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Maŕıa, for teaching me the wonders of positive thinking; my brother Luis Eduardo, master of all
negotiations, for making me laugh when I needed it the most; Alicia, Gloria, and Ernesto, for
spoiling me rotten; Marcela and Dave, for welcoming me into their home. I especially thank my
family for their constant encouragement and support, and for believing in me, unconditionally.
Special thanks to Sebastián, for providing me with smiles and ‘piruetas’, which fueled me in the
writing of this dissertation. I would also like to thank Valerio Pastro, for many great conversations,
both research and non-research related; Emily Murray, for having an endless supply of tea, prosecco,
and good advice; and Chichi Wang, for distracting me with fascinating stories, both true and
fictional.

Most importantly, I would like to thank Kenji, for standing by me, unflinchingly, through all
my insecurities, late nights, and endless travel, and for celebrating with me every published paper
and every new thing learned.

This dissertation is based on two works, co-authored with Eran Tromer and Vinod Vaikun-
tanathan [LTV11, LTV12]. The first was published in EUROCRYPT 2012 [AJL+12], merged with
the work of Asharov, Jain, and Wichs [AJW11]. The second was published in STOC 2012. I would
like to thank all of my co-authors for their enthusiasm and hard work.

vii





Abstract

In today’s world, we store our data and perform expensive computations remotely on powerful
servers (a.k.a. “the cloud”) rather than on our local devices. In this dissertation we study the
question of achieving cryptographic security in the setting where multiple (mutually distrusting)
clients wish to delegate the computation of a joint function on their inputs to an untrusted cloud,
while keeping these inputs private. We introduce two frameworks for modeling such protocols.

1. The first, called cloud-assisted multiparty computation (cloud-assisted MPC), builds on the
standard notion of MPC to incorporate the concept of delegation. In particular, since the
cloud is expected to perform the computation of the function, our definition requires the
communication complexity of the protocol, as well as the computation time of all clients to
be (essentially) independent of the complexity of the function.

2. The second, called on-the-fly MPC, builds on the notion of cloud-assisted MPC and further
requires that the clients be involved only when initially uploading their input to the cloud,
and in a final phase when outputs are revealed. In particular, this allows the server to
dynamically choose functions (and subsets of data on which to evaluate these functions) “on-
the-fly”, and evaluate them without requiring any interaction with the clients. The only
interaction required takes place in the final phase after the computation has been completed,
when the clients must retroactively approve both the chosen functions, and the subsets of
data upon which these functions were evaluated.

We construct cloud-assisted and on-the-fly MPC protocols using fully homomorphic encryption
(FHE). However, FHE requires inputs to be encrypted under the same key; we extend it to the
multiparty setting in two ways:

1. We introduce the notion of threshold FHE : fully homomorphic encryption that allows the
clients to jointly generate a common public key (whose corresponding secret key is shared
among them), as well as decrypt a ciphertext under this public key without learning any-
thing but the plaintext. Using threshold FHE, we show how to construct an efficient cloud-
assisted MPC protocol. We construct threshold FHE using (a modification of) the Brakerski-
Vaikuntanathan (ring-based) FHE scheme; however our ideas extend to many other lattice-
based FHE schemes in the literature.

2. We introduce the notion of multikey FHE : fully homomorphic encryption that allows the cloud
to perform homomorphic evaluation on ciphertexts encrypted under different and independent
keys. We show a construction of on-the-fly MPC using multikey FHE, and construct a
multikey FHE scheme based on NTRU encryption. We highlight that it was previously not
known how to make NTRU fully homomorphic, even for a single key. Therefore, we view the
construction of (multikey) FHE from NTRU encryption as a main contribution of independent
interest.
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Chapter 1

Introduction

We are fast approaching a new digital era in which we store our data and perform our expensive
computations remotely, on powerful “cloud” servers, instead of locally, on our personal devices.
This general model of cloud computing offers numerous advantages in costs and functionality. In
particular, users are able to delegate expensive computations on their data, obtaining the desired
output with very limited computation cost. The same applies when multiple clients, using the same
cloud provider, wish to compute a function on their joint data.

When the client data is sensitive and the cloud server is untrusted, the problem of privately
delegating computation on this data becomes more complex. In the single-client setting, fully
homomorphic encryption [RAD78, Gen09b] gives a simple template for outsourcing computation.
In this dissertation we study the analogous multi-client problem of privately delegating the joint
computation of a function on the data of multiple mutually distrusting clients.

1.1 Overview of Results

We introduce two new notions of secure multiparty computation (MPC) [GMW87, BGW88, CCD88]
that model the setting of delegation of multiparty computation to a powerful cloud server.

1.1.1 Cloud-Assisted MPC

The first new notion, which we call cloud-assisted MPC, imposes certain performance requirements
on the protocol. In particular, it requires the communication complexity of the protocol, as well as
the computation time of all clients, to be essentially independent of the complexity of the the desired
computation. On the other hand, it allows the computation time of the server to be polynomial
in the complexity of the function. Thus, the server is guaranteed to do all the “heavy lifting”.
We believe this captures the idea of delegating the entire computation to the server. We refer the
reader to Section 3.1 for a formal definition.

Construction. Following Gentry’s blueprint for constructing MPC from FHE, we are able to
show an efficient construction of cloud-assisted MPC from threshold FHE : fully homomorphic
encryption that allows parties to efficiently compute a joint public key pk from their individual
public keys, and which allows efficient distributed decryption of a ciphertext encrypted under this
joint public key pk.

We further show how to construct threshold FHE based on the Ring-LWE assumption of
Lyubashevsky, Peikert, and Regev [LPR10]. For this, we use (a modification of) the Brakerski-
Vaikuntanathan FHE scheme [BV11b]. We remark that our ideas are fairly general and can be
extended to many other lattice-based FHE schemes in the literature [BV11a, BV11b, BGV12,
Bra12, GSW13].
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The following theorem gives an informal description of our results. See Chapter 4 for a formal
theorem.

Theorem 1.1.1 (Informal). There exists a cloud-assisted MPC protocol in the CRS-model with
the following properties:

• Runs in 4 rounds.

• Achieves security against malicious corruptions of an arbitrary subset of clients and possibly
the server.

• The communication complexity of the protocol and the computation time of the clients is
polylogarithmic in the size of the computation, and linear in the total size of the inputs and
the size of the output.

• The computation time of the server is polynomial in the size of the circuit.

1.1.2 On-the-Fly MPC

We introduce a second new notion of MPC called on-the-fly MPC, which makes the same per-
formance requirements as cloud-assisted MPC but makes additional functional requirements. In
particular, the server must be able to dynamically choose functions “on-the-fly” and evaluate these
functions on any subset of the clients’ inputs, without interacting with the clients. The clients need
only approve these choices retroactively, once the computation has taken place.

An on-the-fly MPC protocol is divided into two phases, an offline and an online phase. In the
offline phase, clients send their inputs to the server, who stores them indefinitely. In this phase,
clients only communicate with the server and need not know that other clients exist. An online
phase begins once a a function and subset of inputs have been chosen. In this phase, we require the
computation of the clients and the communication complexity to be (essentially) independent of
the complexity of the function being computed, as before. Additionally, we require these measures
to only depend on the size of the subset of inputs used in the computation, and not on the overall
number of clients, which can potentially be very large.

Construction. We show how to construct on-the-fly MPC using multikey FHE : fully homomor-
phic encryption that is able to perform homomorphic evaluation on ciphertexts encrypted under
different, independent keys. This is a new and stronger notion of FHE; standard FHE does not
immediately satisfy this property.

Our main contribution is showing that for any number of keys N , there exists a multikey fully
homomorphic encryption scheme that is able to handle homomorphic evaluation of ciphertexts
encrypted under N keys. Our construction is based on the NTRU encryption scheme of Hoffstein,
Pipher, and Silverman [HPS98], with the modifications of Stehlé and Steinfeld [SS11b]. We view
the construction of this (multikey) FHE as an important contribution of independent interest, and
refer the reader to Chapter 5 for more details.

Theorem 1.1.2 (Informal). For all N ∈ N, there exists a fully homomorphic encryption scheme
that can perform homomorphic evaluation on ciphertexts encrypted under at most N different keys.
The size of the keys and ciphertexts in the scheme grow polynomially with N .
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Using this construction of multikey FHE, we are able to build on-the-fly MPC. The following
theorem gives an informal description of our results. See Chapter 6 for a formal theorem.

Theorem 1.1.3 (Informal). There exists an on-the-fly MPC protocol in the CRS-model with the
following properties:

• Achieves security against malicious corruptions of an arbitrary subset of clients and possibly
the server.

• The offline phase runs in one (asynchronous) round of unidirectional communication from
the parties to the server. The online phase runs in 5 rounds.

• The communication complexity of the online phase and the computation time of the computing
parties therein is polylogarithmic in the size of the computation and the total size of the inputs,
and linear in the size of their own input and the size of the output.

• The computation time of the server is polynomial in the size of the circuit.

1.2 Cloud-Assisted MPC

As described in Section 1.1.1, we formalize the efficiency requirements imposed by the notion of
delegating multiparty computation, by extending the notion of MPC to what we call cloud-assisted
MPC. In cloud-assisted MPC, the communication of the protocol, as well as the computation time
of all clients is required to be essentially1 independent of the circuit-complexity of the function being
computed. On the other hand, the computation time of the server is allowed to be polynomial in
the size of the circuit. We believe this captures the idea of delegating the entire computation to
the server.

Single-Client Delegation of Computation. Consider the simplified setting in which a single
client wants to privately delegate to a server the computation of a function on her input. Fully ho-
momorphic encryption (FHE) [RAD78, Gen09b] provides a mechanism for the client to do precisely
this. In short, the client samples an encryption key, encrypts her input, and sends the result to
the server along with a public evaluation key, if one is required. The server then homomorphically
evaluates the desired function on the ciphertext and returns the result to the client, who can de-
crypt it to obtain the unencrypted output of the computation. As long as the server is semi-honest,
this basic construction provides privacy and correctness. When the server is malicious, techniques
from verifiable computation [GGP10, CKV10, AIK10] and succinct argument systems [Kil92, Kil95,
Mic94, GKR08, GLR11, BCCT12, BCCT13, Gro10, Lip12, GGPR13, PHGR13, Lip13] can be em-
ployed to guarantee that the server performs the computation as prescribed. Moreover, since the
groundbreaking result of Gentry [Gen09b, Gen09a], many improvements and new constructions
of FHE have appeared in the literature [vDGHV10, BV11b, BV11a, BGV12, Bra12, BLLN13,
GSW13, BV14], making this a feasible solution. The question we pose is the following:

Question 1: Is it possible to achieve cloud-assisted MPC by extending this simple template to the
setting where multiple parties wish to delegate the computation of a joint function on their inputs?

1We allow these measures to depend polylogarithmically on the circuit-size of the function. This is necessary in
order to guarantee security against a malicious server.
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MPC from FHE: Gentry’s Blueprint. Gentry [Gen09a] showed that the answer to this ques-
tion is yes. In short, he described how to construct an MPC protocol for any efficiently computable
function, using FHE. Gentry’s construction runs in 4 steps:

Step 1: Parties run a generic MPC protocol to obtain a public key pk and an evaluation key ek
for an FHE scheme, as well as secret shares sk1, . . . , skN of a corresponding secret key sk.

Step 2: Each party encrypts their input mi under public key pk and broadcasts the resulting
ciphertext ci.

Step 3: Each party individually and locally performs the homomorphic evaluation
c

def= Eval(ek, C, c1, . . . , cN )

Step 4: Parties run a generic MPC protocol to decrypt c using their shares ski, and obtain the
output of the computation.

A simple observation is that the homomorphic computation in Step 3 can be performed by a
single party, the server or “cloud”. Gentry’s construction can then viewed as one in which the
multiple clients emulate the client in the single-client protocol described above.

Main Questions. Gentry’s construction shows how to achieve cloud-assisted MPC using FHE
and generic MPC techniques, giving a positive answer to Question 1. While the construction guar-
antees that the communication complexity of the protocol and the computation time of all parties
except the server, is essentially independent of the complexity of the function being computed, the
addition of generic MPC has two downsides: first, these measures can still be quite high, and sec-
ond, the round complexity of the overall protocol can be very large. We therefore ask the following
two questions:

Question 2: Is it possible to achieve cloud-assisted MPC without using generic MPC techniques?

Question 3: Can we further reduce the round complexity of the protocol? In particular, can we
achieve constant round complexity?

As one of our main results, we give a positive answer to both of these questions. The following
theorem gives an informal description of the result, and in Section 1.2.1 we give an overview of the
techniques used to achieve it. In Chapter 4, we show a detailed construction and a give a formal
theorem.

Theorem 1.2.1 (Informal). There exists a cloud-assisted MPC protocol in the CRS-model with
the following properties:

• Runs in 4 rounds.

• Achieves security against malicious corruptions of an arbitrary subset of clients and possibly
the server.

• The communication complexity of the protocol and the computation time of the clients is
polylogarithmic in the size of the computation, and linear in the total size of the inputs and
the size of the output.

• The computation time of the server is polynomial in the size of the circuit.
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1.2.1 Our Techniques

We construct the protocol described in Theorem 1.2.1 by leveraging specific key-homomorphic
properties of (Ring-)LWE-based FHE schemes [BV11a, BV11b, BGV12, Bra12, GSW13].2 For
example, in Ring-LWE based schemes we work over a polynomial ring. A system parameter is
created by sampling a uniformly random ring element a. The secret key is a “small” ring element s,
and the public key is computed by sampling a “small” noise element e and computing p = [as + e]q,
where [ · ]q denotes coefficient-wise reduction modulo q into the set

{
−

⌊ q
2

⌋
, . . . ,

⌊ q
2

⌋}
.

A simple observation yields the following fact: Summing two public keys under the same system
parameter yields a valid public key for the sum of the underlying secret keys: if p1 = [as1 + x1]q
and p2 = [as2 + x2]q are two public keys, then:

[p1 + p2]q = [a(s1 + s2) + (x1 + x2)]q

Therefore [p1 + p2]q is a valid public key for secret key s1 + s2.

