
Noname manuscript No.
(will be inserted by the editor)

Non-Parametric Kernel Learning with Robust Pairwise Constraints

Changyou Chen · Junping Zhang · Xuefang He ·

Zhi-Hua Zhou

Received: date / Accepted: date

Abstract For existing kernel learning based semi-supervised clustering algorithms, it is generally difficult to scale well

with large scale datasets and robust pairwise constraints. In this paper, we proposed a new Non-Parametric Kernel

Learning framework (NPKL) to deal with these problems. We generalized the graph embedding framework into kernel

learning, by reforming it as a semi-definitive programming (SDP) problem, smoothing and avoiding over-smoothing

the functional Hilbert space with Laplacian regularization. We proposed two algorithms to solve this problem. One

is a straightforward algorithm using semidefinite programming (SDP) to solve the original kernel learning problem,

dented as TRAnsductive Graph Embedding Kernel learning (TRAGEK); the other is to relax the SDP problem and solve

it with a constrained gradient descent algorithm. To accelerate the learning speed, we further divide the data into

groups and used the sub-kernels of these groups to approximate the whole kernel matrix. This algorithm is denoted

as Efficient Non-PArametric Kernel Learning (ENPAKL). The advantages of the proposed NPKL framework are 1)

supervised information in the form of pairwise constraints can be easily incorporated; 2) it is robust to the number of

pairwise constraints, i.e., the number of constraints does not affect the running time too much; 3) ENPAKL is efficient

Changyou Chen

Research School of Information Sciences and Engineering, The Australian National University, Canberra, Australia

E-mail: cchangyou@gmail.com

This work was done when I was at Fudan University, Shanghai, China

Junping Zhang

Shanghai Key Laboratory of Intelligent Information Processing and School of Computer Science, Fudan University, Shanghai, China

Tel.: +123-45-678910

Fax: +123-45-678910

E-mail: jpzhang@fudan.edu.cn

Xuefang He

School of Software and Information Engineering, Beihai College of Beihang University

E-mail: ahexuefang@gmail.com

Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Tel.: +123-45-678910

Fax: +123-45-678910

E-mail: zhouzh@nju.edu.cn

2 Changyou Chen et al.

to some extent compared to some related kernel learning algorithms since it is a constraint gradient descent based

algorithm. Experiments for clustering based on the learned kernels show that the proposed framework scales well with

the size of datasets and the number of pairwise constraints. Further experiments for image segmentation indicate the

potential advantages of the proposed algorithms over the traditional k-means and N -cut clustering algorithms for

image segmentation in term of segmentation accuracy.

Keywords Kernel learning · semi-definitive programming · graph embedding · pairwise constraint · semi-supervised

learning

1 Introduction

Semi-supervised clustering based on kernel learning is a popular research topic in machine learning since one can

incorporate the information of a limited number of labeled data or a set of pairwise constraints into the kernel learning

framework [10]. The reason is that for clustering, the pairwise constraints provide useful information about which data

pairs are in the same category and which ones are not. To learn such kinds of kernel matrices, Kulis et al. [18] proposed

to construct a graph based kernel matrix which unifies the vector-based and graph-based semi-supervised clustering. A

further refinement on learning kernel matrices for clustering was investigated by Li et al. [19]. In their approach, data

are implicitly projected onto a feature space which is a unit hyperball, subjected to a collection of pairwise constraints.

However, the above clustering algorithms via kernel matrices either can not scale well with the increasing number of

pairwise constraints and the amount of data, or lacks theoretical guarantee for the positive semi-definite property of

the kernel matrices. In another aspect, Yueng et al. [33] proposed an efficient kernel learning algorithm through low

rank matrix approximation. However, in their algorithm, the form of kernel matrix is assumed to be linear combination

of several base kernel matrices. Note that this might reduce the dimension of the hypothesis kernel space, we call such

kinds of algorithms parametric kernel learning. In addition, Cortes et al. [34] proposed a kernel learning algorithm by

taking the non-linear combinations of kernels, which is a generalization of the linear combination case but still lies in

the framework of parametric kernel learning. Addressing these two limitations is the major purpose of this paper.

On the other hand, we note that many algorithms based on the graph embedding framework often achieve an

enhanced discriminant ability by utilizing the marginal information, e.g., making the dissimilarity data points near

the margin as far as possible and meanwhile compacting the points in the same class [30,31]. It is therefore worthwhile

to generalize the graph embedding framework into kernel learning 1.

Based on the aforementioned goals, in this paper we propose a new scalable kernel learning framework NPKL (Non-

Parametric Kernel Learning with robust pairwise constraints), and apply it for semi-supervised clustering. First, we

generalize the graph embedding framework on a feature space which is assumed to be a possibly infinite subspace

of the l2 Hilbert space with unit norm, which is similar to [19]. Then the unknown feature projection function φ

is implicitly learned by transforming the criterion of the graph embedding (i.e., maximizing the sum of distances

1 Note that although we want to learn a kernel matrix from the aspect of graph embedding, it has little relationship with some algorithms

using graph embedding framework such as marginal factor analysis (MFA) [30]. The reason is that such kinds of algorithms aim at supervised

learning for classification, thus there is no need to compare the proposed algorithm with them.

Non-Parametric Kernel Learning with Robust Pairwise Constraints 3

of between-class data pairs while minimizing that of within-class data pairs) into an SDP problem. To get smoother

solution of the predictive function, smoothing technique using some kind of Laplacian regularizer is introduced. By

this, ideally, data from the same class would be projected into the same location in the feature space. Meanwhile,

the distances between the locations of different classes should be as large as possible, as illustrated in Figure 1. We

propose two algorithms to solve this problem. One is to optimize the objective function directly by solving an SDP

problem, which we call TRAGEK (TRAnsductive Graph Embedding Kernel learning), since the SDP problem is derived

from a transductive graph embedding formulation. In TRAGEK, it is not necessary to explicitly specify which pair of

data points should lie close, and the running time is much less sensitive to the number of pairwise constraints than

Li et al.’s work [19]. However, the SDP problem in TRAGEK limits the application of the proposed algorithm to large

scale datasets. To alleviate this problem, we propose to solve the SDP problem via a constrained gradient descent

algorithm that iteratively projects the unconstrained solutions to the cone formed by the constraints. Furthermore,

we divide the whole dataset into groups of sub-data sets, and the corresponding sub-kernels are learned for these

sub-data separately. Finally, the global kernel matrix is obtained through the combination of these sub-kernels. In

this way, not only is the positive semi-definite property of the kernel matrix well preserved, but also the computational

complexity scales at most linearly with the size of the dataset, which is very efficient. We call this algorithm ENPAKL

(Efficient Non-PArametric Kernel Learning).

