
Abstract of “Learning to Ground Natural Language Instructions to Plans” by Nakul

Gopalan, Ph.D., Brown University, October 2019.

In order to intuitively and efficiently collaborate with humans, robots must learn to

complete tasks specified using natural language. Natural language instructions can

have many intentions: for example, they can specify a goal condition, or provide guid-

ance to achieve a goal, or provide constraints that must be satisfied in achieving goals.

Given a natural language command, a robot needs to ground the instruction to an ac-

tion sequence executed in the environment, which satisfies the request along with all

its constraints and guidances. This work addresses the problem of grounding natural

language instructions to plans with various approaches, that all depend upon predicates

from first order logic. We will first describe a hierarchical planner for planning in large

state spaces. We will then present different procedures such as classification, sequence

to sequence mapping and compositional parser learning, to ground natural language

for hierarchical and constraint based tasks. These approaches allow for language com-

mands specifying simple goal based specifications to richer temporal constraints with

guidances. We finish with looking at an approach that learns symbols and their natural

language groundings using demonstrations and instructions. This allows the agent to

follow novel instructions in unseen environments without hand-specified symbols.

Learning to Ground Natural Language
Instructions to Plans

by

Nakul Gopalan

MSc. Brown University 2015

MSc. T.U. Darmstadt 2012

B.E. Visvesvaraya Technological University 2008

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

October 2019

.

c©Copyright 2019 by Nakul Gopalan

This dissertation by Nakul Gopalan is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date:

Stefanie Tellex, Director
Brown University

Recommended to the Graduate Council

Date:

Michael L. Littman, Reader
Brown University

Date:

Marie desJardins, Reader
Simmons University

Date:

George D. Konidaris, Reader
Brown University

Approved by the Graduate Council

Date:

Andrew G. Campbell

Dean of the Graduate School

iii

Acknowledgements

This thesis was supported by the work of a lot of people. Firstly, I would like to thank

Stefanie for inviting me over and introducing me to a rich set of robotics problems. I

admire the amount of freedom that you gave me, while helping me become an inde-

pendent researcher. I hope to use all the advice you have given me in the next phase of

my career, and keep collaborating with you.

I am indebted to Michael Littman for being wise and providing stimulating inputs

for a lot of my work. Michael has been a good listener and an amazing teacher. I

have received a great deal of helpful advice from Marie DesJardins for my projects

and the overall presentation. My writing is a lot better thanks to Marie. I am thankful

to George Konidaris for the helpful early morning conversations about robotics and

academia,, and also his help with my projects and presentation. Hopefully we can

work together on more fun projects.

James MacGlashan helped me find my footing in projects and has provided helpful

conversations since. Lawson L.S. Wong has helped me be precise and provide structure

to my ideas and presentations. I am also thankful to Eric, Eddie, Dilip, Sidd, Mel and

Vanya, for all the projects we worked on and the conversations we shared. I would

also like to thank my other labmates and collaborators Thao, David W., John O., Jun,

Carl, Deniz, Karthik, Ben B., Ben A., Matt, Matthew, Becky, Ariel, Izaak, Ifrah, Kyra,

Emily, Steve, Stephen, Sam, Akhil, Jonathan, Nishanth, John W., Michael, Aaron, Josh

and Kaiyu.

I am grateful for the support system provided by the CS department students Justin,

Vikram, Thomas, John M., Johannes, Sasha, Amy, Betsy Eric, Preston and Michael

Michaelidis. The T-Staff, and A-Staff at CIT helped me in innumerable occasions,

iv

I am especially thankful to Lauren Clarke, Suzanne Alden, Frank Pari, Max, Genie,

Doug, Benjamin Nacar, and Paul. I am also thankful to my first friends at Brown: Sam

and Guille.

I owe a lot to my friends in Jabalpur (Mini, Ankit, Golu, Munnu, Rani, Chinna,

and Rahul), Bangalore (Ramesh, Siddharth, Sandeep, Kiran, Pushkar, Mandy, Kishore,

Laxman, R.D., Anuraag, Varun, Girish, Vikhyath, Nitin K, Nitin C.S.,) and Darmstadt

(Sriram, Varun, Sesha, Mohil, Ayshwarya, Naga, Vineet, Rahul, Abhisekh, Vibha, Vi-

jay).

I would like to thank my aunts and my uncles and my grandparents for humouring

me. I am grateful to my brother Kaushik for putting up with me. I owe more than just

thanks to my parents for letting me explore the world, and backing me in all circum-

stances. I also want to thank Patricia for everything from walks to hugs. Hopefully I

can make it up to all of you.

Thanks!

nakul

v

vi

Contents

1 Introduction 1

2 Related Work 7

2.1 Good Old-Fashioned Artificial Intelligence (GOFAI) 8

2.2 Recent Approaches for Language Grounding and Planning 12

2.2.1 State and Action Abstractions 12

2.2.2 Language Grounding . 15

2.3 Background . 16

2.3.1 Markov Decision Processes (MDP) 16

2.3.2 Planning Within an MDP . 16

2.3.3 Object Oriented MDPs . 17

2.3.4 Neural Sequence to Sequence Mapping for Translation 18

3 Hierarchical Planning with Abstract Markov Decision Processes 19

3.1 Related Work . 22

3.2 Abstract Markov Decision Processes 25

3.2.1 Planning in AMDPs . 28

3.2.2 Example AMDP Hierarchies 31

3.3 Results . 34

3.3.1 Taxi Domain . 35

vii

3.3.2 Cleanup World . 35

3.3.3 Continuous Cleanup World on Turtlebot 36

3.4 Conclusion . 38

4 Interpreting Human-Robot Commands at Multiple Levels of Abstraction

via Classification 41

4.1 Related work . 44

4.2 Technical Approach . 45

4.3 Language Models . 47

4.3.1 IBM Model 2 . 48

4.3.2 Neural Network Language Models 48

4.3.3 Grounding Module . 52

4.4 Evaluation . 52

4.4.1 Mobile-Manipulation Robot Domain 53

4.4.2 Procedure . 54

4.4.3 Robot Task Grounding . 55

4.4.4 Robot Response Time . 57

4.4.5 Robot Demonstration . 60

4.5 Discussion . 60

4.6 Conclusion . 62

5 Grounding Language to Linear Temporal Logic 63

5.1 Related Work . 65

5.2 Approach . 68

5.2.1 Problem Setting . 68

5.2.2 Geometric linear temporal logic (GLTL) 69

5.2.3 Mapping Language to GLTL 70

5.3 Experiments . 75

viii

5.3.1 Mobile-Manipulation Robot Domain 75

5.3.2 Baxter Pick-and Place Domain 76

5.3.3 Data-collection Procedure 77

5.3.4 Language Grounding . 79

5.4 Results . 80

5.4.1 Language Grounding . 80

5.4.2 Cleanup Robot Demonstrations 83

5.4.3 Baxter Pick-and-Place Domain 84

5.5 Conclusion . 85

6 Learning to Parse Natural Language to Grounded Reward Functions with

Weak Supervision 87

6.1 Related Work . 90

6.2 Task Domain . 91

6.3 Method . 92

6.3.1 Semantic Representation and Execution 92

6.3.2 Parser Learning . 95

6.4 Data Collection . 97

6.5 Experiments and Results . 98

6.5.1 Evaluation on AMT Corpus 99

6.5.2 Ablation Experiments . 100

6.5.3 Baselines . 101

6.6 Robot Demonstration . 102

6.7 Discussion . 103

6.8 Conclusion . 104

7 Mapping Language to Transferable Symbols for Instruction Following 107

7.1 Related Work . 109

ix

7.2 Problem Definition . 111

7.3 Mapping Language to Plans via Learned Symbolic Abstractions . . . 112

7.3.1 Symbols . 112

7.3.2 Egocentric Representation 114

7.3.3 Change Point Detection . 115

7.3.4 Clustering . 117

7.3.5 Classification . 117

7.3.6 Translation . 118

7.4 Experiment . 119

7.4.1 Simulated Turtlebot . 119

7.4.2 NPS car dataset . 120

7.4.3 Mobile Robot domain . 122

7.5 Conclusion . 125

8 Discussion 127

x

List of Figures

1.1 Images of different robots and behaviors demonstrated as part of this

dissertation . 4

2.1 Image of Shakey the robot from SRI 9

3.1 The Turtlebot continuous object manipulation domain 20

3.2 The Taxi Abstract Markov Decision Process hierarchy 26

3.3 Taxi Domain results comparing AMDPs to Bounded Real Time Dy-

namic Processes . 33

3.4 Cleanup World results comparing AMDPs to BRTDP. 34

3.5 Robots trajectory when getting to the goal. 36

3.6 Trajectory following with stochastic transitions in the Turtlebot Cleanup

World domain. 37

4.1 Examples of high-level and fine-grained commands issued to the Turtle-

bot robot in a mobile-manipulation task. 42

4.2 Model architectures of the deep neural networks used for identifying

goals from natural language. 49

4.3 Amazon Mechanical Turk (AMT) dataset domain and examples. . . . 52

4.4 Task grounding accuracy numbers comparing deep methods with a

classical IBM2 model. 55

xi

4.5 Accuracy of 10-Fold Cross Validation (averaged over 3 runs) for each

of the models on the AMT Dataset. 56

4.6 Planning time results comparing AMDPs, base level planners and AMDPs

without heuristics. 58

5.1 Robots with non-Markovian task specifications. 65

5.2 Accuracy of different Sequence-to-Sequence approaches in grounding

non-Markovian commands. 75

5.3 Images used to collect data on AMT for non-Markovian commands . 77

5.4 Example commands for GLTL formulae. 78

5.5 Grounding accuracies of various sequence-to-sequence models evalu-

ated on held-out subsets of the training data consisting entirely of novel

GLTL expressions. Error bars represent 95% confidence intervals com-

puted over 10 independent runs. 81

6.1 Cleanup domain start and termination states for data collection 89

6.2 State pairs used to collect language data for a specific termination con-

dition. 97

7.1 Pipelines for our methodology for learning symbols and grounding lan-

guage. 113

7.2 HDP-HMM plate model used in our work for skill segmentation. . . . 116

7.3 Example images of our learned symbols on the mobile robot domain

and skill segments from the simulation. 122

7.4 Images of mobile robot planning in unseen environment from the com-

mand “Go to the end of the corridor and take a right” 123

xii

Chapter 1

Introduction

Language is an important part of human life. It allows us to express ourselves in dif-

ferent forms, for example discussing weather, or singing, or debating, etc. Language is

so ubiquitous that people generally do not pay attention to how effortlessly it allows us

to communicate, sometimes even allowing us to attempt to communicate with animals

and inanimate objects with varying degrees of success. Machines are one class of ob-

jects with which we try to communicate regularly. Usually the form of this communi-

cation is via switches, or dials, or a programming language which might require special

expertise or training. However, communicating with machines using natural language

would allow us to collaborate with machines effortlessly. This dissertation examines

the problem of communicating and collaborating and learning with machines, specifi-

cally robots, using natural language.

Natural language provides an intuitive interface with which humans can collaborate

with machines. Given that people can already communicate “easily” with each other

using natural language, communicating with robots or other artificial agents will be an

intuitive interaction. Moreover, such an interaction would be welcome by the public.

Roughly 66 million or 1 in 6 Americans own a smart-speaker, which at this point have

1

only been around for 5 years [145]. People are willing to buy intelligent devices that

interact with them via language. If there was a general purpose home robot platform, a

natural language interface would not only be welcome, but might even be a necessity.

Despite the importance of language, humans are not born with the ability to use

language effortlessly: and must learn to use language at infancy along with other fac-

ulties. Human infants learn different types of faculties related to perception, motor

control and language learning. For example, a four day old infant can already dis-

criminate between sounds of different languages; at one month they can discriminate

between consonants; at 6-8 months of age they start to babble; at 10-12 months they

produce their first words [50]. This language learning in the first year happens along

with regular child development milestones as listed by the Center for Disease Control

and Prevention manual [42]: for example, learning object permanence, paying attention

to faces, smiling, reaching for toys, rolling, sitting, and walking. By eighteen months

children can recognize object classes like telephone, spoons, name body parts, and can

use objects like brushing their hair and helping dress themselves. This requires for the

children to learn skills such as grasping and manipulation of objects. At two years they

can follow simple two step instructions, make their own sentences, play make believe

games, sort colors and shape. Three year old children can learn and generalize concepts

they are observing for the first time and associate them with words [101, 148]. This

learning is not only remarkably fast, but also seems to lack complete supervision or a

set curriculum. The parents of children cannot always explicitly help in the learning of

these concepts, or skills, or words, or grammar, etc.

We have yet been unable to create an artificial agent or robot that learns language,

skills or concepts as fast as a human child. A plausible reason for this is our lack of

understanding of the mechanisms for language acquisition in human children. Given

the large number of concepts, skills and vocabulary, we cannot endow agents with the

ability to express the meaning of every word or skill in a program or code that a robot

2

can run. Moreover, with new technology, engineering or art, there will always be new

concepts that an agent must represent. Hence our only option to have effective robotic

collaborators with a general populace is to endow them with the capacity to learn and

understand concepts, skills, and language. To bridge this gap this dissertation will first

delve into the problem of learning to map language to symbolic representations that can

be used for planning in robotics. We will then consider the problem of teaching tasks

to agents by learning these representations using demonstrations and narration. This is

an important problem as it allows even the general populace to specify and teach tasks

to robots using an intuitive interface.

There are multiple hurdles in human-robot collaboration using natural language.

Firstly, there is the symbol-grounding [53] problem, where the agent does not know

which object, task, situation, etc. is being referred to in the interaction. For example,

when a human says “pour the tea in a cup,” an agent must understand which physical

objects the words “tea” and “cup” refer to, and which task the verb “pour” refers to.

Secondly, the robot need not know all the concepts or symbols that are being referred to.

For example, an agent might need to learn the concept of a cup before it can manipulate

it, or map the word “cup” or “teacup” to the object. Thirdly, even if the agent knew

all the objects and tasks, and knew the mapping from language to the words, there is

still the problem of planning fast enough so the interaction seems natural. The focus

of this dissertation is to present solutions to these hurdles like planning fast, language

grounding, learning symbols for language grounding.

This work aims to answer the broad question of goal specification for a robot using

natural language. We introduce and examine methods to identify the goal conditions

that a natural language command implies. We also learn these goal specifications and

their mappings to natural language together from demonstrations and natural language.

This dissertation has four specific contributions to solve problems in human-robot col-

laboration using natural language:

3

(a) (b)

(c) (d) (e)

Figure 1.1: Images of different robots and behaviors demonstrated as part of this dis-
sertation: a) a Turtlebot completing a simple goal based command to “Push the block
into the blue room”; b) a Baxter robot performing a temporally constrained task to “Put
all but the red blocks into the bin”; c), d) & e) a Movo robot learning the symbols to
plan and navigate the corridors to complete the task “Take a right at the end of the
corridor.”

• A fast and reactive hierarchical planner specifically designed for the large state-

action spaces encountered in task and motion planning. Fast and reactive plan-

ning is critical for a robot that interacts with humans in real time.

• We model language grounding for different types of behaviors or plans, from

simple goal conditions to richer temporal constraints.

• We solve the problem of language grounding itself with different mechanisms:

simple classification, deep sequence-to-sequence methods, traditional grammar

based parser learning. We describe the pros and cons of each method in this

dissertation.

4

• Learning goal and sub-goal conditions of a plan from scratch and mapping lan-

guage to these symbols. This allows demonstration based learning on robots

while keeping in mind the small number of learning interactions available to

train the robot.

More importantly these solutions are designed to be applicable on robots, keeping in

mind that robots need to be fast, reactive and learn with as few samples as possible.

We implemented these solutions on a broad variety of platforms exhibiting different

behaviors, as shown in Figure 1.1. We now present a broad chapter-wise overview of

the dissertation.

The second chapter of this dissertation discusses related work in the relevant areas

of natural language processing, learning in robotics and planning.

Chapter three discusses the problem of planning in domains with large state spaces.

Specifically these state spaces are combinatorically large, that is, these problems have

a lot of objects, and the agent must plan fast by ignoring objects that are unimportant in

reaching the goal. Humans do this abstraction all the time. For example, while pouring

tea, we do not pay attention to all the objects in the room or the world. We attempt to

manipulate only the tea kettle and the cup in which the tea is being poured. For this we

introduce the formalism Abstract Markov Decision Processes (AMDPs) [47].

Chapter four presents an initial approach to grounding language to sub-goals within

the AMDP planning framework. We describe how mapping language to a hierarchical

framework allows us to refer to goals at different levels of specificity. For example,

this framework allows us to specify high level commands like “make me a pot of tea,”

and granular commands like “pick up the spoon,” all within the same hierarchy.

Chapter five considers the problem of grounding language to non-Markovian task

specifications. The task specifications have a preferred ordering or constraint, which

make the goal specification depend on the entire trajectory and not just the terminal

state of the agent. We can see these specifications in commands like “bring me the tea

5

without spilling.” The agent must now ensure that it never spills tea while delivering

the cup. It is a condition that must be satisfied by the entire trajectory of the robot, and

not just one particular state, which makes the goal condition non-Markovian.

Chapter six examines the role of compositionality in grounding language. Com-

positionality allows us to transfer concepts like color and shape to unseen tasks. This

means if the robot knows the language grounding for a “blue mug” and a “green spoon,

” it can ground a novel language task specification to “bring a green mug.”

In all the previous chapters the agent knew the symbols that the language was

grounded to in advance. They were hand-specified by an human designer. In chapter

seven we ground language to learned symbols from demonstrations and instructions.

We learn symbols that can transfer to novel environments when specifying goals on the

robot.

We then conclude with a discussion about unresolved issues and open problems

within the solutions provided in this dissertation.

6

Chapter 2

Related Work

While the various environments in which robots can be found are expanding to include

the home, the workplace, and on the road, the most common interfaces for controlling

these robots remain fixed in either tele-operation or directly programmed behaviors.

Humans use natural language to communicate ideas, motivations, and goals with other

humans. If we want robots to collaborate and solve tasks with humans the must un-

derstand these goals and then solve them. Two broad fields that are relevant in solving

these problems: Computational Linguistics and Artificial Intelligence. Computational

linguistics aims for computers or machines to understand or process natural language,

written or spoken, and produce an output. The output can be a reply in a dialog, or

the answer to a query by searching a database, or a translation to a foreign language,

etc. Artificial Intelligence (AI), on the other hand, aims to provide machines or agents

human capabilities of learning novel behaviours or concepts, and problem solving. It

has been a long-standing goal in both of the aforementioned fields to have an agent un-

derstand and perform tasks specified through natural language. In this chapter we will

cover related works in both these fields specific to our problem of learning to ground

natural language to plans. We will first look at the historical perspectives in which these

7

two fields have worked together, and then we will look at more modern approaches to

grounding natural language to plans.

2.1 Good Old-Fashioned Artificial Intelligence (GOFAI)

One of the earliest works that combined natural language understanding and plan-

ning was SHRDLU by Winograd [152]. SHRDLU consisted of a simulated domain

of blocks on a table. The artificial agent in the domain could answer questions about

the state of the blocks, such as “Is the red triangle over the square?” and could also

manipulate blocks to achieve specific configurations, such as “Place the green circle

over the cube.” More importantly, the agent could be commanded by natural language

to perform these behaviours. The agent parsed the natural language command to a

query placed to the computer program. The rules for such parsing were hand-specified.

Depending on the type of natural language command the agent replied with an answer

about the state of the world or manipulated the blocks to achieve a goal configuration.

There were similar works in the same period such as LUNAR [153], answered natural

language queries about types of lunar rocks using hand-specified rules. However, what

made SHRDLU special was that it could manipulate its environment based on a natural

language query. The SHRDLU domain exposed a broad class of problems related to

instruction following in embodied agents, which led to development of more general

purpose techniques.

Slightly earlier to the development of SHRDLU (1966- 1971) was the development

of the Shakey robot by Stanford Research Institute (SRI) International [118]. Shakey,

shown in Figure 2.1, was an important project for robotics as it was for the first time

researchers developed a general purpose robotic platform. The Shakey project led to

the development of some very important planning algorithms like Stanford Research

Institute Problem Solver (STRIPS) [41] and A* [54], important results in computer

vision like the use of Hough Transform features [37], important robot control software

8

Figure 2.1: Image of Shakey the robot from the original Tech Report [118]
.

and some demonstrations involving natural language.

We will discuss the planning algorithms used in Shakey here in more detail here

as they are a focus of this dissertation. STRIPS allowed the robot to plan in large

continuous state spaces by breaking down goal conditions into sub-goals that can be

achieved by operators or actions. The actions themselves had pre-conditions and post-

conditions. The planner would learn to sequence an action’s post-condition as the

next action’s pre-condition, until the goal condition was reached. STRIPS required ab-

stracting goal and sub-goal conditions present in the domain, which was achieved with

propositional variables or predicates. The propositional variables were used to specify

the pre- and post-conditions of actions, and the goal conditions. A* was used for per-

forming the physical path planning on the robot. A* is a heuristic search algorithm,

9

based on Dijkstra’s shortest path algorithm [34], allowing the robot to travel from one

location to another, by sequencing low level motor control actions. The robot itself

was present in a room that was precisely measured and had objects like blocks placed

in specific locations. Moreover, all the predicates used by planners were pre-specified

and hand designed.

Shakey took in goal-based commands by users and converted them into a goal spec-

ification. This goal specification was then achieved by the combination of STRIPS and

A* planners. The goal commands were specified using an English-like natural lan-

guage, and were converted into a formal specification using the ENGROB system [31].

Quoting the tech report by Nilsson: “Each of these tasks is stated in English and en-

tered into the system via teletype. The first task is stated as “USE BOX 2 TO BLOCK

DOOR DPDPCLK FROM ROOM RCLK.” This statement is converted by the En-

glish language system ENGROB to a goal expressed by a well-formed formula (wff)

of the first-order predicate calculus: BLOCKED(DPDPCLK,RCLK,BOX2). ” The

first goal of ENGROB [31] as specified by Coles was to “translate English statements,

questions, and commands into a formal language based on the first-order predicate cal-

culus.” These English language goal commands were translated into a formal specifica-

tion using a series of rules, that mapped snippets of parsed natural language command

to snippets of the well formed predicate language. The system also checked for the

correctness of the translated query to check if the command is possible in the current

environment. We can consider this translation as going from English language to its

meaning representation in a more structured language, which is studied by the branch

of Semantics in Computational Lingustics.

As we discussed earlier, methods like LUNAR [153] and SHRDLU [152] convert

a natural language question into a query that a computer could answer. They were

developed for different applications such as LUNAR for answering questions about

lunar rocks from a database, Chat-80 [146] for answering questions from a geograph-

10

ical database, and Tina [132] which was more general purpose and provided general

rules that different domains could follow for a natural language interface. The query

that was being placed to the computer was structured with first order predicates, and

used syntactic rules from English to infer the functions in predicate logic and their ar-

guments. This idea of using the English (or natural) language’s syntax along with its

constituent words to infer a sentence’s semantic meaning comes from an approach de-

veloped by Montague [114]. Montague defines the syntactic and semantic rules for a

large fragment of the English language [114, 113], allowing us to write formal seman-

tic meanings, using higher order predicate language, for a large fragment of the English

language. However, we still had to write the rules for translating the English language

into its semantic meaning, which can then be used as a query for a computer or a goal

condition by a robot. Early methods like LUNAR, SHRDLU, Chat-80 and Tina used

hand-specified rules to translate between English and the formal semantic meaning.

These hand-specified rules made such early systems brittle, and did not allow them to

generalize to larger and more realistic domains.

Besides the problem of mapping natural language to its meaning, Harnad [53] de-

fined the problem of symbol grounding. Symbol grounding defines the problem of

mapping tokens or words in a language to a referent, that is, objects or sensory at-

tributes in the real world, or an abstract concept, that the language is referring to. A

more realistic example can be when Shakey the robot is asked to “USE BOX 2 TO

BLOCK DOOR DPDPCLK FROM ROOM RCLK,” it needs to know which objects

the tokens “DOOR” or “ROOM” refer to. In this dissertation we look at grounding

language to objects in the world, and behaviours that a robot is expected to perform.

While GOFAI helped define a lot of the fundamental problems of AI as a field the

solutions it proposed were brittle and did not scale very well beyond the domains that

the individual systems were developed upon. Part of the problem was the lack of data

available from different sources and domains; however, we also lacked models rich

11

enough to use these forms of data. As a response, recent approaches looked to use a lot

more data and more complex models to learn more generalizable behaviors. This was

partially enabled by the internet as we could collect images, language, and video data

more easily. In the next section we discuss some of the recent methods for solving AI

problems related to language and planning.

2.2 Recent Approaches for Language Grounding and

Planning

There are multiple ways to approach the problem of learning to ground language to

plans. In this section we first discuss methods that use or learn abstractions for plan-

ning. These methods were not developed with language in mind, but they form the

bedrock of an agent that can follow instructions. Moreover, these abstractions might

provide us with symbols abstracted to which we can ground language. We will then

look at methods that ground language to trajectories, goals, or objects specified by a

human user.

2.2.1 State and Action Abstractions

Human beings make abstractions about concepts and actions when solving tasks. For

example, when we are trying to pick an object, we do not think about every single

muscle contraction that our body makes, but only the overall “action” of reaching the

cup and picking it up. Similarly we can disregard all objects in the world except the cup,

allowing us to create a reduced or “abstracted” state of the world. Such abstractions

not only allow us to plan over longer horizon tasks, but also allow us to learn novel

tasks more easily. In this section we will look at the use of abstractions in an agent’s

state and actions to learn and or plan faster.

12

Action Abstraction

An action abstraction can be thought of as a sequence of actions that have a single la-

bel. The simplest way to consider action abstraction is to consider macro-actions [41],

which are just a fixed sequence of actions. Such actions are useful if the agent’s world

is deterministic and the agent can plan over multiple macro-actions to get to the goal.

A more holistic approach for action abstraction is the options framework [138]. An

option has a policy that provides an action that the agent can take for states it encounters

while performing the option. Such a policy allows the agent to handle unexpected states

that might arise due to stochasticity. Along with a policy, options have an initiation

set of states from where an option can be executed, and a termination set of states

which when reached indicate cessation of the option’s execution. This allows options

to be accessed in only from the initiation set, which in turn reduces the number of

options an agent might have to consider in any given state. Learning an option is

an open problem and involves learning its initiation set, termination set, and policy.

Different approaches have looked at learning options using human demonstrations [77]

or autonomously [80].

In robotics a common approach to modelling action abstractions is Dynamical

Movement Primitives (DMPs) [61]. DMPs model trajectories either by demonstra-

tion or by learning from scratch. DMPs consists of a second order dynamical system,

similar to a spring-mass physical system, that stably proceeds towards the goal of the

trajectory being learned. This stable dynamical system is then modulated using a pa-

rameterized linearly weighted function to create the required contour of the example

trajectory. Hence, DMPs provide an action abstraction that is both stable for use with

robotics [61], and learnable [117, 75].

13

State Abstraction

State abstraction considers the problem of merging states together that have some sim-

ilar property or feature. Common approaches have looked at merging states together

that have the same actions or costs or distance from goal as other states [90]. Other

approaches consider feature spaces and repetitions of features while solving a prob-

lem, which is especially useful in continuous state-action spaces. These features can

be Tile Coding [137], or Fourier Basis Functions [78], or learned features using a neu-

ral network [112]. Other approaches have tried to use the termination set of an action

abstraction as a form of state abstraction [79].

