Data Quality Matters: A Case Study of Obsolete
Comment Detection

Shengbin Xu!, Yuan Yao!l, Feng Xu!, Tianxiao Gu2, Jingwei Xul, Xiaoxing Mal
!State Key Lab for Novel Software Technology, Nanjing University, China
2Tiktok, USA
kingxu@smail.nju.edu.cn, {y.yao, xf, jingweix, xxm} @nju.edu.cn, tianxiaogu@bytedance.com

Abstract—Machine learning methods have achieved great suc-
cess in many software engineering tasks. However, as a data-
driven paradigm, how would the data quality impact the effective-
ness of these methods remains largely unexplored. In this paper,
we explore this problem under the context of just-in-time obsolete
comment detection. Specifically, we first conduct data cleaning
on the existing benchmark dataset, and empirically observe that
with only 0.22% label corrections and even 15.0% fewer data,
the existing obsolete comment detection approaches can achieve
up to 10.7% relative accuracy improvement. To further mitigate
the data quality issues, we propose an adversarial learning
framework to simultaneously estimate the data quality and make
the final predictions. Experimental evaluations show that this
adversarial learning framework can further improve the relative
accuracy by up to 18.1% compared to the state-of-the-art method.
Although our current results are from the obsolete comment
detection problem, we believe that the proposed two-phase
solution, which handles the data quality issues through both the
data aspect and the algorithm aspect, is also generalizable and
applicable to other machine learning based software engineering
tasks.

Index Terms—Obsolete comment detection, machine learning
for software engineering, data quality

I. INTRODUCTION

In the past years, machine learning has been widely used
in many software engineering tasks, including defect detec-
tion [1]-[3], program repair [4]-[6], and code summariza-
tion [7]-[9]. The main focus of existing work is on developing
customized machine learning models that can unleash the
value of the available data in specific tasks. In addition to the
model aspect, the quality of the training data itself has been
recently emphasized in the machine learning community [10].
However, how would the data quality affect machine learning
based software engineering tasks remains largely unknown.

In this work, we aim to fill this gap by investigating
the data quality issue in the just-in-time obsolete comment
detection problem. On one hand, when code changes hap-
pen, code comments (as one of the most important software
artifacts) are likely to be ignored by developers and thus
become outdated [11]-[13]. Such obsolete comments may
provide confusing or even misleading information to devel-
opers, leading them to write vulnerable code [14] and thus
degrading the quality of the software. On the other hand, some
recent approaches [15], [16] have adopted machine learning
techniques to detect obsolete comments based on a collected
dataset (named OCDDATA hereinafter) from GitHub. Although

millions of data samples were collected in OCDDATA [15],
their quality aspect remains largely unchecked. Specifically,
the supervision labels (i.e., whether the comment is obsolete
or not) were determined according to some simple heuristics
that may lead to incorrectness.

Several data samples with improper or incorrect labels are
given in Fig. 1. There are two types of data quality issues,
i.e., false positives and false negatives. Fig. 1(a) includes two
false positives, where the changes from the old comment
to the new comment (i.e., a to an and lose to loses) are
grammar corrections and do not affect the actual semantics of
the comments. Marking this as a positive label would mislead
the learning model to capture grammar corrections instead of
actual semantics. In Fig. 1(b) we show two false negatives,
which are much more prevalent in the dataset due to the fact
that the developer may easily forget or neglect to update the
comment. According to the code changes, TitleView and key
group index should be changed to View and key group range,
respectively. However, the old comment and the new comment
are identical, and the label is negative. Such false negatives
may make the learning model less sensitive to the case when
the comment should be updated as well as prevent the model
effectiveness from being accurately assessed.

These observations raise the following critical questions:
RQ; — Due to their data-driven nature, to what extent are the
existing machine learning based obsolete comment detection
approaches affected by the data quality issue?

RQs — As large-scale manual labeling is extremely expensive,
can we automate the detection of false negatives so as to
mitigate the impact of quality issues?

RQs — Which design choices are especially useful for improv-
ing the performance?

Our Work - In this paper, we present an obsolete comment
detection approach ADVOC with data cleaning and adversarial
learning techniques to answer the above questions.

RA; — To answer RQ;, we first analyze the samples in the
existing dataset and propose a set of rules for data cleaning.
By applying our rules, we reduce the size of OCDDATA by
15.0% and correct the labels of 5,790 samples (0.22% of the
training set). We then apply two recent machine learning based
methods OCD [15] and Just-In-Time [16] to OCDDATA both
before and after our data cleaning, and evaluate them on the
same test set. The experimental results show that their per-

formance does indeed improve with the cleaned training data.
Specifically, when trained with the cleaned dataset (with even
15.0% fewer data samples and only 0.22% label corrections),
the performance of the two methods relatively improves by
10.7% and 2.3% in F1-score.

RA; — To answer RQ-, we propose to adopt the adversarial
learning framework to handle the false negatives. Specifically,
we first select a small set of reliable, high-quality data samples
from the training data based on the sample characteristics and
the correlations between samples. These reliable samples act
as the seeds for adversarial learning, and we denote the rest of
the training data as unreliable samples. We then design a hier-
archical encoding method that captures the complex semantics
within each data sample, and transforms it into feature vectors.
Specifically, we consider multiple edit representations of each
code change as well as the connection between a code change
to its corresponding comment. After obtaining the feature
vectors of data samples, we train a generative adversarial
network (GAN) [17] with a classifier and a discriminator
against each other. The goal of the classifier is to assign labels
(positive or negative) to unreliable samples, trying to make it
impossible for the discriminator to distinguish between reliable
and unreliable samples; the goal of the discriminator is to
distinguish between reliable and unreliable samples. Through
such adversarial learning, we can simultaneously estimate the
reliability degree of all the unreliable samples (including those
potential false negatives) and make the final predictions. The
experimental results show that, on the cleaned dataset, our ap-
proach can further achieve up to 18.1% relative improvement
compared to the best competitor Just-In-Time [16].

RA3 — To answer RQs, we conduct an ablation study by
deleting each of the design choices, including the adversarial
learning framework and each of the three edit representations
(i.e., edit sequence, edit tree, and edit script). The results
show that the adversarial learning framework and the edit
tree representation are especially important for the obsolete
comment detection problem, relatively improving the F1-score
by 8.1% and 11.5%, respectively.

Contribution — Note that although we study the obsolete
comment detection problem in this work, the proposed data
cleaning and adversarial learning ideas are potentially appli-
cable to many other similar problems. In summary, this paper
makes the following contributions:

« We propose data cleaning and adversarial learning tech-
niques to tackle the data quality issues in the obsolete
comment detection problem.

o We design a hierarchical encoding method for represent-
ing the complex semantics within each data sample, in-
cluding a set of methods for various perspectives of code
changes as well as the connections between comments
and code changes.

« Experiment evaluations confirm the effectiveness of the
proposed approach and that both our data cleaning and
adversarial learning techniques can improve the effective-
ness of obsolete comment detection.

public SLStatementNode createBreak(Token breakToken) {
final SLBreakNode breakNode =new SLBreakNode(srcFromToken(breakToken));
if (prober != null) {
return prober.probeAsStatement(breakNode);

¥

return breakNode;

}

old comment: Returns a {@link SLBreakNode} for the given token.
new comment: Returns an {@link SLBreakNode} for the given token.
label: true

public void revokelLeadership() {
runAsync(new Runnable() {
public void run() {
log.info("ResourceManager {} was revoked leadership.",
getAddress());
clearState();
+ leaderSessionID = null;
}
s
}

old comment: Callback method when current resourceManager lose leadership.
new comment: Callback method when current resourceManager loses leadership.
label: true

(a) Two false positive samples.

