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Abstract. The locally linear embedding (LLE) algorithm can be used
to discover a low-dimensional subspace from face manifolds. However, it
does not mean that a good accuracy can be obtained when classifiers
work under the subspace. Based on the proposed ULLELDA (Unified
LLE and linear discriminant analysis) algorithm, an ensemble version
of the ULLELDA (En-ULLELDA) is proposed by perturbing the neigh-
bor factors of the LLE algorithm. Here many component learners are
generated, each of which produces a single face subspace through some
neighborhood parameter of the ULLELDA algorithm and is trained by
a classifier. The classification results of these component learners are
then combined through majority voting to produce the final prediction.
Experiments on several face databases show the promising of the En-
ULLELDA algorithm.

1 Introduction

During the past decades, much research on face recognition has been done by
computer scientists [1]. Many assumptions are generated for building a high-
accuracy recognition system. One assumption is that a facial image can be re-
garded as single or multiple arrays of pixel values. The other one is that face im-
ages are empirically assumed to points lying on manifolds which are embedded in
the high-dimensional observation space [2, 3]. As a result, many manifold learning
approaches are proposed for discovering the intrinsic face dimensions, such as ex-
pression and pose, and so on [4, 5]. However, when the manifold learning-based
approaches are employed for discriminant learning, the accuracy of classifiers
easily suffer. A possible reason is that the distances among the smallest d eigen-
values or eigenvectors which are obtained by the LLE algorithm are so small
and close [6] that the face subspace is ill-posed and instability. Furthermore, the
choose of neighbor factors influences the accuracy of classifiers.



To overcome the mentioned two disadvantages, we propose an ensemble UL-
LELDA (En-ULLEDA) algorithm. First, the previous proposed ULLELDA al-
gorithm with a single-value neighborhood parameter is performed for obtaining
a single subspace [7]. Second, a set of neighborhood parameters are employed
for generating a collection of subspaces, each of which is used for discriminant
learning with a specific classifier. Finally, the classification is performed by ma-
jority voting. Experiments on several face databases show the promising of the
En-ULLELDA algorithm when compared with the ULLELDA algorithm.

The rest of the paper is organized as follows. In Section 2 we propose the
En-ULLELDA algorithm. In Section 3 the experimental results are reported.
Finally, In section 4 we conclude the paper with some discusses.

2 Ensemble of ULLELDA (En-ULLELDA)

For better understanding the proposed En-ULLELDA algorithm, we first give
a brief introduction on the ULLELDA algorithm. The objective of the previous
proposed ULLELDA algorithm is to refine the classification ability of manifold
learning. The basic procedure of the algorithm is demonstrated as follows:

Step 1 Approximate manifold around sample xi with a linear hyperplane pass-
ing through its neighbors {xj , j ∈ N (xi)}. Therefore, define

ψ(W ) =
N∑

i=1

‖xi −
∑

j∈N (xi)

Wi,jxj‖2 (1)

Subject to constraint
∑
j∈N (xi)

Wi,j = 1, and Wi,j = 0, j 6∈ N (xi), all the
weights W in Eq. 1 are calculated in the least square sense [4]. Where N (xi)
denotes the index set of neighbor samples of xi.

Step 2 The LLE algorithm assumes that the weight relationship of sample and
its neighborhood samples is invariant when data are mapped into a low-
dimensional subspace. Let Y = (y1, . . . ,yN ). Therefore, define

ϕ(Y ) =
N∑

i=1

‖yi −
∑

j∈N (xi)

Wi,jyj‖2 (2)

where W can minimize Eq. 1 and satisfies the constraints, and
∑

i

yi = 0 (3)

1
N

∑

i

yiy
>
i = I (4)

The optimal solution of Y ∗ in Eq. 2 can be transformed into computing the
smallest or bottom d + 1 eigenvectors of matrix (I −W )T (I −W ) except
that the zero eigenvalue needs to be discarded.



Step 3 The d-dimensional data Y are further mapped into a p-dimensional dis-
criminant subspace through the LDA algorithm (linear discriminant analy-
sis) [8]. Therefore, we have

Z = DY (5)

Where Z = (zi ∈ IRp, i = 1, · · · , N), and the size of matrix D is p rows with
d columns which is calculated based on the LDA algorithm [8].

Step 4 To project out-of-the-samples into the discriminant subspace, the map-
ping idea of the LLE algorithm is employed [4]. A main difference between
the LLE and the ULLELDA algorithms is that in the latter one, the out-of-
the-samples are directly projected into a discriminant subspace without the
computation of the LLE algorithm.

Step 5 A specific classifier is employed in the subspace obtained by the UL-
LELDA algorithm for discriminant learning.

The previous experiments on several face databases show that the combi-
nation of the proposed ULLELDA algorithm and some specific classifier has
better accuracy than the combination of the traditional PCA (principal compo-
nent analysis) algorithm and classifier [7]. However, two potential instabilities
influence the performance of the ULLELDA algorithm:

1. Spectral decomposition in the LLE algorithm may generate different intrinsic
low-dimensional subspaces even if the neighborhood parameters are fixed.
The reason is that the differences among the principal eigenvalues obtained
by the LLE algorithm are so small and close that the sequences among the
principal eigenvalues are easily alternated.

