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The adoption of cloud computing has pushed many big-data analytics frameworks to run as

multi-tenant services where users submit jobs and a cluster resource manager is responsible for pro-

visioning resources and executing jobs. In order to support a wide-range of data processing models,

designers of modern cluster resource management frameworks advocate for a strict decoupling of

resource management infrastructure (e.g., Apache YARN) from specific data processing models

(e.g., Hadoop, TensorFlow, Spark).

This dissertation introduces application-aware resource management, which advocates for ju-

diciously pushing semantics from the application into the cluster manager in order for it to make

more informed scheduling decisions. We show that application-aware cluster management can lead

to significant gains in terms of decreased job completion times, increased cluster utilization, and

improved job utility. We present prototypes that exemplify the benefits of our approach in systems

we call Yaq and HyperDrive.

We identify inefficiencies in existing cluster management framework designs that lead to poor

utilization and degraded user-experience in the presence of heterogeneous workloads. We present

Yaq as a cluster manager which is able to prioritize task execution based on application-level metrics

such as task durations or total amount of work remaining in a job. We show that Yaq can significantly

improve both cluster utilization and workload completion times.

We identify several difficulties and inefficiencies in the building and training of machine-learning

models in the context of shared clusters. We present HyperDrive as a cluster manager which is able

to classify and prioritize jobs based on user-defined utility (e.g., model accuracy). We implement a

scheduling algorithm in HyperDrive that uses probabilistic model-based classification with dynamic

scheduling and early termination to improve model performance and decrease workload completion

times.
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Chapter 1

Introduction

Thesis Statement Cluster schedulers can benefit from a judiciously widened interface between re-

source management and application boundaries. Using this wider interface to exchange application-

level semantics between applications and cluster schedulers can significantly improve performance

and cluster utility.

1.1 Application-aware Cluster Resource Management

The adoption of cloud computing has pushed many big data analytics frameworks to run as multi-

tenant services where users can submit jobs and a resource manager is responsible for provisioning

resources and executing jobs. In order to support a wide-range of data processing models design-

ers of modern cluster resource management frameworks advocate for a strict decoupling of resource

management infrastructure from specific data processing models (e.g., Hadoop, TensorFlow, Spark).

In this thesis, we present application-aware resource scheduling which instead advocates for a loos-

ening of this abstraction boundary, in a principled way, in order for resource management frame-

works to learn more about the metrics that are important to the application’s they are scheduling.

By loosening this abstraction boundary we show, through several example scenarios, that job com-

pletion times decrease, overall cluster utilization increases, and cluster operators and users receive

a higher return on their costly investment.

1
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Typical resource management frameworks are agnostic to the actual jobs running on them. This

design is typically useful so that there is a decoupling of the resource management infrastructure

and the actual programming model being used in the system (e.g., Hadoop, TensorFlow, Spark,

Tez). A popular example of this decoupling can be seen in the YARN framework [59], which was

built specifically to address design constraints in the original Apache Hadoop framework that had a

strict coupling of resource management and the MapReduce programming model. In this thesis we

show the benefits of application-aware resource scheduling through two examples, section 1.2 and

section 1.3.

1.2 Queue Management for Data Analytics Clusters

In recent years, organizations small and large have been taking advantage of large scale-out com-

modity clusters to help with big data analytics problems with the help of frameworks like Hadoop [28]

and Spark [67]. These clusters run a wide variety of applications including batch data analytics jobs,

machine learning jobs, and interactive queries. To reduce operational costs, and, therefore, improve

return on investment, there is a trend toward consolidating diverse workloads onto shared clusters.

However, doing so places strain on the cluster scheduler due to the diversity of job requirements

needed by different workloads.

Cluster schedulers such as YARN [59] and Borg [60] use a logically centralized resource man-

ager (RM) which is responsible for managing cluster resources by specifically matching potential

jobs with the resources they need to execute on worker machines. Typically this architecture in-

volves worker machines exchanging heartbeat messages with the RM on the order of seconds.

Heartbeats are used to report resource availability to the RM so that it can contain a global view

of available resources that it can schedule. This design has two primary problems: (1) the RM is

in the critical path of all scheduling decisions. (2) whenever a task finishes resources can remain

idle between heartbeats. When workloads consist of a mix of long and short task durations this

heartbeat-based architecture can negatively affect cluster utilization. Even worse, jobs that consist

of short tasks can suffer from lengthened job completion times.
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Distributed scheduler alternatives have been proposed that avoid logical centralization. Apollo [13],

Sparrow [44], and others allow job managers to independently decide where to execute their tasks,

either to improve scalability or to reduce allocation latency. In these systems workloads that consist

of short-lived tasks become less of a problem, because tasks can be scheduled onto queues at worker

machines by each job manager. However, the lack of a global cluster view causes these designs to be

vulnerable to other problems. Each scheduler makes a locally optimum allocation which may cause

scheduling collisions at worker nodes. Task assignments are vulnerable to head-of-line blocking

when tasks are mixed with long and short task durations. We observed that these aspects affect job

completion times, leading to increased tail latency and unpredictability in job run times.

This thesis introduces a collection of queue management techniques we collectively refer to as

Yaq 1. In this work we studied job heterogeneity in production clusters at Microsoft. We found that

task durations vary from a few milliseconds to tens of thousands of seconds. Moreover, a significant

fraction of tasks are short-lived (∼50% last less than 10s), which illustrates a generally observed

shift towards smaller tasks [35, 43, 44]. In order to mitigate problems that arise with heterogeneous

workloads we introduce queue management techniques that infuse application-level information

into worker nodes to allow for dynamic local scheduling of tasks.

1.3 Utility-based Cluster Management

In recent years, organizations with large scale-out commodity clusters have been shifting the type

of big-data analytics they perform to leverage the latest techniques in machine-learning (ML). This

type of analysis typically involves a data scientist designing, building, and training statistical models

(e.g., neural networks) that leverage the large amounts of data at the organizations disposal. The

building and training of these statistical models is typically executed on a shared cluster using a

resource manager such as YARN with one of the many popular machine-learning frameworks at its

core [2, 34, 65].

The task of building a high performing and successful model is heavily reliant on the selection

1This work was previously published [46], its content has been revised and included throughout this dissertation.
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of many different adjustable parameters, commonly called hyperparameters, which are configured

prior to training a model. Examples of these hyperparameters include learning rate (in many mod-

els), number and size of hidden layers in a deep neural network, number of clusters in k-means

clustering, and many more. It is often difficult for data scientists to properly select hyperparam-

eter values that produce desired results. This difficulty often leads data scientists to automatic or

manual hyperparameter exploration to search across different configurations of a model, where each

configuration represents a specific set of hyperparameter values. The goal of this search is to find

configurations that optimize the model’s utility (e.g., high predictive accuracy, low loss, high re-

ward) with affordable time and cost. Hyperparameter exploration involves two related problems:

generating candidate configurations from the large space of hyperparameter values, and efficiently

scheduling these configurations in a shared cluster.

This thesis introduces an application-aware cluster scheduling algorithm (POP) based on model

utility and a cluster scheduling framework (HyperDrive) for hyperparameter exploration 2. Our

POP scheduling algorithm dynamically classifies running configurations into categories based on

observed application-level utility metrics (e.g., model accuracy). Furthermore, POP infuses prob-

abilistic model-based classification with dynamic scheduling and early termination to jointly op-

timize utility and cost of a configuration. In addition, we build a comprehensive hyperparameter

exploration infrastructure, HyperDrive, to support existing and future scheduling algorithms for a

wide range of usage scenarios across different machine-learning frameworks and learning domains.

1.4 Summary of Contributions

In summary, we make the following contributions in this thesis:

• We introduce the concept of application-aware cluster management and apply it across two

domains: big-data analytics systems and machine-learning model optimization systems.

• We identify inefficiencies in existing cluster management framework designs in the presence

of heterogeneous workloads that lead to poor utilization and degraded user-experience. We

2This work was previously published [45], its content has been revised and included throughout this dissertation.
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show that through the addition of worker-side queuing, careful sharing of application-level

metrics along with queue management we can mitigate these inefficiencies and improve over-

all cluster user experience.

• We present two implementations of our queue management techniques across two different

cluster scheduling designs: a centralized scheduler (Yaq-c) and a distributed scheduler (Yaq-

d). We show that in both designs we can significantly improve both cluster utilization and

workload completion latency [46].

• We identify several difficulties and inefficiencies in the building and training machine-learning

models in the context of shared clusters. We design and implement an application-aware

cluster scheduling algorithm that mitigates these challenges through the use of probabilistic

model-based configuration classification with dynamic scheduling and early termination.

• We present a cluster scheduling implementation, HyperDrive, that that not only facilitates our

scheduling algorithm, but supports existing and future scheduling algorithms, and works with

different machine-learning domains and frameworks [45].



Chapter 2

Yaq: Application-Aware Queue

Management

2.1 Motivation

Data-parallel frameworks [48, 59, 67] and scale-out commodity clusters are being increasingly used

to store and extract value from data. While some enterprises have large clusters, many others use

public cloud providers. Such clusters run a wide variety of applications including batch data analyt-

ics jobs, machine learning jobs and interactive queries. To reduce operational costs, and, therefore,

improve return on investment, there is a trend toward consolidating diverse workloads onto shared

clusters. However, doing so places considerable strain in the cluster scheduler, which has to deal

with vastly heterogeneous jobs, while maintaining high cluster utilization, fast and predictable job

completion times, and offering expressive sharing policies among users.

To showcase the job heterogeneity in production clusters, we provide task and job durations for

two production workloads of Microsoft (see Figure 2.1), we refer to these as Workload 1 and Work-

load 2.1 Task durations vary from a few milliseconds to tens of thousands of seconds. Moreover, a

significant fraction of tasks are short-lived (∼50% last less than 10s), which illustrates a generally

observed shift towards smaller tasks [35, 43, 44].

1Durations only for successful (non-failed) tasks are included in the figure.

6
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Figure 2.1: Job and task durations for two production workloads.

Cluster schedulers such as YARN [59] and Borg [60] have a logically centralized service, often

called the resource manager (RM), which serves as a matchmaker between the resource needs of

various jobs and the available resources on worker machines. Typically, machines exchange heart-

beat messages with the RM once every few seconds,2 and are initiated either by worker machines (in

YARN) or by the RM (in Borg). Through heartbeats, worker machines report resource availability

to the RM, which in turn determines the allocation of tasks to machines. This design has two main

problems: first, the RM is in the critical path of all scheduling decisions; second, whenever a task

finishes, resources can remain fallow between heartbeats. These aspects slow down job completion:

a job with a handful of short tasks can take tens of seconds to finish. Worse, they affect cluster uti-

lization especially when tasks are short-lived. Table 2.1 shows the average cluster utilization (i.e.,

the percentage of occupied slots) with tasks of different durations for an 80-node YARN cluster. The

label X sec denotes a synthetic workload wherein every task lasts X seconds. The label Mixed-5-50

is an even mix of 5 and 50 sec tasks. Workload 1 is the production workload shown in Figure 2.1.

We see that as task durations get shorter, cluster utilization drastically degrades, and can be as low

as 61%.
2YARN clusters with ∼4K nodes use a heartbeat interval of 3sec [59]; the Borg RM polls each machine every few

secs with the 95th percentile being below 10sec in a ∼10K-node cluster [60].
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5 sec 10 sec 50 sec Mixed-5-50 Workload 1
60.59% 78.35% 92.38% 78.54% 83.38%

Table 2.1: Average YARN cluster slot utilization for workloads with varying task durations.

A few schedulers avoid logical centralization. Apollo [13], Sparrow [44] and others allow job

managers to independently decide where to execute their tasks, either to improve scalability (in

terms of cluster size or scheduling decisions rate) or to reduce allocation latency. The above prob-

lem with short-lived tasks becomes less prevalent, because tasks can be pushed onto queues at

worker machines by each job manager. However, these schedulers are vulnerable to other prob-

lems: (a) each job manager achieves a local optimum allocation, but coordination across various

job managers to achieve globally optimal allocations is not possible;3 (b) worse, the distributed

schedulers do not always pick appropriate machines since they fail to account for the pending work

in each queue; (c) the assignments are vulnerable to head-of-line blocking when tasks have het-

erogeneous resource demands and durations. These aspects affect job completion times, leading to

increased tail latency and unpredictability in job run times.

To illustrate these aspects, Figure 2.2 presents a CDF of job completion times for Workload 2

with YARN and an implementation of Sparrow’s batch sampling on Mercury [35, 44]. We see that

the latter improves some very short jobs, but has a long tail of jobs that exhibit longer completion

times. As we will see later, this happens because batch sampling fails to make globally optimal task

placement decisions, and because FIFO queues at worker nodes suffer from head-of-line blocking.

Moreover, to address the utilization problems mentioned above for centralized schedulers, we ex-

tended YARN by allowing tasks to be queued at each node, thus masking task allocation delays.

In this case, the RM assigns tasks to node queues in a way that is similar to how it already assigns

tasks to nodes. The resulting job completion times are depicted in the “YARN+Q” line of Fig-

ure 2.2. We see that naively offering FIFO queues at worker nodes in YARN can be worse than not

having queues at all. As will be shown later, this is due to similar head-of-line issues, as well as the

potentially poor early binding of tasks to machines.
3For example, when scheduling a task of job1 with equal preference for machines {m1,m2} and a task of job2 that

will run much faster at m1, it is not possible to guarantee that job2’s task will always run at m1.
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The remaining sections in this chapter describe the design of two cluster scheduler variations,

Yaq-c and Yaq-d, upon which we implement and evaluate our application-aware queue manage-

ment techniques. Yaq-c extends the centralized scheduler in YARN [59] by adding task queues

at worker nodes. Yaq-d, on the other hand, is a distributed scheduler that extends the Mercury

scheduler [35, 63]. After laying out the requirements for our scheduler (section 2.2), we first

give an overview of our queuing techniques and compare Yaq’s capabilities with those of exist-

ing scheduling frameworks (section 2.3). Then, we present the basic components of our system

design (section 2.4), and detail the specifics of our design for both Yaq-c and Yaq-d (section 2.5 and

section 2.6).

2.2 Requirements

Resource managers for large shared clusters need to meet various, often conflicting, requirements.

Based on conversations with cluster operators and users, we distill the following set of requirements

for our system.

Heterogeneous jobs: Due to workload consolidation, production clusters have to simultaneously

support different types of jobs and services (e.g., production jobs, best-effort jobs). Hence,
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Scheduling type Type of queuing Queue management
Scheduling framework Centralized/Distributed Global queue Queues at nodes Task placement Queue sizing Queue reordering

YARN [59] X/- X ∗
Borg [60] X/- X ∗

Sparrow [44] -/X X X
Apollo [13] -/X X X

Mercury [35] X/X X X X
Yaq-c X/- X X X X X
Yaq-d -/X X X X X

Table 2.2: Overview of queuing capabilities of existing scheduling frameworks compared to Yaq (∗
indicates that the system performs placement of tasks to nodes but not to queues).

tasks have highly variable durations and resource needs (e.g., batch jobs, ML, MPI, etc.).

High cluster utilization: Since cluster operators seek to maximize return on investment, the sched-

uler should optimally use the cluster resources to achieve high cluster utilization. The expec-

tation is that higher cluster utilization leads in turn to higher task and job throughput.

Fast (and predictable) job completion time: Cluster users desire that their jobs exit the system

quickly, perhaps as close as possible to the jobs’ ideal computational time. Furthermore,

predictable completion times can substantially help with planning.

Sharing policies: Since the cluster is shared amongst multiple users, operators require support for

sharing policies based on fairness and/or capacity constraints.

2.3 Task Queuing Overview

As we will describe in Chapter 3, the introduction of local queues in Yaq-c, and the application-

aware management of the different queues in both Yaq-c and Yaq-d are our key contributions. It is

thus useful to contrast our designs with existing systems.

In Table 2.2, we outline the type of queuing that existing systems enable (global queuing and/or

local at the nodes), as well as the queue management capabilities they support compared to Yaq.