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 0 1

−1
0

1

−1

−0.5

0

0.5

1

Fig. 1 With a feature projection function φ, data from two classes are projected from 2-dimensional data space into 3-dimensional feature

space in which each point corresponds to one class.

The remaining of this paper is organized as follows. Section 2 reviews some related work for clustering using

kernel learning. Section 3 formulates our problem and presents the TRAGEK algorithm. Section 4 elaborates the efficient

algorithm ENPAKL for our problem. And experiment results are shown in Section 5. Finally, Section 6 concludes the

paper.

2 Clustering and Kernel Learning

Learning with kernels [22] is a popular research topic in machine learning. In this section, however, rather than

reviewing the theoretical aspects of kernel learning algorithms such as [5,6], and the online kernel learning such as [7],

we put our emphasize on the applications of kernel learning algorithms. More specifically, we discuss the work of

4 Changyou Chen et al.

kernel learning for semi-supervised clustering. To a certain extent, kernel learning for clustering can be viewed as

metric learning, because the kernel matrix can be regarded as some specific distance between data points equipped

with a specific metric.

For traditional clustering algorithms, the most frequently used ones include k-means and fuzzy k-means [2]. Re-

cently, Yang et al. [32] proposed an improved fuzzy k-means algorithm to assign a value of 1 to data pairs with a

defined cluster score. Moreover, Trappey et al. [24] presented a fuzzy ontology schema for hierarchically clustering of

documents, which can solve the inconsistent and ineffective problem encountered by the traditional keyword-based

methods. For the traditional k-means clustering algorithm, Xiong et al. [28] proposed to use the coefficient of variation

(CV) as some criterion to analysis the performance of k-means algorithm under skewed data distribution.

To utilize label information to enhance the cluster performance, semi-supervised clustering approaches were pro-

posed, which can be roughly categorized into constraint- and metric-based ones. The former utilizes either labeled data

or pairwise constraints to improve the performance of clustering [4, 8], while the latter learns a more rational metric

to fit the constraints by utilizing the provided label information [17, 27], thus the semi-supervised kernel learning is

closely related to the clustering algorithms.

More specifically, Wagstaff et al. [25] modified the k-means algorithm by considering pairwise similarities and

dissimilarities, known as the constrained k-means. To boost the performance of constrained k-means, Hong et al. [16]

refined the assignment order of this algorithm by ranking all instances in the dataset according to their clustering

uncertainty. Based on the Hidden Markov Random Field (HMRF), Basu et al. [4] used the provided pairwise constraints

in the objective function for semi-supervised clustering, while Lu et al. [20] proposed a clustering algorithm with the

must-link and cannot-link constraints using the Gaussian mixture model (GMM). Xing et al. [27] learned a distance

matrix for clustering by explicitly minimizing the distances between similar samples and maximizing those between

dissimilar ones. Bar-Hillel et al. [3] proposed a simpler but more efficient algorithm using the relevant component

analysis (RCA). Furthermore, they proposed another metric learning algorithm [14] that learns a non-parametric

distance function, but without the guarantee that the function is actually a metric.

Although kernel methods have been studied for decades, not much work has focused on learning a non-parametric

kernel using only the training data. In contrary, most of the work focuses on learning the kernel from some predefined

base kernels [29]. Recently, kernel learning for clustering has attracted more and more attentions because one can easily

incorporate some useful information into the kernel learning framework [11, 18]. Earlier kernel learning algorithms

mainly focus on linear or non-linear combination of some base kernels [9]. For example, Yeung et al. [33] proposed a

scalable kernel learning algorithm in which some low rank kernel matrices obtained by the eigenvectors of the initial

kernel matrix are used as base kernels, and a collection of optimal weights of the base kernels need to be learned.

Cortes [34] proposed to learn the kernel matrix by defining some non-linear terms of the basis kernels and use a

projection-based gradient descent algorithm to learn the weights. One disadvantage of this algorithm is that only the

must-link constraint information is incorporated. To employ both must-link and cannot-link constraint information,

Hoi et al. [15] proposed a kernel learning algorithm by formulating it into a semi-definite programming (SDP) problem.

To the best of our knowledge, this is the first non-parametric kernel learning algorithm that does not need to explicitly

Non-Parametric Kernel Learning with Robust Pairwise Constraints 5

take the base kernels into consideration. Latter, an efficient algorithm for solving the SDP problem mentioned above

is proposed by Zhuang et al. [26] by introducing an extra low rank constraint on the objective function. Furthermore,

assuming that the feature space is a unit hyperball in which must-link data pairs are constrained to be one point and

cannot-link pairs should be orthogonal with each other, Li et al. [19] proposed another SDP based algorithm for kernel

learning. Note that one problem for the SDP related algorithms introduced above is the computational complexity, how

to avoid this complexity is one of the major concerts of this paper.

3 TRAGEK: Transductive Non-Parametric Kernel Learning

Our non-parametric kernel learning problem assumes that the feature space of the data is a subspace of the l2 Hilbert

space with unit norm. More specifically, given a data point x, there exists a projection φ from the data space to the

feature space endowed with a unit norm, i.e., ‖φ(x)‖ = 1. In this way, data are mapped to the surface of a unit hyperball

in which data of different classes can be separated easily. To find such a mapping function φ, we tried to generalize

the graph embedding [30] into the kernel space and transformed the problem into the semi-definite programming with

pairwise constraints. We further introduced some regularization terms such as the Laplacian regularizer to smooth

the prediction function. Finally, the kernel k-means clustering algorithm is performed in the learned kernel matrix for

clustering.

3.1 Transductive Kernel Learning with Graph Embedding

One goal of the graph embedding is to learn a low-dimensional discriminant subspace in which the sum of within-class

distances is minimized meanwhile that of between-class distances is maximized [30]. This idea is formulated in Eq. (1):

Fg = min
Y

tr{Y LY T }
tr{Y LpY T }

, (1)

where Y = (y1, y2, · · · , yM), yi ∈ <m is the data representation in the feature space, M is the number of samples.

L = D−W and Lp = Dp−W p are two graph Laplacian matrices with D(i, i) =
∑

j W (i, j) and Dp(i, i) =
∑

j W
p(i, j)

representing two diagonal matrices. Two similarity matrices W and W p represent the within-class relationship and

between-class relationship of data points, respectively, which are defined according to the pairwise constraints as:

W (i, j) =

1, i and j belong to the same class

0, otherwise.
,W p(i, j) =

1, i and j belong to different classes

0, otherwise.
(2)

For better generalization, the two quadratic forms in Eq. (1) are lifted into linear forms in the kernel space as:

F1 = tr{Y LY T } = tr{LY TY } =< l,Kv >, (3)

where l = vec(L) is the vectorization of the matrix L, and Kv
2 is the vectorization of the kernel matrix K defined by

K(i, j) =< yi, yj >.

