
Keith Brian Gallagher, Ph.D.

6587 Canal Road Melbourne, Florida 32904
kbgphd@gmail.com +1 321-505-9252

US Citizen Top Secret Clearance (inactive)
February 14, 2017

Current Position

• 2010: Associate Professor of Software Engineering.
School of Computing.
Florida Institute of Technology.
150 West University Blvd. Melbourne, FL 32901
kgallagher@fit.edu
http://cs.fit.edu/~kgallagher

+1 321-674-8395

Past Appointments

• Director of Software Engineering, Dept. of Computer Sciences and Cyber Security, Florida In-
stitute of Technology, 2011 - 2016.

• 2005 to 2010: Senior Lecturer, Department of Computer Science, Durham University.

• 1985 to 2005: Associate Professor, Computer Science Department, Loyola University Maryland.

• 1982 to 1985: Assistant Professor of Computer Science, Houghton College, New York.

Education

• Ph.D. Computer Science. The University of Maryland Graduate School at Baltimore.

• Master of Science. Computer and Communication Sciences, The University of Michigan.

• Master of Science. Mathematics. The University of Michigan.

• Bachelor of Arts. Mathematics. Bucknell University, Lewisburg, Pennsylvania.

Research Appointments

• 2004: Visiting Research Fellow in Computer Science, University of Durham, England.

• 1997 to 1998: Visiting Senior Research Engineer at the Commonwealth Scientific and Industrial
Research Organization (CSIRO). Canberra, Australia.

• 1992 to 2000: Faculty Research Associate, Information Technology Laboratory, National Institute
of Standards and Technology.

Research Interests

• Areas: Program Slicing; Software Maintenance and Evolution; Empirical Studies; Program Com-
prehension; Software Visualization; Software Testing.

• Current Focus: High Volume Automated Testing.

• Guiding Principle: What can I do to help software engineers “in the trenches?”

mailto: kbgphd@gmail.com
mailto: kgallagher@fit.edu
http://cs.fit.edu/~kgallagher

Works in Progress

• Evalutating the Use of Sound in Program Comprehension. WIth L. Berman & S. Kozaitis.

• HiVAT: High Volume Automated Testing. With C. Kaner, F. Hull II, M. Fioravanti & C. Oliver.

• Flaky Tests are Just Failures.

• High volume automated testing with algebraic axiomatic specifications. With S. F. Hull & M.
Fioravanti.

• An emerging architecture for flexible high-volume automated testing. With M. Fioravanti, C.
Oliver & C. Kaner.

• Long sequence randomized unit testing with MaadiJ. With S. F. Hull & M. Fioravanti.

• Instructing introductory software engineering students with live open source projects. With M.
Fioravanti & A. Marcoux.

• Restructuring secure code and preserving integrity.

Recent Courses

• Software Maintenance and Evolution
• Introduction to Software Engineering (undergraduate)
• Software Engineering I & II (graduate)
• Software Testing II (structure, tools and automation)
• Software Design
• Agile Methods
• Program Slicing
• Non-functional Requirements

Completed Supervised Graduate Students

• Bradley Rees, Ph.D. Florida Institute of Technology. Ego-Based Overlapping Communities De-
tection: A New Paradigm. 2015.

• Mohammad Abdullah, Ph.D. Durham University. A Weighted Grid for Measuring Program
Robustness. 2010.

• Amir Ngah, Ph.D. Durham University. Regression Test Selection by Exclusion. 2010.

• Lewis Berman, Ph.D. Durham University. Program Comprehension Through Sonification. 2009.

• Robert Konczynski. M.Sc. Florida Institute of Technology. The Importance of data validation
in migrating to SOA. 2015.

• Scott Forest Hull. M.Sc. Florida Institute of Technology. Long sequence xUnit testing. 2015.

• Anand Gopalakrishnan M.Sc. Florida Institute of Technology. Conquest: An Interface for Test
Automation Design. 2012.

Professional Activities

• IEEE & ACM. Senior Memberhip applications submitted.

• Editorial Board of the Journal of Software Maintenance and Evolution.

• Steering Committee & Program Committee for the International Workshop on Source Code and
Manipulation.

• Program Committee for the International Conference on Software Maintenance.

• Program Committee for the International Conference on Program Comprehension. Program
Co-chair for 2010 Conference.

• Review for IEEE Transactions on Software Engineering, Journal of Software Maintenance, IEEE
Software.

Funded Grant Proposals

• National Science Foundation (0629454) Learning Units on Law and Ethics in Software Engineer-
ing. Co-PI. $268,000. 2012.

• Constructing the Surgeon’s Assistant, National Institute of Standards and Technology, Informa-
tion Technology Laboratory, 1994-1996. $375,000.