Due to their inherent design, distributed and hybrid schedulers (such as Sparrow, Apollo, Mercury)

support queuing at the nodes, but not global job queuing. On the other hand, to the best of our

knowledge, no existing centralized system supports queuing at worker nodes. This is an interesting
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point in the design space that we explore in Yaq-c. Further, although all systems with queues at

worker nodes need to implement a task placement policy, none of them implement additional queue

management techniques, such as task prioritization through queue reordering, and queue sizing.

Hence, we explore such techniques in Yaq-c and Yaq-d.

2.4 Basic System Components

The general system architecture, depicted in Figure 2.3 (for Yaq-c) and Figure 2.4 (for Yaq-d),

consists of the following main components:

Node Manager (NM) is a service running at each of the cluster’s worker nodes, and is responsible

for task execution at that node. Each NM comprises running tasks and queued tasks (as

shown in Figures 2.3 and 2.4). The former is a list with the tasks that are currently being

executed, thus occupying actual resources at the node. The latter is a queue with the tasks that

are waiting on the resources held by the currently running tasks and are thus not occupying

actual resources. A task is queued only if the NM cannot start its execution due to insufficient

resources.

Resource Manager (RM) is the component that manages the cluster resources in centralized schedul-

ing settings (thus appears only in Yaq-c). The NMs periodically inform the RM about their

status through a heartbeat mechanism. Based on the available cluster resources and taking

into account various scheduling constraints (e.g., data locality, resource interference, fair-

ness/capacity) and a queue placement policy (to determine where tasks will be queued, if

needed), it assigns resources to tasks for execution.

Usage Monitor (UM) is a centralized component to which the NMs periodically report their status.

It is used in distributed scheduling frameworks as a form of loose coordination to perform

more educated scheduling decisions. Although this component is not necessary [44], a form

of a UM has been used in existing distributed schedulers [13, 35], and is also used in Yaq-d.

Job Manager (JM) is a per-job orchestrator (one JM gets instantiated for each submitted job).
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Figure 2.3: System architecture for centralized scheduling (Yaq-c).

In centralized settings, it negotiates with the RM framework for cluster resources. Once it

receives resources, it dispatches tasks for execution to the associated nodes. In distributed

settings, where there is no central RM, it also acts as a scheduler, immediately dispatching

tasks to nodes.

2.5 Centralized Scheduling With Queues (Yaq-c)

Our system architecture for centralized scheduling is depicted in Figure 2.3. As shown in the figure,

a job’s lifecycle comprises the following steps. First, as soon as a client submits a new job to the

cluster, the JM for this job gets initialized (step 1). The tasks of the job get added to the queue

that is maintained locally in the JM. Then, the JM petitions the RM for cluster resources based on

the resource needs of the job’s tasks (step 2). The RM chooses where to place the tasks based on

some policy (such as resource availability, status of queues at the NMs, data locality, etc.), and then

notifies the JM (step 3). Subsequently, the JM dispatches the tasks for execution at the specified

nodes (step 4). A task will start execution whenever it is allocated resources by the NM, and until

that moment it is waiting at the NM’s queue. The job’s lifecycle terminates when all of its tasks

complete execution.

Note that the RM performs job admission control, based on the available resources and other

constraints (e.g., cluster sharing policies). Thus, when a job is submitted, it waits at a global queue

in the RM (shown in blue in the figure), until it gets admitted for execution.
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2.6 Distributed Scheduling With Queues (Yaq-d)

Our system architecture for distributed scheduling is shown in Figure 2.4. When a client submits a

new job, the corresponding JM gets instantiated (step 1 in the figure). The JM, who is now acting as

the task scheduler for that job, uses a scheduling policy to select the node to which each of the job’s

task will be dispatched. The scheduling policy relies also on information that becomes available

from the UM, such as the queue status of a node. The JM then places the tasks to the specified

nodes for execution (step 2). Similar to the centralized case, if resources in a node are available,

task execution starts immediately. Otherwise, the task waits in the queue until resources become

available.

Our design also enables restricting the number of concurrently executing or queued tasks per

JM. We defer the details to section 4.1.



Chapter 3

Worker Node and Global Queue

Management

In the design outlined so far, queues at worker nodes are of particular importance since they de-

termine when a task bound to a node starts execution. This is the case with either architecture,

centralized or distributed. However, as explained in section 2.1, simply maintaining a queue of

tasks waiting for execution at worker nodes does not directly translate to benefits in job completion

time, especially in the presence of heterogeneous jobs.

Our primary focus in this work is on efficiently managing local node queues, we defer discussion

of global queue management techniques to section 3.4. Our local queue management includes the

following techniques: (1) determine the queue length (section 3.1); (2) decide the node to which

each task will be placed for queuing (section 3.2); (3) prioritize the task execution by reordering the

queue (section 3.3). We discuss cluster-wide queue management policies in section 3.4.

Note that placing tasks to queues is required whenever the actual cluster resources are not suf-

ficient to accommodate the jobs that are submitted in the cluster. Thus, our techniques become

essential under high cluster load. In cases of lower cluster load, when no worker-side queuing is

needed, Yaq-c behaves like YARN and Yaq-d like Mercury.

To simplify our analysis, in this section we consider slots of resources consisting of memory and

CPU, as done in YARN too. Whenever applicable, we discuss how our techniques can be extended

14
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to support multi-dimensional resources.

Task duration estimates Part of our work relies on estimates of task durations, based on the ob-

servation that in our production clusters at Microsoft, more than 60% of the jobs are recurring. For

such jobs, we assume an initial estimate of task durations based on previous executions. As we

show in our experiments, Yaq performs well even with only rough estimates (such as the average

duration of a map or reduce stage).1 In the absence of such estimates, we assume a default task

duration and have extended the JM to observe actual task durations at runtime and refine the initial

estimate as the execution of the job proceeds.

3.1 Bounding Queue Lengths

Determining the length of queues at worker nodes is crucial: queues that are too short lead to lower

cluster utilization, as resources may remain idle between allocations; queues that are too long may

incur excessive queuing delays. We discuss two mechanisms for bounding queue lengths: length-

based bounding (subsection 3.1.1) and delay-based bounding (subsection 3.1.3).

3.1.1 Length-Based Queue Bounding

In length-based queue bounding, all nodes have a predefined queue length b, and the RM can place

up to b tasks at the queue of each node. We now focus on how to determine the value of b. We first

consider the case when all tasks have the same duration, and then turn to the more general case.

Note that we base our analysis on the centralized design, where task placement is heartbeat-

driven. We defer the analysis for the distributed case for future work, but expect the findings to be

largely similar.

Fixed task duration We assume that all tasks have the same duration 1/µ (where µ is the task

processing rate), and calculate the minimum queue length that would guarantee a desired cluster

utilization. Let r be the maximum number of tasks that can run concurrently at a node (based on
1Note that more sophisticated models for estimating task durations can be employed. We purposely opted for a simpler

approach here, to assess our system’s behavior even with inaccurate estimates.
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that can be processed by a node per heartbeat interval (rµτ ).

its resources and the minimum resource demand of a task), and τ the heartbeat interval. Then the

maximum task processing rate at the node is rµ. Given r running tasks and b queued tasks, a node

will remain fully utilized when: r + b ≥ rµτ or b ≥ r(µτ − 1).

Interestingly, the above reasoning is similar to the bandwidth-delay product for TCP flows,

where the goal is to have enough packets in flight to keep the link fully utilized. In cluster schedul-

ing, tasks can be seen as analogous to packets, node processing rate to the link capacity, and heart-

beat interval to RTT.

Exponentially-distributed task duration We consider an arbitrary node that has r run slots and a

queue of length b slots. We want to determine the value of parameter b such that node utilization

is at least 1 − δ for given parameter δ ∈ (0, 1]. Here we provide the main results of our analysis;

more details along with our proofs can be found in subsection 3.1.2. We note that node utilization

is at least as large as the fraction of heartbeat intervals in which all run slots are always busy. It thus

suffices to configure the queue length so that the latter quantity is at least of value 1− δ.

We admit the following assumptions. Whenever the node completes processing a task, we as-

sume that it starts processing one of the tasks from the queue taken uniformly at random, if there are

any in the queue. We assume that task processing times are independent and identically distributed



17

according to an exponential distribution with mean 1/µ. This assumption enables us to characterize

the node utilization by leveraging the memory-less property of the exponential distribution.

Proposition 1. At least a 1− δ fraction of heartbeat intervals will have all run slots always busy, if

the queue length b is at least as large as the smallest integer that satisfies

rµτ

(
1 +

b+ 1

rµτ

(
log

(
b+ 1

rµτ

)
− 1

))
≥ log

(
1

δ

)
. (3.1)

We now discuss the asserted sufficient condition. If the task processing times were deterministic

assuming a common value 1/µ and the length of the heartbeat interval is a multiple of 1/µ, then for

100% utilization it is necessary and sufficient to set the queue length such that b + r = rµτ . This

yields the queue length that is linear in rµτ , for any fixed value of the run slots r. The sufficient

condition in (3.1) requires a larger queue length than rµτ for small values of rµτ . It can be shown

that the sufficient condition (3.1) requires the queue length that is at least rµτ +
√

log(1/δ)
√
rµτ ,

for large rµτ . For numerical examples, see Figure 3.1. Specifically, given a heartbeat interval τ = 3

sec, an average task duration 1/µ of 10 sec, r = 10 tasks allowed to be executed at a node at the

same time, and a target utilization of 95%, a queue of b = 6 slots is required. Likewise, for an

average task duration of 30 sec, the queue size should be ≥ 3 slots. These values for b are also

validated by our experiments (section 4.2) on the production Workload 2 of Figure 2.1.

3.1.2 Determining the Queue Length

We consider an arbitrary node that has r run slots and a queue of length b slots. We want to determine

the value of the parameter b such that the utilization of the node is at least 1− δ for given parameter

δ ∈ (0, 1].

We admit the following assumptions. Let τ be the length of a heart-beat interval. The node

is fed with new tasks at the beginning of each heart-beat interval such that there are at most r

tasks being processed by the node and at most b tasks being queued for processing at the node.

Whenever the node completed processing a task it starts processing one of the tasks from the queue

taken uniformly at random, if there is any in the queue. We assume that task processing times are
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independent and identically distributed according to exponential distribution with mean 1/µ. This

assumption enables us to characterize the node utilization by leveraging the memory-less property

of the exponential distribution.

The node utilization is denoted with u and is defined as the average fraction of time the run slots

of the node are busy processing tasks over an asymptotically large time interval. More formally, let

Qi(t) = 1 if at time t run slot i is busy, and Qi(t) = 0, otherwise. Then, the node utilization is

defined by

u = lim
T→∞

1

T

∫ T

0

∑r
i=1 1(Qi(t) = 1)

r
dt.

where 1(A) = 1 if condition A is true, and 1(A) = 0, otherwise.

Let Xn,λ be a random variable with distribution that corresponds to the sum of n independent

random variables with exponential distribution of mean 1/λ. Note that the distribution of Xn,λ is

Erlang distribution with parameters n and λ, wich has the density function

fn,λ(x) =
λnxn−1e−λx

(n− 1)!
, for x ≥ 0.

Proposition 2. Under the given assumptions, the node utilization is given by

u = 1−
((

1− 1

µτ

)
Pr[Xb,rµ ≤ τ ]

+
1

µτ

e−µτ(
1− 1

r

)b Pr[Xb,(r−1)µ ≤ τ ]

)

Proof. We are interested in the node utilization with respect to the stationary distribution. Suppose

that time 0 is the beginning of a heart-beat interval. We can use the Palm inversion formula (or

”cycle formula”) to note that the node utilization is equal to

u =

∑r
i=1 IE

[∫ τ
0 1(Qi(t) = 1)dt

]
rτ

.

It suffices to consider an arbitrary run slot i of the node and characterize the expected value of∫ τ
0 1(Qi(t) = 1)dt. By the memory-less property of the exponential distribution, there are r + b
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tasks at time 0 whose (residual) processing times are independent and have exponential distribution

with mean 1/µ. Whenever there are r tasks being processed by the node, the earliest time until

completion of a task is equal in distribution to a minimum of r independent exponentially distributed

random variables each with mean 1/µ; hence, it has exponential distribution with mean 1/(rµ). It

follows that the earliest time at which the queue is empty is equal in distribution to Xb,rµ. From this

time instance, each run slot completes processing the task assigned to it after an independent random

duration that has exponential distribution with mean 1/µ. From this discussion, we conclude that

IE

[∫ τ

0
1(Qi(t) = 1)dt

]
= τ Pr[Xb,rµ > τ ]

+

∫ τ

0
IE[min{σ, τ − x}]dPr[Xb,rµ ≤ x]

where σ is a random variable with exponential distribution with mean 1/µ.

By a simple calculus, we have

IE[min{σ, t}] =

∫ ∞
0

Pr[min{σ, t} > x]dx

=

∫ t

0
Pr[σ > x]dx

=

∫ t

0
e−µxdx

=
1

µ

(
1− e−µt

)
.

Hence, it follows that the utilization is given by

u = Pr[Xb,rµ > τ ]

+
1

µτ

∫ τ

0

(
1− e−µ(τ−x)

)
dPr[Xb,rµ ≤ x]

which by some elementary calculus can be written as asserted in the proposition.
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Notice that, in particular, for a node with zero queue slots,

u =
1− e−µτ

µτ
.

A simple lower bound on the node utilization can be derived as follows. LetAk denote the event

that in the k-th heart-beat interval none of the run slots is every idle. Notice that

u ≥ Pr[Ak].

The event Ak is equivalent to the event that the time elapsed from the k-th heart beat until the

completion of the (b + 1)-st task, among the tasks present just after the k-th heart beat, is larger

than the length of the heart-beat interval τ . Notice that the distribution of this time duration is equal

Erlang distribution with parameters b+ 1 and rµ. Hence, we have

Pr[Ak] = Pr[Xb+1,rµ > τ ].

It follows that a sufficient condition for the node utilization to be at least 1− δ is the following

condition

Pr[Xb+1,rµ ≤ τ ] ≤ δ. (3.2)

Proposition 3. A sufficient condition for the probability that in a heart-beat interval none of the run

slots is ever idle is at least 1− δ is that the queue length b is the smallest integer such that it holds

rµτ

(
1 +

b+ 1

rµτ

(
log

(
b+ 1

rµτ

)
− 1

))
≥ log

(
1

δ

)
. (3.3)

Before giving a proof of the proposition, we discuss the asserted sufficient condition. If the task

processing times were deterministic assuming a common value 1/µ and the length of the heart-beat

interval is a multiple of 1/µ, then for 100% utilization it is necessary and sufficient to set the queue

length such that b+ r = rµτ . This yields the queue length that is linear in rµτ , for any fixed value

of the run slots r. The sufficient condition in (3.3) requires a larger queue length than rµτ for small
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values of rµτ . It can be shown that the sufficient condition (3.3) requires the queue length that is at

least rµτ +
√

log(1/δ)
√
rµτ , for large rµτ .

For numerical examples, see Figure 3.1. Specifically, given a heartbeat interval τ = 3 sec, an

average task duration 1/µ of 10 sec, r = 10 tasks allowed to be executed at a node at the same time,

and a target utilization of 95%, a queue of b = 6 slots is required. Likewise, for an average task

duration of 30 sec, the queue size should be ≥ 3 slots. These values for b are also validated by our

experiments (section 4.2) on the production Workload 2 of Figure 2.1.

Proof. The proof follows by (3.2) and the Chernoff’s inequality, which we describe as follows.

We first establish the following claim:

Pr[Xn,λ ≤ x] ≤ e−λx(1+
n
λx(log( n

λx)−1)), for x ≥ 0. (3.4)

Let σ1, σ1, . . . , σn be a sequence of independent exponentially distributed random variables

each of mean 1/λ. Using Chernoff’s inequality, for every θ > 0, we have

Pr[Xn,λ ≤ x] ≤ eθxIE[e−θ
∑n
i=1 σi ]

= eθx
n∏
i=1

IE[e−θσi ]

= eθxIE[e−θσ1 ]n

= eθx
(

λ

λ+ θ

)n
.