2 We use such kind of convention without declaration below.

6 Changyou Chen et al.

In contrast to the graph embedding, the goal of TRAGEK is to cluster data in the feature space defined on the unit

norm subspace of the l2 Hilbert space. It is easy to get the inner product of two vector in the feature space using the

re-producing property of the re-producing Hilbert space:

K(φ(x), φ(y)) = kφ(y)(φ(x)) =< φ(x), φ(y) >, (4)

where kφ(y)(·) ∈ H, x and y are two data points in the data space, φ is the mapping function to be learned. Furthermore,

in our transductive inference, the matrices W and W p are defined using the pairwise constraints as in Eq. (2). Based

on this, the objective function of TRAGEK is to kernelize the criterion of graph embedding [30] as:

Ft = min
K

< l,Kv >

< lp,Kv >

s. t. lTKv > 0, lpTKv > 0,

K(i, i) = 1, for all i,

K(i, j) 6 1, for all i, j. (5)

The optimization function means that the learned kernel K should cluster within-class data as close as possible

and between-class data as far as possible in the feature space. The first constraint is required according to the positive

semi-definite property of the Laplacian matrix L, and the second and third constraints stem from the assumption that

data in the feature space should lie on the surface of a hyperball with unit radius.

3.2 Conic Optimization Programming Relaxation

To transform this problem into a convex optimization problem which has a unique optimal solution and polynomial

time computational complexity, we first prove Theorem 1 as follows.

Theorem 1 The nonlinear optimization problem defined in Eq. (5) can be relaxed to a second order cone programming

as:

min : {t}

s.t. t+ < lp,Kv > >

∥∥∥∥∥∥ < l,Kv >

t− < lp,Kv >

∥∥∥∥∥∥ ,
lTKv > 0, lpTKv > 0,

K(i, i) = 1, for all i,

K(i, j) 6 1, for all i, j. (6)

Proof we first relax the Ft in Eq. (5) as:

F
′

t = min
f

(< l,Kv >)2

4· < lp,Kv >
. (7)

This does not bring a significant reduction to the optimization formula since both < l,Kv > and (< l,Kv >)2 are

monotonously increasing when lTKv > 0. Now let’s introduce an extra variable t such that t > (<l,Kv>)2

4·<lp,Kv>
. As a

Non-Parametric Kernel Learning with Robust Pairwise Constraints 7

consequence, the optimization equation in Eq. (7) is equivalent to:

min : {t}

s. t. t > (< l,Kv >)2

4· < lp,Kv >
. (8)

Furthermore, the constraint in Eq. (8) can be further transformed as:

4t · (< lp,Kv >) > (< l,Kv >)2

⇔ (t+ < lp,Kv >)2 > (< l,Kv >)2 + (t− < lp,Kv >)2,

which is a second order cone constraint:

t+ < lp,Kv >>

∥∥∥∥∥∥ < l,Kv >

t− < lp,Kv >

∥∥∥∥∥∥ . (9)

Combining Eqs. (7), (8) and (9) we get the conclusion in Theorem 1.

To further simplify Eq. (5), we here introduce Theorem 2.

Theorem 2 If K is a positive semi-definite matrix of size n× n, then

K(i, j) 6 max{K(k, k)}, 1 6 i, j, k 6 n. (10)

Proof Since matrix K is positive semi-definite, we can decompose K as:

K = (k1, k2, · · · , kn)T (k1, k2, · · · , kn), (11)

where ki is a vector of arbitrary dimension. So we have:

K(i, j) = < ki, kj >

6
√
< ki, ki > · < kj , kj >

6 max{K(i, i),K(j, j)}

6 max{K(k, k)}, 1 6 k 6 n. (12)

By Theorem 2, we can introduce an extra positive semi-definite constraint to replace the last n2 inequality constraints

in Eq. (6), resulting in:

min : {t}

s.t. t+ < lp,Kv > >

∥∥∥∥∥∥ < l,Kv >

t− < lp,Kv >

∥∥∥∥∥∥ ,
K < 0,

K(i, i) = 1, for all i,

lTKv > 0, lpTKv > 0. (13)

8 Changyou Chen et al.

3.3 Smoothness Controlling

While the number of constraints has been greatly reduced, it is necessary to refine Eq. (13) since the current prediction

function is not smooth enough in the Hilbert space. Note that if all the elements of K in Eq. (13) were the same, it

would lead to < l,K >= 0 and < lp,K >= 0. Consequently, the optimization problem would be infeasible since there

were no interior points in the second order cone. We regard this case as over-smoothness. Therefore, we propose two

strategies to smooth the predicted function and avoid over-smoothness.

Note that the “smoothness” of the manifold, which is measured by the Laplace-Beltrami operator on Riemannian

manifolds, can be substituted by a discrete analogue operator defined as the graph Laplacian on the graph [35].

Therefore, we can employ Laplacian regularizer, denoted as S, to smooth the prediction function in its Hilbert space.

Similar to Li et al.’s work [19], we here introduce a refined regularizer by incorporating a global normalized graph

Laplacian3 into our optimization framework, which is defined as:

S =
n∑

i,j=1

W
′
(i, j)‖ φ(xi)√

D′(i, i)
− φ(xj)√

D′(j, j)
‖2

= tr
{
(I − (D

′
)−

1
2W

′
(D

′
)−

1
2)K

}
= < l̄,Kv >, (14)

where K,Kv are defined as the same as the previous ones, I is the identity matrix, W
′
is defined as:

W
′
(i, j) =

 e−
‖xi−xj‖

2

2σ2 , i 6= j

0, i = j,
(15)

where σ is a scale factor, (I − (D
′
)−

1
2W

′
(D

′
)−

1
2) is a normalized Laplacian matrix corresponding to W

′
, and l̄ =

vec(I−(D
′
)−

1
2W

′
(D

′
)−

1
2) is the vectorization of the Laplacian matrix. Obviously, this formulation enforces smoothness

over all the data globally. Finally, adding this term as an regularizer of the optimization problem in Eq. (13) results

in the following optimization problem:

min : {t+ λS}

s.t. t+ < lp,Kv > >

∥∥∥∥∥∥ < l,Kv >

t− < lp,Kv >

∥∥∥∥∥∥ ,
K < 0,

K(i, i) = 1, for all i

< l,Kv > > 0, < lp,Kv >> 0, (16)

where λ is a parameter controlling the degree of smoothness on the predicted function.

As we stated before, over-smoothness is likely to happen. In addition, dropping the last two constraints lTKv >

0, lpTKv > 0 is prone to numerical problem4. We solve this by adding two extra terms into the optimization framework.

3 More satisfactory results might be attained if employing more sophisticated regularizers.
4 Note that for two positive semi-definite matrices A and B, tr{AB} > 0 holds, but not always > 0. We thus can not drop the last two

constraints directly. Otherwise it is easy to run into numerical problem. Because the constraint still holds if < lp,Kv > is equal to a small

enough positive constant, but this is far from the goal that < lp,Kv > should be as large as possible.

