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agent that learns to maximize reward through trial-and-error. Owing to its generality, RL is used to

formulate numerous applications, including those with high-dimensional state or action spaces. RL

agents that are equipped with function approximation can tackle high-dimensional problems, but

they are also notoriously difficult to study. Thus, a fundamental question in RL is how to design

algorithms that are compatible with function approximation, but are also guaranteed to converge,

can explore effectively, and can perform long-horizon planning. In this thesis I study RL through the

lens of smoothness formally defined using Lipschitz continuity. I present theoretical results showing

an essential role for smoothness in stability and convergence of RL, effective model learning and

planning, and in value-function approximation in continuous control. Through many examples and

experiments, I also demonstrate how to adjust the smoothness of key RL ingredients to improve

performance in presence of function approximation.
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Abstract

Reinforcement learning (RL) is the study of the interaction between an environment and an artificial

agent that learns to maximize reward through trial-and-error. Owing to its generality, RL is used to

formulate numerous applications, including those with high-dimensional state or action spaces. RL

agents that are equipped with function approximation can tackle high-dimensional problems, but

they are also notoriously difficult to study. Thus, a fundamental question in RL is how to design

algorithms that are compatible with function approximation, but are also guaranteed to converge,

can explore effectively, and can perform long-horizon planning. In this thesis I study RL through the

lens of smoothness formally defined using Lipschitz continuity. I present theoretical results showing

an essential role for smoothness in stability and convergence of RL, effective model learning and

planning, and in value-function approximation in continuous control. Through many examples and

experiments, I also demonstrate how to adjust the smoothness of key RL ingredients to improve

performance in presence of function approximation.
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Thesis Statement

In high-dimensional reinforcement learning, Lipschitz continuity is key to ensuring convergence to

a unique fixed point, effective value-function approximation in continuous control, and long-horizon

planning.

2



Chapter 1

Introduction

Reinforcement learning (RL) is the scientific study of the interaction between an environment and

an agent that learns to achieve a goal. The RL agent faces a sequential decision-making problem

where the goal is often defined as maximizing the long-term sum of future rewards provided to

the agent by its environment. Owing to this remarkably general definition, RL has enjoyed many

applications including in settings with large (sometimes infinite) state or action spaces. Examples

of these applications include learning to play games [66], robotics [58, 89], dialog systems [118, 11],

healthcare [46], and optimization [60].

Tackling high-dimensional RL problems presents new challenges. Chief among them is the curse of

dimensionality, which describes the notion that the difficulty of solving a problem increases rapidly

with the number of dimensions. A promising approach to combat the curse of dimensionality is

to endow RL agents with function approximators in order to effectively generalize experience from

observed interactions to yet unseen states and actions. However, introducing function approxima-

tion comes at its own cost, namely that it becomes notoriously more difficult to study longstanding

challenges in RL such as convergence guarantees, effective exploration, and long-horizon planning.

In this thesis I develop a theory that demonstrates a key role for smoothness in high-dimensional

reinforcement learning. Informally, I define a smooth function as any function with the following

property: For any two distinct points on its domain, the line that connects the surface of the function

at the two points should have a finite slope. The Lipschitz constant of the function is defined as

the maximum value of this slope for any pair of points on its domain. A function with a Lipschitz

constant K is said to be K-Lipschitz. This notion of smoothness can be further generalized to

functions with high-dimensional outputs, as well as functions that output probability distributions,

as I show later.

My first result pertains to convergence of RL to a unique fixed-point. I study this property in the

context of the exploration-exploitation problem. Rather than defining the value of a state based

3
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on its maximum action-value, it is common to use softmax operators, those that provide a soft

approximation of maximum by putting some weight behind non-maximal actions. Convergence of

RL in this case hinges on using operators that are K-Lipschitz with K ≤ 1. A Lipschitz operator

with this property is sometimes known as a non-expansion. I show that Boltzmann softmax op-

erator, commonly used for exploration in large RL problems, is not a non-expansion and is prone

to misbehavior. I then introduce an alternative softmax operator which has several nice properties

including non-expansion. The new operator exhibits convergent behavior, and also yields stable and

effective exploration in large problems such as the standard Atari games.

I then move to the setting with infinite actions, where finding an action that is optimal with respect

to a learned state–action value function can be difficult. I introduce deep radial-basis value func-

tions (RBVFs): state–action value functions learned using a deep neural network with a radial-basis

function (RBF) output layer. I show that the optimal action with respect to a deep RBVF can be

easily approximated up to any desired accuracy without impeding universal function approxima-

tion. I show that controlling the smoothness of deep RBVFs yields state-of-the-art performance in

infinite-action RL problems.

Third, I focus on model-based reinforcement learning, where I show that in absence of model smooth-

ness even a near-perfect model, defined as a model with low one-step error, can have arbitrarily large

multi-step errors. I show novel bounds highlighting the key role of Lipschitz continuity in the com-

pounding error phenomena, a problem that plagues long-horizon planning. As an alternative for

single-step models, I then introduce a multi-step model that combats the compounding error prob-

lem by removing a major source of error in long-horizon planning.



Chapter 2

Background

In this chapter, I present the background that this thesis leans on. I first explain and formulate

the reinforcement learning problem, and then present some fundamental reinforcement learning

algorithms along with some basic properties needed for convergence of reinforcement learning. I also

formulate the notion of smoothness and the notion of convexity.

5
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2.1 The Reinforcement Learning Problem

Reinforcement learning (RL) is an area of artificial intelligence (AI) that revolves around the inter-

action between an environment and an agent whose goal is to collect as much reward as possible.

A core piece of the RL problem is the notion of a timestep. While time is inherently a continuous

variable, in this thesis I assume that time is discrete. What I mean is that the agent is provided

a snapshot of its state at a particular value of time t. I denote the provided snapshot at time t as

the state st. The agent then takes an action at. This action is held constant until the next state

is presented to the agent at time t + 1. I refer to [t,t + 1) as the timestep t. The agent receives a

scalar reward signal rt which depends on st and at. The goal of the RL agent is to maximize the

sum of rewards across future timesteps by finding a good action-selection strategy. The interaction

is depicted in Figure 2.1.

Figure 2.1: An illustration of the interaction between the RL agent and its environment.

The RL problem is typically formulated using Markov Decision Processes (MDPs) [83]. An MDP is

usually specified by the following tuple: 〈S,A, T,R, γ〉. Here S and A denote the state space and

the action space of the MDP. For some limited RL problems S and A are discrete and finite, but

more generally one or both are continuous. When they are continuous, I assume that they are a

subset of a Euclidean space, are closed and finite, therefore compact, and also that they are endowed

by a distance metric.

The MDP model is comprised of two functions, namely the transition model T : S × A → P (S),

and the reward model R : S × A → R. The discount factor, γ ∈ [0, 1), determines the importance

of immediate reward as opposed to rewards received in the future. The goal of an RL agent is to

find a policy π : S → P (A) that collects highest sum of future discounted rewards. It is well-known

that there exists a deterministic policy that is optimal in the sense of achieving maximum possible

reward in all states.
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For a state s ∈ S, action a ∈ A, and a policy π, we define the state-action value (Q) function:

Qπ(s, a) := Eπ

[ T∑

i=t

γi−tri | st = s, at = a
]
.

We define Q∗ as the maximum Q value of a state-action pair among all policies:

Q∗(s, a) := max
π

Qπ(s, a) .

Under a discrete state and action space, Bellman showed that the quantity Q∗, known as the optimal

state–action value function, can be written recursively [22]:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a) max

a′∈A
Q∗(s′, a′) . (2.1)

Many RL algorithms could be thought of as different approaches to estimating Q∗ from environ-

mental interactions. Algorithms differ not just in terms of how they compute Q∗, but also in terms

of they way they act in the environment based upon their experience. Regardless, these algorithms

compute the fixed point of equation (2.1), known as the Bellman equation.

An analog of the above equation exists for problems with continuous states and actions:

Q∗(s, a) = R(s, a) + γ

∫

s′∈S
T (s′ | s, a) max

a′∈A
Q∗(s′, a′) ds′ . (2.2)

Note that I have assumed that the action space is compact, and that Q∗ is continuous in A, which

implies that at least one maximum exists due to the extreme-value theorem.

2.2 Planning versus Learning

Throughout this thesis, I frequently use two words, namely learning and planning, to refer to specific

operations that an agent performs. In the context of RL, learning refers to the process of going from

environmental interactions to an estimate of the value function (and/or a policy). In contrast, by

planning I mean going from a model to the value function. The model could be provided to the

agent a priori, or it could be an estimate learned from environmental interaction.

In majority of RL problems, the agent does not have access to the model, and should estimate the

model from experience if necessary. In this sense, planning and model learning could be thought of

as intermediate steps of some learning algorithms, though there exists learning algorithm that can

learn a value function without a model as we shall see next.

2.3 Value Iteration

Value Iteration (VI) is a planning algorithm, meaning that it takes a model of the MDP 〈T,R〉 as

input and computes the value function Q∗. VI is an intuitive and easy-to-implement algorithm, yet
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showing that it is a sound algorithm requires some work.

VI starts by a value function, denoted by Q̂0, which is often initialized arbitrarily. It then proceeds

by performing the following update at a specific iteration i:

Q̂i+1(s, a)← R(s, a) + γ
∑

s′∈S
T (s′ | s, a) max

a′∈A
Q̂i(s

′, a′) . (2.3)

VI continues to perform these iterations until no progress is made. Lack of progress could be for-

mulated as an extremely small norm difference between two consecutive value-function estimates.

While action maximization is a core component of Bellman equation, in some situations we may not

be interested in finding the optimal value function. It is also possible that computing the optimal

value function may be slow. We may want to use operators other than maxa∈A in these cases.

Littman and Szepesvári generalized VI by replacing maxa′∈A by any arbitrary operator
⊗

[63]. The

resultant algorithm, which they coined as Generalized Value Iteration (GVI), proceeds as follows:

Q̂i+1(s, a)← R(s, a) + γ
∑

s′∈S
T (s′ | s, a)

⊗
Q̂i(s

′, ·) . (2.4)

GVI, which collapses to VI when
⊗

= maxa′ , will be a core piece of my thesis.

In absence of any prior knowledge about the problem at hand, the initialized value function Q̂0 can

be extremely far from the correct answer. It is natural, then, to ask whether this incredibly simple

algorithm converges at all, and more importantly whether it can find the right solution when it does

converge. In the next section we see that we can answer these questions in the affirmative, provided

that
⊗

is sufficiently smooth.

2.3.1 Convergence of Value Iteration

It would be useful to know under which conditions, if at all, GVI can converge. To answer this

question, I begin with the following lemma:

Lemma 2.3.1. Assume that we have two Q functions denoted by Q̂i and Q̂′i. Denote, by Q̂i+1 and

Q̂′i+1, the resultant value functions having performed one iteration of GVI. The following property

holds:

max
s∈S,a∈A

∣∣Q̂i+1(s, a)− Q̂′i+1(s, a)
∣∣ ≤ γmax

s∈S

∣∣⊗

a

Q̂i(s, ·)−
⊗

a

Q̂′i(s, ·)
∣∣



9

Proof.

∣∣Q̂i+1(s, a)− Q̂′i+1(s, a)
∣∣ =

∣∣R(s, a) + γ
∑

s′∈S
T (s′ | s, a)

⊗
Q̂i(s

′, ·)

− R(s, a) + γ
∑

s′∈S
T (s′ | s, a)

⊗
Q̂′i(s

′, ·)
∣∣

= γ
∣∣∣
∑

s′∈S
T (s′ | s, a)

(⊗
Q̂i(s

′, ·)−
⊗

Q̂′i(s
′, ·)
)∣∣∣

≤ γ
∣∣∣max
s′∈S

(⊗
Q̂i(s

′, ·)−
⊗

Q̂′i(s
′, ·)
)∣∣∣

≤ γmax
s′∈S

∣∣∣
⊗

a′

Q̂i(s
′, ·)−

⊗

a′

Q̂′i(s
′, ·)
∣∣∣

So we can rewrite:

max
s∈S,a∈A

∣∣Q̂i+1(s, a)− Q̂′i+1(s, a)
∣∣ < max

s∈S

∣∣⊗

a

Q̂i(s, ·)−
⊗

a

Q̂′i(s, ·)
∣∣

The next result we need is Banach’s fixed-point theorem, which I have tailored to GVI:

Theorem 2.3.2. Assume that we have two Q functions denoted by Q̂i and Q̂′i. Denote by Q̂i+1 and

Q̂′i+1 the resultant value functions having performed one iteration of GVI:

Q̂i+1(s, a)← R(s, a) + γ
∑

s′∈S
T (s′ | s, a)

⊗
Q̂i(s

′, ·) . (2.5)

If

max
s∈S,a∈A

∣∣Q̂i+1(s, a)− Q̂′i+1(s, a)
∣∣ ≤ γ max

s∈S,a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣ ,

then GVI is guaranteed to converge to the unique fixed-point of the equation:

Q̂(s, a) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a)

⊗
Q̂(s′, ·) . (2.6)

Proof. I first show that there can’t be more than one fixed point. To this end, let’s assume two fixed

points Q̂ and Q̂′ co-exist, and that the two fixed points are distinct. Then we have:

max
s∈S,a∈A

∣∣Q̂i+1(s, a)− Q̂′i+1(s, a)
∣∣ = max

s∈S,a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣

≤ γ max
s∈S,a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣

From above, we can conclude that:

(1− γ) max
s∈S,a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣ ≤ 0 .
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Because (1 − γ) is strictly positive, this implies that Q̂ = Q̂′ which is clearly a contradiction, thus

falsifying the hypothesis that two (or more) fixed-points can co-exist.

Next, I show that a fixed point exists. It is straightforward to show, using induction, that the

following property holds for any two functions Q̂ and Q̂′:

max
s∈S,a∈A

∣∣Q̂i+n(s, a)− Q̂′i+n(s, a)
∣∣ ≤ γn max

s∈S,a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣ ,

Also, for the sequence Q̂0, Q̂1, Q̂2, ... we have:

max
s∈S,a∈A

∣∣Q̂m+n(s, a)− Q̂m(s, a)
∣∣ ≤

n−1∑

j=0

γ max
s∈S,a∈A

∣∣Q̂m+j+1(s, a)− Q̂m+j(s, a)
∣∣

≤
n−1∑

j=0

γm+j+1 max
s∈S,a∈A

∣∣Q̂1(s, a)− Q̂0(s, a)
∣∣

≤ γm
n−1∑

j=0

γj+1 max
s∈S,a∈A

∣∣Q̂1(s, a)− Q̂0(s, a)
∣∣

As m → ∞, the limit of the right hand side will be zero, therefore the sequence Q̂0, Q̂1, Q̂2, ... is a

Cauchy sequence which is well-known to be convergent to some fixed-point.

I can now present the essential property that
⊗

needs to have so as to ensure convergence for GVI.

Our desire is to have:

max
s∈S,a∈A

∣∣Q̂i+1(s, a)− Q̂′i+1(s, a)
∣∣ ≤ γ max

s∈S,a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣ , (2.7)

so that we could lean on theorem 2.3.1, but as lemma 2.3.2 showed we so far only have:

max
s∈S,a∈A

∣∣Q̂i+1(s, a)− Q̂′i+1(s, a)
∣∣ ≤ γmax

s∈S

∣∣⊗

a

Q̂i(s, ·)−
⊗

a

Q̂′i(s, ·)
∣∣ . (2.8)

Notice that we assume γ < 1, so to go from (2.7) to (2.8), we just need to ensure that:

∣∣⊗

a

Q̂i(s, ·)−
⊗

a

Q̂′i(s, ·)
∣∣ ≤ max

a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣ ,

Or stated differently that ∣∣⊗
a Q̂i(s, ·)−

⊗
a Q̂
′
i(s, ·)

∣∣
maxa∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣ ≤ 1. (2.9)

Any operator with the above property would be convergent when used in conjunction with GVI.

An example of such operator is maxa∈A:

∣∣max
a∈A

Q̂i(s, a)−max
a∈A

Q̂′i(s, a)
∣∣ ≤

∣∣max
a∈A

Q̂i(s, a)− Q̂′i(s, a)
∣∣

≤ max
a∈A

∣∣Q̂i(s, a)− Q̂′i(s, a)
∣∣ .



11

Therefore, GVI with the max operator converges, and does so to the unique fixed-point of the

following Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a) max

a′∈A
Q∗(s′, a′) . (2.10)

If we use operators
⊗

other than max, then GVI would still converge so long as property (2.9) is

satisfied, but the fixed point would be different than the optimal value function and needs to be

further characterized.

Note that property (2.9) is sometimes referred to as non-expansion. That is, any operator
⊗

that

satisfies (2.9) is a non-expansion and yields a convergent behavior when used in conjunction with

GVI. When this property is lacking for an operator, we refer to the operator as an expansion. An

expansion may be prone to misbehavior as I show later, but note that having a non-expansion is

a sufficient property for GVI to converge. It is not necessary to have a non-expansion to ensure

convergence, but then proving convergence could be difficult, if at all possible, and requires carefully

inspecting the operator in question.

2.3.2 Q-learning and SARSA

So far my focus was on GVI, which is a planning algorithm. But what if a model of the environment

was unavailable? Can we still learn the Q function? It turns out that it is still possible to find the

fixed point of Belmman equation even when a model is unavailable.

In this case, a class of RL algorithms directly solve for the fixed point of the Bellman equation

using environmental interactions. Q-learning [116], a notable example of these so-called model-free

algorithms, learns an approximation of Q∗, denoted by Q̂. Assume that at a particular timestep t,

the agent took the action at in state st and was moved to the state st+1 having received the reward

rt+1. Q-learning then updates its estimate of the value function as follows:

Q̂(st, at)← α
(
rt+1 + γmax

a′
Q̂(st+1, a

′)
)

+ (1− α)Q̂(st, at)

This update is intuitively plausible: the new value is a convex combination of the old value and

the quantity
(
rt+1 + γmaxa′ Q̂(st+1, a

′)
)
. This quantity could be thought of as an estimate of the

discounted sum of the future rewards for the greedy policy with respect to Q̂. Taking some trivial

steps, I rewrite the update as:

Q̂(st, at)← Q̂(st, at) + α
(
rt+1 + γmax

a′
Q̂(st+1, a

′)− Q̂(st, at)
)
. (2.11)

Intuitively, learning is over when this error is zero on average indicating that we have reached a fixed

point.

In terms of action selection, Q-learning allows for any exploration policy to be utilized. Examples

include epsilon greedy action-selection, soft argmax, and uncertainty-based policies. In this sense,
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Q-learning is identified as an off-policy algorithm, meaning that the action-selection strategy can in

general be different than the operator (policy) used to learn based on the Q function of the next

state st+1, i.e. maxa′∈A.

Another popular model-free algorithm is the SARSA algorithm. This algorithm proceeds with the

following update rule in each timestep:

Q̂(st, at)← Q̂(st, at) + α
(
rt+1 + γQ̂(st+1, at+1)− Q̂(st, at)

)
,

where the action at+1 ∼ π(· | st+1) is the action that the agent took at timestep t+ 1.

Note that the update looks quite similar to the Q-learning algorithm presented above, but in contrast

to Q-learning, SARSA is an on-policy algorithm. What I mean by on-policy is that the algorithm

uses the same operation for action selection and learning. This stands in contrast with off-policy

algorithms, such as Q-learning, in which two different policies may be employed for the purpose of

learning and action selection. While this may seem like a tiny distinction, it is actually a subtle

one in the sense that convergence guarantees are usually easier to attain for on-policy algorithms

relative to off-policy ones.

Algorithm 1 Q-learning

Input: initial Q̂(s, a) ∀s ∈ S ∀a ∈ A, α, and
policy π
for each episode do

Initialize s
repeat

a ∼ π(· | s)
Take a, observe r, s′

Q̂(s, a)← Q̂(s, a)

+ α
[
r + γmaxa′ Q̂(s′, a′)− Q̂(s, a)

]

s← s
′

until s is terminal
end for

Algorithm 2 SARSA

Input: initial Q̂(s, a) ∀s ∈ S ∀a ∈ A, α, and
policy π
for each episode do

Initialize s
a ∼ π(· | s)
repeat

Take a, observe r, s′; a
′ ∼ π(· | s)

Q̂(s, a)← Q̂(s, a)

+ α
[
r + γQ̂(s′, a′)− Q̂(s, a)

]

s← s
′
, a← a

′

until s is terminal
end for

2.4 RL with Neural Networks

While it is valuable to study RL theory in the most clear and simple setting, i.e. problems with small

and finite states and actions, in practice the number of states and actions of RL problems are usually

so large that it is unrealistic to use a lookup table to learn a separate Q̂ for every state-action pair.

This issue arises not just for learning the value function, but also for learning other key ingredients

of RL such as models and policies.
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Function approximation is a standard technique that can enable us to apply some of the existing RL

algorithms to large settings. More specifically, our desire is to produce RL agents that can harness

powerful function approximators such as neural networks to learn key ingredients of RL. In doing

so, our goal is to develop agents that can effectively generalize experience from observed situations

to unseen ones. Not every tabular RL algorithm has a clear extension to the function approximation

case, but fortunately there exist some examples that integrate nicely with function approximation

as I discuss next.

Consider the Q-learning algorithm with the update rule presented in (2.11). There exists an ex-

tension of Q-learning to the function approximation case [117]. Let Q̂(·, ·; θ) be the neural network

representing the Q function, where θ denotes the parameters of the neural network Q̂. The update

rule of Q-learning with function approximation will be as follows:

θ ← θ + α
(
rt + γ max

a′∈A
Q̂(st+1, a

′; θ)− Q̂(st, at; θ)
)
∇θQ̂(st, at; θ) , (2.12)

where ∇θ indicates the gradient with respect to parameters θ, and therefore, ∇θQ̂(st, at; θ) is a

vector whose size equals the number of parameters of the function approximator (for example, the

neural net).