The minimizer of the last expression is for the value of parameter θ such that

λx+ θx = n.

Hence, we obtain the inequality asserted in (3.4).

Using (3.4), have

Pr[Xb+1,rµ ≤ τ ] ≤ e−rµτ
(
1+ b+1

rµτ

(
log
(
b+1
rµτ

)
−1
))
.



22

By requiring that the right-hand side in the last inequality is smaller than or equal to δ, we obtain

the inequality asserted in the proposition.

For every integer value b such that condition (3.3) holds, we have that Pr[Xb+1,rµ ≤ τ ] ≤ δ,

which implies the node utilization of at least 1 − δ. Since the left-hand side of the inequality in

(3.3) is increasing in b, it suffices to chose the queue length that is the smallest integer b such that

condition (3.3) holds.

3.1.3 Delay-Based Queue Bounding

Maintaining queues of the same fixed length across all nodes does not work well with heterogeneous

tasks. When short tasks happen to be present in a node, this may lead to under-utilization of its

resources, whereas when tasks are longer, significant delays may incur. Hence, when task durations

are available, we use a delay-based strategy. This strategy relies on the estimated queue wait time

that gets reported by each node at regular intervals, as we explain in section 3.2 (Algorithm 2). In

particular, we specify the maximum time WTmax that a task is allowed to wait in a queue. When

we are about to place a task t at the queue of node n (see section 3.2), we first check the last

estimated queue wait time WTn reported by n. Only if WTn < WTmax is t queued at that node.

Upon queuing, the RM uses a simple formula to update WTn taking into account t’s task duration

estimate, until a fresh value for WTn is received from n. Using this method, the number of tasks

that get queued to each node gets dynamically adapted, based on the current load of the node and

the tasks that are currently running and queued.

Note that this technique can be directly applied in both our centralized and distributed designs.

3.2 Placement of Tasks to Nodes

Given a job consisting of a set of tasks, the scheduler has to determine the nodes to which those tasks

will be placed. We now present the algorithm that Yaq uses for task placement. We also introduce

the algorithm that we use to estimate the time a task has to wait when placed in a node’s queue

before starting its execution. This algorithm is crucial for high quality task placement decisions.
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Algorithm 1: Placement of task to node
Input : t: task to be placed; Rfmin: min free cluster resources percentage before starting to

queue tasks
Output: node where t will be placed
// Avoid queuing when available cluster resources

1 if freeResources / totalResources > Rfmin then
2 return placeTaskNoQueuing(t)
3 else return node n with highest queuingScore(n, t)

// How suitable is node n for placing task t to its queue
4 Function queuingScore(n, t)

// affScore ∈ (0, 1] based on data locality (or resource interference) when placing t on
n (higher is better)

5 affScore← affinityScore(n, t)
// Compute load of node based on queue length or queue wait time (using Algorithm 2)

6 nload← nodeLoad(n)
7 return affScore× 1/nload

As explained in chapter 2, we assume that there is a central component to which each node

periodically publishes information about its resource and queue status. This component is the RM

in Yaq-c (see Figure 2.3), and the UM in Yaq-d (see Figure 2.4).

Our task placement algorithm is outlined in Algorithm 1. It takes as input a task t and outputs

the node n where t should be placed. Yaq preferentially places tasks at nodes that have available

resources since such tasks will incur no queuing delays. Thus, we first check if there are such

resources (line 1), and if so, we place t to a node with available local resources, taking other pa-

rameters such as data locality also into account (line 2). If the cluster is almost fully loaded (as

defined by the Rfmin parameter given as input), we choose which node’s queue to place t (line 3).

We use the function queuingScore(n,t) to quantify how suitable a node is for executing t.

The score of a node comprises two components: node affinity for t and node load. In our current

implementation, node affinity takes into account data locality, but this can be extended to also con-

sider resource interference, providing better resource isolation when executing t. The load of the

node can be calculated based on one of the following strategies depending on the richness of the

information published by each node:

Based on queue length: The simplest information that each node publishes is the size of its queue.
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Algorithm 2: Estimate queue wait time at node
Input : runTasks: running tasks’ remaining durations; queuedTasks: queued tasks’

durations; freeResources: free node resources; freeResourcesmin: min free
node resources before considering a node full

Output: Estimated queue wait time for the next task that will be dispatched to the node
1 if freeResources ≥ freeResourcesmin then
2 return 0

3 waitT ime← 0
4 for qTask in queuedTasks do
5 minTask ← remove min(runTasks)
6 waitT ime← waitT ime+minTask
7 runTasks← [t−minTask for t in runTasks]
8 runTasks.add(qTask)

9 return waitT ime+ remove min(runTasks)

This strategy gives higher score to nodes with smaller queue lengths. Note that this can lead

to suboptimal placement decisions in case of heterogeneous tasks: a node with two queued

tasks of 500 secs each will be chosen over a node with five tasks of 2 secs each.

Based on queue wait time: This strategy assumes that each node publishes information about the

estimated time a task will have to wait at a node before starting its execution, as described

below. The lower this estimated wait time is, the higher the score of the node. This strategy

improves upon the previous one when considering heterogeneous tasks, as we also show

experimentally in subsection 4.7.2.

Note that Algorithm 1 suggests that we calculate the score of all nodes for placing each task.

Clearly this can lead to scalability issues, thus in practice we apply various optimizations (e.g.,

compute the score of each node only at regular intervals).

Estimating queue wait time at worker nodes Algorithm 2 outlines how each worker node inde-

pendently estimates the expected queuing delay that a new task will incur if it is placed in its queue.

Queue wait time estimates are then periodically sent to the RM (in Yaq-c) or UM (in Yaq-d) to help
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with task placement. Effectively, the algorithm simulates CPU scheduling. It takes as input the re-

maining durations of the currently running tasks, and the durations of the queued tasks.2 If there are

available resources, the new task will not have to wait (line 2). Otherwise, we go over the queued

tasks and accumulate the time that each of them has to wait before its execution starts (lines 4-8).

The first task in the queue will have to wait for the running task with the smallest remaining dura-

tion to finish. Then that task gets removed from the running task list (line 5), and its task duration

gets added to the accumulated queue wait time (line 6). All remaining running task durations get

updated (line 7), the first task in the queue gets added to the list of running tasks (line 8), and the

same process repeats for all queued tasks.

Observe that in our estimation, we make the assumption that a queued task can take the slot

of any previously running task. One could extend our algorithm to take into account the exact

resources required by each task, similar to the queue-wait time matrix of Apollo [13].

Observe that from the moment a task gets placed to a node’s queue until the moment its execu-

tion starts, better placement choices may become available. This may be due to incorrect informa-

tion during initial task placement (e.g., wrong queue load estimates) or changing cluster conditions

(e.g., resource contention, node failures). Various corrective actions can be taken to mitigate this

problem, such as dynamic queue rebalancing [35], duplicate execution [4, 13, 17] or work steal-

ing [18]. Since duplicate execution hurts effective cluster utilization, and work stealing makes it

hard to account for locality and security constraints in a shared cluster, in Yaq we use queue rebal-

ancing. However, any other technique could be used instead.

3.3 Prioritizing Task Execution

The queue management techniques presented so far are crucial for improving task completion time:

they reduce queuing delay (section 3.1) and properly place tasks to queues (section 3.2). However,

as we also show experimentally in section 4.2, they do not improve job completion time on their

own most of the time. This is because they execute queued tasks in a FIFO order, without taking into

2These are estimations of task durations, as explained in the beginning of chapter 3.
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Algorithm 3: Compare task priorities
Input : tasks t1, t2; comparison strategy taskCmp; hard starvation threshold ST ; relative

starvation threshold STr
Output: > 0 if t1 has higher priority, < 0 if t2 has higher priority, else 0

1 if isStarved(t1) xor isStarved(t2) then
2 if isStarved (t1) then return +1
3 else return −1

4 if !isStarved(t1) and !isStarved(t2) then
5 cmp← taskCmp(t1, t2)
6 if cmp 6= 0 then return cmp
7 if isStarved(t1) and isStarved(t2) then
8 cmp← t2.jobArrivalTime− t1.jobArrivalTime
9 if cmp 6= 0 then return cmp

10 return t1.queueTime− t2.queueTime

11 Function isStarved(ti)
12 return ti.queueTime > min(ST , ti.durationEst× STr)

account the characteristics of the tasks and of the jobs they belong to. To this end, we introduce a

task prioritization algorithm that reorders queued tasks and can significantly improve job completion

times (see section 4.2).

Our prioritization algorithm is generic in that any queue reordering strategy can be easily

plugged in. Moreover, it is starvation-aware, guaranteeing that no task will be starved due to the

existence of other higher priority tasks. We implemented various reordering strategies, which we

present below. Among them, a significant family of strategies are the job-aware ones, which con-

sider all of the tasks in a job during reordering. In particular, we emphasize on Shortest Remaining

Job First that gave us the best results in our experiments.

Our task prioritization algorithm is outlined in Algorithm 3. It takes as input two tasks, one

of the reordering strategies taskCmp (among the following, which we detail below: SRJF, LRTF,

STF, EJF), as well as a hard and a relative starvation threshold. Tasks are marked as starved, as

explained below, using the function isStarved (lines 11-12). Starved tasks have higher priority

than non-starved ones (lines 1-3). If none of the tasks are starved, we compare them with taskCmp

(lines 4-6). If both are starved, we give higher priority to the task of the earlier submitted job (lines

7-9). We finally break ties by comparing the time each task has waited in the queue.
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Queue reordering strategies: We have implemented and experimented with the following reorder-

ing strategies:

Shortest Remaining Job First (SRJF) gives highest priority to the tasks whose jobs have the least

remaining work. The remaining work for a job j is a way to quantify how close j is to

completion. It is computed using the formula Σti∈RT (j)ti · td(ti), where RT (j) are the non-

completed tasks of j and td(ti) is the (remaining) task duration of task ti, based on our task

duration estimates. The remaining work gets propagated from the RM (in Yaq-c) or the UM

(in Yaq-d) to the nodes through the existing heartbeats.

Least Remaining Tasks First (LRTF) is similar to SRJF, but relies on number of remaining tasks

to estimate the remaining work. Although this estimate is not as accurate as the one used by

SRJF, it is simpler in that it does not require task duration estimates. The remaining tasks

number gets propagated from the JM to the nodes through the existing heartbeats.

Shortest Task First (STF) orders tasks based on increasing expected duration. This strategy is

the only one in this list that is not job-aware, given that it uses only task information and is

agnostic of the status of the job the tasks belong to. However, it can become interesting when

coupled with our starvation-aware techniques.

Earliest Job First (EJF) orders tasks based on the arrival time of the job that the tasks belong

to. This is essentially FIFO ordering, and is the default strategy in most schedulers. No

additional knowledge is required from the jobs. Although EJF performs no reordering, as

described above, we use it to discriminate between starved tasks.

Commonalities between our reordering strategies and existing OS and network scheduling strate-

gies are discussed in section 4.8. Observe that our current strategies are oblivious to the job struc-

ture (e.g., whether a task belongs to the map or reduce phase of a M/R job, the structure of a DAG

job, etc.). As part of ongoing work, we are evaluating novel strategies that account for job structure

which can be used to further prioritize task execution. Moreover, we are currently investigating how,

in the presence of multi-dimensional resources, we can momentarily violate a reordering strategy in
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order to provide better resource packing and thus achieve higher resource utilization.

Starvation-aware queue reordering All of the above strategies except EJF can lead to starvation

or to excessive delays for some tasks. For example, long tasks can suffer with STF if short ones

keep arriving. Similarly, tasks of large jobs can suffer with LRTF and SRJF. To circumvent this

problem, during reordering we check whether a task has waited too long in the queue. If so, we give

it higher priority. In particular, we specify both a hard (ST ) and a relative (STr) threshold. A task is

marked as starved if it has waited longer than STr times its duration or if it has waited longer than

ST secs. STr allows short tasks to starve faster than long ones (e.g., a 2-sec task should be marked

as starved sooner than a 500-sec task, but not more than ST secs).

3.4 Global Queue Management Policies

Our queue management techniques presented so far focused on task execution at specific nodes.

We now discuss how Yaq can be coupled with cluster-wide policies. In particular, we first focus on

techniques for global job reordering in the case of a centralized design (subsection 3.4.1), and then

on imposing sharing policies, such as fairness and capacity (subsection 3.4.2).

3.4.1 Global Job Reordering

As discussed in section 2.5, Yaq-c maintains a queue of jobs at the RM.3 Along with task reordering

at each node, we can also devise job reordering strategies to be used at the RM. Similar to the task

reordering strategies presented in section 3.3, we can apply SRJF, LRTF and EJF at the job level.

More specifically, SRJF will give higher priority to jobs with the smallest remaining work, whereas

LRTF will prioritize jobs with the least remaining number of tasks. EJF uses a FIFO queue. The

analogous to STF would be SJF (Shortest Job First), assuming we have information about the job

durations. Moreover, our starvation-aware techniques can be applied here as well, to avoid jobs

from waiting too long in the RM queue. More advanced multi-resource packing techniques (such
3Notice that there can be no global job reordering in our distributed Yaq-d design, as there is no global queue in the

system.
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as Tetris [26]) can also be employed.

Although prioritizing jobs at the RM can be beneficial, what is more interesting in Yaq is how

this global job reordering interplays with the local task reordering strategies, as they might have

conflicting goals. For instance, when SRJF/LRTF are used both globally and locally, they are ex-

pected to further improve job completion times. However, this is probably not the case when SRJF

is enabled globally and EJF locally: the former will favor jobs that are close to completion, whereas

the latter will locally favor tasks with smaller duration. Our initial results show that there are in-

deed combinations that can further improve job completion times. We are currently working on

formalizing such beneficial combinations, also taking into account workload characteristics.

3.4.2 Sharing Policies

Scheduling frameworks facilitate sharing of cluster resources among different users by imposing

sharing policies. For instance, YARN [59] can impose both fairness (each user gets a fair share of

the cluster) [7] and capacity (each user gets a percentage of the cluster) [6] constraints. Sparrow

also shows how to impose weighted fair sharing in a distributed setting [44].

All these existing techniques can be applied in Yaq-c and Yaq-d in order to impose sharing

constraints over both running and queued tasks. However, the scheduling framework has to impose

constraints over the actual cluster resources (this is what the user actually observes). When task

prioritization is disabled, the sharing constraints over the actual resources will be met, as each task

will be executed in the order it was submitted by the scheduler. The problem arises in case of queue

reordering: the scheduler has imposed constraints assuming a specific execution order, but this order

might change, giving resources to the wrong users, thus exceeding their cluster share against others.

To circumvent this problem, we exploit the starvation threshold ST of our prioritization algo-

rithm (see section 3.3). In particular, given that each task is marked as starved after ST seconds,

actual resources will be given to it and sharing constraints will be met after that period of time.4

As we experimentally show in section 4.6, Yaq-c is indeed able to successfully meet strict capacity
4As long as task preemption is enabled, otherwise a starved task has to wait for one of the running tasks to finish its

execution.
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constraints with only slight momentary violations.

Going further, we make the observation that the above technique is pessimistic in that it does

not take advantage of user information about the queued tasks. If two tasks belong to the same user,

they are not actually causing violation of sharing constraints between them. This can be solved by

pushing auxiliary information about the users to worker nodes. Moreover, it is interesting to inves-

tigate whether task prioritization strategies can momentarily allow violations of sharing constraints

in order to achieve better job completion times (using some form of deficit counters [51]).



Chapter 4

Evaluation of Yaq

4.1 Implementation

Yaq-c We implemented Yaq-c by extending Apache Hadoop’s YARN [28] as follows. First, we

extended YARN’s NM to allow local queuing of tasks, and implemented our queue management

techniques for bounding queue lengths (section 3.1) and prioritizing task execution (section 3.3).

Second, we extended YARN’s scheduler to enable placement of tasks to queues (section 3.2), sup-

port job prioritization (subsection 3.4.1), and respect cluster sharing constraints in the presence of

task queuing (subsection 3.4.2). Finally, in the current implementation, we modified Hadoop’s ca-

pacity scheduler [6], but our changes can be applied to any Hadoop-compatible scheduler (e.g.,

DRF [24], fair scheduler [7]).