Non-Parametric Kernel Learning with Robust Pairwise Constraints 9

Algorithm 1 The TRAGEK Algorithm
1: Input: data X = (x1, x2, · · · , xM), must-link constrains M, cannot-link constrains C, cluster number k.

2: Output: k clusters.

3: Construct the two Laplacian matrices in Eq. (5) as in graph embedding framework [30] using the provided must-link constraints M

and cannot-link constraints C, respectively.

4: Construct the global smoothness Laplacian matrix defined in Eq. (14).

5: Solve the conic optimization programming defined in Eq. (19).

6: Run the kernel k-means algorithm on the learnt kernel matrix K to form k clusters.

Remember that our goal is to make within-class samples as close as possible, and between-class samples as far as

possible, this can be formulated in the following two formulas:

f1 = min tr{Y LY T } ≡ min{− < w,Kv >}, (17)

f2 = max tr{Y LpY T } ≡ min{< wp,Kv >}, (18)

where w, wp are the vectorization forms of the two similarity matrices W and W p defined in Eq. (2). Denote these

two regularizers as S1 = − < w,Kv > and S2 =< wp,Kv >, we can incorporate them into the objective function to

get the final optimization formula as.

min : {t+ λS + λ1S1 + λ2S2}

s.t. t+ < lp,Kv > >

∥∥∥∥∥∥ < l,Kv >

t− < lp,Kv >

∥∥∥∥∥∥ ,
K < 0,

K(i, i) = 1, for all i, (19)

where the two parameters λ1 and λ2 control the weights of the two graphs. As the two regularization terms are

introduced, the two terms < l,Kv > and < lp,Kv > will be enforced larger than zero. Therefore, we can drop the

last two constraints in Eq. (16) in practice without causing any problem. Furthermore, a remarkable advantage of

Eq. (19) is that it is a conic optimization programming (also SDP problem) which can be solved using the popular

conic optimization software such as SeDuMi, which is of polynomial time complexity and has a theoretically proven

O(
√
n log(1ε)) worst-case iteration bound [23]. TRAGEK is illustrated in Algorithm 1.

4 ENPAKL: An Efficient Kernel Learning Algorithm

Although TRAGEK is a convex optimization problem which means that there exists a global optimal solution, the

computational cost is often relatively high and it often results in unstable solutions for large datasets, furthermore, it

is sensitive to the parameter settings such as the chooses of λ, λ1, λ2, etc. In this section, we propose to resolve these

problems by two strategies. Firstly, we propose a constrained gradient descent based algorithm to make the learning

procedure much stable and efficient. Secondly, we reduce the large-scale kernel learning problem into sub-kernel

learning and combine these sub-kernels to approximate the global kernel matrix, this trick makes the computational

10 Changyou Chen et al.

complexity rely linearly on the number of data points. Experimental results in Section 5 show that the proposed

strategies can approximate the true kernels well.

4.1 Constrained Gradient Descent

Note that the original optimization problem of Eq. (19) is not efficient enough, by taking the advantage of the iterative

projection algorithm [27], we propose a constrained gradient descent based algorithm for training. The algorithm

iteratively projects the solution obtained by gradient descent to the cones formed by the constraints.

Specifically, we want to avoid the SDP formulation above to reduce the computational complexity, thus we refor-

mulate the original kernel learning problem of Eq. (19) in the following form:

F
′
= min

K

< l,Kv >

< lp,Kv >

s. t. K < 0,

K(i, i) = 1, for all i. (20)

Taking the logarithm of F
′
, and using the Laplacian smoother S in Eq. (19) as a regularization term, the objective

function of ENPAKL is:

F = minK{log(< l,Kv >) − log(< lp,Kv >) + λ log(< l,Kv >)}

s. t. K < 0,

K(i, i) = 1, for all i. (21)

It is straightforward to derive the gradient of F in Eq. (21):

∂

∂Kv
F =

l

< l,Kv >
− lp

< lp,Kv >
+ λ

l

< l,Kv >
. (22)

Thus, we can update the kernel matrix Kv by constrained gradient descent as:

Kt
v = Kt−1

v − ω · ∂

∂Kt−1
v

F

s. t. Kt < 0,

Kt(i, i) = 1, for all i, (23)

where ω is the step size for the current update, and t is the iteration index. Actually, we can regard Eq. (23) as

the optimization problem on manifolds [36], however, instead of solving this problem directly on manifolds, we use

the projection method by iteratively projecting the updated values into the cones formed by the constraints until

converged. The constrained gradient descent algorithm is described in Algorithm 2.

Note that in Algorithm 2, the solution of Eq. (24) and Eq. (25) can be calculated based on the following theorems:

Theorem 3 The solution to Eq. (24) is to set all the negative eigenvalues of Kv to 0, that is, K = V max(D, 0)V T ,

where V,D are eigenvectors and eigenvalues of Kv.

Non-Parametric Kernel Learning with Robust Pairwise Constraints 11

Algorithm 2 Constraint Gradient Descent Algorithm

1: Input: Initial kernel matrix K0
v , learning rate ω.

2: Output: Kernel matrix K.

3: Calculate for the first update: K1
v = K0

v − ω · ∂
∂K0

v
F .

4: Set t = 1.

5: while Not Converged do

6: while Not Found rational K
′′

satisfying the constraints do

7: Solve:

K
′
= argminK‖K −Kt‖2

s. t. K < 0, (24)

K
′′
= argminK‖K −K

′
‖2,

s. t. K(i, i) = 1, for all i. (25)

8: end while

9: t = t+ 1.

10: Kt
v = K

′′
v − ω · ∂

∂Kt−1
v

F .

11: end while

Theorem 4 The solution to Eq. (25) is equal to K
′
, except that all the diagonal elements of K

′
are set to 1.

Similar problem and proof for Theorem 3 can be found in [13]. Here we prove Theorem 4.

Proof (Proof of Theorem 4) Unfolding the norm and omitting the terms independent of K
′
, we can rewrite Eq. (25)

as:

K
′′
= argminKtr

{
KKT − 2KK

′T
}

s. t. tr {KEi} = 1. (26)

where Ei is a matrix of the same size with K, and with all elements being 0 except the i-th element of the diagonal

being 1. Then the corresponding Lagrangian function with the corresponding Lagrangian multipliers λi’s is:

g(K,λ) = tr

{
KKT − 2KK

′T
−
∑
i

λi (tr {KEi} − 1)

}
. (27)

Taking the derivative of g(K,λ) with respect to K, we have:

∂

∂K
g(K,λ) = 2K − 2K

′
−
∑
i

λiEi

= 2K − 2K
′
− diag(λ). (28)

Setting Eq. (28) to zero leads to:

K = K
′
+

1

2
diag(λ). (29)

Remember the constraint is diag(K) = 1, where 1 is a vector with all elements being 1, and note the form of the

solution of K in Eq. (28), we can get the solution K by setting the diagonal elements of K
′
to 1. This completes the

proof.