- public TitleView getTitleView() {
+ public View getTitleView() {
return mTitleView;

}

old comment: Returns the {@link TitleView}
new comment: Returns the {@link TitleView}
label: false

- public int getKeyGroupIndex() {

return keyGroupIndex;
+ public KeyGroupRange getKeyGroupRange() {
+ return keyGroupRange;

¥

old comment: Returns the key group index the KvState instance belongs to.
new comment: Returns the key group index the KvState instance belongs to.
label: false

(b) Two false negative samples.

Fig. 1. Some data samples with improper labels in OCDDATA dataset.

Data Availability — The original OCDDATA dataset can be
found at [18]. The cleaned dataset, tool, and source code are
released at [19].

Roadmap - The remainder of this paper is organized as
follows. Section II introduces the background knowledge. Sec-
tion III shows the overview of our approach, and Sections IV,
V, and VI are devoted to data cleaning, data sample encoding,
and adversarial learning, respectively. Section VII presents
the experimental results. Section VIII discusses the threats to
validity and the implications, Section IX covers the related
work, and Section X concludes.

II. BACKGROUND
A. The OCDDATA Dataset

The current benchmark dataset for obsolete comment de-
tection is collected by Liu et al. [15]. Specifically, Liu et
al. cloned 1,496 Java repositories from GitHub that were
manually verified by Wen et al. [13] to be popular real
software projects. Then, they iterated through each reposi-
tory’s non-merge commits and extracted modified methods and
their corresponding java-docs. The method-doc instances with
abstract methods or docs without description sections were

< i
! De- Label Reliable
OcdData— . . Sample
1| duplication Correcting Identification
______________________ ._____________________
1 Edit :
new i 1 - - i
code Representatio I]I:]dmdd.ual H gﬁuegil:l]e E »
m i { Construction neoding codme E
training | | Data Sample Encoding |
samples T T

\ Learning

Training | Prediction

: Data to Detect
emTmmmmmm e -, old |[new][old
| |
| |
E Adversarial o [samplel] [sample2 | [sample3 |
1 Traning E | Obsolete l
E E » Comment » Obsolete Comment
! el ; | le/tleiitl(lm Prediction
i Detection Model 1 ode
| f -

|
I

Predicted results

Fig. 2. Overview of the proposed ADVOC approach.

purged, and finally 4,357K+ qualified instances in the form
of (old code, new code, old doc, new doc) are extracted. To
further decide which sentence in the doc is obsolete, Liu et al.
matched the sentences between the old doc and the new doc,
and divided each method-doc instance into multiple tuples in
the form of (old code, new code, old comment, new comment).
Then, the label of each tuple is determined by comparing
the old comment with the new comment. That is, the label
is negative if the old and new comments are the same, and
positive otherwise. Finally, each data sample is in the form of
(old code, new code, old comment, label), where the former
three serve as the input and the label serves as the output.
After a few filtering steps, Liu ef al. successfully curated a
dataset consisting of about 4,086K data samples. Liu et al.
also did data splitting based on the commit creation time, i.e.,
the samples corresponding to the earliest 80% commits in each
repository were used as the training set and the remaining
samples were randomly split into the validation and test sets.

B. Generative Adversarial Networks

GAN [17] is an adversarial learner, consisting of a generator
G and a discriminator D. The two networks play the following
minimax game with the value function V (G, D):

Hgn max V(D,G)
:EmNPdam (x) [lOg D(iL’)] + EZsz(z) [log(l - D(G(Z))>]

where pgaa 1S the data generating distribution of the training
data, and p, is the prior distribution of the input noise
variables. The generator G takes random noises as input and
tries to generate data instances that approximate the training
data to fool the discriminator, while the discriminator D takes
both instances from the training data and those generated by
G as input and tries to distinguish between these two types of
instances. Through an iterative and adversarial process, G can
eventually generate instances that D can hardly distinguish.

ey

IIT. APPROACH OVERVIEW

In this section, we present the overview of ADVOC. As
shown in Fig. 2, ADVOC consists of two stages: the training
stage and the prediction stage.

In the training stage, there are three modules: (1) data
cleaning, (2) data sample encoding, and (3) detection model
learning. The first module is mainly responsible for false
positives and it performs data cleaning before feeding the data
into the following pipeline. We reuse the OCDDATA dataset
as it is large, carefully-crafted, and open-sourced. However,
there are still quality issues with the dataset and we perform
several data cleaning steps accordingly. Specifically, we first
de-duplicate the existing samples to ensure that all samples
in the dataset are unique and that there are no samples with
conflicting labels. We next identify and correct false positive
samples by defining a set of heuristic rules. We also add a
data reliability estimation step which divides the existing data
into reliable and unreliable sets. This division facilitates the
detection model learning module, as will be later shown.

In the data sample encoding module, we propose a hier-
archical encoding method to transform the data samples into
feature vectors. We need to deal with the (old code, new code,
old comment) terms in each data sample. Specifically, we first
tokenize the old comment, and represent the old code and new
code into three different forms (i.e., edit sequence, edit tree,
and edit script, as will be later shown). We then propose to first
individually encode each of them, and fuse them afterwards
by taking into account the connections between the code and
the comment.

In the detection model learning module, we mainly deal
with the false negatives. We take both the reliable set and
the unreliable set as input, and train an adversarial learning
model that simultaneously estimates the reliability of each
data sample and makes the final predictions. Unlike traditional
GANSs, we replace the generator with a classifier to predict a
more appropriate label for each unreliable sample. In other
words, we train two deep neural networks, i.e., a classifier
and a discriminator, against each other to better unveil the
label information of the samples in the unreliable set. Both
classifier and discriminator use the encoded features from the
previous module.

In the prediction stage, ADVOC takes the changed method
and the corresponding doc (i.e., old code, new code, old doc)
as input, and then separates the doc into sentences to form
multiple data samples. Next, each data sample is transformed

TABLE I
STATISTICS OF THE ADVOC DATASET.
Train Valid Test Total
Original 3,194,930 437,042 454,383 4,086,355
Original Positive 85,469 9,846 9,647 104,962
Cleaned 2,676,160 410,258 385,258 3,471,676
Cleaned Positive 66,754 8,417 7,359 82,530

into features and fed into the trained classifier from the
detection model learning module,! and the classifier returns
either positive or negative for each sample. A positive feedback
means that the method change causes inconsistency between
the code and the comment. In this way, ADVOC can tell
developers which sentences in the doc need to be updated
after method changes.

IV. DATA CLEANING

In the data cleaning module, a typical data cleaning work-
flow [20] (i.e., discovery, error detection, and error repair) is
adopted. This module encourages the approach to focus on the
actual semantics instead of the grammar corrections.

A. Sample De-duplication

Despite the fact that the OCDDATA dataset is carefully
constructed, we observe a large number of duplicate samples,
some of which even have conflicting labels. After manual
inspection, we find that this is mainly due to the existence
of identical commits (caused by git merge or git cherry-pick,
with the same diff but different commit hashes) in the same
project. We consider two samples as duplicates if they are
essentially the same input (i.e., the same old code, new code,
and old comment), regardless of whether the new comments
or labels are the same. For duplicate samples, we choose to
keep a random one of them and we keep the positive sample
when the labels are conflicting. After de-duplication, there are
3,471K+ samples left (decreased by 15.0%) and the detailed
statistics can be found in the “Cleaned” row of Table I.