Joint-Key Computation. Our main observation is that using a key-homomorphic FHE scheme
in Gentry’s blueprint allows us to bypass the expensive MPC protocol required to compute a joint
public key (Step 1). Instead, each party computes its own key pair (pi, si), independent of all
others, and broadcasts its public key pi. In Step 2, the parties can add all public keys to obtain
the joint public key p = [p1 + . . . + pN ]q, whose corresponding joint secret key s = s1 + . . . + sN , is
additively secret-shared among them.

When the FHE scheme does not require the use of an evaluation key to perform homomorphic
operations, as in the case of the recent scheme of Gentry, Sahai, and Waters [GSW13], computing
a joint public key suffices. However, all other FHE schemes being considered [BV11a, BV11b,
BGV12, Bra12] do use an evaluation key. For these we also require a method for computing a
joint evaluation key. This turns out to be a trickier problem, for which we currently do not know
a non-interactive solution. However, we show a 2-round protocol to achieve it. We remark that in
both cases, the resulting MPC protocol has the same number of rounds, namely 4.

Distributed Decryption. We take advantage of the same linear structure of the scheme to do
very efficient (1-round) distributed decryption in the style of Bendlin and Damg̊ard [BD10]. This
allows us to further bypass the expensive MPC protocol required to perform joint decryption (Step
3). In essence, to jointly decrypt a ciphertext c, each party broadcasts a decryption share µi. The
ciphertext can be combined with all decryption shares to obtain the underlying plaintext.

(Informal) Protocol: Our protocol can then be informally summarized as follows:

Round 1: Each party samples independent key tuples (pi, si) and broadcasts the public key pi.
If necessary, it also broadcasts the first round in the 2-round protocol for computing the joint
evaluation key.

Round 2: Each party computes the joint public key p, encrypts their input under p and broad-
casts the ciphertext. If necessary, it also broadcasts the second round in the 2-round protocol
for computing the joint evaluation key.

2Key-homomorphic properties are by no means unique to lattice-based schemes; many number-theoretic construc-
tions exhibit the same structure, e.g. the ElGamal encryption scheme [Gam84]. However, this property is especially
useful when displayed in fully homomorphic schemes, as we will demonstrate in this work.
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Round 3: The server computes the joint evaluation key, and performs the homomorphic evalua-
tion. When finished, it broadcasts the evaluated ciphertext c to all parties.

Round 4: Each party computes and broadcasts its decryption share µi with its individual secret
key si.

Local Computation: Each party combines the ciphertext c with all the decryption shares to
obtain the output of the computation.

Security. We show that the above protocol is secure against semi-malicious adversaries [AJW11,
AJL+12], who follow the protocol specifications (like semi-honest adversaries) but choose their
random coins from an arbitrary distribution (like malicious adversaries). We then show how to
convert the protocol into one that is secure against malicious corruptions by using the AJW com-
piler [AJW11, AJL+12] from semi-malicious to malicious security, which is based on the GMW
compiler [GMW87] from semi-honest to malicious security. This requires the parties to prove in
zero-knowledge that their message at every round is consistent with the protocol transcript so far.
To obtain security against a malicious server, we must also rely on techniques from verifiable com-
putation [GGP10, CKV10, AIK10] or succinct argument systems [Kil92, Kil95, Mic94, GKR08,
GLR11, BCCT12, BCCT13, Gro10, Lip12, GGPR13, PHGR13, Lip13] to ensure that the server
performs the homomorphic computation correctly.

This approach differs from the one presented in the original version of our work [LTV11] and
instead follows the outline of Asharov et al. [AJW11, AJL+12]. The main difference is in the
realization that the protocol is already secure against corrupt parties that choose their random
coins adversarially. In our previous work [LTV11], we used unnecessary coin-flipping techniques in
order to guarantee this.

Other Instantiations. We remark that the ideas behind our protocol are fairly general and can
be instantiated with a number of different existing FHE schemes [BV11a, BV11b, BGV12, Bra12,
GSW13]. For clarity of presentation, we choose to present it based on the Ring-LWE-based FHE
scheme of Brakerski and Vaikuntanathan [BV11b], using relinearization/key-switching [BV11a] and
the noise-management technique of Brakerski [Bra12]. The scheme resulting from the combination
of these techniques has already been described by Fan and Vercauteren [FV12].

1.3 On-The-Fly MPC

Having shown how to construct cloud-assisted MPC allowing several mutually distrusting parties
to delegate a computation on their joint inputs to an untrusted but powerful server, we consider a
more stringent model that has the same efficiency requirements, but allows more flexibility in the
computation of functions.

In on-the-fly MPC, clients originally upload their (possibly very large) inputs to the cloud in
an offline stage, before any computation takes place, before even a decision to compute on this
data is made. This captures the notion of delegation of storage, in which users store their data
remotely on “cloud” servers rather than locally on personal computers. In this offline stage, clients
are not aware of other parties uploading their data to the server; in particular, we require that no
interaction between clients take place at this stage. We are interested in the setting in which the
universe of clients that upload their data to the server is large, in the order of millions or more.
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After this initial offline phase, the server can dynamically select functions “on-the-fly” and
evaluate them on the clients’ inputs without requiring any interaction from the clients. Indeed, we
require that the clients be able to be offline or “asleep” during the entire computation, and only
“wake-up” to retroactively approve the function that was computed on their input. Moreover, the
selected function can be computed on the inputs of any subset of the universe of parties, and the
complexity of the resulting online protocol must only depend on the size of the subset, not on the
size of the universe, which as we said can be quite large.

Having defined the model (see Section 3.2 for a more formal definition), the question becomes:

Question 4: Can we construct an MPC protocol that satisfies the strict requirements of on-the-fly
MPC?

As one of our a main contributions, we answer this question positively : we construct an on-the-
fly MPC protocol for any efficiently-computable function. The following theorem gives an informal
description of the result, and in the remainder of this section we give an overview of the techniques
used to achieve it. In Chapter 6, we show a detailed construction and a give a formal theorem.

Theorem 1.3.1 (Informal). There exists an on-the-fly MPC protocol in the CRS-model with the
following properties:

• Achieves security against malicious corruptions of an arbitrary subset of clients and possibly
the server.

• The offline phase runs in one (asynchronous) round of unidirectional communication from
the parties to the server. The online phase runs in 5 rounds.

• The communication complexity of the online phase and the computation time of the computing
parties therein is polylogarithmic in the size of the computation and the total size of the inputs,
and linear in the size of their own input and the size of the output.

• The computation time of the server is polynomial in the size of the circuit.

Having constructed on-the-fly MPC with a constant number of rounds in the online stage, it is
natural to ask if the optimal round complexity is feasible:

Question 5: Is it possible to obtain the optimal solution of a protocol with a completely non-
interactive online phase (namely, a protocol where the users do not ever have to talk to each other,
even in the decryption phase)?

We know from the work of Halevi, Lindell, and Pinkas [HLP11] that in the non-interactive
setting, the server can always evaluate the circuit multiple times, keeping some parties inputs but
plugging in fake inputs of its choosing for the other parties. However, even if we accept this as
the ideal functionality, we show that a non-interactive online phase cannot be achieved by drawing
on the impossibility of general program obfuscation as a virtual black-box with single-bit output
[BGI+01]. Thus, our notion is qualitatively “the best possible” in terms of interaction. Our
techniques in showing this negative result are inspired by those of van Dijk and Juels [vDJ10]. We
refer the reader to Section 6.3 for more details.

Theorem 1.3.2. There does not exist an on-the-fly MPC protocol that displays a completely non-
interactive online phase.
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1.3.1 Overview of our Construction.

Our construction of “on-the-fly” MPC is loosely based on Gentry’s blueprint for constructing MPC
from FHE [Gen09a], described in Section 1.2. In the first step, during the offline phase, the parties
must send their inputs to the server. To guarantee privacy of their inputs, the natural approach
is for the parties to encrypt them. The question becomes, encrypt them under what key? Recall
that in this phase, no interaction can take place between clients, so Gentry’s approach and our
optimization using threshold FHE does not offer a solution. The only apparent solution is to have
each party sample its own independent encryption key and encrypt their input under this key.
However, this poses a problem in the online phase when the server must homomorphically evaluate
a function on ciphertexts encrypted under different and independent keys, without interacting with
the clients. Standard FHE does not guarantee successful evaluation in this setting. We thus ask
the following question.

Question 6: Does there exist an FHE scheme that can homomorphically evaluate functions on
ciphertexts encrypted under different, independent keys?

The answer to this question is yes. In particular, we show that any FHE scheme is inherently
a multikey FHE for a constant number of keys (in the security parameter), i.e. it can homomor-
phically evaluate functions on ciphertexts encrypted under at most a constant number of keys.3

Furthermore, we show that the Ring-LWE based FHE scheme of Brakerski and Vaikuntanathan
[BV11b] is multikey homomorphic for a logarithmic number of keys, but only for circuits of log-
arithmic depth. This arises from the fact that when multiple keys are introduced, it is no longer
clear how to use relinearization or squashing to go beyond somewhat homomorphism. We refer the
reader to Section 5.2 for more details.

While these results are nice, to construct on-the-fly MPC we need more: we need a multikey
FHE that can evaluate ciphertexts encrypted under any number of keys. This is because in the
MPC setting, the number of parties N is fixed and the security parameter of the scheme can be at
most polynomial in N . Thus, we ask:

Question 7: Does there exist a multikey FHE that can perform homomorphic evaluations on
ciphertexts encrypted under any number of keys?

One of the most important contributions of this dissertation is giving a positive (but partial)
answer to this question. We construct a multikey FHE for any number of keys based on the
(modified) NTRU encryption scheme [HPS98, SS11b]. However, our construction requires a-priori
knowledge of the number of keys; removing this dependence remains an interesting and seemingly
challenging open problem.

The following theorem gives an informal description of the result, and in Section 1.3.2 we give
an overview of the techniques used to achieve it. In Section 5.3, we give a detailed construction
and show a formal theorem.

Theorem 1.3.3 (Informal). For all N ∈ N, there exists a fully homomorphic encryption scheme
that can perform homomorphic evaluation on ciphertexts encrypted under at most N different keys.
The size of the keys and ciphertexts in the scheme grow polynomially with N .

3This construction was originally suggested to us by an anonymous STOC 2012 reviewer; we include it here for
completeness.
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This restriction translates directly to our on-the-fly protocol: an a-priori bound on the number
of computing parties (but not on the size of the universe) must be known a-priori.

1.3.2 (Multikey) Fully Homomorphic Encryption from NTRU

The starting point for our main construction of multikey FHE is the NTRU encryption scheme of
Hoffstein, Pipher, and Silverman [HPS98], with the modifications of Stehlé and Steinfeld [SS11b].
NTRU encryption is one of the earliest lattice-based cryptosystems, together with the Ajtai-Dwork
cryptosystem [AD97] and the Goldreich-Goldwasser-Halevi cryptosystem [GGH97]. One of our
most important contributions is to show that NTRU can be made fully homomorphic (for a single
key)4 and moreover, that the resulting scheme can handle homomorphic evaluations on ciphertexts
encrypted under any number of different and independent keys.

We find this contribution particularly interesting because NTRU was originally designed to be an
efficient public-key encryption scheme, meant to replace RSA in applications where computational
efficiency is at a premium (e.g. in applications that run on smart cards and embedded systems).
Although the transformation to fully homomorphic encryption degrades the efficiency of the scheme,
we believe it to be a leading candidate for a practical FHE scheme. Therefore, we view this as an
important contribution of independent interest.

In this section we give an overview of our construction, and refer the reader to Section 5.3 for
more details.

NTRU Encryption. We describe the modified NTRU scheme of Stehlé and Steinfeld [SS11b],
which is based on the original NTRU cryptosystem [HPS98]. The scheme is parametrized by the
ring R

def= Z[x]/〈xn + 1〉, where n is a power of two, an odd prime number q, and a B-bounded
distribution χ over R, for B � q. By “B-bounded”, we mean that the magnitude of the coefficients
of a polynomial sampled from χ is guaranteed to be less than B. We define Rq

def= R/qR, and
once again use [ · ]q to denote coefficient-wise reduction modulo q into the set

{
−

⌊ q
2

⌋
, . . . ,

⌊ q
2

⌋}
.

• Keygen(1κ): Key generation samples “small” polynomials f ′, g ← χ ands sets f
def= 2f ′ + 1

so that f (mod 2) = 1. If f is not invertible in Rq, it resamples f ′. Otherwise, it computes
the inverse f−1 of f in Rq and sets

sk = f and pk =
[
2gf−1

]
q

• Enc(pk,m): To encrypt a bit m ∈ {0, 1}, the encryption algorithm samples “small” polyno-
mials s, e← χ, and outputs the ciphertext

c = [hs + 2e + m]q

• Dec(sk, c): To decrypt a ciphertext c, the decryption algorithm computes µ = [fc]q and
returns µ (mod 2).

4The observation that NTRU can be made single-key fully homomorphic was made concurrently by Gentry et
al.[GHL+11].
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Correctness follows from a few simple observations. First note that [fc]q = [2gs + 2fe + fm]q.
Furthemore, since the elements g, s, f, e were all sampled from a B-bounded distribution and B � q,
the magnitude of the coefficients in 2gs + 2fe + fm is smaller than q/2, so there is no reduction
modulo q: in other words, [2gs + 2fe + fm]q = 2gs + 2fe + fm. Therefore, µ = 2gs + 2fe + fm.
Taking modulo 2 yields the message m since by construction, f ≡ 1 (mod 2).

Multikey Homomorphism. We now briefly describe the (multikey) homomorphic properties of
the scheme and the challenges encountered when converting it into a fully homomorphic encryption
scheme.

Let c1 = [h1s1 + e1 + m1]q and c2 = [h2s2 + e2 + m2]q be ciphertexts under two different

keys h1 =
[
2g1f

−1
1

]
q

and h2 =
[
2g2f

−1
2

]
q
, respectively. We claim that cadd

def= [c1 + c2]q and

cmult
def= [c1c2]q decrypt to m1 + m2 and m1m2 respectively, under the joint secret key f1f2.