12 Changyou Chen et al.

4.2 Learning the Global Kernel from Sub-kernels

In this section, the second strategy to improve the efficiency of the proposed algorithm is presented. First note that

it is not scalable and efficient enough for large datasets using Algorithm 2 directly, since we need to perform an

eigen-decomposition for the current kernel matrix to solve Eq. (24), which is time consuming when the number of

data points is large. Therefore, we propose to approximate the global kernel matrix using local kernel matrices (or

sub-kernel matrices) formed by a subset of data points.

Suppose we start with a small subset of data (namely, m data points) denoted as D = {x1, x2, · · · , xm}, and the

corresponding sub-kernel matrix KD has been learned using the constrained gradient descent algorithm described in

Algorithm 2. The idea is to approximate the other elements of the global kernel matrix using this sub-kernel matrix.

Note that because data of the same class in the feature space H is assume to be flat (they are clustered into one point

ideally in the feature space), it is reasonable to approximate all other data points φ(xi) using the linear combination

of this subset of data φ(D), that is: φ(xi) =
∑

j wijφ(xj), where wij are the weights to be learned. There are two

situations for xi 6∈ D:

1). If xi has at least one link constraint with some points xj in D, according to our assumption, this means in the

feature space, φ(xi) = φ(xj), xj ∈ D. Taking all such points into consideration, we relax φ(xi) to be the linear

combination of other points in the feature space, then we get φ(xi) =
∑

j ξφ(xj), where wij = ξ is equal for all xj .

2). If xi has no link constraints with the points in D, then we approximate φ(xi) using the weighted combination

of φ(D) in the feature space. We assume these weights should be approximately the same with those learned by

minimizing the reconstruction error in the original data space. This makes our approximation different from the one

proposed by Yueng et al. [33]. While the objective function for wij is similar to local linear embedding (LLE) [21],

the definition of neighborhood is different. The objective function for wij is:

E = min
wij

∑
i

‖xi −
∑

j∈N (i)

wijxj‖2, (30)

where N (i) is defined to be the k nearest data points of xi except for those having cannot link constraints with xi.

To sum up, the weights wij ’s are defined as:

wij =



1 xi, xj ∈ D and i = j,

1
T xi 6∈ D,xj ∈ D has a linked constraint,

Eq. (30) xi 6∈ D,xj ∈ D is xi’s neighboring point, ,

but has no cannot linked constraint,

0 otherwise,

where T is the number of link constraints for xi 6∈ D and xj 6∈ D. Thus, the whole dataset in the feature space can

now be written in the matrix form as:

φ(X) = φ(D)WT , (31)

Non-Parametric Kernel Learning with Robust Pairwise Constraints 13

Algorithm 3 Sub-data sets picking schema
1: Sort the data points by the degrees of themselves.

2: Choose the first B data points that have the largest degrees as basic landmarks.

3: For the rest of the data points with degrees larger than 0, each time choose R data points in descending order of degrees, then combine

them with the basic landmarks to get one sub-data set, loop until all data points have been chosen.

where X is the whole dataset, W = (wT
1 , w

T
2 , · · · , wT

n)
T , wi = (wi1, wi2, · · · , wiM)T . Then, the whole kernel matrix

can be approximated using Eq. (31) as5:

KX = φ(X)Tφ(X) = WKDWT . (32)

From Eq. (32) it can be seen that the kernel matrix KX of the whole dataset can be approximated by a sub-kernel

matrix KD. However, given arbitrary must-link and cannot-link constraints, only one sub-kernel matrix might not

approximate the whole kernel matrix well because all the pairwise constraints might not be included in one sub

dataset. To solve this problem, we propose a sub-data set picking schema that scales at most linearly with the

size of the dataset to partition the whole dataset into several sub-data sets, then we use the corresponding sub-kernels

to approximate the whole kernel. It can be proved that the computational complexity for this strategy is at most O(n)

times larger than that of using only one sub-kernel.

In this schema, we use the number of constraints (degrees of nodes in the graph) in the sub-data as the measure

of the prior information this sub-data contains. The larger degree of one data point, the more prior information it

has, and thus the higher probability the data point should be used to learn the sub-kernel. This sub-data set picking

schema is described in Algorithm 3.

We can see from Algorithm 3 that the number of sub-data sets scales at most linearly with the number of the

whole data points, thus is very efficient. Suppose at last we divide the whole dataset into L sub-data sets, and for

each of such sub-data set a sub-kernel is learned by some kernel learning algorithms such as Algorithm 2, also we

denote K1,K2, · · · ,KL as the approximated kernel matrices calculating using Eq. (32), then the final kernel matrix

for the whole dataset is set to be:

K =
∑
i

αiKi, s t.
∑
i

αi = 1, (33)

where αi is the weight for the i-th kernel. In the experiments, we set αi proportional to the total degree of their data

points.

Note that this algorithm is efficient because it solves the original SDP problem of TRAGEK using a constraint

gradient descend based algorithm, we will compare these two algorithms with respect to their efficiency and accuracy

for clustering in the experiments.

5 There are two points to be declared here. One is that it is easy to prove that KX in Eq. (32) is a positive semi-definite matrix if KD

is positive semi-definite, this property makes KX of the whole dataset still be a kernel matrix, which does not violate our objective. The

second point is that for unknown points, in order to constrain the feature space be a hyperball, we need to normalize the weights calculated

in Eq. (30) by dividing the weights by a normalized scaler wT
i KDwi, that is, wi =

wi

wT
i KDwi

.

14 Changyou Chen et al.

Table 1 Twelve datasets used in our experiments. The first two databases are artificial datasets, the rest ones are from the UCI machine

learning repository.

Data set #Classes Dimension #Samples

Chessboard 2 2 100

Double-Spiral 2 3 100

Glass 7 9 214

Heart 2 13 270

Iris 3 4 150

Protein 6 20 116

Sonar 2 60 208

Soybean 4 35 47

Wine 3 13 178

Wisconsin 2 30 720

Digital04 5 6 1000

Waveform 3 21 1800

5 Experiments

To test the proposed kernel learning algorithms TRAGEK and ENPAKL, we employed them for clustering and also used

ENPAKL for image segmentation. We carried out the evaluations on two simulated datasets and ten datasets from the

UCI machine learning repository [1]. The details of these datasets are tabulated in Table 1, where the first nine datasets

have been often used in evaluating the performance of semi-supervised clustering algorithms [15, 19]. We compared

ENPAKL with the PCP algorithm [19] and the SSKK algorithm [18] as well as the traditional k-means algorithm. We also

investigated the influence of the number of pairwise constraints to the clustering performance for ENPAKL. To measure

the clustering performance, we adopted the metric defined in [15]:

acc =
∑
i>j

2 · I(I(ci, cj), I(ĉi, ĉj))
n(n− 1)

, (34)

where I(a, b) is an indicator function returning 1 if a = b, and 0 otherwise, c denotes the true cluster membership and

ĉ denotes predicted cluster membership, and n is the number of samples. Without loss of generality, moreover, we set

parameters λ, λ1 and λ2 in Eq. (19) to 1, and the scale factor σ in Eq. (15) to the average pairwise distance of the

data set.