Methods that use a State Action Abstraction Hierarchy

Another common approach in learning or planning in large action spaces is to con-

struct a hierarchy with both state and action abstraction. MAXQ [33] is one of the

first approaches that provided a handcrafted state-action hierarchy and learned a policy

over this hierarchy. DetH* [12] is another top-down hierarchical approach that learns

a two-level hierarchy by breaking the state space into macro-states and planning de-

terministically over the macro-states. Hierarchical Task and Motion Planning in the

Now [68] provides a controller hierarchy with state abstraction to perform task and

motion planning. Similarly Hierarchical Task Networks (HTN) [39] allowed planning

in deterministic domains with abstracted pre- and post- conditions allowing determin-

istic planning in large domains. There have been other works attempting to learn HTN

hierarchies for efficient planning [115].

Hence there has been plenty of modern work attempting to specify and learn ab-

stractions for planning and learning. These approaches do not attempt to map language

to these learned abstraction hierarchies, but instead desire to learn abstractions that

make planning efficient. In the next section we will look at approaches that perform

language grounding to abstract concepts such as goals, objects or behaviors. In most

14

cases such abstractions are pre-specified, and are not subject to their suitability for

planning.

2.2.2 Language Grounding

The Language Grounding problem in the GOFAI era attempted to map language to

fixed symbol spaces that were observed, with queries whose grammar was fixed and

known. Modern methods attempt to accept more free-form language as input while also

learning the underlying symbolic representation to which language can be mapped.

Semantic parsing was initially used to solve instruction following problems [99, 6].

The goal of the field of semantic parsing was to convert natural language to inter-

pretable programs that can be run on computers. This requires goal conditions and

sub-goal conditions to be pre-specified. For example, if an agent was asked to “go to

the chair,” the agent would need a pre-specified goal condition that returns true when

the agent is next to the chair. These hand specified goal conditions are labor intensive

to design.

Some progress was made in learning symbols from data for instruction follow-

ing [140, 57]. These methods specifically learn symbols that can be used as constraints

and goal conditions within a probabilistic planner. They also use syntactic informa-

tion of the input sentence to ground verbs and referent objects correctly. While Tellex

et al. [140] attempt to map language directly to a constraint satisfying output trajectory,

Howard et al. [57] attempt to map language to constraints that can then be used by a

planner to generate a trajectory, reducing the size of the inference problem. Such an

approach has also been used to ask questions about missing parts of a plan [141].

Some recent work has tried to use neural approaches for sequence to sequence map-

ping from language to trajectories [3, 107]. These approaches have not been demon-

strated on robots, and might require an infeasible amount of data.

In other related work, Matuszek et al. [103] learned mappings from sentences to

15

attributes learned from sensor data directly using a joint language and object attribute

model. Such a learning method required very little language interaction data with the

objects to teach object attributes. Recently end-to-end approaches have allowed map-

ping language to object attributes in image data [70, 144]. Such end-to-end approaches

are generally performed on large databases of images collected on the internet.

2.3 Background

In this section we define some formalisms that we use throughout the dissertation.

2.3.1 Markov Decision Processes (MDP)

Throughout this work we consider the problem of an agent interacting with an envi-

ronment modeled as a Markov Decision Process (MDP) [13]. An MDP is defined by a

six-tuple (S,A, T , R, E , γ), where S is the environment state space; A is the agent’s

action space; T (s, a, s′) is a function defining the transition dynamics (i.e., the proba-

bility that a transition to state s′ will occur after taking action a in state s); R(s, a, s′)

is the reward function, which returns the reward that the agent receives for transition-

ing to state s′ after taking action a in state s; E ⊂ S is a set of terminal states that,

once reached, prevent any future action; and γ is the discount factor that differentiates

immediate and future rewards.

2.3.2 Planning Within an MDP

The goal of planning in an MDP is to find a policy—a mapping from states to actions—

that maximizes expected future discounted reward. Classical planning approaches like

Value Iteration applied the Bellman [13] equations to compute the optimal value of a

state. The value of a state can be defined as its maximum expected future discounted

reward given the optimal sequence of actions. The optimal value V ∗(s) needs to satisfy

16

the Bellman Equation, that is:

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV ∗(s′)). (2.1)

A practical method of computing the optimal value function is to use the Bellman

Backup [13], which uses estimates of the value function from the previous iteration:

Vn+1(s) = max
a∈A

∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γVn(s′)), (2.2)

where n is the number of iterations. This algorithm is called Value Iteration and it is

run until the values in V converge.

Bounded Real Time Dynamic Programming (BRTDP) [?] is a more efficient

planner that we use instead of value iteration. More importantly BRTDP is an anytime

algorithm, so we do not have to wait until convergence as in the case of value iteration.

BRTDP is a search based algorithm that maintains both an upper and a lower bound on

the true optimal value function from a state. The algorithm then explores actions with

the widest gaps between the upper and lower bounds. The algorithm uses the values of

upper bounds to return a greedy policy.

2.3.3 Object Oriented MDPs

Instead of using vanilla MDPs, we use a factored representation in the form of the

Object Oriented-MDPs (OO-MDPs) []. An OO-MDP adds sets of object classes and

propositional functions; each object class is defined by a set of attributes and each

propositional function is parameterized by instances of object classes. Further, we use

predicates in this work to represent constraints, sub-goals, and objectives specified in

instructions. A predicate based representation is rich enough to allow for planning

efficiently in domains with stochasticity and/or non-Markovian goal specifications.

17

2.3.4 Neural Sequence to Sequence Mapping for Translation

Apart from MDPs, some of the other related work uses deep neural network language

models to perform language grounding. Deep neural networks have had great success

in many natural language processing (NLP) tasks, such as traditional language model-

ing [15, 108, 109], machine translation [27, 29], and text categorization [62]. One rea-

son for their success is the ability to learn meaningful input representations [15, 110].

These “embeddings” are dense vectors that not only uniquely represent individual

words (as opposed to otherwise sparse approaches for word representation), but also

capture semantically significant features of the language. Another reason is the use

of recurrent neural networks (RNNs), a type of neural network cell that maps variable

length inputs (i.e. commands) to a fixed-size vector representation, which have been

widely used in NLP [27, 29, 154]. We will discuss RNNs and their functionality in

more detail in Chapter 5.

With this we finish our review of related work and background materials. Next

we will discuss an approach that attempts to plan fast in a stochastic setting using

hierarchies.

18

Chapter 3

Hierarchical Planning with

Abstract Markov Decision

Processes

This chapter has been previously presented at ICAPS 2017 as ”Plan-

ning with Abstract Markov Decision Processes,” with Marie desJardins,

Michael L. Littman, James MacGlashan, Shawn Squire, Stefanie Tellex,

John Winder and Lawson L. S. Wong [47]. The idea for such hierarchies

was developed before I joined the project. I was the primary driver of

this project and my contributions were programming the hierarchies and

evaluating these hierarchies in simulation and on the robot.

Planning in unstructured, multifaceted environments such as factory floors or kitchens,

is extremely challenging due to the large state and action spaces [18, 73]. The state–

action space in these domains grows combinatorially with the number of objects. Typ-

ical planning methods require the agent to explore the state–action space at its lowest

19

Figure 3.1: The continuous object manipulation domain, where the Turtlebot agent
needs to fetch a block into a goal room. The task is solved online with an AMDP
hierarchy that provides low-level actions to solve the abstractly defined task to “push
the block into the blue room”. The AMDP planner shows reactive control when moving
the blocks to deal with stochasticity of the environment and the robot’s controllers.

level, resulting in a search for long sequences of actions in a combinatorially large

state space. For example, cleaning a room requires arranging objects in their respective

places. A naive approach for arranging objects might have to search over all possible

states by placing all objects in all possible locations, resulting in an intractable infer-

ence problem with increasing objects.

One promising approach is to decompose planning problems in such domains into

a network of independent subgoals. This approach is appealing because the decision-

making problem for each subgoal is typically much simpler than the original problem.

There are two ways in which the decision problem can be simplified. First, instead of

selecting between actions, the agent can select between subgoals that are recursively

solved, decreasing the search depth. Second, the state representation of the world can

be compressed to include only information that is relevant to the current decision prob-

lem. Importantly, planning algorithms for each subproblem can be custom-tailored,

allowing each goal to be solved as efficiently as possible.

We propose Abstract Markov Decision Process (AMDP) hierarchies as a method

20

for reasoning about a network of subgoals. AMDPs offer a model-based hierarchical

representation that encapsulates knowledge about abstract tasks at each level of the hi-

erarchy, enabling much faster, more flexible top-down planning than previous methods

(see Section 3.1). An AMDP is an MDP whose states are abstract representations of

the states of an underlying environment (the ground MDP). The actions of the AMDP

are either primitive actions from the environment MDP or subgoals to be solved. An

AMDP hierarchy is an acyclic graph in which each node is a primitive action or an

AMDP that solves a subgoal defined by its parent. The main advantage of such a hi-

erarchy is that only subgoals that help achieve the main task need to be planned for;

crucially, plans for irrelevant subgoals are never computed. Another desirable prop-

erty of AMDPs is that agents can plan in stochastic environments, since each subgoal’s

decision problem is represented by an MDP. Moreover, each subgoal can be indepen-

dently solved by any off-the-shelf MDP planner best suited for solving that subgoal.

Finally, if each AMDP’s transition dynamics accurately models the subgoal outcomes,

then an optimal solution for each AMDP produces a recursively optimal solution for

the whole problem; if the transition dynamics are not accurate, then the error associated

with the overall solution can still be bounded (Section 3.2.1).

For example, consider the Taxi problem [33] shown in Figure 3.3a and its AMDP

hierarchy in Figure 3.2. The objective of the task is to deliver the passenger to their

goal location out of four locations on the map. The subgoal of Get Passenger, which

picks up the passenger from a source location, is represented by an MDP, with lower-

level navigation subgoals, Nav(R), and a passenger-pickup subgoal, Pickup. The state

space to solve the Get Passenger subgoal need not include certain aspects of the

environment such as the Cartesian coordinates of the taxi and passenger. To solve

this small MDP when picking up a passenger at the Red location, it is unnecessary

to solve for the subpolicy to navigate to the Blue location. Our hierarchy enables a

decision about which subgoal to solve without needing to solve the entire environment

21

MDP. Moreover, since the tasks are abstractly defined (for example, “take passenger

to blue location”), changing the task description from the “blue” to the “red” location

is straightforward, and users do not have to directly manipulate the reward functions at

each level of the hierarchy. This abstraction is useful in robotics, as human users can

simply change the top-level task description and the required behavior will be achieved

by the hierarchy.

In the next section, we discuss the relationship of our work to previous hierarchi-

cal planning methods. We then formally describe an AMDP hierarchy and planning

over AMDPs (Section 3.2). Our results (Section 5.4) show that AMDPs use sig-

nificantly less planning time than base-level planners and MAXQ to complete tasks

in domains with large state spaces. In smaller domains, such as the Taxi problem,

AMDPs do as well as a fast base planner like Bounded Real Time Dynamic Program-

ming (BRTDP) [106]; however, in large domains such as Cleanup World [98]—which

has multiple manipulable objects that require long plans—AMDPs can produce plans

orders of magnitude faster than all other planners we have examined. We also im-

plemented a continuous mobile manipulation domain on a Turtlebot, as shown in Fig-

ure 4.1, which is solved using an AMDP hierarchy that spans all the way from low-level

control actions to very high-level abstract goals, with exceptionally efficient planning.

Our approach enables the Turtlebot to choose actions at the lowest level of the hierarchy

at 20Hz. Further, if the environment changes (for example, if a target object moves),

the robot instantly replans and completes the task. AMDPs are the first hierarchical

method to allow real-time planning on abstractly specified object manipulation tasks in

stochastic environments with continuous variables.

3.1 Related Work

Subgoals and abstraction provide mechanisms for allowing an agent to efficiently search

large state/action spaces. One of the earliest reinforcement learning (RL) methods us-

22

ing the ideas of subgoals and abstraction is the MAXQ model [33]. MAXQ decom-

poses a “flat” MDP into smaller subtasks, each accompanying a subgoal and potentially

a state abstraction that is specific to the subtask’s goal. A subtask is a sequence of ac-

tions that is used to complete a subgoal. MAXQ constrains the choice of subtasks that

can be chosen in its hierarchy, depending on the context or parent task. MAXQ can

also use relevant state abstractions for each context, which speeds up learning. MAXQ

hierarchies were originally designed for use in model-free RL. However, they have

been used in planning settings [35]. An AMDP has the form of a non-primitive subtask

of a MAXQ hierarchy, but also includes an “abstract” transition and reward function

defined over the subtask’s children. AMDPs are therefore model-based, in contrast

to MAXQ. In AMDPs, these abstract transition and reward functions enable planning

purely at the abstract level, without needing to further descend to lower-level subtasks

or primitive actions until execution. In this work, we focus on the planning aspects

of AMDP hierarchies, and assume these abstract transition and reward functions are

given; later on in this dissertation we look at learning these subgoal conditions from

data.

A major limitation of MAXQ is that value functions over the hierarchy are found

by processing the state–action space at the lowest level and backing up values to the

abstract subtask nodes. This bottom-up process requires full expansion of the state–

action space, resulting in large amounts of computation. By contrast, Figure 3.2 shows

the Taxi task hierarchy, with shaded cells indicating the nodes that get expanded or

solved by an AMDP planner from the initial state in the environment. AMDPs model

each subtask’s transition and reward functions locally, resulting in faster planning, since

backup across multiple levels of the hierarchy is unnecessary. This top-down planning

approach decides what a good subgoal is before planning to achieve it. In this work,

because we want to compare planning speed across methods, we have provided the

transition and reward models for subtasks to the AMDP planner.

23

The concept of using a subtask model for computing a policy has also appeared in

previous work, such as R-MAXQ [65], a model-based learning algorithm for MAXQ.

However, in R-MAXQ, the transition and reward functions violate our model-abstraction

requirement: their local models are not self-contained. Instead, the effects of a sub-

task’s child are computed recursively, requiring planning for each child and descendant

for each state visited in the subtask. Learning transition functions in R-MAXQ requires

recursion all the way to the base level. AMDPs, by contrast, open the door to new learn-

ing algorithms that operate separately at each level, potentially requiring much less data

and computation to learn a model. Moreover, within most of these methods, there are

no means to use specialized planners or heuristics specific to a subtask.

Temporally extended actions [105] and options [138] are other commonly used

bottom-up planning approaches, that encapsulate reusable segments of plans into a

more tractable form, and are another way to represent subgoals. Generally, options are

used as pre-computed policies for planning; once available, options can speed up plan-

ning in large domains. However, these pre-computed policies may themselves be hard

to find. When policies for options are planned for with the entire task, they are as slow

as other bottom-up approaches. Moreover, although temporally extended actions can

decrease plan length and complexity, their inclusion also increases the branching factor

of search, and can lead to dramatic increases in planning time [66]. Recently, Konidaris

[76] discussed creating MDPs at multiple levels of the hierarchy with options, which

were used as precomputed policies. This hierarchy plans for a task completely at one

of the levels of the hierarchy, instead of planning only for the subgoals that are needed

across the hierarchy. Construction of these sets of options at multiple levels requires

searching through the entire hierarchy, bottom-up, which is slower than an AMDP-

based approach.

Top-down approaches have been used previously for planning and have shown im-

provements in planning speeds when compared to bottom-up methods. Hierarchical

24

Dynamic Programming (HDP) [11] is a top-down approach that was used for planning

in navigation problems. However, HDP is specific to navigation domains, and relies

on value iteration [14] for each subtask, whereas AMDPs allow any suitable planner

to be used for each subgoal. For example, for a navigation subtask, A* [54] might

be an appropriate method, but for a subtask of picking a particular object in a room

full of different objects, BRTDP [106] might be a better choice. Furthermore, the state

aggregations formed by HDP are based on the adjacency of physical locations, which

do not transfer to mobile manipulation completely, since the abstraction is not based

on completion of subgoals such as picking up passengers or objects. Nevertheless, the

previous application of HDP to robotic navigation provides strong evidence that the

AMDP approach generalizes to very large robotics-relevant problems; to support this

claim, we demonstrate the use of AMDPs in a full-stack mobile-robot controller.

Angelic hierarchical planning [102] also uses a top-down approach for planning.

However, its use is limited to deterministic domains, and it does not offer the mod-

ularity of using different planning algorithms at each node. DetH* [12] is another

top-down hierarchical approach that learns a two-level hierarchy by breaking the state

space into macro-states and planning deterministically over the macro-states. Domains

like Taxi have stochasticity in the higher levels of abstraction, so DetH* cannot be di-

rectly used. Further, DetH* does not allow planning in MDPs with a continuous state

space. AMDPs are a generalized top-down planner, which can solve in real time a va-

riety of stochastic domains with combinatorial and/or continuous state variables, and

can completely plan trajectories for a robot to perform mobile manipulation.

3.2 Abstract Markov Decision Processes

We consider the problem of an agent interacting with an environment that is modeled as

an MDP [13], which has previously been defined in Section 2.3. The goal of planning

in an MDP is to find a policy—a mapping from states to actions—that maximizes the

25

PUTDOWNPICKUP

ROOT

GET PUT

NAV(R) NAV(G) NAV(B)NAV(Y)

N S E W

Figure 3.2: The Taxi AMDP hierarchy. Nodes indicate subgoals which are solved using
an AMDP or a primitive action. The edges are actions belonging to the parent AMDP.
Shaded nodes indicate which subgoals are expanded by AMDPs in a given state. By
contrast, bottom-up approaches like MAXQ [33] expand all nodes in the figure. These
savings result in significant total planning computation gains: AMDP planning requires
only 3% of the number of backups that MAXQ requires for the Taxi problem.

expected future discounted reward.

Solving an MDP can be quite challenging, so we introduce the concept of an Ab-

stract MDP (AMDP) to simplify this process. An AMDP is an MDP in its own right,

but captures higher-level transition dynamics that serve as an abstraction of the lower-

level environment MDP with which the agent is interacting. Formally, we define an

AMDP as a six-tuple (S̃, Ã, T̃ , R̃, Ẽ , F). These are the usual MDP components, with

the addition of F : S → S̃, a state projection function that maps states from the en-

vironment MDP into the AMDP state space S̃. Additionally, the actions (Ã) of the

AMDP are either primitive actions of the environment MDP, or are associated with

subgoals to solve in the environment MDP. The transition function of the AMDP (T̃)

must capture the expected changes in the AMDP state space upon completion of these

subgoals. With these action and state semantics, an AMDP, in effect, defines a decision

problem over subgoals for the environment MDP.

Naturally, each subgoal for a task must be solved. However, even a single subgoal

might be challenging to solve in the environment MDP. Therefore, we introduce the

26

concept of an AMDP hierarchy H = (V,E), which is a directed acyclic graph (DAG)

with labeled edges. The vertices of the hierarchy V consist of a set of AMDPsM and

the set of the primitive actions A of the environment MDP. The edges in the hierarchy

link multiple AMDPs together, with the edge label associating the action of an AMDP

with either a primitive environment action or a subgoal that is formulated as an AMDP

itself. Consequently, an AMDP hierarchy recursively breaks down a problem into a

series of small subgoals.

For example, consider the Taxi problem, where the objective is to ferry a passenger

to their goal location with AMDP hierarchy shown in Figure 3.2. The AMDP for

the Get Passenger subgoal has access to the location-parameterized abstract action

Nav(i) and the primitive action Pickup. The abstract states and projection function in

this AMDP remove the Cartesian coordinates of the taxi and passenger, replacing both

with a discrete value corresponding to one of the colored destinations. The termination

states consist of any states in which the passenger is in the taxi. The reward function is

simply defined to return +1.0 when the passenger is picked up. The navigate to Red

subgoal, Nav(R), which is referenced by Get Passenger, is itself another AMDP. In

this case, its actions consist only of the primitive environment actions, North, South,

East, and West. Its states and state projection function exclude variables related to the

passenger and its terminal states are defined to be states in which the taxi is at the Red

location. The reward function returns 1 when the Red location is reached, 0 otherwise.

The AMDP definition for the other Nav subgoals is similar.

Although there are many possible ways to define state abstractions, a useful heuris-

tic is subgoal-based state abstraction. Subgoals specifically allow the condition of Re-

sult Distribution Irrelevance [33], in which the state space collapses into a few states at

the end of a temporally extended action, behaving as a “funneling action,” allowing a

concise representation of the abstract state space.

When a parent AMDP invokes a lower-level node, it expects that particular subgoal

27

Algorithm 1 Online Hierarchical AMDP Planning

function SOLVE(H)
GROUND(H,ROOT(H))

function GROUND(H, i)
if i is primitive then . recursive base case

EXECUTE(i)
else

si ← Fi(s) . project the environment state s

π ← PLAN(si, i)
while si /∈ Ei do . execute until local termination

a← π(si)
j ← LINK(H, i, a) . a links to node j

GROUND(H, j)
si ← Fi(s)

to be achievable; there is currently no mechanism for backtracking. This is potentially

problematic if the lower-level AMDP’s failure conditions are not expressible in the

higher-level state abstraction, since the parent would then have no means to reason

about the failure. We currently avoid this problem by ensuring that termination sets

include all failure conditions, and designing higher-level state spaces that are capable

of representing such failures. However, if the abstractions are themselves imperfect

(e.g., learned), then we would likely need to address the problem of failure recovery.

3.2.1 Planning in AMDPs

In this section, we describe how to plan with a hierarchy H of AMDPs. The critical

property of our planning approach is to make decisions online in a top-down fashion

by exploiting the transition and reward function defined for each AMDP. In this top-

down methodology, planning is performed by first computing a policy for the root

AMDP for the current projected environment state, and then recursively computing

the policy for the subgoals the root policy selects. Consequently, the agent never has

to determine how to solve subgoals that are not useful subgoals to satisfy, resulting in

significant performance gains compared to bottom-up solution methods. This top-down

28

approach does require that the transition model and reward function for each AMDP

are available. In this work, we assume they are given by a designer to demonstrate

the power afforded by this top-down approach. However, in the future, we plan to

investigate how to learn these abstract transition models and reward functions by using

model-based reinforcement learning approaches. Our work is analogous to hierarchical

task network (HTN) planners, which use designer-provided background knowledge to

guide the planning process, but can also be learned from observation [115]

Pseudocode for online hierarchical AMDP planning is shown in Algorithm 1. Plan-

ning begins by calling the recursive ground function from the root of H . If node i

passed to the ground function is a primitive action in the environment MDP, then it is

executed in the environment. Otherwise, the node is an AMDP that requires solving.

Before solving it, the current environment state s is first projected into AMDP i’s state

space with AMDP i’s projection function Fi. Next, any off-the-shelf MDP planning

algorithm associated with AMDP i is used to compute a policy. The policy is then

followed until a terminal state of the AMDP is reached. Following actions selected by

the policy for AMDP i involves finding the node the actions links to in hierarchy H ,

and then calling the ground function on that node. Note that after the ground function

returns, at least one primitive action in the environment should have been executed.

Therefore, after ground is called, the current state for the AMDP is updated by project-

ing the current state of the environment with Fi.

AMDP planning can be substantially faster than general MDP planning for two

reasons. First, the hierarchical structure allows high-level AMDP actions to specify

subgoals for the lower-level MDPs, dramatically decreasing search depth. Second,

each subgoal can take advantage of strong heuristics or planning knowledge that is not

easily incorporated into a planning algorithm solving the global problem. For exam-

ple, in the Taxi problem, the navigation subgoals enable A* to be used with a strong

heuristic, such as Euclidean distance from the goal, to help complete the subtasks. By

29

contrast, bottom-up hierarchical algorithms, including MAXQ, do not afford the abil-

ity to use custom planning algorithms for each subgoal and require expanding subgoals

that will ultimately prove unhelpful to solving the task.

Since hierarchical planners constrain which decisions can be made, optimal so-

lutions to them do not necessarily maximize the expected future reward for the un-

derlying environment MDP. Dieterrich [33] distinguishes between optimality for the

environment and several notions of optimality that are constrained by the hierarchy.

A hierarchically optimal policy is one that achieves the maximum reward at the base

level, subject to the constraint that actions are consistent with the given hierarchical

structure. By contrast, recursive optimality is a local concept in which the policy is

optimal at each level of the hierarchy; that is, the policy at each node is optimal given

the policies of its children. A MAXQ policy is recursively optimal [33].

Actions in an AMDP are chosen to be optimal with respect to its level of abstrac-

tion, given any goal conditions from the level above. The notion of optimality within

each level of abstraction is weaker than recursive optimality, since the abstract MDPs

do not query the transition and reward functions of the flat MDP to learn a correct

semi-MDP (SMDP) [138] model of the task while planning. However, with appropri-

ate design a planner optimal at each abstract level can be as effective as a recursively

optimal planner. An AMDP hierarchy without state abstraction is equivalent to solving

the base-level MDP with temporally extended actions in the form of subtasks. Without

state abstraction, if the transition and reward functions for each AMDP respect the true

multi-timestep transitions for completing those subgoals in the environment, and each

AMDP is optimally solved, then the solutions of the hierarchical MDP planner will

be recursively optimal by definition [33]. Further, Brunskill and Li [23], in Lemma 5,

prove that bounded error in an SMDP transition and reward function leads to bounded

30

error in its value function and Q function. That is:

|Q∗1(s, a)−Q∗2(s, a)| ≤ max
s,a

εs,a , (3.1)

whereQ∗1(s, a) andQ∗2(s, a) are the optimal Q values of the state–action pair under two

different SMDP models, and ε is a polynomial function of the difference in the transi-

tion and reward functions of the two SMDPs. Hence, without state abstraction, AMDPs

with bounded error in their transition and reward functions would have bounded errors

in their value function. Consequently, using imperfect AMDP models can still produce

reasonable results.

3.2.2 Example AMDP Hierarchies

As examples of source (environment) MDPs and AMDP hierarchies, we present hier-

archies for Cleanup World [98] and the “fickle taxi” domain used by Dieterrich [33] for

MAXQ. We use the object-oriented MDP (OO-MDP) formalism to represent these do-

mains [36]. These hierarchies are extensively defined in the supplementary material.1

Fickle Taxi

The Fickle Taxi problem was used by Dieterrich [33] to introduce the MAXQ plan-

ning hierarchy. We created AMDP analogs for the hierarchical structure used in the

original MAXQ work. In the flat (level 0) MDP, there are six actions: north, south,

east, west, pickup passenger, and drop passenger. States in the flat MDP consist of the

physical grid-cell coordinates of passengers, taxi, and locations. Locations and pas-

sengers also have a color attribute, and the taxi has an attribute pointing to its current

passenger, if any. Movement actions of the taxi are noisy with a probability of 0.2, and

the passenger changes their destination after getting in the taxi with a probability of

0.3. The stochasticity of the fickle passenger penalizes hierarchical methods that use

1http://h2r.cs.brown.edu/wp-content/uploads/2017/03/AMDP-ICAPS-SupplementaryMaterial.pdf

31

temporally extended navigation actions, which terminate only when the taxi reaches

the goal location.

At level 1 of the hierarchy, the abstract actions are Pickup, which puts a passenger

into the taxi if they are at the same location; Putdown, which drops a passenger off

at the current location; and Nav(i), which drives the taxi to location i. The transitions

have been defined deterministic at this level; however, they can be defined stochasti-

cally according to the passenger’s fickle behavior. The state for this AMDP abstracts

away the physical coordinates of passengers, taxi, and goal locations, replacing them

with level 1 passenger and taxi variables, each containing one of the four possible lo-

cations or an “on-road” designation that represents all states in which the taxi and the

passengers are not at one of the four locations. For Nav(R), the reward function returns

1 when the taxi is at location Red, and 0 otherwise. Nav(R) terminates when the taxi

is at the location Red.