Yaq-d We implemented Yaq-d by extending the distributed part of Mercury [35, 63] that already

supports queuing at worker nodes. In particular, we implemented our techniques for task placement

to queues and task prioritization on top of Mercury. In our current implementation, we do not bound

the queue lengths, although that could be possible by allowing tasks to be queued at the JMs, in case

no queue slots are available in a node. However, as our experimental results show, we already get

significant gains over Mercury even without bounding queue lengths.

We have already made available the addition of task queues in YARN’s NMs at Apache JIRA

31
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YARN-2883 [64]. We also plan to open-source our queue management techniques both on YARN

and Mercury.

4.2 Experimental Evaluation

The main results of our evaluation are the following:

• Yaq-c improves median job completion time (JCT) by 1.7x when compared to YARN over a

production workload.

• Yaq-d, when evaluated over the same workload, achieves 9.3x better median JCT when com-

pared to a scheduler that mimics Sparrow’s batch sampling, and 3.9x better median JCT when

compared to the distributed version of Mercury [35].

• Although task prioritization appears to provide the most pronounced benefits, the combination

of all our techniques is the configuration that gives the best results.

Note that our purpose in this work is not to compare Yaq-c with Yaq-d. Instead, we want to

study the performance improvement that Yaq-c and Yaq-d bring when compared to existing designs

of the same type (centralized and distributed, respectively). Since they follow different architectures,

each of them targets different scenarios: high level placement decisions and strict cluster sharing

policies for Yaq-c; fast allocation latency and scalability for Yaq-d. Applying our techniques to

hybrid schedulers [18, 35] would be an interesting direction for future work.

We now present results from our experimental evaluation. We first assess the performance of

both Yaq-c (section 4.4) and Yaq-d (section 4.5) over a Hive production workload used at Microsoft,

comparing our systems against existing centralized and distributed scheduling schemes. Then we

show that Yaq-c can successfully impose sharing invariants (section 4.6). Lastly, we show a set of

micro-experiments that highlight specific components of our design, such as queue-bounding, task

placement, and task prioritization (section 4.7).
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4.3 Experimental Setup

Cluster setup We deployed Yaq-c and Yaq-d on a cluster of 80 machines and used it for our eval-

uation. Each machine has a dual quad-core Intel Xeon E5-2660 processor with hyper-threading

enabled (i.e., 32 virtual cores), 128 GB of RAM, 10 x 3 TB data drives configured as a JBOD. Inter-

machine connectivity is 10 Gbps.

Our Yaq-c implementation is based on YARN 2.7.1. We use the same YARN version to compare

against “stock” YARN. The Mercury implementation that we used was based on YARN 2.4.2, and

the same holds for Yaq-d, since it was built by extending Mercury, as we explain in section 4.1.

We also use Tez 0.4.1 [48] to execute all workloads, and Hive 0.13 for the Hive workload that is

described below. In all our experiments, we use a heartbeat interval of 3 sec, which is also the

typical value used in the YARN clusters at Yahoo! [59].

Workloads To evaluate Yaq-c and Yaq-d against other approaches, we use the Hive-MS workload,

which is a Hive [57] workload used by an internal customer at Microsoft to perform data analysis.

This is Workload 2 depicted in Figure 2.1. It consists of 185 queries, each having one map and one

reduce phase. The underlying data consists of five relations with a total size of 2.49 PB. Each job

has an average of 57.9 mappers and 1.5 reducers. Tasks among all jobs have an average duration of

22.9 sec with a standard deviation of 27.8 sec, when run on stock YARN.

We also use synthetic GridMix [29] workloads, each consisting of 100 tasks/job executed for

30 min, where: (1) X sec is a homogeneous workload where all tasks in a job have the same task

duration (e.g., 5 sec), (2) Mixed-5-50 is a heterogeneous workload comprising of 80% jobs with

5-second tasks and 20% jobs with 50-second tasks, and (3) GridMix-MS is another heterogeneous

workload, in which task sizes follow an exponential distribution with a mean of 49 sec. GridMix-MS

is based on Microsoft’s production Workload 1, depicted in Figure 2.1, after scaling down the longer

task durations to adapt them to the duration of our runs and the size of our cluster.

Moreover, in our experiments, the scheduler gets as input the estimated average task duration

of the stage (map or reduce) each task belongs to, as observed by previous executions of the same
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Figure 4.1: Job completion times for Yaq-c on Hive-MS workload.

job. Note that we deliberately provide such simple estimates, in order to assess Yaq under imprecise

task durations. These estimates are then used during placement of tasks to nodes and for some of

our task prioritization algorithms (see also discussion in the beginning chapter 3).

Metrics We base our analysis on the following metrics: job completion time, which is the time from

the moment a job started its execution until the moment all tasks of the job finished execution; slot

utilization, which is the number of slots1 occupied at each moment across all machines, divided by

the total number of slots in the cluster; task queuing delay, which is the time from the moment a

task gets placed in a node’s queue until its execution starts; average job throughput, which is the

number of jobs in a workload, divided by the total time needed to execute all jobs, and is used to

calculate effective cluster throughput.

4.4 Evaluating Yaq-c

To evaluate Yaq-c, we compare it against stock YARN. For Yaq-c we use a queue size of four slots

(section 3.1), the queue wait time-based placement policy (section 3.2) and the SRJF prioritization

policy (section 3.3), as those gave us the best results. The queue size we used coincides with the

one suggested by our analysis using Equation 3.1. Figure 4.1 shows that Yaq-c achieves better

1We use 4 GB and 1 CPU per slot.
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Task queuing delay (sec) Job throughput
Mean Stdev Median (jobs/min)

Yaq-c 8.5 21.4 1.1 13.9
Yaq-c (unbounded) 65.5 85.1 30.4 5.6
Yaq-c (no reorder) 53.2 78.2 25.4 7.6
YARN - - - 8.8

Table 4.1: Average task queuing delay and job throughput for Yaq-c on Hive-MS workload.
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Figure 4.2: Job completion times for Yaq-d on Hive-MS workload.

job completion times across all percentiles with a 1.7x improvement for median job completion

time. As shown in Table 4.1, Yaq-c also improves job throughput by 1.6x over YARN. These

gains are due to the higher cluster utilization Yaq-c achieves by having worker-side queues (more

details on utilization are given in subsection 4.7.1). Moreover, to show the benefit of our queue

management techniques, in Table 4.1 we provide performance numbers for Yaq-c if we disable

queue length bounding or task prioritization. In the absence of our techniques, we observe excessive

task queuing delays that negatively impacts job throughput, also resulting in worse performance than

stock YARN. On the contrary, Yaq-c achieves a median task queuing delay of only 1.1 sec.

4.5 Evaluating Yaq-d

We evaluate Yaq-d against two other distributed scheduler variants: distributed Mercury, which

uses the distributed part of Mercury [35], and distributed batch sampling, for which we modified

Mercury to perform task placement using batch sampling, as a way to simulate the task placement
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Task queuing delay (sec) Job throughput
Mean Stdev Median (jobs/min)

Yaq-d (w/ rebalance) 17.9 54.2 0.35 16.6
Yaq-d (w/o rebalance) 34.2 67.0 5.6 10.1
Distributed Mercury 49.7 73.7 12.9 5.8
Distributed (batch sampl.) 81.4 101.4 26.2 5.3

Table 4.2: Average task queuing delay and job throughput for Yaq-d on Hive-MS workload.

done by Sparrow [44]. We use two different Yaq-d configurations with and without dynamic queue

rebalancing (see end of section 3.2). Moreover, we use the queue wait time-based placement policy

(section 3.2) and the SRJF prioritization policy with a 10-sec hard starvation threshold (section 3.3),

which performed best in practice.

Our results for the Hive-MS workload are depicted in Figure 4.2 and Table 4.2. Yaq-d (with

rebalance) improves job completion time (JCT) across all percentiles when compared to both Mer-

cury and batch sampling. In particular, it achieves better median JCT by 3.9x over Mercury and

by 9.3x over batch sampling. These improvements are due to the efficient management of the local

queues, as we significantly reduce the task queuing delays and thus the head-of-line blocking.

Observe that in our Yaq-d implementation we do not use late binding of tasks to nodes, as it

conflicts with some of YARN’s design choices. As shown in Figure 8 of the Sparrow paper [44],

late binding on top of batch sampling further improves average job completion time by 14% and the

95th percentile by ∼30%. Therefore, even if we implemented late binding, most probably Yaq-d

would still significantly outperform Sparrow.

As can be seen from Table 4.2, Yaq-d also achieves a higher job throughput by 2.9x over Mer-

cury and by 3.1x over batch sampling. When configuring Mercury and batch sampling, we had to

tune the number of jobs that are allowed to be executed concurrently: allowing too many concur-

rent jobs improves job throughput but hurts JCT (due to having tasks belonging to many different

jobs being queued at the nodes without properly sizing or reordering the queues); allowing fewer

jobs improves JCT but leads to lower utilization and hurts job throughput. We could improve job

throughput for Mercury and batch sampling in our runs by allowing more concurrent jobs, but that

would lead to even worse JCT. On the contrary, Yaq-d improves both JCT and job throughput at the

same time.
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Figure 4.3: Imposing capacity constraints in Yaq-c.

4.6 Imposing Sharing Constraints

As discussed in subsection 3.4.2, task prioritization can potentially lead to violation of cluster-wide

sharing policies. To this end, we use Yaq-c, whose implementation relies on Hadoop’s capacity

scheduler [6] (as explained in section 4.1) that is capable of imposing capacity quotas on each user

of the cluster. To investigate whether Yaq-c continues to respect such cluster-wide sharing policies

despite task prioritization, we configure the capacity scheduler with two queues, A and B, where the

cluster capacity is split 70% and 30% respectively. We run a GridMix workload that submits jobs to

both queues with equal probability. Figure 4.3 shows cluster-wide slot utilization for each of these

two queues measured from the perspective of all worker nodes. As the figure shows, Yaq-c respects

each queue’s capacity with only some momentary slight violations.

4.7 Micro-experiments

We evaluate specific aspects of our queue management techniques using a set of micro-experiments.

In these runs we use our synthetic GridMix workloads, which make it easier to experiment with dif-

ferent task duration distributions, whenever needed. We study the effects of bounding queuing
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Figure 4.4: Average cluster slot utilization with different workloads and queue lengths.
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Figure 4.5: Job completion time for GridMix-MS workload with different queue bounding techniques
and no task prioritization.

lengths (subsection 4.7.1), task placement choices (subsection 4.7.2), and task prioritization strate-

gies (subsection 4.7.3). We also evaluate our techniques over a heavy-tailed distribution (subsec-

tion 4.7.4). Here we use Yaq-c, but we also observed similar trends with Yaq-d for task placement

and prioritization.

4.7.1 Bounding Queuing Delays

We first study the impact of queue length in cluster utilization and job completion times (JCT). To

this end, we purposely disable task prioritization in these experiments.
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Figure 4.4 shows how slot utilization for Yaq-c varies for different workloads when introducing

queuing at worker nodes. By masking feedback delays between the RM and NM, Yaq-c is able to

prevent slots from becoming idle. The gains are particularly pronounced when task durations are

short: for 5-sec tasks, average utilization is 60% with YARN but goes up to 96% with Yaq-c. The

graphs also show that utilization improves with longer queue sizes, as expected. Furthermore, once

the nodes are saturated increasing the queue sizes even further does not improve utilization. For

instance, the 5 sec workload needs a queue size of six slots to achieve full utilization, while for the

50 sec workload a queue size of two slots is sufficient.

Figure 4.5 compares job completion time (JCT) of the GridMix-MS workload with YARN and

both length-based (QS=x denotes that x tasks are allowed to be queued) and delay-based bounding

(MWT=x denotes that queuing delay should not exceed x sec). For fixed queue lengths, we see that

JCT increases with queue length. This is to be expected since increased queue lengths introduce

higher queuing delays, without further improving utilization (as shown in Figure 4.4). Furthermore,

the tail of the distribution also increases substantially when queue lengths increase, by upwards of

1.7x for MWT=3 compared to YARN.

Figure 4.4 and Table 4.1 reveal that simple queues at worker nodes, even if bounded, negatively

impact job completion times most of the time. Only in a small number of cases, for some homo-

geneous workloads, we saw improvement in JCT just by bounding queue lengths. However, as we

show in Table 4.1 and later in subsection 4.7.3, queue bounding coupled with task prioritization

brings significant JCT gains.

4.7.2 Task Placement at Queues

We now compare different task placement strategies. We use our two strategies, namely queue

length-based and queue wait time-based placement (see section 3.2), as well as a random placement

strategy that randomly assigns tasks to nodes. We use a fixed queue size of six slots with task

prioritization disabled. Job completion times for these runs are shown in Figure 4.6. As expected,

the placement that is based on queue wait time outperforms the rest of the strategies, since it uses

richer information about the status of the queues. In particular, it improves median job completion
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Figure 4.7: Job completion time for GridMix-MS workload with different task prioritization algo-
rithms.

time by 1.2x when compared to the queue length-based and by 1.4x to the random strategy. Also

note that the random placement has a significantly longer tail than our two strategies. Therefore, in

all our experiments we use the queue wait time-based placement.

4.7.3 Task Prioritization at Worker Nodes

Figure 4.7 shows the job completion times (JCT) for our three task reordering algorithms (LRTF,

SRJF, STF). We use a queue length of ten slots (unless otherwise stated) and no hard or relative
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Figure 4.8: Job completion time for the GridMix-MS workload with different hard starvation thresh-
olds (ST ) and STF prioritization.

starvation thresholds.

The job-aware policies SRJF and LRTF perform the best when compared to YARN: 2.2x better

median JCT for SRJF and 2.4x for LRTF. The non job-aware STF reordering policy performs 1.4x

better than YARN. The difference in performance between STF and the other methods is that STF

is more aggressive than others in attempting to fix head-of-line blocking issues, but can quickly

lead to starvation issues (which are addressed later in this section). Thus, job progress is a much

more reliable metric to use when reordering than the local metrics STF uses. Interestingly, for the

GridMix workload LRTF performed better than SRJF (most probably due to the predictability of

the synthetic workload). However, in the real Hive-MS workload, SRJF worked best.

In the same figure, we have included a run with SRJF prioritization and no queue bounding

(marked “unbounded”). This run shows that with queue bounding disabled, task prioritization im-

proves the lower percentiles of JCT, but negatively impacts the higher ones. Based also on the results

of Table 4.1, it becomes clear that combining task prioritization with queue bounding is required to

get the best results in terms of JCT.

Starvation Threshold We perform various runs to study the impact our starvation thresholds (see

section 3.3) have on the performance of Yaq-c. The hard starvation threshold (ST ) and relative

starvation threshold (STr) both provide the ability to limit how long a task is starved. We empirically
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found STr to provide less benefit in decreasing overall job completion time (JCT) when compared

to the effects of ST . The results we present here showcase the effect of various hard starvation

limits for the STF reordering policy, which benefits the most from the starvation parameter (given

it is not job-aware as we discussed above). Figure 4.8 shows JCT with the GridMix-MS workload

using STF reordering, a fixed queue size of ten slots, and various ST values. First, we observe that

STF is sensitive to the ST value that is used. A value of 0.5 sec, which marks tasks as starved early,

essentially falling back to the EJF strategy, works best for this synthetic workload with tasks of

each job being relatively homogeneous. High values (ST=10 sec) are detrimental, whereas a value

of 1.5 sec improves JCT for some of the jobs. Our experiments also revealed that SRJF and LRTF

reordering are less sensitive to different ST values and that relatively higher values can give better

results. Being job-aware, these strategies already prioritize the execution of starved straggler tasks.

For instance, an ST value of 10 sec worked best on the more realistic Hive-MS production workload

with SRJF. This also suggests that the ST value should be calibrated based on the characteristics of

the workloads and the used strategy.
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Figure 4.9: Job completion time for the heavy-tailed workload that is based on GridMix-MS.