Note that Q-learning’s update rule (2.11) is agnostic to the choice of function class, and so in prin-

ciple any differentiable function class could be used in conjunction with the above update rule to

learn θ parameters. For example, Sutton used linear function approximation [101], and Konidaris

et al., used Fourier basis functions [59]. One of the contributions of my thesis is to introduce a

new function approximator that is conducive to problems with large actions. I will introduce this

approximator in chapter 4.

In 2015, Mnih et al., [67] published breakthrough results where they showed that the simple update

rule written above, when used in conjunction with deep convolutional neural networks, and a few

other algorithmic tricks, can surpass human-level performance when learning to play Atari games

from images.

This result became highly celebrated not just because solving some of these games were in and of

itself impressive, but because this was perhaps the most convincing example so far showing that RL

agents are able to learn the right kind of feature representations when endowed by powerful function

approximators. This finding was significant because it obviated the burdensome practice of using

human knowledge and domain expertise to find the right kinds of features and representations on a

per-problem basis.

Another important contribution of Mnih et al., was to introduce (or at least re-popularize) algo-

rithmic tricks that could hedge against problems that arise when doing RL with non-linear function
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approximation. Chief among these tricks was the notion of using a replay buffer and conducting

experience replay, which, they argued, serves as a tool to a) reduce the highly correlated updates

present when doing online updates (i.e. to update the Q function using the most recent sample

and then discarding the sample.) and b) reduce the variance of gradient updates by averaging over

multiple examples.

When using experience replay, the agent adds each observed experience 〈s, a, r, s′〉 to a replay buffer

B. In order to update the Q function, the agent samples a batch of these tuples, for example by

defining a uniform distribution over examples in B, and updates the parameters of the Q function θ

by averaging updates over this batch of tuples.

θ ← θ + α
∑

〈s,a,r,s′〉

(
r + γ max

a′∈A
Q̂(s′, a′; θ)− Q̂(s, a; θ)

)
∇θQ̂(s, a; θ) . (2.13)

The replay buffer B is bounded, so the agent discards tuples in the order received, akin to a deque,

when the buffer reaches its capacity. The maximum size of the buffer, as well as the size of the

sampled batch, could be thought of as hyper-parameters.

Mnih et al., [67] introduced another idea, namely a separate target network. Observe that the update

rule (2.13) is akin to stochastic gradient descent (SGD), but there is a notable distinction. In partic-

ular, in SGD a label is provided to the agent and remains fixed across learning. However, in (2.13)

the agent updates θ, and in doing so it also changes the target by changing maxa′∈A Q̂(s, a′; θ).

This, Mnih et al., argued could engender extreme instability that needs to be addressed for effective

learning.

To this end, Mnih et al., used a second set of weights θ− that are different than θ, and are only

updated periodically to match θ every C gradient updates, where C could be thought of as a hyper-

parameter. The update thus becomes:

θ ← θ + α
∑

〈s,a,r,s′〉

(
r + γ max

a′∈A
Q̂(s′, a′; θ−)− Q̂(s, a; θ)

)
∇θQ̂(s, a; θ) .

θ− ← θ (after C updates of θ)

(2.14)

As I show later in the thesis, performance can heavily depend on choosing a good value of C.

Lilicrap et al., [61] proposed a different scheduling for updating θ− parameters. Referred to as

exponentially-weighted moving average, they proposed to perform one update for θ− after one update

for θ. They way in which they update θ− is as follows:

θ− ← (1− α)θ− + αθ .

One way of thinking about this scheduling is as a way of ensuring that θ− always equals a weighted

average of all the previous θ values. The update constitutes a weighted average that puts exponen-

tially larger weights behind more recent settings of θ. To see why this is the case, note that after i
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updates of θ− we get:

θ−i = (1− α)θ−i−1 + αθi

= (1− α)
(
(1− α)θ−i−2 + αθi−1 + αθi

= (1− α)2θ−i−2 + (1− α)αθi−1 + αθi

...

= (1− α)iθ0 + α

i−1∑

j=0

(1− α)jθi−j ,

So the weight of θ belonging to each previous timestep is multiplied by a factor of 1 − α as we go

backwards in time.

When using deep neural networks, another question becomes relevant, namely what kind of network

architecture to use in conjunction with the RL algorithm? For the Q function, it is common to use

a network architecture that takes the state vector as input, and outputs a vector whose size equals

the number of actions. This is depicted in Figure 2.2. This is a sound and useful architecture in

settings where the number of actions is small and finite. However, when the number of actions is

large, or infinite, it is clearly impossible to utilize this network architecture.

Figure 2.2: An illustration of the neural-network architecture proposed by Mnih et. al., for learning
the Q function. This architecture became standard in RL solutions for discrete and finite action
spaces.

Two standard alternatives co-exists. First, provided that the action space is bounded, and that

we know the boundaries, we can always discretize the continuous action space and use the same

architecture depicted above. Stated differently, we can reduce the continuous-action problem to a

discrete one for which the above architecture is apt. However, this solution best underscores the

presence of curse of dimensionality in RL, because to uniformly cover the action space via discretiza-

tion, we need a network output whose size grows exponentially with the number of action dimensions.

Another common solution is to use a network architecture that takes as input, not just the state of

the agent, but also its action (See Figure 2.3.) where the action input could also be thought of as a

vector akin to the state input. This architecture, however, also comes at its own cost, namely that

now computing the quantity, maxa∈A Q̂(s, a) becomes difficult. This is significant because applying

many RL solutions, such as Q-learning, hinges on the ability to efficiently and accurately solving
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this optimization problem. To see why solving this problem is hard, recall that a neural network can

in general be a non-concave function of its inputs, therefore it is not obvious how to solve this kind

of optimization problem using gradient-based techniques. I come back to this problem in chapter 4,

and introduce a principled solution.

Figure 2.3: An illustration of a second architecture for learning the Q function using neural nets.
The network takes a state and an action as input.

2.5 Smoothness

s1 s1

f(s) f(s)

Figure 2.4: An illustration of Lipschitz continuity. Pictorially,
knowing that f is K-Lipschitz means that f lies in between the
two affine functions (colored in blue) with slope K. Since this
is a one-dimensional function, the slope K is equivalent to the
maximum derivative of the function on its domain.

In this thesis I leverage the “smoothness” of various ingredients of RL (operators, value functions,

and models). I formulate this notion of smoothness using the mathematical tool of Lipschitz conti-

nuity defined momentarily.

Before presenting the definition, I provide an intuition for smoothness as characterized by Lipschitz

continuity. I understand a smooth function to have the following property: For any two distinct

points on the domain of the function, the line that connects the surface of the function at the two

points should have a finite slope. The Lipschitz constant of the function is defined as the maximum

value of this slope for any pair of points. A function with a Lipschitz constant K is said to be

K-Lipschitz. I present an illustration in Figure 2.4 for a one-dimensional problem.

I now define a smooth (Lipschitz) function formally:
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Definition 2.5.1. Given two metric spaces (M1, d1) and (M2, d2) consisting of a space and a dis-

tance metric, a function f : M1 → M2 is Lipschitz continuous (sometimes simply Lipschitz) if the

Lipschitz constant, defined as

Kd1,d2(f) := sup
s1∈M1,s2∈M1

d2

(
f(s1), f(s2)

)

d1(s1, s2)
, (2.15)

is finite.

Equivalently, for a Lipschitz f ,

∀s1,∀s2 d2

(
f(s1), f(s2)

)
≤ Kd1,d2(f) d1(s1, s2) .

The concept of Lipschitz continuity is visualized in Figure 2.4.

A Lipschitz function f is called a non-expansion when Kd1,d2(f) ≤ 1 and a contraction when

Kd1,d2(f) < 1. Lipschitz continuity, in one form or another, has been a key tool in the theory of

RL [25, 26, 63, 70, 41, 49, 84, 106, 77, 80, 79, 24, 21] and bandits [56, 32].

Below, I also define Lipschitz continuity over a subset of inputs.

Definition 2.5.2. A function f : M1 ×A →M2 is uniformly Lipschitz continuous in A if

KAd1,d2(f) := sup
a∈A

sup
s1,s2

d2

(
f(s1, a), f(s2, a)

)

d1(s1, s2)
, (2.16)

is finite.

It is useful to know some properties of Lipschitz functions. For example, it is easy to show that for

a scalar c, we have Kd1,d2(cf) = cKd1,d2(f). Also Kd1,d2(f + g) ≤ Kd1,d2(f) +Kd1,d2(g).

The following result relates Lipschitz continuity and compositions.

Lemma 2.5.1. Define three metric spaces (M1, d1), (M2, d2), and (M3, d3). Define Lipschitz

functions f : M2 → M3 and g : M1 → M2 with constants Kd2,d3(f) and Kd1,d2(g). Then,

h : f ◦ g : M1 →M3 is Lipschitz with constant Kd1,d3(h) ≤ Kd2,d3(f)Kd1,d2(g).

Proof.

Kd1,d3(h) = sup
s1,s2

d3

(
f
(
g(s1)

)
, f
(
g(s2)

))

d1(s1, s2)

= sup
s1,s2

d3

(
f
(
g(s1)

)
, f
(
g(s2)

))

d2

(
g(s1), g(s2)

) d2

(
g(s1), g(s2)

)

d1(s1, s2)

≤ sup
s1,s2

d3

(
f
(
g(s1)

)
, f
(
g(s2)

))

d2

(
g(s1), g(s2)

) sup
s1,s2

d2

(
g(s1), g(s2)

)

d1(s1, s2)

≤ sup
x1,x2

d3

(
f(x1), f(x2)

)

d2(x1, x2)
sup
s1,s2

d2

(
g(s1), g(s2)

)

d1(s1, s2)

= Kd2,d3(f)Kd1,d2(g)
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2.5.1 Smoothness in Neural Networks

We can show that common operations of modern neural networks are Lipschitz. Notice that neural

networks are generally composed of a couple of layers, each with a kernel and an activation function.

We know from lemma 2.5.1 that composition of Lipschitz layers will be Lipschitz, so we just need

to show that each layer is itself Lipschitz, and the Lipschitzness of the entire network will follow

regardless of the number of layers and/or operation types.

Below, we derive the Lipschitz constant for various functions.

ReLu non-linearity We show that ReLu : Rn → Rn has Lipschitz constant 1 for p.

K‖.‖p,‖.‖p(ReLu) = sup
x1,x2

‖ReLu(x1)− ReLu(x2)‖p
‖x1 − x2‖p

= sup
x1,x2

(
∑
i |ReLu(x1)i − ReLu(x2)i|p)

1
p

‖x1 − x2‖p
(We can show that |ReLu(x1)i − ReLu(x2)i| ≤ |x1,i − x2,i| and so) :

≤ sup
x1,x2

(
∑
i |x1,i − x2,i|p)

1
p

‖x1 − x2‖p

= sup
x1,x2

‖x1 − x2‖p
‖x1 − x2‖p

= 1

Matrix multiplication Let W ∈ Rn×m. We derive the Lipschitz continuity for the function

×W (x) = Wx.

For p =∞ we have:

K‖‖∞,‖‖∞
(
×W (x1)

)
= sup

x1,x2

‖×W (x1)−×W (x2)‖∞
‖x1 − x2‖∞

= sup
x1,x2

‖Wx1 −Wx2‖∞
‖x1 − x2‖∞

= sup
x1,x2

‖W (x1 − x2)‖∞
‖x1 − x2‖∞

= sup
x1,x2

supj |Wj(x1 − x2)|
‖x1 − x2‖∞

≤ sup
x1,x2

supj ‖Wj‖ ‖x1 − x2‖∞
‖x1 − x2‖∞

(Hölder’s inequality)

= sup
j
‖Wj‖1 ,

where Wj refers to jth row of the weight matrix W .

Similarly, for p = 1 we have:
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K‖‖1,‖‖1
(
×W (x1)

)
= sup

x1,x2

‖×W (x1)−×W (x2)‖1
‖x1 − x2‖1

= sup
x1,x2

‖Wx1 −Wx2‖1
‖x1 − x2‖1

= sup
x1,x2

‖W (x1 − x2)‖1
‖x1 − x2‖1

= sup
x1,x2

∑
j |Wj(x1 − x2)|
‖x1 − x2‖1

≤ sup
x1,x2

∑
j ‖Wj‖∞ ‖x1 − x2‖1
‖x1 − x2‖1

=
∑

j

‖Wj‖∞ ,

and finally for p = 2:

K‖‖2,‖‖2
(
×W (x1)

)
= sup

x1,x2

‖×W (x1)−×W (x2)‖2
‖x1 − x2‖2

= sup
x1,x2

‖Wx1 −Wx2‖2
‖x1 − x2‖2

= sup
x1,x2

‖W (x1 − x2)‖2
‖x1 − x2‖2

= sup
x1,x2

√∑
j |Wj(x1 − x2)|2

‖x1 − x2‖2

≤ sup
x1,x2

√∑
j ‖Wj‖22 ‖x1 − x2‖22
‖x1 − x2‖2

=

√∑

j

‖Wj‖22 .

Vector addition We show that +b : Rn → Rn has Lipschitz constant 1 for p = 0, 1,∞ for all

b ∈ Rn.

K‖.‖p,‖.‖p(ReLu) = sup
x1,x2

‖+ b(x1)−+b(x2)‖p
‖x1 − x2‖p

= sup
x1,x2

‖(x1 + b)− (x2 + b)‖p
‖x1 − x2‖p

=
‖x1 − x2‖p
‖x1 − x2‖p

= 1

Any neural network that is comprised of the above operations is therefore Lipschitz. Controlling the

Lipschitz constant of neural networks has become a popular topic in the neural-network literature.

Example of the kinds of applications of this idea include regularization [74], and learning generative
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Figure 2.5: An example of a non-convex (left) and a convex (right) set.

adversarial networks [5]. In chapter 5 I will show that controlling Lipschitz continuity of approximate

models can be conducive to long-horizon planning in model-based RL.

2.6 Convexity

This thesis leans on the rich theory of convex functions and convex optimization techniques. In

this section I provide a brief introduction to some of the important ideas in convex optimization,

specially those that pertain to RL, but for a thorough treatment of this subject see Boyd and

Vandenberghe [27].

2.6.1 Convex Sets

Consider a set of points X . The set X is said to be convex if for any distinct pair of points x ∈ X
and y ∈ X , and a scalar c ∈ (0, 1):

cx+ (1− c)y ∈ X .

In Figure 2.5 I provide two examples to visualize the difference between convex and non-convex sets.

The examples are taken from Wikipedia.com. Next I define convex functions.

2.6.2 Zero-Order Convexity

Define a function f : X → R. We say that f is convex if a) its domain X is a convex set, and b) for

any two points x ∈ X and y ∈ X and a scalar c ∈ (0, 1) we have:

f
(
cx+ (1− c)y

)
≤ cf(x) + (1− c)f(y) .
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Note that a convex function may not necessarily be differentiable. As a concrete example, we can

show that the non-differentiable function f(x) = maxi xi, also known as the ∞-norm, is in fact a

convex function:

f
(
cx+ (1− c)y

)
= max

i
cxi + (1− c)yi

≤ max
i
cxi + max

i
(1− c)yi

= cmax
i
xi + (1− c) max

i
yi

= cf(x) + (1− c)f(y).

More generally, every p-norm, f(x) = ‖x‖, is convex:

f
(
(1− c)x+ cy

)
= ‖(1− c)x+ cy‖
≤ ‖(1− c)x‖+ ‖cy‖ (due to triangle inequality of norms)

= (1− c) ‖x‖+ c ‖y‖
= (1− c)f(x) + cf(y)

Conversely, a function is said to be concave if a) its domain X is a convex set, and b) for any two

points x ∈ X and y ∈ X and a scalar c ∈ (0, 1) we have:

f
(
cx+ (1− c)y

)
≥ cf(x) + (1− c)f(y)

A function is both concave and convex if and only if it is affine.

2.6.3 First-Order Convexity

It can be shown that, for a differentiable function, satisfying the zero-order condition is equivalent

to satisfying the following condition:

∀x, y f(y) ≥ ∇f(x)>(y − x) + f(x) ,

i.e. the first-order Taylor expansion of f at any point x provides a lower bound for the value of the

function f(y) for any point y within the domain of the function.

As an immediate consequence of this condition, note that for a differentiable and convex function,

finding the global minimum of the function is equivalent to finding a point x with ∇f(x) = 0, since

∀y f(y) ≥ f(x) in light of the above inequality.

2.6.4 Second-Order Convexity

It can also be shown that the zero and first-order conditions above are equivalent to the following

second-order condition:

∀x ∈ X ∇2f(x) ≥ 0 .
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Similarly the function is identified as concave if ∀x ∈ X ∇2f(x) ≥ 0 . The quantity ∇2f(x) is often

referred to as the Hessian of f . Pictorially, this means that the function has a positive curvature at

all points within its domain.

The second-order condition often serves a pretty useful test for proving that a function is convex.

As a relevant example, consider the following function:

f(x) =
log 1

n

∑
i e
ωxi

ω
,

where ω is a constant. This function has various applications in electrical engineering and optimiza-

tion, and is considered to be a differentiable alternative for maximum.

It is straightforward to show that the Hessian of this function is:

∇2f(x) =
ω

(1>z)2
(1>z diag(z)− zz>) ,

where z = ewxi .

To show that ∇2f(x) ≥ 0, we must show that for each vector v we have:

v>∇2f(x)v =
ω

(1>z)2

(
(

n∑

i=1

zi)(

n∑

i=1

v2
i zi)− (

n∑

i=1

vizi)
2
)
≥ 0,

which follows from Cauchy-Schwartz inequality [27] so long as ω ≥ 0. By a similar argument, the

function will be concave if ω ≤ 0.

2.6.5 Jansen’s Inequality

An important property of convex functions is that the expected value of a function is larger than

the function applied to the expected value, i.e.:

Ex[f(x)] ≥ f(E[x]) if f is convex.

Similarly, for a concave function we have:

Ex[f(x)] ≤ f(E[x]) if f is concave.

2.6.6 Convex Conjugate

Let f : X → R be an arbitrary function. We define f∗ : Rn → R, known as the conjugate of f , as

follows:

f∗(y) = max
x

(
y>x− f(x)

)
.

The conjugate is always convex, even if f is not convex, because the conjugate is defined as the

maximum over a bunch of linear functions, which is known to be convex.
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It is sometimes possible to analytically derive the convex conjugate of a function, specially if the

original function f(x) is itself convex. As a concrete example, consider the log-sum-exp function:

f(x) = log

n∑

i=1

exi .

Using the above definition, the convex conjugate of this function is defined as follows:

f∗(y) = max
x

(
y>x− log

n∑

i=1

exi
)
. (2.17)

A sound approach to finding the solution involves computing and setting the derivative of the func-

tion to zero with respect to each xi. The reason this works is that a) y>x is affine (therefore

concave), b) log
∑n
i=1 xi is convex and so its negative is concave and c) the sum of two concave

functions is also concave, so zero derivative ensures globally maximizing the functions as I explained

when introducing the first-order convexity condition.

Setting the derivative to zero, we get:

∂y>x− log
∑n
i=1 xi

∂xi
= yi −

exi∑n
i=1 e

xi
= 0 =⇒ yi =

exi∑n
i=1 e

xi

It is clear now that a)
∑n
i=1 yi = 1 and b) ∀i 0 ≤ yi ≤ 1.

Taking log from both sides,

log yi = log
exi∑n
i=1 e

xi
,

and so:

xi = log yi − log

n∑

i=1

exi .

Plugging xi into (2.17), we get:

f∗(y) =

n∑

i=1

yi(log yi − log

n∑

i=1

exi)− log

n∑

i=1

exi

=

n∑

i=1

yi log yi −
n∑

i=1

yi log

n∑

i=1

exi − log

n∑

i=1

exi

=

n∑

i=1

yi log yi − log

n∑

i=1

exi
n∑

i=1

yi

︸ ︷︷ ︸
=1

− log

n∑

i=1

exi

=

n∑

i=1

yi log yi − log

n∑

i=1

exi − log

n∑

i=1

exi

=

n∑

i=1

yi log yi
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The conjugate of log-sum-exp, is therefore, the entropy function. The conjugate is only defined on

the probability simplex (which is a convex set), and equals∞ otherwise. It is also easy to show that

entropy is a convex function. This was to be expected because the conjugate is always convex as

argued above.

2.6.7 Convexity and Composition

Suppose that we have two functions g : R → R and a second function h = f : R → R. We are

interested to know under which conditions the composition f ◦ g is also convex. For simplicity, we

assume that both functions are twice differentiable, and relax this assumption later.

Computing the second derivative with respect to x, we get:

g
′′
(x)f

′(
g(x)

)
+ (g

′
(x))2f

′′(
g(x)

)

Recall that our desire is to ensure that the second derivative is positive. We can obtain this property

in two ways:

• both g and f are convex, and f is monotonically non-decreasing.

• g is concave, and f is convex and monotonically non-increasing.

It is also easy to show that under the following conditions, the composition will be concave:

• both g and f are concave, and f is monotonically non-decreasing.

• g is convex, and f is concave and monotonically non-decreasing.

In fact, as Boyd and Vandenberghe show, it is not necessary to assume that the domain is just R or

even that the two functions are differentiable. We can get similar conditions in the absence of these

assumptions.

2.6.8 Convexity in Neural Networks

Recall that neural networks are comprised of compositions of many operations. In light of the con-

vexity conditions in the previous section, it would be natural to ask if we can restrict the parameters

of a neural network in a way that ensures convexity (or concavity).

