1 ∪ ...∪ f1,j)) = T (g(f1,i)) = t,

for any 1 ≤ i ≤ j ≤ c.
Let P1,i be the probability that A groups f1,i with some other linearizable futures in an execution

of Q1, for any i. If P1,i < 1/2 for all 1 ≤ i ≤ c, we know that in expectation at least c/2 linearizable

futures are executed solely with no other futures in an execution by A. Therefore, the length of any

path `1 going though all the groups containing the c futures in the DAG of an execution by A is at

least tc/2 in expectation.

Now consider the case where P1,k ≥ 1/2 for some 1 ≤ k ≤ c. Since at least one of f1,k−1 and

f1,k+1 must be in the group containing f1,k when f1,k is grouped with other futures, we know that

the probability that f1,k′ and f1,k′+1 are in the same group in an execution by A is at least 1/4, for

some k′ = k−1 or k′ = k. Now let us construct another program Q′1 by modifying Q1 as follows. The

positions of the touches of f1,k′+1, f1,k′+2, ..., f1,c are all moved to a super node S (which represents

a sequence of touch nodes) at the end of the complete program Q, as illustrated in Figure 4.7.

62

Figure 4.7: Q1 and Q′1 in the proof of Theorem 38

63

The execution times of future groups are also modified. We keep T (g(f1,i ∪ f1,i+1 ∪ ... ∪ f1,j)) =

T (g(f1,i)) = t, for any 1 ≤ i ≤ j ≤ k′, but we let T (g(f1,i ∪ f1,i+1 ∪ ... ∪ f1,j)) = T (g(f1,j)) = ct, for

any j ≥ k′ + 1. Intuitively, f1,k′+1, f1,k′+2, ..., f1,c are now “longer” futures each taking time ct, and

grouping any of them, with or without linearizable futures prior to fk′+1, takes ct. Note that the

execution times of the future groups in G1 and G′1 all satisfy the inequalities of combining.

A key observation is that the two programs Q1 and Q′1 are indistinguishable from A’s perspective

before A starts executing the group containing f1,k′ , because (1) the touch of f1,k′ blocks A from

moving forward in the main thread and (2) all the instructions in the main thread before that touch

and the future groups containing only futures prior to f1,k′ are the same in the two problems. More

specifically, given the same sequence of random bits for running A (since it may be a randomized

scheduler) and the same available processors at each time step, the executions of Q1 and Q′1 by

A are identical until A starts executing the group containing f1,k′ . Therefore, it is still true that

the probability that f1,k′ and f1,k′+1 are in the same group in an execution of Q′1 by A is at least

1/4. Thus in an execution of Q′1 by A, the expected length of the path `′1 consisting of the group

containing f1,k′ is at least ct/4 and obviously the end of `′1, which is the touch of that group, is the

touch of a future f1,i for some i ≤ k′.
If P1,k ≥ 1/2 for some 1 ≤ k ≤ c, we set Q∗1 = Q1 and `∗1 = `1, and otherwise we set Q∗1 = Q′1

and `∗1 = `′1. Thus, in the DAG of an execution of Q∗1 by A, the expected length of `∗1 is at least

ct/4.

Now in the second step of constructing Q, we generate Q∗2 by extending Q∗1 as follows. Starting

from the “last node” of Q∗1 (which is either the touch of f1,c in Q1 or the touch of f1,k′ in Q′1),

we create linearizable futures f2,k′+1, f2,k′+2, ..., f2,c on another object o2 consecutively in the main

thread and then touch them in the same order. We assume grouping any of those futures takes

time t. Let Q2 denote the new program that consists of Q∗1 and the newly added part. Like what

we did for Q1, if the probability that f2,i is executed solely without other linearizable futures in

an execution by A is less than 1/2 for all i, we let Q∗2 = Q2. Otherwise, there must be futures

f2,k′ and f2,k′+1 for some k′ such that they are in the same group in an execution by A with

probability at least 1/4 and hence we let Q∗2 = Q′2, where Q′2 is obtained by moving the touches

of f2,k+1, f2,k+2, ..., f2,c to the super node S and changing the execution time to ct for any group

containing any of f2,k+1, f2,k+2, ..., f2,c. Again, we can show that Q2 and Q′2 are indistinguishable

from A’s perspective until A starts executing the group containing fk′ . By the same argument for

Q∗1, We can prove that there is a path `∗2 from the fork of f2,i to the touch of f2,j , for some i, j, such

that its length is at least ct/4 in expectation in the DAG of an execution of Q∗2 by A.

By induction, in the kth step for any 2 ≤ k ≤ c, we construct Q∗i by “appending” to Q∗k−1

linearizable futures fk,1, fk,2, ..., fk,c on a new object ok in the same way we explained above, and

we can conclude that there is a path `∗k from the fork of fk,i to the touch of fk,j , for some i, j, such

that its length is at least ct/4 in expectation in the DAG of an execution of Q∗k by A.

Finally, we construct G by appending the super node S to the last node in the main thread in

G∗c . Noth that S represents a sequence of at most c nodes that are touches of linearizable futures

64

in G∗c . Now consider any path ` that contains all `∗1, `
∗
2, ..., `

∗
c in the DAG of an execution of G by

A. Obviously, the expected length of ` is at least c · ct/4 = c2t/4. In contrast, an optimal offline

scheduler will group all fk,1, fk,2, ..., fk,c together if G∗k = Gk, or group all the “shorter” futures

fk,1, fk,2, ..., fk,i and then group all the “longer” futures fk,i+1, fk,i+2, ..., fk,c if G∗k = G′k for any

1 ≤ k ≤ c. It is easy to see that the DAG of an execution by this optimal scheduler has Θ(c2t) nodes,

asymptotically optimal, and the length of its critical path T∞ is only Θ(ct). Thus, the expected

length of a critical path in an execution by A is Ω(cT∞), i.e. Ω((c+ 1)T∞), which completes the

proof. (Note that G has only one main thread. We can also construct a program with multiple main

threads that suffices, where each main thread is constructed in the same way as G is constructed.)

ut

Chapter 5

Concurrent Data Structures for

Near-Memory Computing

In this chapter, we will discuss applications of linearizable futures in the near-memory computing

model, also called the PIM model. As we briefly mentioned earlier, to be competitive with traditional

concurrent data structures, data structures in the PIM model need new approaches to leverage

parallelism. Here we present some PIM-managed concurrent data structures, where threads send

their operation requests as linearizable futures to PIM cores which execute those requests with

certain optimizations. With those optimizations and the help of PIM cores’ fast memory access

speed, our data structures can beat state-of-the-art concurrent data structures in the literature.

This chapter is organized as follows. We first present related work in Section 5.1. In Section 5.2

we briefly describe our assumptions about the hardware architecture. In Section 5.3 we introduce

a simplified performance model that we use throughout this paper to predict performance of our

algorithms using the hardware architecture described in Section 5.2. Finally in Sections 5.4 and 5.5,

we describe and analyze our PIM algorithms and use our model to compare them to prior work. We

also use current architectures to simulate the behavior of our algorithms and evaluate compared to

state-of-the-art concurrent algorithms.