• Evaluating Decomposition Slicing as a Software Maintenance Methodology, Research Initiation
Award of the National Science Foundation, with Research Experience for Undergraduates sup-
plement, 1991-1993. $59,500

Invited Program Presentations

• “A Peek Under the Bonnet: One Programmer’s Psychology” Keynote Presentation, Psychology
of Programming Interest Group (PPIG), Limerick, Ireland, June, 2009.

• “Techniques for Understanding and Mining Legacy Assets.” Invited program presentation, the
International Workshop on Program Comprehension, Paris, France, 2002.

• “The Comprehender’s Workbench.” Invited program presentation, the International Workshop
on Program Comprehension, Limerick, Ireland, 2000.

• “Software Surgery.” A Tutorial. Presented at:

– 1999 International Conference on Software Maintenance, Keable College, Oxford, England.

– 1998 International Conference on Software Maintenance, Washington, DC.

– 1998 International Conference on Software Engineering, Kyoto, Japan.

• “More of What I Want From an Evolution System” at the Durham Workshop on Program Trans-
formation for Software Evolution, Durham, England, 1998.

• “What I Want From an Evolution System” at the ICSE-17 Workshop on Program Transformation
for Software Evolution, Seattle, WA, 1996.

Publications

[1] Bradley S Rees and Keith B Gallagher. Detecting overlapping communities in complex networks
using swarm intelligence for multi-threaded label propagation. In Complex Networks, pages 111–
119. Springer Berlin Heidelberg, 2013.

[2] Giuliano Antoniol and Keith B Gallagher. Preface to the special issue on program comprehension.
Empirical Software Engineering, 2013.

[3] Bradley S Rees and Keith B Gallagher. Egoclustering: overlapping community detection via
merged friendship-groups. In The Influence of Technology on Social Network Analysis and Mining,
pages 1–20. Springer Vienna, 2013.

[4] Bradley S Rees and Keith B Gallagher. Overlapping community detection using a community
optimized graph swarm. Social Network Analysis and Mining, 2(4):405–417, 2012.

[5] Keith Gallagher, C Kaner, and Jenifer Deignan. The law and reverse engineering. In 2012 19th
Working Conference on Reverse Engineering (WCRE), . IEEE, 2012.

[6] Mohammad Abdallah, Malcolm Munro, and Keith Gallagher. A static robustness grid using misra
c2 language rules. In ICSEA 2011, The Sixth International Conference on Software Engineering
Advances, pages 65–69, 2011.

[7] Mohammad Abdallah, Malcolm Munro, and Keith Gallagher. Certifying software robustness using
program slicing.. In 26th International Conference on Software Maintenance, 2010.

[8] Bradley S Rees and Keith B Gallagher. Overlapping community detection by collective friend-
ship group inference. In Advances in Social Networks Analysis and Mining (ASONAM), 2010
International Conference on, pages 375–379, . IEEE, 2010.

[9] Mark Harman, David Binkley, Keith Gallagher, Nicolas Gold, and Jens Krinke. Dependence clus-
ters in source code. ACM Transactions on Programming Languages and Systems (TOPLAS), 32(1),
2009.

[10] Keith Gallgher and David Binkley. Program slicing. In Hausi Muller, editor, 2008 Frontiers of
Software Maintenance. IEEE Press, Oct. 2008. ISBN 978-14244-2655-3. Invited Paper.

[11] K. Gallagher, A. Hatch, and M. Munro. Software architecture visualization: An evaluation
framework and its application. IEEE Transactions on Software Engineering, 34(2):260 – 270,
March/April 2007. ISSN 0098-5589. DOI 10.1109/TSE2007.70757.

[12] K. Gallagher. Desert island reading. Automated Software Engineering, 14(4):465 – 470, December
2007. ISSN 0928-8910 (print) 1573-7335 (online). Invited paper.

[13] K. Gallagher, T. Hall, and S. Black. Reducing regression test size by exclusion. In L. Tahvildari
and G. Canfora, editors, 23rd International Conference on Software Maintenance, pages 157 –
166, Paris, France, 2007. IEEE. ISBN 1–4244–1256–0.

[14] K. Gallagher, D. Binkley, and M. Harman. Stop-list slicing. In 6th IEEE Workshop on Source
Code and Analysis, SCAM–6, pages 11 – 20, . IEEE Press, September 2006. ISBN 0-7695-2353-6.

[15] L. Berman and K. Gallagher. Listening to program slices. In International Conference on Auditory
Display ICAD-06, June 2006. On-line proceedings http://www.icad.org.

[16] L. Berman and K. Gallagher. The sound of software: Using sonification to aid comprehension. In
International Conference on Program Comprehension, 2006. Working session.

[17] K. Gallagher, A. Hatch, and M. Munro. A framework for software architecture visualization as-
sessment. In S. Ducasse, M. Lanza, A. Marcus, J. Maletic, and M-A. Storey, editors, Third IEEE
Workshop on Visualizing Software (VISSOFT 2005), pages 76 – 82, . IEEE Press, September
2005. ISBN 0-7803-9540-9.