Other than this, we also applied the proposed ENPAKL together with the k-means and N -cut algorithms [41] on

the MSRC Object Category Image Database(v2) [39] for image segmentation. Details are described in Section 5.5.

5.1 An Illustrative Experiment

To show that the proposed algorithms can propagate label information through the datasets, so that data in different

classes can be separated as far as possible and those in the same class are clustered as close as possible, we run TRAGEK

on the two synthetic datasets as used in [15], i.e., the Chessboard and Double-Spiral datasets in Figure 2. For better

Non-Parametric Kernel Learning with Robust Pairwise Constraints 15

illustration, we rearranged the order of the data such that the first part of the data matrix belongs to one class and

the last part to the other. It can be seen in Figure 2 that the two classes are well separated. More specifically, we

observed that the elements in the learned kernel K corresponding to the same class tend to 1 (black), while those

corresponding to different classes tend to −1 (white). This means that the data from different classes are projected

onto the opposite points on the hyperball of the feature space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class−1

Class−2

(a) Chessboard

−10

−5

0

5

10

−8

−6

−4

−2

0

2

4

6

8

0
0.5

1

Class−1
Class−2

(b) Double-Spiral

(c) Chessboard (d) Double-Spiral

Fig. 2 Clustering results on Chessboard and Double-Spiral datasets. In (c) and (d), black color means the corresponding values in the

kernel matrix is 1, and white color means -1.

5.2 On Small Datasets

To compare the proposed kernel learning algorithms with some related algorithms for clustering, we tested them on

nine small-scale data sets in Table 1 ranging from Glass to Wine. For ENPAKL, we set B = 20, R = 10 in Algorithm 3.

Note that pairwise constraints are required for TRAGEK, ENPAKL, PCP, and SSKK, so we randomly generated k must-link

constraints in each class and k cannot-link constraints between each two classes, where k ranges from 10 to 100 with

an interval of 10. We thus have a total of c(c+3c)k
2 pairwise constraints for each experiment with a dataset of c classes.

For each k, we randomly generated 20 different pairwise constrains, resulting in 20 different realizations of the pairwise

constraints. The reported results were the average of the 20 different realizations together with 10 repetitions in the

kernel k-means clustering step in Algorithm 1 for each pairwise constraint realization. The results are illustrated in

Figures 3.

We can observe from Figure 3 that:

16 Changyou Chen et al.

10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(a) Chessboard

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(b) Double-Spiral

10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(c) Glass

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(d) Heart

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class
C

lu
st

er
in

g
ac

cu
ra

cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(e) Iris

10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(f) Protein

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(g) Sonar

10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(h) Soybean

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCP
SSKK
kmeans
ENPAKL

(i) Wine

Fig. 3 Clustering performance on nine small UCI datasets.

– TRAGEK outperforms the other three algorithms in all datasets except for the Iris and and Wine datasets when

the number of pairwise constraints is less than 30.

– PCP is worse than TRAGEK in clustering accuracy in most cases and it runs into numerical problems when the number

of pairwise constraints is large or when some noisy constraints (constraints that are wrongly labeled) are added.

Furthermore, we observed in the experiments that the running time of TRAGEK fluctuated little when varying the

number of pairwise constraints, which can be seen in Section 5.4.

– ENPAKL approximates amazingly well to the original kernel learning problem TRAGEK, sometimes even gets better

performance. Another merit of ENPAKL is that it is much faster than TRAGEK and PCP. We will give some examples

below.

5.3 On Larger Datasets

Note that the datasets used in Section 5.2 are small, though often used in evaluating semi-supervised clustering

algorithms [15,19]. TRAGEK and other algorithms such as PCP can not scale well with large datasets and robust pairwise

constraints. To evaluate the scalability of the proposed ENPAKL algorithm, we performed the experiments on three

larger datasets described in the last three rows of Table 1. The optdigits dataset is a subset of a large digital dataset,

Non-Parametric Kernel Learning with Robust Pairwise Constraints 17

and it contains the digits from 0 to 4 with each class containing 200 instances (Digital04); Waveform also comes from

a large dataset and it has 1800 instances.

The intrinsic disadvantage of PCP prevents it from being applied on such kind of large data with robust constraints.

In order to enable it to work, we reduced the number of constraints by sampling. Specifically, the number of sampled

constraints was set to the final number of constraints after the reduction in TRAGEK. We repeated the experiments for

ten times with random sampling for the PCP algorithm, and picked up the best result and reported as the performance

of PCP, denoted as PCPSample. In this experiment, we varied the number of pairwise constraints relative to the number

of total data samples, and the parameters in Algorithm 3 were set to B = 100, R = 100. Also ENPAKL1 is a variant of

ENPAKL by replacing the base sub-kernel learning algorithm in Algorithm 2 with PCP. The results for these algorithms

are shown in Figure 4.

100 150 200 250 300 350 400 450 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

C
lu

st
er

in
g

ac
cu

ra
cy

TRAGEK
PCPSampling
SSKK
kmeans
ENPAKL

ENPAKL1

(j) Wisconsin

100 150 200 250 300 350 400 450 500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of pairwise constrains per class

Cl
us

te
rin

g
ac

cu
ra

cy

TRAGEK
PCPSample
SSKK
kmeans
ENPAKL

ENPAKL1

(k) Digital04

250 300 350 400 450 500 550 600 650
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of pairwise constrains per class

Cl
us

te
rin

g
ac

cu
ra

cy

TRAGEK
PCPSample
SSKK
kmeans
ENPAKL

ENPAKL1

(l) Waveform

Fig. 4 Clustering performance on three large UCI datasets.

It is found in the experiments that:

– ENPAKL is a little faster than ENPAKL1, meanwhile both of them are much faster than PCP and SSKK.

– TRAGEK is apparently superior to PCP and SSKK, where these two algorithms even fail to compete with the traditional

k-means algorithm.

– The performances of ENPAKL and ENPAKL1 are competitive, and represent the best algorithms in terms of effective-

ness and efficiency.