5.1 Related Work

The PIM model is undergoing a renaissance. Studied for decades (e.g., [74, 54, 36, 68, 67, 52, 40]),

this model has recently re-emerged due to advances in 3D-stacked techology that can stack memory

dies on top of a logic layer [51, 59, 12]. For example, Micron and others have recently released a

PIM prototype called the Hybrid Memory Cube [26], and the model has again become the focus

of architectural research. Different PIM-based architectures have been proposed, either for general

purposes or for specific applications [5, 4, 79, 50, 11, 6, 10, 9, 21, 80, 81].

The PIM model has many advantages, including low energy consumption and high bandwidth

65

66

(e.g., [4, 79, 80, 9]). Here, we focus on one more: low memory access latency [59, 50, 11]. To our

knowledge, however, we are the first to utilize PIM memory for designing efficient concurrent data

structures. Although some researchers have studied how PIM memory can help speed up concurrent

operations to data structures, such as parallel graph processing [4] and parallel pointer chasing on

linked data structures [50], the applications they consider require very simple, if any, synchronization

between operations. In contract, operations to concurrent data structures can interleave in arbitrary

orders, and therefore have to correctly synchronize with one another in all possible situations. This

makes designing concurrent data structures with correctness guarantees like linearizability [49] very

challenging.

Moreover, no one has ever compared the performance of data structures in the PIM model

with that of state-of-the-art concurrent data structures in the classic shared memory model. We

analyze and evaluate concurrent linked-lists and skip-lists, as representatives of pointer-chasing data

structures, and concurrent FIFO queues, as representatives of contended data structures. For linked-

lists, we compare our PIM-managed implementation with well-known approaches such as fine-grained

locking [43] and flat combining [44, 30].

For skip-lists, we compare our implementation with the lock-free skip-list [48] and a skip-list with

flat combining and partitioning optimization. For FIFO queues, we compare our implementation

with the flat-combining FIFO queue [44] and the F&A-based FIFO queue [64].

5.2 Hardware Architecture and Model

In the PIM hardware model, multiple CPUs are connected to the main memory, via a shared

crossbar network, as illustrated in Figure 5.1. The main memory consists of two parts—one is a

normal DRAM accessible by CPUs and the other, called the PIM memory, is divided into multiple

partitions, called PIM vaults or simply vaults. According to the Hybrid Memory Cube specification

1.0 [26], each HMC consists of 16 or 32 vaults and has total size 2GB or 4 GB (so each vault has

size roughly 100MB). We assume the same specifications in our PIM model, although the size of a

PIM memory and the number of its vaults can be greater. Each CPU also has access to a hierarchy

of caches backed by DRAM, and there can be last-level caches shared among multiple CPUs.

Each vault has a PIM core directly attached to it. we say a vault is local to the PIM core attached

to it, and vice versa. A PIM core is a lightweight CPU that may be slower than a full-fledged CPU

with respect to computation speed.1 A vault can be accessed only by its local PIM core.2 Although

a PIM core is relatively slow computationally, it has fast access to its local vault.

A PIM core communicates with other PIM cores and CPUs via messages. Each PIM core, as

1A PIM core can be thought of as an in-order CPU with only small private L1 cache and without some optimizations
that full-fledged CPUs usually have.

2We may alternatively assume that a PIM core has direct access to remote vaults, at a larger cost. We may also
assume that vaults are accessible by CPUs as well, but at the cost of dealing with cache coherence between CPUs
and PIM cores. Some cache coherence mechanisms for PIM memory claim to be not costly (e.g., [21, 5]). However,
we prefer to keep the hardware model simple and we will show that we are still able to design efficient concurrent
data structure algorithms with this simple, less powerful PIM memory.

67

Figure 5.1: The PIM model

well as each CPU, has buffers for storing incoming messages. A message is guaranteed to eventually

arrive at the buffer of its receiver. Messages from the same sender to the same receiver are delivered

in FIFO order: the message sent first arrives at the receiver first. However, messages from different

senders or to different receivers can arrive in an arbitrary order.

To keep the PIM memory simple, we assume that a PIM core can only make read and write

operations to its local vault, while a CPU also supports more powerful atomic operations, such as

CAS and F&A. Virtual memory is cheap to be achieved in this model, by having each PIM core

maintain its own page table for its local vault [50].

5.3 Performance Model

Based on the latency numbers in prior work on PIM memory, in particular on the Hybrid Memory

Cube [26, 11], and on the evaluation of operations in multiprocessor architectures [28], we propose

the following simple performance model to compare our PIM-managed algorithms with existing

68

concurrent data structure algorithms. For read and write operations, we assume

Lcpu = 3Lpim = 3Lllc,

where Lcpu is the latency of a memory access by a CPU, Lpim is the latency of a local memory access

by a PIM core, and Lllc is the latency of a last-level cache access by a CPU. We ignore the costs

of cache accesses of other levels in our performance model, as they are negligible in the concurrent

data structure algorithms we will consider. We assume that the latency of a CPU making an atomic

operation, such as a CAS or a F&A, to a cache line is

Latomic = Lcpu,

even if the cache line is currently in cache. This is because an atomic operation hitting the cache

is usually as costly as a memory access by a CPU, acorrding to [28]. When there are k atomic

operations competing for a cache line concurrently, we assume that they are executed sequentially,

that is, they complete in times Latomic, 2Latomic, ..., k · Latomic, respectively.

We assume that the size of a message sent by a PIM core or a CPU is at most the size of a cache

line. Given that a message transferred between a CPU and a PIM core goes through the crossbar

network, we assume that the latency for a message to arrive at its receiver is

Lmessage = Lcpu.

We make a conservative assumption that the latency of a message transferred between two PIM

cores is also Lmessage. Note that the message latency we consider here is the transfer time of a

message through a message passing channel, that is, the period between the moment when a PIM or

a CPU sends off the message and the moment when the message arrives at the buffer of its receiver.

We ignore the time spent in other parts of a message passing procedure, such as preprocessing and

constructing the message, as it is negligible compared to the time spent in message transfer.

5.4 Low Contention Data Structures

In this section we consider data structures with low contention; pointer chasing data structures,

such as linked-lists and skip-lists, fall in this category. These are data structures whose operations

need to de-reference a non-constant sequence of pointers before completing. We assume they sup-

port operations such as add(x), delete(x) and contains(x), which follow “next node” pointers until

reaching the position of node x. When these data structures are too large to fit in CPU caches

and access uniformly random keys, they incur expensive memory accesses, which cannot be easily

predicted, making the pointer chasing the dominating overhead of these data structures. Naturally,

these data structures have been early examples of the benefit of near-memory computing [50], as

the entire pointer chase could be performed by the PIM core, and only the final result returned to

the application.

However, under the same conditions, these data structures have inherently low contention. Lock-

free algorithms [33, 69, 75, 48] have shown that these data structures can scale to hundreds of cores

69

under low contention. Unfortunately, each vault in PIM memory has a single core; as a consequence,

prior work has only compared PIM data structures with sequential data structures, not with carefully

crafted concurrent data structures.