At level 2, the AMDP actions are Get, which puts the passenger into the taxi; and

Put, which drops the passenger at their destination. The states abstract away the taxi

and passenger locations. Hence, the subtask hierarchy of MAXQ is similar to AMDPs;

however, the task decomposition is local in its reward functions, transition function, and

value function or planning computations, resulting in substantial savings in planning

time.

Cleanup World

Our second evaluation domain is Cleanup World [98], a mobile-manipulation task, as

shown in Figure 3.4a. Cleanup World is a good testbed for planning algorithms, be-

cause its state space grows combinatorially with the number of objects and rooms,

similar to real-world robotics planning problems. The robot can have a variety of

goals, such as moving the chair to the red room or moving all objects to the blue room.

Abstract actions include moving to a door connected to the room in which the robot

32

(a) Taxi problem

102 103 104 105 106

Num. backup operations

0

20

40

60

80

100

%
 ta

sk
s

co
m

pl
et

ed

AMDP
BRTDP
MAXQ

(b) Percentage of completed
plans (of 1000 problems),
given a backup budget.

102 103 104 105 106

Num. backup operations

0

20

40

60

80

A
vg

. n
um

. s
te

ps

AMDP
BRTDP
MAXQ

(c) Average number of steps
needed to deliver the passen-
ger in completed plans.

Figure 3.3: Taxi domain using AMDPs, base-level planning (BRTDP), and MAXQ.
AMDPs and the base-level planner have almost 100% completion rate after 4000
backup operations, whereas MAXQ needs orders of magnitude more backups to plan.

currently resides, moving from a door to a connected room, moving to an object cur-

rently in the same room (or doorway) as the robot, taking an object next to the robot

to a door, and taking an object from a door to a connected room. The source MDP

goal conditions for each of these AMDP actions can be defined based on the action

arguments. Using the MoveToDoor(d) AMDP as an example, its reward function re-

turns 1 when the agent is at the specified doorway d, and 0 otherwise. MoveToDoor(d)

terminates at any state in which the robot is in the doorway.

The abstract actions define a corresponding state representation that abstracts away

the geometric spatial information from the source OO-MDP. Such a representation re-

tains the same objects as the source OO-MDP, but represents objects’ positions and the

room–door topology relationally instead of spatially. Specifically, the robot and house-

hold objects have an attribute that points to the doorway/room in which they reside; the

robot has an attribute that points to adjacent household objects; and the room points

to connected doorways (and vice versa). A second-level AMDP involves even higher-

level actions, such as taking any given object to any given room. The corresponding

high-level state space for this AMDP abstracts away the room-door topology.

33

(a) Cleanup World
(4rm)

104 105 106 107

Number of backup operations

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 ta

sk
s

co
m

pl
et

ed

AMDP (3rm)
AMDP (4rm)
BRTDP (3rm)
BRTDP (4rm)

(b) Tasks completed within a
planning budget.

104 105 106 107

Number of backup operations

20

30

40

50

60

70

A
ve

ra
ge

 s
te

ps
 to

 c
om

pl
et

io
n

AMDP (3rm)
AMDP (4rm)
BRTDP (3rm)
BRTDP (4rm)

(c) Steps taken to move an object
to a room.

Figure 3.4: (a) Cleanup World (4-room configuration shown) using AMDPs and base-
level (BRTDP) planning. (b-c) AMDPs (black) have near-perfect completion rates,
finding plans of similar length orders of magnitude faster than BRTDP (red).

3.3 Results

We compared AMDP planning performance against a flat planner and MAXQ in Fickle

Taxi and Cleanup World. For each method, we generated plans using bounded RTDP [106],

a state-of-the-art method with performance guarantees. We used MAXQ with state ab-

straction, that is, MAXQ-Q by Dieterrich [33]. We compared approaches via two met-

rics: (1) Bellman updates/backups needed for effective planning and (2) steps taken to

solve the task given a budget of Bellman updates. We plotted the average steps to com-

pletion only if the task was solved in more than 5% of 1000 trials. We recognize that

MAXQ is learning a Q-function model-free; however, it is the closest comparison to

AMDPs in terms of state and temporal abstraction. We also implemented a comparison

to options, but found, consistent with Jong et al. [66], that they performed less well than

the base-level planner. For more details please refer to Gopalan et al. [46]. We cannot

use other top-down approaches, because HDP does not generalize to non-navigation

based domains and DetH* does not allow multi-level hierarchies or stochastic transi-

tions at higher levels of abstraction, which are needed for Taxi. We further used the

AMDP hierarchy for Cleanup World to control a Turtlebot in a continuous space with

planning over low-level control actions in the lowest level of the hierarchy.

34

3.3.1 Taxi Domain

In Taxi, we defined a task to be completed if a planner found a solution that executed

≤ 100 primitive actions. For MAXQ, we used the same state abstractions and tuned

parameters given by Dieterrich [33]. MAXQ required about 32,000 updates/backups to

first becoming capable of completing the task, and about 256,000 backups to learn an

optimal policy. By contrast, as shown in Figure 3.3b, AMDPs exhibited a 100% com-

pletion rate at 8000 backups, slightly faster than the base-level planner. The number

of steps to complete the task with AMDPs (22.5) was higher than the base-level plan-

ner (19.8) (see Figure 3.3c), because the hierarchical action of navigate is penalized

by the passenger’s fickle behavior. The base-level planner outperforms AMDPs in this

domain because the taxi task is relatively simple and plans are very short. However,

this will no longer be the case when the domain’s state space is combinatorially large.

3.3.2 Cleanup World

We constructed two different configurations of the Cleanup World domain. The first

configuration (3rm) had 3 rooms with 3 objects and about 56 million states. The op-

timal plan was 25 steps. The second configuration (4rm, shown in Figure 3.4a) had 4

rooms with 3 objects and more than 900 million states. The optimal plan was 48 steps

long. We defined the task to be completed if the agent is able to solve it within 5 times

the number of steps to solve the task optimally.

In both configurations, AMDPs solved the task with an order of magnitude fewer

backups than the base-level BRTDP, as shown in Figure 3.4. AMDPs solved 3rm and

4rm to almost 100% completion rate with about 5000 and 80,000 backups, respectively,

whereas BRTDP needed 320,000 and 512,000 backups, respectively, to achieve the

same performance.

We also solved a basic Cleanup World problem with 3 rooms and one object (25,000

states), in which both AMDPs and the base-level planners could find the optimal solu-

35

(a) Starting position for the
turtlebot.

(b) Moving to capture the
block.

(c) Pushing the block into
the goal room.

Figure 3.5: In this figure, we see that the robot starts from a random position and pushes
the block into the goal room, with blue walls, using its arms. The robot makes minor
corrections in trajectories when it overshoots.

tion within 500 backups, showing that the task was simple enough not to need complex

hierarchies. However, we found that, even in this simplified configuration, MAXQ was

unable to find a solution with 8,000,000 backups.

AMDPs have a particular advantage in Cleanup World because long plans are

needed, and solving tasks requires manipulating one out of many present objects. Such

combinatorial state spaces are present in everyday manipulation tasks, and AMDPs are

better equipped than other hierarchical methods or base-level planning to tackle them.

3.3.3 Continuous Cleanup World on Turtlebot

To illustrate the ability of AMDP hierarchies to transfer between domains and use dif-

ferent planners at different levels, we constructed a continuous version of a 3-room,

1-object Cleanup World domain, which we tested on a Turtlebot. The agent in Contin-

uous Cleanup World is a modified TurtleBot with a pair of appendages that can guide

blocks. The appendages make pushing the block easy; however, they make movement

within the domain hard, as a point turn is not possible in most places, increasing the

overall plan lengths.

At level 0, the agent has a continuous position in Cartesian coordinates, in a 9ft×9ft

world. The agent also has a continuous angle attribute for its orientation. The Turtlebot

can move forward and turn clockwise/counter-clockwise. The continuous forward ac-

tion moves the robot forward by about 0.1ft. The turn actions change the orientation of

36

(a) Trying to push the
block to the goal.

(b) Losing the block
accidentally.

(c) Adjusting trajec-
tory.

(d) Getting to the
goal.

Figure 3.6: This figure shows the importance of having MDPs to control the lowest
level of the hierarchy. The Turtlebot starts to push the block into the goal location, but
has the block removed from its arms, and replaced at another location. The Turtlebot
corrects its trajectory immediately, getting to the block and pushing it into the goal.

the agent about 0.15 radians. The object also has a continuous position attribute. The

objective again is to move the object to a goal room, from any location in the world.

Our abstraction of the continuous source MDP connects to the (discrete) Cleanup

World AMDP hierarchy from the previous subsection. At level 1, we discretize the

world into 9 × 9 cells and the agent’s bearing into the 4 cardinal directions. The sub-

tasks at this level are moving forward by one grid cell, and turning clockwise/counter-

clockwise by π
2 radians. This level-1 AMDP corresponds to the source MDP of (dis-

crete) Cleanup World, so we immediately obtain higher-level abstractions for Contin-

uous Cleanup World as well. Additionally, the top-down nature of AMDP planning

enables the retention of all higher-level models and previously computed policies. By

contrast, bottom-up approaches such as MAXQ would have needed to re-solve all sub-

tasks.

In addition to the above level-1 abstraction, we also need to specify how to solve

level-1 subtasks. Since the source MDP is continuous, low-level planners such as

Rapidly Exploring Randomized Trees [89] could have been used to plan short distances

of single grid movement. However, we use closed-loop controllers, because they allow

faster planning and are less complicated to specify for these small movements. This

domain application shows how different planners can be used at different levels of the

AMDP hierarchy, depending on their suitability.

The Turtlebot is controlled using movement messages sent by our planner over

37

ROS [126] at 20Hz. Our planners can publish commands at over 100Hz, but 20Hz is

the standard rate at which the Turtlebot publishes commands to its mobile base. The

robot can be moved faster by publishing higher velocities per motion command, but we

do not want the Turtlebot to move too quickly within the lab. The location and pose of

the Turtlebot and the object are obtained using a motion capture system.

Put together, our AMDP hierarchy solves this continuous problem in real time. We

can see in the video2 that the robot plans in real time to complete the manipulation

task as shown in Figure 3.5. The robot makes minor corrections to its trajectory and

recovers from mistakes in real time. It also recovers when the object is removed from

its arms, and replans to recover the object instantaneously to push the object to the goal

location as shown in Figure 3.6. This shows that fast reactive control is possible in

top-down hierarchies such as AMDPs, even in domains with significant stochasticity.

Furthermore, the hierarchy allows us to control the robot at different levels of abstrac-

tion, since we can execute any subgoal by only planning with its subtree in the task

hierarchy.

3.4 Conclusion

In this chapter we introduced a novel planning approach using Abstract Markov De-

cision Process (AMDP) hierarchies, which decompose large planning problems into

AMDPs, representing subtasks that have local transition and reward functions. AMDPs

compute plans for large problems orders of magnitude faster than other planners. Op-

tions and MAXQ may fail to plan in large domains because of the time spent on re-

cursively decomposing the value functions from the base level. Hence, even though

MAXQ and options provide strong theoretical guarantees of being recursively and hier-

archically optimal, respectively, their planning time might be too long for actual agents

to act in the world. AMDPs, on the other hand, offer a weaker notion of optimality

2https://youtu.be/Bp3VEO66WSg

38

at every abstract level, but allow faster planning in large domains. Previous top-down

planning approaches such as HDP and DetH* are not generic enough to allow mobile

manipulation in stochastic continuous domains. Moreover, the AMDP hierarchical

structure allows AMDPs to be invariant to small changes in stochasticity at the flat

level. This property has useful applications in robotics, when accurate models for the

base-level transitions are not available, allowing the robot to recover reactively from

missteps or environmental noise.

We demonstrated with the Taxi and Cleanup World domains that AMDPs trade

orders-of-magnitude faster planning time for potentially suboptimal solutions. Addi-

tionally, in the Turtlebot Continuous Cleanup World, our AMDP hierarchy provides a

model for a robot’s entire capability stack. This unified model allows tasks, specified

as high-level abstract goals, to be efficiently planned for and grounded into low-level

control actions. This planning speedup is crucial for planning in large domains such as

robotics, navigation, and search and rescue.

There has been significant follow up work performed to learn AMDPs. Winder

et al. [151] attempted to learn the transition dynamics of individual AMDPs within a

given hierarchy. Roderick et al. [130] attempted to learn model-free policies within

each AMDP, while learning abstract actions given a state hierarchy. The state hierar-

chies were pre-specified using the ROM data of Atari Games. In Chapters 4, 5 and 6

AMDPs are used for the underlying planning to satisfy the high level behavior spec-

ified using natural language. In Chapter 7 we learn subgoal conditions that a planner

can satisfy. We hope that such a method would be used with language to learn AMDP

hierarchies in the future.

39

40

Chapter 4

Interpreting Human-Robot

Commands at Multiple Levels

of Abstraction via Classification

This chapter in the dissertation has been previously presented at RSS

2017 as “Accurately and Efficiently Interpreting Human-Robot Instruc-

tions of Varying Granularities,” with Dilip Arumugam, Siddharth Karam-

cheti, Lawson L. S. Wong and Stefanie Tellex [8]. The core idea to use

language with abstractions came from Stefanie to show capabilities of

the AMDP hierarchies from the previous chapter. The importance of this

chapter in my dissertation, and my contribution, is the timing analysis

for AMDP hierarchies when connected to a language grounding pipeline.

The timing analysis establishes the importance of hierarchies for real time

behavior on a robot, and led my interest in combining language and hi-

erarchies in other parts of my thesis. The language grounding work here

41

was done by Dilip and Siddharth.

Figure 4.1: Examples of high-level and
fine-grained commands issued to the
Turtlebot robot in a mobile-manipulation
task.

In everyday speech, humans use lan-

guage at multiple levels of abstraction.

For example, a brief transcript from an

expert human forklift operator instruct-

ing a human trainee has very abstract

commands such as “Grab a pallet,” mid-

level commands such as “Make sure

your forks are centered,” and very fine-

grained commands such as “Tilt back a

little bit” all within thirty seconds of dia-

log. Humans use these varied granulari-

ties to specify and reason about a large variety of tasks with a wide range of difficulties.

Furthermore, these abstractions in language map to subgoals that are useful when inter-

preting and executing a task. In the case of the forklift trainee above, the sub-goals of

moving to the pallet, placing the forks under the object, then lifting it up are all implic-

itly encoded in the command “Grab a pallet.” In this chapter we decompose generic,

abstract natural language commands into an AMDP hierarchy’s subgoals, which al-

lows human users to exert more specificity with planning efficiency and control in the

robot’s planning and execution of tasks.

Existing approaches map between natural language commands and a formal repre-

sentation at some fixed level of abstraction [26, 104, 140]. While effective at directing

robots to complete predefined tasks, mapping to fixed sequences of robot actions is un-

reliable in changing or stochastic environments. Accordingly, MacGlashan et al. [98]

decouple the problem and use a statistical language model to map between language

and robot goals, expressed as reward functions in an MDP. Then, an arbitrary planner

solves the MDP, resolving any environment-specific challenges with execution. As a

42

result, the learned language model can transfer to other robots with different action sets

so long as there is consistency in the task representation (i.e., reward functions). How-

ever, MDPs for complex, real-world environments face an inherent tradeoff between

including low-level task representations and increasing the time needed to plan in the

presence of both low- and high-level reward functions [47].

To address these problems, we present an approach for mapping natural language

commands of varying complexities to reward functions at different levels of abstraction

within a hierarchical planning framework. This approach enables the system to quickly

and accurately interpret both abstract and fine-grained commands. Our system uses a

deep neural network language model that classifies natural language commands to the

appropriate level and reward function of an AMDP planning hierarchy. By coupling

abstraction-level inference with the overall grounding problem, we exploit the subse-

quent hierarchical planner to efficiently execute the grounded tasks. To our knowledge,

we are the first to contribute a system for grounding language at multiple levels of

abstraction.

Our evaluation shows that classification based deep neural network language mod-

els can infer reward functions more accurately than statistical language model base-

lines. We present results comparing a traditional statistical language model to three

different neural architectures that are commonly used in natural language processing.

Furthermore, we show that a hierarchical approach allows the planner to map to a

larger, richer space of reward functions more quickly and more accurately than non-

hierarchical baselines. This speedup allows the robot to respond faster and more accu-

rately to a user’s request, with a much larger set of potential commands than previous

approaches. We also demonstrate the rapid and accurate response of our system to

natural language commands at varying levels of abstraction on a Turtlebot.

43

4.1 Related work

Humans use natural language to communicate ideas, motivations, task descriptions,

etc. with other humans. Some of the earliest work in this area mapped tasks to an-

other planning language, which then grounded to the actions performed by the robots

[38, 26]. More recent methods ground natural language commands to tasks using fea-

tures that describe correspondences between natural language phrases present in the

task description to the physical objects [57, 104, 140, 20, 127], or abstract spatial con-

cepts [123] present in the world and the actions available in the world. This featurized

representation can then describe the sequence of actions needed to complete the task.

All these approaches ground commands to action sequences, leading to brittle behavior

if the environment is stochastic.

MacGlashan et al. [98] proposed grounding natural language commands to reward

functions associated with certain tasks, allowing robot agents to plan in stochastic envi-

ronments. They treat the goal reward function as a sequence of propositional functions,

much like a machine language, to which a natural language task can be translated, using

an IBM Model 2 [21, 22] (IBM2) language model. While their propositional functions

only lie at one level of abstraction, we want the robot to understand commands at dif-

ferent levels of specificity while still maintaining efficient planning and execution in

the face of multiple levels of abstraction.

Crucially, MacGlashan et al. [98] actually perform inference over reward function

templates, or lifted reward functions, along with environmental constraints. A lifted re-

ward function merely specifies a task while leaving the environment-specific variables

of the task undefined. The environmental binding constraints then specify the proper-

ties that an object in the environment must satisfy in order to be bound to a lifted reward

function variable. By doing this, the output space of the language model is never tied

to any particular instantiation of the environment, but can instead align to objects and

attributes that lie within some distribution over environments. Given a lifted reward

44

function and environment constraints (henceforth jointly referred to as only a lifted re-

ward function), a subsequent model can later infer the environment-specific variables

without needing to relearn the language understanding components for each environ-

ment. In order to leverage this flexibility, all of our proposed language models produce

lifted reward functions which are then completed by a grounding module before being

passed to the planner (see Sec. 4.3). Specifically we use an AMDP planner, introduced

in the previous chapter, to allow fast hierarchical planning in large combinatorial do-

mains. Moreover the reward functions at different levels of an AMDP hierarchy allows

specifying behavior at different levels of granularity.

We use a deep neural network language model to perform language grounding.

Our approach uses both word embeddings and a state-of-the-art RNN model to map

between natural language and MDP reward functions.

4.2 Technical Approach

To interpret a variety of natural language commands, there must be a representation

for all possible tasks and subtasks. We specify an OO-MDP [36] to model the robot’s

environment and actions.

An OO-MDP builds upon an MDP by adding sets of object classes and proposi-

tional functions; each object class is defined by a set of attributes and each propositional

function is parameterized by instances of object classes. For example, an OO-MDP for

the mobile robot manipulation domain seen in Figure 4.1 might denote the robot’s suc-

cessful placement of the orange block into the blue room via the propositional function

blockInRoom block0 room1, where block0 and room1 are instances of the block and

room object classes respectively and the blockInRoom propositional function checks if

the location attribute of block0 is contained in room1. Using these propositional func-

tions as reward functions that encode termination conditions for each task, we arrive

at a sufficient, semantic representation for grounding language. For our evaluation, we

45

use the Cleanup World [67, 98] OO-MDP, which models a mobile manipulator robot;

this domain is defined in Sec. 5.3.1.

However, this approach does not generalize well to different environment configu-

rations. At training time, any natural language command that moves objects or agents

to a specific room is conditioned to map room attributes to specific room instances (i.e.

in the case of Figure 4.1, the blue room is always room1). With this in mind, consider

what happens if we switched the blue and green rooms at test time, so that the green

room is now room1. In this case, any language command that moves an object or agent

to the blue room would fail, as the room instances have been switched around.

To this end, we “lift” the propositional functions from before, to better generalize

to unseen environments. Given a command like “Take the block to blue room,” the cor-

responding lifted propositional function takes the form blockInRoom block0 roomIs-

Blue, denoting that the block should end up in the room that is blue. We then assume

an environment-specific grounding module (see Sec. 4.3.3) that consumes these lifted

reward functions and performs the actual low-level binding to specific room instances,

which can then be passed to a planner.

In order to effectively ground commands across multiple levels of complexity, we

assume a predefined AMDP hierarchy over the state-action space of the given ground-

ing environment. Furthermore, each level of this hierarchy requires its own set of

reward functions for all relevant tasks and sub-tasks. Finally, we assume that the entire

command at runtime is generated from a single, fixed level of abstraction.

Given a natural language command c, we find the corresponding level of the ab-

straction hierarchy l, and the lifted reward function m that maximizes the joint proba-

bility of l, m given c. Concretely, we seek the level of the state-action hierarchy l̂ and

the lifted reward function m̂ such that:

l̂, m̂ = arg max
l,m

Pr(l,m | c), (4.1)

46

For example, as illustrated in Figure 4.1, a high-level natural language command like

“Take the block to the blue room” would map to the highest abstraction level, while a

low-level command like “Go north a little bit” would map to the finest-grained level.

We estimate this joint probability by learning a language model (described in Sec. 4.3)

and training on a parallel corpus that pairs natural language commands with a corre-

sponding reward function at a particular level of the abstraction hierarchy.

Given this parallel corpus, we train each model by directly maximizing the joint

probability from Eqn. 4.1. Specifically, we learn parameters θ̂ that maximize the corpus

likelihood:

θ̂ = arg max
θ

∏
(c,l,m)∈C

Pr(l,m | c, θ). (4.2)

At inference time, given a language command c, we find the best l, m that maximize

the probability Pr(l,m | c, θ̂). The lifted reward function m is then completed by the

grounding module (see Sec. 4.3.3) and passed to a hierarchical planner, which plans

the corresponding task at abstraction level l.

4.3 Language Models

We compare four language models: an IBM Model 2 translation model (similar to

MacGlashan et al. [98]), a deep neural network bag-of-words language model, and

two recurrent neural network (RNN) language models, with varying architectures. For

detailed descriptions and implementations of all the presented models, as well as the

datasets used throughout this chapter, please refer to the supplemental repository1.

1https://github.com/h2r/GLAMDP

47

https://github.com/h2r/GLAMDP

4.3.1 IBM Model 2

As a baseline, task grounding is formulated as a machine translation problem, with

natural language as the source language and semantic task representations (lifted re-

ward functions) as the target language. We use the well-known IBM Model 2 (IBM2)

machine translation model [21, 22] as a statistical language model for scoring reward

functions given input commands. IBM2 is a generative model that solves the following

objective (equivalent to Eqn. 4.1 by Bayes’ rule):

l̂, m̂ = arg max
l,m

Pr(l,m) · Pr(c | l,m). (4.3)

This task grounding formulation follows directly from MacGlashan et al. [98] and

we continue in an identical fashion training the IBM2 using the standard EM algorithm.

4.3.2 Neural Network Language Models

We develop three classes of neural network architectures (see Figure 4.2): a feed-

forward network that takes a natural language command encoded as a bag-of-words and

has separate parameters for each level of abstraction (Multi-NN), a recurrent network

that takes into account the order of words in the sequence, also with separate parameters

(Multi-RNN), and a recurrent network that takes into account the order of words in the

sequence and has a shared parameter space across levels of abstraction (Single-RNN).

Multi-NN: Multiple Output Feed-Forward Network

We propose a feed-forward neural network [15, 62, 110] that takes in a natural language

command c as a bag-of-words vector ~c, and outputs both the probability of each of the

different levels of abstraction, as well as the probability of each reward function. We

decompose the conditional probability from Eqn. 4.1 as Pr(l,m | c) = Pr(l | c) ·

Pr(m | l, c). Applying this to the corpus likelihood (Eqn. 4.2) and taking logarithms,

48

(a) Multi-NN Model (b) Multi-RNN Model (c) Single-RNN
Model

Figure 4.2: Model architectures for all three sets of deep neural network models. In
blue are the network inputs, and in red are the network outputs. Going left to right, the
green denotes significant structural differences between models.

the Multi-NN objective is to find parameters θ̂:

θ̂ = arg max
θ

∑
(~c,l,m)

logPr(l | ~c, θ) + logPr(m | l,~c, θ), (4.4)

To learn this set of parameters, we use the architecture shown in Figure 4.2a.

Namely, we employ a multi-output deep neural network with an initial embedding

layer, a hidden layer that is shared between each of the different outputs, and then

output-specific hidden and read-out layers, respectively.

The level selection output is a k-element discrete distribution, where k is the num-

ber of levels of abstraction in the given planning hierarchy. Similarly, the reward func-

tion output at each level Li is an ri-element distribution, where ri is the number of

reward functions at the given level of the hierarchy.

To train the model, we minimize the sum of the cross-entropy loss on each term

in Eqn. 4.4. We train the network via backpropagation, using the Adam Optimizer

[72], with a mini-batch size of 16, and a learning rate of 0.001. Furthermore, to better

regularize the model and encourage robustness, we use Dropout [134] after the initial

embedding layer, as well as after the output-specific hidden layers with probability

p = 0.5.

49

Multi-RNN: Multiple Output Recurrent Network

Inspired by the success of recurrent neural networks (RNNs) in NLP tasks [27, 108,

109, 136], we propose an RNN language model that takes in a command as a sequence

of words and, like the Multi-NN bag-of-words model, outputs both the probability of

each of the different levels of abstraction, as well as the probability of each reward func-

tion, at each level of abstraction. RNNs extend feed-forward networks to handle vari-

able length inputs by employing a set of one or more hidden states, which are updated

after reading in each input token. Instead of converting natural language command c

to a vector ~c, we use an RNN to interpret it as a sequence of words s = 〈c1, c2 . . . cn〉.

The Multi-RNN objective is then:

θ̂ = arg max
θ

∑
(c,l,m)

logPr(l | s, θ) + logPr(m | l, s, θ) (4.5)

This modification is reflected in Figure 4.2b, which is similar to the Multi-NN

architecture, except in the lower layers where we use an RNN encoder that takes the

sequence of raw input tokens and maps them into a fixed-size state vector. We use the

gated recurrent unit (GRU) of Cho et al. [27], a particular type of RNN cell that have

been shown to work well on natural language sequence modeling tasks [29].

Similar to the Multi-NN, we train the model by minimizing the sum of the cross-

entropy loss of each of the two terms in Eqn. 4.5, with the same optimizer setup as the

Multi-NN model. Dropout is used to regularize the network after the initial embedding

layer and the output-specific hidden layers.

Single-RNN: Single Output Recurrent Network

Both Multi-NN and Multi-RNN decompose the conditional probability of both the level

of abstraction l and the lifted reward function m given the natural language command

c as Pr(l,m | c) = Pr(l | c) · Pr(m | l, c), allowing for the explicit calculation of

50

the probability of each level of abstraction given the natural language command. As a

result, both Multi-NN and Multi-RNN create separate sets of parameters for each of the

separate outputs, i.e. separate parameters for each level of abstraction in the underlying

hierarchical planner.

Alternatively, we can directly estimate the joint probability Pr(l,m | c). To do so,

we propose a different type of RNN model that takes in a natural language command

as a sequence of words s (as in Multi-RNN), and directly outputs the joint probability

of each tuple (l,m), where l denotes the level of abstraction, and m denotes the lifted

reward function at the given level. The Single-RNN objective is to find θ̂ such that:

θ̂ = arg max
θ

∑
(n,l,m)

logPr(l,m | s, θ) (4.6)

With this Single-RNN model, we are able to significantly improve model efficiency

compared to the Multi-RNN model, as all levels of abstraction share a single set of

parameters. Furthermore, removing the explicit calculation of the level selection prob-

abilities allows for the possibility of positive information transfer between levels of

abstraction, which is not necessarily possible with the previous models.