B. Label Correction

Next, we address the label inaccuracy due to false positives.
Specifically, one of the authors first manually checks over
500 randomly sampled positive samples and discovers that a
small part (=~ 10%) of the instances are false positives. We
then analyze the causes of these false positives and detect
them with a few manually summarized rules. For example,
we find that format changes (e.g., adding an in-line tag to a
token: TitleView — {@link TitleView}, or changing the verb
form: Get — Gets) in the comments account for most of the
false positive samples. However, there are various types of
format changes and it is difficult to exhaust them. We adopt
the trial-and-error method to further refine the detection rules.
In detail, we first generate rough rules based on the manually
checked false positives and use the current rules to make
the detection. Then, we manually check a small portion of

Although both classifier and discriminator are trained in the detection
model learning module, only the classifier is used in the prediction stage.

the “detected false positives”. If the results do not meet our
expectations (e.g., some of the “detected false positives” are
not true false positives), we further refine our rules and detect
again until satisfactory results are observed. We finally obtain
the following rules to detect the five types of format changes:

o In-line tag changing. We remove all the in-line tags from
both old and new comments before comparing them.

o Case changing. We compare the lowercase of both old
and new comments.

o Stopword changing. If the changed words are in [a, an,
the, in, on, at], we treat the two comments as the same
one.

e Lexical translation. If the root format (after lemmati-
zation) of the changed words are the same, the two
comments are treated as the same one.

o Typo fixing. If only one word in the comments is changed,
the minimum edit distance is no greater than 2, and the
word before edit is not in the old code, the sample is
viewed as a typo fixing.

Based on the above rules, 7,304 false positive samples
(0.22%) are identified from the whole cleaned dataset, and
5,790 of them are found from the cleaned training set. We
modify the labels of these detected false positives into neg-
atives. After this step, there are 82K+ positive samples left
(decreased by 21.4%) and the specific statistics can be viewed
in the “Cleaned Positive” row of Table I.

C. Reliable Sample Identification

In this step, we identify a small set of reliable samples from
the cleaned training set. The proposed approach will make
use of both the reliable subset and the remaining relatively
unreliable training set during adversarial learning. Specifically,
we consider the samples corresponding to docs that have been
checked by developers to be relatively reliable, and whether
a developer has checked a doc is determined by whether the
developer has updated any of the sentences in the doc. In
other words, we assume that if the developer has changed
any sentence in a method doc, he/she would have probably
checked all the sentences in this doc. Therefore, we mark all
the samples corresponding to changed docs as reliable samples
regardless of the labels. Similarly, the docs corresponding to
the samples identified as false positives in the cleaned training
set are also considered to be reliable. Finally, we identify
116,496 reliable samples from the training set (66,754 positive
samples and 49,742 negative samples).

V. DATA SAMPLE ENCODING

Data sample encoding transforms each data sample into
feature vectors. Here, we present a hierarchical encoding
method that considers both the code change and the connection
between the code change and the comment.

A. Edit Representation Construction

In the field of code modeling, simultaneously using se-
mantically equivalent but formally different representations
(e.g., code token sequence and AST) as input has achieved

excellent performance [9], [21], [22]. In this paper, we propose
to simultaneously use three different forms of code changes,
i.e., edit sequence, edit tree, and edit script. An example is
shown in Fig. 3. Essentially, different representations can help
neural networks “understand” code changes from different per-
spectives. For example, the edit sequence is for the naturalness
of code, the edit tree reveals more of the syntax, and the edit
script directly delivers what entities have been changed. Each
representation is described in detail below.

The edit sequence is formed by merging two code se-
quences. Specifically, we first tokenize both old code and new
code with a lexer. Then, the compound words in identifiers and
string literals are further split into multiple tokens according
to naming conventions. Finally, we use difflib [23] to obtain
the edit sequence and represent it as the form proposed by
Panthaplackel et al. [24]. An example of edit sequence is
shown in Fig. 3(b).

The edit tree is obtained by parsing both old code and new
code into ASTs and then merging them. To be specific, we
denote the AST of old code and new code as T,;4 and T},c,
and use GumTree [25] to calculate the difference between T4
and T,.,. The output includes a set of node actions, specifying
matched, inserted, deleted, moved, and updated nodes on 7,4
and T},eq. Next, T4 and T}, are merged by consolidating
the matched and moved nodes and keeping the remaining
nodes and edges. An example edit tree is shown in Fig. 3(c),
where node recerver is deleted and node BooleanLiteral is
inserted.

The edit script is derived from the edit tree, but discards
the AST parts that are not affected by the code change. As
shown in Fig. 3(d), each edit script is a bag of individual
changes and each individual change consists of five elements,
i.e., (action_type, old_node, old_path, new_node, new_path). There
are four types of actions in edit scripts, i.e., delete, insert,
move, and update. The o1d_node and o1d_path are obtained from
To1d, and new_node and new_path are obtained from 7,,.,,. The
path denotes the path from root node (Methodpeclaration in
Fig. 3(c)) to the changed node on AST, which implies the
location of the changed node.

B. Individual Encoding

We next individually encode each edit representation as well
as the comment. The encoding architecture is shown in Fig. 4.

1) Edit Sequence Encoder: Following the standard way, we
use Bi-GRU layers [26] to encode the edit sequence:

h) = Bi-GRU(h,, h{%) e..),)

where s; is the ¢-th token in edit sequence, e, is its embed-
ding, and hz(»s) is its contextual vector.

2) Edit Tree Encoder: For an edit tree, we treat it as a
heterogeneous graph G = (V, &, X), where V and & refer to
the node set and edge set, respectively, and X includes the
node attributes. For each node v, we merge its type and value
into a sequence x,. Take the inserted node in Fig. 3(c) as an
example, its attribute sequence x, iS [BooleanLiteral, false].
The Bi-GRU used for x, is similar to Eq. (2) and thus omitted

public T tokenize(String token, boolean regex) {
return delegate.tokenize(token, regex); }

public T tokenize(String token, boolean regex) {
return tokenize(token, regex, false); }

(a) The old code and new code.

<KEEP> public t tokenize (string token ,
boolean regex) { return <KEEP_END>
<DELETE> delegate . <DELETE_END>

<KEEP> tokenize (token , regex <KEEP_END>
<INSERT> , false <INSERT_END>

<KEEP>) ; } <KEEP_END>

(b) The edit sequence.

MethodDeclaration
Modifier| - {SimplcTypc} - SimpleNamer - -&arDcclaratioE - {VarDcclaratiorD— -
public tokenize
SimpleName| (SimpleType) - 1SimpleName
T token
SimpleName
String

PrimitiveType @etumStmD

boolean regex

- wsimpleName

MethodInvocation

{ [RECEIVER}} - - - {SimpleName} - - - - (ARGUMENTS)
i deleted tokenize oo -

inserted

! |SimpleName o j{BooleanLiteral :

token

i SimpleName

delegate false

_ ___ |SimpleName
regex

(c) The edit tree.

(delete, [RECEIVER],
[MethodDeclaration,Block,ReturnStmt,MethodInvocation], [],
(insert, [], [], [BooleanLiteral,false],
[MethodDeclaration,Block,ReturnStmt,MethodInvocation, ARGUMENTS])

(d) The edit script.

[N,

Fig. 3. An illustrative example of edit representations.

P
t
}—{ Cat&Dense Je——{ Attention]
Bi-GRU

[Attention

]
(" Self Attention] ((Cross Attention] ((Graph Attention]
-
| (GGNN] (" cat & Dense]
([BiGRU] [Bi-GRU] T
I I (_Bi-GRU] (_ Bi-GRU]
t t
old comment edit seq edit tree edit script

Fig. 4. The data sample encoding architecture.

for brevity. To obtain the vector representation for z,, we also
consider the node action embedding ¢, ,

ho = W™ [hi, 5€a,] 3)

where W (") is a matrix to resize h,, and hm| is the last
hidden state of the Bi-GRU.