4.7.4 Heavy-tailed Workload

The task durations of the heterogeneous workloads we have used so far (GridMix-MS and Hive-MS)

follow an exponential distribution. In order to assess the impact of our techniques on workloads
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with different characteristics, we modified GridMix-MS so that its task durations follow a heavy-

tailed distribution. Specifically, we increased the duration of the longest 20% tasks by 500 secs. We

use Yaq-c with a queue length of ten slots and the SRJF reordering strategy. Figure 4.9 show the

gains in JCT that Yaq-c yields for this heavy-tailed workload. In particular, it improves median job

completion time by 1.8x when compared with YARN.

4.8 Related Work

Our focus in Yaq is on the effective management of local task queues at worker nodes, and, as such,

is complementary to extensive prior work in centralized [25, 30, 58–60], distributed [13, 19, 44, 49],

and hybrid [18, 35] cluster schedulers. We covered many aspects of these systems in previous

sections (particularly, in chapter 2), and complement our discussion here.

Local queues exist by necessity in distributed schedulers, such as Sparrow [44], Tarcil [19],

Hawk [18], Apollo [13], and Mercury [35]. Sparrow and Hawk rely on the power of two choices

balancing technique when placing tasks. Tarcil extends Sparrow’s placement by adopting a dy-

namically adjusted sample size. On the other hand, in Yaq-d, similar to Apollo and Mercury, each

scheduler uses information about the nodes’ status to perform more educated placement decisions,

which is crucial for heterogeneous workloads.

To the best of our knowledge, in all existing schedulers, whenever a running task finishes the

next task selected for execution is mostly based on FIFO. Apollo acknowledges that queues can go

beyond FIFO and be reordered, but does not explore this in depth. In contrast, we present the first

extensive study of the impact of different queue management strategies in the cluster’s performance.

While simple to implement, FIFO ordering can cause head-of-line blocking whenever task exe-

cution times differ significantly. This in turn impacts predictability of job execution times. To mit-

igate this issue, existing systems take extensive corrective mechanisms, such as duplicate schedul-

ing [13], dynamically rebalancing queues across nodes [35], work stealing [18], and straggler mit-

igation [4, 23, 68]. Since head-of-line blocking issues are inherent to queuing systems, similar

to these systems, Yaq also incorporates corrective mechanisms. Yaq goes beyond these systems
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by avoiding these problems in the first place via careful placement of tasks to nodes, bounding of

queues and prioritization of task execution, thus improving job completion times.

Our task prioritization strategies (see section 3.3) have commonalities with multiprocessor schedul-

ing [5]. For instance, SRJF is similar to the Shortest Remaining Time First (SRTF) scheduling al-

gorithm. However, unlike OS scheduling, SRJF relies on job progress information arriving from the

RM/UM periodically, which can be stale. Moreover, in Yaq we can only perform local reordering

of tasks once they have already been dispatched to a worker node.

Finally, our queue management techniques are related to the scheduling of packet flows in net-

works. The goal in network scheduling is to find a sweet spot between bandwidth utilization and

flow completion time, which can be seen as related to cluster utilization and job completion time

in cluster scheduling, respectively. Recent work like, PDQ [31] schedules flows based on earliest

deadline first, pFabric [3] relies on remaining flow size, and DeTail [70] on application priorities.

QJump [27] prioritizes packets based on flow classes, set by a network administrator.



Chapter 5

HyperDrive: Utility-Based Cluster

Management

5.1 Motivation

In recent years many machine-learning frameworks have been introduced to help developers build

and train machine learning models for solving different artificial intelligence tasks across super-

vised, unsupervised, and reinforcement learning domains [2, 12, 15, 16, 34, 65]. The task perfor-

mance of trained models is very sensitive to many different adjustable parameters, called hyper-

parameters, which are configured prior to training a model. Examples of these hyperparameters

include learning rate (in many models), number and size of hidden layers in a deep neural network,

number of clusters in k-means clustering, and many more. Hyperparameter exploration searches

across different configurations of a model, where each configuration represents a specific set of hy-

perparameter values. Its goal is to find good configurations that optimize the model performance

(e.g., high accuracy, low loss, high reward) with affordable time and cost. This exploration involves

two related problems: generating candidate configurations from the large space of hyperparameter

settings, and actually scheduling and running these configurations.

Efficient hyperparameter exploration is of great importance to practitioners in order to improve

model performance, reduce training time, and optimize resource usage. This is especially critical

45
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Figure 5.1: Performance of 50 randomly selected supervised-learning hyperparameter configura-
tions.

when training modern deep and complex learning models with billions of parameters and millions

of training samples on cloud resources. To reach a desired training target, efficient hyperparameter

exploration means shorter training time, lower resource consumption, and thus lower training costs.

However, it is challenging to design effective scheduling frameworks and algorithms that ef-

ficiently explore hyperparameter values while obtaining high model performance and optimizing

time and resource costs. The first key reason is the size of the hyperparameter search space and

the expensive training process for each individual configuration. Figure 5.1 shows the model per-

formance (task accuracy) of 50 configurations as a function of iterations over a training dataset

for a moderate-size image classification application CIFAR-10 [40] (detailed experimental setup is

presented in chapter 8). Each line in the plot represents a unique configuration. Here we present

only 50 configurations in the plot for clear presentation. Each configuration needs to run about 120

iterations with each iteration taking about one minute. To fully explore only 50 configurations, we

need over 4 days of computing. Commonly, models require exploring many more configurations to

find high performing hyperparameters. For example, our CIFAR-10 model has 14 hyperparameters

(such as learning rate, momentum, and weight decay) and most have a continuous range to explore,

which results in hundreds or thousands (or more) possible configurations to explore. This problem

is even worse when considering larger training models and datasets, for example, prior work has

shown that a high-quality ImageNet22k image classification model can take up to ten days to train
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to convergence using 62 machines [14]. Therefore exhaustive search is simply not practical.

A second reason is that, for many models in practice, only few configurations lead to high per-

formance while a majority of configurations perform very poorly. The results in Figure 5.1, for

example, show that only three configurations are able to exceed 75% accuracy (which is considered

reasonable accuracy for this type of simple CIFAR-10 model that doesn’t do any data augmentation

and/or intensive preprocessing steps 1), while the majority of configurations are not able to exceed

20% accuracy. Therefore, simple and popular approaches such as grid and random hyperparame-

ter generation bet heavily on luck, which results in very inefficient discovery of high performing

configurations under reasonable cost and time constraints.

Furthermore, optimizing hyperparameter tuning involves many other factors, such as incorpo-

rating different application domain goals (e.g., supervised, unsupervised, and reinforcement learn-

ing) and applicability to different DL/ML frameworks (e.g., Tensorflow, Caffe, and CNTK). It is

challenging to design an effective framework to support such a wide range of usage scenarios.

Recent work [11, 33, 52] has moved beyond grid-based hyperparameter generation with adap-

tive techniques using Bayesian optimization, which assigns higher probability to areas of the hyper-

parameter space that contain likely-good or unknown configurations. These works do not, however,

address how to run these configurations. For example, how long should each configuration run?

Prior work [11, 33, 38, 52, 56] executes each configuration to the same maximum iteration (which

can be a large number of iterations), typically ignoring the fact that some configurations could have

shown their intrinsic value much earlier. As shown in Figure 5.1, with basic domain knowledge,

one can quickly tell that many configurations do not learn at all, with accuracy similar to random

( 10% accuracy in this case), which can be identified within few training iterations and terminated

early to save resources. In addition, should all running configurations take the same amount of

resources? Clearly, that is not the best way to assign resources since the execution progress of the

configurations could have offered many insights on how well the configurations are likely to per-

form, thus deserving different amounts of resources. This scheduling problem of how to effectively
1http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_

results.html

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
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map different configurations across the time and space dimension of resources is largely unattended

by prior work.

Our work focuses on designing an efficient scheduling algorithm and an effective system frame-

work for hyperparameter exploration. Our scheduling algorithm, POP, dynamically classifies con-

figurations into three categories: Promising, Opportunistic, and Poor, and uses these in two major

ways. First, along the time dimension, we quickly identify and terminate poor configurations that

are not learning, incorporating application-specific input from model owners. For example, clas-

sification tasks have known non-learning random performance values which can be used to prune

jobs. Second, along the space dimension, we use an explore-exploit strategy. We classify promising

configurations that are more likely to lead to high task accuracy and prioritize them with more re-

sources while giving configurations that are still only potentially promising some chances to run –

these are what we call opportunistic configurations. Unlike prior work [53] that uses instantaneous

accuracy only to identify a fixed set of promising configurations, we incorporate the trajectory of

full learning curves and leverage a probabilistic model to predict expected accuracy improvement

over time as well as prediction confidence [20]. The classification and resource allocation between

promising and opportunistic configurations is dynamic, adjusting the ratio of exploration and ex-

ploitation when we observe more predicted and measured results. At the early stage of training,

when there is little history information and prediction confidence is typically low, allocating more

resources for exploration helps training efficiency. Conversely, at later stages, confidence is higher,

and allocating more resources for exploitation can yield higher rewards.

We also design a framework, HyperDrive, which serves as a generic framework for hyperparam-

eter exploration. HyperDrive largely decouples the scheduling policy for candidate configurations

from the type of model and/or framework. It provides an API that supports not only our POP

scheduling algorithm, but also existing and new ones. It also supports different learning frame-

works, such as Caffe [34], CNTK [65], and TensorFlow [2], and learning domains, such as super-

vised and reinforcement learning. Lastly, it supports model-owner-defined metrics and inputs to

improve scheduling efficiency.



Chapter 6

Utility-Based Cluster Scheduling Design

Principles

Hyperparameter exploration is challenging as there are many configurations but often much less

time and fewer resources. For deep and complex models, it is common that only a small number of

configuration choices lead to high quality results. Thus, significant amounts of time and resources

could be wasted in searching for good configurations if considerable attention is not paid to search

efficiency. To enable efficient model exploration and scheduling, we follow three key design prin-

ciples: i. early identification and termination of poor configurations that are either not learning or

learning very slowly; ii. early classification of promising configurations that are more likely to lead

to high task performance among the remaining group of opportunistic configurations; iii. prioritized

execution of promising configurations by devoting more resources to them without starving oppor-

tunistic configurations; striking a desired balance between exploitation of promising configurations

and exploration of opportunistic configurations. Our search algorithm POP achieves these design

principles by solving the following three challenges.

49
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Figure 6.1: Final validation accuracy distribution of 90 randomly selected CIFAR-10 configurations.

6.1 Identify Poor Configurations Early

Early detection of configurations with poor learning performance can reduce wasted resources dur-

ing model search. Figure 5.1 shows that in the search for high-quality CIFAR-10 models a significant

portion of possible model configurations either do not learn or learn very slowly during the entire

training process. We present the final validation accuracy distribution of different configurations in

Figure 6.1. The red circle shows the percentile of configurations that achieve below the random val-

idation accuracy of 10%1 We can see there are 32% of configurations with poor validation accuracy,

i.e., at or below random validation accuracy. Such a significant amount of configurations with poor

validation accuracy demonstrates the importance of identifying and terminating poor configurations

as early as possible to reduce wasted time and resources.

An efficient way to identify poor configurations early is to incorporate domain knowledge from

the model owner. For example, in many supervised-learning tasks it is common for poor hyperpa-

rameter values to result in models that only achieve “random” validation accuracy (which is defined

by the task), an example of this can be seen in Figure 5.1, where the task is forced to choose a

label from 10 categories, therefore many configurations only achieve random validation accuracy
1Random accuracy is defined as 10% here due to CIFAR-10 having 10 categories, thus a random guess yields a 10%

chance of being correct.
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Figure 6.2: Final learning curves for two different configurations A and B.

around 10%. The search algorithm can incorporate this knowledge to improve search by terminat-

ing configurations early if they fail to escape this “random” validation accuracy threshold after a

few iterations. Similarly, a user can incorporate early termination for many reinforcement-learning

models due to a common “not learning” range which can be determined based on the environment

being trained on. In addition it is common for reinforcement-learning tasks to also have unique

“solved” conditions that can be incorporated into a search algorithm, for example a task may only

be considered “solved” when it sustains a certain reward for some number of iterations.

6.2 Classify Promising Configurations Early and Judiciously

To classify promising configuration early and judiciously, one effective way is to develop an accurate

methodology for predicting future task performance. There are three important questions to answer

for developing an accurate prediction methodology.

a) Would the most recent performance alone be sufficient? As an example, Figure 6.2 shows

full validation accuracy curves for two configurations A and B. At the early stage, i.e., before the

50th epoch, A’s validation accuracy is higher than B’s. However, the final validation accuracy of B

is higher than A, thus B overtakes A. If we simply rely on the most recent performance, we will not

discover that B is the most promising configuration until after the 50th epoch and thus waste a lot
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Figure 6.3: Job A has higher predicted accuracy but lower confidence, while Job B has better final
accuracy and higher confidence.

of resources. We observe this overtake phenomenon sometimes can even be more pronounced than

seen in Figure 6.2. Therefore, in order to classify promising configuration early, the most recent

performance alone, as used in prior work [53], is not enough. In order to make effective predictions,

we use a probabilistic model to predict expected future task performance by incorporating partial

task performance history, i.e., the task’s learning curve.

b) Would predicting expected future task performance

alone be sufficient? We answer the question by showing an example using Figure 6.3. The dotted

lines show A and B’s expected validation accuracy and the solid lines show the measured valida-

tion accuracy. The results indicate A’s expected validation accuracy is higher than B at epoch 10

but with much larger variance and lower confidence than B (the shadow represents the confidence

intervals). However, in the final validation accuracy, B is actually higher than A, which indicates

expected future validation accuracy alone can be misleading and we need to assess the quality of

the prediction. To quantify the prediction quality, we calculate the confidence of the prediction.

c) Would a static threshold be sufficient to decide a promising configuration? One way to

classify promising configurations is by using a static threshold for the probability of achieving target

task performance, e.g., if the probability is higher than the threshold, the configuration is promising.

However, the problem with this approach is if the threshold is too high, it becomes difficult to
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Figure 6.4: Validation accuracy predictions at epoch 10.
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Figure 6.5: Validation accuracy predictions at epoch 30.
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Figure 6.6: Final validation accuracy at epoch 120.

identify promising configurations early in the training process. On the other hand, if the threshold is

too low, we may classify too many configurations as promising and results in an ineffective way to

allocate resources. Therefore, when determining the threshold, we need to take into consideration

both the characteristics of the model and the available resources.
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6.3 Resource Allocation Between Promising and Opportunistic Con-

figurations

The key insight here is that static resource allocation between promising and opportunistic config-

urations is insufficient as configurations can change status between promising, opportunistic, and

poor over time. Figures 6.4, 6.5, 6.6 give examples of prediction confidence at three different stages

during training. For example, at the beginning stage Figure 6.4, there is little trajectory information

and thus low confidence to differentiate configurations: all active configurations are classified as

opportunistic and all resources are designated opportunistic. As training progresses, more promis-

ing configurations emerge thus we allocate more resources for promising configurations. At later

stages, it is possible that one or several configurations have very high confidence to achieve their

target, therefore we can allocate resources to them in a much more aggressive way or even use

an “all-in” strategy. Therefore, the configuration classification and resource allocation should be

coordinated based on the progress of training.

6.4 Design Overview of HyperDrive

In designing the POP scheduling algorithm, two things became clear: first, the concerns of the

policy are largely independent of the exact learning domain or framework, provided the scheduler

can extract the right information from the tasks; second, to efficiently schedule the learning tasks,

we needed a slightly richer interface than that of traditional task schedulers such as YARN or Spark.

For example, we needed the ability to suspend and resume tasks to effect resource allocation, and

to convey to the policy model-owner-defined metrics.

Our HyperDrive framework addresses these observations, and is a step towards providing a

separation between hyperparameter search algorithms and their runtime environment.