The Single-RNN architecture is shown in Figure 4.2c. We use a single-output RNN,

similar to the Multi-RNN architecture, with the key difference being that there is only a

single output, with each element of the final output vector corresponding to the proba-

bility of each tuple of levels of abstraction and reward functions (l,m) given the natural

language command c.

To train the model, we minimize the cross-entropy loss of the joint probability

term in Eqn. 4.6. Training hyperparameters are identical to Multi-RNN, and dropout is

applied to the initial embedding layer and the penultimate hidden layer.

51

(a) A starting instance
of the Cleanup World
domain.

Level Example Command Reward Function

L0
Turn and move one spot to the right.
Go three down, four over, two up.

goWest
agentInRoom agent0 roomIsGreen

L1

Go to door, enter red room,
push chair to green room door.

Go to the door then go into the red room.

blockInRegion block0 roomIsGreen

agentInRegion agent0 roomIsRed

L2
Go to the green room.
Bring the chair to the blue room.

agentInRegion agent0 roomIsGreen
blockInRegion block0 roomIsBlue

(b) Example commands and corresponding reward functions.

Figure 4.3: Amazon Mechanical Turk (AMT) dataset domain and examples.

4.3.3 Grounding Module

In all of our models, the inferred lifted reward function template must be bound to

environment-specific variables. The grounding module maps the lifted reward function

to a grounded one that can be passed to an MDP planner. In our evaluation domain

(see Figure 4.1), it is sufficient for our grounding module to be a lookup table that

maps specific environment constraints to object ID tokens. In domains with ambigu-

ous constraints (e.g. a “chair” argument where multiple chairs exist), a more complex

grounding module could be substituted. For instance, Artzi and Zettlemoyer [6] present

a model for executing lambda-calculus expressions generated by a combinatory catego-

rial grammar (CCG) semantic parser, which grounds ambiguous predicates and nested

arguments.

4.4 Evaluation

Our evaluation tests the hypothesis that hierarchical structure improves the speed and

accuracy of language grounding at multiple levels of abstraction. We measure ground-

ing accuracy and planning speed in simulation with a corpus-based evaluation, and

demonstrate our system on a Turtlebot robot.

52

4.4.1 Mobile-Manipulation Robot Domain

The Cleanup World domain [67, 98], illustrated in Figure 4.3a, is a mobile-manipulator

robot domain that is partitioned into rooms (denoted by unique colors) with open doors.

Each room may contain some number of objects which can be moved (pushed) by

the robot. This problem is modeled after a mobile robot that moves objects around,

analogous to a robotic forklift operating in a warehouse or a pick-and-place robot in a

home environment. We use an AMDP for the Cleanup World domain as defined in the

previous chapter, which imposes a three-level abstraction hierarchy for planning.

The combinatorially large state space of Cleanup World simulates real-world com-

plexity and is ideal for exploiting abstractions. At the lowest level of abstraction L0,

the (primitive) action set available to the robot agent consists of north, south, east, and

west actions. Users directing the robot at this level of granularity must specify lengthy

step-by-step instructions for the robot to execute. At the next level of abstraction L1,

the state space of Cleanup World only consists of rooms and doors. The robot’s posi-

tion is solely defined by the region (i.e. room or door) it resides in. Abstracted actions

are subroutines for moving either the robot or a specific block to a room or door. It

is impossible to transition between rooms without first transitioning through a door,

and it is only possible to transition between adjacent regions; any language guiding the

robot at L1 must adhere to these dynamics. Finally, the highest level of abstraction, L2,

removes the concept of doors, leaving only rooms as regions; all L1 transition dynam-

ics still hold, including adjacency constraints. Subroutines exist for moving either the

robot or a block between connected rooms. The full space of subroutines at all levels

and their corresponding propositional functions are defined by [47]. Figure 4.3b shows

a few collected sample commands at each level and the corresponding level-specific

AMDP reward function.

53

4.4.2 Procedure

We conducted an Amazon Mechanical Turk (AMT) user study to collect natural lan-

guage samples at various levels of abstraction in Cleanup World. Annotators were

shown video demonstrations of ten tasks, always starting from the state shown in Fig-

ure 4.3a. For each task, users provided a command that they would give to a robot,

to perform the action they saw in the video, while constraining their language to ad-

here to one of three possible levels in a designated abstraction hierarchy: fine-grained,

medium, and coarse. This data provided multiple parallel corpora for the machine

translation problem of task grounding. We measured our system’s performance by

passing each command to the language grounding system and assessing whether it in-

ferred both the correct level of abstraction and the reward function. We also recorded

the response time of the system, measuring from when the command was issued to the

language model to when the (simulated) robot would have started moving. Accuracy

values were computed using the mean of multiple trials of ten-fold cross validation.

The space of possible tasks included moving a single step as well as navigating to a

particular room, taking a particular object to a designated room, and all combinations

thereof.

Unlike MacGlashan et al. [98], the demonstrations shown were not only limited to

simple robot navigation and object placement tasks, but also included composite tasks

(e.g. “Go to the red room, take the red chair to the green room, go back to the red

room, and return to the blue room”). Commands reflecting a clear misunderstanding of

the presented task, e.g. “please robot”, were removed from the dataset. Such removals

were rare; we removed fewer than 30 commands for this reason, giving a total of 3047

commands. Per level, there were 1309 L0 commands, 872 L1 commands, and 866 L2

commands. The L0 corpus included more commands since the tasks of moving the

robot one unit in each of the four cardinal directions do not translate to higher levels of

abstraction.

54

Evaluated L0 Evaluated L1 Evaluated L2

Trained L0 21.61% 17.20% 21.87%
Trained L1 9.83% 10.23% 13.90%
Trained L2 14.94% 12.84% 31.49%

(a) IBM2 Reward Grounding Baselines

Evaluated L0 Evaluated L1 Evaluated L2

Trained L0 77.67% 28.05% 23.26%
Trained L1 32.79% 82.99% 74.65%
Trained L2 14.19% 58.62% 87.91%

(b) Single-RNN Reward Grounding Baselines

Figure 4.4: Task grounding accuracy (averaged over 5 trials) when training IBM2 and
Single-RNN models on a single level of abstraction, then evaluating commands from
alternate levels. This is similar to the MacGlashan et al. [98] results, as we see that
without accounting for abstractions in language, there is a noticeable effect on ground-
ing accuracy.

4.4.3 Robot Task Grounding

We present the baseline task grounding accuracies in Figure 4.4 to demonstrate the

importance of inferring the latent abstraction level in language. We simulate the effect

of an oracle that partitions all of the collected AMT commands into separate corpora

according to the specificity of each command. For this experiment, any L0 commands

that did not exist at all levels of the Cleanup World hierarchy were omitted, resulting

in a condensed L0 dataset of 869 commands. We trained multiple IBM2 and Single-

RNN models using data from one distinct level and then evaluated using data from a

separate level. Training a model at a particular level of abstraction includes grounding

solely to the reward functions that exist at that same level. Reward functions at the

evaluation level were mapped to the equivalent reward functions at the training level

(e.g. L1 agentInRegion to L0 agentInRoom). Entries along the diagonal represent

the average task grounding accuracy for multiple, random 90-10 splits of the data at the

given level. Otherwise, evaluation checked for the correct grounding of the command

to a reward function at the training level equivalent to the true reward function at the

alternate evaluation level.

Task grounding scores are uniformly quite poor for IBM2; however, IBM2 models

trained using L0 and L2 data respectively result in models that substantially outper-

form those trained on alternate levels of data. It is also apparent that an IBM2 model

trained on L1 data fails to identify the features of the level. We conjecture that this is

55

Level Selection Reward Grounding

IBM2 79.87% 27.26%
Multi-NN 93.51% 36.05%
Multi-RNN 95.71% 80.11%
Single-RNN 95.91% 80.46%

Figure 4.5: Accuracy of 10-Fold Cross Validation (averaged over 3 runs) for each of
the models on the AMT Dataset.

caused, in part, by high variance among the language commands collected at L1 as well

as the large number of overlapping, repetitive tokens that are needed for generating a

valid machine language instance at L1. While these models are worse than what Mac-

Glashan et al. [98] observed, we note that we do not utilize a task or behavior model.

It follows that integrating one or both of these components would only help prune the

task grounding space of highly improbable tasks and improve our performance.

Conversely, Single-RNN shows the expected maximization along diagonal entries

that comes from training and evaluating on data at the same level of abstraction. These

show that a model limited to a single level of language abstraction is not flexible enough

to deal with the full scope of possible commands. Additionally, Single-RNN demon-

strates more robust task grounding than statistical machine translation.

The task grounding and level inference scores for the models in Sec. 4.3 are shown

in Figure 4.5. Attempting to embed the latent abstraction level within the machine

language of IBM2 results in weak level inference. Furthermore, grounding accuracy

falls even further due to sparse alignments and the sharing of tokens between tasks

in machine language (e.g. agentInRoom agent0 room1 at L0 and agentInRegion

agent0 room1 at L1). The fastest of all the neural models, and the one with the fewest

number of parameters overall, Multi-NN shows notable improvement in level inference

over the IBM2; however, task grounding performance still suffers, as the bag-of-words

representation fails to capture the sequential word dependencies critical to the intent of

each command. Multi-RNN again improves upon level prediction accuracy and lever-

ages the high-dimensional representation learned by initial RNN layer to train reliable

56

grounding models specific to each level of abstraction. Finally, Single-RNN has near-

perfect level prediction and demonstrates the successful learning of abstraction level

as a latent feature within the neural model. By not using an oracle for level inference,

there is a slight loss in performance compared to the results obtained in Figure 4.4b;

however, we still see improved grounding performance over Multi-RNN that can be

attributed to the full sharing of parameters across all training samples allowing for

positive information transfer between abstraction levels.

4.4.4 Robot Response Time

Fast response times are important for fluid human-robot interaction, so we assessed

the time it would take a robot to respond to natural language commands in our corpus.

We measured the time it takes for the system to process a natural language command,

map it to a reward function, and then solve the resulting MDP to yield a policy so that

the simulated robot would start moving. We used Single-RNN for inference since it

was the most accurate grounding model, and only correctly grounded instances were

evaluated, so our results are for 2634 of 3047 commands that Single-RNN got correct.

We compared three different planners to solve the MDP:

• BASE: A state-of-the-art flat (non-hierarchical) planner, bounded real-time dy-

namic programming (BRTDP [?]).

• AMDP: A hierarchical planner for MDPs [47]. At the primitive level of the

hierarchy (L0), AMDP also requires a flat planner; we use BASE to allow for

comparable planning times. Because the subtasks have no compositional struc-

ture, a Manhattan-distance heuristic can be used at L0. While BASE technically

allows for heuristics, distance-based heuristics are unsuitable for the compos-

ite tasks in our dataset. This illustrates another benefit of using hierarchies: to

decompose composite tasks into subtasks that are amenable to better heuristics.

57

●●

●●

●●

●●

●●

●●●
●●

●●●

●●

●●
●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●
●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●● ●●

●●●
●●

●●●
●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AMDP/BASE NH/BASE AMDP/NH

(a) Regular domain (214 states)

●●

●●●
●●

●●●
●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●
●● ●●

●●

●●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●

●●● ●●

●●

●●●

●●

●●●

●●
●●
●●

●●
●●

●●
●●●

●●●

●●●

●●

●●●

●●
●●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AMDP/BASE NH/BASE AMDP/NH

7.73,
4.42

(b) Large domain (218 states)

Figure 4.6: Relative inference + planning times for different planning approaches on
the same correctly grounded AMT commands. For each method pair, values less than
1 indicate the method on the numerator (left of ‘/’) is better. Each data point is an
average of 1000 planning trials.

• NH (No Heuristic): Identical to AMDP, but without the heuristic as a fair com-

parison against BASE.

We hypothesize NH is faster than BASE (due to use of hierarchy), but not as fast as

AMDP (due to lack of heuristics).

Since the actual planning times depend heavily on the actual task being grounded

(ranging from 5ms for goNorth to 180s for some high-level commands), we instead

evaluate the relative times used between different planning approaches. Figure 4.6a

shows the results for all 3 pairs of planners. For example, the left-most column shows

AMDP time
BASE time ; the fact that most results were less than 1 indicates that AMDP usually

outperforms BASE. Using Wilcoxon signed-rank tests, we find that each approach in

the numerator is significantly faster (p < 10−40) than the one in the denominator, i.e.

AMDP is faster than NH, which is in turn faster than BASE; this is consistent with

our hypothesis. Comparing AMDP to BASE, we find that AMDP is twice as fast in

over half the cases, 4 times as fast in a quarter of the cases, and can reach 20 times

speedup. However, AMDP is also slower than BASE on 23% of the cases; of these,

58

half are within 5% of BASE, but the other half is up to 3 times slower. Inspecting

these cases suggests that the slowdown is due to overhead from instantiating multiple

planning tasks in the hierarchy; this overhead is especially prominent in relatively small

domains like Cleanup World. Note that in the worst case this is less than a 2s absolute

time difference.

From a computational standpoint, the primary advantage of hierarchy is space and

time abstraction. To illustrate the potential benefit of using hierarchical planners in

larger domains, we doubled the size of the original Cleanup domain and ran the same

experiments. Ideally, this should have no effect on L1 and L2 tasks, since these tasks

are agnostic to the discretization of the world. The results are shown in Figure 4.6b,

which again are consistent with our hypothesis. Somewhat surprisingly though, while

NH still outperforms BASE (p < 10−150), it was much less efficient than AMDP,

which shows that the hierarchy itself was insufficient; the heuristic also plays an im-

portant role. Additionally, NH suffered from two outliers, where the planning problem

became more complex because the solution was constrained to conform to the hierar-

chy; this is a well-known tradeoff in hierarchical planning [?]. The use of heuristics

in AMDP mitigated this issue. AMDP times almost stayed the same compared to the

regular domain, hence outperforming BASE and NH (p < 10−200). The larger domain

size also reduced the effect of hierarchical planning overhead: AMDP was only slower

than BASE in 10% of the cases, all within < 4% of the time it took for BASE. Com-

paring AMDP to BASE, we find that AMDP is 8 times as fast in over half the cases,

100 times as fast in a quarter of the cases, and can reach up to 3 orders of magnitude in

speedup. In absolute time, AMDP took < 1s on 90% of the tasks; by contrast, BASE

takes > 20s on half the tasks.

59

4.4.5 Robot Demonstration

Using the trained grounding model and the corresponding AMDP hierarchy, we tested

with a Turtlebot on a small-scale version of the Cleanup World domain. To accom-

modate the continuous action space of the Turtlebot, the low-level, primitive actions

at L0 of the AMDP were swapped out for move forward, backward, and bidirectional

rotation actions; all other levels of the AMDP remained unchanged. The low level

commands used closed loop control policies, which were sent to the robot using the

Robot Operating System [126]. Spoken commands were provided by an expert hu-

man user instructing the robot to navigate from one room to another. These verbal

commands were converted from speech to text using Google’s Speech API [45] before

being grounded with the trained Single-RNN model. The resulting grounding, with

both the AMDP hierarchy level and reward function, fed directly into the AMDP plan-

ner resulting in almost-instantaneous planning and execution. Numerous commands

ranging from the low-level “Go north” all the way to the high-level “Take the block to

the green room” were planned and executed using the AMDP with imperceivable de-

lays after the conversion from speech to text. A video demonstration of the end-to-end

system is available online2.

4.5 Discussion

Overall, our best grounding model, Single-RNN, performed very well, correctly ground-

ing commands much of the time; however, it still experienced errors. At the lowest

level of abstraction, the model experienced some confusion between robot navigation

(agentInRoom) and object manipulation (blockInRoom) tasks. In the dataset, some

users explicitly mentioned the desired object in object manipulation tasks while others

did not; without explicit mention of the object, these commands were almost identical

to those instructing the robot to navigate to a particular room. For example, one com-
2https://youtu.be/9bU2oE5RtvU

60

https://youtu.be/9bU2oE5RtvU

mand that was correctly identified as instructing the robot to take the chair to the green

room in Figure 4.3a is “Go down...west until you hit the chair, push chair north...” A

misclassified command for the same task was “Go south...west...north...” These com-

mands ask for the same directions with the same amount of repetition (omitted) but

only one mentions the object of interest allowing for the correct grounding. Overall,

83.3% of green room navigation tasks were grounded correctly while 16.7% were mis-

taken for green room object manipulation tasks.

Another source of error involved an interpretation issue in the video demonstrations

presented to users. The robot agent shown to users as in Figure 4.3a faces south and

this orientation was assumed by the majority of users; however, some users referred

to this direction as north (in the perspective of the robot agent). This confusion led

to some errors in the grounding of commands instructing the robot to move a single

step in one of the four cardinal directions. Logically, these conflicts in language caused

errors for each of the cardinal directions as 31.25% of north commands were classified

as south and 15% of east commands were labeled as west.

Finally, there were various forms of human error throughout the collected data.

In many cases, users committed typos that actually affected the grounding result (e.g.

asking the robot to take the chair back to the green room instead of the observed blue

room). For some tasks, users often demonstrated some difficulty understanding the

abstraction hierarchy described to them resulting in commands that partially belong to

a different level of abstraction than what was requested. In order to avoid embedding

a strong prior or limiting the natural variation of the data, no preprocessing was per-

formed in an attempt to correct or remove these commands. A stronger data collection

approach might involve adding a human validation step and asking separate users to

verify that the supplied commands do translate back to the original video demonstra-

tions under the given language constraints as in MacMahon et al. [99].

61

4.6 Conclusion

We presented a system for interpreting and grounding natural language commands to

a mobile-manipulator robot at multiple levels of abstraction. Moreover, our Turtlebot

evaluation demonstrates that this system works well in real-world environments and is

an encouraging step towards seamless human-robot interaction.

Our proposed language-grounding models significantly outperform the previous

state-of-the-art method for mapping natural language commands to reward functions.

A major reason for such an improvement is modelling the mapping problem as a classi-

fication problem to a specific reward function in the AMDP hierarchy. Classification is

a significantly easier problem than the type of sequence to sequence mapping attempted

by IBM models. This is because in classification we are trying to map language in one

of n bins, but the number of possible outputs for sequence to sequence mapping are

infinite. However, the type of functions learned using sequence to sequence mapping

are richer and can express more behaviors than classification. For example, we would

like to give commands like “go along the greenway,” which cannot necessarily be put

in a single classification bin, as we will require a bin for every object we can travel

along, and then a bin for every possible preposition, adjective and adverb. In the next

two chapters we look at sequence to sequence methods for different problems so their

outputs are more expressive than classification.

62

Chapter 5

Grounding Language to Linear

Temporal Logic

Parts of this chapter in the dissertation have been previously presented at

RSS 2018 as “Sequence-to-Sequence Language Grounding of Non-Markovian

Task Specifications,” with Dilip Arumugam, Lawson L. S. Wong and Ste-

fanie Tellex [48]. The core idea for this project came from me as natural

language commands were more diverse than just goal based commands. I

performed the work on the planner, data collection and robot experiments,

and Dilip worked on the data collection and language grounding results

initially, which I improved later.

The broad spectrum of tasks that humans would like to see interpreted and exe-

cuted by robots extends beyond realizing a particular goal configuration. A slightly

richer space of tasks includes those that aim to induce a constrained or repetitive robot

execution. In the former category, a person may instruct a robot in the home to “go

down the right side of the hallway and to the bedroom,” restricting the space of pos-

sible paths the robot might take to reach its destination. Similarly, a command in the

63

latter category may be “watch the sink for dirty dishes and clean any that you see,”

implying that the robot should enter a loop of repeatedly scanning for dirty dishes and

cleaning any that appear. A robot system that can adequately represent and enable un-

trained users to express these complex behaviors would constitute an important step

forward in the area of human-robot interaction.

Existing approaches such as Linear Temporal Logic (LTL) [125, 100] allow these

behaviors to be expressed as formal logical functions, enabling the automatic gener-

ation of robot controllers to execute these behaviors. While incredibly powerful, the

average, non-expert user cannot be expected to hold the requisite knowledge for ex-

pressing arbitrarily complex behaviors via LTL. Consequently, we turn to natural lan-

guage as a familiar interface through which non-expert users may convey their intent

and desires while escaping the need for low-level programming knowledge. Unfor-

tunately, due to the rich underlying semantics of LTL, there is no existing approach

that takes open-ended natural language commands and maps directly to general LTL

expressions.

This chapter presents an approach for enabling a robot to learn a mapping be-

tween English commands and LTL expressions. We prese nt the currently the largest

dataset that maps between English and LTL in a model environment. We employ neu-

ral sequence-to-sequence learning models to infer the LTL sequence corresponding to

a given natural language input sequence. While existing sequence-to-sequence models

require large amounts of data to perform tasks at scale (such as English-French neural

machine translation), we are not able to easily access such vast quantities of data due to

the associated cost of obtaining annotations of natural language with their equivalent

LTL logical forms. Consequently, we also outline a data collection pipeline through

Amazon Mechanical Turk and employ data augmentation techniques to expand the

size of the parallel corpus. Finally, we conduct an analysis of our proposed sequence-

to-sequence grounding models and their ability to generalize to novel natural language

64

(a) (b)

Figure 5.1: (a)In this robot demonstration we provided a natural language command of
“Go through the yellow room to the blue room”. The command is mapped to the LTL
formula “♦(Y ∧ ♦B)”, which implies eventually satisfying the combination of going
to yellow and subsequently reaching the blue room. In this work we map from natural
language commands to such LTL formulae with sequence-to-sequence approaches. (b)
In this demonstration Baxter was given the command to “search the table for a cube
and drop it into the bin and repeat.” The language is grounded to the LTL formula
“�(SU¬A ∧ ♦A),” which implies always scan until a block is found outside the bin,
if found put all blocks in the bin. Here S is the proposition to scan and A is the
proposition for all blocks to be in the bin. The figure shows Baxter scanning while
satisfying this command.

commands and generate LTL expressions never seen during training.

We evaluate our approach in simulation as well as using a real robot. We collected a

corpus of more than 700 sentences mapping to LTL commands to a robot in a simulated

2D environment. We showed that we are able to correctly ground LTL expressions for

a wide variety of commands. We demonstrate our approach on a Baxter based pick-

and-place domain, and on a mobile robot (the Turtlebot). Our approach extends the

space of achievable robot behaviors to include several non-Markovian objectives in-

cluding repetitive patrolling, going through specified locations, and avoiding specified

locations.

5.1 Related Work

The question of how to effectively convert between natural language instructions and

robot behavior has been widely studied in previous work [155, 26, 99, 82, 38, 140, 57,

65

20, 28, 3, 98, 92, 107, 91, 123, 19, 8, 69, 111]. So far, there have been three categories

of behavior specifications that these works have mapped natural language to: action

sequences, goal states, and LTL specifications. They differ in terms of the following

four desiderata:

• Environment-agnostic: The same natural language instruction may lead to dif-

ferent primitive actions being executed across different environments, or if the

world is stochastic. Grounding language directly to action sequences is environment-

dependent; the other two (goals and LTL) are not.

• Compact representation: Action sequences have length proportional to the tra-

jectory, whereas goals and LTL formulae can be arbitrarily shorter.

• Non-Markovian specifications: Some typical robot behavior cannot be easily

expressed as a goal state, such as “put down the knife before moving”. This is

trivial to specify in an action sequence, and is often expressible in LTL.

• Efficient planning: Action sequences require no planning and are therefore triv-

ially efficient. For reaching goal states, efficient algorithms exist both within

classical and decision-theoretic planning (MDPs) [121, 93]. Control policy syn-

thesis for LTL is (doubly) exponential in the formula length in the worst case

[32], although it is typically faster in practice, and many efficient fragments and

approximations have been proposed.

Since we want to ground language for non-Markovian specifications in potentially

novel and stochastic environments, we adopt LTL as our target specification in this

work, and will only review grounding language to temporal logic in the remainder of

this section.

Kress-Gazit et al. [81, 82] pioneered the area of grounding language to LTL, al-

though the initial work was limited to grounding a fragment termed “structured En-

glish”. Subsequently, Dzifcak et al. [38] designed a combinatorial categorial grammar

66

(CCG) that grounds a different fragment of English to the more-general computational

tree logic (CTL*); however, this work suffers from the need to manually construct a

grammar. Lignos et al. [92] instead used off-the-shelf parsers to interpret the full space

of natural language, but do not provide a method to learn from new robot-specific lan-

guage, and therefore their approach may be limited by the particular corpus used by

the existing parser. By contrast, Boteanu et al. [19] collected a crowdsourced corpus

of block-sorting instructions to train a Verifiable Distributed Correspondence Graph

model that mapped natural language to structured English. In this work, we present a

corpus that is an order of magnitude larger, and apply the sequence-to-sequence frame-

work that allows grounding to the full space of LTL formulae (instead of the GR(1)

fragment). In an orthogonal direction, Raman et al. [128] demonstrated the benefit of

verifying LTL behavior by identifying unsatisfiable parts of LTL formulae and report-

ing which natural language commands resulted in these failures. Although verifiable

behavior is a significant advantage of using LTL [83], we do not focus on verification

in this work.

Modeling agent behavior with LTL has been of interest for a while [95, 82]. There

have been various variants of LTL developed over the years for different reasons. We

describe a few here, for a more detailed treatment please refer Kress-Gazit et al. [84].

To handle uncertainty, a probabilistic version of LTL, Probabilistic Computation Tree

Logic [52] has been defined so as to evaluate over states of an MDP. Further, since LTL

has an infinite time horizon, approaches have tried to shorten this time horizon so we

verify properties to be valid for a certain time horizon [142]. Geometric LTL (GLTL)

[94] is another such formulation for specifying goals for an MDP using LTL formuale,

such that the formulae are only valid for a chosen time window. In this work, we use

GLTL to represent temporal behaviors because it allows planning with traditional MDP

planners. However, our use of the neural sequence-to-sequence framework grants us

flexibility, and we may also consider other variations of LTL to map natural language

67

to, and perform non-Markovian behaviors. We leave exploration of other LTL variants

for target specification from natural language to future work.

5.2 Approach

In order to fully specify our system for converting natural language to robot behavior,

we first describe our problem setting and clarify its connection to the GLTL semantic

representation inferred by our grounding model. We then go on to outline the recurrent

neural network architectures used for mapping between natural language and GLTL

expressions.

5.2.1 Problem Setting

Again we formalize the problem of language grounding within the context of an Object-

oriented Markov Decision Process (OO-MDP), built upon an MDP with propositions

for goal conditions and constraints.

Following the framework introduced by MacGlashan et al. [98] and Howard et al.

[57], we treat natural language as the specification of a latent reward function that com-

pletes the definition of an otherwise fully-specified MDP. We use a language grounding

model to arrive at a more consolidated, semantic representation of that reward function,

thereby completing the MDP and allowing it to be passed to an arbitrary planning al-

gorithm for generating robot behavior. More specifically, we think of each natural lan-

guage command as specifying some latent LTL formula encoding the desired behavior.

The OO-MDP propositional functions serve as possible atoms of the LTL expressions,

creating an expressive language for defining tasks. In particular, LTL formulae are suf-

ficiently expressive to subsume semantic representations used in previous goal-based

language grounding work such as MacGlashan et al. [98] and Arumugam et al. [8].