Indeed, notice that:

f1f2(c1 + c2) = 2 (f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2) + f1f2(m1 + m2)
= 2eadd + f1f2(m1 + m2)

for a slightly larger noise element eadd. Similarly,

f1f2(c1c2) = 2(2g1g2s1s2 + g1s1f2(2e2 + m2) + g2s2f1(2e1 + m1)+
f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)

= 2emult + f1f2(m1m2)

for slightly larger noise element emult. This shows that the ciphertexts cadd
def= [c1 + c2]q and

cmult
def= [c1c2]q can be correctly decrypted to the sum and the product of the underlying messages,

respectively, as long as the error does not grow too large.
Extending this to circuits, we notice that the secret key required to decrypt a ciphertext c

that is the output of a homomorphic evaluation on ciphertexts encrypted under N different keys,

is
N∏

i=1

fdi
i , where di is the degree of the ith variable in the polynomial function computed by the

circuit. Thus, decrypting a ciphertext that was the product of a homomorphic evaluation requires
knowing the circuit! This is unacceptable even for somewhat homomorphic encryption.

We employ the relinearization technique of Brakerski and Vaikuntanathan [BV11a], to essen-
tially reduce the degree from di to 1, so that the key needed to decrypt the evaluated ciphertext is

now
N∏

i=1

fi. This guarantees that decryption is dependent on the number of keys N but indepen-

dent of the circuit computed. After using relinearization, we can show that the resulting scheme is
multikey somewhat homomorphic for ≈ nδ keys and circuits of depth ≈ log log q − δ log n for any
δ ∈ (0, 1).

From (Multikey) Somewhat to Fully Homomorphic Encryption. Once we obtain a (mul-
tikey) somewhat homomorphic encryption scheme, we can apply known techniques to convert it
into a (multikey) fully homomorphic scheme. In particular, we follow the original template of our
work [LTV12] and use modulus reduction [BV11a, BGV12] to increase the circuit depth that the
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scheme can handle in homomorphic evaluation. This yields a leveled homomorphic scheme for N
keys that can evaluate circuits of depth D as long as ND ≈ log q. For any number of keys N and
any depth D, we can set q to be large enough to guarantee the successful homomorphic evaluation
of depth-D circuits on ciphertexts encrypted under N different keys.

Theorem 1.3.4 (Informal). For all N ∈ N and D ∈ N, there exists a leveled homomorphic
encryption scheme that can homomorphically evaluate depth-D circuits on ciphertext encrypted
under at most N different keys. The size of the keys and ciphertexts in the scheme grow polynomially
with N and D.

Finally, using an analog of Gentry’s bootstrapping theorem [Gen09b, Gen09a] for the multikey
setting, we can convert the leveled homomorphic scheme into a fully homomorphic scheme, in which
the algorithms are independent of the circuit depth D (albeit with an additional circular security
assumption). On the other hand, we are unable to remove the dependence on the number of keys
N , and therefore obtain a scheme that is fully homomorphic with respect to the depth of circuits
it can evaluate, but “leveled” with respect to the number of different keys it can handle.

We remark that using the recent noise-management technique of Brakerski [Bra12], it is possible
to obtain a simpler leveled homomorphic scheme, based on a weaker security assumption. This was
already noted in the follow-up work of Bos et al. [BLLN13]. In another recent work, Gentry, Sahai,
and Waters [GSW13] show how to remove the required evaluation key, yielding an even simpler
scheme.

Security. Stehlé and Steinfeld [SS11b] showed that the security of the modified NTRU encryption
scheme can be based on the Ring-LWE assumption of Lyubashevsky et al., which can be reduced
to worst-case hard problems in ideal lattices [LPR10]. To prove the security of NTRU, Stehlé and
Steinfeld first show that the public key h =

[
2gf−1

]
q

is statistically close to uniform over the ring
R if f ′ and g are sampled from a discrete Gaussian with standard deviation poly(n)

√
q (which can

be shown to be a poly(n)
√

q-bounded distribution). Unfortunately, if we sample f ′ and g from
this distribution the error in a single homomorphic operation would grow large enough to cause
decryption failures. We must therefore make the assumption that the public key h =

[
2gf−1

]
q

is
computationally indistinguishable5 from uniform over R when f ′ and g are sampled from a discrete
Gaussian that is B-bounded for B � q.

Ultimately, we arrive at the following theorem.

Theorem 1.3.5 (Informal). For all N ∈ N, there exists a fully homomorphic encryption scheme
that can perform homomorphic evaluation on ciphertext encrypted under at most N different keys.
The size of the keys and ciphertexts in the scheme grow polynomially with N . The security of the
scheme is based on the Ring-LWE assumption, the assumption that the public key is pseudorandom,
and the assumption that the scheme is weakly circular secure.

In a follow-up work, Bos et al. [BLLN13] show how to apply Brakerski’s techniques [Bra12] to
maintain the fully homomorphic properties of the scheme while sampling the elements f ′ and g
from a discrete Gaussian with standard deviation poly(n)

√
q, as in the work of Stehlé and Steinfeld

[SS11b]. This yields an NTRU-based FHE scheme that is secure under the RLWE assumption alone.

5It is not difficult to see that with our setting of parameters, the distribution of the public key is not statistically
close to uniform. We must therefore rely on computational indistinguishability.
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However, as far as we know, this scheme is multikey for only a constant number of parties, which
is an inherent property of any FHE scheme (see Section 5.2.1).

1.3.3 On-The-Fly MPC from Multikey FHE

Once we have constructed multikey FHE for any number of keys, we can construct on-the-fly MPC
quite easily by loosely following Gentry’s blueprint. The following gives an informal outline of our
protocol.

Offline Phase: The clients sample independent key pairs (pki, ski, eki), encrypt their input under
their corresponding public key: ci ← Enc(pki, xi), and send this ciphertext to the server along
with the public and evaluation keys (pki, eki).

Online Phase: Once a function has been chosen, together with a corresponding subset of com-
puting parties V :

Step 1: The server performs the multikey homomorphic evaluation of the desired circuit on
the corresponding ciphertexts, and broadcasts the evaluated ciphertext to all computing
parties (i.e. all parties in V ).

Step 2: The computing parties (i.e. parties in V ) run a generic MPC protocol to decrypt
the evaluated ciphertext using their individual secret keys ski.

Observe that the computation of the decryption function in Step 2 of the online phase can
itself be delegated to the server. In particular, if we instantiate the decryption protocol using our
cloud-assisted MPC protocol (described in Section 1.2 and Chapter 4), we obtain a round-efficient
solution: the overall protocol has an online phase of only 5 rounds.

1.3.4 Protocol Security

As in our cloud-assisted protocol, we show that the above protocol is secure against semi-malicious
adversaries [AJW11, AJL+12], who follow the protocol specifications (like semi-honest adversaries)
but choose their random coins from an arbitrary distribution (like malicious adversaries). But
instead of using the AJW compiler [AJW11, AJL+12] to achieve security against malicious ad-
versaries, we modify the protocol directly and prove its security. We make three modifications,
described below.

Modifying the Decryption Protocol. The first modification we make is to change the de-
cryption protocol in Step 2 of the online phase to first check that the secret key being used is a
valid secret key for the corresponding public and evaluation keys. This ensures that if decryption
is successful, then in particular, a corrupted party knows a valid secret key s̃ki. This secret key
binds the corrupted party to the input x̃i = Dec

(
s̃ki, c̃i

)
, which by semantic security of the FHE,

must be independent of the honest inputs.
Once again, we note that the computation of this function can be delegated to the server using

our cloud-assisted protocol (described in Section 1.2 and Chapter 4), yielding a 5-round online
phase.
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Adding Zero-Knowledge Proofs. We further require that in the offline phase, each party create
a non-interactive zero-knowledge proof πenc

i showing that the ciphertext ci is well-formed (i.e. that
there exists plaintext xi and randomness si such that ci = Enc(pki, xi ; si). This guarantees that for
a corrupted party, Dec

(
s̃ki, c̃i

)
6= ⊥ and thus the party really “knows” an input x̃i. Furthermore,

it guarantees that the ciphertexts ci are fresh encryptions, which is important in our setting of
fully homomorphic encryption where we must ensure that the error stays low in a homomorphic
evaluation.

While constructions of NIZK arguments are known for all of NP [GOS06, GOS12], using these
constructions requires expensive NP reductions. To avoid this, in Section 6.2.6 we show how to
construct an efficient NIZK argument system, secure in the random oracle model, for proving the
well-formedness of a ciphertext in the NTRU-based multikey FHE scheme (the scheme we use to
instantiate the generic multikey FHE scheme in our on-the-fly MPC construction).

Adding Verification of Computation. Finally, we must also rely on a succinct argument
system [Kil92, Kil95, Mic94, GKR08, GLR11, BCCT12, BCCT13] to ensure that the server
performs the homomorphic computation correctly. Due to the dynamic nature of our on-the-
fly model, we are unable to use verifiable computation protocols in the pre-processing model
[GGP10, CKV10, AIK10] or succinct arguments with a reference string that depends on the circuit
being computed [Gro10, Lip12, GGPR13, PHGR13, Lip13]. These would require the clients to per-
form some pre-computation dependent on the circuit to be computed before knowing the circuit, or
to interact with the server after a function has been selected and compute in time proportional to
the circuit-size of the function. Indeed, the beauty of our on-the-fly MPC model is that the server
can choose any function dynamically, “on-the-fly”, and homomorphically compute this function
without interacting with the clients, who additionally, compute in time only polylogarithmically in
the size of any function being computed.

We show how to guarantee verification of computation in two different cases.

Verification for Small Inputs: When the total size of the inputs (and therefore the ciphertexts)
is small enough to be broadcasted to all parties, it suffices for the server to use any of the
succinct arguments of [Kil92, Kil95, Mic94, GKR08, GLR11, BCCT12, BCCT13] to prove
that it carried out the computation correctly as specified. Along with this argument, the
server broadcasts the ciphertexts ci and public and evaluations keys (pki, ski) for all parties
in V . With this information, the computing parties can verify the argument before engaging
in the decryption protocol.

Verification for Large Inputs: In the case when the total size of the inputs (and therefore the
ciphertexts) is too large to be broadcasted to all parties, then we additionally require the
parties to sample a hash key hki for a collision-resistant hash function, and compute a digest
di of the ciphertext ci. Each party then sends the tuple (pki, eki, ci, π

enc
i , hki, di) to the server

in the offline phase. It is then sufficient for the server to broadcast the tuples (pki, eki, hki, di)
and a succinct argument for the NP language:

“there exist c̃1, π̃
enc
1 , . . . , c̃N , π̃enc

N such that di = Hhki
(c̃i) and

c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN )) and π̃enc
i is a valid proof”.

If the succinct argument is additionally a proof of knowledge, as in the case of CS proofs [Mic94]
under Valiant’s analysis [Val08], and the SNARKs of Bitansky et al. [BCCT12, BCCT13],
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then we are guaranteed that the server actually “knows” such c̃1, π̃
enc
1 , . . . , c̃N , π̃enc

N whenever
it successfully convinces the clients.

Putting everything together, we arrive at the following theorem.

Theorem 1.3.6 (Informal). There exists an on-the-fly MPC protocol in the CRS-model with the
following properties:

• Achieves security against malicious corruptions of an arbitrary subset of clients and possi-
bly the server, under the Ring-LWE assumption and the assumption that the public key in
the (modified) NTRU cryptosystem [HPS98, SS11b] is pseudorandom for a special setting of
parameters.

• The offline phase runs in one (asynchronous) round of unidirectional communication from
the parties to the server. The online phase runs in 5 rounds.

• The communication complexity of the online phase and the computation time of the computing
parties therein is polylogarithmic in the size of the computation and the total size of the inputs,
and linear in the size of their own input and the size of the output.

• The computation time of the server is polynomial in the size of the circuit.

1.4 Related Work

We briefly survey related works in the areas of fully homomorphic encryption, MPC from homo-
morphic encryption, and MPC with the aid of a “cloud” server.

1.4.1 Fully Homomorphic Encryption

The notion of fully homomorphic encryption was first proposed by Rivest, Adleman, and Der-
touzos [RAD78], but was only recently constructed in the groundbreaking result of Gentry [Gen09b,
Gen09a]. In subsequent years, many improvements and new constructions have appeared in the
literature [vDGHV10, BV11b, BV11a, BGV12, Bra12, BLLN13, GSW13, BV14].

Gentry’s first construction [Gen09b, Gen09a] followed the following blueprint: first, he con-
structed a somewhat homomorphic encryption scheme working over ideal lattices, that was able
to perform a limited number of evaluations. He then proved a bootstrapping theorem, showing
that if a somewhat homomorphic scheme can homomorphically evaluate its own decryption circuit,
then it can be converted into a fully homomorphic scheme. Unfortunately, Gentry’s somewhat
homomorphic scheme cannot evaluate its own decryption circuit and is therefore not bootstrap-
pable. Nevertheless, he was able to construct a boostrappable scheme by squashing the decryption
circuit sufficiently for the scheme to be able to homorphically evaluate it. Using this squashing
technique required making an additional security assumption, namely, the sparse subset sum (SSS)
assumption.

van Dijk et al. [vDGHV10] subsequently showed how to construct FHE over the integers, and
Brakerski and Vaikuntanathan [BV11b] showed how to construct FHE from the Ring-LWE as-
sumption of Lyubashevsky, Regev, and Peikert [LPR10]. Both of these works use squashing and
bootstrapping, as in Gentry’s original blueprint.
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Gentry and Halevi [GH11a] showed how to use depth-3 arithmetic circuits and a hybrid of
somewhat homomorphic encryption and multiplicatively homomorphic encryption (e.g. ElGamal
encryption [Gam84]) to construct FHE without the use of squashing, and therefore without assum-
ing the hardness of the SSS problem. In a separate work, Brakerski and Vaikuntanathan showed
how to construct FHE from Regev’s (standard) LWE assumption [Reg05, Reg09]. In this work,
they introduced the techniques of relinearization and modulus reduction, which allowed them to
forgo squashing as well. Gentry, Brakerski, and Vaikuntanathan [BGV12] later showed a refinement
of these techniques into so-called key-switching and modulus switching, and showed how to build
“leveled” homomorphic schemes that can evaluate circuits of any a-priori known depth without the
use of squashing or bootstrapping. Formally, they show that for every D ∈ N, there exists a homo-
morphic scheme E(D) that is able to homomorphically evaluate circuits of depth D. Their technique
involves switching to a smaller modulus after every level in a homomorphic computation, therefore
requiring a fairly large modulus at the start of the computation. This required basing security of
their scheme on the hardness of solving approximate-SVP to within sub-exponential factors. Coron
et al. [CNT12] show how to apply the modulus reduction technique over the integers.