[18] K. Gallagher. MonkeySort. The Journal of Computing Sciences in Colleges, 15(3):70 – 81, February
2005.

[19] K. Gallagher. Some notes on interprocedural program slicing. In The Fourth Workshop on Source
Code and Analysis, SCAM–4, pages 36 –42, September 2004.

[20] K. Gallagher, M. Harman, and S. Danicic. Guaranteed inconsistency avoidance during software
evolution. Journal of Software Maintenance and Evolution: Research and Practice, 15:393–415,
2003.

[21] K. Gallagher and L. Layman. Are decomposition slices clones?. In The 11th International Work-
shop on Program Comprehension, 2003.

[22] K. Gallagher and D. Binkley. An empirical study of computation equivalence as determined by de-
composition slice equivalence. In The 10th Working Conference on Reverse Engineering, WCRE–
03, 2003.

[23] K. Gallagher and L. O’Brien. Analyzing programs via decomposition slicing. In International
Workshop on Empirical Studies of Software Maintenance, WESS, 2001.

[24] K. Gallagher and N. Fulton. Using program slicing to estimate software robustness. In International
Systems Software Assurance Conference, ISSAC, 1999.

[25] S. Woods, L. O’Brien, T. Lin, K. Gallagher, and A. Quilici. An architecture for interoperable
program understanding tools. In The 6th International Workshop on Program Comprehension,
1998.

[26] M. Hutchens and K. Gallagher. Improving visual impact analysis. In The 1998 International
Conference on Software Maintenance–98 ICSM-98, 1998.

[27] M. Harman and K. Gallagher. Program slicing. Journal of Information and Software Technology,
40(11&12), 1998.

[28] M. Harman and K. Gallagher, editors. Journal of Information and Software Technology, volume 40.
Wiley, 1998. Special issue on program slicing.

[29] K. B. Gallagher and L. O’Brien. Reducing visualization complexity using decomposition slices. In
The 1997 Software Visualization Workshop, SoftVis97, Dec 1997. ISBN 0725806303.

[30] D. Binkley and K. Gallagher. A survey of program slicing. In M. Zelkowitz, editor, Advances in
Computers. Academic Press, 1996.

[31] K. B. Gallagher. Visual impact analysis. In The International Conference on Software Maintenance
- 1996 ICSM-96, 1996.

[32] K. Gallagher. The surgeon’s assistant. In Software Engineering Research Forum, November 1995.

[33] B. Kuhn, D. Smith, and K. Gallagher. The decomposition slice display system. In The 1995
Conference on Software Engineering and Knowledge Engineering, SEKE ‘95, June 1995.

[34] J.R. Lyle, D.R. Wallace, J.R. Graham, K.B. Gallagher, J.E. Poole, and D.W. Binkley. A CASE
tool to evaluate functional diversity in high integrity software. U.S. Department of Commerce,
Technology Administration, National Institute of Standards and Technology, Computer Systems
Laboratory, Gaithersburg, MD, 1995.

[35] K. Gallagher and L. Berman. Applying metric-based object-oriented process modeling techniques
to configuration management. In The Fourth International Workshop on Software Configuration
Management, June 1993.

[36] K. B. Gallagher and J. R. Lyle. Program slicing and software safety. In The Eighth Annual Con-
ference on Computer Assurance, June 1993. COMPASS ’93.

[37] K. Gallagher. Evaluating the surgeon’s assistant: Results of a pilot study. In The International
Conference on Software Maintenance - 1992 ICSM-92, November 1992.

[38] K. B. Gallagher. Using program slicing to eliminate the need for regression testing. In Eighth
International Conference on Testing Computer Software, May 1991.

[39] K. B. Gallagher. Conditions to assure semantically correct consistent software merges in linear
time. In The Third International Workshop on Software Configuration Management, May 1991.

[40] K. B. Gallagher and J. R. Lyle. Using program slicing in software maintenance. IEEE Transactions
on Software Engineering, 17(8), August 1991.

[41] K. B. Gallagher. Surgeon’s assistant limits side effects. IEEE Software, May 1990.

[42] K. B. Gallagher, C. Mair, A. Ramina, R. Tom, and F. Gauthier. A tool to guide safe modifications.
In International Conference on Software Engineering, May 1989.

[43] K. B. Gallagher and J. R. Lyle. A program decomposition scheme with applications to software
modification and testing. In Proceedings of the 22nd Hawaii International Conference on System
Sciences, January 1989.

[44] K. B. Gallagher. Using Program Slicing in Software Maintenance. PhD thesis, University of Mary-
land, Baltimore, Maryland, December 1989.

[45] K. B. Gallagher and J. R. Lyle. Using program decomposition to guide modifications. In Conference
on Software Maintenance – 1988, October 1988.