We then use a gated graph neural network (GGNN) [27],
which has been widely used for code graph encoding, to
encode the edit tree. The GGNN models relationships (edges)
between nodes with message passing operations. There are five
types of directed edges in edit trees, including four commonly

used in AST, i.e, child, parent, next_sibling, and prev_sibling,
as well as one derived from the update relation identified
by GumTree. We use k to denote the type index and K to
denote the number of types. Specifically, in GGNN layer [,
the messages sent by each node v to its neighbors through the
edges of type k are computed through a fully-connected layer,

m{ = WwORD 4 p0),)

Next, node v aggregates all the incoming messages from its
neighbors and updates itself,

m o=l
(u,0)EER,1<kLK
R+ GRU (m& hg}z)) . 5)

The node vector inputted to the first layer is h,,, and the vector
outputted by the last layer hE,L) is used for the next stage.

3) Edit Script Encoder: We first use Bi-GRUs to encode
old_node, old_path, new_node, and new_path for each individual
change. Then, the resulting vectors in the same individual
change are concatenated and fed into a fully-connected layer,
which is a common way of feature fusion. Finally, we
aggregate multiple individual changes with attention, which
facilitates the model to focus on important changes.

Take the ¢-th individual change for example,

hECC) = W(CC) [eti§ hom ; hopqz 3 hnni; hnpq] 3 (6)

where hgcc) is the individual change vector, W (¢®) is used for
resizing, e;, is the embedding of action_type, and hoy,, hop,,
Nnngs and hyp, are the last hidden states of Bi-GRUs given
old_node, old_path, new_node, and new. _path, respectively.

Given a bag of vectors {h\"”, ..., h{¢}, we calculate the
attention weight oy, and obtain the edit script vector v(¢) by
a linear combination,

exp (hECC)T . a)

a; = n T)
Yy exp (b7 - a)

v© = > a;m, 7
=1

where a is a learnable vector that has the same size with h{°”).

4) Comment Encoder: Finally, we use a Bi-GRU as shown
in Eq. (2) to encode the comment. Comments are first tok-
enized and parsed following standard NLP steps. The hidden
state of the i-th comment token is referred to as hl(-c).

C. Collective Encoding

We next use the attention mechanism (e.g., self-attention,
cross-attention, and graph-attention) to model the connections
between inputs.

First, to better capture the global contextual information of
comments, we use self-attention [28] to update H (e) (which
is obtained by stacking hEC)),

T

. Q
Attention(Q, K, V') = softmax
(@.K.V) C

WV, ®)

where (), K, V are obtained by performing different linear
transformations on the comment vectors H(¢). We denote the
result by H(c9).

Next, to connect comment to edit sequence, we use Cross-
attention. The equations are similar to Eq. (8) except that K
and V are computed from edit sequence vectors H(*) (by
stacking hgs)). The result is denoted by H(¢s).

Then, we connect comment to edit tree via graph-attention.
Specifically, we use graph relational embedding attention [29],
which, unlike directly calculating the attention score using
(gik])//dk, adds a bias term b; ; into the computation and
the equation becomes (g; + b;)k /v/dj.. This bias term is
computed as follows,

bij = wffe(i,j) + be,)]

where w, is a learnable vector, b. is a learnable scalar, and
€(i,j) is the embedding of the edge type connecting comment
token ¢ and edit tree node j. We define three edge types
including original match, token match, and stem match:

o Original match: the original form of comment token ¢ is
identical to the value of node j.
o Token match: comment token i is identical to one subto-
ken of node j’s value.
o Stem match: the stem word of token ¢ (after lemmatiza-
tion) is identical to one subtoken of node j’s value.
The other computational steps of graph relational embedding
attention are the same with Eq. (8), with the exception that K
and V are computed from edit tree vectors H (™) (by stacking
hq(JL)). The result of graph-attention is denoted by H (),
We combine the above H (Cg), H (CS), and H () through

B = W [p{) 0] (10)

and feed them into a Bi-GRU layer (refer to Eq. (2)). Then, the
enhanced comment vector v(¢) is calculated from the output
of the Bi-GRU layer using equations similar to Eq. (7).

Finally, we concatenate v and v(® to form a vector v to
represent the final embedding of a data sample.

Remarks. Note that one of our baselines, Just-In-Time [16],
also encodes multiple forms of code changes. The key dif-
ferences are two-fold. First, we model old comment, edit seq,
edit tree, and edit script, whereas Just-In-Time models only
the first three. Second, we additionally use Bi-GRU to fuse
the attribute information of each node on the edit tree, and use
graph-attention to explicitly encode the connections between
old comment and edit tree.

VI. DETECTION MODEL LEARNING

In this section, we present our adversarial learning frame-
work for dealing with false negatives.

A. Adversarial Learning

Here, we denote the reliable set from Section IV-C as R,
and the rest unreliable set as ¢/. We then adopt the adversarial
learning idea to build a classifier C' and a discriminator D.
The reliable set R is analogous to the pga, in Eq. (1), and

the unreliable set {/ is analogous to the p,. The classifier
C takes unreliable samples as input and predicts labels for
each sample with the purpose of making the discriminator
unable to distinguish between reliable and unreliable samples.
The purpose of the discriminator D is to distinguish between
reliable and unreliable samples. Through such adversarial
learning, we can estimate the reliability of the unreliable
samples based on the knowledge of the reliable samples.

For simplicity, we let D and C use the same structure as
shown in Fig. 4. The encoded vector v for each data sample is
then fed into a fully-connected layer with sigmoid activation,

(1)

where p denotes the probability that the old comment is obso-
lete. The adversarial learning is built on top of the probability p
outputted by D and C. Specifically, for each unreliable sample,
discriminator D tries to make the distance between p” and p©
as large as possible to identify the unreliable sample, where
pP is the probability predicted by D and p© is the probability
predicted by C. Classifier C tries to make p® and p” as
close as possible to fool D. We use binary cross-entropy to
measure the distance as obsolete comment detection is a binary
classification problem. The minimax game played by C' and
D can be formulated as follows:

min max V(D,C)=—- Z
(z"y")ER

> BCE(pl.y")

(zvy*)eU

+8 >

(zvy*)eU

p = sigmoid (Wv +b) ,

BCE (p;.y")

—

12)

BCE (ph., pSu) »

where x and y correspond to the sample and its label; o and 3
are hyper-parameters. The binary cross-entropy is calculated
as:

BCE(p1,p2) = —p2 - logp1 — (1 — p2) -log(1 —p1). (13)

Note that our adversarial learning framework is loosely built
upon our edit encoding method (it can admit an output vector
of any encoding method). Instead of directly using the output
vector to make predictions as existing work did, it further
employs a small subset of reliable seeds, and tries to estimate
the reliability of other data samples from these reliable seeds.

B. Training Algorithm

Alg. 1 shows the training algorithm of ADVOC. In each
training iteration, the parameters of D are updated first, and
then the parameters of C'. Eq. (14) and Eq. (15) for calculating
the gradients are derived from Eq. (12). The v in Eq (14) is
a constant that represents the ratio of the number of samples
in the reliable set to the number in the unreliable set, which
is 0.0455 in our case. The meanings of « and (3 are the same
as in Eq. (12), and the function ¢ is calculated as follows:

o) = {1.0 if 2 < 0.5,

. (16)
0.0 if x > 0.5,

where 0.0 < x < 1.0.