68

5.2.2 Geometric linear temporal logic (GLTL)

Linear temporal logic has the following grammatical syntax:

φ := atom | ¬φ | φ ∧ ψ | φ ∨ ψ | �φ | ♦φ | φUψ | © φ

atom denotes an atomic proposition; ¬, ∧, and ∨ are logical “not”, “and”, and “or”;

� denotes “always”, ♦ denotes “eventually”, U denotes “until”, and© denotes “next”.

Semantic interpretations of temporal logic operators can be found in Manna and Pnueli

[100].1

Following work done by Bacchus et al. [9] for specifying reward functions over

temporal sequences via LTL, Littman et al. [94] introduced the geometric LTL (GLTL)

variant that replaces the standard LTL operators with “soft” substitutes. Effectively,

these probabilistic operators are equivalent to their hard LTL counterparts but satisfy-

ing each operator is restricted to some bounded window of time as determined by a

draw from a geometric distribution. More concretely, instead of �p, representing that

p always holds true indefinitely, GLTL would have �µp for indicating that p holds for

the next k ∼ Geom(µ) timesteps. Similarly, ♦µp and qUµp correspond to p becoming

true in the next k timesteps and q holding true at least until p becomes true in the next

k timesteps respectively where, again, k ∼ Geom(µ). While sacrificing the guaran-

tees and proofs of correctness typical of LTL, the probabilistic nature of GLTL enables

learning while specifying rewards in a generalizable, environment-independent fash-

ion. We include more on how GLTL ties into our approach in Section 5.2.1 and, for

more information on GLTL itself, please consult [94].

Crucially, Littman et al. [94] connect GLTL back to MDPs in a way that not only

specifies the desired behavior without overfitting to a single environment instance by

folding the stochastic semantics of the GLTL expression into the stochastic transitions

1In this work we do not collect data on behavior requiring the “next” operator, and therefore it never
appears in our grounded formulae; however, the same framework can be used if relevant data for “next” is
collected.

69

of the environment, enabling the application of standard reinforcement learning and

planning techniques. In particular, each atomic proposition of a GLTL expression has

an associated three-state MDP consisting of an initial, accepting, and rejecting state.

From the initial state, there is a single action in this specification MDP that will transi-

tion to the accepting state if the proposition holds and move to the rejecting state oth-

erwise. Each GLTL operator represents some fixed transformation or combination of

these MDPs resulting in a new specification MDP. Once an inferred GLTL expression is

converted to its corresponding specification MDP, it is combined with the separate en-

vironment MDP resulting in an MDP whose solution represents a policy capturing the

desired behavior. For the full details of specification MDP construction and combina-

tion with an environment MDP, please see Littman et al. [94]. We model the procedure

of mapping from natural language to GLTL expressions as a neural machine translation

problem.

Although we choose GLTL paired with an MDP to find policies corresponding to

LTL expressions, our language grounding system can work with any framework for

computing a satisfying controller for the robot, such as those described in the related

work [84]. Notice that the switch is commensurate with defining a new machine trans-

lation problem with a target language defined by the syntax of the alternative frame-

work.

5.2.3 Mapping Language to GLTL

In order to handle the task of translating from natural language to GLTL expressions,

we turn to recent neural-network architectures for sequence learning that have al-

ready proven to be incredibly performant in other machine translation tasks. Fur-

ther, in this work to improve generalizability we use pre-trained GloVe embeddings

[124]. We are presented with a sequence taken from some source language x =

[x1, . . . , xN] and would like to infer a corresponding sequence of some target language

70

y = [y1, . . . , yM]. Given a translation model with parameters θ, we look to identify

the most likely target sequence and decompose its corresponding probability into the

product of partial translation probabilities:

p(y|x, θ) =

M∏
m=1

p(ym|x,y<m, θ), (5.1)

where y<m = [y1, . . . , ym−1].

Treating the space of natural language commands as a source language and GLTL

expressions as a target language, we collect a parallel corpus and optimize the neural-

network architecture parameters θ (see Section 6.4 for more details on the data collec-

tion procedure). Specifically, we leverage the recurrent neural network (RNN) encoder-

decoder framework [27, 136] extended by Bahdanau et al. [10].

Widely used across a variety of natural language tasks, RNNs are models that

map sequential inputs to high-dimensional output spaces, using recurrent cells that

maintain an internal or hidden-state representation of the sequence processed thus far

[56, 27, 49]. Neural sequence-to-sequence learning use two distinct RNN models, an

encoder and decoder, to map between source and target language sequences. An en-

coder processes an input sequence and, for each input token, produces an output and

an updated hidden state. While the hidden state stores a global summary of the over-

all sequence, the output encodes local information computed from the current hidden

state and the current input token. After all input tokens are fed to the encoder, there

is a resulting sequence of encoder outputs and hidden states. Subsequently, a decoder

model generates target language sequences by mapping an input target language sym-

bol to a probability distribution over the target language vocabulary [15]. Connecting

the two models is the final hidden state of the encoder RNN cell (that is, the hidden

state after processing the entire input sequence) which is used to initialize the hidden

state of the decoder RNN cell [27, 136]. The encoder hidden state is initialized with an

all zeros vector and a special start token is fed as the first input to the decoder in order

71

to initialize decoding.

In both the encoder and decoder of our model, we use the Gated Recurrent Unit

(GRU) [27] as the core RNN cell. Briefly, a GRU is one type of RNN cell that, using

the previous hidden state st−1 and current input token’s embedding xt, performs the

following computations:

Reset gate: rt = σ(Wr · xt + Ur · st−1 + br), (5.2)

Output: gt=tanh(Wg ·xt + Ug ·(rt�st−1) + bg), (5.3)

Update gate: zt = σ(Wz · xt + Uz · st−1 + bz), (5.4)

State update: st = (1− zt)� st−1 + zt � gt, (5.5)

resulting in an output vector gt and a new hidden state st where (·) and (�) denote

matrix-vector and Hadamard products respectively. Intuitively, rt is a “reset” gate af-

fecting how hidden state information is combined with the current input to produce the

cell output, gt, and zt is an “update” gate negotiating how much information is pre-

served within the hidden state. All parameters in bold denote trainable parameters of

the cell that are optimized during training of the entire architecture via backpropaga-

tion.

Given the GRU encoder and decoder, fenc and fdec, words of the input sequence are

first mapped to their corresponding vector representations via an embedding look-up.

Intuitively, since the individual tokens can simply be represented as integers, the word

embeddings provide a high-dimensional representation that is optimized as part of the

neural network and can be used to capture semantic information about each individual

word. In our previous experiments [48] we learned the word embeddings as part of

our network. However, this work we use pre-trained GloVe embeddings [124]. GloVe

embeddings are vector representations for words learned using unsupervised training

based on co-occurrence statistics of words. Where previous embedding learning meth-

72

ods were learning embeddings that represented word co-occurrences in a sentence,

GloVe looks at co-occurrence statistics with respect to a context. Words with simi-

lar co-occurrence statistics for a context would have closer embeddings. This prop-

erty of the embeddings helped improve performance across different types of linguistic

tasks[124]. Our hypothesis here is that the GloVe embedding might help process novel

words, and provide some more generalization on the encoder side.

After receiving the word embedding we feed each input embedding, x̂j, in sequence

producing a corresponding sequence of encoder outputs,
[
h1, . . . , hN

]
, and hidden

states
[
s1, . . . , sN

]
, where each hj , sj comes from:

hj , sj = fenc(sj−1, x̂j). (5.6)

Once the input sequence has been processed, the final encoder hidden state, sN

is used to initialize the RNN cell of the decoder. During decoding, the previously

inferred token of the output sequence is mapped to a probability distribution over the

target vocabulary from which the next output token is sampled:

p(yi|x,y<m, θ) = fdec(vi−1, ŷi−1). (5.7)

Here ŷi−1 denotes the embedding for the previously decoded token, ŷi−1. In all of

our experiments, we use a greedy decoding scheme and treat the token in the distribu-

tion with highest probability as the inferred token, ŷi.

Subsequent work by Bahdanau et al. [10] proposed learning a weighting or atten-

tion scheme to selectively utilize encoder output information during decoding. The

resulting Bahdanau attention mechanism reparameterizes the decoder as a function of

the previous token embedding and a context vector. At each step of decoding, the

context vector weights the information of the encoder outputs
[
h1, . . . , hN

]
according

73

to:

ci =

N∑
j=1

αijhj , (5.8)

where αi is a weight on the information carried in hj . The individual attention weights

are computed as outputs of a feedforward neural network, a(vi,
[
h1, . . . , hN

]
), with a

final softmax activation and where vi is the current hidden state of the decoder RNN

cell. Accordingly, decoding occurs by greedily sampling the next token distribution:

p(yi|x,y<m, θ) = fdec(vi−1, ŷi−1, ci). (5.9)

Even with alternatives to Bahdanau attention, attention weights are typically com-

puted as a function of the current decoder hidden state and the encoder outputs [96].

Given the rigid structure of GLTL as a target output language, we examine an alter-

native attention mechanism that computes attention weights purely as a function of

decoder parameters. More formally, we propose an encoder-agnostic attention mech-

anism where each attention weight αi is computed by a feedforward neural network

a(ŷi−1, vi) that takes the previously decoded token embedding and the current de-

coder hidden state as inputs. This attention scheme captures the idea that the pre-

viously decoded token and current state of the target translation generated thus far

offer a clearer signal for weighting the encoder outputs than the encoder outputs them-

selves. Although seemingly counterintuitive, we consider a particular scenario where

the sequence-to-sequence grounding model must generalize to a language command

at test time that corresponds to a novel GLTL expression never seen during training.

Instead of being subject to the learned mechanics of the source language that may vary

dramatically at test time, the encoder-agnostic attention scheme would maintain focus

on the GLTL target language side that exhibits significantly less variation and follows

a small, well-defined lexicon.

74

Methods Domain #1 Domain #2
Original Expanded Original Expanded

Seq2Seq 93.10± 1.60% 95.25± 0.30% 86.09± 1.03% 93.42± 0.96%
Seq2Seq + Bahdanau Attention 93.45± 0.60% 95.51± 0.11% 87.15± 0.36% 93.78± 0.29%
Seq2Seq + Encoder-Agnostic Attention 93.18± 0.94% 94.98± 0.30% 86.47± 0.72% 93.92± 0.44%
Seq2Seq + GloVe + Encoder-Agnostic Att. 93.25± 0.86% 93.32± 0.78% 84.54± 4.95% 92.34± 1.37%

Figure 5.2: Accuracy and standard deviation of 5-fold cross validation for each ground-
ing model and domain, averaged over 3 independent runs.

Unlike the architecture outlined in Bahdanau et al. [10], we found a single, for-

ward RNN encoder was sufficient for our task and opted not to use a bi-directional

RNN encoder in favor of reduced training time and sample complexity. All models

were implemented in PyTorch [122] and trained using the Adam optimizer [72] with a

learning rate of 0.001. Embedding and RNN output sizes were set to 50 and 256 units

respectively. Additionally, we made use of dropout regularization [134] before and

after both the encoder and decoder GRUs with a keep probability of 0.8. For the pre-

trainined GloVe embeddings of size 50 we used a pre-trained look-up table of GloVe

embeddings[124]. We did not further train this embedding layer of the network. We

found that reversing all input sequences provided a small increase in grounding ac-

curacy. For each training sample, a random choice was made between providing the

ground truth output token, y, (teacher forcing [150]) and providing the actual decoded

symbol, ŷ, with 0.5 probability.

5.3 Experiments

We now outline the two domains used for evaluating our approach as well as the details

of our data collection procedure for training the three presented grounding models.

5.3.1 Mobile-Manipulation Robot Domain

Cleanup World [98] consists of a single robot agent acting within an environment char-

acterized by distinctly colored rooms and movable objects. We chose this domain for

75

our experiments as it allows us to express a wide variety of constrained execution tasks.

For the purposes of our experiments, these restrictions took on one of two forms: the

robot would need to reach it’s target destination by either passing through or explicitly

avoiding a particular room in the environment.

5.3.2 Baxter Pick-and Place Domain

In order to showcase instances of repetitive robot execution, we designed a pick-and-

place domain where a Baxter robot must patrol the environment waiting for sudden

events that trigger some desired behavior. More concretely, the domain is defined by

distinct table and bin regions where colored blocks may reside. These blocks have only

two attributes: first for location, table or bin; second for color where the blocks can be

red or green or blue or yellow. The state of the domain can get very large as the total

number of blocks is not restricted or predetermined. Initially, there may not be any

blocks present and so the robot must utilize a scan action to survey the area until an

appropriately colored block can be picked up and moved from the table to the bin. A

scan operation reveals a new block, if it was “placed” on the table. The placement is

done by a human user. The pick-and-place action picks a block and moves it to the

bin. Note that the reachable state space of this domain grows rapidly as the number

of blocks on the table increases, as each block can be at different locations. Given an

agent with only two scan and pick-and-place actions at its disposal, we experimented

with two core task types: placing all blocks found during scanning into the bin or

placing only blocks of a certain chosen color into the bin. These tasks were chosen for

their repetitive nature, while also having an alertness property, where some colors are

ignored but some are acted upon. Further, these tasks have many real life analogs like

a cleaning robot that patrols rooms looking for spills, or an industrial robot search for

faults in an assembly line with a repeated pattern.

76

Figure 5.3: Static mobile-manipulation domain images presented to AMT users for
annotation. Positive (green) and negative (red) labels were applied to the images so
that AMT users could infer the constraint reflected in the robot’s behavior.

5.3.3 Data-collection Procedure

An Amazon Mechanical Turk (AMT) user study was conducted in order to collect

data for training our neural sequence-to-sequence grounding models mapping natural

language commands to GLTL expressions in each of our domains. To construct the

parallel corpus, annotators were presented with static images (for Cleanup World) and

short video clips (for pick-and-place) depicting a particular robot behavior as shown in

our video2. Users were then asked to provide a single sentence instruction that would

induce the observed behavior. For the mobile-manipulation robot domain, sample im-

ages provided to AMT annotators can be seen in Figure 5.3. Specifically, these images

were displayed to users with positive (green arrow) and negative (red arrow) labels so

that annotators could infer the constraint being placed on the robot’s execution.

Curiously, we found that annotators were more inclined to specify positive over

negative behavior in their instructions. For instance, an attempt to collect data for be-

havior matching the command “go to the green and avoid the yellow room” would often

result in commands where users would instruct the robot to navigate to the green room

utilizing whichever rooms were designated under the positively labeled images. Al-

2https://streamable.com/8lqab

77

https://streamable.com/8lqab

Figure 5.4: Example commands and corresponding GLTL formulae. R, G, and B are
propositions in Cleanup World for testing if the agent is in the Red, Green or Blue
rooms respectively. S, A and NR are propositions for the pick-and-place domain. S
tests if the table has been scanned once; A tests if all blocks are in the bin; and NR test
if all blocks expect the red colored ones are in the bin.

Example Command GLTL Expression

Go to the green room.
Go into the red room.

♦G
♦R

Enter blue room via green room.
Go through the yellow or red room,

and enter the blue room

♦(G ∧ ♦B)

♦((R ∨ Y) ∧ ♦B)
Go to the blue room but avoid the red room.
While avoiding yellow navigate to green.

♦B ∧ ¬�R
♦G ∧ ¬�Y

Scan for blocks and insert any found into bin.
Look for and pick up any non red cubes and

put them in crate.

�((SU¬A) ∧ ♦A)
�((SU¬NR) ∧ ♦NR)

though technically correct, these instructions pose an obstacle as the intended, ground-

truth GLTL expression (containing, for example, the token for the yellow room) would

never include a symbol with semantic meaning associated with the rooms mentioned

(for example, the blue or red rooms). In order to address this problem, a manual re-

labeling of data was performed such that samples whose instruction did not align to

the intended GLTL formula were instead mapped to the corresponding GLTL formula

consistent with the instruction. Filtering commands that reflected a clear misunder-

standing of the annotation task resulted in parallel corpora consisting of 501 and 345

commands for the mobile-manipulation and patrol domains respectively. In aggregate,

these commands reflected a total of 15 and 2 unique GLTL expressions respectively.

Examples of natural language commands and their corresponding GLTL formulae can

be seen in Figure 5.4.

In order to supply additional data for the mobile-manipulation domain, we utilized

a subset of the Cleanup World dataset collected by Arumugam et al. [8] consisting of

356 agent navigation and block manipulation commands, swapping their Markov re-

ward function representation for the GLTL equivalent. Together, the combined dataset

78

denotes the original dataset for the mobile manipulation domain used throughout all of

our experiments. The pick-and-place domain original dataset received no extra com-

mands. To further expand on the data present for learning across both domains, a

synthetic data expansion procedure was applied to both datasets. Excluding the minor-

ity of commands pertaining to block manipulation behavior, all other commands were

mapped to new commands through the substitution of color words in the natural lan-

guage and the equivalent swapping of atoms in the corresponding GLTL expressions.

For example, the command “move to the red room” and corresponding expression ♦R

would be mapped to three new language commands (one for each of the blue, green

and yellow rooms) along with the corresponding GLTL expressions (♦B, ♦G, ♦Y).

This expansion resulted in two expanded datasets for each of the domains consisting

of 3382 and 745 commands respectively reflecting a total of 39 and 5 unique GLTL

expressions.

5.3.4 Language Grounding

We conducted 5-fold cross validation experiments across three grounding models and

present the language grounding accuracy means and standard deviations in Table 5.2.

Results were averaged over 3 independent trials with distinct random seeds. For each

instance, correctness was determined by comparing the complete, greedily-decoded

GLTL formula to ground truth. Training was done using two independent parallel

corpora, one for each of the domains outlined in above. Additionally, we report re-

sults on both the original datasets, consisting of natural language commands exactly

as collected through AMT, and the expanded datasets synthetically generated via the

procedure outlined in Section 5.3.3. Notably, we find that all three models exhibit

roughly identical performance despite the use of two different attention mechanisms.

We suspect that the lack of an effect is due to the dramatically smaller vocabulary size

of GLTL by comparison to traditional neural machine translation problems. However,

79

we do find the use of an attention mechanism to have some effect on enabling general-

ization and the inference logical forms not seen during training.

In order to establish how well each grounding model captures the semantics of natu-

ral language and GLTL expressions, we conducted an experiment to assess the capacity

for each model to infer novel GLTL expressions. Focusing on the mobile manipulation

domain, we randomly sampled varying percentages of the 39 unique GLTL expressions

represented across the collected within the expanded corpus of 3382 commands. All

samples in the parallel corpus associated with the random sampled commands were

used as training data while the entire remainder of the corpus was treated as a held-out

test set consisting only of GLTL expressions not seen during training. The results of the

experiment are shown in Figure 5.5 with error bars denoting 95% confidence intervals

computed over 10 independent trials. On average, we find that our encoder-agnostic

attention scheme is slightly more adept at generalizing to novel commands. The results

altogether, however, suggest that this type of generalization is still an open challenge

for these models that traditionally excel in standard neural machine translation tasks

that enjoy access to vast quantities of parallel training data. We believe that adapting

these techniques to better operate in the extremely low resource area of robot language

learning is an important direction for future research.

5.4 Results

5.4.1 Language Grounding

Our results confirm that a standard neural sequence learning model, without the use of

an attention mechanism, is sufficient for achieving highly accurate language grounding

to GLTL logical forms. We do, however, witness the benefits of attention when faced

with the challenge of generalizing beyond the space of GLTL expressions seen at train-

ing time, although, on average, our encoder-agnostic attention scheme does represent

80

Figure 5.5: Grounding accuracies of various sequence-to-sequence models evaluated
on held-out subsets of the training data consisting entirely of novel GLTL expressions.
Error bars represent 95% confidence intervals computed over 10 independent runs.

a fairly substantial improvement. There is further improvement when the encoder-

agnostic attention scheme is used along with GloVe embeddings. In data-starved con-

ditions with very few annotations pre-trained word embeddings improve results dras-

tically, and clearly beat simple neural sequence models. However, we expect these

benefits would transfer if the simple neural sequence approaches were also given the

benefit of pre-trained word embeddings. Overall, these results still leave much to be

desired. This problem of generalization without any training experience (or zero-shot

generalization) within neural sequence-to-sequence models is further studied by Lake

and Baroni [88] who conduct a series of experiments assessing various dimensions on

generalization within a new domain for mapping navigation commands to action se-

quences. Notably, their study finds that generalization is only reliable when novel test

time constituents are observed within a variety of contexts during training. As these

neural-based translation approaches continue to improve, the question of how to make

them more amenable to sparse-data, robot-learning settings will become increasingly

important.

Beyond the challenge of generalization, there were a few other sources of error

81

across the three grounding models. In the mobile-manipulation domain corpus, the

longest language command consisted of 27 tokens. Demonstrating another well-known

challenge of sequence learning and RNN models in general, these longer, outlier se-

quences posed a challenge and often produced invalid GLTL expressions. Despite

the use of input sequence reversal to help combat this challenge, increasing sequence

length forces the RNN cell to carry information across a larger number of timesteps;

after a point, the degradation in the latent semantic information makes accurate transla-

tion incredibly difficult. Additionally, we found instances where the models produced

a correct GLTL formula type but had the atoms reversed (such as selecting to avoid the

target destination room and navigate towards the avoidance room). These commands

tended to have minor grammatical errors or lacked certain keywords to indicate the

blue room or the yellow area.

More generally, we note that the previously discussed issues with our approach

are only a subset of a much broader space of challenges inherited from neural ma-

chine translation. The full space of challenges is perhaps most succinctly and carefully

explored in the work of Koehn and Knowles [74] who outline six key deficiencies

of general neural machine translation. While these challenges are made quite apparent

from the scale of typical translation problems (mapping between millions of vocabulary

tokens) a few issues of particular importance to the robotics community include out-

of-domain words, low-resource translation, low-frequency words, and long sentences.

Note that, in this work, we have already demonstrated and discussed the difficulties of

low-resource translation (that is, translation with limited training data) alongside low-

frequency words. Given the high-cost of acquiring annotations, robotics datasets are

often built within a particular context and geared towards a specific domain. As the de-

mand for these systems grows and requires a single system to operate across domains

(for instance, the home and the workplace), the inability for current translation models

to handle identical words with context-sensitive translations (or out-of-domain words)

82

will prove to be a bottleneck. Moreover, as commands naturally grow in complexity

and encode an increasing number of tasks, so too will the corresponding output se-

quences, resulting in decreased translation/grounding accuracy. Given the clear mutual

interest, a rich direction of future work includes collaborating with the natural language

processing community to develop solutions to these problems and bring them to bear

on robotics domains.

5.4.2 Cleanup Robot Demonstrations

To further demonstrate the efficacy of our approach, we translated our mobile-manipulation

domain into the physical world with a Turtlebot agent. The problem space focused

on constrained execution tasks requiring the robot the enter a goal room while either

avoiding or passing through specific rooms. As in simulation, our physical set-up con-

sisted of four rooms uniquely identified by color and the agent’s position in the world

was tracked by a motion capture system. Using the Robot Operating System (ROS)

[126] speech to text API, we converted speech utterances to natural language text that

could be passed to a trained instance of our grounding model with Bahdanau attention,

producing a GLTL formula. Treating the Cleanup World MDP as the environment

MDP and identifying the specification MDP of the GLTL formula, we combine the

two MDPs and apply a standard MDP planning algorithm to generate robot behavior

in real time. The planning is real time as the formulae for these tasks are not very long

and GLTL allows fast planning, most of the delays observed in the video are network-

ing delays when using speech-to-text. The primitive north, south, east, west actions of

the Cleanup Domain agent were converted into a series of low level ROS Twist mes-

sages using hand-written controllers. A video of our robot accurately responding to

user commands in real time is online3.

3https://streamable.com/5uy0e

83

https://streamable.com/5uy0e

5.4.3 Baxter Pick-and-Place Domain

We implemented the pick-and-place domain on the Baxter robot platform and observed

the behavior for two command types.

The first command type was to move any block that is placed on the table to the

bin. This behavior was highly consistent across repeated trials in simulation. The

agent would scan, and a block might be placed during this scan operation. The agent

would detect the placed block during the scan operation, and would choose to place the

block in one of the following time steps. Conversely, we found that the behavior for

selectively placing blocks of a specific color in the bin experienced difficulties during

the execution of the inferred GLTL formula.

As described in Section 5.1 a GLTL expression holds true only for certain time

steps, as planning within MDPs for an infinite time horizon compromises learnability

and performing value backups for planning. Specifically for this task the agent placed

non-red blocks into the bin and continued looking for more blocks. We noticed that

the agent initially (and correctly) does not pick any red blocks it finds; however, as the

number of blocks revealed to the robot increases, it becomes more likely that the robot

picks up a red block, as the formula and its corresponding behavior would only be true

for a certain number of time steps dependent on the geometric discounting. With a

discount factor of 0.99 we noticed that the agent would pick up a red block after about

5−10 blocks were revealed to the agent when scanning. However, the agent constantly

placed more non-red blocks in the bin, even when the number of red blocks was more

than the number of rest of the blocks. An easy thing to increase the duration of placing

non-red blocks would be to increase the discount factor, however this would lead to

increased planning time, as the agent is planning over a longer horizon.

This simulation domain shows that the GLTL formulation can easily handle behav-

iors that include repetitive subtasks while being able to react to certain, pre-conditioned

events. The experiment also helps us understand some of the limitations of GLTL, as

84

an approximation of LTL for a chosen time horizon.

For the implementation of these behaviors on the robot we used fiducials in the form

of April Tags [120]. We used the software stack Ein [119] as an interface to command

the robot and its inverse kinematics based planner. The fiducials were observed from

a wrist camera. To get accurate position estimates through the fiducials we slowed

down the movement of the arm during the scanning process. However, the robot itself

was being controlled at 10Hz. The actual state of the world, that is, the position and

orientation of the blocks was abstracted and the LTL planner only planned over the

location of the blocks, bin or table, and the color of the blocks. The transcription,

mapping to LTL, and planning is all done real time with this setup. The real time

demos are available online4.

5.5 Conclusion

This chapter demonstrates an approach for mapping between English commands and

LTL expressions through neural sequence-to-sequence learning models. We presented

techniques for data augmentation, pre-trained word embeddings and a novel attention

mechanism that enables the system to map between novel English commands and novel

LTL expressions not encountered at training time so long as the constituent LTL atoms

have been previously observed. We demonstrated this approach within two domains

for mobile-manipulation and pick-and-place tasks as well as on physical robots.

One of the fundamental issues with neural sequence-to-sequence methods is their

lack of generalization to unseen data. This issue stems for their inability to learn se-

quences and functions compositionally. This phenomenon has been studied before

by Lake and Baroni [88] and Kim et al. [71]. Further work needs to be performed

to introduce compositional learning mechanisms in neural networks. In the next chap-

ter we explicitly look at a non-neural method to learn compositional mappings from

4https://streamable.com/5uy0

85

https://streamable.com/5uy0

natural language to behavior.

86

Chapter 6

Learning to Parse Natural

Language to Grounded Reward

Functions with Weak

Supervision

Large parts of this chapter in the dissertation have been previously pre-

sented at ICRA 2018 as “Learning to Parse Natural Language to Grounded

Reward Functions with Weak Supervision,” with Edward C. Williams, Mina

Rhee and Stefanie Tellex [149]. The core idea for this project came from

both Edward and me. Edward was experimenting with CCG parsers to

get quantifiers to work in language grounding for goals. I came up with

a way to validate such a weakly supervised parser. I worked with Edward

on specifying grammar, data collection, the baseline experiments and the

robot demo. I worked on this project as it provided an alternative to con-

87

nectionist approaches to learning language grounding. It helped us under-

stand the importance of compositionality and the limitations of old school

parser learning techniques.