In work subsequent to ours, Brakerski [Bra12] showed a new noise-management technique that
forwent the modulus switching step, allowing the use of a single modulus that is much smaller than
the one needed in the BGV scheme. Security of Brakerski’s scheme can be based on the hardness
of solving approximate-SVP to within quasi-polynomial factors, a much weaker assumption. Bos
et al. [BLLN13] show how to apply Brakerki’s noise-management technique to the (multikey) FHE
described in this dissertation [LTV12], based on the NTRU encryption scheme of Hofftein, Pipher,
and Silverman [HPS98], with the modifications of Stehlé and Steinfeld [SS11b]. They further show
that using these techniques, one can base security of the resulting FHE scheme on the Ring-LWE
assumption alone, by using Stehlé and Steinfeld’s original analysis. Their construction, however, is
multikey for only a constant number of keys, which we show is an inherent property of any FHE
scheme. Coron et al. [CLT14] show how to apply Brakerski’s techniques over the integers.

Finally, Gentry et al. [GSW13] show how to construct a leveled homomorphic scheme that does
not require the use an evaluation key to perform homomorphic computation, as do all previous
schemes. Brakerski and Vaikuntanathan [BV14] show how to leverage the techniques of Gentry
et al. [GSW13] to build a leveled homomorphic scheme that is as secure as standard (non-FHE)
LWE-based public-key encryption.

Many other works study the efficiency of the schemes described above and present several
optimizations [SV10, SS11a, GH11b, CMNT11, GHPS12, GHS12a, GHS12b, GHS12c, CCK+13,
SV14].

1.4.2 MPC from Homomorphic Encryption

The basic idea of using threshold homomorphic encryption (e.g. Paillier encryption [Pai99]) to
boost the efficiency of MPC protocols was first presented by Cramer, Damg̊ard, and Nielsen
[CDN01], predating the existence of fully homomorphic encryption (first showed by Gentry in
2009 [Gen09b, Gen09a]). They show that if the parties have access to a public key for an additively
homomorphic encryption scheme, and if they also have a corresponding secret key secret-shared
among them, then they can evaluate any Boolean circuit “under the covers” of the encryption.
Using the homomorphic properties of the scheme, the parties can locally evaluate all addition
gates. Cramer et al. additionally show a short, interactive subprotocol for evaluating multiplica-
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tion gates. After showing the first construction of fully homomorphic encryption, Gentry used the
same template to show a generic MPC construction from any FHE [Gen09a].

In a work concurrent to ours, Myers, Sergi, and Shelat [MSS13] show a black-box construction
of MPC from any threshold FHE scheme. Their main hurdle is devising a way for parties to prove
plaintext knowledge of a ciphertext. To this end, they present a 2-round protocol for proving
plaintext knowledge, which they construct from any circuit-private FHE scheme. Their protocol
is not zero-knowledge [GO94], but it conserves the semantic security of the ciphertext in question.
They also show how to construct threshold FHE using the scheme of van Dijk et al. [vDGHV10]
over the integers. While the communication of their protocol is independent of the circuit-size of the
function being computed, their protocol is not computation-efficient: parties compute proportional
to the complexity of the function.

Other works by Damg̊ard et al. [BDOZ11, DPSZ12, DKL+13] build MPC from “semi-
homomorphic” and somewhat homomorphic encryption. Their protocols require all parties to
compute proportional to the complexity of the function at hand, and require interaction between
parties at every gate. However, they display very good concrete efficiency. A work of Choudhury
et al. [CLO+13] shows how to trade computation efficiency for communication efficiency. Their
protocol is parametrized by an integer L. Setting L = 2 yields a classic MPC protocol, in which
interaction is required for computing every gate. As L increases, interaction is required less fre-
quently, and only to “refresh” the computation after an increasing number of steps. Thus, at their
heart of their construction lies an interactive “bootstrapping” protocol that refreshes ciphertexts
during the evaluation.

Finally, a recent work by Garg et al. [GGHR14] shows how to achieve 2-round MPC in the CRS
model from indistinguishability obfuscation (iO) [BGI+12]. As an optimization, they use multikey
FHE (as defined in this work) to construct 2-round MPC with communication complexity that is
independent of the circuit being computed. Though an efficient construction of iO is known for all
circuits [GGH+13b], its security is based on assumptions on multilinear maps [GGH13a] that are
not very well understood yet.

1.4.3 MPC on the Cloud

The idea of using a powerful cloud server to alleviate the computational efforts of parties in an
MPC protocol was recently explored in the work on “server-aided MPC” by Kamara, Mohassel,
and Raykova [KMR11]. Their protocols, however, require some of the parties to do a large amount
of work, essentially proportional to the size of the computation.

Halevi, Lindell, and Pinkas [HLP11] recently considered the model of “secure computation on
the web” wherein the goal is to minimize interaction between the parties. While their definition
requires absolutely no interaction among the participants of the protocol (they only interact with
the server), they show that this notion can only be achieved for a small class of functions. Our
goal, on the other hand, is to construct MPC protocols for arbitrary functions.

1.5 Roadmap

We have given a high-level overview of the results presented in this dissertation. Detailed descrip-
tions of all the results highlighted in this introduction can be found in the corresponding chapters.
In Chapter 2 we present preliminaries, definitions and technical tools used throughout the remain-
ing chapters. Chapter 3 contains the definitions of cloud-assisted MPC and on-the-fly MPC, and
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gives an overview of their constructions. Chapter 4 contains our construction of cloud-assisted
MPC. Finally, in Chapter 5, we define multikey FHE and describe several constructions, and in
Chapter 6 we show how to construct on-the-fly MPC from multikey FHE.

17





Chapter 2

Definitions and Preliminaries

2.1 Notation

In this work, we use the following notation. We use κ to denote the security parameter. For an
integer n, we use the notation [n] to denote the set [n] def= {1, . . . , n}. For a randomized function
f , we write f(x; r) to denote the unique output of f on input x with random coins r. We write
f(x) to denote a random variable for the output of f(x; r) over uniformly random coins r. For a
distribution or random variable X, we write x← X to denote the operation of sampling a random
x according to X. For a set S, we overload notation and use s ← S to denote sampling s from
the uniform distribution over S. We use y := f(x) to denote the deterministic evaluation of f on
input x with output y. For two distributions, X and Y , we use X

c
≈ Y to mean that X and Y are

computationally indistinguishable, and X
s
≈ Y to mean that they are statistically close.

2.2 Σ-Protocols and Zero-Knowledge Proofs

Σ-Protocols. We recall the notion of gap Σ-protocols [AJW11], a weaker version of Σ-protocols
[CDS94], where honest-verifier zero-knowledge holds for all statements in some NP relation Rzk

but soundness only holds w.r.t. Rsound ⊇ Rzk. In other words, zero-knowledge is guaranteed for
an honest prover holding a statement in Rzk, but an honest verifier is only convinced that the
statement is in a larger set Rsound ⊇ Rzk.

Definition 2.2.1 (Gap Σ-Protocol). Let Rzk and Rsound be two NP relations such that Rzk ⊆
Rsound ⊆ {0, 1}∗ × {0, 1}∗, and let Lzk and Lsound be their corresponding NP languages. A gap
Σ-protocol for (Rzk, Rsound) is a 3-step interactive protocol 〈P, V 〉 between a prover P = (P1, P2)
and a verifier V = (V1, V2), with the following syntax:

• (a, st) ← P1(x,w): Given a statement and witness pair (x,w), outputs a message a and a
state string st.

• c ← V1(x, a): Given a statement x and message a, outputs a random challenge c from a
challenge space C.

• z ← P2(st, c): Given a state string st and a challenge c, outputs an answer z.

• b← V2(x, a, c, z): Given a statement x, a message a, a challenge c, and an answer z, outputs
a bit b, i.e. either accepts or rejects the transcript (a, c, z) for statement x.

We require that the following three properties hold:
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Completeness: For any (x, w) ∈ Rzk,

Pr

 V2(x, a, c, z) = 1

∣∣∣∣∣∣
(a, st)← P1(x,w)

c← V1(x, a)
z ← P2(st, c)

 = 1

Special Soundness: There exists an ”extractor” such that for any two accepting transcripts (a, c, z)
and (a, c′, z′) for the same statement x with c 6= c′, the extractor outputs a valid witness for
x ∈ Rsound. Formally, there exists a ppt algorithm Ext such that for all x and all (a, c, z) and
(a, c′, z′) such that c 6= c′ and V2(x, a, c, z) = V2(x, a, c′, z′) = 1:

Pr
[

(x,w) 6∈ Rsound

∣∣ w ← Ext(x, a, c, z, c′, z′)
]

= 1

Honest-Verifier Zero Knowledge (HVZK): There exists a ppt simulator Sim that “simu-
lates” valid transcripts without knowing a witness, if it sees the challenge beforehand. For-
mally, there exists ppt algorithm Sim such that for all (x,w) ∈ Rzk and all c ∈ C, we have:[

(a, c, z)
∣∣∣∣ (a, st)← P1(x, w)

z ← P2(st, c)

]
s
≈

[
(a′, c, z′) | (a′, z′)← Sim(x, c)

]
For an NP relation R with corresponding language L, a well-known construction using Σ-

protocols allows a prover to show that either x0 ∈ L or x1 ∈ L without revealing which one holds.
Suppose 〈P, V 〉 is a Σ-protocol for R; we construct a new protocol for proving that either x0 ∈ L
or x1 ∈ L. Let b be such that (xb, wb) ∈ R for some witness wb known to the prover. The
prover chooses c1−b at random from the challenge space C and runs (ab, st) ← P1(xb, wb) and
(a1−b, z1−b)← Sim(x, c1−b). It sends (a0, a1) to the verifier, who returns a challenge c. The prover
computes cb = c− c1−b, runs zb ← P2(st, c) and sends (c0, c1, z0, z1) to the verifier, who checks that
V2(x0, a0, c0, z0) = V2(x1, a1, c1, z1) = 1 and c = c0 + c1. The resulting protocol is called an OR
Σ-protocol. The theorem below modifies this to the setting of gap Σ-protocols.

Theorem 2.2.1. Let Rzk and Rsound be two NP relations such that Rzk ⊆ Rsound ⊆ {0, 1}∗×{0, 1}∗,
and let 〈P, V 〉 be a gap Σ-protocol for (Rzk, Rsound). The construction described above is a gap OR
Σ-protocol for (Rzk, Rsound).

Non-Interactive Zero-Knowledge (NIZK). We also recall the notion of non-interactive zero-
knowledge (NIZK) [BFM88]. For our purposes, it is more convenient to use the notion of (same-
string) NIZK arguments from [SCO+01]. This definition and all our constructions that use it can be
extended in the natural way to NIZK proofs, where soundness holds for all unbounded adversaries1.

Definition 2.2.2 (NIZK). Let R be an NP relation on pairs (x,w) with corresponding language
L = {x | ∃ w s.t. (x,w) ∈ R}. A non-interactive zero-knowledge (NIZK) argument system for R
consists of three algorithms (Setup,Prove,Verify) with syntax:

• (crs, tk)← Setup(1κ): Outputs a common reference string (CRS) crs and a trapdoor key tk to
the CRS.

1Apart from modifying the soundness condition, in the setting of proofs key generation samples a CRS but not a
trapdoor, and the zero-knowledge simulator first samples a simulated CRS that is computationally indistinguishable
from the real CRS, and a trapdoor to this CRS.
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• π ← Provecrs(x,w): Outputs an argument π showing that R(x,w) = 1.

• 0/1← Verifycrs(x, π): Verifies whether or not the argument π is correct.

For the sake of clarity, we write Prove and Verify without the crs in the subscript when the crs can
be inferred from context. We require that the following three properties hold:

Completeness: For any (x, w) ∈ R,

Pr
[

Verify(x, π) = 1
∣∣ (crs, tk)← Setup(1κ)

π ← Prove(x,w)

]
= 1

Soundness: For any ppt adversary P̃ ,

Pr
[

Verify(x∗, π∗) = 1
x∗ 6∈ L

∣∣∣∣ (crs, tk)← Setup(1κ)
(x∗, π∗)← P̃ (crs)

]
= negl(κ).

Unbounded Zero-Knowledge: There exists a ppt simulator Sim that “simulates” valid proofs
without knowing a witness, but with the aid of the trapdoor key. We start by defining two
oracles.

The Prover Oracle: A query to the prover oracle P(·) consists of a pair (x,w). The oracle
checks if (x,w) ∈ R. If so, it outputs a valid argument Prove(x,w); otherwise it outputs
⊥.

The Simulation Oracle: A query to the simulation oracle SIMtk(·) consists of a pair (x,w).
The oracle checks if (x,w) ∈ R. If so, it ignores w and outputs a simulated argument
Sim(tk, x); otherwise it outputs ⊥.

Formally, we require that for any ppt adversary A, the advantage of A in the following game
is negligible (in κ):

• The challenger samples (crs, tk) ← Setup(1κ) and gives crs to A. The challenger also
samples a bit b← {0, 1}.