Algorithm 1 Adversarial training algorithm of ADVOC.
Input: reliable training data R, unreliable training data U;
QOutput: well-trained classifier C';
1: Randomly initialize discriminator D and classifier C';
2: for each iteration do

Sample a minibatch of m unreliable samples
{(z¥,y}), ..., (¥, y%)} from U.
4: Sample a minibatch of m reliable samples

{7, 91), o (27, yp) } from R ‘
5: Update the discriminator by descending its stochastic

gradient:
1 - T T u u
Vo, - ;h *BCE (D(x7),) + o - BCE (D(x}), y}')
+ B BCE (D(z7), ¢(C(xi))] "
6: Update the classifier by descending its stochastic gra-
dient: -
1 u u
Vo.— ;BCE (C(x}), D(z})) (15)
7: end for

8: return C

VII. EVALUATIONS

In this section, we present the experimental results. The

experiments are designed to answer the following questions.

« RQ1: Data Cleaning. To what extent can data cleaning
improve the existing obsolete detection methods?

« RQ2: Overall Performance. How does the proposed
ADVOC perform compared to the existing obsolete com-
ment detection approaches?

« RQ3: Ablation Study. How does each individual module
of ADVOC impact its performance?

A. Experimental Setup

1) Data Preparation: As mentioned earlier, we use OCD-
DATA [15] in our experiment. More precisely, we use two
versions of OCDDATA: one is the Original version and the
other is the Cleaned version after de-duplication and label
correction. The statistics of these two versions OCDDATA are
shown in Table I. We first follow the original training/test
data split by time (i.e., the earliest 80% data samples are
used as the training set) used by Liu et al. [15] to ensure
a fair comparison. Considering that even the labels of the
cleaned OCDDATA test set (denoted by Full Test Set) may not
be completely correct (e.g., false negatives cannot be corrected
in the label correction stage), we randomly select samples
from the test set and manually label them for more reliable
evaluation. Specifically, two of the authors first manually label
each sample independently. When there are conflicting results,
the third person (another author) participates in the discussion,
and the three authors reach a consensus by voting. Finally, we
obtain 500 positive samples and 500 negative samples, and
refer to these 1,000 samples as the Verified Test Samples.

To further verify the effectiveness of ADVOC under the
cross-project setting, we additionally re-partition the cleaned

dataset by project. That is, we sort the 1,496 GitHub repos-
itories by the creation time and then select the samples
corresponding to the most recently created 300 (=~ 20%) repos-
itories as the validation and test sets and the rest as the training
set. The validation set and the test set are randomly divided,
each containing samples corresponding to 150 repositories.

2) Compared Approaches: We compare our approach AD-
VOC with the following four baselines:

e Fraco [30]. Fraco is a rule-based tool to detect fragile
comments caused by identifier renaming. The tool itself
exists as an Eclipse plugin and is triggered whenever the
user uses Eclipse’s rename refactoring features.

« RandomForest [31]. RandomForest is a machine learn-
ing based approach for detecting outdated block/line com-
ments during code changes. Specifically, RandomForest
constructs 64 features for each sample and then trains a
random forest classifier for prediction.

« OCD [15]. OCD is a deep learning based approach to
detect obsolete comments after method changes. OCD
represents each changed method as an edit triple sequence
and then uses Bi-LSTM and Co-Attention layers to
model the changed method, the old comment, and the
relationships between them.

o Just-In-Time [16]. Just-In-Time is another deep learning
based approach. It models old comment, edit sequence,
and edit tree, as well as the relations between them.

We choose OCD and Just-In-Time as they are the most recent
deep learning based methods and with better reported results.
We choose RandomForest as it is a typical method using
traditional machine learning techniques. We choose Fraco as
it is the latest rule-based representative that does not apply
machine learning.

3) Evaluation Metrics: To measure the performance, we
use Precision, Recall, and FI-score metrics as they are well-
known metrics for binary classification. Furthermore, consid-
ering the imbalance between positive and negative samples
in the test set, we choose a metric commonly used for
imbalanced datasets, the area under the precision-recall curve
(AUPRC) [32]. Precision-recall curve shows what happens to
precision and recall as the decision threshold changes and
AUPRC is a general measure of the corresponding precision-
recall curve irrespective of any particular threshold. We do not
report the AUPRC results for the Verified Test Samples as this
test set is balanced.

4) Implementations: For data sample encoding in ADVOC,
the maximum number of tokens in the edit sequence and old
comment are set to 380 and 160, respectively, the maximum
number of nodes in the edit tree is set to 380, the maximum
number of individual changes in the edit script is set to 10,
and the maximum number of tokens in the node and nodes
in the path are both set to 8. Statistics shows that the above
values work for more than 95% of the samples in the dataset
and we truncate the part that exceeds these limits. We set the
embedding size of all tokens except action_type to 64, and
the size of action_type is 8. Likewise, we set the hidden size
of all Bi-GRUs to 64, resulting in an output hidden state size

TABLE I
EFFECTIVENESS RESULTS OF THE TWO BASELINE APPROACHES TRAINED
ON BOTH THE ORIGINAL DATASET AND THE CLEANED DATASET. BETTER
RESULTS ARE OBSERVED ON THE CLEANED DATASET.

Training data Precision Recall F1-score

oCD Original 95.8% 27.6% 42.9%
Cleaned 95.8% 31.6% 47.5%

Just-In-Time Original 958% 49.8% 65.5%
Cleaned 97.0% 51.2% 67.0%

of 128 (64 x 2). The layer number of Bi-GRUs in the edit
sequence encoder and comment encoder is set to 2, while the
layer number of Bi-GRUs in the edit tree encoder and edit
script encoder is set to 1. The layer number and hidden size
of GGNN are set to 8 and 128. The hidden size and head
number of self attention, cross attention, and graph attention
are set to 128 and 4. The dropout rate is set to 0.5.

For detection model learning, we use the Adam opti-
mizer [33] with a 0.0001 learning rate for both the classifier
and discriminator. The hyper-parameters « and (3 in adversarial
training are set to 0.4 and 0.1, respectively. The batch size is
set to 128. We tune these hyper-parameters and select the best
performing classifier based on the validation set.

For compared methods, we use the offline Fraco [34]
provided by Liu et al. [15] as the original Fraco [30] is not
applicable to our scenario. It first uses RefactoringMiner to
detect rename refactorings and then uses Fraco to detect fragile
comment phrases with respect to each rename refactoring. We
re-implement the RandomForest [31] according to the speci-
fication in the paper and discard some unavailable features in
our dataset (7 out of 64) since the source code is unavailable.
We directly reuse the implementations of OCD [15] and Just-
In-Time [16] as provided in the corresponding papers. The
parameters are set as described in their papers when possible.

B. Results and Analysis

1) RQI: Data Cleaning: To answer RQI1, we train the
two latest baseline approaches (i.e., OCD and Just-In-Time)
on both the original OCDDATA and the cleaned OCDDATA,
and then evaluate them on the Verified Test Samples. Table 11
shows the results. We can observe that both approaches
perform significantly better when trained on the cleaned data.
Specifically, compared with the OCD model trained on the
original data, the OCD model trained on the cleaned dataset
relatively improves the Recall and Fl-score by 14.5% and
10.7%, respectively. OCD’s Precision does not change, and
this is mainly because there are still many false negatives in
the cleaned training data. On the other hand, less false positive
noise in the training set makes the trained model better identify
the features of true positives, thus improving the Recall.

Similarly, the Precision, Recall, and F1-score of Just-In-
Time trained on the cleaned data are relatively improved by
1.3%, 2.8%, and 2.3%, respectively. We also observe that Just-
In-Time works better than OCD. These two methods mainly
differ in that OCD does not use the edit tree and thus cannot
learn from the syntactic structure. This result also indicates

TABLE III
EFFECTIVENESS COMPARISON RESULTS ON CLEANED DATASET. THE PROPOSED ADVOC GENERALLY OUTPERFORMS THE EXISTING APPROACHES.