Amos et. al., answer this question in the affirmative by providing very simple constraints that ensure

that a neural network remains convex [4]. Consider a single layer of a neural network with weights

〈W, b〉, input x, and activation function f , and output y. Then the operation of the layer could be

formulated as follows:

y = f(Wx+ b)

Imagine that the weight matrix W is only comprised of positive weights. It is clear that Wx + b

will be a monotonically non-decreasing, and also an affine (therefore convex) function. If we use



25

a convex and non-decreasing activation function f , then the entire layer will be both convex and

monotonically non-decreasing. Many common activation functions in neural-network literature, such

as Rectified Linear Units (ReLU) can be shown to be convex and non-decreasing. It is then easy to

generalize the argument to networks with multiple layers since each individual layer is convex and

non-decreasing. See Amos et. al., [4] for slightly more general conditions.



Chapter 3

Smoothness for Convergent

Reinforcement Learning

It is imperative that RL agents can maintain a balance between exploration and exploitation. This

tensions becomes increasingly more challenging to address in domains with large states and actions.

One scalable approach to this problem is to use soft approximations of maximum that hedge against

problems that arise from putting all of one’s weight behind a single decision. These so called soft-

max operators applied to a finite set of values act somewhat like the maximization function and

somewhat like an average. The Boltzmann operator is the most commonly used softmax operator

in this setting, but in this chapter I show that this operator is prone to misbehavior because it is

not sufficiently smooth. I study an alternative softmax operator that, among other properties, has

a Lipschitz constant that is less than or equal to 1, ensuring a convergent behavior in learning and

planning. I introduce variants of SARSA and Q-learning that utilize the new operator, and by doing

so,v perform competitively when integrated with deep neural networks.

This chapter is mainly based on a paper written by Michael Littman and myself [7], and a second

paper written by Seungchan Kim, George Konidaris, Michael Littman, and myself [55].

26
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3.1 Introduction

There is a fundamental tension in decision making between choosing the action that has highest

expected utility and avoiding “starving” the other actions. The issue arises in the context of the

exploration–exploitation dilemma [109], non-stationary decision problems [99], and when interpret-

ing observed decisions [17]. Standard approaches exist that can nicely deal with this problem [98],

but these approaches are often ill-suited for problems with large or infinite state and action spaces.

A heuristic yet effective and commonly-used approach to addressing the tension is the use of soft-

max operators for value-function optimization, and softmax policies for action selection. Examples

of the kinds of algorithms that utilizie softmax include value-based methods such as Q-learning [117],

SARSA [86] or expected SARSA [102, 114], and policy-search methods such as REINFORCE [119]

and actor critic [19].

While the term softmax operator is quite self-explanatory, I understand an ideal softmax operator

as a parameterized set of operators that:

1. has parameter settings that allow it to approximate maximization arbitrarily accurately to

perform reward-seeking behavior;

2. is sufficiently smooth (K‖·‖∞,|·|(operator) ≤ 1 where K denotes Lipschitz constant of the soft-

max operator) ensuring convergence to a unique fixed point as I indicated in the Background

section. An operator with such property is identified as a non-expansion;

3. is differentiable to make it possible to improve via gradient-based optimization; and

4. avoids the starvation of non-maximizing actions.

Let X = x1, . . . , xn be a vector of values. We define the following operators:

• max(X) = maxi∈{1,...,n} xi ,

• mean(X) = 1
n

∑n
i=1 xi ,

• epsε(X) = ε mean(X) + (1− ε) max(X) ,

• boltzβ(X) =
∑n
i=1 xi e

βxi∑n
i=1 e

βxi
.

The first operator, max(X), is a non-expansion [63] as I showed in the background section. However,

it is non-differentiable (Property 3), and ignores non-maximizing selections (Property 4). Obviouly

it also lacks any parameter setting to allow more flexible interpretations.

The next operator, mean(X), computes the average of its inputs. It is differentiable and, like any

operator that takes a fixed convex combination of its inputs, is a non-expansion. However, it does
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not allow for maximization (Property 1).

The third operator epsε(X), commonly referred to as epsilon greedy [102], interpolates between max

and mean. The operator is a non-expansion, because it is a fixed and convex combination of two

non-expansions. But it is non-differentiable (Property 3).

The Boltzmann operator boltzβ(X) is differentiable. It also approximates max as β →∞, and mean

as β → 0. However, it is not a non-expansion (Property 2), and therefore, prone to misbehavior as

I will show later. Nevertheless, this operator has been widely common in the RL literature both for

value-function optimization and action selection.

In the following sections, I provide a simple example illustrating why the non-expansion property is

important, especially in the context of planning and on-policy learning. I then present a new softmax

operator that is a non-expansion in contrast to the Boltzmann softmax. I prove several critical prop-

erties of this new operator, introduce an information-theoretic policy, and present empirical results

for settings where we combine the new operator with powerful neural network function approxima-

tors. Results indicate that the new operator could serve as a competent and a theoretically more

plausible alternative for Boltzmann softmax.

3.2 Boltzmann Misbehaves

I first show that boltzβ can lead to problematic behavior. To this end, I ran SARSA with Boltzmann

softmax policy (Algorithm 3) on the MDP shown in Figure 3.1. The edges are labeled with a

transition probability (unsigned) and a reward number (signed). Also, state s2 is a terminal state,

so I only consider two action values, namely Q̂(s1, a) and Q̂(s2, b). Recall that the Boltzmann

softmax policy assigns the following probability to each action: π(a | s) = eβQ̂(s,a)∑
a e

βQ̂(s,a)
.

S1

0.340.66

a
+0.122

b
0.010.99 +0.033

S2

Figure 3.1: A simple MDP with two states, two actions,
and γ = 0.98 . The use of a Boltzmann softmax policy
is not sound in this simple domain, and can lead into
undesirable behavior.
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Algorithm 3 SARSA with Boltzmann softmax policy

Input: initial Q̂(s, a) ∀s ∈ S ∀a ∈ A, α, and β
for each episode do

Initialize s
a ∼ Boltzmann with parameter β
repeat

Take action a, observe r, s′

a
′ ∼ Boltzmann with parameter β

Q̂(s, a)← Q̂(s, a)+α
[
r+γQ̂(s′, a′)− Q̂(s, a)

]

s← s
′
, a← a

′

until s is terminal
end for

episode number

Figure 3.2: Values estimated by
SARSA with Boltzmann softmax
(Algorithm 3). The algorithm
never achieves stable values.

In Figure 3.2, I plot state–action value estimates at the end of each episode of a single run (smoothed

by averaging over ten consecutive points). I set α = .1 and β = 16.55. Estimates remain unstable.

SARSA is known to converge in the tabular setting using ε-greedy exploration [63], under decreasing

exploration [95], and to a region in the function-approximation setting [45]. However, this example

is the first, to our knowledge, to show that SARSA fails to converge in the tabular setting with

Boltzmann policy. As I argue next, Boltzmann exhibits this undesirable behavior because the

operator is not sufficiently smooth. The next section provides background for our analysis of this

example.

3.3 Boltzmann Has Multiple Fixed Points

Although it has been known that the Boltzmann operator is not a non-expansion [64], in our paper

we showed the first published example of an MDP for which two distinct fixed points exist [7].

Shown in Figure 3.1, is an MDP for which we get two distinct fixed points if we run GVI under

boltzβ . This is depicted in Figure 3.3.

I also show, in Figure 3.4, a vector field visualizing GVI updates under boltzβ=16.55. The updates

can move the current estimates farther from the fixed points, which can only occur if the operator

is not a non-exapansion.

The behavior of SARSA (Figure 3.2) results from the algorithm stochastically bouncing back and

forth between the two fixed points. When the learning algorithm performs a sequence of noisy

updates, it moves from a fixed point to the other. As I will show later, planning will also progress
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extremely slowly near the fixed points. The lack of the non-expansion property leads to multiple

fixed points and ultimately a misbehavior in learning and planning.

5 5

Figure 3.3: Fixed points of GVI under boltzβ for varying β. Two distinct fixed points (red and blue)
co-exist for a range of β.

Figure 3.4: A vector field showing
GVI updates under boltzβ=16.55. Fixed
points are marked in black. For some
points, such as the large blue point, up-
dates can move the current estimates
farther from the fixed points. Also, for
points that lie in between the two fixed-
points, progress is extremely slow.

3.4 Mellowmax and Its Properties

I advocate for an alternative softmax operator defined as follows:

mmω(X) =
log( 1

n

∑n
i=1 e

ωxi)

ω
,

which can be viewed as a particular instantiation of the quasi-arithmetic mean [20]. It can also be

derived from information theoretical principles as a way to prevent policies with high entropy [111,

85, 42].

I prove that mmω is a non-expansion (Property 2), and therefore, GVI and SARSA under mmω are

guaranteed to converge to a unique fixed point.

Let X = x1, . . . , xn and Y = y1, . . . , yn be two vectors of values. Let ∆i = |xi−yi| for i ∈ {1, . . . , n}
be the difference of the ith components of the two vectors. Also, let i∗ be the index with the
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maximum component-wise difference, i∗ = argmaxi ∆i. For simplicity, we assume that i∗ is unique

and ω > 0. Also, without loss of generality, we assume that xi∗ − yi∗ ≥ 0. It follows that:

∣∣mmω(X)−mmω(Y)
∣∣ =

∣∣ log(
1

n

n∑

i=1

eωxi)/ω − log(
1

n

n∑

i=1

eωyi)/ω
∣∣

=
∣∣ log

1
n

∑n
i=1 e

ωxi

1
n

∑n
i=1 e

ωyi
/ω
∣∣

=
∣∣ log

∑n
i=1 e

ω
(
yi+∆i

)
∑n
i=1 e

ωyi
/ω
∣∣

≤
∣∣ log

∑n
i=1 e

ω
(
yi+∆i∗

)
∑n
i=1 e

ωyi
/ω
∣∣

=
∣∣ log

eω∆i∗
∑n
i=1 e

ωyi

∑n
i=1 e

ωyi
/ω
∣∣

=
∣∣ log(eω∆i∗ )/ω

∣∣ =
∣∣∆i∗

∣∣ = max
i

∣∣xi − yi
∣∣ ,

allowing us to conclude that mellowmax is a non-expansion, i.e. ∀ω K‖·‖∞,|·|, (mmω) ≤ 1.

3.4.1 Maximization

Mellowmax includes parameter settings that allow for maximization (Property 1) as well as for min-

imization. In particular, as ω goes to infinity, mmω acts like max.

Let m = max(X) and let W = |{xi = m|i ∈ {1, . . . , n}}|. Note that W ≥ 1 is the number of

maximum values (“winners”) in X. Then:

lim
ω→∞

mmω(X) = lim
ω→∞

log( 1
n

∑n
i=1 e

ωxi)

ω

= lim
ω→∞

log( 1
ne

ωm
∑n
i=1 e

ω(xi−m))

ω

= lim
ω→∞

log( 1
ne

ωmW )

ω

= lim
ω→∞

log(eωm)− log(n) + log(W )

ω

= m+ lim
ω→∞

− log(n) + log(W )

ω
= m = max(X) .

That is, the operator acts more and more like pure maximization as the value of ω is increased.

Conversely, as ω goes to −∞, the operator approaches the minimum.

3.4.2 Derivatives

We can take the derivative of mellowmax with respect to each one of the arguments xi and for any

non-zero ω:
∂mmω(X)

∂xi
=

eωxi∑n
i=1 e

ωxi
≥ 0 .
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Note that the operator is non-decreasing in each component of X.

3.4.3 Averaging

Because of the division by ω in the definition of mmω, the parameter ω cannot be set to zero.

However, we can examine the behavior of mmω as ω approaches zero and show that the operator

computes an average in the limit.

Since both the numerator and denominator go to zero as ω goes to zero, we will use L’Hôpital’s rule

and the derivative given in the previous section to derive the value in the limit:

lim
ω→0

mmω(X) = lim
ω→0

log( 1
n

∑n
i=1 e

ωxi)

ω

L’Hôpital
= lim

ω→0

1
n

∑n
i=1 xie

ωxi

1
n

∑n
i=1 e

ωxi

=
1

n

n∑

i=1

xi

= mean(X) .

That is, as ω gets closer to zero, mmω(X) approaches the mean of the values in X.

3.4.4 Monotonic non-Decrease

For any ω ≥ 0 and any x, mmω(x) is non-decreasing with respect to ω.

Proof: Let ω2 > ω1 > 0.

We want to show that mmω2
(x) ≥ mmω1

(x):

mmω2(x) =
log 1

n

∑
i e
ω2xi

ω2

=
log 1

n

∑
i e
ω1xi

ω2
ω1

ω2

=
log 1

n

∑
i e

(ω1xi)
(
ω2
ω1

)

ω2
.

We now utilize the convexity of the function f(z) = zp for z > 0 and p > 1. For any such convex

function, Jensen’s inequality holds:

1

n

∑

i

f(yi) ≥ f(
1

n

∑

i

yi).

Substituting f with yi = eω1xi and p = ω2

ω1
we get:

1

n

∑

i

e(ω1xi)
(
ω2
ω1

)

≥ (
1

n

∑

i

e(ω1xi))(
ω2
ω1

).
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Using the above inequality, we finally get:

mmω2
(x) =

log 1
n

∑
i e

(ω1xi)
(
ω2
ω1

)

ω2

≥ log( 1
n

∑
i e

(ω1xi))(
ω2
ω1

)

ω2

=
(ω2

ω1
) log( 1

n

∑
i e

(ω1xi))

ω2

=
log( 1

n

∑
i e

(ω1xi))

ω1
= mmω1(x),

allowing us to conclude that mmω(x) is a non-decreasing function of ω.

3.5 Mellowmax as Entropy Regularization

In this section I show that using mellowmax in Bellman equation could be thought of as a way

penalizing the agent for choosing policies that are highly deterministic.

Recall that the original Bellman equation presented in the background section was:

Q(s, a) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a) max

a′∈A
Q(s′, a′) .

This could equivalently be written as:

Q(s, a) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a)

(
max
π

∑

a′

π(a′ | s′)Q(s′, a′)
)
.

Now suppose that instead of doing
(

maxπ
∑
a′ π(a′ | s′)Q(s′, a′)

)
, we desire to penalize the agent for

putting all or most of its weight behind just one action. In other words, we desire to have policies

that not just attain high values of
∑
a′ π(a′ | s′)Q(s′, a′)

)
, but also are stochastic enough.

One way of achieving this would be add an entropy term −∑a π(a | s) log π(a | s) . that would be

lowest if the agent chooses to put all of its weight behind a single action, and would be at its peak

if the agent chooses actions uniformly at random. A middle ground would be two consider both

reward maximization and entropy minimization at the same time with a parameter that governs the

trade-off:

f(Q,ω) = max
π

∑

a

π(a | s)Q(s, a)− 1

ω

∑

a

π(a | s) log π(a | s) .

We additionally add a third term log |A| that does not change the optimal policy, but allows us to

get the functional form that we require:

max
π

∑

a

π(a | s)Q(s, a)− 1

ω

∑

a

π(a | s) log π(a | s)− 1

ω
log |A| .
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We now have to solve the above optimization problem under the constraint that
∑
a π(a|s) = 1. To

this end, we can utilize the Lagrangian:

L(π, λ,Q) :=
∑

a

π(a | s)Q(s, a)− 1

ω

∑

a

π(a | s) log π(a | s)− 1

ω
log |A| − λ(

∑

a

π(a|s)− 1)

First note that:
∂L

∂λ
= (
∑

a

π(a|s)− 1) = 0 =⇒
∑

a

π(a|s) = 1 (3.1)

Second:
∂L

∂π(a|s) = Q(s, a)− 1

ω
log π(a|s)− 1

ω
− λ = 0

This implies that:

π(a|s) =
eωQ(s,a)

e1+ωλ
(3.2)

Combining (3.1) and (3.2), we can write:

∑
eωQ(s,a)

e1+ωλ
= 1 =⇒ e1+ωλ =

∑

a

eωQ(s,a)

And so we get:

π(a|s) =
eωQ(s,a)

∑
a e

ωQ(s,a)
.

Plugging the derived policy, we get:

f(Q,ω) =

∑
aQ(s, a)eωQ(s,a)

∑
a e

ωQ(s,a)
− 1

ω

∑
a e

ωQ(s,a)(ωQ(s, a)− log
∑
a e

ωQ(s,a))∑
a e

ωQ(s,a)
− 1

ω
log |A|

=

∑
aQ(s, a)eωQ(s,a)

∑
a e

ωQ(s,a)
− ω

ω

∑
a e

ωQ(s,a)Q(s, a)∑
a e

ωQ(s,a)
+

1

ω
log
∑

a

eωQ(s,a))− 1

ω
log |A|

=
1

ω
log

∑
a e

ωQ(s,a)

|A|
= mmω

(
Q(s, ·)

)

Thus we can conclude by solving for the bellman equation

Q(s, a) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a)

(
mmωQ(s′, ·)

)
,

we are in fact solving for the policy that maximize a combination of reward and entropy as governed

by the ω parameter.

3.6 Maximum Entropy Mellowmax Policy

As described, mmω computes a value for a list of numbers somewhere between its minimum and

maximum. However, it is often useful to actually provide a probability distribution over the actions

such that (1) a non-zero probability mass is assigned to each action, and (2) the resulting expected
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value equals the computed value. Such a probability distribution can then be used for action selec-

tion in algorithms such as SARSA.

In this section, I address the problem of identifying such a probability distribution as a maximum

entropy problem—over all distributions that satisfy the properties above, pick the one that maximizes

information entropy [36, 78]. I formally define the maximum entropy mellowmax policy of a state s

as:

πmm(s) = argmin
π

∑

a∈A
π(a|s) log

(
π(a|s)

)
(3.3)

subject to
{
∑
a∈A π(a|s)Q̂(s, a) = mmω(Q̂(s, .))

π(a|s) ≥ 0
∑
a∈A π(a|s) = 1 .

Note that this optimization problem is convex and can be solved reliably using any numerical convex

optimization library.

One way of finding the solution is to use the method of Lagrange multipliers. Here, the Lagrangian

is:

L(π, λ1, λ2) =
∑

a∈A
π(a|s) log

(
π(a|s)

)
− λ1

(∑

a∈A
π(a|s)− 1

)
− λ2

(∑

a∈A
π(a|s)Q̂(s, a)−mmω

(
Q̂(s, .)

))
.

Taking the partial derivative of the Lagrangian with respect to each π(a|s) and setting them to zero,

we obtain:
∂L

∂π(a|s) = log
(
π(a|s)

)
+ 1− λ1 − λ2Q̂(s, a) = 0 ∀ a ∈ A .

These |A| equations, together with the two linear constraints in (3.3), form |A| + 2 equations to

constrain the |A|+ 2 variables π(a|s) ∀a ∈ A and the two Lagrangian multipliers λ1 and λ2.

Solving this system of equations, the probability of taking an action under the maximum entropy

mellowmax policy has the form:

πmm(a|s) =
eβQ̂(s,a)

∑
a∈A e

βQ̂(s,a)
∀a ∈ A ,

where β is a value for which:

∑

a∈A
eβ
(
Q̂(s,a)−mmωQ̂(s,.)

)(
Q̂(s, a)−mmωQ̂(s, .)

)
= 0 .

The argument for the existence of a unique root is simple. As β →∞ the term corresponding to the

best action dominates, and so, the function is positive. Conversely, as β → −∞ the term correspond-

ing to the action with lowest utility dominates, and so the function is negative. Finally, by taking
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the derivative with respect to β, it is clear that the function is monotonically increasing, allowing

us to conclude that there exists only a single root. Therefore, we can find β easily using any root-

finding algorithm. In particular, I use Brent’s method [29] available in the Numpy library of Python.

This policy has the same form as Boltzmann softmax, but with a parameter β whose value depends

indirectly on ω. This mathematical form arose not from the structure of mmω, but from maximizing

the entropy. One way to view the use of the mellowmax operator, then, is as a form of Boltzmann

policy with a temperature parameter chosen adaptively in each state to ensure that the operator is

sufficiently smooth.

Finally, note that the SARSA update under the maximum entropy mellowmax policy could be

thought of as a stochastic implementation of the GVI update under the mmω operator:

Eπmm

[
r + γQ̂(s′, a′)

∣∣s, a
]

=
∑

s′∈S
R(s, a, s′) + γP(s, a, s′)

∑

a′∈A
πmm(a′|s′)Q̂(s′, a′)

]

︸ ︷︷ ︸
mmω

(
Q̂(s′,.)

)

due to the first constraint of the convex optimization problem (3.3). Because mellowmax is a

non-expansion, SARSA with the maximum entropy mellowmax policy is guaranteed to converge to

a unique fixed point. Note also that, similar to other variants of SARSA, the algorithm simply

bootstraps using the value of the next state while implementing the new policy.

3.7 Experiments in the Tabular Setting

Before presenting experiments, I note that in practice computing mellowmax can yield overflow if

the exponentiated values are large. In this case, we can safely shift the values by a constant before

exponentiating them due to the following equality:

log( 1
n

∑n
i=1 e

ωxi)

ω
= c+

log( 1
n

∑n
i=1 e

ω(xi−c))

ω
.

A value of c = maxi xi usually avoids overflow.

3.7.1 Two-state MDP

I repeat the experiment from Figure 3.4 for mellowmax with ω = 16.55 to get a vector field. The

result, presented in Figure 3.5, shows a rapid and steady convergence towards the unique fixed point.

As a result, GVI under mmω can terminate significantly faster than GVI under boltzβ , as illustrated

in Figure 3.6.

3.7.2 Random MDPs

The example in Figure 3.1 was contrived. It is interesting to know whether such examples are likely

to be encountered naturally. To this end, I constructed 200 MDPs as follows: I sampled |S| from
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Figure 3.5: GVI updates under
mmω=16.55. The fixed point is unique,
and all updates move quickly toward
the fixed point.