We analyze linked-lists and skip-lists, and show that the naive PIM data structure in each

case cannot outperform the equivalent CPU managed concurrent data structure even for a small

number of cores. Next, we show how to use state-of-the art techniques from concurrent computing

literature to optimize algorithms for near-memory computing to outperform well-known concurrent

data structures.

5.4.1 Linked-lists

We now describe a naive PIM linked-list. The linked-list is stored in a vault, maintained by the local

PIM core. Whenever a CPU3 wants to perform an operation on the linked-list, it sends a request to

the PIM core. The PIM core will retrieve the message, execute the operation, and send the result

back to the CPU. The PIM linked-list is sequential, as it can only be accessed by one PIM core.

Doing pointer chasing on sequential data structures by PIM cores is not a new idea (e.g., [50, 4]).

It is obvious that for a sequential data structure like a sequential linked-list, replacing the CPU

with a PIM core to access the data structure will largely improve its performance due to the PIM

core’s much faster memory access. However, we are not aware of any prior comparison between

the performance of PIM-managed data structures and concurrent data structures in which CPUs

can make operations in parallel. In fact, our analytical and experimental results will show that

the performance of the naive PIM-managed linked-list is much worse than that of the concurrent

linked-list with fine-grained locks [43].

To improve the performance of the PIM-managed linked-list, we apply the following combining

optimization to it: the PIM core retrieves all pending requests from its buffer and executes all of

them during only one traversal over the linked-list. It is not hard to see that the role of the PIM core

in our PIM-managed linked-list is very similar to that of the combiner in a concurrent linked-list

implemented using flat combining [44], where, roughly speaking, threads compete for a “combiner

lock” to become the combiner, and the combiner will take over all operation requests from other

threads and execute them. Therefore, we think the performance of the flat-combining linked-list is

a good indicator of the performance of our PIM-managed linked-list.

Based on our performance model, we can calculate the approximate expected throughputs of

the linked-list algorithms mentioned above, when there are p CPUs making operation requests

concurrently. We assume that a linked-list consists of nodes with integer keys in the range of [1, N].

Initially a linked-list has n nodes with keys generated independently and uniformly at random from

[1, N]. The keys of the operation requests are generated the same way. To simplify the analysis, we

assume that CPUs only make contains() requests (or the number of add() requests is the same as

the number of delete() so that the size of each linked-list nearly doesn’t change). We also assume

that a CPU makes a new operation request immediately after its previous one completes. Assuming

3We use the term CPU to refer to CPU cores, as opposed to PIM cores.

70

that n � p and N � p, the approximate expected throughputs (per second) of the concurrent

linked-lists are presented in Table 5.1, where Sp =
n∑
i=1

(i
n+1)p.4

Algorithm Throughput

Linked-list with fine-grained locks 2p
(n+1)Lcpu

Flat-combining linked-list without combining 2
(n+1)Lcpu

PIM-managed linked-list without combining 2
(n+1)Lpim

Flat-combining linked-list with combining p
(n−Sp)Lcpu

PIM-managed linked-list with combining p
(n−Sp)Lpim

Table 5.1: Throughputs of linked-list algorithms.

It is easy to see that the PIM-managed linked-list with combining outperforms the linked-list with

fine-grained locks, which is the best one among other algorithms, as long as
Lcpu

Lpim
>

2(n−Sp)
n+1 . Given

that 0 < Sp ≤ n
2 and Lcpu = 3Lpim, the throughput of the PIM-managed linked-list with combining

should be at least 1.5 times the throughput of the linked-list with fine-grained locks. Without

combining, however, the PIM-managed linked-list cannot beat the linked-list with fine-grained locks

when p > 6.

We implemented the linked-list with fine-grained locks and the flat-combining link-list with and

without the combining optimization. We tested them on a Dell server with 512 GB RAM and 56

cores on four Intel Xeon E7-4850v3 processors at 2.2 GHz. To get rid of NUMA access effects, we

ran experiments with only one processor, which is a NUMA node with 14 cores, a 35 MB shared L3

cache, and a private L2/L1 cache of size 256 KB/64 KB per core. Each core has 2 hyperthreads, for

a total of 28 hyperthreads. Cache lines have 64 bytes.

The throughputs of the algorithms are presented in Figure 5.2. The results confirmed the validity

of our analysis in Table 5.1. The throughput of the flat-combining algorithm without combining

optimization is much worse than the algorithm with fine-grained locks. Since we believe the perfor-

mance of the flat-combining linked-list is a good indicator of that of the PIM-managed linked-list,

we triple the throughput of the flat-combining algorithm without combining optimization to get

the estimated throughput of the PIM-managed algorithm. As we can see, it is still far below the

throughput of the one with fined-grained locks. However, with the combining optimization, the

performance of the flat-combining algorithm improves significantly and the estimated throughput of

our PIM-managed linked-list with combining optimization now beats all others’.

5.4.2 Skip-lists

Like the naive PIM-managed linked-list, the naive PIM-managed skip-list keeps the skip-list in a

single vault and CPUs send operation requests to the local PIM core that executes those operations.

4We define the rank of an operation request to a linked-list as the number of pointers it has to traverse until it
finds the right position for it in the linked-list. Sp is the expected rank of the operation request with the biggest
key among p random requests a PIM core or a combiner has to combine, which is essentially the expected number
of pointers a PIM core or a combiner has to go through during one pointer chasing procedure.

71

Figure 5.2: Experimental results of linked-lists. We evaluated the linked-list with Fine-grained locks
and the flat-combining linked-list (FC) with and without the combining optimization.

As we will see, this algorithm is less efficient than some existing algorithms.

Unfortunately, the combining optimization cannot be applied to skip-lists effectively. The reason

is that for any two nodes not close enough to each other in the skip-list, the paths we traverse

through to reach them don’t largely overlap.

On the other hand, PIM memory usually consists of many vaults and PIM cores. For instance,

the first generation of Hybrid Memory Cube [26] has up to 32 vaults. Hence, a PIM-managed skip-

list may achieve much better performance if we can exploit the parallelism of multiple vaults. Here

we present our PIM-managed skip-list with a partitioning optimization: A skip-list is divided into

partitions of disjoint ranges of keys, stored in different vaults, so that a CPU sends its operation

request to the PIM core of the vault to which the key of the operation belongs.

Figure 5.3 illustrates the structure of a PIM-managed skip-list. Each partition of a skip-list starts

with a sentinel node which is a node of the max height. For simplicity, assume the max height Hmax

is predefined. A partition covers a key range between the key of its sentinel node and the key of

the sentinel node of the next partition. CPUs also store a copy of each sentinel node in the normal

DRAM and the copy has an extra variable indicating the vault containing the sentinel node. Since

the number of nodes of the max height is very small with high probability, those copies of those

sentinel nodes can almost certainly stay in cache if CPUs access them frequently.

When a CPU applies an operation for a key to the skip-list, it first compares the key with those

of the sentinels, discovers which vault the key belongs to, and then sends its operation request to

that vault’s PIM core. Once the PIM core retrieves the request, it executes the operation in the

local vault and finally sends the result back to the CPU.