5.4 Running Time

This section shows the running time of several related algorithms and we claim that the running time of TRAGEK is not

sensitive to the the number of pairwise constraints. To test this, we perform experiments on the Heart dataset and the

Chessboard dataset with increasing number of pairwise constraints from 10 to 100 with an interval of 10. The results

are shown in Figure 5(a) and (b). We can see from the figures that as the number of pairwise constraints increases,

the running time of TRAGEK varies little, whereas that of PCP increases dramatically.

Next we examined the efficiency of ENPAKL. We used the Wisconsin dataset and recorded the corresponding running

time. Note that PCP is too time consuming when the constraints are large, thus we do not show its running time here.

18 Changyou Chen et al.

We compared ENPAKL with TRAGEK, the results are shown in Figure 5(c). Obviously, ENPAKL is much more efficient

than TRAGEK in term of computational complexity6.

0 20 40 60 80 100
0

5

10

15

20

25

Number of pairwise constrains per class

C
P

U
 r

un
ni

ng
 ti

m
e

(s
ec

on
d)

TRAGEK

PCP

(a) Chessboard

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

Number of pairwise constrains per class

C
P

U
 r

un
ni

ng
 ti

m
e

(s
ec

on
d)

TRAGEK

PCP

(b) Heart

100 200 300 400 500
50

100

150

200

250

300

350

400

ENPAKL
TRAGEK

(c) Wisconsin

Fig. 5 Running time comparison. The x-axis is the number of constraints, the y-axis represents the running time in seconds.

5.5 Image Segmentation

In this section we applied ENPAKL for image segmentation by doing clustering on images. We tested our algorithm on

the MSRC Object Category Image Database (v2) [39], which contains 791 images of size approximately 320 × 210,

and includes different scenes such as grasses, forests, streets, etc.. In this experiment, we do not care about what

feature we used. Instead, we want to test the effectiveness and robustness of the proposed algorithm against other

popular clustering algorithms such as k-means, N -cut, and etc.. As a result we simply used the histogram features

in the experiments (richer features for image segmentation would be our future work). Specifically, we divided each

image into 5×5 patches, and exacted the color histograms of each patch as its features, and finally used these features

to do the segmentation. We set the number of clusters to the ground truth, for ENPAKL, we randomly generated 50

must-link and cannot-link constraints for each cluster in the images. For simplicity, we compared the proposed ENPAKL

algorithm with the k-means and N -cut algorithms7 which are popularly used in image segmentation, and also because

the above experiments have shown the superior of the k-means algorithm over PCP and SSKK. Some examples of the

images and their segmentation results are shown in Figure 6. From these results we can see the superior of ENPAKL over

the k-means and N -cut algorithms in term of segmentation accuracy, though it runs much slower, which is a typical

problem for kernel based algorithms8. We used Eq. (34) as the segmentation accuracy criterion, and the corresponding

accuracies are also shown in the figure. We see from the figure that ENPAKL performs best while N -cut and k-means

are comparable. Also note that for some images, the segmentations learned by ENPAKL are very close to the Ground

Truth, while those learned by the k-means and the N -cut are much worse, this indicates that supervisory information

6 This experiment was run on an Intel Core 2 Duo CPU T6400 2.00GHZ with 2GB of DDR2 memory
7 We used an efficient implementation of the N -cut algorithm in [40]
8 The k-means algorithm takes about 1 second for one image, the N -cut algorithm takes about 2 seconds, while ENPAKL needs about 5

minutes, and PCP cannot run in this experiment because the corresponding data is too large. How to accelerate the speed of the proposed

algorithm further is our future work.

Non-Parametric Kernel Learning with Robust Pairwise Constraints 19

could help image segmentation a lot, and it is encouraged to use such kind of information to boost the segmentation

accuracy. We believe better segmentation results can be obtained by choosing the constraints carefully, by using other

kinds of features such as the sift features [37] and rich textual features [38], and also by taking the spatial information

into consideration.

Original image Ground truth k-means(acc = 73.65%) N -cut(acc = 51.88%) ENPAKL(acc = 90.92%)

Original image Ground truth k-means(acc = 70.49%) N -cut(acc = 62.14%) ENPAKL(acc = 93.16%)

Original image Ground truth k-means(acc = 75.25%) N -cut(acc = 79.76%) ENPAKL(acc = 88.19%)

Original image Ground truth k-means(acc = 71.53%) N -cut(acc = 85.85%) ENPAKL(acc = 92.31%)

Original image Ground truth k-means(acc = 63.16%) N -cut(acc = 70.64%) ENPAKL(acc = 82.80%)

Fig. 6 Image segmentation using ENPAKL, k-means and N -cut. Here acc means segmentation accuracy evaluating using Eq. (34).

20 Changyou Chen et al.

6 Conclusion

In this paper, we proposed a non-parametric kernel learning framework. It generalizes the graph embedding framework

[30] into kernel space and is reformed as a conic optimization programming. A global Laplacian regularizer is used to

smooth the functional space. Two algorithms are proposed for the corresponding kernel learning problem, one is to

solve the original optimization problem through semi-definite programming. The other is to relax the SDP problem and

solve with a constrained gradient descent based algorithm. To further reduce the computational complexity, the whole

data is proposed to be divided into groups, and sub-kernels for these groups are learned separately, then the global

kernel is constructed by combining these sub-kernels. Experiments are performed on nine datasets for clustering and

one image dataset for image segmentation. Experimental results show that the proposed ENPAKL algorithm is superior

to the recently developed algorithms [18,19] in terms of computational effectiveness and clustering accuracy, and often

achieves better image segmentation.

We will study the parameters setting problem in the future. For example, the regularizer S in Eq. (19) may be

replaced by a more sophisticated regularizer such as the s-weighted Laplacian operator [12]. The algorithms should

also be evaluated with different settings of B and R in Algorithm 3, the k in the graph construction, etc.. Furthermore,

we can incorporate ENPAKL into other kernel methods such as kernelization of some dimensional reduction algorithms.

In addition, we will apply the proposed algorithm to more real applications, and explore more efficient algorithms for

this problem since the current methods is not fast enough for large scale datasets.

References

1. A. Asuncion and D. J. Newman, “UCI machine learning repository,” in [http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Univer-

sity of California, Irvine, School of Information and Computer Sciences, 2007.

2. A. Baraldi, and P. Blonda, “A survey of fuzzy clustering algorithms for pattern recognition–part II,” IEEE Transactions on Systems,

Man, Cybernetics, part B, vol. 29, no. 6, pp. 786–801, 1999.

3. A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning a mahalanobis metric from equivalence constraints,” Journal of Machine

Learning Research, vol. 6, pp. 937–965, 2005.

4. S. Basu, M. Bilenko, and R. Mooney, ”A probabilistic framework for semi-supervised clustering,” in Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining, pp. 59–68, 2004.