6.4.1 Design Considerations

We designed HyperDrive with the following goals in mind:
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Figure 6.7: HyperDrive architecture

Support and enable reuse of existing and future search and scheduling algorithms. As there

will be new or customized hyperparameter optimization methodologies, the scheduling framework

shall be flexible enough to allow users to swap in and out different search and scheduling algorithms.

Monitor and report job status to support dynamic resource adjustment and early termi-

nation. To support judicious scheduling decisions, such as dynamic resource adjustment and early

termination, the framework should be able to monitor and report current and history job status.

Support different learning domains by allowing inputs from model owners. The scheduling

framework should support different learning domains (e.g., supervised, unsupervised, reinforcement

learning) by allowing model owners to specify domain specific requirements.

Support different learning frameworks. There are many different learning frameworks in use

today, such as CNTK, TensorFlow, Theano, Caffe, MXNet, etc. The scheduling framework should

be learning framework agnostic, i.e., not bound to a specific one.

6.4.2 HyperDrive Framework

Figure 6.7 shows HyperDrive architecture, which is described below. Numbers in circles correspond

to the components in the figure.

Job and Resource Management The core job and resource management components of Hy-

perDrive (Ä) provide the basic ability of executing jobs on remote machines.

The Resource Management (RM) component is responsible for keeping track of currently allo-

cated and idle resources (e.g., machines, GPUs). We leave its description short for brevity and its
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simplicity. However, if executing HyperDrive in a cloud environment this piece is customized for

the specific environment (e.g., reserve an Azure/AWS instance). The RM provides a simple API to

other components:

• reserveIdleMachine()→ machineId

• releaseMachine(machineId)

The Job Manager (JM) provides the ability to start, resume, suspend, and terminate jobs on

specific machines obtained from the RM. It keeps track of each job’s state based on the actions

performed on it. The JM provides the following API to other components:

• getIdleJob()→ jobID

• startJob(jobID,machineID)

• resumeJob(jobID,machineID)

• suspendJob(jobID,machineID)

• terminateJob(jobID,machineID)

• labelJob(jobID, priority)

Suspend and resume support is used to enable flexible scheduling of jobs, which means that the

framework must be able to train a model for an unspecified amount of time, suspend training, and

then resume training later on any machine associated with the experiment. Suspend and resume

requires that training state is saved and synchronized with the AppStat database (Â), which allows

any machine to recieve the state and resume training. The JM also provides the ability to label a job

with a priority value, which the JM uses to order idle jobs. Priority ordering is especially important

when adding a suspended job to the list of idle jobs. If no priority is given then idle jobs are ordered

according to FIFO order.

Node Agent The Node Agent (Å) is daemon running on a worker machine responsible for job

execution and acting as an intermediary between the HyperDrive scheduler and the training appli-

cation (Æ). All Job Manager calls from HyperDrive that deal with job execution are received and
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executed by a Node Agent. In addition all application statistics reported by the training application

are sent to its local Node Agent and then forwarded to the HyperDrive scheduler.

Scheduling Algorithm Policy A user-provided Scheduling Algorithm Policy (SAP) (Ã) is writ-

ten in an imperative style using the following three HyperDrive up-call events:

• AllocateJobs()

• ApplicationStat(jobEvent)

• OnIterationF inish(jobEvent)

AllocationJobs is triggered on detection of an idle resource to allow the SAP to schedule a new

job on that resource. ApplicationStat is triggered on receiving application stats (e.g., accu-

racy) from the training job to enable the SAP to store or process the data as appropriate. Lastly,

OnIterationF inish is triggered when a training iteration finishes to allow the SAP to decide

whether to continue, suspend, or terminate the job, or collect additional statistics (e.g., iteration

timings). We find that these simple scheduling primitives allow us to write a diverse collection of

SAPs that cover some prior work and our own scheduling algorithm as described in chapter 6.

A SAP is notified when a job finishes an iteration. Then it makes a decision whether to continue

training the job or terminate/suspend the job. By default, HyperDrive uses a schedule-as-it-goes

approach to maximize resource usage since configurations with short epoch durations do not need

to wait for those with long durations. HyperDrive also supports barrier-like epoch scheduling,

which some SAPs may prefer as it can help explore job configurations in a breadth-first-style (i.e.,

executing many jobs for a short period of time in each round). Barrier-like epoch scheduling can be

achieved by allowing the SAP to suspend jobs at every epoch boundary.

Default SAP The default SAP simply greedily allocates idle jobs to idle machines, which is

implemented by starting as many idle jobs (via startJob) as there are idle machines. This policy

ignores all application statistics and iteration finish up-calls, but provides a simple base for more

advanced SAPs.

Hyperparameter Generator The Hyperparameter Generator (Á, HG) is responsible for gen-

erating specific parameter values within ranges specified by the experiment runner. The generator
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implementation is pluggable as long as it provides the following API:

• createJob()→ (jobID, hyperparameters)

• reportF inalPerformance(jobID, performance)

We consider the use of several different HG techniques, which are built separate from Hyper-

Drive itself. Along with more complicated approaches we have built simple random and grid

search techniques as HGs, where a user-provides the parameter names and search ranges. The

HG then selects new random or grid values upon each call to createJob. In these approaches the

reportF inalPerformance call is not used.

Adapative techniques (e.g., Bayesian optimization) are popular alternatives to random and grid

search and used in in frameworks like HyperOpt [38], Auto-WEKA [56], Spearmint [52], and GPy-

Opt [10]. These frameworks generate new hyperparameter values based on the observed perfor-

mance of previous values. These type of approaches can be plugged into HyperDrive with the use

of a shim that exposes the HG API.

AppStat Database The application statistics database (AppStatDB Â) is used to store and

retrieve model-generated application statistics such as performance stats (e.g., accuracy, reward),

epoch duration, etc. In addition the AppStatDB stores model state used to enable suspend and

resume training across machines. The AppStatDB is used to sharea state between the SAP, Hyper-

parameter Generator, and training job itself.

Experiment Runner (Client) The Experiment Runner (À) is responsible for specifying the

following items when running an experiment with HyperDrive:

• Search Algorithm Policy to use (with any SAP specific parameters)

• Hyperparameter generation technique along with parameter names and search ranges

• Model training files to run on remote machines

• Total number of machines



Chapter 7

Scheduling Algorithm and Framework

Implementation

The search for high-quality models, from a candidate set of model configurations, typically involves

multiple iterations of training each model configuration with a training dataset and evaluating model

performance against a validation dataset. The objective of POP is to improve the efficiency of dis-

covering high performing model configurations: minimize the time to find a configuration satisfying

a target performance. It can also be used for finding configurations with the best performance within

a time budget, which is a corresponding dual problem. To achieve efficient search and scheduling,

we need to promptly and accurately identify configurations that are more likely to result in high-

quality models i.e., promising configurations (section 7.1). In addition, we need an efficient resource

allocation strategy that prioritizes promising configurations. Here we develop an infused methodol-

ogy incorporating both configuration classification and scheduling (section 7.2).

7.1 Configuration Classification

As discussed in chapter 6, in order to classify configurations, POP needs to consider both the ex-

pected final task performance and the quality of prediction based on performance history infor-

mation. Recall that the objective is to minimize the time to find a configuration that achieves a
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target performance. Therefore, at any point of time in training, the configurations with the small-

est expected remaining time to achieve the target performance and with high prediction quality are

considered promising configurations. To classify configurations accurately and promptly, an accu-

rate estimation model of the expected remaining time and a methodology to evaluate the prediction

quality is key.

Expected Remaining Time Estimation

We develop a probabilistic approach for estimating the expected remaining time for a given config-

uration.

In many learning domains it is common to periodically evaluate a model’s performance (e.g.,

validation accuracy in supervised-learning). The frequency at which a model’s performance is eval-

uated is often at the end of a training epoch, so to compute the expected remaining time, we can first

compute the expected number of remaining epochs and then multiply with the average epoch dura-

tion1. The idea is to compute the probability of achieving the target performance at future epochs

and then use a probability mass function to estimate the expected number of remaining epochs.

Problem formulation: We define the problem as predicting the expected remaining time for

a given configuration to achieve the target accuracy. The following parameters are required from

users as input parameters2:

• Tmax: the maximum experiment time a user can tolerate;

• ytarget: a target model performance;

These two parameters are based on the user’s domain knowledge, therefore values provided by ex-

perts should ideally lower estimation overheads and improve search efficiency compared to values

provided by beginners. As we first do prediction based on epochs, we compute the maximum num-

ber of remaining epochsMi for a given configuration i asMi = (Tmax−Tpass)/Epochi, where Tpass

1An epoch represents training over an entire training data set once. Epoch durations are assumed to be roughly

constant, see section 9.1 for more details.

2See section 9.1 for a discussion on these user parameters.
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is the measured time duration that has passed from the beginning of the experiment, and Epochi is

the measured average epoch duration. We define p1, p2, ..., pm, ..., PM as the probability that the

target performance can be reached in 1st, 2nd, ...,Mth epoch and p as the prediction confidence,

which is defined as the probability that a configuration can achieve the target performance within

Tmax, i.e., p = p1+p2+ ...+pm+ ...+PM . The prediction model output is the expected remaining

time ERTi for configuration i to achieve target accuracy ytarget.

Model performance prediction: To predict future model performance, we rely on the con-

figuration’s learning curve. More specifically, we compute the probability P (m)i of configuration

i reaching a model performance y after epoch m in the future based on the observed validation

performance history of the configuration, as follows:

P (m)i = P (y(m)i ≥ y|y(1 : m− 1)i), (7.1)

where y(m)i is the predicted performance after epoch m for configuration i and y(1 : m − 1)i)

represents the observed performance of configuration i from epoch 1 to m − 1. We leverage a

probabilistic learning curve model proposed in prior work [20] to compute P (y(m)i ≥ y|y(1 :

m− 1)i).

The learning curve prediction model we use relies on a weighted combination of 11 different

parametric models (e.g., vapor pressure, Weibull, Janoschek) and uses Markov Chain Monte Carlo

(MCMC) inference to predict possible values of these weights based on the observed partial per-

formance curve. This probabilistic model is then used to compute the probability P (m)i of each

configuration periodically online, which allows the scheduling policy to see a global view of per-

formance across all active configurations. Due to the non-deterministic nature of MCMC inference,

we define a prediction accuracy PA to be the standard deviation across all MCMC samples. Fur-

ther discussion of our implementation and optimization of the learning curve prediction model is

discussed later in section 7.5.

Modeling expected remaining time and prediction confidence: To model the expected re-

maining training epochs xi for configuration i to achieve the target performance ytarget, we compute
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the probability that the target performance can be reached at the 1st, 2nd, ...,mth, ...,Mth epoch

respectively3. According to the definition of the probability mass function defined based on accu-

mulative distribution, we have:

p1 = P (y(1)i ≥ ytarget),

p2 = P (y(2)i ≥ ytarget)− P (y(1)i ≥ ytarget),

...

pm = P (y(m)i ≥ ytarget)− P (y(m− 1)i ≥ ytarget),

...

pM = P (y(M)i ≥ ytarget)− P (y(M − 1)i ≥ ytarget).

Thus the expected number of remaining epochs xi for configuration i can be estimated as:

xi = 1 ∗ p1 + 2 ∗ p2 + ...+m ∗ pm + ...+M ∗ pM (7.2)

Therefore the expected remaining training time ERTi for configuration i is:

ERTi = xi ∗ Epochi

= (1 ∗ p1 + 2 ∗ p2 + ...+m ∗ pm + ...

+M ∗ pM ) ∗ Epochi

(7.3)

Ideally, the probability p1, p2, ..., pm, ..., PM should sum to 100% (i.e.,
M∑
m=1

(pm) = 1). But in

reality, we do not need to sum further if the expected remaining training time is larger than the

maximum experiment time duration that user can tolerate, i.e., ERTi > Tmax − Tpass. In other

words, we stop summing further for pm and set ERTi = Tmax − Tpass since the search algorithm

will not run further than Tmax−Tpass. Therefore, the probability p1, p2, ..., pm, ..., PM may not sum

up to 100% (i.e.,
M∑
m=1

(pm) ≤ 1). Here we define the probability sum as the prediction confidence p

as the higher the probability sum, the more certain the expected remaining training time4.

3Note M is actually Mi because it is configuration-specific. We omit i here for ease of presentation.

4Note p is actually pi because it is configuration-specific. We omit i here for ease of presentation.
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Classify configurations: We define pthred as a threshold for prediction confidence of classi-

fying promising configurations: if p ≥ pthred, then the configuration is classified as a promising

configuration, otherwise the configuration is classified as an opportunistic configuration or poor

configuration. To distinguish between opportunistic configuration and poor configuration, we rely

on the domain knowledge as explained in chapter 6. The remaining question is how to determine

the classification threshold pthred? As explained in chapter 6, a static threshold is insufficient and

must consider available resources to determine the threshold value. Next, we develop an infused

methodology for determining the threshold and making judicious scheduling decisions.

7.2 Infused Classification & Scheduling Methodology

Ideally, if we could perfectly predict future model performance and expected remaining time of

model configurations, we could allocate all resources to the most promising configuration(s) (i.e.,

with shortest expected remaining time). However, in practice, since predication cannot be 100%

accurate, we need to allocate resources based on the prediction quality as well as the available re-

sources. The proposed search algorithm employs both an exploration and exploitation approach for

resource allocation. We allocate dedicated resources to exploit promising configurations as they are

more likely to produce high quality results; we also reserve resources for exploring the opportunis-

tic configurations as when more information is available, i.e., after more epochs of execution, they

may become promising. Therefore, the available resources are divided into two pools accordingly:

a promising resource pool and an opportunistic resource pool (we do not allocate resources for poor

configurations). We dynamically adjust the resource division based on the computed prediction

confidence and measured prediction accuracy. In other words, during training, we adjust the ratio of

resources dedicated for exploitation versus exploration as we observe more predicted and measured

results.

Assume S is the total number of slots (e.g., machines, GPUs), which is typically much smaller

than the total number of configurations. Let Nsatisfying(p) denote the number of configurations with

confidence p that can achieve the target performance within the maximum experiment time that the
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user can tolerate, or equivalent to {i|ERTi(p) ≤ TMAX}, where ERTi(p) is the expected remaining

training time for configuration i to achieve the target performance with confidence p (an extended

definition of the expected remaining training time ERTi). Naturally, a large Nsatisfying(p) value

under the same confidence p corresponds to a large number of promising configurations. Also, high

values of confidence p typically results in small values of Nsatisfying(p).

To decide the effective number of slots Seffective for promising configurations, we look at the

problem from two angles, their desired number of slots Sdesired and the deserved number of slots

Sdeserved. For any given confidence p, we consider those configurations satisfying the confidence

as promising, i.e., the number of promising configurations is Nsatisfying(p). Assume each promising

configuration gets a dedicated number of slots k. For example, if a slot represents a machine,

a sequential execution of a configuration has k = 1 The desired number of slots for promising

configurations Sdesired(p) is equal to Nsatisfying(p) × k. On the other hand, the total number of slots

is limited by resource availability, and the number of slots promising jobs deserve is related to the

confidence p — the higher the confidence, the more resources they shall get. We calculate the

desired number of slots as Sdeserved(p) = S × p. The actual resources that promising jobs shall

receive must be both desired and deserved, and thus Seffective(p) = min(Sdesired(p), Sdeserved(p)).

Among all p values, we choose the one that maximizes Seffective(p), i.e., the number of slots

for promising configurations is equal to Spromising = argmaxp(Seffective(p)). These slots are as-

signed to run promising configurations with dedicated resources. The remaining slots are allocated

to the opportunistic resource pool, where the resources are equally shared between opportunistic

configurations, e.g., in a round robin manner.

Figure 7.1 and Figure 7.2 show the number of desired slots and deserved slots under different

prediction confidence values p. Figure 7.1 shows a snapshot taken in the early stage of an experiment

(after about 20 min) when most of the p values are very small due to limited history information

available. Figure 7.2 is a snapshot taken at a later stage of the experiment (after almost 2 hrs).