Figure 3.6: Number of iterations before termination of GVI on the example MDP. GVI under mmω

outperforms the alternatives.

{2, 3, ..., 10} and |A| from {2, 3, 4, 5} uniformly at random. I initialized the transition probabilities

by sampling uniformly from [0, .01]. I then added to each entry, with probability 0.5, Gaussian noise

with mean 1 and variance 0.1. I next added, with probability 0.1, Gaussian noise with mean 100

and variance 1. Finally, I normalized the raw values to ensure that I get a transition matrix. I did

a similar process for rewards, with the difference that I divided each entry by the maximum entry

and multiplied by 0.5 to ensure that Rmax = 0.5 .

I measured the failure rate of GVI under boltzβ and mmω by stopping GVI when it did not terminate

in 1000 iterations. I also computed the average number of iterations needed before termination. A

summary of results is presented in the table below. Mellowmax outperforms Boltzmann based on

the three measures provided below.

MDPs, no
terminate

MDPs, > 1
fixed points

average
iterations

boltzβ 8 of 200 3 of 200 231.65
mmω 0 0 201.32

Table 3.1: A comparison between Mellowmax and Boltzmann in terms of convergence to a unique
fixed point.
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F

F

S F D
Figure 3.7: Multi-passenger taxi domain. The discount rate γ is 0.99.
Reward is +1 for delivering one passenger, +3 for two passengers, and
+15 for three passengers. Reward is zero for all the other transitions.
Here F , S, and D denote passengers, start state, and destination re-
spectively.

Figure 3.8: Comparison on the multi-passenger taxi domain. Results are shown for different values
of ε, β, and ω. For each setting, the learning rate is optimized. Results are averaged over 25
independent runs, each consisting of 300000 time steps.

3.7.3 Multi-passenger Taxi Domain

I evaluated SARSA on the multi-passenger taxi domain introduced by Dearden et al. [37]. (See

Figure 3.7.)

One challenging aspect of this domain is that it admits many locally optimal policies. Exploration

needs to be set carefully to avoid either over-exploring or under-exploring the state space. Note

also that Boltzmann softmax performs remarkably well on this domain, outperforming sophisticated

Bayesian reinforcement-learning algorithms [37]. As shown in Figure 3.8, SARSA with the epsilon-

greedy policy performs poorly. In fact, in our experiment, the algorithm rarely was able to deliver all

the passengers. However, SARSA with Boltzmann softmax and SARSA with the maximum entropy

mellowmax policy achieved significantly higher average reward. Maximum entropy mellowmax policy

is no worse than Boltzmann softmax, here, suggesting that the greater stability does not come at

the expense of less effective exploration.

3.8 Experiments in the Function Approximation Setting

Mellowmax is demonstrably better than Boltzmann softmax in contrived examples as I showed

above, but can it also be useful in large-scale settings? To answer this question in the affirmative,

I now move to the function approximation case where Kim, myself, Littman, and Konidaris [55]

used mellowmax as the bootstrapping operator in Deep Q Networks (DQN) [66], hence the name
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Parameters Acrobot Lunar Lander Atari
learning rate 10−3 10−4 0.00025
neural network MLP MLP CNN
layers 3 3 4
neurons per layer 300 500 –
update frequency 100 200 10000
number of runs 100 50 5
processing unit CPU GPU GPU

Table 3.2: Experimental details for evaluating DeepMellow for each domain.

DeepMellow. We simply changed the bootstrapping operator of DQN from max to mellowmax.

We first tested DeepMellow in two control domains (Acrobot, Lunar Lander) for which a compact,

albeit continuous, representation of the state is presented to the agent. We also tested DeepMellow

on two Atari games (Breakout, Seaquest), with a network architecture and hyper parameters akin

to that of the original DQN paper [66]. The parameters and neural network architectures for each

domain are summarized in Table 3.2.

Target network update frequency is iportant knob in our experiments. In DQN, while the real action-

value function is updated every iteration, the target network is only updated every C iterations—we

call C the target network update frequency. When C > 1, the target network is updated with a

delay, while setting C = 1 ensures the target network is copied from the real action-value function

after every single update. Stated differently, C = 1 would obviate the separate target network.

Choice of Temperature Parameter ω

It is important to tune the ω parameter of DeepMellow. If ω is set to an extremely large value,

Mellowmax behaves like max, so no benefit over max would be expected. With an ω close to zero,

Mellowmax behaves like averaging, a behavior not conducive to reward maximization. To find the

optimal ranges of the ω parameter for each domain, we used a grid search method, as we did for

other hyperparameters. We empirically found that simpler domains (Acrobot, Lunar Lander) require

relatively smaller ω values while large-scale Atari domains require larger values. For Acrobot and

Lunar Lander, our parameter search set was ω ∈ {1, 2, 5, 10}. For Breakout and Seaquest, we tested

ω ∈ {100, 250, 1000, 2000, 3000, 5000} and ω ∈ {10, 20, 30, 40, 50, 100, 200}, respectively.

3.8.1 DeepMellow vs DQN without a Target Network

We first compared DeepMellow and DQN in the absence of a target network (or target network up-

date frequency C = 1). The control domain results are shown in the Figure 3.9 (left). In Acrobot,

DeepMellow achieves more stable learning than DQN—without a target network, the learning curve

of DQN goes upward fast, but soon starts fluctuating and fails to improve towards the end. By

contrast, DeepMellow (especially with temperature parameter ω = 1) succeeds. Similar results are
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Figure 3.9: The performance of DeepMellow (no target network) and DQN (no target network) in
control domains (left) and Atari games (right). DeepMellow outperforms DQN in all domains, in
the absence of target network. Note that the best performing temperature ω values vary across
domains.

observed in Lunar Lander. Overall, DeepMellow (ω ∈ {1, 2}) achieves more stable learning and

higher average returns than DQN by virtue of avoiding the pitfalls of pure maximization and also

by using a sufficiently smooth operator.

We also compared the performances of DeepMellow and DQN in two Atari games, Breakout and

Seaquest, to ensure that the observed benefits are generalizable to larger environments. We chose

these two domains because the effects of having a target network are known to be different in each

domain [66]. In Breakout, the performance of DQN does not differ significantly with and without a

target network. On the other hand, Seaquest is a domain that shows a significant performance drop

when the target network is absent. Thus, these two domains are two contrasting examples for us to

see whether DeepMellow obviates target network.

Figure 3.9 (right) shows the performances of DeepMellow and DQN in these games. DeepMellow

performed better than DQN without a target network in both Breakout and Seaquest; especially in
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Figure 3.10: Performances of DeepMellow (no target network) and DQN (with a target network).
If tuned with an optimal temperature parameter ω value, DeepMellow learns faster than DQN with
a target network.

Seaquest, the performance gap was substantial. Also, note that there are intermediate ω values that

yield best performances of DeepMellow in each domain.

3.8.2 DeepMellow vs DQN with a Target Network

In the previous section, I reported that DeepMellow outperforms DQN without a target network.

The next question that naturally arises is whether DeepMellow without a target network performs

even better than DQN with a target network. To this end, we compared their performances, focusing

on their learning speed.

As shown in Figure 3.10, DeepMellow does learn faster than DQN in Lunar Lander, Breakout,

and Seaquest domains. In Acrobot (not shown), there was no significant difference, because both

algorithms learned very quickly. Together, these results compliment the theoretical benefits of using

mellowmax.

3.9 Conclusion

In this chapter, I proposed and evaluated the mellowmax operator as an appealing alternative for a

smooth approximation of max in RL. I showed that mellowmax has several desirable properties and

that it works favorably in practice, including on large Atari games. Arguably, mellowmax could be

used in place of Boltzmann throughout RL research.



Chapter 4

Smoothness in Continuous Control

In this chapter I take a deep dive into solving RL problems with continuous action spaces. As I

showed before, a core operation in RL is to perform maximization with respect to the Q function,

i.e. maxa∈A Q̂(s, a). When A is discrete and finite, the operation is trivially performed by taking the

maximum over a finite set of numbers. In contrast, when A is continuous we need to rethink the way

in which we represent the Q function so that performing the operation becomes tractable. To this

end, I introduce deep radial-basis value functions (RBVFs): value functions learned using a deep

neural network with a radial-basis function (RBF) output layer equipped with a smoothing param-

eter. I show that the maximum action-value with respect to a deep RBVF can be found tractably.

Moreover, deep RBVFs can represent any true value function owing to their support for universal

function approximation. I introduce a value-function-only algorithm that utilizes Deep RBVFs, and

with the right degree of smoothness, achieves state-of-the-art performance in continuous-action RL

problems.

This chapter is based on a paper written by Neev Parikh, Ronald Parr, George Konidaris, Michael

Littman, and myself [10].

42
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4.1 Introduction

Value (Q) function is a core ingredient of RL, and it quantifies the expected return for taking an

action a in a state s. Numerous RL algorithms learn an approximation of Q either directly from

environmental interactions or indirectly using a learned model (See next chapter). When using

function approximation to learn the Q function, the agent has a parameterized function class, and

seeks for parameter setting θ for Q̂(s, a; θ) that accurately represents the true Q function:

Q̂(s, a; θ) ≈ Qπ(s, a) .

A core operation here is finding an optimal action with respect to the learned Q function, specifi-

cally arg maxa∈A Q̂(s, a; θ). Action selection is the first context in which this operation is relevant:

it is clear that successfully performing greedy action selection hinges on solving this maximization

problem accurately.

The need to perform this operation arises in another important context as we have seen before,

namely when learning the Q function from data. As a concrete example, I showed that Q-learning

proceeds with the following update rule:

θ ← θ + α
(
rt + γ max

a′∈A
Q̂(st+1, a

′; θ)− Q̂(st, at; θ)
)
∇θQ̂(st, at; θ)

and so for successfully applying Q-learning, as well as many other RL algorithms, it is imperative

that the maximization problem can be solved efficiently and accurately.

A simple approach to performing this maximization in continuous actions is to partition the action

space into a finite number of subsets, thus reducing the original continuous problem to a discrete

one for which maximization is trivial to do. While this approach can be effective in low-dimensional

settings, to uniformly cover the action space, we need a partition whose size grows exponentially with

the number of action dimensions. Pazis and Parr attempt to combat this curse of dimensionality via

approximate linear programming [76], but scaling their approach to larger domains remains open to

the best of my knowledge.

Another line of work has shown the benefits of using function classes that are conducive to efficient

action maximization. For example, Gu et al., explored function classes that can capture an arbitrary

dependence on the state, but only a quadratic dependence on the action [47]. Given a quadratic

action dependence, Gu et al., showed how to compute arg maxa∈A Q̂(s, a; θ) quickly.

A more general idea is to use input–convex neural networks [4] that restrict Q̂(s, a; θ) to convex (or

concave) functions with respect to a, so that the maximization problem can be solved efficiently

using convex-optimization techniques [28]. We can obtain neural networks that are convex by en-

suring that all weights applied to the action input of the network is positive, and that the activation
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function is also convex and non-decreasing. See Amos et. al, [4] for more details.

Restricting the function class in these ways, however, comes at its own cost, namely that these ap-

proaches are unable to support universal function approximation [50], and may lead into inaccurate

value functions regardless of the amount of experience provided to the agent. This is significant

because our desire is to apply RL algorithms to any problem including to those whose value function

is highly complicated.

Together with Parikh, Parr, Konidaris, and Littman [10], we introduced deep radial-basis value

functions (RBVFs): Q functions approximated by a standard deep neural network augmented with

an RBF output layer. I show that deep RBVFs enable us to efficiently and accurately identify

an approximately optimal action without impeding universal function approximation. A function

approximator that enjoys both properties was absent in the RL literature prior to our work.

Moreover, I present two sets of experimental results revolving around RBVFs. I first equip DQN,

a standard deep RL algorithm originally proposed for discrete actions [66], with a deep RBVF and

produce a new continuous-control algorithm called RBF-DQN. I evaluate RBF-DQN to demonstrate

its superior performance relative to value-function-only baselines, and to show its competitiveness

with state-of-the-art actor-critic RL. I also show that a deep RBVF could serve as the critic in

standard actor-critic algorithms such as DDPG [92, 61].

An important piece of a deep RBVF is the smoothing parameter which enables us to adjust the

smoothness of RBVFs. I show that often an intermediate degree of smoothness yields best results,

and that carefully tuning this parameter is crucial for obtaining state-of-the-art performance in

continuous control.

4.2 Deep Radial-Basis Value Functions

Deep Radial-Basis Value Functions (RBVFs) combine the practical advantages of deep networks [44]

with the theoretical benefits of radial-basis functions (RBFs) [81]. A deep RBVF is comprised of a

number of arbitrary hidden layers, followed by an RBF output layer, defined next. The RBF output

layer [31] is sometimes used as a standalone single-layer function approximator, and is referred to as

a (shallow) RBF network. It is also a core ingredient of the kernel trick in Support Vector Machines

[35]. We use an RBF network as the final, or output, layer of a deep network.

For a given input a, the RBF layer f(a) is defined as:

f(a) :=

N∑

i=1

g(a− ai) vi , (4.1)



45

where each ai represents a centroid location, vi is the value of the centroid ai, N is the number of

centroids, and g is an RBF. A commonly used RBF is the negative exponential:

g(a− ai) := e−β‖a−ai‖ , (4.2)

equipped with an inverse smoothing parameter β≥0. Formulation (4.1) could be thought of as an

interpolation based on the value and the weights of all centroids, where the weight of each centroid

is determined by its proximity to the input. Proximity here is quantified by the RBF g, in this case

the negative exponential (4.2).

It is theoretically useful to normalize centroid weights to ensure that they sum to 1 so that f

implements a weighted average. This weighted average is sometimes referred to as a normalized

RBF layer [69, 33]:

fβ(a) :=

∑N
i=1 e

−β‖a−ai‖ vi∑N
i=1 e

−β‖a−ai‖
. (4.3)

As the inverse smoothing parameter β→∞, the function implements a winner-take-all case where

the value of the function at a given input is determined only by the value of the closest centroid

location, nearest-neighbor style. This limiting case is sometimes referred to as a Voronoi decomposi-

tion [13]. Conversely, f converges to the mean of centroid values regardless of the input a as β gets

close to 0; that is, ∀a limβ→0 fβ(a) =
∑N
i=1 vi
N .

Since an RBF layer is differentiable, it could be used in conjunction with gradient-based optimiza-

tion techniques and Backprop to learn the centroid locations and their values by optimizing for a

loss function.

Note that formulation (4.3) is different than the Boltzmann softmax operator studied in the previous

chapter. With a Boltzmann operator the weights of individual actions are determined not by an

RBF, but by the action values.

Finally, to represent the Q function for RL, I use the following formulation:

Q̂β(s, a; θ) :=

∑N
i=1 e

−β‖a−ai(s;θ)‖ vi(s; θ)∑N
i=1 e

−β‖a−ai(s;θ)‖
. (4.4)

From equation (4.4) a deep RBVF learns two mappings: state-dependent centroid locations ai(s; θ)

and state-dependent centroid values vi(s; θ). The role of the output layer is to compute the output

of the entire deep RBVF. I illustrate the architecture of a deep RBVF in Figure 4.1. In the experi-

mental section, I demonstrate how to learn parameters θ.

I now show that deep RBVFs have a highly desirable property for value-function-based RL, namely

that they enable easy action maximization.
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Figure 4.1: Architecture of a deep RBVF, which could be thought of as an RBF output layer added
to an otherwise standard deep Q function. All operations of the final RBF layer are differentiable, so
the parameters of hidden layers θ, which represent the mappings ai(s; θ) and vi(s; θ), can be learned
using gradient-based optimization techniques.

First, it is easy to find the output of a deep RBVF at each centroid location ai, that is, to compute

Q̂β(s, ai; θ). Note that Q̂β(s, ai; θ) 6= vi(s; θ) in general for a finite β, because the other centroids

aj ∀j ∈ {1, .., N} − i may have non-zero weights at ai. To compute Q̂β(s, ai; θ), we access the

centroid location using ai(s; θ), then input ai to get Q̂(s, ai; θ) . Once we have Q̂(s, ai; θ) ∀ai, we

can trivially find the centroid with highest value: maxi∈[1,N ] Q̂β(s, ai; θ).

Recall that our goal is to compute maxa∈A Q̂β(s, a; θ), but so far I have shown how to compute

maxi∈[1,N ] Q̂β(s, ai; θ). I now show that these two quantities are equivalent in one-dimensional

action spaces. More importantly, Theorem 4.2.1 shows that with arbitrary number of dimensions,

there may be a gap, but that this gap gets exponentially small with increasing the inverse smoothing

parameter β.

Theorem 4.2.1. Let Q̂β be a normalized negative-exponential RBVF.

1. For A ∈ R :

maxa∈A Q̂β(s, a; θ) = maxi∈[1,N ] Q̂β(s, ai; θ) .

2. For A ∈ Rd ∀d > 1 :

maxa∈AQ̂β(s, a; θ)−maxi∈[1,N ]Q̂β(s, ai; θ)≤O(e−β) .

Proof. I begin by proving the first result. For an arbitrary action a, we can write

Q̂β(s, a; θ) = w1v1(s; θ) + ...+ wNvN (s; θ) ,

Without loss of generality, we sort centroids so that ∀i ∈ [1, N−1], ai ≤ ai+1. Take two neighboring
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centroids aL and aR and notice that:

∀i < L,
wL
wi

=
e−|a−aL|

e−|a−ai|
=
e−a+aL

e−a+ai
= eaL−ai

def
=

1

ci
=⇒ wi = wLci .

In the above, we used the fact that all ai are to the left of a and aL. Similarly, we can argue that

∀i > R Wi = WRci. Intuitively, for actions between aL and aR, we will have a constant ratio

between the weight of a centroid to the left of aL, over the weight of aL itself. The same holds for

the centroids to the right of aR.

In light of the above result, by some changes of variables we can now write:

Q̂β(s, a; θ) = w1v1(s; θ) + ...+ wLvL(s; θ) + wRvR(s; θ) + ...+ wKvK(s; θ)

= wLc1v1(s; θ) + ...+ wLvL(s; θ) + wRvR(s; θ) + ...+ wRcKvK(s; θ)

= wL
(
c1v1(s; θ) + ...+ vL(s; θ)

)
+ wR

(
vR(s; θ) + ...+ cKvK(s; θ)

)
.

Moreover, note that the weights sum to 1: wL(c1 + ...+ 1) +wR(1 + ...+ cK) = 1 , and wL is at its

peak when we choose a = aL and at its smallest value when we choose a = aR. A converse statement

is true about wR. Moreover, the weights monotonically increase and decrease as we move the input

a. We call the endpoints of the range wmin and wmax. As such, the problem maxa∈[aL,aR] Q̂β(s, a; θ)

could be written as this linear program:

max
wL,wR

wL
(
c1v1(s; θ) + ...+ vL(s; θ)

)
+ wR

(
vR(s; θ) + ...+ cKvK(s; θ)

)

s.t. wL(c1 + ...+ 1) + wR(1 + ...+ cK) = 1

wL, wR ≥Wmin

wL, wR ≤Wmax

A standard result in linear programming is that every linear program has an extreme point that

is an optimal solution [28]. Therefore, at least one of the points (wL = wmin, wR = wmax) or

(wL = wmax, wR = wmin) is an optimal solution. It is easy to see that there is a one-to-one mapping

between a and WL,WR in light of the monotonic property.

As a result, the first point corresponds to the unique value of a = aR(s), and the second corresponds

to unique value of a = aL(s). Since no point in between two centroids can be bigger than the

surrounding centroids, at least one of the centroids is a globally optimal solution in the range

[a1(s), aN (s)], that is

max
a∈A

Q̂β(s, a; θ) = max
i∈[1,N ]

Q̂β(s, ai; θ) .

To finish the proof, we can show that ∀a < a1 Q̂β(s, a; θ) = Q̂β(s, a1; θ). The proof for ∀a >
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aN Q̂β(s, a; θ) = Q̂β(s, aN ; θ) follows similar steps:

∀a < a1 Q̂β(s, a; θ) =

∑N
i=1 e

−β|a−ai|vi(s)∑N
i=1 e

−β|a−ai|

=

∑N
i=1 e

−β|a1−c−ai|vi(s)∑N
i=1 e

−β|a1−c−ai|
(a = a1 − c for some c > 0)

=

∑N
i=1 e

β(a1−c−ai)vi(s)∑N
i=1 e

β(a1−c−ai)
(a1 − c < a1 ≤ ai)

=
e−c

∑N
i=1 e

β(a1−ai)vi(s)

e−c
∑N
i=1 e

β(a1−ai)

=

∑N
i=1 e

β(a1−ai)vi(s)∑N
i=1 e

β(a1−ai)
= Q̂β(s, a1; θ) ,

We now prove the second part of the Theorem. First, note that:

max
a

Q̂β(s, a; θ)− max
i∈[1:N ]

Q̂(s, ai; θ) ≤ vmax(s; θ)− max
i∈[1:N ]

Q̂(s, ai; θ)

= vmax(s; θ)− Q̂β(s, amax; θ) .

Without loss of generality, we assume that the first centroid is the one with the highest v, that is

v1(s; θ) = arg maxvi vi(s; θ):

vmax(s)− Q̂β(s, amax; θ) = v1 −
∑N
i=1 e

−β‖a1−ai‖vi(s)∑N
i=1 e

−β‖a1−ai‖

=

∑N
i=1 e

−β‖a1−ai‖(v1(s)− vi(s)
)

∑N
i=1 e

−β‖a1−ai‖

=

∑N
i=2 e

−β‖a1−ai‖(v1(s)− vi(s)
)

1 +
∑K
k=2 e

−β‖a1−ai‖

≤ ∆q

∑N
i=2 e

−β‖a1−ai‖

1 +
∑N
i=2 e

−β‖a1−ai‖
(See [96].)