Natural language provides an expressive and accessible method for specifying goals

to robotic agents. In this chapter, we represent these goal conditions as lambda-calculus

goal-based reward functions under the MDP [13] formalism, which give the agent pos-

itive reward for reaching the goal state. Planning then aims to maximize the sum of

rewards the agent receives while attempting to reach the goal condition optimally. Plan-

ning in the MDP formalism is useful for robotics as it allows for a natural method to

deal with stochasticity. The use of reward functions as an intermediate representation

allows a separation between the language interpretation and planning components.

We learn a mapping from natural language into the space of lambda-calculus ex-

pressions using a semantic parser. This mapping is modeled as a weighted linear Com-

binatory Categorial Grammar (CCG) [30, 135] parser, which pairs words in a lexicon

with lambda-calculus representations of their meaning. More importantly, a CCG pro-

vides a mechanism for composing lambda-calculus expressions representing sentences

from subexpressions representing their constituent words and phrases. Our lambda-

calculus representation interfaces with Object Oriented MDP (OO-MDP) [36] states

while enabling the use of complex commands involving comparators, object attributes,

relationships between objects, and nested referring expressions.

Existing approaches for learning to map sentences to reward functions require fully

supervised data, including complete reward function specifications paired with natu-

ral language commands [98, 8]. This requires manual annotation of natural language

datasets, and the resulting learned models have limited ability to generalize to unseen

tasks. Existing CCG-based approaches that map natural language to trajectory speci-

fications [6, 7] require executing planning during learning to validate proposed logical

expressions, which is computationally expensive and does not necessarily allow plan-

88

(a) State at task initiation (b) State at task completion

Figure 6.1: The figure shows an example pair of states of the Turtlebot before and after
it performed the command to “go to the largest room.” The robot moves from the red
room to the large green room, marked using the colored blocks. The robot plans the
trajectory using a reward function generated from the natural language command on
the fly using a CCG parser we learned using weak supervision from language.

ning in Markov Decision Processes domains. Our method allows for efficient learning

using only pre- and post-condition states as annotation, instead of complete reward

functions or their derivations, which are used to validate reward functions without ex-

ecuting a planner.

Ours is the first approach to produce compositional reward functions using a CCG

semantic parser, and then use the reward function for the purposes of planning on an

agent in an MDP. We trained and evaluated our model on data collected from Ama-

zon Mechanical Turk (Figure 6.2) on simulated mobile manipulation tasks in Cleanup

Domain [98]. Our results demonstrate effective learning of a weakly supervised parser

with an F1 score of 0.82 on a corpus of 23 behaviors. We compare against baselines

that use planning to validate parses during learning, and achieve comparable perfor-

mance with orders of magnitude improvement in computation time during learning.

Moreover, we present a robot demonstration of our method in a Turtlebot mobile-

manipulation task using 6 weakly annotated demonstrations to learn two behaviors,

and also show generalization to unseen tasks as shown in Figure 6.1.

89

6.1 Related Work

Zettlemoyer and Collins [155] presented a supervised method to learn CCG parsers

given natural language annotated with lambda-calculus logical forms. Krishnamurthy

and Mitchell [85] demonstrated a weakly supervised method for learning CCG se-

mantic parsers given a syntactically parsed sentence and a knowledge base. Artzi and

Zettlemoyer [6] extended this idea of weak supervision to planning in a navigation task

by mapping natural language to a logical form specifying a trajectory. The trajectories

produced by the CCG parser while learning were compared to demonstration trajec-

tories for a validation signal. However, these plans were not generated on an MDP,

and the semantic representations of language directly represented sequences of actions

rather than goal conditions. Planning on a physical robot requires modeling stochas-

ticity, which is model with MDPs, to allow agents to recover from failure. As we are

only interested in goal based commands, it is not necessary to validate using trajectory

information during learning. Instead, we can learn from pre- and post- condition states

provided as demonstrations for a natural language command.

Tellex et al. [140] described a method using syntactic parse trees of language to

create probabilistic graphical models (PGMs) that can create trajectories that match

the natural language phrase. This process of generating trajectories is expensive, hence

Howard et al. [57] used the PGMs to generate constraints that be used to plan, separat-

ing the language interpretation and planning components of the system. Our method

also produces constraints on the end state of a robot’s trajectory. While Howard et al.

[57] assumes access to a pre-trained syntactic, our method needs pre-defined logical

expressions to test attributes of objects. A related line of research (MacGlashan et al.

[98], Arumugam et al. [8]) translates natural language to sets of reward functions so

that agents can perform planning within an MDP. These methods model the process

of mapping natural language to reward functions as sequence to sequence translations

[98] and multi-class classification [8] using a relatively simple semantic representa-

90

tion and without the ability to learn and interpret nested referential expressions. We

instead represent the task as semantic parsing with a highly compositional semantic

representation.

Inverse Reinforcement Learning (IRL) [116] is a method for learning a reward

function in an MDP using demonstration trajectories and a feature representation of the

state space. In our work, we learn a compositional reward function from pre-specified

predicates, natural language, and pre- and post- condition states provided as supervi-

sion. IRL learns a richer class of reward functions than the goal-based reward functions

we learn in this work. However, our use of natural language to learn compositional re-

ward functions allows for generalizability of the learned reward functions as described

in Section 6.6. Another series of approaches map natural language directly to policies

in an MDP, learned from demonstrations provided at training time [111, 64]. However,

these methods have not been demonstrated to work with small training corpora, which

is enabled in our case by the seed lexicon provided to our semantic parser.

6.2 Task Domain

Markov Decision Processes (MDPs) [13] model stochasticity, which is an important

factor when trying to plan or learn with robots in the physical world. Hence, we repre-

sent our robot manipulation and navigation domain as an MDP. In such a domain, we

can define goal-state reward functions as functions that, for a given set of terminal goal

states G ⊂ E , produce the following output:

RG(s, a) =

1, if s ∈ G

0, otherwise

We define our set of tasks as those that can be executed by planning over goal-state

reward functions in the Cleanup World object manipulation domain [98]. We specify

91

this MDP using Object Oriented MDPs (OO-MDP) [36], which provides a factored

representation of an MDP problem. The factorization of the environment and actions is

done using objects present in the environment, which is convenient as humans naturally

describe world states with respect to objects present in it. Cleanup Domain [98] is

an MDP environment generator with an agent, and different numbers of rooms and

objects. The object have types, such as “basket”, “chair”, and “block” and attributes,

such as “color” and “location”. The agent possesses location and orientation attributes.

Rooms have attributes of “color”, “location” and “size”. In this work we use a three

room configuration of Cleanup world with changing attributes for rooms and objects

and the agent. The agent can take the actions of north, south, east and west. We have

previously in Chapter 3 shown the stochastic nature of this domain, with doors that can

lock and unlock and objects that are lost by the agent.

6.3 Method

To map natural language to grounded reward functions, we define a compositional

semantic representation that defines sets of goal states from relationships between ob-

jects in our OO-MDP domain. We then induce a weighted linear CCG parser [30]

mapping natural language into our semantic representation, using pre- and post- con-

dition states as supervision, rather than fully annotating language with semantics. Our

learning algorithm is derived from the validation-based perceptron learner of Artzi and

Zettlemoyer [6].

6.3.1 Semantic Representation and Execution

To bridge the gap between natural language and OO-MDP reward functions, we define

a lambda-calculus semantic representation for language that defines a set of goal states

in the OO-MDP domain. Lambda calculus, a computational formalism based on func-

tion application and variable binding, is well-explored as a semantic representation

92

for natural language [24, 155, 156, 6]. Its utility for natural language representation

comes from its expression of the compositionality of natural language while providing

an interface between language and computation.

We make the assumption that natural language commands to our agent define a con-

figuration of the world that the user would like the agent to produce, by re-arranging ob-

jects in the world or moving to a different location, is reflected in the nature of our rep-

resentation. Natural language is represented as a proposition function over states in the

MDP. For instance, a complete lambda-calculus expression used as a reward function

for the task in Figure 6.2, “go to the chair”, is near(the(λx.agent(x)), the(λy.red(y)∧

chair(y))), which acts as as the goal-state reward function in Section 6.2. This func-

tion is composed of relational operators (“in”), definite determiners (“the”), and noun

phrases describing properties of objects. We adopt much of the notation from [6, 5, 155,

135] for our lambda-calculus functions. However, we eschew the neo-Davidsonian

event semantics used by Artzi and Zettlemoyer [6], as our tasks are purely represented

by state configurations. As such, we deliberately avoid modeling components of tra-

jectories in our semantic representations, which preserves our efficient separation of

language and planning components of the system, at a cost to the expressiveness of

our semantic representation. Rather than implementing our CCG semantic representa-

tions as database queries [155] or trajectory specifications in a custom-built navigation

domain [6], we implement our lambda-calculus functions as operating on objects in

OO-MDP states.

We primarily model five components of natural language necessary to completing

our tasks:

Nouns

We model nouns as single-argument lambda-calculus functions that map OO-MDP

objects in a given state to Boolean values. For example, the phrase “block” would be

93

represented as a function λx.block(x). When this phrase is evaluated in an OO-MDP

state on a particular object o, it returns true if o is a block.

Adjectives

Adjectival language, such as “green block,” are modeled as conjunctions of these

single-argument proposition functions. The function λx.green(x) ∧ block(x) checks

two attributes of the object provided as its argument. As an OO-MDP object is parame-

terized using object classes and attributes, these single-argument proposition functions

can be implemented as lookup operations on object instances.

Definite Determiners

We model the definite determiner “the” as a function that maps a proposition function to

an object that satisfies the given proposition function, following Artzi and Zettlemoyer

[6]. This can be represented as a search over a set of objects in an OO-MDP state.

We note that definite determiners are evaluated with respect to the initial state of the

task, as we assume object references should be resolved at the world-state in which the

natural language command was issued.

Comparators

Comparators, such as “the biggest” or “the smallest,” are modeled as argmax and

argmin operators over the entire space of objects with respect to a proposition function

over objects and a numerical property of objects. The operator searches over all objects

that satisfy the provided proposition function with respect to the comparison being

made, and chooses the object that maximizes the numerical property. In our model, we

only provided the argmax with a size operator, although in principle the operator could

be any single-argument function that returns a number from an object. Comparators,

like definite determiners, are also resolved with respect to the initial world-state.

94

Relations

Spatial relationships between two objects are modeled as lambda-calculus functions of

arity two. The function λx.λy.in(x, y), for example, uses the spatial dimensions of the

object provided as the second argument to determine if it contains the first argument.

All relationship proposition functions produce Boolean outputs when evaluated in a

given OO-MDP state. Currently, we model four spatial relationships: containment

(in), adjacency (near), and directional adjacency to the right or left of the referent. All

lambda-calculus functions were implemented as pre-specified JScheme [2] predicates

that operate on states and objects in the BURLAP [97] reinforcement learning library.

6.3.2 Parser Learning

To map natural language to elements of our semantic representation, we learn a weighted

linear CCG parser [30] that maps natural language commands x ∈ X to a logical form

y ∈ Y in our semantic representation. We collect a data set where each element is of

the form (xi, Si), where xi ∈ X is a natural language command, and Si is a set of

pairs of MDP states, as described in Section 6.4. To learn this parser without providing

semantic representations as annotations directly, we define a validation function that

determines if a given semantic parse will produce the correct behavior as described by

our training data. We additionally use a modified form of the coarse lexical genera-

tion procedure of Artzi and Zettlemoyer [6] to produce new CCG lexical entries from

training data. To learn parser weights, we use the validation-driven perceptron learning

algorithm of Artzi and Zettlemoyer [6] as implemented in the Cornell Semantic Parsing

Framework (SPF) [4].

Parser

Our learning objective is to learn a set of parser weights θ ∈ Rd for a weighted linear

CCG parser [30] with a d-dimensional feature representation Φ(x, y). This parser uses

95

a variant of the dynamic-programming CKY algorithm to produce the highest scoring

parse ŷ from a natural language command x. To perform training and inference, we

use the linear CCG parser implemented in the Cornell SPF [4]. We added additional

features to our model to induce correct behavior in situations where similar language

describes different tasks depending on context. For example, the phrase “go to” either

implies a containment or adjacency relationship depending on the object being referred

to. Earlier iterations of the parser commonly confused our in and near predicates. To

resolve this, we added features recording pairwise appearances of specific predicates.

Parse Validation

To facilitate our validation-driven perceptron learning, we define a parse validation

function similar to those of Artzi and Zettlemoyer [6]. We define the function V(y, S) ∈

{0, 1}, which takes as input a semantic parse y and set of pre- and post- condition state

pairs S = (Si, Sf).

V(y, S) =

1, y(Si) = 0 ∧ y(Sf) = 1

0, otherwise.

We validate over all state pairs provided with a given natural language command.

This function ensures that the semantic parse y correctly defines the desired set of goal

states. As our tasks define sets of goal states, this is sufficient to check if a parse is valid

without invoking a planner. For comparison, we tested against a baseline approach that

executed planning with proposed proposition functions during validation, in Section

6.5.

Coarse Lexical Generation

To generate new lexical entries for words and phrases not present in the seed lexicon,

we adapt the coarse lexical generation algorithm of Artzi and Zettlemoyer [6] to our

96

(a) State at task initiation (b) State at task completion

Figure 6.2: The figure shows an example pair used to collect data. Here we ask the
users to give a command to the robot that will result in the pre- and post condition
behavior shown in the pair of images.

validation procedure. The algorithm generates new proposed lexicon entries from all

possible combinations of factored lexical entries (see Kwiatkowski et al. [87] for a de-

tailed description of the lexicon) and words in a given training examples, then discards

entries leading to parses that fail to validate.

6.4 Data Collection

Our complete dataset contains 23 tasks, which include moving to any of the three rooms

present in our domain, navigating to and relocating objects in the domain, all of which

may be specified using room and object attributes, comparators (“the biggest room”),

or in reference to relationships between objects in our domain (“go the room that the

block is in”). Each task describes a set of goal states that the user desires the agent in

our domain to reach. For each task, we generated five pre- and post- condition state

pairs (Figure 6.2) using our simulator.

We then gathered training data using using the Amazon Mechanical Turk (AMT)

platform. Users were shown three pairs of pre- and post- condition states, sampled

from the total five, all representing the same task in different domain configurations.

97

Example Sentences Collected from AMT

“Move to the green room”
“Go by the red chair”
“Move to stand next to the chair”
“Move close to the chair”
“Stand in the blue room”

Table 6.1: Example sentences collected from the AMT HIT where the users were
shown a set of pre-and post condition states and asked to give a command that would
instruct the robot to complete the task.

We chose the number of pairs to minimize cognitive load while maximizing the gen-

eralizability of the produced language. They were then asked to provide a single com-

mand that would instruct the robot to complete the task in every domain configuration.

This provided multiple pre- and post- condition pairs for each training example, to in-

centivize both the learning algorithm and AMT users to produce outputs that are task-

rather than configuration-specific. Some example commands gathered from AMT are

shown in Table 6.1. We collected a total of 2211 commands.

Many commands received from AMT users contained incorrect commands, many

of which implied that the users only examined one of our three pairs of pre- and post-

condition states. Some commands were vague and did not describe any specific task,

while others only applied to the first pair of images shown to users. Including these

commands in our data set actively misleads our parser, encouraging it to produce in-

correct parses. We removed 174 such commands from the dataset to produce a pruned

dataset.

6.5 Experiments and Results

We performed three sets of experiments on our corpus, collected as described in Section

6.4. First, we trained and tested our model on the full corpus collected from AMT, and

a subset of the corpus manually pruned of incorrect and misleading commands. In

98

the second experiment we tested our method against a baseline method that executes

a planner during training, similar to earlier weakly supervised CCG parser learning

approaches [6, 7]. This experiment was performed with a smaller training corpus,

to allow planners with long horizons to validate the parser learning in a reasonable

time-frame. For our third experiment, we reduced the level of supervision (that is, the

number of demonstration state pairs,) available during learning, while leaving the test

data unchanged.

Initialization of the parser learner

We provided the learning algorithm with a seed lexicon as demonstrated in Artzi and

Zettlemoyer [6], Artzi et al. [7], Zettlemoyer and Collins [155]. The seed lexicon is

used to initialize the coarse lexical generation procedure described in Section 6.3.2.

This seed lexicon contained words and phrases paired with syntactic categories and the

lambda-calculus meaning representations elaborated upon in Section 6.3.1 This seed

lexicon contained simple noun phrases and adjectives such as “chair” and “red,”, com-

parators such as “the largest”, and imperatives such as “move to” or “go to,” represented

with corresponding lambda-calculus logical forms. In addition to using these lexical

entries during parsing, the coarse lexical generation procedure used during learning

produces new lexical entries from words found in the training data and meaning rep-

resentations in the seed lexicon. We used a beam width of 75 for lexicon generation

during training, which was performed over 15 epochs. At both training and test time,

the CCG parser used a beam width of 150.

6.5.1 Evaluation on AMT Corpus

We performed training on two permutations of the data set collected from AMT: the raw

dataset, including many incorrect and misleading commands as described in Section

6.4, and a pruned dataset with incorrect commands manually removed. Testing was

99

Training Set Demos/Cmd Best F1

Raw AMT 3 0.64
Pruned 3 0.82
Pruned 2 0.75
Pruned 1 0.71

Table 6.2: F1 score on held-out test data, using varying levels of supervision and dataset
quality.

performed by validating against state pairs provided with the held-out test data. The

full dataset contained 1833 training commands and 678 test commands, each paired

with 3 pre- and post- condition demonstration state pairs. The pruned dataset contained

1619 training commands and 418 test commands, each paired with 3 demonstrations

as well. We observed a F1 score of 0.64 on the held-out test data of the raw dataset,

and expected it to increase when errors were removed from the dataset as described in

Section 6.4. This pattern was observed, with an F1 score of 0.82 on the pruned dataset.

6.5.2 Ablation Experiments

To test our parser’s robustness to ambiguity in the demonstrations provided during

learning, we performed learning with varying levels of supervision and tested against

the same held-out test corpus. As our full corpus contains three pre- and post- condition

state pairs as demonstration for each command, to incentivize the learner to produce

compact and accurate proposition functions, we trained models with one and two com-

mands provided as supervision and compared their performance. We hypothesized that

providing fewer states as supervision would render the parser vulnerable to ambiguities

in demonstrations. For example, if a provided command is “go near the block” but the

learner is only provided with a demonstration in which the agent moves near the block

but into the blue room, the proposition function in(the(λx.agent(x)), the(λy.blue(y)∧

y.room(y)) would validate as correct, leading the parser to develop incorrect lexical

entries and model weights. We observed that performance relative to the model pro-

100

Planning horizon Time taken to learn in s F1 score

1 step 1201953 (∼ 20 mins) 0.0
10 steps 24024701 (∼ 6.67 hours) 0.667
20 steps 47597724 (∼ 13.22 hours) 0.667
Our method (no planning) 87.18 0.72

Table 6.3: Timing results and F1 scores on a dataset of a train and test split of 50
and 20 commands. The planning based parsing baseline spends most of the learning
time computing plans for incorrect parses while learning to parse. The planning based
methods spend more time learning and perform poorly when compared to our method.

vided with three demonstrations decreased progressively when demonstrations were

removed, as shown in the final two rows of Table 6.2.

6.5.3 Baselines

To compare against a planning-driven baseline, we created a dataset of 50 training

and 20 test commands, containing 3 behaviors from our dataset. We produced full

demonstration trajectories for these commands. We created the small dataset due to

time constraints, as baseline methods take can upwards of 15 hours to run on a 50-

command dataset. Much of the decrease in speed comes from attempting to validate

invalid parses produced during training. The baseline method uses a planning based

validation similar to that used in Artzi and Zettlemoyer [6]. In our baseline, plans are

generated for every logical expression constructed and matched to demonstration tra-

jectories in the training data. Parses are valid if the final state in the trajectory produced

by the planner and the training trajectory satisfy the logical expression generated by the

parser. Our method uses the first and final states of trajectories for parse validation dur-

ing training, circumventing the repeated planning problem by ensuring that the logical

expressions generated satisfy the terminal state of the dataset, without any planning.

Using goal-state reward functions as task representations enables this simplification

and the corresponding gain in efficiency.

101

The planning times can be made arbitrarily costly by increasing the horizon of

planning, we present results for three different horizons, 1, 10, 15, all of which take

more time and preform worse than our method. The results are shown in Table 6.3.

The 1 step planning horizon is insufficient for the agent to reach the goal states in our

dataset which can be∼ 10−15 steps away. However, 10 and 20 step planning horizons

find correct parses with a comparable or slightly lower F1 score than our method.

6.6 Robot Demonstration

To interface our parser with a Turtlebot robot, we use reward functions produced by

the parser to produce plans in a physical mobile manipulation domain. The domain is

a modeled as an MDP after Cleanup World [98]. The configuration of the three rooms

can be changed. The states of the robot and the block are being tracked by a motion

capture rig. The robot’s actions are forward, turn left, turn right, which are executed

on the robot as a series of Twist messages over ROS [126]. We show a user asking the

robot to get to the right of the block, taking the block to the red room and moving to

the largest room, and the robot performing these tasks appropriately. The video of the

demonstrations is online1

When performing the task “get to the right of the block” the authors expected the

agent to circle the block and thus arrive on its right side. However the planner computed

that a more efficient plan would be to move the block so the agent reaches the goal of

being to the right of the block. This behavior shows that there is more subtlety to

language than our semantic representation captures, moving to the right of an object

assumes that the object or the landmark has to be stationary. We do not model any

landmarks or objects as stationary in our domain or our semantic representation, which

can be added in future work. Moreover, this behavior also shows the importance of

modeling tasks with MDPs so as to plan optimally.

1https://youtu.be/YChlga1wwAc

102

Next we demonstrate the performance of our parser using limited training data and

its ability to extend its model to tasks not seen at training time. We train our parser

for two tasks: “go to the green room” and “move next to the block.” We provide the

parser with 6 sentences and a total of 6 pairs of pre- and post condition states. We

collect this data from our Cleanup Domain simulator. Next we learn a parser for this

data using our method using the parameters described in Section 6.5. We then use this

parser to plan on the robot for the seen tasks of “going to the green room” and “going

next to the block”. More importantly, the parser successfully executes the unseen task

of “going to the blue room.” The seed lexicon provided to the parser during training

contains the words: “blue”, “green” and “red” along with their symbols blue, green

and red respectively. The parser learns to infer that the symbols are adjectives used

to describe objects and transfers this knowledge to unseen data, allowing the robot to

plan for unseen commands with a very small amount of data. This small data set test

shows the strength of our method to teach behavior to a robot that is generalizable with

a handful annotations.

6.7 Discussion

We modeled goal-based tasks as reward functions within an MDP formalism. Mapping

to reward functions allows the robot to plan optimally in real world stochastic environ-

ments. However, the tasks presented in this work are a subset of the possible tasks that

humans can specify using natural language. For example tasks that specify a trajec-

tory constraint such as “walk carefully along the river” cannot be modeled as a goal

state. Mapping language to event based semantic representations such as those of Artzi

and Zettlemoyer [6] would allow us to model such language. However, event-based

semantic representations requires tracking event history, which weakens the Markov

assumption that enable efficient planning.

During data collection users described tasks using nested referential expressions in

103

a way that we did not foresee. For example, users asked the agent to go the room that

the chair was in, instead of asking the agent to go near the chair. Our learned parser

composed nested referential expressions for these language commands to produce the

right behavior while accurately representing the literal meaning of the language. How-

ever we noticed that our model had issues disambiguating between in and near symbols

because the language that the users provided was similar when describing the tasks of

going into a room and moving close to an object. For example: the phrase “go to” was

used to command the robot to both enter a room and move near a block. We introduced

new co-occurrence features to capture dependencies between pairs of predicates. This

incentivized the parser to learn, for example, that an agent cannot get into a block. This

leads to the correct behavior by the agent, but an incorrect representation of the sen-

tences that use nested referential expressions in lambda calculus. This demonstrates

that the parser’s behavior can be altered in unexpected ways by the addition or removal

of features.

Automated generation of reward functions from supervised or unsupervised meth-

ods is an important element of teaching behaviors to reinforcement learning or plan-

ning agents. We have focused on an approach that uses language and goal states to

learn reward functions. In the weakly supervised setting Guu et al. [51] used algorith-

mic methods to reduce errors caused by ambiguity in demonstrations, which we instead

address by providing more demonstrations to the parser to add clarity to the training

commands provided. Other approaches have learned reward functions in an unsuper-

vised setting from videos [133]. Future work could combine language and videos in an

unsupervised setting.

6.8 Conclusion

This chapter presented a method for learning a parser that maps natural language com-

mands to reward functions using a CCG parser via weak supervision. We showed that

104

this parser can be learned using modifications of existing semantic parser learning al-

gorithms, and its outputs are executable as goal-state reward functions with off the shelf

planners.

Such a parser learning method required extensive domain knowledge to set-up the

seed lexicon, and the modelling of the language components nouns, adjectives, de-

terminers, comparators and relational operators as compositional functions to make

reward functions. This expert knowledge is not easily obtained or transferred to differ-

ent domains. The parser learning method can also be brittle to the types of language

outside the corpus, and produce reward functions that are not interpretable. Neural

sequence-to-sequence methods as described in the previous chapter generalize to un-

seen words in the corpus by using pre-trained embeddings such as GloVe [124]. Fur-

ther, the sequence-to-sequence methods are easier to setup as they do not require exten-

sive knowledge of the grammar. However, parser based methods learn compositional

functions, which is not possible with neural sequence-to-sequence methods. For the

next chapter we will not pre-specify any symbols or predicates within the problem do-

main and learn the predicates and their mappings to language from scratch. This allows

us to learn predicates for planning along with language groundings from demonstra-

tions which will be very useful to help train robots with few instances of data.

105

106

Chapter 7

Mapping Language to

Transferable Symbols for

Instruction Following

Large parts of this chapter in the dissertation are currently in submis-

sion for review at a robotics conference. This work was performed with

Eric Rosen, George D. Konidaris and Stefanie Tellex. The core idea for

this project came from me. I wanted to learn language groundings with-

out any symbolic specifications in a continuous state–action space setting

with an objective to perform tasks similar in nature to complex LTL ex-

pressions and not just goal based commands. Eric helped me with the

data collection and the robot demo, and George advised me on skill and

symbol learning requirements for this project and Stefanie advised me on

the experimental pipeline and type of domains to choose. The entirety of

the language grounding, skills and symbol learning pipeline from idea to

107

execution is my work. This work adds to the previous chapters by learn-

ing hierarchical structures and mapping them to language commands with

demonstration pairs; a setting that is more realistic in human-robot col-

laboration scenarios.

Humans can easily learn novel tasks given paired demonstrations and instructions.

For example, we can teach a child how to set a table by showing the task as a demon-

stration and giving natural language instructions. Studies show that children can learn

novel concepts and ground novel words to describe known or unseen objects very

quickly; sometimes even with one sample [101]. Robots should also be able to learn

these generalizable concepts or symbols or abstractions with few demonstrations. Such

learning would allow our robots to learn symbols continuously, and these learned sym-

bols can then be used to plan for novel instructions given by the human user.

Previous end-to-end approaches [3, 107] perform a direct mapping from language

to the discrete action space of the agent, and have been shown to be effective in sim-

ulations. Some end-to-end approaches [16, 17] map language to learned locations on

a simulated map, which is more robust, but still use thousands of demonstrations to

learn behaviors. Other methods for instruction following on robots have used hand-

crafted state abstractions [48, 8] or learned the abstractions first with data outside of

the demonstration pairs of language and trajectory [140, 57]. Our work addresses this

problem by first learning transferable abstractions or symbols from demonstration tra-

jectories, and then mapping the accompanying language to those symbols. Such an

approach allows the agent to be independent of the length of the trajectories or the

stochasticity of the environment, and allows us to exploit out-of-the box planning algo-

rithms to find plans to reach goal conditions. Following Konidaris et al. [79], we define

a symbol as a set of skill termination states. We learn these termination conditions by

first segmenting the demonstration trajectory into underlying skills. Next we cluster

the termination states of these skills to create a termination condition for these skills.