Now let us discuss how we implement the PIM-managed skip-list when the key of each operation

72

Figure 5.3: A PIM-managed FIFO queue with three partitions

is an integer generated uniformly at random from range [0, n] and the PIM memory has k vaults

available. Initially we can create k partitions starting with fake sentinel nodes with keys 0, 1/k,

2/k,..., (n − 1)/k, respectively, and allocate each partition in a different vault. The sentinel nodes

will never be deleted. If a new node to be added has the same key as a sentinel node, we insert it

immediately after the sentinel node.

We compare the performance of our PIM-managed skip-list with partitions to the performance

of a flat-combining skip-list [44] and a lock-free skip-list [48], where p CPUs keeps making operation

requests. We also apply the partitioning optimization to the flat-combining skip-list, so that k

combiners are in charge of k partitions of the skip-list. To simplify the comparison, we assume that

all skip-lists have the same initial structure (expect that skip-lists with partitions have extra sentinel

nodes) and all the operations are contains() operations (or the number of add() requests is the same

as the number of delete() so that the size of each skip-list nearly doesn’t change). Their approximate

expected throughputs are presented in Table 5.2, where β is the average number of nodes an operation

has to go through in order to find the location of its key in a skip-list (β = Θ(logN), where N is the

size of the skip-list). Note that we have ignored some overheads in the flat-combining algorithms,

such as maintaining combiner locks and publication lists (we will discuss publication lists in more

detail in Section 5.5). We also have overestimated the performance of the lock-free skip-list by not

counting the CAS operations used in add() and delete() requests, as well as the cost of retries caused

by conflicts of updates. Even so, our PIM-managed linked-list with partitioning optimization is still

expected to outperform the second best algorithm, the lock-free skip-list when k >
(βLpim+Lmessage)p

βLcpu
.

Given that Lmessage = Lcpu = 3Lpim, k > p/3 should suffice.

Our experiments have revealed similar results, as presented in Figure 5.4. We have implemented

and run the flat-combining skip-list with different numbers of partitions and compared them with

73

Algorithm Throughput
Look-free skip-list p

βLcpu

Flat-combining skip-list 1
βLcpu

PIM-managed skip-list 1
(βLpim+Lmessage)

Flat-combining skip-list with k partitions k
βLcpu

PIM-managed skip-list with k partitions k
(βLpim+Lmessage)

Table 5.2: Throughputs of skip-list algorithms.

the lock-free skip-list. As the number of partitions increases, the performance of the flat-combining

skip-list gets better, implying the effectiveness of the partitioning optimization. Again we believe

the performance of the flat-combining skip-list is a good indicator to the performance of our PIM-

managed skip-list. Therefore, according to the analytical results in Table 5.2, we can triple the

throughput of a flat-combining skip-list to get the expected performance of a PIM-managed skip-

list. As Figure 5.4 illustrates, when the PIM-managed skip-list has 8 or 16 partitions, it is expected

to outperform the lock-free skip-list with up to 28 hardware threads.

Figure 5.4: Experimental results of skip-lists. We evaluated the lock-free skip-list and the flat-
combining skip-list (FC) with different numbers (1, 4, 8, 16) of partitions.

Skip-list Rebalancing

The PIM-managed skip-list performs well with a uniform distribution of requests. However, if

the distribution of requests is not uniform, a static partitioning scheme will result in unbalanced

partitions, with some PIM cores being idle, while others having to serve a majority of requests. To

address this problem, we introduce a non-blocking protocol for migrating consecutive nodes from

one vault to another.

74

The protocol works as follows. A PIM core p that manages a vault v′ can send a message to

another PIM core q, managing vault v, to request that some nodes are moved from v′ to v. First,

p sends a message notifying q of the start of the migration. Then p sends messages of adding those

nodes to q one by one in an ascending order according to the keys of the nodes. After all the nodes

have been migrated, p sends notification messages to CPUs so that they can update their copies of

sentinel nodes accordingly. After p receives acknowledgement messages from all CPUs, it notifies q

of the end of migration. To keep the node migration protocol simple, we don’t allow q to move those

nodes to another vault again until p finishes its node migration.

During the node migration, p can still serve requests from CPUs. Assume that a request with

key k1 is sent to p when p is migrating nodes in a key range containing k1. If p is about to migrate

a node with key k2 at the moment and k1 ≥ k2, p serves the request itself. Otherwise, p must have

migrated all nodes in the subset containing key k1, and therefore p forwards the request to q which

will serve the request and respond directly to the requesting CPU.

The algorithm is correct, because a request will eventually reach the vault that currently contains

nodes in the key range that the request belongs to: If a request arrives to p which no longer holds

the partition the request belongs to, p can simply reply with a rejection to the CPU and the CPU

will resend its request to the correct PIM core, because it has already updated its sentinels and

knows which PIM core it should contact now.

Using this node migration protocol, the PIM-managed FIFO queue can support two rebalancing

schemes: 1) If a partition has too many nodes, the local PIM core can send nodes in a key range to

a vault that has fewer nodes; 2) If two consecutive partitions are both small, we can merge then by

moving one to the vault containing the other.

In practice, we expect that rebalancing will not happen very frequently, so its overhead can be

ameliorated by the improved efficiency resulting from a rebalance.

5.5 High Contention Data Structures

In this section, we consider data structures that are often contended when accessed by many threads

concurrently. In these data structures, operations compete for accessing one or several locations,

creating a contention spot, which can become a performance bottleneck. Examples include head

and tail pointers in queues or the top pointer of a stack.

These data structures have good locality and the contention spots are often found in shared

CPU caches, such as the last level cache in a multi-socket non-uniform memory access machine

when accessed by threads running only on one socket. Therefore, these data structures might seem

to be a poor fit for near-memory computing, because the advantage of the faster access to memory

is muted by having the frequently accessed data in the cache. However, such a perspective does not

consider the overhead introduced by contention in a concurrent data structure where all threads try

to access the same locations.

As a representative example of this class of data structures, we consider a FIFO queue, where

75

concurrent enqueue and dequeue operations compete for the head and tail of the queue, respectively.

Although a naive PIM FIFO queue is not a good replacement for a well crafted concurrent FIFO

queue, we show that, counterintuitively, PIM can still have benefits over a traditional concurrent

FIFO queue. In particular, we exploit the pipelining of requests from CPUs, which can be done

very efficiently in PIM, to design a PIM FIFO queue that can outperform state-of-the-art concurrent

FIFO queues, such as the one using flat combining [44] and the one using Fetch And Add [64].

5.5.1 FIFO queues

The structure of our PIM-managed FIFO queue is shown in Figure 5.5. A queue consists of a

sequence of segments, each containing consecutive nodes of the queue. A segment is allocated in a

PIM vault, with a head node and a tail node pointing to the first and the last nodes of the segment,

respectively. A vault can contain multiple (mostly likely non-consecutive) segments. There are two

special segments—the enqueue segment and the dequeue segment. To enqueue a node, a CPU sends

an enqueue request to the PIM core of the vault containing the enqueue segment. The PIM core

will then insert the node to the head of the segment. Similarly, to dequeue a node, a CPU sends a

dequeue request to the PIM core of the vault holding the dequeue segment. The PIM core will then

pop out the node at the tail of the dequeue segment and send the node back to the CPU.