• If b = 0, the adversary A is given access to the prover oracle P(·). If b = 1, A is given
access to the simulation oracle SIMtk(·). In either case, the adversary can adaptively
access its oracle..

• The adversary A outputs a bit b̃.

The advtange of A is defined to be
∣∣∣Pr[b̃ = b]− 1

2

∣∣∣.
Fiat and Shamir [FS86] showed how to convert a Σ protocol 〈P, V 〉 for an NP relation R into

a NIZK argument for R secure in the random oracle model [BR93]. Informally, the CRS contains
a description of a hash function H, which is modeled as a random oracle. To compute a non-
interactive argument, the prover runs (a, st) ← P1(x,w) and obtains the verifier’s challenge by
applying the hash function to a and x: c := H(a, x). It then computes z ← P2(st, c) and sends the
argument π = (a, c, z). The verifier runs V2(x, a, c, z) to verify the argument. The theorem below
modifies this to the setting of gap Σ-protocols.
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Theorem 2.2.2 ([FS86]). Let Rzk and Rsound be two NP relations such that Rzk ⊆ Rsound ⊆
{0, 1}∗ × {0, 1}∗, and let 〈P, V 〉 be a gap Σ-protocol for (Rzk, Rsound). Applying the Fiat-Shamir
transform to 〈P, V 〉 yields a non-interactive zero-knowledge (NIZK) argument system where sound-
ness holds w.r.t. Rsound and completeness and zero-knowledge hold w.r.t. Rzk, secure in the random
oracle model.

Though secure in the random oracle model, we remark that in some cases standard-model
security of the resulting NIZK appears to be harder to achieve, as we prove in an independent work
[DJKL12, BDG+13]. In particular, we show that if the language L is quasi-polynomially hard and
the protocol has messages of size polylog(κ) and is κlog κ-HVZK, then the resulting NIZK cannot
be proven sound via a black-box reduction to a (super-polynomially hard) falsifiable assumption
[Nao03].

2.3 Succinct Non-Interactive Arguments: SNARGs and
SNARKs

We review the definitions of succinct non-interactive arguments (SNARGs) and succinct non-
interactive arguments of knowledge (SNARKs); we use the formalization of Gentry and Wichs
[GW11], and Bitansky et al. [BCCT12]. As in the work of Bitansky et al., we allow the proof size
to be polynomial in the size of the statement, but require it to be polylogarithmic in the size of the
witness. We also require fast proof verification.

Definition 2.3.1 (SNARG). Let R be an NP relation on pairs (x, w) with corresponding language
L = {x | ∃ w s.t. (x, w) ∈ R}. A succinct non-interactive argument (SNARG) system for L
consists of three algorithms (Setup,Prove,Verify) with syntax:

• (vrs, priv) ← Setup(1κ): Outputs a verification reference string vrs and a private verification
state priv.

• ϕ← Prove(vrs, x, w): Outputs an argument ϕ showing that R(x, w) = 1.

• 0/1← Verify(priv, x, ϕ): Verifies whether or not the argument ϕ is correct.

We require that the following properties hold:

Completeness: For any (x, w) ∈ R,

Pr
[

Verify(priv, x, ϕ) = 1
∣∣ (vrs, priv)← Setup(1κ)

ϕ← Prove(vrs, x, w)

]
= 1

In addition, Prove(vrs, x, w) runs in time poly(κ, |x| , |w|).

Adaptive Soundness: For any ppt adversary P̃ ,

Pr
[

Verify(priv, x∗, ϕ∗) = 1 ∧
x∗ 6∈ L

∣∣∣∣ (vrs, priv)← Setup(1κ)
(x∗, ϕ∗)← P̃ (vrs)

]
= negl(κ).

Succinctness: The length of the proof and the time required for its verification are polylogarithmic
in the size of the witness, i.e. poly(κ) (poly(|x|) + polylog(|w|)).
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Definition 2.3.2 (SNARK). A SNARG Φ = (Setup,Prove,Verify) is additionally a proof of knowl-
edge, or a succinct non-interactive argument of knowledge (SNARK) if it satisfies the following
stronger definition of soundness:

Adaptive Extractability: There exists an extractor Ext that “extracts” a valid witness from any
valid proof ϕ. Formally, for any ppt adversary P̃ , there exists a ppt algorithm Ext such that:

Pr

 Verify(priv, x∗, ϕ∗) = 1 ∧
R(x∗, w′) = 0

∣∣∣∣ (vrs, priv)← Setup(1κ)
(x∗, ϕ∗)← P̃ (vrs)
w′ ← Ext(x∗, ϕ∗)

 = negl(κ)

Public vs. Private Verifiability. In the case where priv = vrs, we say that the SNARG or
SNARK is publicly verifiable. In this case, anyone can verify all proofs. Otherwise, we say that it is
a designated-verifier SNARG/SNARK, in which case soundness/extractability is only guaranteed
as long as priv remains secret to the prover. In this case, only the party holding priv can verify the
proof.

2.3.1 Delegation of Computation from SNARGs

In delegation of computation we are concerned with at a client C, who wishes to delegate the
computation of a pre-specified polynomial-time algorithm M on an input x, to a worker W . The
client additionally wishes to verify the correctness of the output y returned by W (i.e. verify that
y = M(x)) in time that is significantly smaller than the time required to compute M(x) from
scratch.

SNARGs can be used in this setting as follows: Define the NP language: LM = { (x, y) such that
M(x) = y }. A straight-forward witness to the statement (x, y) ∈ LM consists of the steps taken by
M in a computation of M(x) resulting in the output y. The size of this witness is proportional to
the size of the computation. Using a SNARG guarantees that the size of the proof is polylogaritmic
in the size of the witness, and therefore polylogarithmic in the size of the computation.

2.3.2 Constructions

Gentry and Wichs [GW11] proved that standard-model security of SNARGs with adaptive sound-
ness and proof size sublinear in the witness and statement sizes, cannot be based on any falsifiable
assumption [Nao03]. The constructions we show below either assume a random oracle [BR93] or
most often use a non-falsifiable assumption.

CS Proofs. Kilian [Kil92, Kil95] showed how to perform succinct interactive verification for
any NP language. His solution describes a 4-round protocol, where the prover first constructs
a PCP for the correctness of the computation and then uses Merkle hashes to compress it to a
sufficiently small proof. Micali’s CS proofs [Mic94] apply the Fiat-Shamir transform [FS86] to
Kilian’s protocol, obtaining a non-interactive solution. CS proofs are publicly verifiable SNARGs
(and SNARKs under Valiant’s analysis [Val08]); indeed, the only “setup” required is a description
of a hash function H to use as the random oracle. This can be ensured by letting the vrs be a
random key for a (say) collision-resistant hash function.

Due to its use of the Fiat-Shamir transform, Micali’s solution is only secure in the random
oracle model [BR93]. Unfortunately, several results have shown the implausibility of instantiating
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the random oracle in the Fiat-Shamir transform with any explicit hash function [HT98, Bar01,
CGH04, DNRS03, GK03]. In particular, in an independent work [DJKL12, BDG+13], we show
that the security of CS proofs (even with non-adaptive soundness) cannot be based on any falsifiable
assumption. On the other hand, it has been shown that the security of the Fiat-Shamir paradigm
can be based on specific non-falsifiable assumptions regarding the existence of robust randomness
condensers for seed-dependent sources [BLV06, DRV12].

Constructions will Small VRS. Bitansky et al. [BCCT12, BCCT13] and Goldwasser et al.
[GLR11] revisit the construction of CS proofs and, based on the works of Di Crescenzo and Lipmaa
[CL08] and Valiant [Val08], show how to construct SNARGs and SNARKs based on a different
non-falsifiable assumption relating to the existence of extractable collision-resistant hash functions.
In these works, the verifier’s entire computation (both in computing its reference string vrs and in
verifying the proof) depends only polylogarithmically in the size of the witness (i.e. the delegated
computation). The SNARGs and SNARKs in these works are designated-verifier.

Allowing a Large VRS. Another series of works [Gro10, Lip12, GGPR13, PHGR13, Lip13]
constructs SNARGs and SNARKs where the verifier’s reference string vrs is allowed to depend on
the circuit being delegated. In particular, Groth’s construction [Gro10] has a VRS of size quadratic
in the circuit size. Lipmaa [Lip12] reduces this size to be quasi-linear, and the works of Gennaro
et al. [GGPR13] and Parno et al. [PHGR13] further reduce it to linear in the circuit size. Lipmaa
[Lip13] refines the construction of Gennaro et al. to reduce the magnitude of the constant in the
size of the VRS. All of these constructions are based on certain number-theoretic non-falsifiable
assumptions.

2.4 Secure Multiparty Computation (MPC)

Let f be an N -input function with single output. A multiparty protocol Π for f is a protocol between
N interactive Turing Machines P1, . . . , PN , called parties, such that for all ~x = (x1, . . . , xN ), the
output of Π in an execution where Pi is given xi as input, is y

def= f(~x).

2.4.1 Security in the Ideal/Real Paradigm

Informally, a multiparty protocol Π is secure if after running Π, no colluding set of corrupt parties
can learn anything about an honest player’s input or change the output of an honest party. We
formalize this in the Ideal/Real paradigm (see e.g. [Gol04]).

Ideal and Real Worlds. We define an ideal world in which the computation of f is per-
formed through a trusted functionality F that receives inputs xi from each party Pi, computes
y

def= f(x1, . . . , xN ) and gives y to all parties P1, . . . , PN . It is clear that in the ideal world, the
only information that any party learns is its own input and the output y. We also define a real
world in which parties P1, . . . , PN run the protocol Π.

The Network. We assume that the real-world execution of the protocol is performed over a secure
and synchronous network; that is, we assume that parties can reliably send messages to other parties
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without these being read or altered in transmission, and that all point-to-point communications
happen at the same time. We also assume that a secure broadcast channel is available to all parties.

The Adversary. In either world, we consider a single adversary that is allowed to corrupt any
subset of t < N parties. An adversary is modeled as an interactive Turing Machine that receives all
messages directed to the corrupted parties and controls the messages sent by them. In this work,
we consider only static adversaries, that is, adversaries that select the subset of corrupted parties
non-adaptively, before any computation is performed. On the other hand, we assume that in each
round of the protocol, the adversary chooses the messages for the corrupted parties adaptively,
based on the entire transcript of the protocol, up to that round.

We remark that our results can be extended to achieve security against rushing real-world
adversaries who, on any given round, choose the messages for the corrupted parties adaptively,
based on the entire transcript of the protocol and the messages of the honest parties on that round.
Note that rushing adversaries correspond to a semi-synchronous model of communication.

Output Distributions. We use IDEALF ,S(~x) to denote the joint output of an ideal-world
adversary S and parties P1, . . . , PN in an ideal execution with functionality F and inputs ~x =
(x1, . . . , xN ). Similarly, we use REALΠ,A(~x) to denote the joint output of a real-world adversary
A and parties P1, . . . , PN in an execution of protocol Π with inputs ~x = (x1, . . . , xN ).

We say that a protocol Π securely realizes F against the class of adversaries Adv, if for every
real-world adversary A ∈ Adv, there exists an ideal-world adversary S with black-box access to A
such that for all input vectors ~x,

IDEALF ,S(~x)
c
≈ REALΠ,A(~x)

2.4.2 Types of Adversaries

As stated above, in this work we only consider classes of adversaries Adv containing static adversaries
that corrupt any subset of t < N parties. We now describe three different types of adversaries:
malicious, semi-honest, and semi-malicious. The first two are used extensively in the literature,
while the latter was introduced recently by Asharov et al. [AJW11, AJL+12]. Of these, malicious
adversaries are the strongest, and it is our end goal to achieve security against them in all our
protocols.

It is customary to prove security against semi-honest adversaries as a stepping stone to proving
security against malicious adversaries. However, in this work we follow a different path and first
prove security against semi-malicious adversaries. We then show how to modify the protocol at
hand to achieve security against malicious adversaries. For completeness, we describe all three
types of adversaries below and describe how security against one type is related to security against
another.

Semi-Honest Adversaries. A semi-honest adversary, also known as an honest-but-curious ad-
versary, is one that follows the protocol as described (samples randomness from the correct distri-
bution, and computes the specified message at each round), but given its view of the protocol will
try to learn information about honest players’ inputs.
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Malicious Adversaries. A malicious adversary is not restricted in how it samples random el-
ements or how it computes its messages at each round. It can sample random elements from
any arbitrary distribution, and compute the messages of corrupted parties in any arbitrary way,
adaptively, according to the partial view it has seen up to that point.

Semi-Malicious Adversaries. Recall that an adversary is modeled as an interactive Turing
Machine (ITM). A semi-malicious adversary is an ITM with an additional witness tape. At each
round ` and for every corrupted party Pj , the adversary must write on the special witness tape,

some witness pair
(
x

(`)
j , r

(`)
j

)
of input and randomness that explains the message m

(`)
j sent by Pj on

that round. More formally, the messages of a corrupted party Pj must match those of the specified

honest protocol when at each round ` party Pj is run with input and randomness
(
x

(`)
j , r

(`)
j

)
.

A semi-malicious adversary can sample random elements from any arbitrary distribution, but it
must follow the correct behavior of the honest protocol with inputs and randomness that it knows.
It is therefore weaker than a malicious adversary, who might not know witnesses for the messages
it sends at every round, but stronger than a semi-honest adversary, whose witnesses at every round
are distributed honestly.

From Semi-Malicious to Malicious Security. Asharov et al. [AJW11, AJL+12] show how to
generically transform a protocol that is secure against semi-malicious adversaries into one that is
secure against malicious adversaries. The idea behind the compiler is to have each party prove in
zero-knowledge that every message it sends follows the honest protocol and is consistent with all
previous messages. In particular, this forces all parties to know witnesses that explain their behavior
at every round. The same compiler works in our security model with one subtlety: instead of using
standard zero-knowledge proofs, the protocol must use zero-knowledge proofs of knowledge. This
is to ensure that the simulator can extract the witness w

(`)
j from the proof sent on round ` by

the malicious adversary on behalf of the corrupted party Pj . We refer the reader to the work of
Asharov et al. [AJW11, AJL+12] for more details.