2. The neighbor parameter in the LLE algorithm plays a trade-off role between
global measure and local one. If the size is very large, the LLE algorithm
is approximately equivalent to the classical linear dimensionality reduction
approach. And if it is very small, the LLE algorithm cannot achieve an
effective dimensionality reduction.

While some refinements on how to select a suitable neighborhood size had been
proposed [9] for unsupervised manifold learning, it is still difficult for super-
vised learning to choose an optimal parameter because data are noisy and the
mentioned two instabilities are dependent each other. As a result, choosing the
neighbor parameter for supervised manifold learning still depends on user’s expe-
rience. These problems motivate us to further improve the proposed ULLELDA
algorithm through ensemble learning.

Krogh and Vedelsby [10] have derived a famous equation E = E −A in the
case of regression, where E is the generalization error of an ensemble, while E
and A are the average generalization error and average ambiguity of the com-
ponent learners, respectively. The ambiguity was defined as the variance of the
component predictions around the ensemble prediction, which measures the dis-
agreement among the component learners [10]. This equation discloses that the
more accurate and the more diverse the component learners are, the better the
ensemble is. However, measuring diversity is not straightforward because there



is no generally accepted formal definition, and so it remains a trick at present to
generate accurate but diverse component learners. Several known tricks include
perturbing the training data, perturbing input attributes and learning parame-
ters.

As for the ULLELDA algorithm, it is clear that when neighbor factor is
perturbed, a set of different discriminant subspaces which result in diversity will
be generated. When a test sample is classified under the subspaces, the accuracy
may be different from one subspace to the other one. Therefore, we can use
majority voting to model ensemble ULLELDA algorithm (En-ULLELDA). Let
ULLELDAK be the ULLELDA algorithm with some neighbor factor K (Here K
denotes the number of N (·)), and base classifier be BC, then the classification
criterion of the En-ULLELDA algorithm is written as follows:

C(vi) = arg max
l
{K|(ULLELDAK(vi),BC) = l} (6)

Where C(vi) denotes the label of test sample vi, and (ULLELDAK(vi),BC)
denotes a component learner with neighbor factor K and some specific base
classifier. It is noticeable that a base classifier is explicit contained by the pro-
posed En-ULLELDA framework.

A pseudo-code of the En-ULLELDA algorithm is illustrated as follows:

Table 1. The En-ULLELDA algorithm

Input:
Data set X; Learner L; Neighborhood Parameters Set K = {k1, k2, · · · , km},
Stepsize= ki − kj , i− j = 1
Reduced Dimension d and Reduced Discriminant Dimension d′, Trials T

Procedure:
1. Normalization of X
2. for t = 1 to T {
3. Let Enerror be an empty set
4. for k = k1: Stepsize: km
5. {
6. Generate training set Xtraining and test set Xtest with random partition
7. Based on LLE, k and d,

Calculate the corresponding one Ytraining of training set Xtraining
8. Based on LDA and d′,

Calculate the corresponding one Ztraining of Ytraining
9. Project test set Xtest into the subspace of Ztraining with ULLELDA,

and obtain the corresponding one Ztest
10. Compute error rate e(Ztest, t, k, L) of Ztest based on Ztraining and learner L
11. Storage classification labels Lab(test, k, t, L) of test samples.
12. }
13. Enerror = {Enerror; MajorityVoting(Lab(test,K, t, L))}
14. }
15. Output:

The average error and standard deviation of Enerror, t = 1, · · · , T



3 Experiments

To test the proposed En-ULLELDA algorithm, three face databases (the ORL
database (40 subjects and 10 images per person) [11], the UMIST database
(575 multi-view facial images with 20 subjects) [12], and the Yale database (15
individuals and 11 images per person) [13]) are used. By combining the ORL
database and the UMIST database with the Yale database, a large database
Henceforth the OUY face database) including 75 individuals and 1140 images is
built. In the paper, the intensity of each pixel is characterized by one dimension,
and the size of an image is 112 ∗ 92 pixels which form a 10304 dimensional
vector. All the dimensions are standardized to the range [0, 1]. The training
samples and test samples are randomly separated without overlapping. All the
reported results are the average of 100 repetitions.

For overcoming the curse of dimensionality, the reduced dimensions of data
based on the LLE algorithm are set to be 150. For the 2nd mapping (LDA-based
reduction) of the ULLELDA algorithm, the reduced dimension is generally no
more than L− 1 (Where L means the number of classes). Otherwise eigenvalues
and eigenvectors will appear complex numbers. Actually, we only keep the real
part of complex values when the 2th reduced dimensions are higher than L− 1.
When the ULLELDA algorithm is used, the neighbor parameter need to be
predefined. With broad experiments, let the neighbor size K be 40 for ORL,
UMIST, and be 15 for OUY databases.