Figure 5.5: A PIM-managed FIFO queue with three segments

Initially the queue consists of an empty segment which acts as both the enqueue segment and

the dequeue segment. When the length of enqueue segment exceeds some threshold, the PIM core

maintaining it notifies another PIM core to create a new segment as the new enqueue segment.5

When the dequeue segment becomes empty and the queue has other segments, the dequeue segment

is deleted and the segment that was created first among all the remaining segments is designated

5When and how to create a new segment can be decided in other ways. For example, CPUs, instead of the PIM
core holding the enqueue segment, can decide when to create the new segment and which vault to hold the new
segment, based on more complex criteria (e.g., if a PIM core is currently holding the dequeue segment, it will
not be chosen for the new segment so as to avoid the situation where it deals with both enqueue and dequeue
requests). To simplify the description of our algorithm, we omit those variants.

76

as the new dequeue segment. (It is not hard to see that the new dequeue segment were created

when the old dequeue segment acted as the enqueue segment and exceeded the length threshold.)

If the enqueue segment is different from the dequeue segment, enqueue and dequeue operations can

be executed by two different PIM cores in parallel, which doubles the throughput compared to a

straightforward queue implementation held in a single vault.

Algorithm 2 PIM-managed FIFO queue: PIM core’s procedures upon receiving requests enq(cid,
u), deq(cid), newEnqSeg(), and newEnqDeq()

1: procedure enq(cid, u)
2: if enqSeg == null then
3: send message(cid, false);
4: else
5: if enqSeg.head 6= null then
6: enqSeg.head.next = u;
7: enqSeg.head = u;
8: else
9: enqSeg.head = u;

10: enqSeg.tail = u;

11: enqSeg.count = enqSeg.count + 1;
12: send message(cid, true);
13: if enqSeg.count > threshold then
14: cid′ = the CID of the PIM core chosen to

maintain the new segment;
15: send message(cid′, newEnqSeg());
16: enqSeg.nextSegCid = cid′;
17: enqSeg = null;

1: procedure newEnqSeg()
2: enqSeg = new Segment();
3: segQueue.enq(engSeg) ;
4: notify CPUs of the new enqueue segment;

1: procedure deq(cid)
2: if deqSeg == null then
3: send message(cid, false);
4: else
5: if deqSeg.tail 6= null then
6: send message(cid, deqSeg.tail);
7: deqSeg.tail = deqSeg.tail.next;
8: else
9: if deqSeg == enqSeg then

10: send message(cid, null);
11: else
12: send message(deqSeg.nextSegCid,

newDeqSeg());
13: deqSeg = null;
14: send message(cid, false);

1: procedure newDeqSeg()
2: deqSeg = segQueue.deq();
3: notify CPUs of the new dequeue segment;

The pseudocode of the algorithm is presented in Algorithm 2. Each PIM core has local variables

enqSeg and deqSeg that are references to local enqueue and dequeue segments. When enqSeg

(respectively deqSeq) is not null, it indicates that the PIM core is currently holding the enqueue

(respectively dequeue) segment. Each PIM core also maintains a local queue segQueue for storing

local segments. CPUs and PIM cores communicate via message(cid, content) calls, where cid is the

unique core ID (CID) of the receiver and the content is either a request or a response to a request.

Once a PIM core receives an enqueue request enq(cid, u) of node u from a CPU whose CID is

cid, it first checks if it is holding the enqueue segment (line 2 of Procedure enq(cid, u)). If so, the

PIM core enqueues u (lines 5-12), and otherwise sends back a message informing the CPU that the

request is rejected (line 3) so that the CPU can resend its request to the right PIM core holding the

enqueue segment (we will explain later how the CPU can find the right PIM core). After enqueuing

u, the PIM core may find the enqueue segment is longer than the threshold (line 13). If so, it sends

a message with a newEnqSeg() request to the PIM core of another vault that is chosen to create a

new enqueue segment. Finally the PIM core sets its enqSeq to null indicating it no longer deals with

enqueue operations. Note that the CID cid’ of the PIM core chosen for creating the new segment

is recorded in enqSeg.nextSegCid for future use in dequeue requests. As Procedure newEnqSeg()

77

in Algorithm 2 shows, The PIM core receiving this newEnqSeg() request creates a new enqueue

segment and enqueues the segment into its segQueue (line 3). Finally it notifies CPUs of the new

enqueue segment (we will get to it in more detail later).

Similarly, when a PIM core receives a dequeue request deq(cid) from a CPU with CID cid, it

first checks whether it still holds the dequeue segment (line 2 of Procedure deq(cid)). If so, the

PIM core dequeues a node and sends it back to the CPU (lines 5-7). Otherwise, it informs the

CPU that this request has failed (line 3) and the CPU will have to resend its request to the right

PIM core. If the dequeue segment is empty (line 8) and the dequeue segment is not the same as

the enqueue segment (line 11), which indicates that the FIFO queue is not empty and there exists

another segment, the PIM core sends a message with a newDeqSeg() request to the PIM core with

CID deqSeg.nextSegCid. (We know that this PIM core must hold the next segment, according to

how we create new segments in enqueue operations, as shown at lines 14-16 of Procedure enq(cid,

u).) Upon receiving the newDeqSeg() request, as illustrated in Procedure newDeqSeg(), the PIM

core retrieves from its segQueue the oldest segment it has created and makes it the new dequeue

segment (line 2). Finally the PIM core notifies CPU that it is holding the new dequeue segment

now.

Now we explain how CPUs and PIM cores coordinate to make sure that CPUs can find the right

enqueue and dequeue segments, when their previous attempts have failed due to changes of those

segments. We will only discuss how to deal with enqueue segments here, since the same methods

can be applied to dequeue segments. A straightforward way to inform CPUs is to have the owner

PIM core of the new enqueue segment send notification messages to them (line 4 of newEngSeg())

and wait until CPUs all send back acknowledgement messages. However, if there is a slow CPU that

doesn’t reply in time, the PIM core has to wait for it and therefore other CPUs cannot have their

requests executed. A more efficient, non-blocking method is to have the PIM core start working for

new requests immediately after it has sent off those notifications. A CPU does not have to reply to

those notifications in this case, but if its request later fails, it needs to send messages to (sometimes

all) PIM cores to ask whether a PIM core is currently in charge of the enqueue segment. In either

case, the correctness of the algorithm is guaranteed: at any time, there is only one enqueue segment

and only one dequeue segment, and only requests sent to them will be executed.

We would like to mention that the PIM-managed FIFO can be further optimized. For example,

the PIM core holding the enqueue segment can combine multiple pending enqueue requests and

store the nodes to be enqueued in an array as a “fat” node of the queue, so as to reduce memory

accesses. This optimization is also used in the flat-combining FIFO queue [44]. Even without this

optimization, our algorithm still performs well, as we will show next.