Finally, we note that unlike the standard GMW compiler from semi-honest security to malicious
security [GMW87], the parties are not required to perform any coin-flipping. This, in particular,
reduces the round complexity of the resulting protocol.

2.5 Fully Homomorphic Encryption (FHE)

We review the definitions of fully and leveled homomorphic encryption.

Definition 2.5.1 (C-Homomorphic Encryption [Gen09b]). For a class of circuits C, a C-homo-
morphic encryption scheme is a tuple of algorithms E = (Setup,Keygen,Enc,Dec,Eval) with the
following syntax:

• params ← Setup(1κ): For security parameter κ, outputs public parameters params. All other
algorithms, Keygen,Enc,Dec,Eval, implicitly take params as input, even when not explicitly
stated.

• (pk, sk, ek) ← Keygen(1κ): For a security parameter κ, outpus a public key pk, a secret key
sk, and a (public) evaluation key ek.
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• c← Enc(pk,m): Given a public key pk and a message m, outputs a ciphertext c.

• m := Dec(sk, c): Given a secret key sk and a ciphertext c, outputs a message m.

• c := Eval(ek, C, c1, . . . , c`): Given an evaluation key ek, a (description of a) circuit C and `
ciphertexts c1, . . . , c`, outputs a ciphertext c.

We require that for all c ∈ C, all (pk, sk, ek) in the support of Keygen(1κ) and all plain-
texts (m1, . . . ,m`) and ciphertexts (c1, . . . , c`) such that ci is in the support of Enc(pk,mi), if
c := Eval(ek, C, c1, . . . , c`), then Dec(sk, c) = C(m1, . . . ,m`).

Definition 2.5.2 (Fully Homomorphic Encryption [Gen09b]). An encryption scheme E is fully
homomorphic if it satisfies the following properties:

Correctness: E is C-homomorphic for the class C of all circuits.

Compactness: The computational complexity of E’s algorithms is polynomial in the security pa-
rameter κ, and in the case of the evaluation algorithm, the size of the circuit.

We now state the definition of leveled homomorphic encryption from [BGV12], which is a re-
laxation of the original definition of fully homomorphic encryption (Definition 2.5.2). The main
difference is that Definition 2.5.2 requires all algorithms (decryption in particular) to be indepen-
dent of the circuit(s) that the scheme can evaluate. Leveled homomorphic encryption relaxes this
definition to let all algorithms (including decryption) depend on the circuit depth D.

Definition 2.5.3 (Leveled Homomorphic Encryption [BGV12]). Let C(D) be the class of all circuits
of depth at most D (that use some specified complete set of gates). We say that a family of
homomorphic encryption schemes {E(D) : D ∈ Z+} is leveled fully homomorphic if, for all D ∈ Z+,
it satisfies the following properties:

Correctness: E(D) is C(D)-homomorphic.

Compactness: The computational complexity of E(D)’s algorithms is polynomial in the security
parameter κ and D, and in the case of the evaluation algorithm, the size of the circuit. We
emphasize that this polynomial must be the same for all D.

2.5.1 Bootstrapping

We remind the reader of the definition of a bootstrappable encryption scheme and present Gentry’s
bootstrapping theorem [Gen09b, Gen09a] that states that a bootstrappable scheme can be converted
into a fully homomorphic one.

Definition 2.5.4 (Bootstrappable Scheme). Let E = (Keygen,Enc,Dec,Eval) be a C-homomor-
phic encryption scheme, and let fadd and fmult be the augmented decryption functions of the scheme
defined as

f c1,c2
add (sk1, . . . , skN ) = Dec(sk1, . . . , skN , c1) XOR Dec(sk1, . . . , skN , c2)

f c1,c2
mult (sk1, . . . , skN ) = Dec(sk1, . . . , skN , c1) AND Dec(sk1, . . . , skN , c2)

E is bootstrappable if
{
f c1,c2
add , f c1,c2

mult

}
c1,c2
⊆ C, namely, if it can homomorphically evaluate fadd

and fmult.

27



Definition 2.5.5 (Weak Circular Security). A public-key encryption scheme E = (Keygen,Enc,Dec)
is weakly circular secure if it is IND-CPA secure even for an adversary with auxiliary information
containing encryptions of all secret key bits: {Enc(pk, sk[i])}i. Namely, no polynomial-time ad-
versary can distinguish an encryption of 0 from an encryption of 1, even given this additional
information.

Theorem 2.5.1 (Bootstrapping Theorem). Let E be a bootstrappable scheme that is also weakly
circular secure. Then there exists a fully homomorphic encryption scheme E ′.

2.6 Rings

In this section we introduce preliminaries to our concrete constructions, which are all ring-based.
Some of the discussion in this section is taken verbatim from the work of Brakerski and Vaikun-
tanathan [BV11b].

We work over rings R
def= Z[x]/ 〈φ(x)〉 and Rq

def= R/qR for some degree n = n(κ) integer poly-
nomial φ(x) ∈ Z[x] and a prime integer q = q(κ) ∈ Z. Note that Rq is isomorphic to Zq[x]/ 〈φ(x)〉,
the ring of degree n polynomials modulo φ(x) with coefficients in Zq. Addition in these rings is
done component-wise in their coefficients (thus, their additive group is isomorphic to Zn and Zn

q

respectively), and multiplication is polynomial multiplication modulo φ(x) (and also q, in the case
of the ring Rq). An element in R (or Rq) can be viewed as a degree (n− 1) polynomial over Z (or
Zq). We represent such an element using the vector of its n coefficients. In the case of Rq each
coefficient is in the range {−

⌊ q
2

⌋
, ...,

⌊ q
2

⌋
}. For an element a(x) = a0 + a1x + . . . + an−1x

n−1 ∈ R,
we let ‖a‖∞ = max |ai| denote its `∞ norm.

In this work, we set φ(x) = xn + 1 where n is a power of two, and use distributions over the
ring R

def= Z[x]/ 〈φ(x)〉. For the purpose of homomorphism, the only important property of these
distributions is the magnitude of the coefficients of a polynomial output by the distribution. Hence,
we define a B-bounded distribution to be a distribution over R where the `∞-norm of a sample is
bounded by B.

Definition 2.6.1. (B-Bounded Polynomial) A polynomial e ∈ R is called B-bounded if
‖e‖∞ ≤ B.

Definition 2.6.2. (B-Bounded Distribution) A distribution ensemble {χκ}κ∈N, supported over
R, is called B-bounded (for B = B(κ)) if for all e in the support of χκ, we have ‖e‖∞ < B. In
other words, a B-bounded distribution over R outputs a B-bounded polynomial.

The following lemma says that multiplication in the ring Z[x]/ 〈xn + 1〉 increases the norm of
the constituent elements only by a small amount.

Lemma 2.6.1. Let n ∈ N, let φ(x) = xn + 1 and let R = Z[x]/ 〈φ(x)〉. For any s, t ∈ R,

||s · t|| ≤
√

n · ||s|| · ||t|| and ||s · t||∞ ≤ n · ||s||∞ · ||t||∞

Lemma 2.6.1 yields the following corollary.

Corollary 2.6.2. Let n ∈ N, let φ(x) = xn + 1 and R = Z[x]/ 〈φ(x)〉. Let χ be a B-bounded
distribution over the ring R and let s1, . . . , sk ← χ. Then s

def=
∏k

i=1 si is (nk−1Bk)-bounded.
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2.6.1 Discrete Gaussians

For any real r > 0 the Gaussian function on Rn centered at c with parameter r is defined as:

∀x ∈ Rn : ρr,c(x) def= e−π‖x−c‖2/r2

Definition 2.6.3. For any n ∈ N and for any c ∈ Rn and real r > 0, the Discrete Gaussian
distribution over Zn with standard deviation r and centered at c is defined as:

∀x ∈ Zn : DZn,r,c
def=

ρr,c(x)
ρr,c(Zn)

where ρr,c(Zn) def=
∑
x∈Zn

ρr,c(x) is a normalization factor.

We present some elementary facts about the Gaussian distribution. The first fact shows that
the discrete Gaussian distribution over Zn with standard deviation r outputs a (r

√
n)-bounded

polynomial with high probability. This allows us to define a truncated Gaussian distribution that
is (r
√

n)-bounded and statistically close to the discrete Gaussian.

Lemma 2.6.3 (MR07). For any real number r > ω(
√

log n), we have

Pr
x←DZn,r

[
||x|| > r

√
n
]
≤ 2−n+1

Using Lemma 2.6.3 together with the fact that for all x ∈ Rn, ‖x‖ ≥ ‖x‖∞ yields the following
bound.

Lemma 2.6.4. Let n = ω(log κ). For any real number r > ω(
√

log n), we have

Pr
x←DZn,r

[
‖x‖∞ > r

√
n
]
≤ 2−n+1 = negl(κ)

Define the truncated Discrete Gaussian distribution with standard deviation r and centered
at c, denoted by DZn,r,c, to be one that samples a polynomial according to the discrete Gaussian
DZn,r,c and repeats the sampling if the polynomial is not (r

√
n)-bounded. As long as n = ω(log(κ)),

Lemma 2.6.4 implies that this distribution is statistically close to the discrete Gaussian : DZn,r,c ≈s

DZn,r,c.

The second fact says that the statistical distance between a discrete Gaussian with standard
deviation r and centered at 0, and one centered at c ∈ Zn is at most ‖c‖ /r. In particular, if r is
super-polynomially larger than ‖c‖ then the two distributions are statistically close.

Lemma 2.6.5. Let n ∈ N. For any real number r > ω(
√

log n), and any c ∈ Zn, the statistical
distance between the distributions DZn,r and DZn,r,c is at most ||c||/r.

Corollary 2.6.6. Let c ∈ Zn. For any real number r ≥ 2ω(log κ) ‖c‖, the distributions DZn,r and
DZn,r,c are statistically close.
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2.6.2 The Ring LWE Assumption

We now describe the Ring Learning With Errors (RLWE) assumption of Lyubaskevsky, Peikert,
and Regev [LPR10]. The RLWE assumption is analogous to the standard Learning With Errors
(LWE) assumption, first defined by Regev [Reg05, Reg09] (generalizing the learning parity with
noise assumption of Blum et al. [BFKL93]).

The RLWEφ,q,χ assumption is that for a random ring element s ← Rq, given any polynomial
number of samples of the form (ai, bi = ai · s+ ei) ∈ R2

q , where ai is uniformly random in Rq and ei

is drawn from the error distribution χ, the bi’s are computationally indistinguishable from uniform
in Rq. We use the Hermite normal form of the assumption, as in [BV11b], where the secret s is
sampled from the noise distribution χ rather than being uniform in Rq. This presentation is more
useful for the purposes of this work and is equivalent to the original up to obtaining one additional
sample [ACPS09, LPR10].

Definition 2.6.4. (The RLWE Assumption - Hermite Normal Form [LPR10]) For all κ ∈ N,
let φ(x) = φκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let q = q(κ) ∈ Z be an odd prime
integer, let the ring R

def= Z[x]/ 〈φ(x)〉 and Rq
def= R/qR, and let χ denote a distribution over the

ring R.
The Decisional Ring LWE assumption RLWEφ,q,χ states that for any ` = poly(κ) it holds that

{(ai, ai · s + ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] ,

where s is sampled from the noise distribution χ, ai are uniform in Rq, the “error polynomials” ei

are sampled from the error distribution χ, and finally, the ring elements ui are uniformly random
over Rq.

We now present a couple of facts about the RLWE assumption. The first says that the assumption
also holds if the error is multiplied by 2 in every sample. This follows immediately from the fact
that q is an odd prime and therefore relatively prime with 2.

Fact 2.6.7. The RLWEφ,q,χ assumption implies that for any ` = poly(κ),

{(ai, ai · s + 2 · ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] .

where ai, ui are uniformly random in Rq and s, ei are drawn from the error distribution χ.

The second fact says that the assumption also holds if the distinguisher is additionally given
samples with the same parameter aj and different secret key si. This follows from a hybrid argument
that slowly changes the samples, one secret at a time, from RLWE to uniform.

Fact 2.6.8. The RLWEφ,q,χ assumption implies that for any ` = poly(κ), `′ = poly(κ),

{(aj , aj · si + ei,j)}i∈[`],j∈[`′]
c
≈ {(aj , ui,j)}i∈[`],j∈[`′] .

where aj , ui,j are uniformly random in Rq and si, ei,j are drawn from the error distribution χ.
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2.6.3 Choice of Parameters

As already stated above, we will rely of the following specific choices of the polynomial φ(x) and
the error distribution χ. For security parameter κ and a dimension parameter n = n(κ) which is a
power of two:

• We set φ(x) def= xn + 1 where n is a power of two.

• The error distribution χ is the truncated discrete Gaussian distribution DZn,r with standard
deviation r > 0. A sample from this distribution is a (r

√
n)-bounded polynomial e ∈ R.

2.6.4 The Worst-case to Average-case Connection

We state a worst-case to average-case reduction from the shortest vector problem on ideal lattices
to the RLWE problem for our setting of parameters. The reduction stated below is a special case
of the results of [LPR10].

Theorem 2.6.9 ([LPR10]). Let φ(x) = xn + 1 where n is a power of two. Let r ≥ ω(
√

log n) be
a real number, and let q ≡ 1 (mod 2n) be a prime integer. Let R

def= Z[x]/ 〈φ(x)〉. Then there is
a randomized reduction from 2ω(log n) · (q/r)-approximate R-SVP to RLWEφ,q,χ where χ = DZn,r is
the discrete Gaussian distribution.

Solving approximate R-SVP to within a sub-exponential factor is believed to be hard. Thus, if
q/r = 2o(n) then the RLWEφ,q,χ assumption is believed to be hard.