108

These termination conditions are symbols we will use to ground language to plans. The

symbols themselves can be considered as termination conditions for an option, with or

without a policy. Moreover, these symbols are learned in the agent’s frame of reference

and not a global frame. This allows transfer as the symbols learned are lifted and not

grounded to just a location on a map.

At runtime, we map from language to these learned symbols. Then the robot can

use an off-the-shelf planner combined with the options to find a policy to execute the

command by chaining options together, mediated by the symbols. Because the symbols

are in the agent’s frame of reference, they generalize beyond the environments seen

during training. We then ground natural language to these learned symbols to plan for

the desired behavior.

We implement our approach of instruction following in three domains: TurtleBot

simulator, a driving domain using a high dimensional LIDAR dataset collected on a car

[147], and navigation on a mobile robot in an indoor scenario. We present the accuracy

results of grounding natural language to our learned symbols in the first two domains.

We then demonstrate our system end-to-end, with language grounding accuracy results

and planning on a real mobile robot domain. These behaviors are learned using a

handful of trajectory demonstrations paired with natural language and can generalize

to novel maps. To the best of our knowledge this is the first work that learns symbolic

abstractions and their mappings to language from demonstrations.

7.1 Related Work

Instruction following is a supervised learning problem where the agent needs to predict

trajectory that would satisfy an input natural language command. The agent is trained

using instructions paired with valid trajectories for the instructions. Semantic parsing

was initially used to solve instruction following problems [99, 6]. This requires goal

conditions and sub-goal conditions to be pre-specified. For example, if an agent was

109

asked to “go to the chair,” the agent would need a pre-specified goal condition that

returns true when the agent is next to the chair. These hand specified goal conditions

are labor intensive to design especially on real robots because they need to map from

high-dimensional data from sensors to a symbol corresponding to being near the chair.

Some progress was made in learning symbols from data for instruction following

by collecting the data for the symbols separately from the trajectories [140, 57]. Mac-

Glashan et al. [98] learned mapping from language to a reward function learned via

Inverse Reinforcement learning. However the abstractions such as objects and rooms

were pre-specified in their domains, and not learned from scratch, and the reward func-

tion itself considered the permutation of these objects in the world. Matuszek et al.

[103] learned mappings from sentences to attributes learned from sensor data directly.

This work is the closest in spirit to what we are trying to achieve. However instead

of learning object attributes we are learning abstractions for planning from scratch and

grounding language to these learned abstractions.

Some works have tried to use neural approaches for sequence to sequence map-

ping from language directly to trajectories [3, 107]. Blukis et al. [16] map language to

learned locations on a simulated map using an end to end approach, which is a robust

approach to language grounding to goals. However, their methods still requires thou-

sands of interactions with the agent as they learn the policy end to end. We believe that

our approach would require fewer demonstrations and would generalize better. Other

end-to-end learning methods have used reinforcement leaning [55, 25], however they

use beyond millions episodes to learn simple behaviors. There are also approaches

that map language to pre-specified symbols using neural networks [48]. Mapping to

symbols in these approaches allows robots to plan more robustly to sensor noise and

environment stochasticity. However, the symbol spaces must be pre-defined with ex-

pert knowledge. For these mappings they translate natural language to the pre-specified

symbol space using neural translation approaches like Seq2Seq [136], or Transform-

110

ers [143]. In this work instead we want to learn the symbols or abstraction from the

trajectories and then map language to these learned symbols.

There have been many approaches to learn skills from trajectories [117, 75]. Konidaris

et al. [79] learns symbols from these skills. These skills have been seen as a way to

help agents learn in a reinforcement learning setting [77] or allow the robot to follow

a demonstration with multiple learned skills [117]. We follow a supervised learning

approach to learning skills with demonstrations as demonstrated in Niekum et al. [117]

and Konidaris et al. [75]. We convert these skills to symbols and plan over them as de-

scribed by Konidaris et al. [79]. We differ from the previous approaches as the ordering

of our skill terminations is defined by natural language at runtime.

7.2 Problem Definition

The inputs to this system consists of multiple egocentric trajectories ({τ}Ni=0) paired

with natural language instructions for each trajectory {I}Ni=0. Each trajectory is a se-

quence of states observed when an agent performs and action, that is, τ = {(s0, a0),

(s1, a1)....(sT , aT)}. Each trajectory is paired with an instruction In given by a human

user.

After training, the outputs of the system are a set of symbols σi ∈ Σ which can

be used for planning in the world, and a mapping from natural language to a sequence

of these symbols. At runtime, the robot is placed in a novel environment and given a

natural language command it has not previously encountered. It uses its trained model

to map from the language to a sequence of symbols. Then, the robot plans to reach

each symbol in the output sequence in order until the entire symbol sequence has been

executed. In this paper the state space consists of LIDAR data that the robot observes

in the world.

111

7.3 Mapping Language to Plans via Learned Symbolic

Abstractions

Our approach requires robot trajectories, in the form of actions and observations in ego-

centric frame, as well as paired natural language commands during learning. During

learning we learn an abstraction of the world in the form of symbols. These symbols

are the termination conditions of the underlying skills that create the demonstration

trajectories. To learn symbols we first recognize these skills using change point detec-

tion. We then segment demonstrations into their underlying skills, and then learn skill

termination conditions using clustering and classification. For instruction following

we translate natural language to a sequence of these symbols, that is skill terminations,

which can then be planned over. During runtime we plan over the learned symbols to

achieve desired behavior (Fig. 7.1). We now discuss different parts of our approach.

7.3.1 Symbols

A symbol σ is a classifier to identify the termination set of a particular skill. We as-

sume that the complex behaviours demonstrated by the demonstration trajectories can

be broken down into reusable skills. Hence a trajectory demonstration is an ordering

of skill termination conditions, or symbols. We map natural language to the sequence

of symbols present in the demonstration trajectories. We need to learn only the termi-

nation conditions of the skills, which will be referred to as symbols in this paper. The

skill policy can be learned from the segmented demonstration using a framework like

Dynamic Movement Primitives (DMPs) [60], or we can plan to skill terminations if

the transition model of the world is known. These symbols can also be thought of as

options termination conditions, however since we are using the labels of these option

termination conditions for translation, we refer to them as symbols.

112

(a)

(b)

Figure 7.1: The pipelines for our methodology for learning symbols and grounding
language to them for instruction following: a) To learn symbols, actions are segmented
using change point detection to generate skills. Then the observations that occur at
skill termination are clustered to generate our learned symbols; b) At run time, natural
language is inputted to our translation model, which outputs a sequence of learned
symbols. The outputted symbols are put into a planner, which outputs robot actions.
Note that the translation model is trained by using language and learned symbol pairs.

113

7.3.2 Egocentric Representation

The classifier of each symbol is trained with states observed in egocentric space, but

these symbols can be grounded in the global frame of reference by checking if the

egocentric state of a location in the map or pose of the robot is similar to the egocentric

state observed during learning.

The egocentric representation in our case has states in the form of Light Detection

and Ranging (LIDAR) data, and the actions in the form of torque input to the agent. For

other platforms the state can be an ego-centric camera input. The agent-space is non-

Markov in nature as multiple states might look the same to the agent. For example, in

the LIDAR setting, in a long corridor the state space of the LIDAR might hardly change

as the agent is moving forward. Since multiple states look the same in agent-space, it is

easier to learn symbols in this space that can then be transferred to different locations

within a map that look the same.

There is a separate global frame of reference [77], which is the state of the external

world under the given instruction. In this state space there is a map of the world, and

the robot’s cardinal location is known in the map. This state is Markov, and allows

planning. We learn the abstract symbols in local egocentric frame, and plan in a global

Markov state space, which in this case is a map. We ground symbols learned in agent-

space onto the physical map of the world in problem-space and then perform planning

over them. Previously, James et al. [63] have learned symbols that can be ported and

generalized to different locations within a map with some global frame variables, like

location on the map, as part of the agent’s state. This allows the instruction giver to use

sentences like the “go through the door on the right.” We do not learn portable symbols

in this work, but know that portability of the learned symbols is an important problem.

For this work we assume the transition dynamics of the world to be known to allow

point to point navigation on the map.

114

7.3.3 Change Point Detection

Change point detection is used to detect a change in the underlying statistics of a time

series. We specifically use a hierarchical Bayesian formalism for change point detec-

tion so as to detect repeated instances of the same latent skill. We assume that our

trajectory demonstrations are unstructured, but have underlying latent skills that are

repeated across multiple demonstrations.

We choose Hierarchical Dirichlet Process - Hidden Markov Model (HDP-HMM)

[139] to model our trajectories. This formulation gives us the advantage of not only

recognizing the change points themselves, but also provides mapping between trajec-

tory segments and the underlying latent skills, allowing us to recognize when the same

skill is being repeated across multiple demonstrations. Such an approach has been used

previously by Niekum et al. [117], Ranchod et al. [129] and Konidaris et al. [75].

The data in our case consists of the observed actions y = [y0, y1,yT−1, yT] cho-

sen by the demonstrator, where the data is d dimensional. There are underlying latent

skills which come from k ∈ {1, 2, ...} possible labels. Under the HDP-HMM process

latent skills are assumed to be generated from a first order Markov process represented

by z = {z0, z1, ...zT }. The latent first order Markov process is parameterized with ini-

tial state probabilities (π0) and transition probabilities ({πk}∞k=1) from one latent skill

to another. There is an additional parameter of ({θk}∞k=1) to govern the observation

noise when observing the output trajectory, which is parameterzied by the hyperpa-

rameter λ. The mathematical formulation for a HDP-HMM as described by Fox et al.

[44] is given by:

yt|zt = k ∼ N (xt|Akxt−1,Σk); zt+1|{πk}∞k=1, zt ∼ πzt ;

πk|α, κ, β ∼ DP(α+ κ, (αβ + κδκ)/(α+ κ)); β|γ ∼ GEM(γ),

where DP is a Dirichlet process and β is a random probability measure setting the

115

Figure 7.2: The HDP-HMM plate model used in our work. Z indicates latent states, in
our case the skills, Y indicates observations, in our case the actions, π indicates initial
and transition probabilities between latent states.transition probabilities between skills. GEM refers to Griffiths, Engen and McCloskey

distribution, which is used to generate β using a stick breaking model parameterized

by γ. Parameter β in turn parameterized the transition probabilities πk along with the

hyperparameters of α and κ. The goal of such a model is to estimate the joint proba-

bility Pr(β, π, θ, {z}Tt=1|{x}Tt=0), which is the joint probability of the DP parameters

and hidden states given the trajectory. The estimation of the joint probability is gen-

erally performed using variational inference. The Viterbi algorithm [43] is then used

to label each time step with a latent skill using the joint probability distribution. The

observed sequence y here is treated as an auto-regressive process. For a more complete

mathematical treatment of HDP-HMM please refer to Fox et al. [44] and Hughes [58].

The plate model for the HDP-HMM model is shown in Figure 7.2. We used the BNPY

toolbox by Hughes and Sudderth [59] for performing this HDP-HMM change point

detection. HDP-HMM labels the trajectory segments with the underlying latent skills.

These trajectory segments can be used to learn a skill policy using DMPs[60].

In this work we are only segmenting the action trajectory of the agent, and not the

state-action trajectory. This is different from methods demonstrated in Konidaris et al.

116

[75] and Niekum et al. [117], where state and action information is used for segmen-

tation. This is because our state data is not just the robot’s joint space, but the actual

high dimensional state of the environment visible to the agent, which computationally

intractable with the current state of the art Bayesian changepoint detection methods.

7.3.4 Clustering

Each of the latent skill learned with changepoint detection could potentially have mul-

tiple termination conditions. We use clustering as an unsupervised method to learn

possible termination sets of each learned skill. More precisely, the number of effect

sets of a skill are not known in advance. For example, the going forward skill might

terminate when the agent reaches a wall, or when the agent reaches the next room.

The termination sets for both of these skills must be modelled separately. However

the trainer need not know how many such effect sets exist, hence we use clustering to

recover possible termination sets. We use DBSCAN [40] as the clustering method. We

prefer it as it is a non-parametric method that does not need a pre-specified number

of clusters or the diameters of possible clusters. We only specify a distance metric,

a minimum number of support points for a cluster, and a noise parameter. The noise

parameter allows the algorithm to identify outliers. We choose the same parameter

for all skills in a domain, that we pick such that we do not have any small clusters of

termination states for any skill.

7.3.5 Classification

We then take each cluster and create a classifier with the points associated with the

cluster. We choose Single Class SVMs [131] as they are a robust classifier against

noise, which is prevalent in LIDAR data. Single Class SVMs were developed as an

outlier detection method, and in our case, outlier states are those that do not satisfy the

statistics of our termination states. The classifiers output a true label if the tested points

117

can belong to the cluster of points used to train it, and a false label if the it is more

likely that the points are outliers. We use a sigmoid kernel as features for classification,

as it helps distinguish LIDAR distance data well. We choose best practice methods

to choose hyperparameters for the classifier, which are dependent on the number of

dimensions of the data and the variance of the data. After we train classifiers associated

with each cluster, we attempt to merge classifiers that have the same output response for

each skill. This is likely as the clustering process is unsupervised and produces more

clusters that are indistinguishable from each other. To compare the output responses of

the classifiers we classify the points used to train one classifier using the other classifier,

and vice-versa. If both classifiers label more than 85% of the points belonging to the

other cluster as inliers, we then merge the cluster, as their inlier responses are similar,

and the clusters have a large overlap, hence they might as well be the same symbol.

7.3.6 Translation

Machine translation is posed as mapping an input sequence to an output sequence. For

our problem, we aim to learn a mapping from natural language instructions, defined

as a sequence of strings i = [i0, i1, ..., il−1, il], to a sequence of symbols, that is,

termination conditions [σ0, .., σn].

The output target sentence is the order in which the symbols appear in the demon-

stration trajectory. We then train the deep Seq2Seq recurrent neural network [136] to

take the sequences and output the paired sequence of skills using the negative log like-

lihood loss. The embedding vector size is 50 dimensional, and the hidden vector size

is 256. Seq2Seq utilizes two recurrent neural networks, one which acts as an encoder

E and the other as a decoder D. The encoder is trained to take the input sequence

and map it to a vector of fixed dimension, and the decoder is trained to take the output

and decode to the translated sequence. Our Seq2Seq model has Badhanau attention

[10] to provide soft alignment between input and output symbol sequences. We also

118

use GloVe [124] pre-trained embeddings as they improve Seq2Seq performance in low

data scenarios.

At runtime we plan over the sequence of output symbols predicted by the Seq2Seq

model in order, that is, we plan for the first symbol in the sequence, and then the

next and so on until the terminal symbol. The policy for each symbol as mentioned

previously can be a DMP or an out of the box planner.

7.4 Experiment

In order to evaluate our algorithm, we tested our method on three different robot

datasets: A simulated Turtlebot domain, a real-world car LIDAR dataset collected from

the Naval Postgraduate School (NPS) [147], and a robotics dataset we collected our-

selves with a Kinova Movo mobile manipulator going through an office building.

7.4.1 Simulated Turtlebot

We created the domain of Corridor world with corridors and intersections, so as to

resemble an office building. This domain was created in Gazebo, with friction and

other sources of noise. The Turtlebot agent has a simulated noisy Hokuyo LIDAR,

which provides the perceivable state space information of the agent. The simulated

Turtlebot functions at 30 Hz, and actions were sent to the robot with Twist messages.

The action data was a 3 dimensional encoding the twist velocity commands of up and

left and right.

We collected a total of 26 trajectories paired with 26 language annotations, one lan-

guage annotation per demonstration, collected from an expert user. These trajectories

consisted of 5 − 6 demonstrations each, for 5 different behaviours of: turn right, turn

left, go straight until end of corridor, go straight and turn left at the intersection, and go

straight and turn right at the intersection. We first segmented the skills and produced

the output the order of skills for every demonstration.

119

Different trajectory demonstrations get segmented into skills as shown in Fig. 7.3c.

The Hokuyo LIDAR on the robot returned ranges for the frontward facing 270 degrees

of the Turtlebot. We then clustered the termination states of these skills to create sym-

bols. We used this order of these symbols as our target language for translation. We

then took the terminating LIDAR states from each of the segmented skills, and inputted

them into our clustering algorithm which produced 4 symbols: intersection, end of cor-

ridor, left, and right. The DBSCAN hyperparameters used for clustering were eps= 15

and minimum support = 5. These 4 clusters produce a classifier each as the symbols.

We then used the input language instructions as the source language for translation,

and the order of skills from the segment trajectories as the output target language. We

trained our network 5 times, and ran 5-fold cross validation for testing each time. We

observed an average cross-validation result of 52.8%± 4.57. The random baseline for

this test is 20% as there are 5 output behaviours trained.

There are two causes for these low numbers. First is the lack of training language

data which hurts when an out of vocabulary word is used. Secondly we have multiple

behaviours mapping to words like ”right” and ”left,” cause the accuracy to drop. We

crowd-source more language data for the other experiments.

7.4.2 NPS car dataset

The NPS car dataset [147] consists of a car driving around a real neighborhood. The car

has a 32-Laser Velodyne HDL-32e LIDAR and three Logitech c920 HD RGB cameras.

The Velodyne functions at 10 Hz and is collected from a full 360 degree view with a

minimum distance of 0.9 meters and a maximum range of 130 meters. The RGB

cameras function at 30 Hz, and have a full-HD resolution of 1920x1080. We used this

dataset because it had a lot of urban driving with plenty of turns, instead of highway

driving.

However, no action or IMU data was recorded in this dataset, and hence we used

120

the Loam Velodyne [1] ROS package to perform mapping and state-estimation of the

car from the Velodyne data. We then used the difference between sequential poses to

compute the magnitudes and directions at each time step, which we treated as our 2

dimensional action data for going forward and turning along the vertical axis.

We collected a total of 10 trajectories, and then uploaded the frontward facing RGB

video of these trajectories to Amazon Mechanical Turk (AMT), and requested users to

write down one sentence they would use to command the robot to perform the observed

behavior. From this, we collected 300 language annotations for 3 different behaviors:

turn left after getting to the intersection, turn right after getting to the intersection, and

going straight until the intersection. We cleaned the language dataset to 270 examples

as the other 30 sentences were not related to the task at all. We segmented the skills,

and then used the order of these skills as our target language for translation. For symbol

learning, we converted the Velodyne data into a 1-D 360 that we use as our input states.

We then took the terminating laser scans from each skill segment and clustered them

using DBSCAN. This produced 3 symbols for the terminations of: turning left, turning

right, and going straight. The clustering hyperparameters used for DBSCAN were

ε = 20 and minimum support = 10. These 3 clusters produce 3 classifiers as symbols.

We then used the crowd-sourced language instructions as our source language for

translation, and the output sequence of symbols from the trajectory segmented as our

target language. We trained our network 5 times, and ran 5-fold cross validation for

testing each time. We observed an average cross-validating result of 96.51± 0.46. The

random baseline for this test is 33% because there are 3 potential output behaviours

trained.

Our behaviors were short in length, which made learning a mapping from language

easy. We would have preferred to learn longer horizon behaviors however our mapping

and state-estimation package accumulated errors over longer periods of time, limiting

our train and test behaviors to be relatively small to our other experiments. This would

121

not have been an issue if we had access to high-quality IMU or action data. Note that

we did not perform planning in this domain; we only learned symbols with clustering

and learned a mapping from language to these symbols.

(a)

(b)
(c)

Figure 7.3: Example images of our learned symbols (mobile robot domain) and skill
segments (simulated Turtlebot): a) Median of the states used to learn the open inter-
section symbol; b) Median of the states used to learn the end of corridor symbol; c)
Skill segmentation for the behaviors of turn left, turn right, go to the intersection and
turn left, and go to the intersection and turn right demonstrated on the Turtlebot in the
simulated world of Corridor world.

7.4.3 Mobile Robot domain

We wanted to learn symbols on a real mobile robot, map language to it, and perform

planning in an unseen environment. For this, we used a Kinova Movo robot with a built

in LIDAR sensor and frontward facing RGB camera. The LIDAR sensor operates at

15 Hz, and actions were sent to the robot with Twist messages at 45 Hz. The action

data was 2 dimensional encoding the linear x velocity and the angular z velocity.

For training, we went to 5 different locations and collected a total for 75 trajectories.

For language collection, we uploaded the robot frontward facing RGB camera videos

to AMT, and requested users to write down one sentence they would say to instruct

the robot to perform the observed behavior. From this, we collected 913 language

annotations for 5 different behaviors of going straight and taking left, going straight

and taking right, in place holonomic left, in place holonomic right and going to the

intersection. In the context of segmentation, the trajectories are noisy because the

122

algorithm labels even small left and right movements as left and right turning skills.

Hence we remove any latent skill that is shorter than half a second, as these movements

might just involve course correction while providing demonstrations. The algorithm

produced 3 different latent skills of turning left, turning right and going straight. The

output now is a sequence of skills per demonstration trajectory.

For symbol learning, we filtered the LIDAR to only use the frontward facing 90◦

data, as the corridors were narrow and the LIDAR returned a lot of noise from the side

sensors. We then took the terminal LIDAR states from each of the 3 segmented skills,

and input them into our clustering algorithm, DBSCAN, which produced 5 different

clusters with hyperparameters of ε = 88 and minimum support = 5. We learned

one class SVMs using states in each of these clusters representing end of corridor,

intersection, right terminal corridor, and two left terminal corridor symbols. Example

images of our learned symbols can be seen in Fig. 7.3a, 7.3b.

(a) (b) (c)

Figure 7.4: Images of mobile robot planning in unseen environment from the command
“Go to the end of the corridor and take a right”: a) robot going to intersection; b) robot
taking a right; c) robot going to end of corridor

Using our trajectory and language dataset, we trained our language translation

model on 5000 epochs, with 50 dimensional pre-trained GloVe embedding on the

encoder side, with hidden state dimension being 256. The translation accuracy was

75.71 ± 0.37%. A baseline random policy has translation accuracy 20%. We then

brought the robot to an unseen environment, and tested three different language com-

123

mands: “go to the end of the corridor and take a right”, “left at the end of the hallway”,

and “go to the end of the corridor”. In all three cases, our translation model produced

both a valid sequence of symbols for the given map, as well as the necessary symbols

for accomplishing the instruction. Images of the robot performing planning for one of

the behaviors can be seen in Figure. 7.4, and videos of all three behaviors in the test

environment can be found in our supplemental video1.

The translation accuracy is not as high as we would like it to be as there are multiple

symbols that recognize when the robot has turned left. This is because we collected

only 10 trajectories of the robot turning left. In half the instances the robot landed in an

open corridor and in other it the robot was in a corridor which was not very long. Due

to the large disparity in depth between the corridors we trained on, the terminal states

for the left skill was bimodal and produced two separate symbols that the clustering

algorithm was not able to merge together. We believe this discrepancy caused our

model to under-perform.

This creates two symbols for left that cannot be merged as the robot should see

these corridors differently in the world. We were able to merge our symbols for turn-

ing right as the agent had over 20 trajectories to learn the meaning of right, and by

sampling different corridors the agent was able to generalize the symbol termination

across different depths. We believe a much better method for translating from natural

language to a set of learned symbols might be via inference, or conditioning the trans-

lations on the map of the world that the robot is encountering. In such cases it would be

easy for the agent to establish that the current map has only certain types of symbols,

and therefore the left symbol and the grounding process would be straightforward.

1https://streamable.com/zsf59

124

https://streamable.com/zsf59

7.5 Conclusion

In this work, we show how to automatically learn abstract symbols, map language

to them, and transfer the skills to new environments for planning. This is the first

work to demonstrate such an end-to-end pipeline that learns symbols and groundings

from language and trajectory demonstration pairs. The fact that our symbols are rep-

resented as termination classifiers over robot observations in egocentric frame allows

them to be both interpretable and generalizable to unseen environments. Furthermore,

by first translating high-dimensional natural language into a drastically smaller space

of learned symbols, our method requires very few demonstrations to learn behaviors,

which is crucial in robot applications that have large state spaces. Our experiments

across three different datasets demonstrate that our method enables real robot platforms

to follow open-ended language commands with little data.

125

126

Chapter 8

Discussion

In this thesis we presented approaches to ground language to abstractions. To this end

we had four specific contributions:

• A fast and reactive hierarchical planner specifically designed for the large state-

action spaces encountered in task and motion planning.

• Language grounding for different types of behaviors or plans, from simple goal

conditions to richer temporal constraints.

• using different mechanisms for language grounding: simple classification, deep

sequence-to-sequence methods, traditional grammar based parser learning.

• Learning goal and sub-goal conditions of a plan from scratch and mapping lan-

guage to these symbols. This should allows us to learn hierarchical structures

helpful for planning via demonstrations.

Initially we grounded language to pre-specified abstractions. While specifying these

abstractions is easy for small domains, it is impossible to specify these abstractions

for all tasks. We also believe that for language grounding via classification is perhaps

an easier solution than most other approaches such as sequence to sequence mappings

127

or learning a parser. However, classification is only suitable for scenarios in which all

classes are known a priori, which necessitates learning a new classifier to learn any new

groundings. On the other hand we have found sequence to sequence methods too brittle

to predict novel combinations of reward functions. Other methods like learning a CCG

parser require us to specify a lot of the semantic and grammatical rules, which require

a lot of expert domain knowledge, even if these approaches lead to some generaliza-

tion. Hence we believe more research needs to be performed on learning compositional

methods to ground novel translations or reward functions.

Our final result learned both the abstractions and the language grounding to these

abstractions from data. This result is a proof of existence for learning abstraction from

trajectory data, and mapping language to these sub-goals. Our next goal is to learn more

complex tasks perhaps on a pick and place task with a mobile robot. While learning all

abstractions from scratch might require many demonstrations, which can make such an

approach impractical, we believe that in an ideal scenario plenty of these abstractions

are available in advance. These abstractions already exist in computer vision literature

in the form of labelled object classifiers and caption generators [86]. We believe that

the right solution is a mixture of pre-specified abstractions and the capability of an

artificial agent to learn new abstractions on demand.

In the future we would like to quantify the quality of an abstraction hierarchy. We

believe that such quantification would help in constructing better hierarchies. More-

over, we would like to introduce inference based planning to allow question asking,

and improvement of a pre-specified plan, especially if the pre-specified plan is incor-

rect or partially specified. Furthermore, we believe the dialog between a human and

an agent will play an important role in learning language groundings and object affor-

dances.

128

Bibliography

[1] Laser Odometry and Mapping (Loam) Velodyne. http://wiki.ros.org/loam_

velodyne.

[2] Ken R. Anderson, Timothy J. Hickey, and Peter Norvig. The JScheme language and

implementation, 2013. URL http://jscheme.sourceforge.net/jscheme/

main.html.

[3] Jacob Andreas and Dan Klein. Alignment-based compositional semantics for instruction

following. In Conference on Empirical Methods in Natural Language Processing, pages

1165–1174, 2015.

[4] Yoav Artzi. Cornell SPF: Cornell Semantic Parsing Framework, 2016. URL https:

//github.com/lil-lab/spf.

[5] Yoav Artzi and Luke Zettlemoyer. Bootstrapping semantic parsers from conversations. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 421–432, 2011.