5.5.2 Pipelining and Performance analysis

We compare the performance of three concurrent FIFO queue algorithms—our PIM-manged FIFO

queue, a flat-combining FIFO queue and a F&A-based FIFO queue [64]. The F&A-based FIFO queue

is the most efficient concurrent FIFO queue we are aware of, where threads make F&A operations on

78

two shared variables, one for enqueues and the other for dequeues, to compete for slots in the FIFO

queue to enqueue and dequeue nodes (see [64] for more details). The flat-combining FIFO queue

we consider is based on the one proposed by [44], with a modification that threads compete for two

“combiner locks”, one for enqueues and the other for dequeues. We further simplify it based on the

assumption that the queue is always non-empty, so that it doesn’t have to deal with synchronization

issues between enqueues and dequeues when the queue is empty.

Let us first assume that a queue is long enough such that the PIM-managed FIFO queue has more

than one segment, and enqueue and dequeue requests can be executed separately. Since changes

of enqueue and dequeue segments happen very infrequently, its overhead is negligible and therefore

ignored to simplify our analysis. (If the threshold of segment length at line 13 of enq(cid, u) is a

large integer n, then, in the worst case, changing an enqueue or dequeue segment happens only once

every n requests, and the cost is only the latency of sending one message and a few steps of local

computation.) Since enqueues and dequeues are isolated in all the three algorithms when queues

are long enough, we will focus on dequeues, and the analysis of enqueues is almost identical.

Assume there are p concurrent dequeue requests by p threads. Since each thread needs to

make a F&A operation on a shared variable in the F&A-based algorithm and F&A operations on

a shared variable are essentially serialized, the execution time of p requests in the algorithm is at

least pLatomic. If we assume that each CPU makes a request immediately after its previous request

completes, we can prove that the throughput of the algorithm is at most 1
Latomic

.

The flat-combining FIFO queue maintains a sequential FIFO queue and threads submit their

requests into a publication list. The publication list consists of slots, one for each thread, to store

those requests. After writing a request into the list, a thread competes with other threads for

acquiring a lock to become the “combiner”. The combiner then goes through the publication list

to retrieve requests, executes operations for those requests and writes results back to the list, while

other threads spin on their slots, waiting for the results. The combiner therefore makes two last-level

cache accesses to each slot other than its own slot, one for reading the request and one for writing

the result back. Thus, the execution time of p requests in the algorithm is at least (2p− 1)Lllc and

the throughput of the algorithm is roughly 1
2Lllc

for large enough p.

Note that we have made quite optimistic analysis for the F&A-based and flat-combining algo-

rithms by counting only the costs in part of their executions. The latency of accessing and modifying

queue nodes in the two algorithms is ignored here. For dequeues, this latency can be high: since

nodes to be dequeued in a long queue is unlikely to be cached, the combiner has to make a sequence

of memory accesses to dequeue them one by one. Moreover, the F&A-based algorithm may suffer

performance degradation under heavy contention, because contended F&A operations may perform

worse in practice.

The performance of our PIM-managed FIFO queue seems poor at first sight: although a PIM

core can update the queue efficiently, it takes a lot of time for the PIM core to send results back to

CPUs one by one. To improve its performance, the PIM core can pipeline the executions of requests,

as illustrated in Figure 5.6(a). Suppose p CPUs send p dequeue requests concurrently to the PIM

79

(a)

(b)

Figure 5.6: (a) illustrates the pipelining optimization, where a PIM core can start executing a new
deq() (step 1 of deq() for the CPU on the left), without waiting for the dequeued node of the previous
deq() to return to the CPU on the right (step 3). (b) shows the timeline of pipelining four deq()
requests.

core, which takes time Lmessage. The PIM core fist retrieves a request from its message buffer (step

1 in the figure), dequeues a node (step 2) for the request, and sends the node back to the CPU

(step 3). After the PIM core sends off the message containing the node, it immediately retrieves the

next request, without waiting for the message to arrive at its receiver. This way, the PIM core can

pipeline requests by overlapping the latency of message transfer (step 3) and the latency of memory

accesses and local computations (steps 1 and 2) in multiple requests (see Figure 5.6(b)). During

the execution of a dequeue, the PIM core only makes one memory access to read the node to be

80

dequeued, and two L1 cache accesses to read and modify the tail node of the dequeue segment. It

is easy to prove that the execution time of p requests, including the time CPUs send their requests

to the PIM core, is only Lmessage + p(Lpim + ε) +Lmessage, where ε is the total latency of the PIM

core making L1 cache accesses and sending off one message, which is negligible in our performance

model. If each CPU makes another request immediately after it receives the result of its previous

request, we can prove that the throughput of the PIM-managed FIFO queue is

1− 2Lmessage
Lpim + ε

≈ 1− 2Lmessage
Lpim

≈ 1

Lpim
,

which is expected twice the throughput of the flat-combining queue and three times that of the F&A

queue, in our performance model assuming Latomic = 3Lllc = 3Lpim.

When the PIM-managed FIFO queue is short, it may contain only one segment which deals with

both enqueue and dequeue requests. In this case, its throughput is only half of the throughput

shown above, but it should still be at least as good as the throughput of the other two algorithms.

Bibliography

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing.

In Proceedings of the twelfth annual ACM symposium on Parallel algorithms and architectures,

SPAA ’00, pages 1–12, New York, NY, USA, 2000. ACM.

[2] Umut A. Acar, Arthur Chargueraud, and Mike Rainey. Scheduling parallel programs by work

stealing with private deques. In Proceedings of the 18th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, PPoPP ’13, pages 219–228, New York, NY, USA,

2013. ACM.

[3] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. Adaptive work stealing with parallelism

feedback. In Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of

parallel programming, PPoPP ’07, pages 112–120, New York, NY, USA, 2007. ACM.

[4] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A scalable

processing-in-memory accelerator for parallel graph processing. In Proceedings of the 42nd

Annual International Symposium on Computer Architecture, ISCA ’15, pages 105–117, New

York, NY, USA, 2015. ACM.

[5] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-enabled instructions: A low-

overhead, locality-aware processing-in-memory architecture. In Proceedings of the 42nd Annual

International Symposium on Computer Architecture, ISCA ’15, pages 336–348, New York, NY,

USA, 2015. ACM.

[6] Berkin Akin, Franz Franchetti, and James C. Hoe. Data reorganization in memory using

3d-stacked dram. In Proceedings of the 42nd Annual International Symposium on Computer

Architecture, ISCA ’15, pages 131–143, New York, NY, USA, 2015. ACM.

[7] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multipro-

grammed multiprocessors. In Proceedings of the tenth annual ACM symposium on Parallel

algorithms and architectures, SPAA ’98, pages 119–129, New York, NY, USA, 1998. ACM.

[8] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data structures for parallel

computing. ACM Trans. Program. Lang. Syst., 11(4):598–632, October 1989.

81

82

[9] Erfan Azarkhish, Christoph Pfister, Davide Rossi, Igor Loi, and Luca Benini. Logic-base in-

terconnect design for near memory computing in the smart memory cube. IEEE Trans. VLSI

Syst., 25(1):210–223, 2017.