Full Test Set

Verified Test Samples

Precision Recall Fl-score

AUPRC Precision Recall Fl1-score

15.4% 17.2%
13.5% 22.4%
21.6% 31.8%
35.4% 44.7%

19.5%
65.1%
60.2%
60.6%

Fraco
RandomForest
OCD
Just-In-Time

90.2% 22.0% 35.4%
99.1% 21.4% 352%
95.8% 31.6% 47.5%
97.0% 51.2% 67.0%

18.3%
29.4%
34.6%
41.4%

ADVOC 58.8% 41.8% 48.8%

43.7 % 98.7% 58.8% 73.6%

that syntactic information can improve the performance of
obsolete comment detection.

Overall, the above results indicate that the existing machine
learning based obsolete comment detection approaches are
indeed affected by the data quality issues. Additionally, with
0.22% corrected labels and even 15.0% fewer training data,
we can have significantly better effectiveness.

To conclude RQI, we show that data cleaning can signifi-
cantly improve the performance of existing obsolete comment
detection methods.

2) RQ2: Overall Performance: We next compare our ap-
proach ADVOC with the existing baseline approaches on the
cleaned OCDDATA, and Table III shows the results.

We can first observe from the table that the proposed
approach ADVOC generally outperforms the baselines on both
the full test set and the Verified Test Samples. Specifically,
on the full test set, ADVOC is better than all competitors
in Recall, Fl-score, and AUPRC metrics. Compared to the
best competitor Just-In-Time, ADVOC relatively improves the
Recall, Fl-score, and AUPRC by 18.1%, 9.2%, and 5.6%,
respectively. Similar results are observed on the Verified Test
Samples, achieving 14.8% and 9.9% relative improvements on
Recall and F1-score, respectively. Specifically, we observe that
the Precision results on the Verified Test Samples are all close
to 100%. Compared with the relatively lower Precision on
the full test set, this result confirms that there may be many
false negatives in the full test set. This is also the probable
reason that the Precision of ADVOC is a little worse than
Just-In-Time in the full test set. Additionally, since all the
competitors are evaluated on the cleaned training data, and
ADVOC mainly differs from OCD and Just-In-Time in the
data sample encoding and adversarial learning methods, the
results indicate that our algorithmic design could achieve better
effectiveness results than the competitors.

In Table III, we notice that RandomForest performs well in
the Precision metric but degrades much on the Recall metric.
The reason is that RandomForest is designed for specific types
of obsolete comments and cannot accurately detect general
obsolete comments. To further show how different methods
perform on different samples, we show the Venn diagram of
the successfully detected obsolete comments on the Verified
Test Samples in Fig. 5. In total, 344 out of 500 obsolete
comments have been successfully detected. Among all the
methods, ADVOC detects the most obsolete comments (294),
including 37 comments that cannot be detected by other
methods. Among the competitors, Fraco detects 20 obsolete

RandomForest
Fraco

RandomForest

0CD

Just-In-Time

AdvOC 2

Fraco 0 1 2 OCb

20
43

25

18 4

9 26

AdvOC Just-In-Time

Fig. 5. The number of successfully detected obsolete comments by each
approach.

TABLE IV
EFFECTIVENESS COMPARISON RESULTS ON DIVIDED-BY-PROJECT
DATASET. ADVOC IS STILL BETTER.

Precision Recall Fl-score AUPRC

Fraco 36.4% 17.0% 23.1% 27.8%
RandomForest 67.1% 14.4% 23.7% 32.1%
OCD 59.4% 14.0% 22.7% 31.0%
Just-In-Time 53.1% 34.5% 41.8% 38.5%
ADVOC 53.0% 39.6% 45.4% 42.3%

comments that cannot be detected by other methods. Since
Fraco is built upon manually defined rules for specific types
of comments, this result indicates the merit of traditional rule-
based methods. How to complement the power of rule-based
methods in specific scenarios with the versatility of learning-
based methods in general scenarios is left as future work.

As mentioned above, we also test the case when the dataset
is split by project. The results are shown in Table IV. Similar
results to the by time data partition are observed. Specifically,
compared with the best competitor Just-In-Time, ADVOC
relatively improves it by 14.8%, 7.9%, and 9.9% w.r.t. Recall,
Fl-score, and AUPRC, respectively. We can also observe that
deep learning based approaches, i.e., OCD, Just-In-Time, and
ADVOC, perform worse in the by project setting than in the
by time setting, probably because the code semantics and

TABLE V
ABLATION STUDY RESULTS ON CLEANED DATASET. ALL THE THREE EDIT REPRESENTATIONS AND THE ADVERSARIAL LEARNING FRAMEWORK IS
HELPFUL IN IMPROVING THE EFFECTIVENESS.

Full Test Set

Verified Test Samples

Precision Recall Fl-score @~ AUPRC Precision Recall Fl-score

ADVOC,_ 63.5% 34.9% 45.1% 44.0% 98.5% 52.0% 68.1%
ADVOC,,, 59.3% 39.4% 47.3% 43.2% 98.3% 56.4% 71.7%
ADpvOC,,.. 58.4% 36.1% 44.6% 40.4% 98.0% 49.8% 66.0%
ADVOC;CT'Lpt 61.1% 41.1% 49.2% 45.0% 97.6% 56.8% 71.8%
ApvOC 58.8% 41.8% 48.8% 43.7% 98.7% 58.8% 73.6%

comments in different projects vary greatly. In addition, the
Fl-score of OCD decreased from 31.8% to 22.7%, which is
the largest, and the difference between OCD and the other two
methods lies in that OCD only encodes the sequence form of
code changes. This indicates that considering both the edit
tree and the edit script might help to better learn cross-project
features.

To conclude RQ2, with the proposed data sample encoding
module and the adversarial learning module, ADVOC signif-
icantly outperforms the existing baselines.

3) RQ3: Ablation Study: Finally, we analyze the perfor-
mance gain of ADVOC, and the results are shown in Table V.
To be specific, we evaluate the following variants of ADVOC.
ADVOC_, is the variant without adversarial learning, i.e., we
directly train the classifier on the full training set; ADVOC,,
is the variant without modeling edit sequence; ADVOC
the variant without modeling edit tree; ADVOC_,
variant without modeling edit script.

As we can observe from Table V, ADVOC performs better
than the four variants on the Verified Test Samples, indicating
that the four components are all helpful in improving its effec-
tiveness. Among the four variants, ADVOC achieves the most
improvement compared to ADvOC_, and ADvOC,, . (e.g.,
8.1% and 11.5% relative improvements in F1-score). This indi-
cates that our adversarial learning and edit tree representation
are especially important for the obsolete comment detection
problem. On the full test set, ADVOC_,,; , performs slightly
better than ADVOC, and the main performance difference
comes from the Precision metric. Meanwhile, ADVOC_,
achieves the best Precision. These are probably, again, due
to the false negatives in the full test set, and the false negative
noise makes the results on the full test set less reliable than
the results on the Verified Test Samples.

To conclude RQ3, both the adversarial learning module
and the sample encoding module (especially the edit tree
representation) help to improve the effectiveness of ADVOC.

seq
tree 18

seript 18 the

VIII. DISCUSSIONS
A. Threats to Validity

The implementation of our approach and the compared
approaches is the first threat to validity. To reduce this threat,
we directly reuse the implementations provided by the authors
and set the parameters as their papers describe when possible.
For approaches that do not provide any implementation (i.e.,
RandomForest [31]), we re-implement the techniques strictly

following their paper based on widely-used libraries (e.g.,
scikit-learn [35]). Meanwhile, we build our approach based
on existing mature tools/libraries (e.g., GumTree and difflib).