≤ ∆q

N∑

i=2

e−β‖a1−ai‖

1 + e−β‖a1−ai‖

= ∆q

N∑

i=2

1

1 + eβ‖a1−ai‖
= O(e−β).

In light of Theorem 4.2.1, to approximate maxa∈A Q̂(s, a; θ) we simply compute maxi∈[1,N ] Q̂(s, ai; θ).

If the goal is to ensure that the approximation is sufficiently accurate, one can always increase the

inverse smoothing parameter to quickly get the desired accuracy. Notice that this result holds for

normalized negative-exponential RBVFs, but not necessarily for the unnormalized case or for RBFs

other than negative exponential.
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(a) β = 0.25 (b) β = 1

(c) β = 1.5 (d) β = 2

Figure 4.2: The output of an RBVF with 3 fixed centroid locations and values, but different
settings of the inverse smoothing parameter β on a 2-dimensional action space. The regions
in dark green highlight the set of actions a for which a is extremely close to the global max-
imum, maxa∈A Q̂β(s, a; θ). Observe the reduction of the gap between maxa∈A Q̂β(s, a; θ) and

maxi∈[1,N ] Q̂β(s, ai; θ) by increasing β, as guaranteed by Theorem 4.2.1.



50

Theorem 4.2.2. Consider any state–action value function Qπ(s, a) defined on a closed action space

A. Assume that Qπ(s, a) is a continuous function. For a fixed state s and for any ε > 0, there exists

a deep RBF value function Q̂β(s, a; θ) and a setting of the inverse smoothing parameter β0 for which:

∀a ∈ A ∀β ≥ β0 |Qπ(s, a)− Q̂β(s, a; θ)| ≤ ε .

Proof. Since Qπ is continuous, we leverage the fact that it is Lipschitz with a Lipschitz constant L:

∀a0, a1 |f(a1)− f(a0)| ≤ L ‖a1 − a0‖

As such, assuming that ‖a1 − a0‖ ≤ ε
4L , we have that |f(a1)−f(a0)| ≤ ε

4 Consider a set of centroids

{c1, c2, ..., cN}, define the cell(j) as:

cell(j) = {a ∈ A| ‖a− cj‖ = min
z
‖a− cz‖} ,

and the radius Rad(j,A) as:

Rad(j,A) := sup
x∈cell(j)

‖x− cj‖ .

Assuming that A is a closed set, there always exists a set of centroids {c1, c2, ..., cN} for which

Rad(c,A) ≤ ε
4L . Now consider the following functional form:

Q̂β(s, a) :=

N∑

j=1

Qπ(s, cj)wj ,

where wj =
e−β‖a−cj‖

∑N
z=1 e

−β‖a−cz‖
.

Now suppose a lies in a subset of cells, called the central cells C:

C := {j|a ∈ cell(j)} ,

We define a second neighboring set of cells:

N := {j|cell(j) ∩
(
∪i∈C cell(i)

)
6= ∅} − C ,

and a third set of far cells:

F := {j|j /∈ C & j /∈ N} ,

We now have:

|Qπ(s, a)− Q̂β(s, a; θ)| = |
N∑

j=1

(
Qπ(s, a)−Qπ(s, cj)

)
wj | ≤

N∑

j=1

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣wj

=
∑

j∈C

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣wj +

∑

j∈N

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣wj

+
∑

j∈F

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣wj
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We now bound each of the three sums above. Starting from the first sum, it is easy to see that∣∣Qπ(s, a)−Qπ(s, cj)
∣∣ ≤ ε

4 , simply because a ∈ cell(j). As for the second sum, since cj is the centroid

of a neighboring cell, using a central cell i, we can write:

‖a− cj‖ = ‖a− ci + ci − cj‖ ≤ ‖a− ci‖+ ‖ci − cj‖ ≤
ε

4L
+

ε

4L
=

ε

2L
,

and so in this case
∣∣Qπ(s, a)− Q̂β(s, cj)

∣∣ ≤ ε
2 . In the third case with the set of far cells F , observe

that for a far cell j and a central cell i we have:

wj
wi

=
e−β‖a−cj‖

e−β‖a−ci‖
→ wj = wie

−β(‖a−cj‖−‖a−ci‖) ≤ wie−βµ ≤ e−βµ,

For some µ > 0. In the above, we used the fact that ‖a− cj‖ − ‖a− ci‖ > 0 is always true. Then:

|Qπ(s, a)− Q̂β(s, a)|
=

∑

j∈C

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣

︸ ︷︷ ︸
≤ ε4

wj︸︷︷︸
≤1

+
∑

j∈N

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣

︸ ︷︷ ︸
≤ ε2

wj︸︷︷︸
1

+
∑

j∈F

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣ wj︸︷︷︸
e−βµ

≤ ε

4
+
ε

2
+
∑

j∈F

∣∣Qπ(s, a)−Qπ(s, cj)
∣∣e−βµ

≤ ε

4
+
ε

2
+ 2N sup

a
|Qπ(s, a)|e−βµ

In order to have 2N supa |Qπ(s, a)|e−βµ ≤ ε
4 , it suffices to have β ≥ −1

µ log( ε
8N supa |Qπ(s,a)| ) := β0.

To conclude the proof:

|Qπ(s, a)− Q̂β(s, a; θ)| ≤ ε ∀ β ≥ β0 .

Collectively, Theorems 4.2.1 and 4.2.2 guarantee that deep RBVFs ensure accurate and efficient

action maximization without impeding universal function approximation. This combination of

properties stands in contrast with prior work that used function classes that enable easy action

maximization but lack UFA [47, 4], as well as prior work that preserved the UFA property but did

not guarantee arbitrarily high accuracy when performing the maximization step [62, 88].

In terms of scalability, note that the RBVF formulation scales naturally owing to its freedom to

determine centroids that best minimize the loss function. As a thought experiment, suppose that

some region of the action space has a high value, so an agent with greedy action selection frequently

chooses actions from that region. A deep RBVF would then move more centroids to the region,

because the region heavily contributes to the loss function. Since the centroids are state-dependent,

the network can learn to move the centroids to more rewarding regions on a per-state basis. It is

unnecessary to initialize centorid locations carefully, or to uniformly cover the action space a priori.

In this sense, learning RBVFs could be thought of as a form of adaptive and soft discretization

learned by gradient descent. Adaptive discretization techniques have proven fruitful in terms of

sample-complexity guarantees in bandit problems [57], as well as in RL [94, 112, 39].



52

4.3 RBVFs for Regression

To demonstrate the operation of an RBF network in the clearest setting, I present experiments

on a single-input continuous optimization problem where the agent lacks access to the true reward

function but can sample input–output pairs 〈a, r〉. This setting is akin to the action maximization

step in stateless RL.

I use the reward function: r(a) = ‖a‖2
sin(a0)+sin(a1)

2 . Figure 4.3 (left) shows the surface of this func-

tion. It is clearly non-convex and includes several local maxima (and minima). We are interested in

two cases, first the problem where the goal is to find maxa∈A r(a), and the converse problem where

we desire to find mina∈A r(a).

Here, my focus is not to find the most effective exploration policy, but to evaluate different ap-

proaches based on their effectiveness for representing and optimizing a learned reward function

r̂(a; θ). I therefore adopt the same random action-selection strategy for all approaches, in the in-

terest of fairness: we sampled 500 actions uniformly randomly from [−3, 3]2 to obtain a dataset for

training. When learning ended, I computed the action that maximized (or minimized) the learned

r̂(a; θ). Details of the function classes used in each case, as well as how to perform maxa∈A r̂(a; θ)

and mina∈A r̂(a; θ), are presented below:

Discretization: For our first baseline, we discretized each action dimension to 7 bins, resulting in

49 bins that uniformly covered the two dimensions of the input space. The choice of the number

of bins per dimension reflected the need to use roughly the same number of bins for discretization,

and the number of centroids in an RBVF. For each bin, we averaged the rewards over 〈a, r〉 pairs

for which the sampled action a belonged to that bin. Once we had a learned r̂(a; θ), which in this

case was just a 7× 7 table, we performed maxa r̂(a; θ) and mina r̂(a; θ) by a simple table lookup.

Input-Convex Neural Network: Our second baseline used the input-convex neural network ar-

chitecture [4], where the neural network is constrained so that the learned reward function r̂(a; θ) is

convex. Learning was performed by RMSProp optimization, with mean-squared loss. Once r̂(a; θ)

was learned, we used gradient ascent for finding the maximum, and gradient descent for finding the

minimum. Note that this input-convex approach subsumes the excluded quadratic case proposed

by Gu et al. [47], because quadratic functions are just a special case of convex functions, but the

converse in not necessarily true [28].

Wire Fitting: Our next baseline was the wire-fitting method proposed by Baird and Klopf [16].

Their function approximator operates similarly to RBVFs in that it also learns a set of centroids.

Again, we used the RMSprop optimizer and mean-squared loss, and finally returned the centroids

with lowest (or highest) values according to the learned r̂(a; θ).
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Figure 4.3: Left: True reward function. Center: The reward learned by the RBF reward network.
Black dots represent the centroids. Right: Means (averaged over 30 runs) and standard errors on
the continuous optimization task. Top: Results for action minimization. (Lower is better.) Bottom:
Results for action maximization. (Higher is better.)

Feed Forward: As the last baseline, we used a standard feed-forward neural network architecture

with two hidden layers. It is well–known that this function class is capable of UFA [50] and so can

accurately learn the reward function in principle. However, once learning ends, we face a non–convex

optimization problem for action maximization (or minimization) maxa r̂(a; θ). We simply initialized

gradient descent (ascent) to a point chosen uniformly randomly, and followed the corresponding

direction until no further progress was made.

To learn a radial-basis reward function, I used N = 50 centroids and β = 0.5 . I used RMSprop

and mean-squared loss minimization. Recall that Theorem 4.2.1 showed that with an RBVF the

following approximations are well-justified: maxa∈A r̂(a) ≈ maxi∈[1,50] r̂(ai) and mina∈A r̂(a) ≈
mini∈[1,50] r̂(ai). As such, when the learning of r̂(a; θ) ends, we output the centroid values with

highest and lowest reward.

For each individual case, I ran the corresponding experimental pipeline for 30 different random seeds.

The solution found by each learner was fed to the true reward function to evaluate the quality of

the found solution.

I report the average reward achieved by each function class in Figure 4.3 (right). The RBVF learner

outperforms all baselines on both the maximization and the minimization problem. I further show

the learned RBVF in a run (Figure 4.3 center), which is highly accurate.

4.4 RBVFs for Value-Function-Only Deep RL

I now use deep RBVFs for solving continuous-action RL problems. To this end, we learn a deep

RBVF using a learning algorithm akin to that of DQN [66], but extended to the continuous-action
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Figure 4.4: A comparison between RBF-DQN and value-function-only deep RL baselines on 6 Open
AI Gym environments. For ICNN and NAF, Ihave included two results: Dashed lines indicate the
level of performance reported by [4], and the learning curves show the performance of the baselines
obtained by running publicly-available implementations. All runs for this figure and all following
figures are averaged over 20 trials with different random seeds.

case. DQN uses the following loss function for learning the value function:

L(θ) := Es,a,r,s′

[(
r + γ max

a′∈A
Q̂(s′, a′; θ−)− Q̂(s, a; θ)

)2]
.

DQN adds tuples of experience 〈s, a, r, s′〉 to a buffer, and later samples a minibatch of tuples to com-

pute ∇θL(θ). DQN maintains a second network parameterized by weights θ−. This second network,

denoted Q̂(·, ·, θ−) and referred to as the target network, is periodically synchronized with the online

network Q̂(·, ·, θ). RBF-DQN uses the same loss function, but modifies the function class of DQN.

Concretely, DQN learns a deep network with one output per action, exploiting the discrete and finite

nature of the action space. By contrast, RBF-DQN takes a state and an action vector, and out-

puts a single scalar using a deep RBVF. The pseudo-code for RBF-DQN is presented in Algorithm 1.

I now evaluate RBF-DQN against state-of-the-art value-function-only deep RL baselines. Iunder-

stand NAF [47] and ICNN [4] as two of the best continuous-action extensions of DQN in the RL

literature, so Iused them as our baselines. For RBF-DQN, as well as each of the two baselines, we

performed 1000 updates per episodes when each episode ends. The authors of ICNN have released an

official code base 1, which we used to obtain the ICNN learning curves. To the best of our knowledge,

[47] did not release code, but we have used a public implementation of NAF 2. Compared to the

1github.com/locuslab/icnn

2github.com/ikostrikov/pytorch-ddpg-naf
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Algorithm 4 Pseudo-code for RBF-DQN

Initialize deep RBVF with N, β, θ
Initialize replay buffer B, ε, γ, α, α−, θ−
for E episodes do

Initialize s
while not done do

a← ε-greedy
(
Q̂β(s, ·; θ), ε

)

s′, r,done← env.step(s, a)
add 〈s, a, r, s′,done〉 to B; s← s′

end while
for M minibatches sampled from B do

for 〈s, a, r, s′,done〉 in minibatch do

∆ =
(
r − Q̂β(s, a; θ)

)
∇θQ̂(s, a; θ)

if not done then
get centroids ai(s

′; θ−), i ∈ [1, N ]

∆+=γmaxi Q̂β(s′, ai
(
s′; θ−); θ−

)

end if
θ ← θ + α∆ · ∇θQ̂β(s, a; θ)

end for
θ− ← (1− α−)θ− + α−θ

end for
end for

reported results in the ICNN paper, we were able to roughly achieve the same performance for NAF

and ICNN. However, for completeness, I show, via dashed horizontal lines, levels of performance for

NAF and ICNN reported by the ICNN paper whenever one was present.

Another relevant baseline is CAQL [88], for which we could neither find the authors’ code nor a public

implementation. Since the original CAQL paper used environments with constrained action spaces,

we only compare with the best reported results for Hopper-v3, HalfCheetah-v3, and Pendulum-v0,

as these environments were used with the full action space.

Table 4.5 lists the common hyper-parameters used for deep RBVFs in RBF-DQN, and Table 4.6

lists domain-dependent hyper parameters.

RBF-DQN is clearly outperforming the two baselines, even when considering the results reported

by the ICNN authors [4].

In light of the above results, I can claim that RBF-DQN is demonstrably a state-of-the-art value-

function-only deep RL algorithm, but how does RBF-DQN compare to state-of-the-art actor-critic

deep RL? To answer this question, we compared RBF-DQN to state-of-the-art actor critic deep

RL, namely DDPG [92, 61], TD3 [43], and SAC [48]. For TD3 and DDPG, we used the official

code released by [43]3, which is also used by numerous other papers. For SAC, we used a public

3github.com/sfujim/TD3
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hyper-parameter value
number of hidden layers for centroid values 3

number of hidden layers for centroid locations 1
number of nodes in all hidden layers 512

target network learning rate (exponential moving average) 0.005
replay buffer size 5× 105

discount-rate γ 0.99
size of mini-batch 256

number of centroids N 100
optimizer RMSProp

number of updates per episode 103

Figure 4.5: Common hyper-parameters used for deep RBVFs in RBF-DQN and RBF-DDPG.

domain step size (locations) step size (values) smoothing
Pendulum-v0 25× 10−5 25× 10−6 1

LunarLanderContinuous-v2 25× 10−5 25× 10−6 2
BipedalWalker-v3 10−5 5× 10−6 2

Hopper-v3 5× 10−5 10−5 1.5
HalfCheetah-v3 10−5 75× 10−6 .25

Ant-v3 10−5 5× 10−6 .1

Figure 4.6: Tuned RBF-DQN hyper-parameters for each domain.

implementation.4 In Figure 4.7, we show, not just the learning curves we obtained by running the

implementations, but also results reported in the TD3 and SAC papers.

I note that the authors of TD3, DDPG, and SAC report their results in steps. In our experiments,

we report results in episodes and have modified all implementations to have 1000 gradient updates

per episode, while continuing to record steps. We plot horizontal lines at the level of reward ob-

tained by the authors (and reported in their papers) at the average steps reached by the publicly

available implementations when run for the specified number of episodes. For example, in Ant-v3,

SAC reaches 1,076,890 steps on average when run for 2000 episodes. Therefore, we estimate the

reward from the authors’ graph at around 1.07× 106 steps to be roughly 4000.

From Figure 4.7, RBF-DQN is performing better than or is competitive with state-of-the-art actor

critic deep RL baselines on all domains. RBF-DQN can compete with these baselines despite the

fact that it only uses 2 neural networks (an online value function and a target value function), while

SAC and TD3, for instance, use 5 and 6 networks, respectively.

In our experiments, TD3 and SAC perform 1000 gradient updates on two critics and one actor per

each episode, while RBF-DQN only updates a deep RBVF 1000 times. Therefore, TD3 and SAC

4github.com/pranz24/pytorch-soft-actor-critic
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Figure 4.7: A comparison between RBF-DQN and state-of-the-art actor-critic deep RL.

are also performing 3 times as many updates as RBF-DQN. Lastly, some of the ideas leveraged by

TD3 and SAC, such as value clipping in TD3 and SAC, and entropy regularization in SAC, can be

integrated into RBF-DQN. I believe these combinations are promising, and leave the investigation

of these combinations for future work.

4.5 RBVFs for Actor-Critic Deep RL

So far, I have applied RBVFs to value-function-only RL, but can RBVFs be useful for other RL

algorithms? To answer this question affirmatively, I now use RBVFs for actor-critic deep RL, in

particular as the critic in the DDPG algorithm [92, 61].

Recall that, in contrast with value-function-only RL, actor-critic algorithms learn two separate

networks: a value function (or the critic), and a policy (or the actor) that is mainly used for action

selection. [92] introduces the deterministic policy-gradient actor critic, but makes the observation

that, in continuous control, computing the greedy action with respect to the learned critic is not

tractable (see their Subsection 3.1), leading them to instead use a SARSA update for the critic. I

showed that a deep RBVF approximately solves this maximization problem tractably. Leveraging

this insight, we can modify the DDPG algorithm to use an RBVF critic. Given a tuple 〈s, a, r, s′〉,
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we can learn, via the critic, the value function with a Q-learning or SARSA update:

θ ← θ + α δRBF-DDPG ∇θQ̂(s, a; θ) ,

δQ-learning := r + γmax
i
Q̂(s′, ai(s

′); θ)− Q̂(s, a; θ)

δSARSA := r + γQ̂(s′, π(s′;ω); θ)− Q̂(s, a; θ) .

(4.5)

The original DDPG algorithm used the SARSA update, obviating the action-maximization step.

Figure 4.8: A comparison between DDPG and RBF-DDPG.

Using a deep RBVF, RBF-DDPG performs the Q-learning update shown above to update the critic.

RBF-DDPG is otherwise analogous to DDPG.

I compare RBF-DDPG and DDPG in Figure 4.8. It is clear that the use of RBVFs benefits DDPG.

Although preliminary evaluations of RBF-DDPG do not exceed state-of-the-art performance, further

investigation is required to see if the addition of other algorithmic ideas, such as those presented in

[43] and [48], can further improve the performance of RBF-DDPG.

4.6 Conclusion

I proposed, analyzed, and exhibited the strengths of deep RBF value functions in continuous control.

These value functions facilitate easy action maximization, support universal function approximation,

and scale to large continuous action spaces. Deep RBF value functions are thus an appealing choice

for value function approximation in continuous control. Controlling the inverse smoothing parameter

of deep RBVFs played a critical role in achieving state-of-the-art performance on continuous-action

problems.



Chapter 5

Smoothness in Model-based

Reinforcement Learning

When is a learned model effective for long-horizon planning? In this chapter I answer this ques-

tion by examining the impact of learning Lipschitz continuous models. I make the case for a new

loss function for model-based RL based on the Wasserstein metric. By formalizing a good one-step

model as a Lipschitz model with bounded one-step Wasserstein error, I provide a novel bound on

multi-step prediction error of Lipschitz models, as well as on value-estimation error of the one-step

model. I conclude with empirical results that show the benefits of controlling the Lipschitz constant

of transition models when they are represented using neural networks.

This chapter is based on three papers: a paper written by Dipendra Misra, Michael Littman, and

myself [9], a second paper written by Evan Cater, Dipendra Misra, Michael Littman, and myself [6],

and a third paper written by Seungchan Kim, Dipendra Misra, Michael Littman and myself [8].

59
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5.1 Introduction

The model-based approach to reinforcement learning (RL) focuses on predicting the dynamics of

the environment to plan and make high-quality decisions [52, 102, 12]. Although the behavior of

model-based algorithms in tabular environments is well understood and can be effective [102], scaling

up to the approximate setting can cause instabilities. Even small model errors can be magnified by

the planning process resulting in poor performance [107].

In this chapter, I study model-based RL through the lens of Lipschitz continuity. I show that the

ability of a model to make accurate multi-step predictions hinges on not just the model’s one-step

accuracy, but also the magnitude of the Lipschitz constant (smoothness) of the model. I further

show that the dependence on the Lipschitz constant carries over to the value-prediction problem,

ultimately influencing the quality of the policy found by planning.

I consider a setting with continuous state spaces and stochastic transitions where I quantify the

distance between distributions using the Wasserstein metric. I introduce a novel characterization

of models, referred to as a Lipschitz model class, that represents stochastic dynamics using a set

of component deterministic functions. This allows us to study any stochastic dynamic using the

Lipschitz continuity of its component deterministic functions. To learn a Lipschitz model class in

continuous state spaces, I provide an Expectation-Maximization algorithm [38].