[10] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. High performance axi-4.0 based

interconnect for extensible smart memory cubes. In Proceedings of the 2015 Design, Automation

& Test in Europe Conference & Exhibition, DATE ’15, pages 1317–1322, San Jose, CA, USA,

2015. EDA Consortium.

[11] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. Design and evaluation of a

processing-in-memory architecture for the smart memory cube. In Proceedings of the 29th

International Conference on Architecture of Computing Systems – ARCS 2016 - Volume 9637,

pages 19–31, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[12] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei Jiang, Gabriel H. Loh,

Don McCaule, Pat Morrow, Donald W. Nelson, Daniel Pantuso, Paul Reed, Jeff Rupley, Sada-

sivan Shankar, John Shen, and Clair Webb. Die stacking (3d) microarchitecture. In Proceedings

of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 39,

pages 469–479, Washington, DC, USA, 2006. IEEE Computer Society.

[13] Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97, March 1996.

[14] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan Simhadri.

Scheduling irregular parallel computations on hierarchical caches. In Proceedings of the Twenty-

third Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages

355–366, New York, NY, USA, 2011. ACM.

[15] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling for lan-

guages with fine-grained parallelism. In Proceedings of the seventh annual ACM symposium on

Parallel algorithms and architectures, SPAA ’95, pages 1–12, New York, NY, USA, 1995. ACM.

[16] Guy E. Blelloch and Margaret Reid-Miller. Pipelining with futures. In Proceedings of the ninth

annual ACM symposium on Parallel algorithms and architectures, SPAA ’97, pages 249–259,

New York, NY, USA, 1997. ACM.

[17] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H.

Randall. An analysis of dag-consistent distributed shared-memory algorithms. In Proceedings of

the eighth annual ACM symposium on Parallel algorithms and architectures, SPAA ’96, pages

297–308, New York, NY, USA, 1996. ACM.

[18] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.

Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In Proceedings of the

fifth ACM SIGPLAN symposium on Principles and practice of parallel programming, PPOPP

’95, pages 207–216, New York, NY, USA, 1995. ACM.

83

[19] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded com-

putations. SIAM J. Comput., 27(1):202–229, February 1998.

[20] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work

stealing. J. ACM, 46(5):720–748, September 1999.

[21] Amirali Boroumand, Saugata Ghose, Brandon Lucia, Kevin Hsieh, Krishna Malladi, Hongzhong

Zheng, and Onur Mutlu. Lazypim: An efficient cache coherence mechanism for processing-in-

memory. IEEE Computer Architecture Letters, 2016.

[22] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a virtual tree of

processors. In Proceedings of the 1981 conference on Functional programming languages and

computer architecture, FPCA ’81, pages 187–194, New York, NY, USA, 1981. ACM.

[23] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the

seventeenth annual ACM symposium on Parallelism in algorithms and architectures, SPAA ’05,

pages 21–28, New York, NY, USA, 2005. ACM.

[24] Quan Chen, Minyi Guo, and Zhiyi Huang. Cats: Cache aware task-stealing based on online

profiling in multi-socket multi-core architectures. In Proceedings of the 26th ACM International

Conference on Supercomputing, ICS ’12, pages 163–172, New York, NY, USA, 2012. ACM.

[25] Rezaul Alam Chowdhury, Vijaya Ramachandran, Francesco Silvestri, and Brandon Blakeley.

Oblivious algorithms for multicores and networks of processors. Journal of Parallel and Dis-

tributed Computing, 73(7):911–925, 2013.

[26] Hybrid Memory Cube Consortium. Hybrid memory cube specification 1.0.

[27] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice

Santos, Ramesh Subramonian, and Thorsten von Eicken. Logp: Towards a realistic model of

parallel computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPOPP ’93, pages 1–12, New York, NY, USA, 1993.

ACM.

[28] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always wanted to

know about synchronization but were afraid to ask. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, SOSP ’13, pages 33–48, New York, NY, USA,

2013. ACM.

[29] James Dinan, Stephen Olivier, Gerald Sabin, Jan Prins, P Sadayappan, and Chau-Wen Tseng.

Dynamic load balancing of unbalanced computations using message passing. In Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8. IEEE,

2007.

84

[30] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining synchronization

technique. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’12, pages 257–266, New York, NY, USA, 2012. ACM.

[31] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in program

optimization. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’95, pages 209–220, New York, NY, USA, 1995. ACM.

[32] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded parallelism in

manticore. In Proceedings of the 13th ACM SIGPLAN international conference on Functional

programming, ICFP ’08, pages 119–130, New York, NY, USA, 2008. ACM.

[33] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, University of Cam-

bridge, Computer Laboratory, February 2004.

[34] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5

multithreaded language. In Proceedings of the ACM SIGPLAN 1998 conference on Program-

ming language design and implementation, PLDI ’98, pages 212–223, New York, NY, USA,

1998. ACM.

[35] John Giacomoni, Tipp Moseley, and Manish Vachharajani. Fastforward for efficient pipeline

parallelism: a cache-optimized concurrent lock-free queue. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming, PPoPP ’08, pages

43–52, New York, NY, USA, 2008. ACM.

[36] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in memory: The terasys massively

parallel pim array. Computer, 28(4):23–31, April 1995.

[37] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization primitives

for large-scale cache-coherent multiprocessors. In Proceedings of the Third International Con-

ference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

III, pages 64–75, New York, NY, USA, 1989. ACM.

[38] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-grained task,

data, and pipeline parallelism in stream programs. In Proceedings of the 12th international

conference on Architectural support for programming languages and operating systems, ASPLOS

XII, pages 151–162, New York, NY, USA, 2006. ACM.

[39] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient

coordination of very large numbers of cooperating sequential processors. ACM Trans. Program.

Lang. Syst., 5(2):164–189, April 1983.

[40] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz, Jacqueline Chame, Jeff Draper, Jeff LaCoss,

John Granacki, Jay Brockman, Apoorv Srivastava, William Athas, Vincent Freeh, Jaewook

85

Shin, and Joonseok Park. Mapping irregular applications to diva, a pim-based data-intensive

architecture. In Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, SC ’99,

New York, NY, USA, 1999. ACM.

[41] Robert H. Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor. In Proceedings

of the 1984 ACM Symposium on LISP and functional programming, LFP ’84, pages 9–17, New

York, NY, USA, 1984. ACM.

[42] Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM

Trans. Program. Lang. Syst., 7(4):501–538, October 1985.

[43] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer, and Nir

Shavit. A lazy concurrent list-based set algorithm. In Proceedings of the 9th International

Conference on Principles of Distributed Systems, OPODIS’05, pages 3–16, Berlin, Heidelberg,

2006. Springer-Verlag.

[44] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the

synchronization-parallelism tradeoff. In Proceedings of the Twenty-second Annual ACM Sym-

posium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 355–364, New York,

NY, USA, 2010. ACM.

[45] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In

Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Archi-

tectures, SPAA ’04, pages 206–215, New York, NY, USA, 2004. ACM.

[46] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. Scalable concurrent counting. ACM Trans.

Comput. Syst., 13(4):343–364, November 1995.