From both figures, we can see that: (1) Sdesired(p) is a monotonically non-increasing function of p,

since when p increases, Nsatisfying(p) will not increase and can only decrease. (2) Sdeserved(p) is a

monotonically increasing function of p, since higher p deserves more resources. The cross point of
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Figure 7.1: Desired slots are low early on due to low confidence.
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Figure 7.2: Desired slots are high later on due to higher confidence.

the desired slot and deserved slot curves maximizes Seffective, which corresponds to the number of

slots given to promising configurations Spromising.

To further understand how our resource allocations change over time, consider Figure 7.3 which

shows how the ratio of resources allocated for exploitation (the promising resource pool) versus

resources for exploration (the opportunistic resource pool) change over the experiment’s lifetime. It

is clear that at the early stage a higher share of resources are used for exploration, however later the

share of exploitation resources increase significantly as we improve our overall prediction quality.
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Figure 7.3: Ratio of promising slots increases over time.

7.3 Implementation of HyperDrive

We implemented a HyperDrive prototype based on the components described in section 6.4 in

Python. All communication between the scheduler, node agents, and applications is done via

GRPC [1]. We implemented two HyperDrive application libraries in Python and C++ that we use

to support Theano, Keras, TensorFlow, and Caffe.

7.4 Suspend & Resume Support

In order for suspend and resume to work correctly we must either have support from the training

framework itself to save all necessary training state to disk. Many frameworks have the ability to

do something like this, particularly Caffe takes snapshots by default periodically during training

or when it receives a kill signal. For our supervised-learning evaluation and all Caffe training

jobs we use their snapshot and restore features to implement suspend and resume in HyperDrive.

However, Caffe is less flexible in terms of the types of learning tasks it is able to evaluate when

compared to other frameworks like Theano, Keras, and TensorFlow (e.g., reinforcement learning

problems cannot be solved with Caffe). By adding additional flexibility to the training framework,

users are able to write arbitrary Python-based models that take advantage of the powerful tools

that frameworks like TensorFlow provide along with their own custom solution on top of them.
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The problem that arises with this approach is that a user’s model may contain numerous pieces of

state outside the TensorFlow frameworks view. If all model state is maintained by the framework

then often the framework’s check-pointing mechanism will suffice. If however, the model writer

maintains some of their own model state then the framework’s check-pointing mechanism will not

be sufficient. In order to cover additional model state scenarios, we take a different approach to

suspend/resume for non-Caffe training jobs. With HyperDrive we instead utilize CRIU 5 to snapshot

and resume the entire training job process’s state. In practice we have found that this approach

performs well and generalizes easily to other training frameworks and models.

7.5 Learning Curve Prediction

We implemented the learning curve prediction model by adapting a public implementation 6 of the

model from [20]. The overhead of running the unmodified learning curve prediction model for a

single learning curve can time consuming (several minutes). We identify three optimizations for

performing parallel learning curve prediction in HyperDrive.

Reduce total MCMC samples. At its core the learning curve prediction module uses a com-

putationally expensive Markov Chain Monte Carlo (MCMC) inference technique to predict future

training performance. In order to reduce the total time to create the learning curve prediction model

we reduced the total number of MCMC samples from 250,000 (nwalkers=100, nsamples=2500) to

70,000 (nwalkers=100, nsamples=700). This reduced our learning curve prediction time by over 2x

without significant degradation in our policy’s performance.

Distributed Curve Prediction. A simple implementation of HyperDrive would run all learning

curve prediction at the central scheduler. However, this approach does not scale as the number

of Node Agents increases since training jobs may require simultaneous curve predictions. Instead

we push the learning curve prediction to the Node Agents. The Node Agents keep track of the

curve history for each job they are responsible for and report to the central scheduler the results of

5https://criu.org/

6https://github.com/automl/pylearningcurvepredictor



68

a prediction. If a training job is suspended and resumed on different machines the learning curve

history is sent to the new Node Agent when the job is resumed.

Overlap training and prediction. A simple prediction implementation would block training

while the prediction is computed. Instead, as soon as the Node Agent detects that prediction should

be started it does so in parallel to training. We have found, and our evaluation shows, that the end-

to-end performance gains outweigh any slowdown that the training may experience due to resource

contention. Although a similar approach was taken by [20], resource contention was not an issue

since training was done exclusively on GPUs and prediction on CPUs. Our evaluation covers both

CPU and GPU-based training using this strategy.

7.6 Scheduling Policies

We now describe how we use HyperDrive to implement three scheduling policies used in our eval-

uation: the POP policy from chapter 7 and two state-of-the-art policies from prior work: a bandit

allocation policy from [53], and an early termination policy from [20].

POP We implement the POP algorithm as described in chapter 7. When OnIterationF inish

is called the policy checks to see if the current iteration (n) is on an evaluation boundary (b), if so

we perform several steps. We first compute the expected number of iterations the job has remaining

(k) Then compute our p value for the job as described in chapter 7. In order to calculate our desired

and deserved slots we compute the tail distribution across all currently active (non-terminated) job’s

p values. Then compute our dynamic pthreshold. Then compare our threshold to all active jobs and

determine if they are in our promising resource pool or not, we label each promising job (using

labelJob) with a priority value of p. Lastly, if the job is opportunistic we suspend it and start a new

job.

We now discuss domain and task-level knowledge we incorporate into POP to prune poor con-

figurations. Before computing any learning prediction we first check to see if the job’s performance

has passed a user-defined kill-threshold based on the specific learning task. For example, in the

CIFAR-10 task (discussed in section 8.1) it is known that random non-learning validation accuracy
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is 10%, therefore we set the kill-threshold to a value slightly over random accuracy at 15%. In our

LunarLander reinforcement-learning task (discussed in section 8.1) we know that non-learning per-

formance is -100 therefore we set our kill-threshold to -100. In addition, in order to prune off jobs

that are unlikely to achieve our target, we compare a job’s p value against a lower-bound threshold,

if it is less than 0.05 we terminate it. Lastly, we set b to 10 for supervised-learning and to 2,000 for

reinforcement-learning.

Bandit Our Bandit policy is based on the action elimination algorithm [22] used by TuPAQ [53]

in their bandit allocation strategy. In order to implement the Bandit policy we extend the Default

SAP described in section 6.4. Model performance stats are sent to the policy every epoch, the

SAP keeps track of the global best model performance (globalBest) along with the best model

performance per job (jobBest). When OnIterationF inish is called the SAP checks to see if the

current iteration is on an evaluation boundary (b), if so it checks if jobBest∗ (1+ ε) > globalBest.

If true, the job continues training, if false the policy terminates the job. Based on prior work [53], ε

is set to 0.50 and b is set to 10 for supervised-learning. Prior work focused on supervised-learning,

therefore we have no guidance on setting an evaluation boundary for reinforcement-learning. Thus,

we use the same value as our POP policy (i.e., 2,000 iterations).

EarlyTerm The EarlyTerm policy is a parallel version of prior work [20] that introduced the

learning curve prediction model used in our POP policy, we use the same optimizations here as

described in section 7.5. Like Bandit, we extend the default SAP. The EarlyTerm policy implements

the “predictive termination criterion” described in [20]. Model performance stats are sent to the

policy where it keeps track of the full history of performance across each job, along with ŷ which is

the global best model performance seen. When OnIterationF inish is called the policy checks if

the current iteration (n) is on an evaluation boundary (b), if so it computes pval = P (ym ≥ ŷ|y1:n)

using its probabilistic model. If pval < δ then the job is immediately terminated. The value of m is

set to the max epoch set for the training jobs. We use the same b value of 30 and δ to 0.05 as [20].

Similar to the Bandit policy, prior work provides no guidance on b values for reinforcement-learning,

thus we use the same value as our POP policy (i.e., 2,000 iterations).



Chapter 8

Evaluation of HyperDrive

We evaluate the effectiveness of our proposed POP scheduling algorithm and HyperDrive frame-

work in two different domains: supervised-learning (section 8.2) and reinforcement-learning (sec-

tion 8.3).

8.1 Experimental Setup

Scheduling Policies. In each learning domain, we compare POP against three baseline approaches:

(1) Default, (2) Bandit, and (3) EarlyTerm. The Default policy (see section 6.4) schedules jobs

greedily on idle machines and runs them until completion (i.e., a max number of epochs). Bandit

and EarlyTerm are based on prior work and their implementation is described in section 7.6.

Workloads. For supervised learning, we use a popular image classification task, CIFAR-10 [40],

that classifies 32x32 images into 10 categories (e.g., cat, truck). We use a convolutional neural

network (CNN) based on the layers-18pct configuration from Krizhevsky’s cuda-convnet [39]. Even

though this model does not have state-of-the-art accuracy, it is a popular version coming with Caffe.

State-of-the-art models often employ data augmentation and/or intensive preprocessing steps, which

are orthogonal to hyperparameter exploration that our work focuses on. We follow the standard

approach of training on 50k images and evaluating model performance on a validation dataset of

10k images.
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For reinforcement learning, we use a model for a popular task from the OpenAI Gym [37]

called “LunarLander”. LunarLander comes from a game where an agent has control over a lan-

der to do four discrete actions: do nothing, fire left engine, fire main engine, or fire right engine.

The environment rewards the agent based on how efficiently it uses its resources to successfully

land between two goal posts (without crashing). The problem is considered “solved” if the agent

consistently achieves an average reward of 200 over 100 consecutive trials. If the lander crashes it

receives a reward of -100 and the trial ends. We use a model written in Keras [15] and Theano [12]

provided by the authors of [8]. Different than supervised-learning that uses validation accuracy as

its performance metric, reinforcement-learning uses reward.

Hyperparameter Sets. To ensure fair comparison, we use the same set of hyperparameters for eval-

uation, i.e., using the same random search Hyperparameter Generator with the same initial random

seed. The hyperparameter set consists of 100 configurations for both supervised and reinforcement

learning experiments. Specifically, we explore up to 14 different hyperparameters for CIFAR-10

with the same hyperparameters and value ranges as in Table 3 of [20]. We explore 11 different

hyperparameters for ‘LunarLander” and we use ranges and values provided by the authors of the

model [8].

Testbed. We conduct live GPU experiments for supervised-learning on a private 4-machine GPU

cluster that we refer to as private-cluster. We co-locate the HyperDrive scheduler with one of the

training machines in the cluster. Each machine is equipped with an Intel Xeon E5-2680 v2 2.80GHz

CPU, 128 GB of memory, 10 Gbps network connectivity, and one Tesla K40m GPU. We use Ubuntu

14.04.5 LTS with Python 2.7.6, CUDA v8.0.44, and the CuDNN library v5.1.10. We use a version

of Caffe 1.0.0-rc3 that we modified to report application metrics (e.g., accuracy) to a local Node

Agent running on the same machine.

We conduct reinforcement-learning experiments on AWS. We use 15 c4.xlarge instances for

training and a single m4.xlarge instance for running the HyperDrive scheduler. Each training ma-

chine uses Ubuntu 16.04.02 LTS, Python 2.7.12, Theano 0.9.0, and Keras 1.1.0. For suspending and

resuming a configuration, we incorporate CRIU 2.6 into HyperDrive.
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Figure 8.1: Job execution duration distribution comparing different scheduling policies with
supervised-learning workload.

Non-Determinism. A challenge with evaluating scheduling algorithms for hyperparameter ex-

ploration is non-determinism that comes from the asynchronous nature of model training algo-

rithms [47]. We observe that this non-determinism could vary model performance at a given epoch

by up to 2%. To reduce the effect of this non-determinism, we run each experiment multiple times:

10 times for supervised learning and 5 times for reinforcement learning.

8.2 Supervised-Learning

8.2.1 Job Execution Duration

Figure 8.1 shows the distribution of job execution durations for POP, Bandit, and EarlyTerm. POP

spends considerably less time across all jobs than the other policies, this is especially the case when

looking at longer running jobs. Particularly we see that Bandit and EarlyTerm spend around 30 min

or more on almost 15% of jobs, where POP spends 30 min or more on only 5% of jobs. We see in

the following section that by spending less time overall executing less-promising jobs we are able

to achieve improved performance.
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Figure 8.2: Time to reach target validation accuracy (CIFAR-10).

8.2.2 Scheduling Performance Comparison

We evaluate the performance of different policies by comparing the training time to reach a given

target accuracy using the same cluster. We select a target accuracy of 77% based on the domain

knowledge of our CIFAR-10 model [39], which is close to the best accuracy reported for this model.

Our choice of this model is discussed in section 8.1. For each policy, we repeat the experiment

10 times. The results are presented in Figure 8.2 as box plots showing the different quartiles for

achieving the target accuracy under each policy. On average POP reached the target accuracy in only

2.8 hours, whereas Bandit took 4.5 hours and EarlyTerm took 6.1 hours. POP outperforms Bandit

by 1.6x and outperforms EarlyTerm by 2.1x. In addition, the difference between the minimum

and maximum training times using POP is much smaller (around 2x) than Bandit and EarlyTerm.

Even the worst performing run of POP is faster than the best case of the Bandit and EarlyTerm.

This indicates that POP is not only faster in reaching target accuracy, but also offers more stable

performance, thanks to its judicious classification and scheduling. We experimented with different

training accuracy targets and different variations of CIFAR-10 and the observations are consistent.

In the interest of space, we omit the results here.
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Figure 8.3: Suspend latency for supervised-learning workload

8.2.3 Scheduling Overhead

The advantages of HyperDrive with POP are at the cost of extra scheduling overhead compared to

other approaches. The cost of suspending & resuming training jobs can incur higher overhead than

other scheduling algorithms. Suspending training jobs involves capturing model state that enables

later resumption of training. The captured model state of different jobs are sent to HyperDrive for

storage and dissemination. Therefore, the overhead includes suspend/resume time and storage costs

for model state. In this study we measure suspend latency, which measures the time between when

the scheduler sends a suspend request to the Node Agent until the scheduler finishes storing the

model state. We detail the snapshot latency and size behavior in Figure 8.3 and Figure 8.4. On

average this latency is only 157.69 ms with a standard deviation of 72 ms. We observe the 95th

percentile latency to be 219 ms and a maximum of 1.12 sec. In terms of the model state size we

observe an average total size of 357.67 KB with a standard deviation of 122.46 KB. We observe the

95th percentile to be 685.26 KB and a maximum of 686.06 KB. We find in practice and show in

our end-to-end evaluation results that these overheads show negligible impact on scheduling and

training performance.
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Figure 8.4: Model snapshot filesize for supervised-learning workload.

-600

-500

-400

-300

-200

-100

 0

 100

 200

 300

 0  2  4  6  8  10  12  14  16  18  20

R
ew
ar
d

Episode Trials (1k)

Figure 8.5: Performance of 15 randomly selected LunarLander model configurations over 20,000
episode trials.

8.3 Reinforcement-Learning

Figure 8.5 shows the performance of 15 randomly selected LunarLander configurations. Unlike

supervised-learning, we observe that many jobs learn for some period of time and then experience

what we call a “learning-crash”, in which the reward falls and remains at or below a non-learning

value. In the plot, the non-learning value is -100, which is related to the negative reward given by

the environment when the lander crashes. We observe that over 50% of jobs are non-learning and

should not be fully executed.
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Reward values in the LunarLander task generally range between -500 and 300, in order for any

scheduling policy to compare relative performance between configurations, we normalize all reward

values using min-max scaling. We transform every reward value r as follows:

rnorm =
r − rmin

rmax − rmin
, (8.1)

In our experiments, we use rmin = −500 and rmax = 300. The upper-bound range (rmax) is deter-

mined by the environment and task while the lower bound range (rmin) is determined empirically

(we use this method) by observing a small number of poor performing runs or can by calculated the

time allowed per episode and the maximum number of actions allowed.

8.3.1 Scheduling Performance Comparison

A priori target performance is common in many reinforcement-learning tasks. In LunarLander,

the environment explicitly sets a “solved” condition that can be used as our target, i.e., an average

reward of 200 over 100 consecutive trials.

Figure 8.6 presents the time to reach target results for each policy. We repeat the same experi-

ment five times for each policy. We observe POP achieves a median time to target 2.07x faster than

Bandit and 1.26x faster than EarlyTerm. Again, training time variations are much lower for POP

compared to Bandit (9.7x smaller) and EarlyTerm (3.5x smaller) policies. These results show that
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Figure 8.7: Suspend latency distribution for LunarLander workload.

compared to state-of-the-art approaches, HyperDrive with POP is faster in reaching target accuracy,

and also more stable performance-wise for reinforcement learning.