The second threat comes from the proposed heuristic rules
in the label correction stage. When the rules are too strict, only
a small fraction of false positives are detected. Conversely,
when the rules are not strict enough, samples that are not false
positives are detected. This is a trade-off between quality and
quantity, and we choose to first guarantee the quality of the
detected false positives. Specifically, we iteratively perform
rule refinement and manual checking until the samples from
the detected false positives are true false positives.

The assumption based on which we identify reliable samples
may also introduce a threat to validity. Specifically, to identify
reliable samples, we assume that modified docs have been
manually checked by the developer and thus are reliable,
which might not always be true in practice. However, the
proposed adversarial learning framework is quite robust and
it does not require 100% reliable samples to achieve good
results, as confirmed by our experimental results.

Another threat is the mislabeled samples in the test set.
There could be many false negatives in the full test set,
and thus we manually labeled the Verified Test Samples. We
recommend focusing more on the results of the Verified Test
Samples, as the label of each verified sample is endorsed by
at least two of our authors. Within our affordable efforts, we
labeled a balanced set of 1000 samples, and more extensive
labeling work is left as future work.

B. Implications

Implications to other ML4Code tasks: The two key steps
of our approach, i.e., data cleaning and adversarial learning,
are relatively general and have the potential to be applied
to various machine learning for code tasks with data quality
issues. Data cleaning has been extensively studied [20] and
widely used. The error detection rules we summarized may
not be applicable to all jobs, but the workflow (i.e., discovery,
error detection, and error repair) we used and the ideas behind
are universal. Moreover, the adversarial learning framework
can admit vectors outputted by any encoding method. Thus,
it can be used for various types of noisy datasets, as long as
a relatively reliable subset of the full dataset can be identified
(either by manual annotation or human-defined rules).

Use the code change quality estimation work [36] as an ex-
ample. In this work, code changes that have been commented

on during the code review process are regarded as suspicious
code that may have quality issues. Such labeling may introduce
data quality issues (e.g., some comments do not involve code
quality, leading to false positives; some low-quality changes
are not commented on, resulting in false negatives). To this
end, we may first inspect a small portion of the data to
summarize the sources and types of data quality issues, and
define rules to do some corrections. Further, we can apply
the adversarial learning framework by manually identifying a
small set of reliable samples from the whole dataset.
Implications to practice: ADVOC tells whether the com-
ments corresponding to the changed methods are obsolete and
which sentences in the comments need to be updated. Such
capability enables ADVOC to improve developers’ productiv-
ity and, ultimately, code quality to some extent. For example,
one direct application scenario of ADVOC is code review.
ADVOC can be integrated into the existing code review tool to
warn reviewers of commits that result in obsolete comments,
thus preventing the introduction of obsolete comments. Fur-
thermore, ADVOC can be integrated into a standalone tool
that traverses the project’s git history and detects previously
introduced obsolete comments. In this way, we may reduce the
technical debt and improve the maintainability of the project.

IX. RELATED WORK

Obsolete Comment Detection. Various obsolete comment
detection approaches have been proposed [14]-[16], [30], [31],
[37]-[43]. Early proposals used manually defined rules to
detect whether specific types of comments are obsolete (i.e.,
inconsistent with the code). For example, Tan et al. [37]
extracted constraints from locking or calling related comments
based on manually defined rules, and then determined obsolete
comments based on whether the constrains held. Tan ef al. [39]
checked null-pointer related comments in a similar way but
used dynamic analysis. Zhou et al. [14], [42] focused on
parameter usage constraints in the comments and checked
them by using manually defined rules and SMT solvers. Ratol
and Robillard [30] proposed to detect fragile comments caused
by identifier renaming. These rule-based methods are designed
to detect specific types of obsolete comments, and how to
adapt them to general comments is largely open. Our work
can be complementary to the rule-based methods.

Recently, machine learning has been widely used to detect
obsolete comments, and such methods are not limited to
specific comment types. For example, Corazza et al. [40],
Cimasa et al. [41], as well as Rabbi and Siddik [43] determined
the consistency between code and comments with textual
similarity. However, these methods treat code as text, and
thus ignore the unique semantics of code. Later, the just-in-
time obsolete comment detection problem was raised and stud-
ied [15], [16], [31]. These methods make the detection at the
time when code change happens. For instance, Panthaplacke et
al. [16] proposed a neural network model to detect whether
a comment becomes inconsistent as a result of changes to
the corresponding method. Liu et al. [15] also utilized neural
networks to detect obsolete comments and they further updated

the detected obsolete comments with another neural network
model. However, these methods focus on developing more
powerful neural networks, and ignore the quality issues of
the training data from which the neural networks are built.
There also exists research that focuses on the quality issues
of machine learning code or framework [44], [45]. Our work
differs from them and improves the learning-based methods
with special focus on the data quality aspect.

Code/Comment Inconsistency Analysis. Prior studies [12],
[13], [46]-[50] have investigated the inconsistencies between
code and comment from different perspectives. For example,
Fluri et al. [46], [49] investigated to what extent developers
add or adapt comments when they evolve the code. Malik et
al. [47] investigated what attributes lead to function’s comment
updates during evolution. Ibarahim et al. [50] studied the cor-
relation between code-comment inconsistencies and software
bugs. Linares-Vésquez et al. [12] mined a large set of open
source projects, and observed that 17.2% method changes
resulted in comment updates. Wen et al. [13] confirmed that
13%-20% of code changes trigger comment updates.

Comment Generation and Update. Our work is also related
to comment generation and update [8], [9], [21], [24], [S51]-
[62]. For example, Hu ef al. [8], [21] and LeClair et al. [9]
combined AST information and neural networks to generate
comments, and Chen et al. [57] proposed to integrate different
comment generation techniques for different comment types.
As for comment update, Liu et al. [58] updated comment with
deep learning model, Lin et al. [59] proposed a heuristic-based
approach, and Yang et al. [60] integrated deep learning based
approach and heuristic-based approach.

X. CONCLUSIONS

In this paper, we have proposed an obsolete comment
detection approach ADVOC. The focus of ADVOC is on
the data quality aspect, and it consists of a data cleaning
module that corrects some false positive samples, a data
sample encoding module that captures the complex semantics
among code changes and comments, and a detection model
learning module that adopts adversarial learning to handle
false negative samples. Experimental evaluations show that: 1)
existing comment detection methods can be significantly im-
proved by simply applying them on the cleaned training data,
and 2) ADVOC can further outperform the existing methods
based on the proposed data sample encoding and adversarial
learning methods. Future directions include conducting larger
user studies on the predicted results of ADVOC, and applying
the proposed framework to other machine learning based
software engineering tasks.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No. 62025202, 62172199), and the Col-
laborative Innovation Center of Novel Software Technology
and Industrialization. Yuan Yao is the corresponding author.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]
[21]

[22]

(23]

REFERENCES

T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). 1EEE, 2019, pp. 34-45.

Z. Cai, L. Lu, and S. Qiu, “An abstract syntax tree encoding method
for cross-project defect prediction,” IEEE Access, vol. 7, pp. 170 844—
170853, 2019.

T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: distributed
representations of code changes,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2020.

Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang,
“A syntax-guided edit decoder for neural program repair,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 341-353.

N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 202/ [EEE/ACM 43rd
International Conference on Software Engineering (ICSE). 1EEE, 2021,
pp. 1161-1173.