One promising direction for mitigating the effects of inaccurate models is the idea of limiting the

complexity of the learned models or reducing the horizon of planning [51]. Doing so can sometimes

make models more useful, much as regularization in supervised learning can improve generalization

performance [110]. I examine a type of regularization that comes from controlling the Lipschitz

constant of models. This regularization technique can be applied efficiently, as I will show, when we

represent the transition model by neural networks.

Finally, I move beyond one-step models, and introduce a novel multi-step model that can mitigate

the compounding error problem in long-horizon planning by removing one source of error. I show

that multi-step models can provide more accurate multi-step predictions, and ultimately yield more

effective planning in model-based RL.

5.2 Lipschitz Model Class

We introduce a novel representation of stochastic MDP transitions in terms of a distribution over a

set of deterministic components.

Definition 5.2.1. Given a metric state space (S, dS) and an action space A, we define Fg as a

collection of functions: Fg = {f : S → S} distributed according to g(f | a) where a ∈ A. We say
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Figure 5.1: An example of a Lipschitz model class in a gridworld environment [87]. The dynamics
are such that any action choice results in an attempted transition in the corresponding direction with
probability 0.8 and in the neighboring directions with probabilities 0.1 and 0.1. We can define Fg =

{fup, fright, fdown, f left} where each f outputs a deterministic next position in the grid (factoring in
obstacles). For a = up, we have: g(fup | a = up) = 0.8, g(fright | a = up) = g(f left | a = up) = 0.1,
and g(fdown | a = up) = 0. Defining distances between states as their Manhattan distance in the
grid, then ∀f sups1,s2

(
d(f(s1), f(s2)

)
/d(s1, s2) = 2, and so KF = 2. So, the four functions and g

comprise a Lipschitz model class.

that Fg is a Lipschitz model class if

KF := sup
f∈Fg

KdS ,dS (f) ,

is finite.

Our definition captures a subset of stochastic transitions, namely ones that can be represented as

a state-independent distribution over deterministic transitions. An example is provided in Figure 5.1.

Associated with a Lipschitz model class is a transition function given by:

T̂ (s′ | s, a) =
∑

f

1
(
f(s) = s′

)
g(f | a) .

Given a state distribution µ(s), I also define a generalized notion of transition function T̂G(· | µ, a)

given by:

T̂G(s′ | µ, a) =

∫

s

∑

f

1
(
f(s) = s′

)
g(f | a)

︸ ︷︷ ︸
T̂ (s′|s,a)

µ(s)ds .

We are primarily interested in KAd,d(T̂G), the Lipschitz constant of T̂G . However, since T̂G takes as

input a probability distribution and also outputs a probability distribution, we require a notion of

distance between two distributions. This notion is quantified using Wasserstein and is justified in

the next section.
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µ(s)

TG(.|µ, a)

bTG(.|µ, a)

Figure 5.2: A state distribution µ(s) (top),
a stochastic environment that randomly adds
or subtracts c1 (middle), and an approximate
transition model that randomly adds or sub-
tracts a second scalar c2 (bottom).

5.3 On the Choice of Probability Metric

I consider the stochastic model-based setting and show through an example that the Wasserstein

metric is a reasonable choice compared to other common options.

Consider a uniform distribution over states µ(s) as shown in black in Figure 5.2 (top). Take a

transition function TG in the environment that, given an action a, uniformly randomly adds or

subtracts a scalar c1. The distribution of states after one transition is shown in red in Figure 5.2

(middle). Now, consider a transition model T̂G that approximates TG by uniformly randomly adding

or subtracting the scalar c2. The distribution over states after one transition using this imperfect

model is shown in blue in Figure 5.2 (bottom). We desire a metric that captures the similarity

between the output of the two transition functions. I first consider Kullback-Leibler (KL) divergence

and observe that:

KL
(
TG(· | µ, a), T̂G(· | µ, a)

)

:=

∫
TG(s′ | µ, a) log

TG(s′ | µ, a)

T̂G(s′ | µ, a)
ds′ =∞ ,

unless the two constants are exactly the same.

The next possible choice is Total Variation (TV) defined as:

TV
(
TG(· | µ, a), T̂G(· | µ, a)

)

:=
1

2

∫ ∣∣TG(s′ | µ, a)− T̂G(s′ | µ, a)
∣∣ds′ = 1 ,

if the two distributions have disjoint supports regardless of how far the supports are from each other.

In contrast, Wasserstein is sensitive to how far the constants are as:

W
(
TG(· | µ, a), T̂G(· | µ, a)

)
= |c1 − c2| .
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It is clear that, of the three, Wasserstein corresponds best to the intuitive sense of how closely TG

approximates T̂G . This is particularly important in high-dimensional spaces where the true distri-

bution is known to usually lie in low-dimensional manifolds [72].

In the next section, I present a theoretical argument for the choice of Wasserstein.

5.3.1 Value-Aware Model Learning (VAML) Loss

In model-based RL it is very common to have a model-learning process that is agnostic to the specific

planing process. In such cases, the usefulness of the model for the specific planning procedure comes

as an afterthought. In contrast, the basic idea behind VAML [40] is to learn a model tailored to the

planning algorithm that intends to use it. To illustrate this idea, consider Bellman equations [23]

which are at the core of many planning and RL algorithms [102]:

Q(s, a) = R(s, a) + γ

∫
T (s′|s, a)f

(
Q(s′, .)

)
ds′ ,

where f can generally be any arbitrary operator [63] such as max. We also define:

v(s′) := f
(
Q(s′, .)

)
.

A good model T̂ could then be thought of as the one that minimizes the error:

l(T, T̂ )(s, a) = R(s, a) + γ

∫
T (s′|s, a)v(s′)ds′

− R(s, a)− γ
∫
T̂ (s′|s, a)v(s′)ds′

= γ

∫ (
T (s′|s, a)−T̂ (s′|s, a)

)
v(s′)ds′

Note that minimizing this objective requires access to the value function in the first place, but we

can obviate this need by leveraging Holder’s inequality:

l(T̂ , T )(s, a) = γ

∫ (
T (s′|s, a)− T̂ (s′|s, a)

)
v(s′)ds′

≤ γ
∥∥∥T (s′|s, a)− T̂ (s′|s, a)

∥∥∥
1
‖v‖∞

Further, we can use Pinsker’s inequality to write:
∥∥∥T (·|s, a)− T̂ (·|s, a)

∥∥∥
1
≤
√

2KL
(
T (·|s, a)||T̂ (·|s, a)

)
.

This justifies the use of maximum likelihood estimation for model learning, a common practice in

model-based RL [15, 1, 2], since maximum likelihood estimation is equivalent to empirical KL min-

imization.

However, there exists a major drawback with the KL objective, namely that it ignores the structure

of the value function during model learning.
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As a simple example, if the value function is constant through the state-space, any randomly chosen

model T̂ will, in fact, yield zero Bellman error. However, a model learning algorithm that ignores

the structure of value function can potentially require many samples to provide any guarantee about

the performance of the learned policy.

Consider the objective function l(T, T̂ ), and notice again that v itself is not known so we cannot

directly optimize for this objective. Farahmand et al. [40] proposed to search for a model that

results in lowest error given all possible value functions belonging to a specific class:

L(T, T̂ )(s, a)= sup
v∈F

∣∣∣
∫ (
T (s′ | s, a)− T̂ (s′ | s, a)

)
v(s′)ds′

∣∣∣
2

(5.1)

Note that minimizing this objective is shown to be tractable if, for example, F is restricted to the

class of exponential functions. Observe that the VAML objective (5.1) is similar to the dual of

Wasserstein:

W (µ1, µ2) = sup
f :Kd,dR (f)≤1

∫ (
µ1(s)− µ2(s)

)
f(s)ds ,

but the difference is in the space of value functions. In the next section I show that the space of

value functions are the same under certain conditions.

5.3.2 Lipschitz Generalized Value Iteration

I show that solving for a class of Bellman equations yields a Lipschitz value function. Our proof is

in the context of GVI [63], which defines Value Iteration [23] with arbitrary backup operators. We

make use of the following lemmas.

Lemma 5.3.1. Given a non-expansion f : S → R:

KAdS ,dR
( ∫

T (s′|s, a)f(s′)ds′
)
≤ KAdS ,W

(
T
)
.

Proof. Starting from the definition, we write:

KAdS ,dR
( ∫

T (s′|s, a)f(s′)ds′
)

= sup
a

sup
s1,s2

∣∣∣
∫ (
T (s′|s1, a)− T (s′|s2, a)

)
f(s′)ds′

∣∣∣
d(s1, s2)

≤ sup
a

sup
s1,s2

∣∣∣ supg
∫ (
T (s′|s1, a)− T (s′|s2, a)

)
g(s′)ds′

∣∣∣
d(s1, s2)

(where KdS ,dR(g) ≤ 1)

= sup
a

sup
s1,s2

supg
∫ (
T (s′|s1, a)− T (s′|s2, a)

)
g(s′)ds′

d(s1, s2)

= sup
a

sup
s1,s2

W
(
T (·|s1, a), T (·|s2, a)

)

d(s1, s2)
= KAdS ,W (T ) .
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Lemma 5.3.2. The following operators are non-expansion (K‖·‖∞,dR(·) = 1):

1. max(x), mean(x)

2. ε-greedy(x) := ε mean(x) + (1− ε)max(x)

3. mmβ(x) :=
log

∑
i e
βxi

n

β

Proof. 1 is proven by Littman & Szepsevari [63]. 2 follows from 1: (metrics not shown for brevity)

K(ε-greedy(x)) = K
(
ε mean(x) + (1− ε)max(x)

)

≤ εK
(
mean(x)

)
+ (1− ε)K

(
max(x)

)

= 1

Finally, 3 is proven multiple times in the literature. [7, 71, 73]

I now present the main result of the section.

Theorem 5.3.3. For any choice of backup operator f outlined in Lemma 5.3.2, GVI computes a

value function with a Lipschitz constant bounded by
KAdS ,dR

(R)

1−γKdS ,W (T ) if γKAdS ,W (T ) < 1.

Proof. In the nth round of GVI updates we have:

Q̂n+1(s, a)← R(s, a) + γ

∫
T (s′ | s, a)f

(
Q̂n(s′, ·)

)
ds′.

First observe that:

KAdS ,dR(Q̂n+1)

≤KAdS ,dR(R)+γKAdS ,dR
(∫

T (s′ | s, a)f
(
Q̂n(s′, ·)

)
ds′
)

(
due to Lemma (5.3.1)

)

≤ KAdS ,dR(R) + γKAdS ,W (T ) KdS,R

(
f
(
Q̂n(s, ·)

))

(
due to Composition Lemma

)

≤ KAdS ,dR(R) + γKAdS ,W (T )K‖·‖∞,dR(f)KAdS ,dR(Q̂n)
(
due to Lemma (5.3.2), the non-expansion property of f

)

= KAdS ,dR(R) + γKAdS ,W (T )KAdS ,dR(Q̂n)

Equivalently:

KAdS ,dR(Q̂n+1) ≤ KAdS ,dR(R)

n∑

i=0

(
γKAdS ,W (T )

)i

+
(
γKAdS ,W (T )

)n
KAdS ,dR(Q̂0) .
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By computing the limit of both sides, we get:

lim
n→∞

KAdS ,dR(Q̂n) ≤ lim
n→∞

KAdS ,dR(R)

n∑

i=0

(
γKAdS ,W (T )

)i

+ lim
n→∞

(
γKAdS ,W (T )

)n
KAdS ,dR(Q̂0)

=
KAdS ,dR(R)

1− γKdS ,W (T )
+ 0 ,

where we used the fact that

lim
n→∞

(
γKAdS ,W (T )

)n
= 0 .

This concludes the proof.

Now notice that as defined earlier:

V̂n(s) := f
(
Q̂n(s, ·)

)
,

so as a relevant corollary of our theorem we get:

KdS ,dR

(
v(s)

)
= lim

n→∞
KdS ,dR(V̂n)

= lim
n→∞

KdS ,dR

(
f
(
Q̂n(s, ·)

))

≤ lim
n→∞

KAdS ,dR(Q̂n)

≤
KAdS ,dR(R)

1− γKdS ,W (T )
.

That is, solving for the fixed point of this general class of Bellman equations results in a Lipschitz

state-value function.

5.3.3 Equivalence Between VAML and Wasserstein

I now show that minimizing for the VAML objective is the same as minimizing the Wasserstein

metric.

Consider again the VAML objective:

L(T, T̂ )(s, a)= sup
v∈F

∣∣∣
∫ (

T (s′ | s, a)− T̂ (s′ | s, a)
)
v(s′)ds′

∣∣∣
2

where F can generally be any class of functions. From our theorem, however, the space of value

functions F should be restricted to Lipschitz functions. Moreover, it is easy to design an MDP and

a policy such that a desired Lipschitz value function is attained.

This space LC can then be defined as follows:

LC = {f : KdS ,dR(f) ≤ C} ,
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where

C =
KAdS ,dR(R)

1− γKdS ,W (T )
.

So we can rewrite the VAML objective L as follows:

L
(
T, T̂

)
(s, a) = sup

f∈LC

∣∣∣
∫
f(s)

(
T (s′ | s, a)−T̂ (s′ | s, a)

)
ds′
∣∣∣
2

= sup
f∈LC

∣∣∣
∫
C
f(s)

C

(
T (s′ | s, a)−T̂ (s′ | s, a)

)
ds′
∣∣∣
2

= C2 sup
g∈L1

∣∣∣
∫
g(s)

(
T (s′ | s, a)−T̂ (s′ | s, a)

)
ds′
∣∣∣
2

.

It is clear that a function g that maximizes the Kantorovich-Rubinstein dual form:

sup
g∈L1

∫
g(s)

(
T (s′ | s, a)− T̂ (s′ | s, a)

)
ds′ := W (T (·|s, a), T̂ (·|s, a)) ,

will also maximize:

L
(
T, T̂

)
(s, a) =

∣∣∣
∫
g(s)

(
T (s′ | s, a)− T̂ (s′ | s, a)

)
ds′
∣∣∣
2

.

This is due to the fact that ∀g ∈ L1 ⇒ −g ∈ L1 and so computing absolute value or squaring the

term will not change arg max in this case.

As a result:

L
(
T, T̂

)
(s, a) =

(
C W

(
T (·|s, a), T̂ (·|s, a)

))2

.

This highlights a nice property of Wasserstein, namely that minimizing this metric yields a value-

aware model. Therefore, the strong theoretical properties shown for value-aware loss [40] further

justifies our choice of Wasserstein assuming that the Lipschitz assumption holds. I will use the

Wasserstein metric in the remainder of the chapter.

5.4 Understanding the Compounding Error Phenomenon

To extract a prediction with a horizon n > 1, model-based algorithms typically apply the model for n

steps by taking the state input in step t to be the state output from the step t−1. Previous work has

shown that model error can result in poor long-horizon predictions and ineffective planning [107, 108].

Observed even beyond reinforcement learning [65, 115], this is referred to as the compounding error

phenomenon. The goal of this section is to provide a bound on multi-step prediction error of a

model. In light of the previous section, I formalize the notion of model accuracy below:

Definition 5.4.1. Given an MDP with a transition function T , we identify a Lipschitz model Fg

as ∆-accurate if its induced T̂ satisfies:

∀s ∀a W
(
T̂ (· | s, a), T (· | s, a)

)
≤ ∆ .
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We want to express the multi-step Wasserstein error in terms of the single-step Wasserstein error

and the Lipschitz constant of the transition function T̂G . I provide a bound on the Lipschitz constant

of T̂G using the following lemma:

Lemma 5.4.1. A generalized transition function T̂G induced by a Lipschitz model class Fg is Lips-

chitz with a constant:

KAW,W (T̂G) := sup
a

sup
µ1,µ2

W
(
T̂G(·|µ1, a), T̂G(·|µ2, a)

)

W (µ1, µ2)
≤KF

Proof.

W
(
T̂ (· | µ1, a), T̂ (· | µ2, a)

)

:= inf
j

∫

s′1

∫

s′2

j(s′1, s
′
2)d(s′1, s

′
2)ds′1ds

′
2

= inf
j

∫

s1

∫

s2

∫

s′1

∫

s′2

∑

f

1
(
f(s1) = s′1 ∧ f(s2) = s′2

)
j(s1, s2, f)d(s′1, s

′
2)ds′1ds

′
2ds1ds2

= inf
j

∫

s1

∫

s2

∑

f

j(s1, s2, f)d
(
f(s1), f(s2)

)
ds1ds2

≤ KF inf
j

∫

s1

∫

s2

∑

f

g(f |a)j(s1, s2)d(s1, s2)ds1ds2

= KF

∑

f

g(f |a) inf
j

∫

s1

∫

s2

j(s1, s2)d(s1, s2)ds1ds2

= KF

∑

f

g(f |a)W (µ1, µ2) = KFW (µ1, µ2)

Intuitively, Lemma 5.4.1 states that, if the two input distributions are similar, then for any action

the output distributions given by T̂G are also similar up to a KF factor.

Given the one-step error (Definition 5.4.1), a start state distribution µ and a fixed sequence of actions

a0, ..., an−1, we desire a bound on n-step error:

δ(n) := W
(
T̂nG (· | µ), TnG (· | µ)

)
,

where T̂nG (·|µ) := T̂G(·|T̂G(·|...T̂G(·|µ, a0)..., an−2), an−1)︸ ︷︷ ︸
n recursive calls

and TnG (· | µ) is defined similarly. I provide

a useful lemma followed by the theorem.

Lemma 5.4.2. (Composition Lemma) Define three metric spaces (M1, d1), (M2, d2), and (M3, d3).

Define Lipschitz functions f : M2 7→M3 and g : M1 7→M2 with constants Kd2,d3(f) and Kd1,d2(g).

Then, h : f ◦ g : M1 7→M3 is Lipschitz with constant Kd1,d3(h) ≤ Kd2,d3(f)Kd1,d2(g).
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Proof.

Kd1,d3(h) = sup
s1,s2

d3

(
f
(
g(s1)

)
, f
(
g(s2)

))

d1(s1, s2)

= sup
s1,s2

d2

(
g(s1), g(s2)

)

d1(s1, s2)

d3

(
f
(
g(s1)

)
, f
(
g(s2)

))

d2

(
g(s1), g(s2)

)

≤ sup
s1,s2

d2

(
g(s1), g(s2)

)

d1(s1, s2)
sup
s1,s2

d3

(
f(s1), f(s2)

)

d2(s1, s2)

= Kd1,d2(g)Kd2,d3(f).

Similar to composition, we can show that summation preserves Lipschitz continuity with a constant

bounded by the sum of the Lipschitz constants of the two functions.

Theorem 5.4.3. Define a ∆-accurate T̂G with the Lipschitz constant KF and an MDP with a

Lipschitz transition function TG with constant KT . Let K̄ = min{KF ,KT }. Then ∀n ≥ 1:

δ(n) := W
(
T̂nG (· | µ), TnG (· | µ)

)
≤ ∆

n−1∑

i=0

(K̄)i .

Proof. We construct a proof by induction. Using Kantarovich-Rubinstein duality (Lipschitz property

of f not shown for brevity) we first prove the base of induction:

δ(1) := W
(
T̂G(· | µ, a0), TG(· | µ, a0)

)

:= sup
f

∫ ∫ (
T̂ (s′ | s, a0)−T (s′ | s, a0)

)
f(s′)µ(s) ds ds′

≤
∫

sup
f

∫ (
T̂ (s′|s, a0)−T (s′|s, a0)

)
f(s′) ds′

︸ ︷︷ ︸
=W
(
T̂ (·|s,a0),T (·|s,a0)

)
due to duality (5.3.1)

µ(s) ds

=

∫
W
(
T̂ (· | s, a0), T (· | s, a0)

)
︸ ︷︷ ︸
≤∆ due to Definition 5.4.1

µ(s) ds

≤
∫

∆ µ(s) ds = ∆ .

We now prove the inductive step. Assuming δ(n−1) := W
(
T̂n−1
G (· | µ), Tn−1

G (· | µ)
)
≤ ∆

∑n−2
i=0 (KF )i

we can write:
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δ(n) := W
(
T̂nG (· | µ), TnG (· | µ)

)

≤ W
(
T̂nG (· | µ), T̂G

(
· | Tn−1

G (· | µ), an−1

))

+ W
(
T̂G
(
· | Tn−1

G (· | µ), an−1

)
, TnG (· | µ)

)
(Triangle ineq)

= W
(
T̂G(· | T̂n−1

G (· | µ), an−1), T̂G
(
· | Tn−1

G (· | µ), an−1

))

+W
(
T̂G
(
· | Tn−1

G (· | µ), an−1

)
, TG(· | Tn−1

G (· | µ), an−1)
)

We now use Lemma 5.4.1 and Definition 5.4.1 to upper bound the first and the second term of the

last line respectively.

δ(n) ≤ KF W
(
T̂n−1
G (· | µ), Tn−1

G (· | µ)
)

+ ∆

= KF δ(n− 1) + ∆ ≤ ∆

n−1∑

i=0

(KF )i . (5.2)

Note that in the triangle inequality, we may replace T̂G
(
· | Tn−1

G (· | µ)
)

with TG
(
· | T̂n−1

G (· | µ)
)

and

follow the same basic steps to get:

W
(
T̂nG (· | µ), TnG (· | µ)

)
≤ ∆

n−1∑

i=0

(KT )i . (5.3)

Combining (5.2) and (5.3) allows us to write:

δ(n) = W
(
T̂nG (· | µ), TnG (· | µ)

)

≤ min

{
∆

n−1∑

i=0

(KT )i,∆

n−1∑

i=0

(KF )i

}

= ∆

n−1∑

i=0

(K̄)i ,

which concludes the proof.