Finally, four base classifiers (1-nearest neighbor algorithm (NN) and near-
est feature line (NFL) algorithm [14], the nearest mean algorithm (M) and the
Nearest-Manifold-based (NM) algorithm) are employed to test classification per-
formance based on the face subspace(s). Here the NFL algorithm denotes that
classification is achieved by searching the nearest projection distance from sam-
ple to line segments of each class. And the NM algorithm is to calculate the
minimum projection distance from each unknown sample to hyperplanes of dif-
ferent classes where each hyperplane is made up of three prototypes of the same
class [15].

A set of comparative experiments between the En-ULLELDA algorithm and
the ULLELDA algorithm are performed on three face databases. It is noticeable
that due to the fact that the number of face images each class is different in the
OUY database, we divide the database into training /test set based on the ratio
of the number of training samples to the number of samples of the same class.
And the ratio is equal to 0.4 when we investigate the influence of neighbor factor
K. The reported results are shown in Fig. 1 to Fig. 3. In these figures, the ranges
of neighbor factors are shown in the horizontal axis of Fig. 1 to Fig. 3. The ver-
tical axis denotes the ratio of the error rate of the ULLELDA algorithm against
that of the En-ULLELDA algorithm. Also, in the title of subplots on the OUY
database, the abbreviation “ROUY” denotes that the training samples is sam-
pled based on the mentioned ratio. If a value in vertical direction is greater than
1, it means that the En-ULLELDA algorithm has better recognition performance
than the ULLELDA with single neighbor parameter. Furthermore, the experi-
mental results obtained by the En-ULLELDA algorithm with base classifiers are



shown in the titles of subplots. By analyzing the experimental results, it is not
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Fig. 1. The En-ULLELDA and The ULLELDA algorithms on The ORL Database

difficult to see that as K varies, the error rates have remarkable difference. For
example, when K = 10, the error rate based on the ULLELDA+NM is 6.32%;
and when K = 40, the error rate is 4.21% in the ORL database. Due to the fact
that in real applications, it is almost always impossible to prior know which K
value is the best, therefore it is not easy for the ULLELDA algorithm to get its
lowest error rate. From the figures we can also see that the lowest error rates
are obtained by the proposed En-ULLELDA algorithm. So, the En-ULLELDA
algorithm is a better choice. In summary, the results argue that 1) the selection
of K is a crucial factor to the performance of face recognition. 2) The accuracy
of the En-ULLELDA algorithm is superior to that of the ULLELDA algorithm
in all of the mentioned face databases.

For testing the generalization performance of the En-ULLELDA algorithm,
the influence of the number of training samples is also studied. The results are
displayed as in Fig. 4 through Fig. 6. It is worth noting that for better visualiza-
tion, we only draw some main results achieved by the ULLELDA algorithm. In
these figures, all the dashed lines represent the error rates of the ULLELDA algo-
rithm with some specific neighbor factors. Each factor is in the range of [10, 40].
Also, each bar is error rate of the En-ULLELDA algorithm with fixed number
of training samples. Meanwhile, in the top of each bar, “x + x%” denotes the
error rate plus standard deviation of the En-ULLELDA algorithm. From exper-
imental results it can be seen that the En-ULLELDA with base learners obtains
better recognition performance than the ULLELDA algorithm with single neigh-
bor factor. For example, when the En-ULLEDA with NM algorithm is used for
ORL face database, the lowest error rate and standard deviation are 0.88% and
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Fig. 2. The En-ULLELDA and The ULLELDA algorithms on The UMIST Database
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Fig. 3. The En-ULLELDA and The ULLELDA algorithms on The OUY face Database



1.39%, respectively (where training samples= 9). From these figures it can be
seen that compared with the combination of the ULLELDA algorithm and three
base classifiers, the En-ULLELDA algorithm has better recognition ability. It
show again that the En-ULLELDA algorithm is a refinement of the ULLELDA
algorithm in enhancing the recognition ability of base classifiers.
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Fig. 4. The Influence of Training Samples on The ORL Database

4 Conclusions

In this paper, we study ensemble-based discriminant manifold learning in face
subspaces and propose the En-ULLELDA algorithm to improve the recognition
ability of base classifiers and reduce the influences of choosing neighbor factors
and small eigenvalues.

By perturbing the neighbor factor of the LLE algorithm and introducing
majority voting, a group of discriminant subspaces with base classifiers are in-
tegrated for classifying face images. Experiments show that the classification
performance of the En-ULLELDA algorithm is better than that of the combi-
nation of the ULLELDA algorithm and base classifier.

In the future, we will consider the combination of ULLELDA with other en-
semble learning methods, such as boosting algorithms and bagging algorithms,
to further enhance the separability of the common discriminant subspace and de-
crease the computational complexity of the proposed En-ULLELDA algorithm.
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Fig. 5. The Influence of Training Samples on The UMIST Database
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