[47] Maurice Herlihy and Zhiyu Liu. Well-structured futures and cache locality. In Proceedings

of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’14, pages 155–166, New York, NY, USA, 2014. ACM.

[48] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2008.

[49] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for con-

current objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[50] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali Boroumand, Saugata

Ghose, and Onur Mutlu. Accelerating pointer chasing in 3d-stacked memory: Challenges,

mechanisms, evaluation. In IEEE 34th International Conference on Computer Design, ICCD

2016, pages 25–32. IEEE, 2016.

[51] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new dram architecture increases density

and performance. In Symposium on VLSI Technology, VLSIT 2012, pages 87–88. IEEE, 2012.

86

[52] Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge, Vinh Vi Lam, Josep Tor-

rellas, and Pratap Pattnaik. Flexram: Toward an advanced intelligent memory system. In

Proceedings of the IEEE International Conference On Computer Design, ICCD ’99.

[53] Alex Kogan and Maurice Herlihy. The future(s) of shared data structures. In Proceedings of

the 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14, pages 30–39,

New York, NY, USA, 2014. ACM.

[54] Peter M. Kogge. Execube-a new architecture for scaleable mpps. In Proceedings of the 1994 In-

ternational Conference on Parallel Processing - Volume 01, ICPP ’94, pages 77–84, Washington,

DC, USA, 1994. IEEE Computer Society.

[55] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-t: a high-performance parallel lisp.

In Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and

implementation, PLDI ’89, pages 81–90, New York, NY, USA, 1989. ACM.

[56] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha, and Zhunping Zhang.

On-the-fly pipeline parallelism. In Proceedings of the 25th ACM symposium on Parallelism in

algorithms and architectures, SPAA ’13, pages 140–151, New York, NY, USA, 2013. ACM.

[57] Joao V. F. Lima and Nicolas Maillard. Online mapping of mpi-2 dynamic tasks to processes

and threads. Int. J. High Perform. Syst. Archit., 2(2):81–89, March 2009.

[58] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure calls

in distributed systems. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming

Language Design and Implementation, PLDI ’88, pages 260–267, New York, NY, USA, 1988.

ACM.

[59] Gabriel H. Loh. 3d-stacked memory architectures for multi-core processors. In Proceedings of

the 35th Annual International Symposium on Computer Architecture, ISCA ’08, pages 453–464,

Washington, DC, USA, 2008. IEEE Computer Society.

[60] Hans-Wolfgang Loidl and Kevin Hammond. On the granularity of divide-and-conquer paral-

lelism. In Proceedings of the 1995 International Conference on Functional Programming, FP’95,

pages 135–144, Swinton, UK, UK, 1995. British Computer Society.

[61] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access model for highly-

threaded many-core architectures. Future Gener. Comput. Syst., 30:202–215, January 2014.

[62] Seung-Jai Min, Costin Iancu, and Katherine Yelick. Hierarchical work stealing on manycore

clusters. In Fifth Conference on Partitioned Global Address Space Programming Models, PGAS

’11, 2011.

[63] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elimination to implement

scalable and lock-free fifo queues. In Proceedings of the Seventeenth Annual ACM Symposium

87

on Parallelism in Algorithms and Architectures, SPAA ’05, pages 253–262, New York, NY, USA,

2005. ACM.

[64] Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In Proceedings

of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’13, pages 103–112, New York, NY, USA, 2013. ACM.

[65] Stephen Olivier and Jan Prins. Scalable dynamic load balancing using upc. In Parallel Pro-

cessing, 2008. ICPP’08. 37th International Conference on, pages 123–131. IEEE, 2008.

[66] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and Jan F Prins.

Openmp task scheduling strategies for multicore numa systems. Int. J. High Perform. Comput.

Appl., 26(2):110–124, May 2012.

[67] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active pages: A computation model

for intelligent memory. In Proceedings of the 25th Annual International Symposium on Computer

Architecture, ISCA ’98, pages 192–203, Washington, DC, USA, 1998. IEEE Computer Society.

[68] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton,

Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelligent ram. IEEE

Micro, 17(2):34–44, March 1997.

[69] W. Pugh. Concurrent maintenance of skip lists. Technical report, University of Maryland at

College Park, 1990.

[70] Jean-Noël Quintin and Frédéric Wagner. Hierarchical work-stealing. In Proceedings of the 16th

International Euro-Par Conference on Parallel Processing: Part I, EuroPar’10, pages 217–229,

Berlin, Heidelberg, 2010. Springer-Verlag.

[71] Kaushik Ravichandran, Sangho Lee, and Santosh Pande. Work stealing for multi-core hpc

clusters. In Proceedings of the 17th International Conference on Parallel Processing - Volume

Part I, Euro-Par’11, pages 205–217, Berlin, Heidelberg, 2011. Springer-Verlag.

[72] Nir Shavit and Dan Touitou. Elimination trees and the construction of pools and stacks: Pre-

liminary version. In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms

and Architectures, SPAA ’95, pages 54–63, New York, NY, USA, 1995. ACM.

[73] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. Beyond nested

parallelism: tight bounds on work-stealing overheads for parallel futures. In Proceedings of the

twenty-first annual symposium on Parallelism in algorithms and architectures, SPAA ’09, pages

91–100, New York, NY, USA, 2009. ACM.

[74] Harold S. Stone. A logic-in-memory computer. IEEE Trans. Comput., 19(1):73–78, January

1970.

88

[75] J. Valois. Lock-free Data Structures. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY,

USA, 1996.

[76] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Efficient load balancing for wide-

area divide-and-conquer applications. SIGPLAN Not., 36(7):34–43, June 2001.

[77] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for java. In Proceedings

of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, OOPSLA ’05, pages 439–453, New York, NY, USA, 2005. ACM.

[78] Yonghong Yan, Sanjay Chatterjee, Zoran Budimlic, and Vivek Sarkar. Integrating mpi with

asynchronous task parallelism. In Proceedings of the 18th European MPI Users’ Group Confer-

ence on Recent Advances in the Message Passing Interface, EuroMPI’11, pages 333–336, Berlin,

Heidelberg, 2011. Springer-Verlag.

[79] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L. Greathouse, Lifan Xu, and

Michael Ignatowski. Top-pim: Throughput-oriented programmable processing in memory. In

Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed

Computing, HPDC ’14, pages 85–98, New York, NY, USA, 2014. ACM.

[80] Qiuling Zhu, Berkin Akin, H. Ekin Sumbul, Fazle Sadi, James C. Hoe, Larry T. Pileggi, and

Franz Franchetti. A 3d-stacked logic-in-memory accelerator for application-specific data inten-

sive computing. In IEEE International 3D Systems Integration Conference, 3DIC 2013, San

Francisco, CA, USA, October 2-4, 2013, pages 1–7, 2013.

[81] Qiuling Zhu, Tobias Graf, H. Ekin Sumbul, Larry T. Pileggi, and Franz Franchetti. Accelerating

sparse matrix-matrix multiplication with 3d-stacked logic-in-memory hardware. In IEEE High

Performance Extreme Computing Conference, HPEC 2013, Waltham, MA, USA, September

10-12, 2013, pages 1–6, 2013.