[6] Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for

mapping instructions to actions. In Annual Meeting of the Association for Computational

Linguistics, 2013.

[7] Yoav Artzi, Dipanjan Das, and Slav Petrov. Learning compact lexicons for ccg seman-

tic parsing. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing, pages 1273–1283, October 2014.

129

http://wiki.ros.org/loam_velodyne
http://wiki.ros.org/loam_velodyne
http://jscheme.sourceforge.net/jscheme/main.html
http://jscheme.sourceforge.net/jscheme/main.html
https://github.com/lil-lab/spf
https://github.com/lil-lab/spf

[8] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan, Lawson L. S. Wong, and Ste-

fanie Tellex. Accurately and efficiently interpreting human-robot instructions of varying

granularities. In Robotics: Science and Systems XIII, 2017.

[9] Faheim Bacchus, Craig Boutilier, and Adam Grove. Rewarding behaviors. In National

Conference on Artificial Intelligence, pages 1160–1167, 1996.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. In International Conference on Learning Represen-

tations, 2014.

[11] Bram Bakker, Zoran Zivkovic, and Ben Krose. Hierarchical dynamic programming for

robot path planning. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 2756–2761, 2005.

[12] Jennifer L. Barry, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Deth: Approximate

hierarchical solution of large markov decision processes. In International Joint Confer-

ence on Artificial Intelligence, pages 1928–1935, 2011.

[13] R. Bellman. A Markovian decision process. Indiana University Mathematics Journal, 6:

679–684, 1957.

[14] Richard Bellman. Dynamic programming and lagrange multipliers. Proceedings of the

National Academy of Sciences, 42(10):767–769, 1956.

[15] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural proba-

bilistic language model. Journal of Machine Learning Research, pages 1137–1155, 2000.

[16] Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A Knepper, and Yoav Artzi. Follow-

ing high-level navigation instructions on a simulated quadcopter with imitation learning.

pages 505–518, 2018.

[17] Valts Blukis, Dipendra Misra, Ross A Knepper, and Yoav Artzi. Mapping navigation

instructions to continuous control actions with position-visitation prediction. Robotics:

Science and Systems XIV, 2018.

130

[18] Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus. In-

terpreting and executing recipes with a cooking robot. In Experimental Robotics, pages

481–495, 2013.

[19] Adrian Boteanu, Thomas Howard, Jacob Arkin, and Hadas Kress-Gazit. A model for

verifiable grounding and execution of complex natural language instructions. In 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

2649–2654, 2016.

[20] Daniel J. Brooks, Constantine Lignos, Cameron Finucane, Mikhail S. Medvedev, Ian Per-

era, Vasumathi Raman, Hadas Kress-Gazit, Mitch Marcus, and Holly A. Yanco. Make it

so: Continuous, flexible natural language interaction with an autonomous robot. In AAAI

Conference on Artificial Intelligence Workshop on Grounding Language for Physical Sys-

tems, 2012.

[21] Peter F. Brown, John Cocke, Stephen Della Pietra, Vincent J. Della Pietra, Frederick

Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A statistical approach

to machine translation. Computational Linguistics, 16:79–85, 1990.

[22] Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer.

The mathematics of statistical machine translation: Parameter estimation. Computational

Linguistics, 19:263–311, 1993.

[23] Emma Brunskill and Lihong Li. PAC-inspired option discovery in lifelong reinforcement

learning. In International Conference on Machine Learning, pages 316–324, 2014.

[24] Bob Carpenter. Type-Logical Semantics. MIT Press, 1997.

[25] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi,

Dheeraj Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-

oriented language grounding. In Thirty-Second AAAI Conference on Artificial Intelli-

gence, pages 2819–2826, 2018.

[26] David L. Chen and Raymond J. Mooney. Learning to interpret natural language navigation

instructions from observations. In AAAI Conference on Artificial Intelligence, 2011.

131

[27] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gúlçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-

ing RNN encoder-decoder for statistical machine translation. In Empirical Methods in

Natural Language Processing, 2014.

[28] Istvan Chung, Oron Propp, Matthew R Walter, and Thomas M Howard. On the perfor-

mance of hierarchical distributed correspondence graphs for efficient symbol grounding

of robot instructions. In International Conference on Intelligent Robots and Systems,

pages 5247–5252, 2015.

[29] Junyoung Chung, Çaglar Gúlçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical eval-

uation of gated recurrent neural networks on sequence modeling. In Neural Information

Processing Systems Workshop on Deep Learning, 2014.

[30] Stephen Clark and James R Curran. Wide-coverage efficient statistical parsing with ccg

and log-linear models. Computational Linguistics, pages 493–552, 2007.

[31] L Stephen Coles. Talking with a robot in english. In IJCAI, pages 587–596, 1969.

[32] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verifica-

tion. Journal of the Association for Computing Machinery, pages 857–907, 1995.

[33] Thomas G. Dieterrich. Hierarchical reinforcement learning with the MAXQ value func-

tion decomposition. Journal on Artificial Intelligence Research, pages 227–303, 2000.

[34] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, pages 269–271, 1959.

[35] Carlos Diuk, Alexander L Strehl, and Michael L Littman. A hierarchical approach to ef-

ficient reinforcement learning in deterministic domains. In Proceedings of the fifth inter-

national joint conference on Autonomous agents and multiagent systems, pages 313–319,

2006.

[36] Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation

for efficient reinforcement learning. In International Conference on Machine Learning,

pages 240–247, 2008.

132

[37] Richard O Duda and Peter E Hart. Use of the hough transformation to detect lines and

curves in pictures. Technical report, 1971.

[38] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn. What to do and

how to do it: Translating natural language directives into temporal and dynamic logic rep-

resentation for goal management and action execution. In IEEE International Conference

on Robotics and Automation, 2009.

[39] Kutluhan Erol, James A Hendler, and Dana S Nau. Umcp: A sound and complete pro-

cedure for hierarchical task-network planning. In Artificial Intelligence Planning Confer-

ence, 1994.

[40] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algo-

rithm for discovering clusters in large spatial databases with noise. In In Proceedings of

Knowledge Discovery and Data Mining, pages 226–231, 1996.

[41] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, pages 189–208, 1971.

[42] Centre for Disease Control and Prevention. Cdc’s developmental milestones,

2019. URL http://web.archive.org/web/20190609063726/https:

//www.cdc.gov/ncbddd/actearly/pdf/checklists/Checklists-

with-Tips_Reader_508.pdf.

[43] G David Forney. The Viterbi Algorithm. Proceedings of the IEEE.

[44] Emily B Fox, Erik B Sudderth, Michael I Jordan, Alan S Willsky, et al. A sticky hdp-

hmm with application to speaker diarization. The Annals of Applied Statistics, 5(2A):

1020–1056, 2011.

[45] Google. Google Speech API. https://cloud.google.com/speech/, 2017. Ac-

cessed: 2017-01-30.

[46] Nakul Gopalan, Marie desJardins, Michael L. Littman, James MacGlashan, Shawn

Squire, Stefanie Tellex, John Winder, and Lawson L.S. Wong. Planning with abstract

133

http://web.archive.org/web/20190609063726/https://www.cdc.gov/ncbddd/actearly/pdf/checklists/Checklists-with-Tips_Reader_508.pdf
http://web.archive.org/web/20190609063726/https://www.cdc.gov/ncbddd/actearly/pdf/checklists/Checklists-with-Tips_Reader_508.pdf
http://web.archive.org/web/20190609063726/https://www.cdc.gov/ncbddd/actearly/pdf/checklists/Checklists-with-Tips_Reader_508.pdf
https://cloud.google.com/speech/

markov decision processes. In Abstraction in Reinforcement Learning Workshop at ICML,

2016.

[47] Nakul Gopalan, Marie desJardins, Michael L. Littman, James MacGlashan, Shawn

Squire, Stefanie Tellex, Robert John Winder, and Lawson L. S. Wong. Planning with

abstract Markov decision processes. In International Conference on Automated Planning

and Scheduling, pages 480–488, 2017.

[48] Nakul Gopalan, Dilip Arumugam, Lawson L.S. Wong, and Stefanie Tellex. Sequence-to-

sequence language grounding of non-markovian task specifications. In Robotics: Science

and Systems, 2018.

[49] Alex Graves. Generating sequences with recurrent neural networks. CoRR,

abs/1308.0850, 2013.

[50] Maria Teresa Guasti. Language acquisition: The growth of grammar. MIT press, 2017.

[51] Kelvin Guu, Panupong Pasupat, Evan Zheran Liu, and Percy Liang. From language to

programs: Bridging reinforcement learning and maximum marginal likelihood. pages

1051–1062, 2017.

[52] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal

aspects of computing, pages 512–535, 1994.

[53] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena,

pages 335–346, 1990.

[54] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,

pages 100–107, 1968.

[55] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hu-

bert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis

Teplyashin, et al. Grounded language learning in a simulated 3d world. arXiv preprint

arXiv:1706.06551, 2017.

134

[56] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-

tion, pages 1735–1780, 1997.

[57] Thomas M. Howard, Stefanie Tellex, and Nicholas Roy. A natural language planner

interface for mobile manipulators. In IEEE International Conference on Robotics and

Automation, 2014.

[58] Michael C Hughes. Reliable and scalable variational inference for bayesian nonparametric

models. 2014.

[59] Michael C Hughes and Erik B Sudderth. Bnpy: Reliable and scalable variational infer-

ence for bayesian nonparametric models. In In Proceedings of the NIPS Probabilistic

Programimming Workshop, pages 8–13, 2014.

[60] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation with nonlinear

dynamical systems in humanoid robots. In IEEE International Conference on Robotics

and Automation, pages 1398–1403. IEEE, 2002.

[61] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dy-

namical movement primitives: learning attractor models for motor behaviors. Neural

computation, pages 328–373, 2013.

[62] Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber, and Hal Daumé. Deep unordered

composition rivals syntactic methods for text classification. In Annual Meeting of the

Association for Computational Linguistics, pages 1681–1691, 2015.

[63] Steven James, Benjamin Rosman, and George Konidaris. Learning portable representa-

tions for high-level planning. arXiv preprint arXiv:1905.12006, 2019.

[64] Michael Janner, Karthik Narasimhan, and Regina Barzilay. Representation learning for

grounded spatial reasoning. arXiv preprint arXiv:1707.03938, 2017.

[65] Nicholas K. Jong and Peter Stone. Hierarchical model-based reinforcement learning: R-

max+ MAXQ. In International Conference on Machine Learning, 2008.

135

[66] Nicholas K Jong, Todd Hester, and Peter Stone. The utility of temporal abstraction in

reinforcement learning. In Proceedings of the 7th international joint conference on Au-

tonomous agents and multiagent systems, pages 299–306, 2008.

[67] Andreas Junghanns and Jonathan Schaeeer. Sokoban: a challenging single-agent search

problem. In International Joint Conference on Artificial Intelligence Workshop on Using

Games as an Experimental Testbed for AI Reasearch, 1997.

[68] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical planning in the now. In

Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[69] Siddharth Karamcheti, Edward C. Williams, Dilip Arumugam, Mina Rhee, Nakul

Gopalan, Lawson L.S. Wong, and Stefanie Tellex. A tale of two DRAGGNs: A hybrid

approach for interpreting action-oriented and goal-oriented instructions. In Annual Meet-

ing of the Association for Computational Linguistics Workshop on Language Grounding

for Robotics, 2017.

[70] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image

descriptions. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 3128–3137, 2015.

[71] Junkyung Kim, Matthew Ricci, and Thomas Serre. Not-so-clevr: learning same–different

relations strains feedforward neural networks. Interface focus, 2018.

[72] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014.

[73] Ross A Knepper, Stefanie Tellex, Adrian Li, Nicholas Roy, and Daniela Rus. Single

assembly robot in search of human partner: Versatile grounded language generation. In

2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages

167–168, 2013.

[74] Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation.

2017.

136

[75] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot learning

from demonstration by constructing skill trees. The International Journal of Robotics

Research, pages 360–375, 2012.

[76] George D. Konidaris. Constructing abstraction hierarchies using a skill-symbol loop. In

International Joint Conference on Artificial Intelligence, pages 1648–1654, 2016.

[77] George D. Konidaris and Andrew G Barto. Building portable options: Skill transfer in

reinforcement learning. In IJCAI, volume 7, pages 895–900, 2007.

[78] George D. Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation

in reinforcement learning using the fourier basis. In Twenty-fifth AAAI conference on

artificial intelligence, 2011.

[79] George D. Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to

symbols: Learning symbolic representations for abstract high-level planning. Journal of

Artificial Intelligence Research, pages 215–289, 2018.

[80] George Dimitri Konidaris. Autonomous robot skill acquisition. University of Mas-

sachusetts Amherst, 2011.

[81] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. From structured english

to robot motion. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 2717–2722, 2007.

[82] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Translating structured

english to robot controllers. Advanced Robotics, pages 1343–1359, 2008.

[83] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-logic-based

reactive mission and motion planning. IEEE Transactions on Robotics, pages 1370–1381,

2009.

[84] Hadas Kress-Gazit, Morteza Lahijanian, and Vasumathi Raman. Synthesis for robots:

Guarantees and feedback for robot behavior. Annual Review of Control, Robotics, and

Autonomous Systems, 1(1), 2018.

137

[85] Jayant Krishnamurthy and Tom M. Mitchell. Weakly supervised training of semantic

parsers. In Proceedings of the Joint Conference on Empirical Methods in Natural Lan-

guage Processing and Computational Natural Language Learning, pages 754–765, 2012.

[86] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with

deep convolutional neural networks. In NIPS, pages 91–99, 2012.

[87] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Lexical

generalization in CCG grammar induction for semantic parsing. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, pages 1512–1523.

Association for Computational Linguistics, 2011.

[88] Brenden M. Lake and Marco G Baroni. Still not systematic after all these years: On the

compositional skills of sequence-to-sequence recurrent networks. CoRR, abs/1711.00350,

2017.

[89] Steven M LaValle and James J Kuffner. Randomized kinodynamic planning. The Inter-

national Journal of Robotics Research, pages 378–400, 2001.

[90] Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified theory of state

abstraction for MDPs. In International Symposium on Artificial Intelligence and Mathe-

matics, 2006.

[91] Percy Liang. Learning executable semantic parsers for natural language understanding.

Communications of the ACM, pages 68–76, 2016.

[92] Constantine Lignos, Vasumathi Raman, Cameron Finucane, Mitchell Marcus, and Hadas

Kress-Gazit. Provably correct reactive control from natural language. Autonomous

Robots, pages 89–105, 2015.

[93] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the complexity

of solving Markov decision problems. In Proceedings of the Eleventh conference on

Uncertainty in artificial intelligence, pages 394–402, 1995.

138

[94] Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Lee Isbell, Min Wen, and James Mac-

Glashan. Environment-independent task specifications via GLTL. CoRR, abs/1704.04341,

2017.

[95] Savvas G Loizou and Kostas J Kyriakopoulos. Automatic synthesis of multi-agent motion

tasks based on ltl specifications. pages 153–158, 2004.

[96] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to

attention-based neural machine translation. In Empirical Methods in Natural Language

Processing, pages 1412–1421, 2015.

[97] James MacGlashan. Brown–UMBC Reinforcement Learning and Planning (BURLAP)–

Project Page. http://burlap.cs.brown.edu/, 2014.

[98] James MacGlashan, Monica Babeş-Vroman, Marie DesJardins, Michael L. Littman,

Smaranda Muresan, Shawn Squire, Stefanie Tellex, Dilip Arumugam, and Lei Yang.

Grounding English commands to reward functions. In Robotics: Science and Systems,

2015.

[99] Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Connecting

language, knowledge, and action in route instructions. In Proceedings, The Twenty-First

National Conference on Artificial Intelligence and the Eighteenth Innovative Applications

of Artificial Intelligence Conference, pages 1475–1482, 2006.

[100] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems -

specification. Springer-Verlag New York, 1992.

[101] Ellen M Markman. Categorization and naming in children: Problems of induction. Mit

Press, 1991.

[102] B. Marthi, S. J. Russell, and J. Wolfe. Angelic hierarchical planning: Optimal and online

algorithms. In International Conference on Automated Planning and Scheduling, pages

222–231, 2008.

139

[103] Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo, and Dieter Fox.

A joint model of language and perception for grounded attribute learning. International

Conference on Machine Learning, 2012.

[104] Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to parse

natural language commands to a robot control system. In Experimental Robotics, pages

403–415, 2013.

[105] Amy McGovern, Richard S. Sutton, and Andrew H Fagg. Roles of macro-actions in

accelerating reinforcement learning. Grace Hopper Celebration of Women in Computing,

1997.

[106] H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. Bounded real-time

dynamic programming: RTDP with monotone upper bounds and performance guarantees.

In International Conference on Machine Learning, pages 569–576, 2005.

[107] Hongyuan Mei, Mohit Bansal, and Matthew R Walter. Listen, attend, and walk: neural

mapping of navigational instructions to action sequences. In Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence, pages 2772–2778, 2016.

[108] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur.

Recurrent neural network based language model. In Eleventh Annual Conference of the

International Speech Communication Association, 2010.

[109] Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur.

Extensions of recurrent neural network language model. In IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, pages 5528–5531, 2011.

[110] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. CoRR, abs/1301.3781, 2013.

[111] Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual obser-

vations to actions with reinforcement learning. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pages 1004–1015, 2017.

140

[112] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning. Nature, pages 529–533, 2015.

[113] Richard Montague. Universal grammar. Theoria, pages 373–398, 1970.

[114] Richard Montague. The proper treatment of quantification in ordinary english. In Ap-

proaches to natural language, pages 221–242. 1973.

[115] Negin Nejati, Pat Langley, and Tolga Konik. Learning hierarchical task networks by

observation. In Proceedings of the 23rd International Conference on Machine Learning,

pages 665–672, 2006.

[116] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In

Proceedings of the Seventeenth International Conference on Machine Learning, pages

663–670, 2000.

[117] Scott Niekum, Sarah Osentoski, George Konidaris, and Andrew G Barto. Learning and

generalization of complex tasks from unstructured demonstrations. In IEEE/RSJ Intelli-

gent Robots and Systems, pages 5239–5246, 2012.

[118] Nils J. Nilsson. Shakey the robot. AI Center, SRI International, Tech. Rep., 1984.

[119] John Oberlin and Stefanie Tellex. Ein 1.0. http://h2r.github.io/ein/. Ac-

cessed: 2018-12-29.

[120] Edwin Olson. Apriltag: A robust and flexible multi-purpose fiducial system. Technical

report, University of Michigan APRIL Laboratory, May 2010.

[121] Christos Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision pro-

cesses. Mathematics of Operations Research, pages 441–450, 1987.

[122] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-

entiation in PyTorch. In Neural Information Processing Systems Workshop on The Future

of Gradient-based Machine Learning Software & Techniques, 2017.

141

http://h2r.github.io/ein/

[123] Rohan Paul, Jacob Arkin, Nicholas Roy, and Thomas M. Howard. Efficient grounding

of abstract spatial concepts for natural language interaction with robot manipulators. In

Robotics: Science and Systems, 2016.

[124] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vec-

tors for word representation. In Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, 2014.

[125] Amir Pnueli. The temporal logic of programs. In IEEE Annual Symposium on Founda-

tions of Computer Science, pages 46–57, 1977.

[126] Morgan Quigley, Josh Faust, Tully Foote, and Jeremy Leibs. ROS: an open-source robot

operating system. In IEEE International Conference on Robotics and Automation Work-

shop on Open Source Software, 2009.

[127] Vasumathi Raman and Hadas Kress-Gazit. Analyzing unsynthesizable specifications for

high-level robot behavior using LTLMoP. In International Conference on Computer-

Aided Verification, pages 663–668, 2011.

[128] Vasumathi Raman, Constantine Lignos, Cameron Finucane, Kenton Lee, Mitch Marcus,

and Hadas Kress-Gazit. Sorry Dave, I’m Afraid I Can’t Do That: Explaining Unachiev-

able Robot Tasks Using Natural Language. In Robotics: Science and Systems, 2013.

[129] Pravesh Ranchod, Benjamin Rosman, and George Konidaris. Nonparametric bayesian

reward segmentation for skill discovery using inverse reinforcement learning. In Intel-

ligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages

471–477. IEEE, 2015.

[130] Melrose Roderick, Christopher Grimm, and Stefanie Tellex. Deep abstract q-networks.

In International Conference on Autonomous Agents and MultiAgent Systems, pages 131–

138, 2018.

[131] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and John C

Platt. Support vector method for novelty detection. In Advances in neural information

processing systems, pages 582–588, 2000.

142

[132] Stephanie Seneff. Tina: A natural language system for spoken language applications.

Computational linguistics, pages 61–86, 1992.

[133] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsupervised perceptual rewards for

imitation learning. CoRR, abs/1612.06699, 2016.

[134] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Jour-

nal of Machine Learning Research, pages 1929–1958, 2014.

[135] Mark Steedman. The Syntactic Process. MIT Press, 2000.

[136] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[137] Richard S Sutton, , and Andrew G Barto. Introduction to reinforcement learning, vol-

ume 2. Cambridge: MIT Press, 1998.

[138] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs:

A framework for temporal abstraction in reinforcement learning. Artificial Intelligence,

pages 181–211, 1999.

[139] Yee W Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Sharing clusters

among related groups: Hierarchical dirichlet processes. In Advances in neural information

processing systems, pages 1385–1392, 2005.

[140] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R. Walter, Ashis Gopal

Banerjee, Seth Teller, and Nicholas Roy. Understanding natural language commands

for robotic navigation and mobile manipulation. In AAAI Conference on Artificial Intelli-

gence, 2011.

[141] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus, and Nicholas Roy. Asking for

help using inverse semantics. In Robotics Science and Systems, 2014.

[142] Cristian-Ioan Vasile, Derya Aksaray, and Calin Belta. Time window temporal logic. The-

oretical Computer Science, pages 27–54, 2017.

143

[143] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008, 2017.

[144] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A

neural image caption generator. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3156–3164, 2015.

[145] voicebot.ai. U.S. Smart Speaker Ownership, 2019. URL https://web.archive.

org/web/20190604225900/https://voicebot.ai/2019/03/07/u-s-

smart-speaker-ownership-rises-40-in-2018-to-66-4-million-

and-amazon-echo-maintains-market-share-lead-says-new-

report-from-voicebot/.

[146] David HD Warren and Fernando CN Pereira. An efficient easily adaptable system for

interpreting natural language queries. Computational Linguistics, pages 110–122, 1982.

[147] Andrew K Watson. Automated creation of labeled pointcloud datasets in support of

machine-learning based perception. Technical report, Naval Postgraduate School Mon-

terey United States, 2017.

[148] Sandra R Waxman and Jeffrey L Lidz. Early world learning. Wiley Online Library.

[149] Edward C. Williams, Nakul Gopalan, Mina Rhee, and Stefanie Tellex. Learning to parse

natural language to grounded reward functions with weak supervision. In International

Conference on Robots and Automation, 2018.

[150] Ronald J. Williams and David Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural Computation, pages 270–280, 1989.

[151] John Winder, , Shawn Squire, Matthew Landen, Stephanie Milani, and Marie desJardins.

Towards planning with hierarchies of learned markov decision processes. In In ICAPS-

2017 Integrated Execution of Planning and Acting Workshop, 2017.

144

https://web.archive.org/web/20190604225900/https://voicebot.ai/2019/03/07/u-s- smart-speaker-ownership-rises-40-in-2018-to-66-4-million-and-amazon-echo-maintains-market-share-lead-says-new-report-from-voicebot/
https://web.archive.org/web/20190604225900/https://voicebot.ai/2019/03/07/u-s- smart-speaker-ownership-rises-40-in-2018-to-66-4-million-and-amazon-echo-maintains-market-share-lead-says-new-report-from-voicebot/
https://web.archive.org/web/20190604225900/https://voicebot.ai/2019/03/07/u-s- smart-speaker-ownership-rises-40-in-2018-to-66-4-million-and-amazon-echo-maintains-market-share-lead-says-new-report-from-voicebot/
https://web.archive.org/web/20190604225900/https://voicebot.ai/2019/03/07/u-s- smart-speaker-ownership-rises-40-in-2018-to-66-4-million-and-amazon-echo-maintains-market-share-lead-says-new-report-from-voicebot/
https://web.archive.org/web/20190604225900/https://voicebot.ai/2019/03/07/u-s- smart-speaker-ownership-rises-40-in-2018-to-66-4-million-and-amazon-echo-maintains-market-share-lead-says-new-report-from-voicebot/

[152] Terry Winograd. Procedures as a representation for data in a computer program for un-

derstanding natural language. Technical report, Artificial Intelligence Laboratory, Mas-

sachusetts Institute of Technology, 1971.

[153] William A Woods. Progress in natural language understanding: an application to lunar

geology. In Proceedings of national computer conference and exposition, pages 441–450.

ACM, 1973.

[154] Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata. Dynamical linking of

positive and negative sentences to goal-oriented robot behavior by hierarchical RNN. In

International Conference on Artificial Neural Networks, 2016.

[155] Luke Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Struc-

tured classification with probabilistic categorial grammars. In Proceedings of the Confer-

ence on Uncertainty in Artificial Intelligence, pages 658–666, 2005.

[156] Luke Zettlemoyer and Michael Collins. Online learning of relaxed CCG grammars for

parsing to logical form. In Proceedings of the Joint Conference on Empirical Methods

in Natural Lanugage Processing and Computational Natural Language Learning, pages

678–687, 2007.

145

	Introduction
	Related Work
	Good Old-Fashioned Artificial Intelligence (GOFAI)
	Recent Approaches for Language Grounding and Planning
	State and Action Abstractions
	Language Grounding

	Background
	Markov Decision Processes (MDP)
	Planning Within an MDP
	Object Oriented MDPs
	Neural Sequence to Sequence Mapping for Translation

	Hierarchical Planning with Abstract Markov Decision Processes
	Related Work
	Abstract Markov Decision Processes
	Planning in AMDPs
	Example AMDP Hierarchies

	Results
	Taxi Domain
	Cleanup World
	Continuous Cleanup World on Turtlebot

	Conclusion

	Interpreting Human-Robot Commands at Multiple Levels of Abstraction via Classification
	Related work
	Technical Approach
	Language Models
	IBM Model 2
	Neural Network Language Models
	Grounding Module

	Evaluation
	Mobile-Manipulation Robot Domain
	Procedure
	Robot Task Grounding
	Robot Response Time
	Robot Demonstration

	Discussion
	Conclusion

	Grounding Language to Linear Temporal Logic
	Related Work
	Approach
	Problem Setting
	Geometric linear temporal logic (GLTL)
	Mapping Language to GLTL

	Experiments
	Mobile-Manipulation Robot Domain
	Baxter Pick-and Place Domain
	Data-collection Procedure
	Language Grounding

	Results
	Language Grounding
	Cleanup Robot Demonstrations
	Baxter Pick-and-Place Domain

	Conclusion

	Learning to Parse Natural Language to Grounded Reward Functions with Weak Supervision
	Related Work
	Task Domain
	Method
	Semantic Representation and Execution
	Parser Learning

	Data Collection
	Experiments and Results
	Evaluation on AMT Corpus
	Ablation Experiments
	Baselines

	Robot Demonstration
	Discussion
	Conclusion

	Mapping Language to Transferable Symbols for Instruction Following
	Related Work
	Problem Definition
	Mapping Language to Plans via Learned Symbolic Abstractions
	Symbols
	Egocentric Representation
	Change Point Detection
	Clustering
	Classification
	Translation

	Experiment
	Simulated Turtlebot
	NPS car dataset
	Mobile Robot domain

	Conclusion

	Discussion