2.7 FHE from RLWE

We describe a leveled homomorphic encryption scheme based on the RLWE assumption. Our start-
ing point is the scheme of Brakerski and Vaikuntanathan [BV11b], which is based on (ring-based)
Regev encryption [LPR10, LPR13]. However, we use the relinearization/key-switching technique
of Brakerski et al. [BV11a, BGV12] to ensure that the ciphertext size remains constant, and the
techniques of Brakerski [Bra12] for noise management. This is in contrast with the “squashing” and
“bootstrapping” blueprint of Gentry [Gen09b] used in the work of Brakerski and Vaikuntanathan
[BV11b]. We remark that this modified scheme has already been described by Fan and Vercauteren
[FV12].

2.7.1 Regev Encryption in Rings

For security parameter κ, the scheme is parameterized by a prime number q = q(κ), a degree n =
n(κ) polynomial φ(x) ∈ Z[x], and an error distribution χ = χ(κ) over the ring R

def= Z[x]/ 〈φ(x)〉.
The parameters n, φ, q and χ are public and we assume that given κ, there are polynomial-time
algorithms that output φ and q, and sample from the error distribution χ. The message space is
M = {0, 1}, and all operations are carried out in the ring R (i.e. modulo φ(x)).

• Setup(1κ) : Sample a ring element a← Rq, and set params := a.

• Keygen(params): Sample a ring element s← χ and a ring element x← χ, and set

sk := s = (1, s) and pk := p = [as + x]q ∈ Rq
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• Enc(pk,m): To encrypt a bit m ∈ {0, 1} with public key pk = p, sample r, e1, e2 ← χ, compute

v :=
[
pr + e1 +

⌊q

2

⌋
m

]
q
∈ Rq and w := [−ar + e2]q ∈ Rq

and output the ciphertext c := (v, w) ∈ R2
q .

• Dec(sk, c): To decrypt ciphertext c using secret key sk = s, output

m =
[⌊

2
q
· [〈c, s〉]q

⌉]
2

Semantic security of the scheme follows from the fact that p is a RLWE sample and therefore
pseudorandom, and the fact that if p is random then pr + e1 and −ar + e2 are RLWE samples and
therefore pseudorandom as well.

2.7.2 Homomorphism

In order to perform homomorphic operations, we will use use two subroutines that, given two
vectors c and s, “expand” these vectors to get longer (higher-dimensional) vectors c′ and s′ such
that [〈c′, s′〉]q = [〈c, s〉]q. We describe these subroutines first. For any ` ∈ N and any x ∈ R`

q;

• Bit (x) decomposes x into its bit representation. Namely,

Bit (x) = (x0,x1, . . . ,xblog qc) ∈ R
`·dlog qe
2 such that x =

blog qc∑
j=0

2j · xj .

• Pow (x) =
[
(x, 2 · x, . . . , 2blog qc · x)

]
q
∈ R

`·dlog qe
q .

Observe that for all c, s ∈ R`
q:

[〈Bit (c) ,Pow (s)〉]q =

blog qc∑
j=0

〈
cj , 2j · s

〉
q

=

blog qc∑
j=0

〈
2j · cj , s

〉
q

=

〈blog qc∑
j=0

2j · cj , s

〉
q

= [〈c, s〉]q
Now consider a ciphertext c encrypting a message m, and note that 〈c, s〉 = q

2 · m + e + qI
for some I ∈ R and e ∈ Q[x]/〈xn + 1〉 with ‖e‖∞ ≤ E for some bound E < q/4. As long as a
ciphertext has this form, decryption will correctly yield the underlying message m. We can view
homomorphic operations in this light.

Addition. For ciphertexts c1 = (v1, w1) and c2 = (v2, w2) such that 〈c1, s〉 = q
2 ·m1 + e1 + qI1

and 〈c2, s〉 = q
2 ·m2 + e2 + qI2, we have:

〈c1 + c2, s〉 = 〈c1, s〉+ 〈c2, s〉 =
q

2
· (m1 + m2) + (e1 + e2) + q(I1 + I2)

Therefore, it is natural to define cadd = c1 + c2 = (v1 + v2, w1 + w2).
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Multiplication. Multiplication is more tricky. For ciphertexts c1 = (v1, w1) and c2 = (v2, w2)
such that 〈c1, s〉 = q

2 ·m1 + e1 + qI1 and 〈c2, s〉 = q
2 ·m2 + e2 + qI2, we have:〈

2
q
· c1 ⊗ c2, s⊗ s

〉
=

2
q
· 〈c1, s〉 〈c2, s〉 =

2
q
·
(q

2
·m1 + e1 + qI1

) (q

2
·m2 + e2 + qI2

)
=

q

2
·m1m2 + emult + q(m2I1 + m2I1 + 2qI1I2)

where emult = (m1e2 + e1m2 + 2e1I2 + 2e2I1 + 2
q · e1e2).

It is therefore natural to define cmult =
⌊

2
q · c1 ⊗ c2

⌉
as a ciphertext encrypting m1m2 under

secret key s⊗ s. Unfortunately, defining cmult in this way forces the ciphertext and secret-key sizes
to grow exponentially with the number of multiplications. Alternatively, notice that〈

2
q
· c1 ⊗ c2, s⊗ s

〉
≈ β0 + β1s + β2s

2 =
〈
(β0, β1, β2), (1, s, s2)

〉
for

β0 =
⌊

2
q
· v1v2

⌉
, β1 =

⌊
2
q
· (v1w2 + w1v2)

⌉
, β2 =

⌊
2
q
· w1w2

⌉
If defined this way, the ciphertext and secret-key sizes grow only linearly with the number of
multiplications. Indeed, this is the approach taken in the work of Brakerski and Vaikutanathan
[BV11b], albeit with a different noise-reduction technique.

In our setting of multiparty computation, even this linear growth in the secret-key size would
make our protocols very complex, so we opt for another strategy. Instead of letting the ciphertext
grow with each multiplication, we use the relinearization/key-switching technique of Brakerski et
al. [BV11a, BGV12] to reduce the size of the resulting ciphertext after each multiplication. The
result is a ciphertext cmult that encrypts the product mm′ under a new key t = (1, t). This step
requires the aid of a public evaluation key, as follows.

Evaluation Key. Sample t ← χ and set t = (1, t). Sample α, α̃ ← R
dlog qe
q and ε, ε̃ ← χdlog qe,

and compute
γ := [αt + ε + Pow (s)]q ∈ Rdlog qe

q , ζ := −α

γ̃ :=
[
α̃t + ε̃ + Pow

(
s2

)]
q
∈ Rdlog qe

q , ζ̃ := − α̃

The evaluation key is defined to be ek :=
(
γ, ζ, γ̃, ζ̃

)
. The reader may notice that (γ, ζ) and

(
γ̃, ζ̃

)
are private-key pseudo-encryptions of Pow (s) and Pow

(
s2

)
, respectively, under secret key t. We

say they are pseudo-encryptions because even though they were created as normal ciphertexts, they
cannot be decrypted in the usual way since the elements of Pow (s) and Pow

(
s2

)
are not in the

message space {0, 1}.

Relinearization/Key-Switching. For ciphertexts c1 = (v1, w1) and c2 = (v2, w2) such that
〈c1, s〉 = q

2 ·m1 + e1 + qI1 and 〈c2, s〉 = q
2 ·m2 + e2 + qI2, define β0, β1, β2 ∈ R as before:

β0 =
⌊

2
q
· v1v2

⌉
, β1 =

⌊
2
q
· (v1w2 + w1v2)

⌉
, β2 =

⌊
2
q
· w1w2

⌉
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so that β0 +β1s+β2s
2 ≈

〈
2
q · c1 ⊗ c2, s⊗ s

〉
= 2

q 〈c1, s〉 〈c2, s〉. Output cmult = (vmult, wmult) where

vmult = [β0 + 〈Bit (β1, β2) , (γ, γ̃)〉]q
wmult =

[
−

〈
Bit (β1, β2) ,

(
ζ, ζ̃

)〉]
q

The ciphertext cmult is a valid encryption of m1m2 under secret key t. To see why this is the case,
simply notice that:

[〈cmult, t〉]q = [β0 + (〈Bit (β1) ,γ〉 − 〈Bit (β1) , ζ〉 · t)

+
(
〈Bit (β2) , γ̃〉 −

〈
Bit (β2) , ζ̃

〉
· t

)]
q

=
[
β0 + (〈Bit (β1) ,Pow (s)〉+ x) +

(〈
Bit (β2) ,Pow

(
s2

)〉
+ x̃

)]
q

=
[
β0 + β1s + β2s

2 + (x + x̃)
]
q

where x
def= 〈Bit (β1) , ε〉 and x̃

def= 〈Bit (β2) , ε̃〉 are “small” error terms. This means that for
some I ∈ R:

〈cmult, t〉 = β0 + β1s + β2s
2 + (x + x̃) + qI

≈ 2
q
· 〈c1, s〉 〈c2, s〉+ (x + x̃) + qI

=
q

2
·m1m2 + ẽ + qĨ

where ẽ ∈ Q[x]/〈xn + 1〉 is “small” and Ĩ ∈ R.

Remark 2.7.1. From the discussion above and the fact that the coefficients of Bit (·) are bounded
by 1, it is easy to see that relinearization increases the error of a ciphertext by an additive factor of

‖x + x̃‖∞ ≤ ‖〈Bit (β1) , ε〉‖∞ + ‖〈Bit (β2) , ε̃〉‖∞ ≤ n dlog qe (‖ε‖∞ + ‖ε̃‖∞)

2.7.3 Scale-Invariant FHE from RLWE

For security parameter κ, the scheme is parameterized by a prime number q = q(κ), a degree n =
n(κ) polynomial φ(x) ∈ Z[x], and an error distribution χ = χ(κ) over the ring R

def= Z[x]/ 〈φ(x)〉.
The scheme is also parametrized by an integer value D that corresponds to the maximum circuit
depth that the scheme is able to homomorphically evaluate. The parameters n, φ, q, χ, D are public
and we assume that given κ, there are polynomial-time algorithms that output φ and q, and sample
from the error distribution χ. The message space isM = {0, 1}, and all operations are carried out
in the ring R (i.e. modulo φ(x)).

• Setup(1κ) : Sample ring element a(0) ← Rq, and for d ∈ {1, . . . , D}, sample a(d) ← Rq and
α(d), α̃(d) ← R

dlog qe
q . Set

params :=
(

a(0),
{

a(d),α(d), α̃(d)
}

d∈[D]

)
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• Keygen(params): Sample ring elements s(0), x(0) ← χ. For d ∈ [D], sample a ring elements
s(d), x(d) ← χ, and vectors ε(d), ε̃(d) ← χdlog qe, and compute

γ(d) :=
[
α(d) · s(d) + ε(d) + Pow

(
s(d−1)

)]
q
∈ Rdlog qe

q , ζ(d) := −α(d)

γ̃(d) :=
[
α̃(d) · s(d) + ε̃(d) + Pow

((
s(d−1)

)2
)]

q

∈ Rdlog qe
q , ζ̃

(d)
:= − α̃(d)

For all d ∈ {0, . . . , D}, define s(d) =
(
1, s(d)

)
and p(d) =

[
a(d)s(d) + x(d)

]
q
, and set

sk :=
(
s(0), . . . , s(D)

)
, pk :=

(
p(0), . . . , p(D)

)
, ek :=

{
γ(d), ζ(d), γ̃(d), ζ̃

(d)
}

d∈[D]

• Enc(pk,m): To encrypt a bit m ∈ {0, 1} with public key pk = (p(0), . . . , p(D)), sample
r, e1, e2 ← χ, and compute

v :=
[
pr + e1 +

⌊q

2

⌋
m

]
q
∈ Rq and w :=

[
−a(0)r + e2

]
q
∈ Rq

and output the ciphertext c := (v, w) ∈ R2
q .

• Dec(sk, c): To decrypt ciphertext c using secret key sk =
(
s(0), . . . , s(D)

)
, output

m =
[⌊

2
q
·
[〈

c, s(D)
〉]

q

⌉]
2

• Eval(C, (c1, . . . , c`)): We show how to evaluate an `-variate boolean circuit C : {0, 1}` → {0, 1}
of depth D. To this end, we show how to homomorphically add and multiply two elements
in {0, 1}.

– Given two ciphertexts c1 = (v1, w1) and c2 = (v2, w2) under the same secret key s(d−1),
output the ciphertext cadd = c1 + c2 = (v1 + v2, w1 + w2) ∈ R2

q , as an encryption of the
sum of the underlying messages.

– Given two ciphertexts c1 = (v1, w1) and c2 = (v2, w2) under the same secret key s(d−1),
output the ciphertext cmult = (vmult, wmult) ∈ R2

q , as an encryption of the product of the
underlying messages, where:

vmult =
[
β0 +

〈
Bit (β1, β2) ,

(
γ(d), γ̃(d)

)〉]
q

wmult =
[
−

〈
Bit (β1, β2) ,

(
ζ(d), ζ̃

(d)
)〉]

q

and β0 =
⌊

2
q · v1v2

⌉
, β1 = −

⌊
2
q · (v1w2 + w1v2)

⌉
, β2 =

⌊
2
q · w1w2

⌉
.

Following the analysis of Brakerski [Bra12] yields the following theorem. We choose to use the
bounds on the size of the secret key and the error in the evaluation key, because these will be
important in the analysis of our constructions.
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Theorem 2.7.1. The error in a ciphertext that is the outcome of a depth-D circuit evaluation is
bounded by

O
(
(n3Bsk)D

(
nB2

enc + nBencBsk + n2B2
sk + n dlog qe ·Bek

))
where we assume that s(d) is Bsk-bounded for all d ∈ {0, . . . , D}, χ is a Benc-bounded distribution,
and ε(d), ε̃(d) are Bek-bounded for all d ∈ [D].

Corollary 2.7.2. Let χ be a B-bounded distribution. Then the encryption scheme described above
can evaluate depth-D circuits as long as q = Ω

(
(n3B)D·

(
n2B2 + nB dlog qe

))
. The security of the

scheme is based on the RLWEφ,q,χ assumption, which is believed to be hard as long as q/B = 2o(n).