H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with
execution-based backpropagation,” in Proceedings of the 44th Interna-
tional Conference on Software Engineering, 2022, pp. 1506-1518.

X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred api knowledge,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI), 2018,
pp. 2269-2275.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in ICPC, 2018.

A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in 2079
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 1EEE, 2019, pp. 795-806.

W. Liang, G. A. Tadesse, D. Ho, F-F. Li, M. Zaharia, C. Zhang, and
J. Zou, “Advances, challenges and opportunities in creating data for
trustworthy ai,” Nature Machine Intelligence, pp. 1-9, 2022.

D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in 2013 21st international conference on program
comprehension (icpc). leee, 2013, pp. 83-92.

M. Linares-Vasquez, B. Li, C. Vendome, and D. Poshyvanyk, “How do
developers document database usages in source code?(n),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 1EEE, 2015, pp. 36-41.

F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). 1EEE,
2019, pp. 53-64.

Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing apis documentation and code to detect directive defects,”
in 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). 1EEE, 2017, pp. 27-37.

Z. Liu, X. Xia, D. Lo, M. Yan, and S. Li, “Just-in-time obsolete comment
detection and update,” IEEE Transactions on Software Engineering,
2021.

S. Panthaplackel, J. J. Li, M. Gligoric, and R. J. Mooney, “Deep just-
in-time inconsistency detection between comments and source code,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 1, 2021, pp. 427-435.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.
“The original OCDData,” https://drive.google.com/drive/folders/
1FKhZTQzkj-QpTdPE9f_L9Gn_pFP_EdBi.

“The AdvOC Repo,” https://github.com/SoftWiser-group/AdvOC.

I. F. Ilyas and X. Chu, Data cleaning. Morgan & Claypool, 2019.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, no. 3, pp. 2179-2217, 2020.

W. Cheng, P. Hu, S. Wei, and R. Mo, “Keyword-guided abstractive code
summarization via incorporating structural and contextual information,”
Information and Software Technology, vol. 150, p. 106987, 2022.

“The difflib documentation,” https://docs.python.org/3/library/difflib.
html.

[24]

[25]

[26]

(271

(28]

[29]

(30]

[32]

(33]

[34]
(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

S. Panthaplackel, P. Nie, M. Gligoric, J. J. Li, and R. Mooney, “Learn-
ing to update natural language comments based on code changes,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 1853—1868.

J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-
grained and accurate source code differencing,” in Proceedings of the
IEEE/ACM international conference on Automated software engineering
(ASE), 2014, pp. 313-324.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv, 2014.

Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.
[Online]. Available: http://arxiv.org/abs/1511.05493

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems (NeurIPS), 2017, pp. 5998-6008.
V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber,
“Global relational models of source code,” in International conference
on learning representations, 2019.

I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2017, pp. 112-122.

Z. Liu, H. Chen, X. Chen, X. Luo, and F. Zhou, “Automatic detection of
outdated comments during code changes,” in 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), vol. 1.
IEEE, 2018, pp. 154-163.

K. Boyd, K. H. Eng, and C. D. Page, “Area under the precision-recall
curve: point estimates and confidence intervals,” in Joint European
conference on machine learning and knowledge discovery in databases.
Springer, 2013, pp. 451-466.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

“The offline Fraco Repo,” https://github.com/Tbabm/FracoUpdater.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825-2830, 2011.

Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder,
J. Green, A. Svyatkovskiy, S. Fu et al., “Automating code review
activities by large-scale pre-training,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 1035-1047.

L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or bad
comments?*,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, 2007, pp. 145-158.

N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment of
source code comments: the javadocminer,” in International Conference
on Application of Natural Language to Information Systems. Springer,
2010, pp. 68-79.

S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@ tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation. 1EEE, 2012, pp. 260-269.

A. Corazza, V. Maggio, and G. Scanniello, “Coherence of comments
and method implementations: a dataset and an empirical investigation,”
Software Quality Journal, vol. 26, no. 2, pp. 751-777, 2018.

A. Cimasa, A. Corazza, C. Coviello, and G. Scanniello, “Word embed-
dings for comment coherence,” in 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). 1EEE, 2019,
pp. 244-251.

Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella, and H. Gall,
“Automatic detection and repair recommendation of directive defects in
java api documentation,” IEEE Transactions on Software Engineering,
vol. 46, no. 9, pp. 1004-1023, 2020.

F. Rabbi and M. S. Siddik, “Detecting code comment inconsistency using
siamese recurrent network,” in Proceedings of the 28th International
Conference on Program Comprehension, 2020, pp. 371-375.

D. Cheng, C. Cao, C. Xu, and X. Ma, “Manifesting bugs in machine
learning code: An explorative study with mutation testing,” in 20/8 IEEE
International Conference on Software Quality, Reliability and Security
(ORS). 1EEE, 2018, pp. 313-324.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

X. Sun, T. Zhou, R. Wang, Y. Duan, L. Bo, and J. Chang, “Experience
report: investigating bug fixes in machine learning frameworks/libraries,”
Frontiers of Computer Science, vol. 15, no. 6, pp. 1-16, 2021.

B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE 2007). 1EEE,
2007, pp. 70-79.

H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and A. E. Hassan,
“Understanding the rationale for updating a function’s comment,” in
2008 IEEE International Conference on Software Maintenance. 1EEE,
2008, pp. 167-176.

S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu et al., “Deepintent: Deep icon-behavior learning for detect-
ing intention-behavior discrepancy in mobile apps,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019, pp. 2421-2436.

B. Fluri, M. Wiirsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367-394, 2009.

W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan, “On
the relationship between comment update practices and software bugs,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2293-2304, 2012.
G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering (ASE), 2010, pp. 43-52.

E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for
automatic comment generation,” in 2015 IEEE 22nd International Con-

ference on Software Analysis, Evolution, and Reengineering (SANER).

IEEE, 2015, pp. 380-389.
M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

network for extreme summarization of source code,” in Proceedings
of International conference on machine learning (ICML), 2016.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL), 2016.
Y. Zhou, X. Yan, W. Yang, T. Chen, and Z. Huang, “Augmenting java
method comments generation with context information based on neural
networks,” Journal of Systems and Software, vol. 156, pp. 328-340,
2019.

S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit message
generation for source code changes,” in Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 2019.

Q. Chen, X. Xia, H. Hu, D. Lo, and S. Li, “Why my code summarization
model does not work: Code comment improvement with category pre-
diction,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 2, pp. 1-29, 2021.

Z. Liu, X. Xia, M. Yan, and S. Li, “Automating just-in-time comment
updating,” in Proceedings of the 35th IEEE/ACM International Confer-
ence on Automated Software Engineering, 2020, pp. 585-597.

B. Lin, S. Wang, K. Liu, X. Mao, and T. F. Bissyandé, “Automated
comment update: How far are we?” in 2021 IEEE/ACM 29th Interna-
tional Conference on Program Comprehension (ICPC). IEEE, 2021,
pp. 36-46.

Z. Yang, J. W. Keung, X. Yu, Y. Xiao, Z. Jin, and J. Zhang, “On the
significance of category prediction for code-comment synchronization,”
ACM Transactions on Software Engineering and Methodology, 2021.
H. Zhu, X. He, and L. Xu, “Hatcup: Hybrid analysis and attention based
just-in-time comment updating,” arXiv preprint arXiv:2205.00600, 2022.
S. Yang, Y. Wang, Y. Yao, H. Wang, Y. Ye, and X. Xiao, “Describectx:
context-aware description synthesis for sensitive behaviors in mobile
apps,” in Proceedings of the 44th International Conference on Software
Engineering (ICSE), 2022, pp. 685-697.