5. C. Cortes, M. Mohri and A. Rostamizadeh, “Two-Stage Learning Kernel Algorithms,” in Proceedings of the 27st International Confer-

nece on Machine Learning, 2010.

6. C. Cortes, M. Mohri and A. Rostamizadeh, “Generalization Bounds for Learning Kernels,” in Proceedings of the 27st International

Confernece on Machine Learning, 2010.

7. R. Jin, S. C.H. Hoi, and T. Yang, “Online Multiple Kernel Learning: Algorithms and Mistake Bounds,” in Proceedings of the 21st

International Conference Algorithmic Learning Theory, pp. 390–404, 2010.

8. M. Bilenko, S. Basu, and R. Mooney, “Integrating constraints and metric learning in semi-supervised culstering,” in Proceedings of the

21st International Confernece on Machine Learning, pp. 81–89, 2004.

9. O. Bousquet and D. Herrmann, “On the complexity of learning the kernel matrix,” in Advances in Neural Information Processing

Systems 15, pp. 399–406, 2003.

10. O. Chapelle, B. Schölkopf, and A. Zien, “Semi-supervised learning,” MIT Press, Cambridge, Massachusetts, 2006.

11. I. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, spectral clustering and normalized cuts,” in Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining, pp. 551–556, 2004.

Non-Parametric Kernel Learning with Robust Pairwise Constraints 21

12. O. Duchenne, J-Y. Audibert, R. Keriven, J. Ponce, and F. Segonne, “Segmentation by transduction,” in Proceedings of IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2008.

13. G. H. Golub and C. F. V. Loan, “Matrix Computation,” Johns Hopkins Univ. Press, 1996.

14. T. Hertz, A. Bar-Hillel, and D. Weinshall, “Boosting margin based distance function for clustering,” in Proceedings of the 21st

International Confernece on Machine Learning, pp. 393–400, 2004.

15. S. C. H. Hoi, R. Jin, and M. R. Lyu, “Learning nonparametric kernel matrices from pairwise constraints,” in Proceedings of the 24th

International Confernece on Machine Learning, pp. 361–368, 2007.

16. Y. Hong, and S. Kwong, “Learning Assignment Order of Instances for the Constrained K-Means Clustering Algorithm,” IEEE Trans-

actions on Systems, Man, Cybernetics, part B, vol. 39, no. 2, pp. 568–574, 2009.

17. S. D. Kamvar, D. Klein, and C. Manning, “Spectral learning,” in Proceedings of the 18th International Joint Conference on Artificial

Intelligence, pp. 561–566, 2003.

18. B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised graph clustering: A kernel approach,” in Proceedings of the 22nd

International Confernece on Machine Learning, pp. 457–464, 2005.

19. Z. Li, J. Liu, and X. Tang, “Pairwise constraint propagation by semidefinite programming for semi-supervised classification,” in

Proceedings of the 25th International Confernece on Machine Learning, pp. 576–583, 2008.

20. Z. Lu and T. K. Leen, “Semi-supervised learning with pernalized probabilistic clustering,” in Advances in Neural Information Processing

Systems 17, pp. 849–856, 2005.

21. S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,

2000.

22. B. Schölkopf, and A. J. Smola, “Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond,” MIT

Press, Cambridge, Massachusetts, 2001.

23. J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones,” Optimization Methods & Software, vol. 11,

no. 2, pp. 625–653, 1999.

24. A. J. C. Trappey, C. V. Trappey, F.-C. Hsu, and D. W. Hsiao, “A Fuzzy Ontological Knowledge Document Clustering Methodology,”

IEEE Transactions on Systems, Man, Cybernetics, part B, vol. 39, no. 3, pp. 123–131, 2009.

25. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained k-means clustering with background knowledge,” in Proceedings of

the 18th International Confernece on Machine Learning, pp. 798–803, 2001.

26. J. Zhuang, Ivor W. Tsang and S. C. H. Hoi, “SimpleNPKL: simple non-parametric kernel learning,” in Proceedings of the 26th

International Confernece on Machine Learning, pp. 1273–1280, 2009.

27. E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric learning, with application to clustering with side-information,”

in Advances in Neural Information Processing Systems 15, 2003.

28. H. Xiong, J. Wu, and J. Chen, “K-Means Clustering Versus Validation Measures: A Data-Distribution Perspective,” IEEE Transactions

on Systems, Man, Cybernetics, part B, vol. 39, no. 2, pp. 318–331, 2009.

29. Z. Xu, M. Dai, and D. Meng, “Fast and Efficient Strategies for Model Selection of Gaussian Support Vector Machine,” IEEE Trans-

actions on Systems, Man, Cybernetics, part B, vol. 39, no. 5, pp. 1292–1307, 2009.

30. S. C. Yan, D. Xu, B. Y. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph embedding and extensions: A general framework for

dimensionality reduction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40–51, 2007.

31. J. Yang, S. C. Yan, Y. Fu, X. L. Li, and T. S. Huang, “Non-negative graph embedding,” in Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2008.

32. M. S. Yang, K. L. Wu, J. N. Hsieh, and J. Yu, “Alpha-Cut Implemented Fuzzy Clustering Algorithms and Switching Regressions,”

IEEE Transactions on Systems, Man, Cybernetics, part B, vol. 38, no. 3, pp. 904–915, 2008.

33. D-Y. Yeung, H. Chang, and G. Dai, “A scalable kernel-based algorithm for semi-supervised metric learning,” in Proceedings of the

20th International Joint Conference on Artificial Intelligence, pp. 1138–1143, 2007.

34. C. Cortes, M. Mohri and A. Rostamizadeh, “Learning non-linear combinations of kernels,” in Advances in Neural Information Pro-

cessing Systems 21, 2009.

35. D. Y. Zhou, J. Huang, and B. Schölkopf, “Learning from labeled and unlabeled data on a directed graph,” in Proceedings of the 22nd

International Confernece on Machine Learning, pp. 1036–1043, 2005.

22 Changyou Chen et al.

36. R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, “Newton’s method on Riemannian manifolds and a geometric

model for the human spine,” IMA Journal of Numerical Analysis, vol. 22, no. 3, pp. 359–390, 2002.

37. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2,

pp. 91–110, 2004.

38. B. Tan, J. Zhang and L. Wang, “Semi-Supervised Elastic Net for Pedestrian Counting,” Pattern Recognition, vol. 44, issues 10–11,

pp. 2297–2304, 2011.

39. A. Criminisi, “MSRC Category Image Database(v2),” in [http://research.microsoft.com/en-

us/um/people/antcrim/data objrec/msrc objcategimagedatabase v2.zip]. MSRC.

40. J. Shi, “MATLAB Normalized Cuts Segmentation Code,” in [http://www.cis.upenn.edu/ jshi/software/].

41. J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 22, no. 8, pp. 888–905, 2000.

