

MonkeySort

Keith Gallagher

Florida Institute of Technology

An Introduction....

The Quark

http://www.guardian.co.uk/science/video/2010/oct/22/murray-gell-mann-quarks

Infinite monkey theorem

 A monkey hitting keys at random on a
typewriter keyboard for an infinite amount of
time will almost surely type a given text, such
as the complete works of William Shakespeare.

 1 July 2003 .. Sometime around February of
2005 (the last documented total of) characters
24 characters matched from Henry IV part 2.

 2,737 billion billion billion billion monkey-years

Infinite monkeysort theorem

 A monkey hitting keys at random on a
typewriter keyboard for an infinite amount
of time will almost surely sort an array of
integers!

Specification
of a sorted array

 a[i] <= a[i + 1].....

 a[perm(i)] <= a[perm(i + 1)] for some perm

 b = perm(a) and b(i) <= b(i + 1)

A simple version
for sorting a deck of cards

• Early MonkeySort
– throw cards in tub

– stir

– pick up cards

– until sorted

– this may take a while...Bathtub of the USS Maine (raised 1911, Havana Harbor)
Source: http://www.roadsideamerica.com/attract/OHFINbathtub.html

Evolved MonkeySort

• Guessing two array elements to swap
– could be the same one

• Do Not Compare, just exchange
– equivalent to “throw/stir/pick-up”

• Will it ever stop?
– Almost surely!

Sort Examples

8
2
6
1
7
3
5
4

8
7
6
1
2
3
5
4

6
2
3
4
5
1
7
8

1
2
3
4
5
6
7
8

QED! Not so QED…

8
7
4
1
2
3
5
6

8
7
6
1
2
3
5
4

Code

void transpose (int a[], int n)
{
 int i, j, temp;
 i = (int) random() % n;
 j = (int) random() % n;
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;

}

int checksort (int a[], int n)
{
 int i,j ;

 for(i = 0, j = 1; j < n ; i++, j++)
 if (a[i] > a[j]) return 0;
 return 1;
}

main (int argc , char * argv[])
{
 int i, n, *a, count = 0 ;
 srandom(time((time_t *)0));

 n = atoi(argv[1]);
 a = (int *) malloc(n*sizeof(int));

 for(i = 0 ; i < n ; i++)
 {
 a[i] = (int)random() ;
 }
 while (!checksort(a,n))
 { count++;
 transpose (a, n);
 }
 printf("%d\n",count);
}

The Program Itself

• Uses system time and command line
arguments

• Is Partially Correct
– discuss reasoning about programs

• NP, as solution is “guess and test”

MonkeySort
Observations

• Simple

• Easy (for non-programmers)

 to understand

• NP

• Partially correct

• Fun!

Results and Observations:
Things to Talk About

• It does halt

• Can you guess beforehand about how
guesses it will take?

• Time to halt varies
– larger sets may sort faster than smaller

• Best-known technique to solve the
“garbage truck problem” ie. shortest
Hamiltonian circuit.

Screen Shot of “top” Utility

Some of Our Big Ideas

• NP Hard
– the ones with best known solutions equivalent

to “Guess and Test”

• Partial Correctness
– the program is correct if it stops!

• Algorithmic and Empirical Analysis

MonkeySort

What does
Computer Scientist

Do?

Empirical
Analysis

Reasoning
about

Programs

Algorithm
Analysis

Code
Reading

Unix Top Utility

Processor vs.
Run Time

Integer Overflow

Permutations as
Product of

Transpositions

Code Coverage
Tools

Fun!

Stirling’s
Approximation

P vs. NP

Assertions

Guess and
Test

Some Bigger Ideas

• Stirling’s approximation

• Code coverage tools

• Integer overflow

• Permutations as products of transpositions

• Is P == NP?

• Comparison of analytical results with
empirical results

What Do Computer Scientists
Do All Day?

• Look for “better” solutions
– build

• Experimentally determine program
properties

• Must carefully consider all solution
properties (overflow, timing, etc)

• CPU cycles are cheap; people are
expensive: “work smart, not hard”

Words

Rearrangement

Criteria

Functional

Specification

Implementation

Pre/Postcondion

Assertion

Guard

Indices

Addresses

Algebraically

Permutation

Correctness

thanks for listening!