There exist similar results in the literature relating one-step transition error to multi-step transi-

tion error and sub-optimality bounds for planning with an approximate model. The Simulation

Lemma [54, 97] is for discrete state MDPs and relates error in the one-step model to the value

obtained by using it for planning. A related result for continuous state-spaces [53] bounds the error

in estimating the probability of a trajectory using total variation. A second related result [115]

provides a slightly looser bound for prediction error in the deterministic case—this result can be

thought of as a generalization of their result to the probabilistic case.

5.5 Value Error with Lipschitz Models

We next investigate the error in the state-value function induced by a Lipschitz model class. To

answer this question, we consider an MRP M1 denoted by 〈S,A, T,R, γ〉 and a second MRP M2
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that only differs from the first in its transition function 〈S,A, T̂ , R, γ〉. Let A = {a} be the action

set with a single action a. We further assume that the reward function is only dependent upon

state. We first express the state-value function for a start state s with respect to the two transition

functions. By δs below, we mean a Dirac delta function denoting a distribution with probability 1

at state s.

VT (s) :=

∞∑

n=0

γn
∫
TnG (s′|δs)R(s′) ds′ ,

VT̂ (s) :=

∞∑

n=0

γn
∫
T̂nG (s′|δs)R(s′) ds′ .

Next we derive a bound on
∣∣VT (s)− VT̂ (s)

∣∣ ∀s.

Theorem 5.5.1. Assume a Lipschitz model class Fg with a ∆-accurate T̂ with K̄ = min{KF ,KT }.
Further, assume a Lipschitz reward function with constant KR = KdS ,R(R). Then ∀s ∈ S and

K̄ ∈ [0, 1
γ )

∣∣VT (s)− VT̂ (s)
∣∣ ≤ γKR∆

(1− γ)(1− γK̄)
.

Proof. We first define the function f(s) = R(s)
KR

. It can be observed that KdS ,R(f) = 1. We now

write:

VT (s)− VT̂ (s)

=

∞∑

n=0

γn
∫
R(s′)

(
TnG (s′ | δs)− T̂nG (s′ | δs)

)
ds′

= KR

∞∑

n=0

γn
∫
f(s′)

(
TnG (s′ | δs)− T̂nG (s′ | δs)

)
ds′

Let F = {h : KdS ,R(h) ≤ 1}. Then given f ∈ F :

KR

∞∑

n=0

γn
∫
f(s′)

(
TnG (s′|δs)− T̂nG (s′|δs)

)
ds′

≤ KR

∞∑

n=0

γn sup
f∈F

∫
f(s′)

(
TnG (s′ | δs)− T̂nG (s′ | δs)

)
ds′

︸ ︷︷ ︸
:=W

(
TnG (.|δs),T̂nG (.|δs)

)
due to duality (5.3.1)

= KR

∞∑

n=0

γn W
(
TnG (. | δs), T̂nG (. | δs)

)
︸ ︷︷ ︸

≤∑n−1
i=0 ∆(K̄)i due to Theorem 5.4.3

≤ KR

∞∑

n=0

γn
n−1∑

i=0

∆(K̄)i

= KR∆

∞∑

n=0

γn
1− K̄n

1− K̄

=
γKR∆

(1− γ)(1− γK̄)
.
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We can derive the same bound for VT̂ (s)−VT (s) using the fact that Wasserstein distance is a metric,

and therefore symmetric, thereby completing the proof.

Regarding the tightness of these bounds, I can show that when the transition model is deterministic

and linear then Theorem 5.4.3 provides a tight bound. Moreover, if the reward function is linear,

the bound provided by Theorem 5.5.1 is tight.

5.6 Experiments with One-step Models

My first goal in this section is to compare TV, KL, and Wasserstein in terms of the ability to best

quantify error of an imperfect model, and do so in a simple and clear setting.

To this end, I built finite MRPs with random transitions, |S| = 10 states, and γ = 0.95. In the

first case the reward signal is randomly sampled from [0, 10], and in the second case the reward of

an state is the index of that state, so small Euclidean norm between two states is an indication of

similar values. For 105 trials, I generated an MRP and a random model, and then computed model

error and planning error (Figure 5.3).

We understand a good metric as the one that computes a model error with a high correlation with

value error. I show these correlations for different values of γ in Figure 5.4.

Figure 5.3: Value error (x axis) and model error (y axis). When the reward is the index of the state
(right), correlation between Wasserstein error and value-prediction error is high. This highlights the
fact that when closeness in the state-space is an indication of similar values, Wasserstein can be a
powerful metric for model-based RL. Note that Wasserstein provides no advantage given random
rewards (left).

It is known that controlling the Lipschitz constant of neural nets can help in terms of improving

generalization error due to a lower bound on Rademacher complexity [74, 18]. It then follows from

Theorems 5.4.3 and 5.5.1 that controlling the Lipschitz constant of a learned transition model can

achieve better error bounds for multi-step and value predictions. To enforce this constraint during

learning, we bound the Lipschitz constant of various operations used in building neural network.
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Figure 5.4: Correlation between value-prediction error and model error for the three metrics using
random rewards (left) and index rewards (right). Given a useful notion of state similarities, low
Wasserstein error is a better indication of planning error.

Function f Definition Lipschitz constant K‖‖p,‖‖p(f)

p = 1 p = 2 p =∞
ReLu : Rn → Rn max{0, xi} 1 1 1

+b : Rn → Rn,∀b ∈ Rn := x+ b 1 1 1

Rn → Rm, ∀W ∈ Rm×n ×W (x) := Wx
∑
j ‖Wj‖∞

√∑
j ‖Wj‖22 supj ‖Wj‖1

Table 5.1: Lipschitz constant for various functions used in a neural network. Here, Wj denotes the
jth row of a weight matrix W .

The bound on the constant of the entire neural network then follows from Lemma 5.4.2. In Table 5.1,

we provide Lipschitz constant for operations used in our experiments. We quantify these results for

different p-norms ‖·‖p.

Given these simple methods for enforcing Lipschitz continuity, I performed empirical evaluations to

understand the impact of Lipschitz continuity of transition models, specifically when the transition

model is used to perform multi-step state-predictions and policy improvements. I chose two standard

domains: Cart Pole and Pendulum. In Cart Pole, I trained a network on a dataset of 15 ∗ 103 tuples

〈s, a, s′〉. During training, I ensured that the weights of the network are smaller than k. For each k, I

performed 20 independent model estimation, and chose the model with median cross-validation error.

Using the learned model, along with the actual reward signal of the environment, I then performed

stochastic actor-critic RL. [19, 103] This required an interaction between the policy and the learned

model for relatively long trajectories. To measure the usefulness of the model, I then tested the

learned policy on the actual domain. I repeated this experiment on Pendulum. To train the neural

transition model for this domain we used 104 samples. Notably, I used deterministic policy gradient

[92] for training the policy network with the hyper parameters suggested by [61]. I report these

results in Figure 5.5.
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Figure 5.5: Impact of controlling the Lipschitz constant of learned models in Cart Pole (left) and
Pendulum (right). An intermediate value of k (Lipschitz constant) yields the best performance.

Observe that an intermediate Lipschitz constant yields the best result. Consistent with the theory,

controlling the Lipschitz constant in practice can combat the compounding errors and can help in

the value estimation problem. This ultimately results in learning a better policy.

I next examined if the benefits carry over to stochastic settings. To capture stochasticity we need

an algorithm to learn a Lipschitz model class (Definition 5.2.1). I used an EM algorithm to joinly

learn a set of functions f , parameterized by θ= {θf : f ∈ Fg}, and a distribution over functions g.

Note that in practice our dataset only consists of a set of samples 〈s, a, s′〉 and does not include the

function the sample is drawn from. Hence, I consider this as our latent variable z. As is standard

with EM, we start with the log-likelihood objective (for simplicity of presentation I assume a single

action in the derivation):

L(θ) =

N∑

i=1

log p(si, si
′; θ)

=

N∑

i=1

log
∑

f

p(zi = f, si, si
′; θ)

=

N∑

i=1

log
∑

f

q(zi=f |si, si′)
p(zi = f, si, si

′; θ)
q(zi = f |si, si′)

≥
N∑

i=1

∑

f

q(zi=f |si, si′)log
p(zi = f, si, si

′; θ)
q(zi = f |si, si′)

,

where I used Jensen’s inequality and concavity of log in the last line. This derivation leads to the
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following EM algorithm.

In the M step, find θt by solving for:

arg max
θ

N∑

i=1

∑

f

qt−1(zi = f |si, si′)log
p(zi = f, si, si

′; θ)
qt−1(zi = f |si, si′)

In the E step, compute posteriors:

qt(zi=f |si, si′)=
p(si, si

′|zi = f ; θt
f )g(zi = f ; θt)∑

f p(si, si
′|zi = f ; θt

f )g(zi = f ; θt)
.

Note that we assume each point is drawn from a neural network f with probability:

p
(
si, si

′|zi = f ; θt
f
)

= N
(∣∣si′ − f(si, θt

f )
∣∣, σ2

)
,

and with a fixed variance σ2 tuned as a hyper-parameter.

I first used a supervised-learning domain to evaluate the EM algorithm in a simple setting. I

generated 30 points from the following 5 functions:

f0(x) = tanh(x) + 3

f1(x) = x ∗ x
f2(x) = sin(x)− 5

f3(x) = sin(x)− 3

f4(x) = sin(x) ∗ sin(x) ,

and trained 5 neural networks to fit these points. Iterations of a single run is shown in Figure 5.6

and the summary of results is presented in Figure 5.7. Observe that the EM algorithm is effective,

and that controlling the Lipschitz constant is again useful.
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Figure 5.7: Impact of controlling the Lipschitz constant in the supervised-learning domain. Notice
the U-shape of final Wasserstein loss with respect to Lipschitz constant k.
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Figure 5.6: A stochastic problem solved by training a Lipschitz model class using EM. The top left
figure shows the functions before any training (iteration 0), and the bottom right figure shows the
final results (iteration 50).
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Figure 5.8: Performance of a Lipschitz model class on the gridworld domain. I show model test
accuracy (left) and quality of the policy found using the model (right). Notice the poor performance
of tabular and expected models.

I next applied EM to train a transition model for an RL setting, namely the gridworld domain from

Moerland et al. [68]. Here a useful model needs to capture the stochastic behavior of the two ghosts.

I modify the reward to be -1 whenever the agent is in the same cell as either one of the ghosts and

0 otherwise. I performed environmental interactions for 1000 time-steps and measured the return. I

compared against standard tabular methods[102], and a deterministic model that predicts expected

next state [105, 75]. In all cases I used value iteration for planning.

Results in Figure 5.8 show that tabular models fail due to no generalization, and expected models

fail since the ghosts do not move on expectation, a prediction not useful for planner. Performing

value iteration with a Lipschitz model class outperforms the baselines.

5.7 M3 – A Multi-step Model for Model-based Reinforcement

Learning

M3 is an extension of the one-step model—rather than only predicting a single step ahead, it learns

to predict h ∈ {1, ...,H} steps ahead using H different functions:

T̂h(s,ah) ≈ Th(s,ah) ,

where ah = 〈a1, a2, ..., ah〉. By M3, I mean the set of these H functions:

M3 :=
{
T̂h | h ∈: h ∈ [1, H]

}
.

This model is different than the few examples of multi-step models studied in prior work: Sutton

[100] as well as van Seijen et al., [113] considered multi-step models that do not take actions as

input, but are implicitly conditioned on the current policy. Similarly, option models are multi-step

models that are conditioned on one specific policy and a termination condition [82, 104, 91]. Finally,
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Figure 5.9: (top) a 3-step rollout using a one-step model. (bottom) a 3-step rollout using a multi-
step model M3. Crucially, at each step of the multi-step rollout, the agent uses s1 as the starting
point. The output of each intermediate step is only used to compute the next action.

Silver et al. [93] introduced a multi-step model that directly predicts next values, but the model is

defined for prediction tasks.

I now introduce a new rollout procedure using the multi-step model. Note that by an H-step rollout

we mean sampling the next action using the agent’s fixed policy π : S 7→ Pr(A), then computing

the next state using the agent’s model, and then iterating this procedure for H− 1 more times. The

new rollout procedure that obviates the use of model output as its input in the following timestep.

To this end, we derive an approximate expression for:

TH(s, s′, π) := Pr(st+H = s′ | st = s, π) .

Key to our approach is to rewrite T̂H(s, s′, π) ≈ TH(s, s′, π) in terms of predictions conditioned on

action sequences as shown below:

T̂H(s, s′, π) := Pr(st+H = s′ | st = s, π) =
∑

aH

Pr(aH | s, π) 1
(
s′ = T̂H(s,aH)︸ ︷︷ ︸

available by M3

)
.

Observe that given the M3 model introduced above, T̂H(s,ah) is actually available—we only need

to focus on the quantity Pr(aH |s, π). Intuitively, we need to compute the probability of taking a

sequence of actions of length H in the next H steps starting from s. This probability is clearly

determined by the states observed in the next H − 1 steps, and could be written as follows:

Pr(aH |s, π)=Pr(aH |aH−1, s, π)Pr(aH−1|st = s, π) = Pr
(
aH |T̂H−1(s,aH−1), π

)
Pr(aH−1|s, π)

= π
(
aH | T̂H−1(s,aH−1)︸ ︷︷ ︸

available by M3

)
Pr(aH−1|s, π) .

We can compute Pr(aH |s, π) if we have Pr(aH−1|s, π). Continuing for H − 1 more steps:

Pr(aH | s, π) = π(a1 | s)
H∏

h=2

π
(
ah | T̂h−1(s,ah−1︸ ︷︷ ︸

available by M3

)
)
,
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which we can compute given the H − 1 first functions of M3, namely T̂h for h ∈ [1, H − 1].

Finally, to compute a rollout, we sample from T̂H(s, s′, π) by sampling from the policy at each step:

ŝH+1 = T̂H(s,aH) where ah ∼ π
(
· | T̂h−1(s,ah−1)

)
.

Notice that, in the above rollout with M3, we have used the first state s as the starting point

of every single rollout step. Crucially, we do not feed the intermediate state predictions to the

model as input. We hypothesize that this approach can combat the compounding error problem by

removing one source of error, namely feeding the model a noisy input, which is otherwise present in

the rollout using the one-step model. We illustrate the rollout procedure in Figure 5.9 for a better

juxtaposition of this new rollout procedure and the standard rollout procedure performed using the

one-step model.

5.8 Experiments with Multi-step Models

My goal now is to investigate if the multi-step model can perform better than the one-step model

in several model-based scenarios. I set up experiments in background planning and decision-time

planning to test this hypothesis.

5.8.1 Background Planning

I compare the one-step model and the multi-step model in the context of value-function estimation.

For this experiment, I used the all-action variant of actor-critic algorithm, in which the value function

Q̂ (or the critic) is used to estimate the policy gradient Es

∑
a∇wπ(a|s;w)Q̂(s, a; θ) [103, 3]. Note

that it is standard to learn the value function model-free:

θ ← θ + α
(
G1 − Q̂(st, at; θ)

)
∇θQ̂(st, at, θ) ,

where G1 := rt + Q̂(st+1, at+1, θ). Mnih et al. generalize this objective to a multi-step target

GH := (
∑H−1
i=0 rt+i) + Q̂(st+h, at+h; θ).

In the model-free case, we compute GH using the single trajectory observed during environmental

interaction. However, because the policy is stochastic, GH is a random variable with some variance.

To reduce variance, I can use a learned model to generate an arbitrary number of rollouts (5 in

our experiments), compute GH for each rollout, and average them. We compared the effectiveness

of both one-step and the multi-step models in generating useful rollouts for learning. To ensure

meaningful comparison, for each algorithm, we perform the same number of value-function updates.

We used three standard RL domains from Open AI Gym [30], namely Cart Pole, Acrobot, and

Lunar Lander. Results are summarized in Figures 5.10 and 5.11.
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Figure 5.10: A comparison of actor critic equipped with the learned models (Cart Pole, Acrobot,
and Lunar Lander). We set the maximum look-ahead horizon H = 8. Results are averaged over
100 runs, and higher is better. The multi-step model consistently matches or exceeds the one-step
model.

Figure 5.11: Area under the curve, which corresponds to average episode return, as a function of
the look-ahead horizon h. Results for all three domains (Cart Pole, Acrobot, and Lunar Lander)
are averaged over 100 runs. We add two additional baselines, namely the model-free critic, and a
model-based critic trained with hallucination [107, 115]

.

5.8.2 Decision-time Planning

I now use the model for action selection. A common action-selection strategy is to choose arg maxa Q̂(s, a),

called the model-free strategy, hereafter. Our goal is to compare the utility of model-free strategy

with its model-based counterparts. Our desire is to compare the effectiveness of the one-step model

with the multi-step model in this scenario.

A key choice in decision-time planning is the strategy used to construct the tree. One approach is

to expand the tree for each action in each observed state [14]. The main problem with this strategy

is that the number of nodes grow exponentially. Alternatively, using a learned action-value function

Q̂, at each state s we can only expand the most promising action a∗ := arg maxa Q̂(s, a). Clearly,

given the same amount of computation, the second strategy can benefit from performing deeper look

aheads. The two strategies are illustrated in Figure 5.12 (left).

Note that because the model is trained from experience, it is still only accurate up to a certain

depth. Therefore, when we reach a specified planning horizon, H, we simply use maxa Q̂(sH , a) as
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a⇤ := arg max
a

bQ(s, a)
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<latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit>

a1
<latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit>

a0
<latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit><latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit><latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit><latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit>

s1
<latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit>

optimal childall children

a0
<latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit><latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit><latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit><latexit sha1_base64="gwD//9HljKVxM0QjC+ybfbqSX7M=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpgfa9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AecTjYg=</latexit> a1

<latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit><latexit sha1_base64="wsT5Nu7IRtGXr4hz2Mhzs1hh/ig=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUCbbTbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fj25nffmJK80Q+mknKghiHkkecorHSA/b9vlv1at4cZJX4BalCgUbf/eoNEprFTBoqUOuu76UmyFEZTgWbVnqZZinSMQ5Z11KJMdNBPj91Ss6sMiBRomxJQ+bq74kcY60ncWg7YzQjvezNxP+8bmai6yDnMs0Mk3SxKMoEMQmZ/U0GXDFqxMQSpIrbWwkdoUJqbDoVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmUBjCM7zCmyOcF+fd+Vi0lpxi5hj+wPn8AeiXjYk=</latexit>

s1
<latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit>

a⇤
<latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit> a⇤

<latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit>

a⇤
<latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit> a⇤

<latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit><latexit sha1_base64="sjn0Hsi+ppx5wxOgCShX3zKO5/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBD0WvXisaD+gjWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOle/p41itX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5XvXcqnd3Uald53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wfcdo2B</latexit>

leaf ensemble
bQ(s1, a0)