8.3.2 Scheduling Overhead

We use CRIU to assist suspending/resuming training jobs. When a training job is suspended, all of

its processes state is snapshotted and transferred back to HyperDrive. Instead of adding save/resume

support to our model we use a more general approach using CRIU to snapshot the entire process

state. We recognize that this method may incur higher overhead than a custom solution for our

model. This study measures the overhead of suspending our LunarLander training job from the

perspective of HyperDrive. Figure 8.7 and Figure 8.8 present the distributions of both suspend

latency and model snapshot size. We see that model size does not exceed 43.75 MB and latency

does not exceed a maximum of 22.36 sec, which is considerably small compared with job training

time.

In summary, POP is faster in reaching target performance and more stable for different learning

domains compared to state-of-the-art approaches such as Bandit and EarlyTerm.
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Figure 8.8: Suspend snapshot size distribution for LunarLander workload.

8.4 HyperDrive Sensitivity Analysis

In this chapter, we perform sensitivity analysis relating to the resource capacity and configuration or-

der for both supervised and reinforcement learning using different polices. Due resource constraints,

we opt for developing a simulator to perform sensitivity analysis. To ensure accurate simulation, we

feed the simulator with traces collected from live system experiments.

8.4.1 Simulator

Our goal is to compare the scheduling efficiency (i.e., time to reach target accuracy) between differ-

ent policies under different resource capacities and configuration orders. We develop a trace-driven

simulator consisting of the following three main components, see Figure 8.9:

• Trace Generator collects the traces from live system experiments and creates a replayable

workload that contains iteration timing and performance metrics. In addition, the Trace Gen-

erator can create traces by changing the configuration orders. This feature is useful to conduct

sensitivity analysis of configuration orders.

• Simulator Engine is a trace-driven discrete event simulator that accurately emulates the exe-

cution process of HyperDrive, i.e., the order of configurations and the resource management

logic.
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• Pluggable Scheduling Policy dictates the scheduling decisions on configuration ordering and

the resources allocated to different configurations over time.

To validate the accuracy of our simulator, we compare the simulation results with the live system

results using different policies in Figure 8.10, which shows the time to reach target accuracy for

LunarLander using 15 machines. We see the simulation results are quite accurate, i.e., compared to

the live system results, the max error of simulation is only 13%, which is well below the error bar

of live system results.

Trace 
Generator

Job ID

...
14840

Epoch

...
1

Time

...
29 min

Accuracy

...
0.28

Node ID

...
3

...

...

...

Live System 
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EarlyTerm

Scheduling 
Policy

POP

Bandit

Figure 8.9: Simulator Design.

8.4.2 Supervised-Learning

All simulator traces for supervised-learning are collected from live AWS runs using 4 g2.2xlarge

instances (one K520 GPU each)1 for training and one m4.xlarge instance for the HyperDrive sched-

uler.

Sensitivity Analysis of Resource Capacity

We study the sensitivity of resource capacity (i.e., total number of machines) by comparing the time

it takes to reach our target validation accuracy (77%) for different policies using CIFAR-10. Fig-

ure 8.11 presents the results of simulation experiments. As we would expect, the time to achieve

1The K520 GPU is slower than the K40m GPU used in our private-cluster.
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Figure 8.11: Resource capacities (CIFAR-10).

our target improves with more machines across all of our scheduling policies. POP always outper-

forms other policies under different resource capacities. In addition, with larger resource capacities,

POP shows even more performance improvement to the second best policy. These results verify the

effectiveness of our POP policy when using different amounts of resources.
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Figure 8.12: Random job orderings (CIFAR-10).

Sensitivity Analysis of Configuration Order

The configuration order that a scheduling policy sees can heavily impact experiment performance.

For example, since configurations are generated randomly it’s possible an exhaustive search tech-

nique could “luckily” pick the optimal configuration as the first configuration (or in the first batch of

configurations) to explore, its performance can be as good as or even better than any sophisticated

policies. In order to understand the sensitivity of configuration order for different policies, we run

simulation experiments with 25 random configuration orders on 5 machines. The results presented

in Figure 8.12 demonstrate the distribution of time to reach target validation accuracy under differ-

ent polices. It is clear that POP yields much better performance in all percentiles. In addition, it

is also more consistent in performance than other policies, e.g., POP has a maximum difference in

completion time of 4.05 hours compared to Bandit with 8.33 hours, EarlyTerm with 8.50 hours, and

Default with a staggering difference of 25.74 hours. These results suggest POP is less sensitive to

configuration order and therefore is more reliable.
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Figure 8.13: Time to reach target reward with LunarLander using different scheduling policies and
resource capacities.

8.4.3 Reinforcement-Learning

We collected traces for reinforcement-learning experiments from running live experiments on AWS

using 15 c4.xlarge instances for training and a single m4.xlarge instance for the HyperDrive sched-

uler. Each training machine uses Ubuntu 16.04.02 LTS, Python 2.7.12, Theano 0.9.0, and Keras

1.1.0. For suspend and resume support each training machines uses criu 2.6.

Sensitivity Analysis of Resource Capacity

We study resource capacity sensitivity in a similar way as in Section 8.4.2. We compare the time it

takes to reach an average reward of 200 over 100 consecutive trials. Figure 8.13 presents the results

of simulation experiments with a varying number of available machines. As expected, the time to

achieve our target reward goal improves when additional machines are available for the experiment.

We can see that POP consistently out performs other policies, regardless of the amount of resources

available.
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Figure 8.14: Time to reach target reward for LunarLander with 25 random configuration orders
using different policies.

Sensitivity Analysis of Configuration Order

We examine the sensitivity of configuration order for our reinforcement-learning workload in a

similar way as in Section 8.4.2. We run simulation experiments with 25 random configuration

orders on 5 machines. The results presented in Figure 8.14 demonstrate the distribution of time to

reach target reward with different polices. As with our supervised-learning workload we see that

POP yields significantly better performance than under other policies, across all percentiles.



Chapter 9

Discussion of HyperDrive

Considerations

9.1 Discussion

Epoch durations. Our POP policy assumes epoch durations remain relatively constant during train-

ing (see section 7.1). Epoch durations may differ between unique sets of hyperparameter values but

for a specific configuration this duration remains relatively constant. This behavior is common in

learning domains evaluated in this work (supervised and reinforcement), however we leave evalu-

ating other domains that may experience non-constant epoch durations (e.g., genetic algorithms) to

future work.

Learning curve prediction. Our POP policy relies on a learning curve prediction model. In

this paper, we choose the model proposed in prior work [20] (which has been studied with extensive

evaluation) for this component, we have found it to work well for the workloads we are using. In

addition, we design the learning curve prediction module as a pluggable component of HyperDrive,

so users can easily switch to other prediction methods as preferred. Learning curve prediction is an

active area of research [20, 36, 54] and we foresee no issue using different approaches as research

advances in this area.

User inputs. Our POP policy aims to achieve a training goal within specific time/resource

84
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constraints, therefore it requires as input a maximum experiment time (Tmax) and target performance

(ytarget). Specifying Tmax requires some knowledge related to typical configuration training time,

since a too small Tmax may result in insufficient time to finish model training. Setting ytarget is

natural for domains with known goals, such as our LunarLander task (see section 8.3). However,

if a ytarget is unknown we have successfully used a dynamic target approach to automatically adjust

ytarget by gradually increasing the target once it is reached. In the interest of space, we leave the

details and evaluation of this approach to future work. In our work with practitioners we have found

that before starting hyperparameter exploration for their model they have a good idea about both of

POP’s required inputs.

POP, Bandit, and EarlyTerm policies all require a user-defined evaluation boundary (b) to be

specified. Setting this value is a common problem in the space of early-termination policies. Like

in prior work, b is model/domain specific and should reflect the time it takes to compute model per-

formance and how long a user is willing to let a configuration execute before possible termination.

We have found success with a heuristic of setting b to be between 5-10% of the max epoch for a job.

We leave automatically setting this parameter to future work.

Ongoing Work. HyperDrive enables model owners to schedule resources based on monitored

application-level metrics. Typically there is a primary metric being optimized (e.g., accuracy) which

is what POP utilizes. However, additional metrics of concern can be impacted by hyperparameter

choices as well, such as inference/serving latencies, model sparsity/compressibility, etc.

We have seen promising early results exploring hyperparameters specific to models that use

Long Short-Term Memory (LSTM) units. We are working together with authors of recent work on

improving CNN model sparsity [61]. The work aims to reduce the size of LSTMs structurally, for

both storage saving and computation time saving, without perplexity loss (the primary metric for

our task). This is done through the use of group Lasso regularization [66], which adds enforce-

ment on each group of a model’s weights. The method uses a new hyperparameter (i.e., λ) which

makes a trade-off between sparsity and model perplexity. We have evaluated several state-of-the-art

models from recent work [50, 69] with a new HyperDrive policy, exploring λ values (plus other

hyperparameters) while monitoring both perplexity and a sparsity-related metric. We have seen
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significantly reduced training times by enabling user-defined global termination criteria through

HyperDrive’s SAP API.

Lastly, we are working with Microsoft engineers to productize HyperDrive internally, which

will continue improving HyperDrive’s usability, scalability, and effectiveness. Hyperparameter

exploration will continue to be an active research area but currently there are limited options to

develop/evaluate parallel approaches that incorporate techniques along both hyperparameter gener-

ation and scheduling (e.g., early termination, suspend/resume).

9.2 Related Work

We discuss related hyperparameter optimization work for ML/DL models.

Learning Curve Prediction. Several pieces of related work present learning curve prediction

models [20, 36, 54]. This prior work could be used as a drop-in replacement for the learning curve

prediction model in our POP algorithm, we currently employ [20]. This line of work is comple-

mentary to POP, where we focus on how to effectively use them for classification and resource

management.

Hyperparameter Generation. Several pieces of prior work [10, 33, 38, 52, 56] have moved

beyond grid/random-based hyperparameter generation towards exploiting Bayesian optimization.

Based on the accuracy of the configurations that have executed, they assign higher probability to

exploit the areas of the hyperparameter space that contain likely-good or unknown configurations.

This line of work is complementary to POP, where we can plug in different hyperparameter gener-

ation techniques. Our focus is to decide how much resources to map to the current set of configura-

tions.

Sequential Search Algorithms. HyperBand [41] uses a multi-armed bandit approach for hyper-

parameter exploration. They use random search hyperparameter generation along with an aggressive

bandit-based pruning technique. Swersky et al. [54] propose to suspend and resume uncompleted

training jobs during model search, incorporating partial training information with learning curve
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prediction. Their prediction model does not seem to work well for deep neural networks as dis-

cussed in [20]. In comparison, both prior work focus on using a sequential execution of models

while POP is designed for speeding up model exploration using multiple machines and exploiting

resource usage along the spatial dimension.

Parallel Search System. Recently, distributed computing frameworks such as YARN [55] and

Spark [62] have recognized the importance of parallel hyperparameter exploration [32]. The pro-

posed approaches enable parallel job execution for grid and random search. They do not support

active monitoring of job metrics, early termination and dynamic resource allocation among config-

urations.

TuPAQ [53] is closely related, we present an overview of its bandit algorithm in section 7.6.

POP employs job execution history for improved prediction and uses the predicted accuracy and

confidence to enhance scheduling decision, while TuPAQ looks at the instantaneous accuracy of

jobs when deciding who to terminate. In terms of system framework, TuPAQ focuses on a single

learning domain (supervised) and computation framework (MLBase), while HyperDrive is designed

as a comprehensive framework supporting different algorithms across frameworks and domains.

For performance, our evaluation results (in chapter 8 and section 8.4) show POP consistently out-

performs our Bandit policy, which is based on TuPAQ.



Chapter 10

Conclusion

This dissertation has presented the idea of infusing application-level information into the area of

cluster resource management. In the pursuit of this idea we have shown our techniques benefit two

high-level domains: big-data analytics and machine-learning model optimization systems.

10.1 Big-Data Analytics Systems

We first apply the concept of application-aware cluster scheduling in the context of big-data analyt-

ics systems. We observe several inefficiencies in existing cluster management framework designs in

the presence of heterogeneous workloads that lead to poor utilization and degraded user-experience.

To address these inefficiencies we employ worker queues to centralized frameworks to improve

cluster utilization comparable to distributed frameworks. We then develop policies for active queue

management, carefully choosing which task to execute next whenever a running task completes,

with the goal of improved job completion times. The policies we develop are equally applicable

to both centralized and distributed scheduling frameworks. We built a prototype of our techniques,

Yaq, and deployed it on a large cluster. We experimentally evaluated Yaq using production and

synthetic workloads. Yaq improves job completion time across all percentiles and, in particular,

median job completion time by up to 9.3x, when compared to existing scheduling schemes, such as

YARN, Mercury and an implementation of Sparrows batch sampling on Mercury.

88
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10.2 Machine-Learning Model Optimization Systems

The second domain we apply our techniques to is the area of machine-learning model optimization

systems. This work improves the efficiency of developing machine learning models by optimiz-

ing the problem of hyperparameter exploration. Our approach includes two techniques: (i) the

POP scheduling algorithm and (ii) the HyperDrive framework. POP employs dynamic classifica-

tion of model configurations and prioritized resource scheduling based on application-level metrics

to discover high-quality models faster than state-of-the-art approaches. HyperDrive is a flexible

framework that enables convenient evaluation of different hyperparameter exploration algorithms

to improve the productivity of practitioners. We present experimental results that demonstrate the

performance benefits of using POP and HyperDrive to develop high-quality models in both super-

vised and reinforcement learning domains.

10.3 Future Work

In this section we list a few areas of future work related to application-aware resource management.

Specifically, we discuss the area of network and application load balancers and an extension area of

our work in machine-learning optimization systems.

10.3.1 Application-Aware Load Balancing

Services like Envoy [42] and Maglev [21] are used to efficiently route and control traffic in micro-

service oriented clusters. Similar to modern cluster schedulers like YARN, these services by design,

attempt to abstract away as much application-level information as possible in order to isolate com-

plexity. One of the many features that these services provide is the ability to rate-limit and load

balance traffic across application services. A largely unexplored area on research in this area is how

to set application-level priorities on traffic passing through these load balancers. Typically priority

levels in load balancers are used to route traffic away from “unhealthy” application services [9].

However, we believe that we should be able to infuse application-level priorities into these load
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balancers to improve end-to-end application-level quality of experience/service metrics. Similar to

our work with Yaq and HyperDrive we should be able to identify and prioritize traffic that is related

to high-level application-level goals such as meeting strict service-level agreements.

10.3.2 Multi-Metric Machine-Learning Optimization Systems

One largely unexplored area in this dissertation is the optimization of cluster resources for multiple

utility metrics at once. In Yaq [46] we optimized cluster resources based on several application-level

metrics such as task durations, remaining job time, etc. Whereas in HyperDrive [45] we optimized

cluster resources based on a user-provided application utility metric (e.g., accuracy, reward). In

the context of many machine-learning applications, once a data scientist has successfully trained

a model to solve a task they will productize the model for answering future inference queries.

Model inference in production environments require that a model can be evaluated in very strict

time limits. These time limits are commonly referred to as service-level objectives (SLOs). These

SLOs are based on high-level business objectives for large services such as web-search, or smaller

environments such as mobile applications.

As shown in our HyperDrive [45] work, hyperparameter selection has a significant impact on

the ultimate usability of a fully trained model. Properly tuned hyperparameter values can yield a

model that performs significantly better in terms of accuracy, reward, etc. However, it turns out that

certain hyperparameter values can positively or negatively impact the inference time of a trained

model. This means that a model that performs very well on a user’s primary utility metric may not

meet the business objective (SLO) to be released to production. A potentially fruitful area of future

work in this space would explore how to aggressively apply early termination strategies to model

candidates in order to save time training models that will not meet a pre-defined SLO.
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