<latexit sha1_base64="dYcWObj5MYrYOIxoKGGwGjHFk2Y=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahgpREBF0W3bhswT6gDWEymbRDJw9mJkoI9VfcuFDErR/izr9x2mahrQcuHM65l3vv8RLOpLKsb6O0tr6xuVXeruzs7u0fmIdHXRmngtAOiXks+h6WlLOIdhRTnPYTQXHocdrzJrczv/dAhWRxdK+yhDohHkUsYAQrLblmdfjIfDrGCrXr0rXPsWuduWbNalhzoFViF6QGBVqu+TX0Y5KGNFKEYykHtpUoJ8dCMcLptDJMJU0wmeARHWga4ZBKJ58fP0WnWvFREAtdkUJz9fdEjkMps9DTnSFWY7nszcT/vEGqgmsnZ1GSKhqRxaIg5UjFaJYE8pmgRPFME0wE07ciMsYCE6XzqugQ7OWXV0n3omFbDbt9WWveFHGU4RhOoA42XEET7qAFHSCQwTO8wpvxZLwY78bHorVkFDNV+APj8wfNE5OM</latexit><latexit sha1_base64="dYcWObj5MYrYOIxoKGGwGjHFk2Y=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahgpREBF0W3bhswT6gDWEymbRDJw9mJkoI9VfcuFDErR/izr9x2mahrQcuHM65l3vv8RLOpLKsb6O0tr6xuVXeruzs7u0fmIdHXRmngtAOiXks+h6WlLOIdhRTnPYTQXHocdrzJrczv/dAhWRxdK+yhDohHkUsYAQrLblmdfjIfDrGCrXr0rXPsWuduWbNalhzoFViF6QGBVqu+TX0Y5KGNFKEYykHtpUoJ8dCMcLptDJMJU0wmeARHWga4ZBKJ58fP0WnWvFREAtdkUJz9fdEjkMps9DTnSFWY7nszcT/vEGqgmsnZ1GSKhqRxaIg5UjFaJYE8pmgRPFME0wE07ciMsYCE6XzqugQ7OWXV0n3omFbDbt9WWveFHGU4RhOoA42XEET7qAFHSCQwTO8wpvxZLwY78bHorVkFDNV+APj8wfNE5OM</latexit><latexit sha1_base64="dYcWObj5MYrYOIxoKGGwGjHFk2Y=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahgpREBF0W3bhswT6gDWEymbRDJw9mJkoI9VfcuFDErR/izr9x2mahrQcuHM65l3vv8RLOpLKsb6O0tr6xuVXeruzs7u0fmIdHXRmngtAOiXks+h6WlLOIdhRTnPYTQXHocdrzJrczv/dAhWRxdK+yhDohHkUsYAQrLblmdfjIfDrGCrXr0rXPsWuduWbNalhzoFViF6QGBVqu+TX0Y5KGNFKEYykHtpUoJ8dCMcLptDJMJU0wmeARHWga4ZBKJ58fP0WnWvFREAtdkUJz9fdEjkMps9DTnSFWY7nszcT/vEGqgmsnZ1GSKhqRxaIg5UjFaJYE8pmgRPFME0wE07ciMsYCE6XzqugQ7OWXV0n3omFbDbt9WWveFHGU4RhOoA42XEET7qAFHSCQwTO8wpvxZLwY78bHorVkFDNV+APj8wfNE5OM</latexit><latexit sha1_base64="dYcWObj5MYrYOIxoKGGwGjHFk2Y=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahgpREBF0W3bhswT6gDWEymbRDJw9mJkoI9VfcuFDErR/izr9x2mahrQcuHM65l3vv8RLOpLKsb6O0tr6xuVXeruzs7u0fmIdHXRmngtAOiXks+h6WlLOIdhRTnPYTQXHocdrzJrczv/dAhWRxdK+yhDohHkUsYAQrLblmdfjIfDrGCrXr0rXPsWuduWbNalhzoFViF6QGBVqu+TX0Y5KGNFKEYykHtpUoJ8dCMcLptDJMJU0wmeARHWga4ZBKJ58fP0WnWvFREAtdkUJz9fdEjkMps9DTnSFWY7nszcT/vEGqgmsnZ1GSKhqRxaIg5UjFaJYE8pmgRPFME0wE07ciMsYCE6XzqugQ7OWXV0n3omFbDbt9WWveFHGU4RhOoA42XEET7qAFHSCQwTO8wpvxZLwY78bHorVkFDNV+APj8wfNE5OM</latexit>

r1 + max
a

bQ(s2, a)
<latexit sha1_base64="RM8SK84gaerqxDZGthpAEsumzjA=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRiEiBLugqBl0MYyAfMByXHMbTbJkr29Y3dPDSGNjX/FxkIRW/+Dnf/GTXKFJj4YeLw3w8y8IOZMacf5tjJLyyura9n13Mbm1vaOvbtXV1EiCa2RiEeyGYCinAla00xz2owlhTDgtBEMrid+445KxSJxq4cx9ULoCdZlBLSRfPtQ+u5pO4QHH3D7nnVoHzSuFpRfOoMT3847RWcKvEjclORRiopvf7U7EUlCKjThoFTLdWLtjUBqRjgd59qJojGQAfRoy1ABIVXeaPrFGB8bpYO7kTQlNJ6qvydGECo1DAPTGYLuq3lvIv7ntRLdvfRGTMSJpoLMFnUTjnWEJ5HgDpOUaD40BIhk5lZM+iCBaBNczoTgzr+8SOqlousU3ep5vnyVxpFFB+gIFZCLLlAZ3aAKqiGCHtEzekVv1pP1Yr1bH7PWjJXO7KM/sD5/AB/Zlwc=</latexit><latexit sha1_base64="RM8SK84gaerqxDZGthpAEsumzjA=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRiEiBLugqBl0MYyAfMByXHMbTbJkr29Y3dPDSGNjX/FxkIRW/+Dnf/GTXKFJj4YeLw3w8y8IOZMacf5tjJLyyura9n13Mbm1vaOvbtXV1EiCa2RiEeyGYCinAla00xz2owlhTDgtBEMrid+445KxSJxq4cx9ULoCdZlBLSRfPtQ+u5pO4QHH3D7nnVoHzSuFpRfOoMT3847RWcKvEjclORRiopvf7U7EUlCKjThoFTLdWLtjUBqRjgd59qJojGQAfRoy1ABIVXeaPrFGB8bpYO7kTQlNJ6qvydGECo1DAPTGYLuq3lvIv7ntRLdvfRGTMSJpoLMFnUTjnWEJ5HgDpOUaD40BIhk5lZM+iCBaBNczoTgzr+8SOqlousU3ep5vnyVxpFFB+gIFZCLLlAZ3aAKqiGCHtEzekVv1pP1Yr1bH7PWjJXO7KM/sD5/AB/Zlwc=</latexit><latexit sha1_base64="RM8SK84gaerqxDZGthpAEsumzjA=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRiEiBLugqBl0MYyAfMByXHMbTbJkr29Y3dPDSGNjX/FxkIRW/+Dnf/GTXKFJj4YeLw3w8y8IOZMacf5tjJLyyura9n13Mbm1vaOvbtXV1EiCa2RiEeyGYCinAla00xz2owlhTDgtBEMrid+445KxSJxq4cx9ULoCdZlBLSRfPtQ+u5pO4QHH3D7nnVoHzSuFpRfOoMT3847RWcKvEjclORRiopvf7U7EUlCKjThoFTLdWLtjUBqRjgd59qJojGQAfRoy1ABIVXeaPrFGB8bpYO7kTQlNJ6qvydGECo1DAPTGYLuq3lvIv7ntRLdvfRGTMSJpoLMFnUTjnWEJ5HgDpOUaD40BIhk5lZM+iCBaBNczoTgzr+8SOqlousU3ep5vnyVxpFFB+gIFZCLLlAZ3aAKqiGCHtEzekVv1pP1Yr1bH7PWjJXO7KM/sD5/AB/Zlwc=</latexit><latexit sha1_base64="RM8SK84gaerqxDZGthpAEsumzjA=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRiEiBLugqBl0MYyAfMByXHMbTbJkr29Y3dPDSGNjX/FxkIRW/+Dnf/GTXKFJj4YeLw3w8y8IOZMacf5tjJLyyura9n13Mbm1vaOvbtXV1EiCa2RiEeyGYCinAla00xz2owlhTDgtBEMrid+445KxSJxq4cx9ULoCdZlBLSRfPtQ+u5pO4QHH3D7nnVoHzSuFpRfOoMT3847RWcKvEjclORRiopvf7U7EUlCKjThoFTLdWLtjUBqRjgd59qJojGQAfRoy1ABIVXeaPrFGB8bpYO7kTQlNJ6qvydGECo1DAPTGYLuq3lvIv7ntRLdvfRGTMSJpoLMFnUTjnWEJ5HgDpOUaD40BIhk5lZM+iCBaBNczoTgzr+8SOqlousU3ep5vnyVxpFFB+gIFZCLLlAZ3aAKqiGCHtEzekVv1pP1Yr1bH7PWjJXO7KM/sD5/AB/Zlwc=</latexit>

r1 + r2 + max
a

bQ(s3, a)
<latexit sha1_base64="qpRC3c4ijVmi7Kg+z3UfHLGY4Zc=">AAACCXicbVA9SwNBEN3zM8avU0ubxSBEIuEuCloGbSwTMB+QHMfcZpMs2ds7dvfUENLa+FdsLBSx9R/Y+W/cJFdo4oOBx3szzMwLYs6Udpxva2l5ZXVtPbOR3dza3tm19/brKkokoTUS8Ug2A1CUM0FrmmlOm7GkEAacNoLB9cRv3FGpWCRu9TCmXgg9wbqMgDaSb2PpuwXplwrtEB58wO171qF90LiaV/7ZKZz4ds4pOlPgReKmJIdSVHz7q92JSBJSoQkHpVquE2tvBFIzwuk4204UjYEMoEdbhgoIqfJG00/G+NgoHdyNpCmh8VT9PTGCUKlhGJjOEHRfzXsT8T+vlejupTdiIk40FWS2qJtwrCM8iQV3mKRE86EhQCQzt2LSBwlEm/CyJgR3/uVFUi8VXafoVs9z5as0jgw6REcoj1x0gcroBlVQDRH0iJ7RK3qznqwX6936mLUuWenMAfoD6/MHo3CYXg==</latexit><latexit sha1_base64="qpRC3c4ijVmi7Kg+z3UfHLGY4Zc=">AAACCXicbVA9SwNBEN3zM8avU0ubxSBEIuEuCloGbSwTMB+QHMfcZpMs2ds7dvfUENLa+FdsLBSx9R/Y+W/cJFdo4oOBx3szzMwLYs6Udpxva2l5ZXVtPbOR3dza3tm19/brKkokoTUS8Ug2A1CUM0FrmmlOm7GkEAacNoLB9cRv3FGpWCRu9TCmXgg9wbqMgDaSb2PpuwXplwrtEB58wO171qF90LiaV/7ZKZz4ds4pOlPgReKmJIdSVHz7q92JSBJSoQkHpVquE2tvBFIzwuk4204UjYEMoEdbhgoIqfJG00/G+NgoHdyNpCmh8VT9PTGCUKlhGJjOEHRfzXsT8T+vlejupTdiIk40FWS2qJtwrCM8iQV3mKRE86EhQCQzt2LSBwlEm/CyJgR3/uVFUi8VXafoVs9z5as0jgw6REcoj1x0gcroBlVQDRH0iJ7RK3qznqwX6936mLUuWenMAfoD6/MHo3CYXg==</latexit><latexit sha1_base64="qpRC3c4ijVmi7Kg+z3UfHLGY4Zc=">AAACCXicbVA9SwNBEN3zM8avU0ubxSBEIuEuCloGbSwTMB+QHMfcZpMs2ds7dvfUENLa+FdsLBSx9R/Y+W/cJFdo4oOBx3szzMwLYs6Udpxva2l5ZXVtPbOR3dza3tm19/brKkokoTUS8Ug2A1CUM0FrmmlOm7GkEAacNoLB9cRv3FGpWCRu9TCmXgg9wbqMgDaSb2PpuwXplwrtEB58wO171qF90LiaV/7ZKZz4ds4pOlPgReKmJIdSVHz7q92JSBJSoQkHpVquE2tvBFIzwuk4204UjYEMoEdbhgoIqfJG00/G+NgoHdyNpCmh8VT9PTGCUKlhGJjOEHRfzXsT8T+vlejupTdiIk40FWS2qJtwrCM8iQV3mKRE86EhQCQzt2LSBwlEm/CyJgR3/uVFUi8VXafoVs9z5as0jgw6REcoj1x0gcroBlVQDRH0iJ7RK3qznqwX6936mLUuWenMAfoD6/MHo3CYXg==</latexit><latexit sha1_base64="qpRC3c4ijVmi7Kg+z3UfHLGY4Zc=">AAACCXicbVA9SwNBEN3zM8avU0ubxSBEIuEuCloGbSwTMB+QHMfcZpMs2ds7dvfUENLa+FdsLBSx9R/Y+W/cJFdo4oOBx3szzMwLYs6Udpxva2l5ZXVtPbOR3dza3tm19/brKkokoTUS8Ug2A1CUM0FrmmlOm7GkEAacNoLB9cRv3FGpWCRu9TCmXgg9wbqMgDaSb2PpuwXplwrtEB58wO171qF90LiaV/7ZKZz4ds4pOlPgReKmJIdSVHz7q92JSBJSoQkHpVquE2tvBFIzwuk4204UjYEMoEdbhgoIqfJG00/G+NgoHdyNpCmh8VT9PTGCUKlhGJjOEHRfzXsT8T+vlejupTdiIk40FWS2qJtwrCM8iQV3mKRE86EhQCQzt2LSBwlEm/CyJgR3/uVFUi8VXafoVs9z5as0jgw6REcoj1x0gcroBlVQDRH0iJ7RK3qznqwX6936mLUuWenMAfoD6/MHo3CYXg==</latexit>

r1 + r2 + r3 + max
a

bQ(s4, a)
<latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit><latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit><latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit><latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit>

r1 + r2 + r3 + max
a

bQ(s4, a)
<latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit><latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit><latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit><latexit sha1_base64="c6EQbM1MNQnOABkLB6mITmg1Kag=">AAACDXicbVDJSgNBEO2JW4zbqEcvjVGIRMJMDOgx6MVjAmaBzDDUdHqSJj0L3T1qCPkBL/6KFw+KePXuzb+xsxw0+qDg8V4VVfX8hDOpLOvLyCwtr6yuZddzG5tb2zvm7l5TxqkgtEFiHou2D5JyFtGGYorTdiIohD6nLX9wNfFbt1RIFkc3aphQN4RexAJGQGnJM4+EZxeFV9Z1VnRCuPcAO3esS/ugcL0gvcopnHhm3ipZU+C/xJ6TPJqj5pmfTjcmaUgjRThI2bGtRLkjEIoRTsc5J5U0ATKAHu1oGkFIpTuafjPGx1rp4iAWuiKFp+rPiRGEUg5DX3eGoPpy0ZuI/3mdVAUX7ohFSapoRGaLgpRjFeNJNLjLBCWKDzUBIpi+FZM+CCBKB5jTIdiLL/8lzXLJtkp2vZKvXs7jyKIDdIgKyEbnqIquUQ01EEEP6Am9oFfj0Xg23oz3WWvGmM/so18wPr4BLYuZtg==</latexit>

r3
<latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit><latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit><latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit><latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit>

r2
<latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit><latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit><latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit><latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit>

r1
<latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit><latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit><latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit><latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit>

s1
<latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit>

s2
<latexit sha1_base64="Y0GdP2x29WLwKXitorGh3wYlFaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwWWjZw=</latexit><latexit sha1_base64="Y0GdP2x29WLwKXitorGh3wYlFaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwWWjZw=</latexit><latexit sha1_base64="Y0GdP2x29WLwKXitorGh3wYlFaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwWWjZw=</latexit><latexit sha1_base64="Y0GdP2x29WLwKXitorGh3wYlFaw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwWWjZw=</latexit>

s3
<latexit sha1_base64="6LwQF3hT/hjtbKtX2Uutcpnd+1c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPuX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwcajZ0=</latexit><latexit sha1_base64="6LwQF3hT/hjtbKtX2Uutcpnd+1c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPuX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwcajZ0=</latexit><latexit sha1_base64="6LwQF3hT/hjtbKtX2Uutcpnd+1c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPuX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwcajZ0=</latexit><latexit sha1_base64="6LwQF3hT/hjtbKtX2Uutcpnd+1c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPuX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwcajZ0=</latexit>

s4
<latexit sha1_base64="OhGNErDDxqvMoUDJBTkED8s0e/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVc+teve1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwiejZ4=</latexit><latexit sha1_base64="OhGNErDDxqvMoUDJBTkED8s0e/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVc+teve1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwiejZ4=</latexit><latexit sha1_base64="OhGNErDDxqvMoUDJBTkED8s0e/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVc+teve1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwiejZ4=</latexit><latexit sha1_base64="OhGNErDDxqvMoUDJBTkED8s0e/k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ9qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVc+teve1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwiejZ4=</latexit>

r3
<latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit><latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit><latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit><latexit sha1_base64="Hcv+NCrZEn8lAUyoJlN12e+vt0g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPqX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teve1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwWUjZw=</latexit>

r2
<latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit><latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit><latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit><latexit sha1_base64="iR/vVNMbddHojwWoy2dkmrJC2mc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ1qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeO1nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qudWvfurSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHwQQjZs=</latexit>

r1
<latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit><latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit><latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit><latexit sha1_base64="QkOxTm/EaHrMYE7sQrVfGL8MRLc=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpQff9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQKMjZo=</latexit>

s1
<latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit><latexit sha1_base64="74/5ryLy7rv4hfaCJ57+tAHgIZ0=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z9wD49aJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwfT9vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzUKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM/iYDoTlDObGEMi3srYSNqKYMbToVG4K//PIqaV3UfK/m319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQQSjZs=</latexit>

s2
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Figure 5.12: Tree construction (left) and action-value estimation (right) strategies.

an estimate of future sum of rewards from the leaf node sH . While this estimate can be erroneous,

I observed that it is necessary to consider, because otherwise the agent will be myopic in the sense

that it only looks at the short-term effects of its actions.

The second question is how to determine the best action given the built tree. One possibility is to

add all rewards to the value of the leaf node, and go with the action that maximizes this number. As

shown in Figure 5.12 (right), another idea is to use an ensemble where the final value of the action

is computed using the mean of the H different estimates along the rollout. This idea is based on the

notion that in machine learning averaging many estimates can often lead to a better estimate than

the individual ones [90, 34].

The two tree-expansion strategies, and the two action-value estimation strategies together constitute

four possible combinations. To find the most effective combination, I first performed an experiment

in the Lunar Lander setting where, given different pretrained Q̂ functions, I computed the improve-

ment that the model-based policy offers relative to the model-free policy. I trained these Q̂ function

using the DQN algorithm [66] and stored weights every 100 episodes, giving us 20 snapshots of Q̂.

The models were also trained using the same amount of data that a particular Q̂ was trained on. I

then tested the four strategies (no learning was performed during testing). For each episode, I took

the frozen Q̂ network of that episode, and compared the performance of different policies given Q̂

and the trained models. In this case, by performance I mean average episode return over 20 episodes.

Results, averaged over 200 runs, are presented in Figure 5.13 (left), and show an advantage for the

ensemble and optimal-action combination (labeled optimal ensemble). Note that, in all four cases,

the model used for tree search was the one-step model, and so this served as an experiment to find

the best combination under this model. I then performed the same experiment with the multi-step

model as shown in Figure 5.13 (right) using the best combination (i.e. optimal action expansion

with ensemble value computation). We clearly see that M3 is more useful in this scenario as well.

I further investigated whether the superiority in terms of action selection can actually accelerate

DQN training as well. In this scenario, we ran DQN under different policies, namely model-free,

model-based with the one-step model, and model-based with M3. In all cases, we chose a random

action with probability ε = 0.01 for exploration. See Figure 5.14, which again shows the benefit of
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Figure 5.13: A comparison between tree expansion and value-estimation strategies when using the
one-step model for action selection (left). Comparison between the one-step model and M3 for action

selection (right). x-axis denotes the Q̂ of agent at that episode, and y-axis denotes performance gain
over model-free. Performance is defined as episode return averaged over 20 episodes. Note the
inverted-U. Initially, Q̂ and the model are both bad, so model provides little benefit. Towards the
end Q̂ gets better, so using the model is not beneficial. However, we get a clear benefit in the
intermediate episodes because the model is faster to learn than Q̂.

Figure 5.14: A comparison between the
two models in the context of model-
based RL. Action selection with the
multi-step model can significantly boost
sample efficiency of DQN. All models
are trained online from the agent’s ex-
perience. Results are averaged over 100
runs, and shaded regions denote stan-
dard errors.

the multi-step model for decision-time planning in model-based RL.

5.9 Conclusion

In this chapter, I took an important step towards understanding the effects of smoothness in model-

based RL. I showed that Lipschitz continuity of an estimated model plays a central role in multi-step

prediction error, and in value-estimation error. I also showed the benefits of employing Wasserstein

for model-based RL. I introduced a multi-step model, and showed its superiority for long-horizon

planning when compared with one-step models.



Bibliography

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using inaccurate models in reinforcement

learning. In Proceedings of the international conference on Machine learning (ICML), 2006.

[2] Alejandro Agostini and Enric Celaya. Reinforcement learning with a gaussian mixture model.

In Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2010.

[3] Cameron Allen, Kavosh Asadi, Melrose Roderick, Abdel-rahman Mohamed, George Konidaris,

and Michael Littman. Mean actor critic. arXiv preprint arXiv:1709.00503, 2017.

[4] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In Proceedings of

the International Conference on Machine Learning (ICML), 2017.

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
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of Machine Learning Research, 12(May):1655–1695, 2011.

[33] Guido Bugmann. Normalized Gaussian radial basis function networks. Neurocomputing, 1998.

[34] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection

from libraries of models. In ICML, 2004.

[35] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–

297, 1995.

[36] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley and Sons, 2006.

[37] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian Q-learning. In Proceedings of

AAAI Conference on Artificial Intelligence, 1998.

[38] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society, 1977.

[39] Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and

Michal Valko. Regret bounds for kernel-based reinforcement learning. arXiv preprint

arXiv:2004.05599, 2020.

[40] Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-Aware Loss Function

for Model-based Reinforcement Learning. In Proceedings of the International Conference on

Artificial Intelligence and Statistics (AISTATS), 2017.

[41] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision pro-

cesses. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence

(UAI), 2004.



86

[42] Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via

soft updates. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI),

2016.

[43] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in

actor-critic methods. In Proceedings of the International Conference on Machine Learning

(ICML), 2018.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[45] Geoffrey J. Gordon. Reinforcement learning with function approximation converges to a region,

2001. Unpublished.

[46] Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Fi-

nale Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare.

Nat Med, 2019.

[47] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep Q-

learning with model-based acceleration. In Proceedings of the International Conference on

Machine Learning (ICML), 2016.

[48] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings

of the International Conference on Machine Learning (ICML), 2018.

[49] Karl Hinderer. Lipschitz continuity of value functions in Markovian decision processes. Math-

ematical Methods of Operations Research, 2005.

[50] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural Networks, 1989.

[51] Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective

planning horizon on model accuracy. In Proceedings of the International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), 2015.

[52] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A

survey. Journal of artificial intelligence research, 1996.

[53] Sham Kakade, Michael J Kearns, and John Langford. Exploration in metric state spaces. In

Proceedings of the International Conference on Machine Learning (ICML), 2003.

[54] Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial

time. Machine Learning, 2002.

[55] Seungchan Kim, Kavosh Asadi, Michael Littman, and George Konidaris. Deepmellow: remov-

ing the need for a target network in deep q-learning. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), 2019.



87

[56] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces.

In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, 2008.

[57] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces.

In Proceedings of the Annual ACM Symposium on Theory of Computing, 2008.

[58] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.

The International Journal of Robotics Research, 2013.

[59] George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation in

reinforcement learning using the Fourier basis. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2011.

[60] Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv preprint arXiv:1703.00441,

2017.

[61] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.

In Proceedings of the International Conference on Learning Representations (ICLR), 2016.

[62] Sungsu Lim, Ajin Joseph, Lei Le, Yangchen Pan, and Martha White. Actor-expert: A

framework for using cction-value methods in continuous action spaces. arXiv preprint

arXiv:1810.09103, 2018.
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[105] Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael H. Bowling. Dyna-style

planning with linear function approximation and prioritized sweeping. In Proceedings of the

Conference in Uncertainty in Artificial Intelligence (UAI), 2008.
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