2.8 NTRU Encryption

We describe the NTRU encryption scheme of Hofftein et al. [HPS98], with the modifications pro-
posed by Stehlé and Steinfeld [SS11b]. For security parameter κ, the scheme is parameterized by
a prime number q = q(κ), a degree n = n(κ) polynomial φ(x) ∈ Z[x], and an error distribution
χ = χ(κ) over the ring R

def= Z[x]/ 〈φ(x)〉. The parameters n, φ, q, χ are public and we assume
that given κ, there are polynomial-time algorithms that output φ and q, and sample from the error
distribution χ. The message space is M = {0, 1}, and all operations are carried out in the ring R
(i.e. modulo φ(x)).

• Keygen(1κ) : Sample polynomials f ′, g ← χ and set f
def= 2f ′ + 1 so that f ≡ 1 (mod 2). If

f is not invertible in Rq, resample f ′; otherwise, let f−1 be the inverse of f in Rq. Set

pk
def= h :=

[
2gf−1

]
q
∈ Rq , sk

def= f ∈ R

• Enc(pk,m) : To encrypt a bit m ∈ {0, 1} with public key pk = h, sample polynomials s, e← χ
and output the ciphertext

c
def= [hs + 2e + m]q ∈ Rq

• Dec(sk, c) : To decrypt a ciphertext c ∈ Rq with secret key sk = f , let µ
def= [fc]q and output

m
def= µ (mod 2).

It is easily seen that this scheme is correct as long as there is no reduction modulo q. To decrypt
a ciphertext c, we compute:

[fc]q = [fhs + 2fe + fm]q = [2gs + 2fe + fm]q

If there is no reduction modulo q then

[fc]q (mod 2) = 2gs + 2fe + fm (mod 2) = fm (mod 2) = m

Furthermore, our choice of parameter φ(x) = xn + 1 ensures there is no reduction modulo
q. Notice that since the coefficients of g, s, e are all bounded by B, and the coefficients of f are
bounded by 2B + 1. By Corollary 2.6.2, we know that the coefficients of [fc]q are bounded by
2nB2(2nB + 1)(2B + 1). As long as we set q to be large enough so that q/2 is larger than this
quantity, a fresh ciphertext generated by Enc is guaranteed to decrypt correctly. From here on, we
refer to µ = [fc]q ∈ Rq as the “error in ciphertext c”.
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2.8.1 Security

The security of the (modified) NTRU encryption scheme can be based on two assumptions – the
RLWE assumption described in Section 2.6, as well as an assumption that we call the (Decisional)
Small Polynomial Ratio (DSPR) Assumption.

Definition 2.8.1. (Decisional Small Polynomial Ratio Assumption) Let φ(x) ∈ Z[x] be a
polynomial of degree n, let q ∈ Z be a prime integer, and let χ denote a distribution over the ring
R

def= Z[x]/ 〈φ(x)〉. The (decisional) small polynomial ratio assumption DSPRφ,q,χ says that it is
hard to distinguish the following two distributions:

• a polynomial h
def=

[
2gf−1

]
q
, where f ′ and g are sampled from the distribution χ (conditioned

on f
def= 2f + 1 being invertible over Rq) and f−1 is the inverse of f in Rq.

• a polynomial u sampled uniformly at random over Rq.

The security proof uses a hybrid argument, in two steps.

1. The hardness of DSPRφ,q,χ allows to change the public key h =
[
2gf−1

]
q

to a uniformly
sampled h.

2. Once this is done, we can use RLWEφ,q,χ to change the challenge ciphertext c∗ = [hs + 2e + m]q
to c∗ = [u + m]q, where u is uniformly sampled from Rq.

In this final hybrid, the advantage of the adversary is exactly 1/2 since c∗ is uniform over Rq,
independent of the message m.

Stehlé and Steinfeld [SS11b] showed that the DSPRφ,q,χ assumption is unconditionally true
even for unbounded adversaries (namely, the two distributions above are statistically close) if n is
a power of two, φ(x) = xn + 1, and χ is the discrete Gaussian DZn,r for r >

√
q · poly(n). Thus,

with this setting of parameters, semantic security of the modified NTRU scheme can be based on
the RLWEφ,q,χ assumption alone.
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Chapter 3

New Notions in MPC

In this chapter, we introduce two new notions of secure multiparty computation (MPC) [GMW87,
BGW88, CCD88], cloud-assisted MPC and on-the-fly MPC, specifically tailored to the delegation
of multiparty computation to a powerful but untrusted cloud server.

3.1 Cloud-Assisted MPC

We consider a variant of MPC, where N parties wish to securely compute a joint function of their
inputs, but want to do so in a way such that the amount of data they interchange, as well as their
computation time, is independent of the complexity of the function. In order to do this, we rely on
the computation power of a new party called the server or cloud, who will perform the computation
of the function f . The computation should remain secure even when the server and any colluding
subset of parties are corrupted. We formalize this idea below.

3.1.1 Definition

For an N -input function f , we define a cloud-assisted multiparty protocol Π for f to be an MPC
protocol between N interactive Turing Machines P1, . . . , PN , called parties or clients, and a server
S, also an interactive Turing Machine. We require that for all ~x = (x1, . . . , xN ), the output of
Π in an execution where Pi is given xi as input (and the server S does not receive an input), is
y

def= f(~x).
Furthermore, we require the communication complexity of the protocol, as well as the computa-

tion time of the clients P1, . . . , PN , to be (essentially) independent of the complexity of the function
f . In particular, we require the computation time of the clients and the communication complexity
of the protocol to depend at most polylogarithmically in the circuit-size of f .1 The computation
time of the server S is allowed to be polynomial in the circuit-size of f .

We prove security of a cloud-assisted MPC protocol in the Ideal/Real paradigm described in
Section 2.4.

3.1.2 Construction Overview

The starting point of our cloud-assited MPC construction is the blueprint of Gentry for how to
achieve MPC from FHE [Gen09a]. Gentry’s blueprint runs in 4 phases:

1. Parties run a general MPC protocol to obtain a public key pk and an evaluation key ek of an
FHE scheme, as well as secret shares sk1, . . . , skN of a corresponding secret key sk.

1We remark that we achieve complete independence when considering security against semi-malicious adversaries.
It is only in the malicious setting that we must relax the definition to allow for a polylogarithmic factor in the circuit
size of f .
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2. Each party encrypts their input mi under public key pk and broadcasts the resulting ciphertext
ci.

3. Each party individually and locally performs the homomorphic evaluation
c

def= Eval(ek, C, c1, . . . , cN ), and

4. Parties run a general MPC protocol to decrypt c using their shares ski.

We optimize this construction by taking advantage of specific properties of the FHE scheme
used to perform the homomorphic computation. We make three observations.

1. Our first observation is that the first step can be simplified if the FHE scheme has certain key
homomorphic properties. This allows the parties to sample their own key pairs (pki, ski, eki)
and then combine their public keys into a joint public key pk and their evaluation keys into a
joint evaluation key ek, such that the individual secret keys ski’s are secret shares of a valid
secret key for pk and ek.

2. Our second observation is that the final decryption step can also be simplified if the FHE
scheme has distributed decryption. This allows the parties to jointly decrypt c without
incurring the expense of a general MPC protocol.

3. Finally, in our construction the server alone performs the homomorphic computation and
broadcasts the result to all parties. This way, the computation of all parties except the server
is independent of the size of the circuit being computed. Compactness of the FHE scheme
guarantees that the communication complexity of the protocol is independent of the size of
the circuit.

In the malicious setting, the server must additionally prove to the clients that it carried out
the computation correctly. This proof and its verification make the communication complex-
ity of the protocol and the computation of all parties depend in the circuit size, but only
polylogarithmically.

In Chapter 4, we show that the RLWE-based FHE scheme described in Section 2.7 is key homo-
morphic and has distributed decryption. We further give a formal description of our construction,
and prove its security.

3.2 On-the-Fly MPC

We now consider a variant of MPC that has the same efficiency requirements as cloud-assisted MPC,
but allows for more flexibility in the computation of functions, and requires less communication
between parties. In this setting, a server or cloud S stores the data of a large universe of parties,
P1, . . . , PU . The data of each party must remain private, but the server S can compute any joint
function on the data of any subset V ⊆ [U ] of the parties. Furthermore, the server must be able to
perform this computation with minimal participation from the parties in V , and no interaction at
all from the rest of the parties (those in [U ]\V ).

Just as in the setting of cloud-assisted MPC, the amount of data the parties in V interchange,
as well as their computation time, must be independent of the complexity of the function. But we
further require that the communication complexity of the protocol and the computation of each
party be independent of the size of the universe, U .
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Finally, the computation should remain secure even when the server is untrusted. We formalize
this idea below.

3.2.1 Definition

For a class C of functions with at most U inputs, an on-the-fly multiparty protocol Π for C is a
protocol between U interactive Turing Machines P1, . . . , PU , called parties or clients, and a server
S, also an interactive Turing Machine. An on-the-fly MPC protocol consists of two phases:

Offline or Storage Phase: In the offline or storage phase, all parties P1, . . . , PU send (an en-
coding of) their inputs to the server S for storage. This phase is performed before a function
F ∈ C and a computing set V are chosen. We require no interaction between parties; all
communication must take place between a party and the server. Indeed, we assume parties
are oblivious to other parties’ existence during this phase.

Online Phase: The online phase begins once F is chosen, together with a subset V of inputs on
which F will be evaluated. Only the server and parties in V participate in the online phase.
After the function is selected, the server ignores all offline messages from non-computing
parties (those in [U ]\V ).

We require that for all inputs ~x = (x1, . . . , xU ) and all functions F ∈ C, if F is an N -input
function, then for all ordered subsets V ⊆ [U ] such that |V | = N , the output of Π in an execution
where Pi is given xi as input (the server S does not receive an input) and where F and V are
chosen for the computation, is y

def= F ((xi)i∈V ).

Efficiency Requirements. In the offline phase, the communication complexity of the protocol
as well as the computation of all parties P1, . . . , PU and the server S can only depend on the security
parameter κ and the size of their inputs.

In the online phase, we have the same efficiency requirements as in cloud-assisted MPC: we
require the communication complexity of the protocol, as well as the computation time of parties
in V to be (essentially) independent of the complexity of the function f . In particular, we require
the computation time of the clients in V and the communication complexity of the online phase to
depend at most polylogarithmically in the circuit-size of F .2 The computation time of the server
S is allowed to be polynomial in the circuit-size of F .

We further require that the computation of all parties (both in the offline and the online phases)
be independent of the size of the universe U , but allow it to depend on N , the size of the computing
set V .

Security. We prove security of a cloud-assisted MPC protocol in the Ideal/Real paradigm de-
scribed in Section 2.4. Since the server ignores messages from parties outside V in the online phase,
we assume w.l.o.g. that an adversary only corrupts computing parties (parties in V ) and possibly
the server S.

2We remark that we achieve complete independence when considering security against semi-malicious adversaries.
It is only in the malicious setting that we must relax the definition to allow for a polylogarithmic factor in the circuit
size of F .
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3.2.2 Construction Overview

Recall once more Gentry’s blueprint for constructing MPC from FHE [Gen09a]:

1. Parties run a general MPC protocol to obtain a public key pk and an evaluation key ek of an
FHE scheme, as well as secret shares sk1, . . . , skN of a corresponding secret key sk.

2. Each party encrypts their input mi under public key pk and broadcasts the resulting ciphertext
ci.

3. Each party individually and locally performs the homomorphic evaluation
c

def= Eval(ek, C, c1, . . . , cN ), and

4. Parties run a general MPC protocol to decrypt c using their shares ski.

In Chapter 4, we showed that if the above blueprint is instantiated using a key-homomorphic
threshold FHE scheme, there is no need to run generic MPC protocols for joint key generation
(Step 1) and decryption (Step 3). This yielded an efficient cloud-assisted MPC protocol.

Once again, we use Gentry’s blueprint as a starting point for our on-the-fly MPC protocol.
However, we make two important changes.

1. As in our construction of cloud-assisted MPC described in Section 3.1, the server alone per-
forms the homomorphic computation and broadcasts the result to all parties. This way, the
computation of all parties except the server is independent of the size of the circuit being
computed. Compactness of the FHE guarantees that the communication complexity of the
protocol is also independent of the size of the circuit. And once again, in the malicious setting
both the communication complexity and the computation of all parties except the server does
depend in the circuit size, but only polylogarithmically.

2. More importantly: in Gentry’s blueprint, parties must interact in Step 1 before they are able
to encrypt their inputs in Step 2. This is problematic in the setting of on-the-fly MPC, where
the parties must send their inputs to the server for storage in an offline phase before they
know what function will be computed and with what other parties the computation will take
place. In particular, parties cannot interact with each other before they encrypt their inputs.

Our solution is to remove Step 1 altogether. Instead of obtaining joint public and evaluation
keys, each party Pi samples its own key tuple (pki, ski, eki) and encrypts its input mi under
its own public key pki. Of course, this presents a problem in the homomorphic evaluation in
Step 3: the ciphertexts c1, . . . , cN are now encrypted under different public keys, a case that
is not immediately handled by standard FHE.

To this end, we define multikey fully homomorphic encryption. Intuitively, multikey FHE
allows evaluating any circuit on ciphertexts that might be encrypted under different public
keys. Furthermore, we show how to construct multikey FHE for any number of keys, N ,
based on the (modified) NTRU encryption scheme described in Section 2.8 [HPS98, SS11b].

For more details, we refer the reader to Chapter 5 and Chapter 6. In Chapter 5, we give
a formal definition of multikey FHE and a formal description of the NTRU-based multikey
FHE construction. In Chapter 6, we formally describe of our construction of on-the-fly MPC
and prove its security.
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Chapter 4

Cloud-Assisted MPC from Threshold
FHE

In this chapter, we show how to construct cloud-assisted MPC from threshold FHE: fully homomor-
phic encryption that is key-homomorphic and has distributed decryption. We start by defining key
homomorphism and distributed decryption, and show that the FHE scheme described in Section 2.7
has these properties. We then give a construction of cloud-assisted MPC using this FHE scheme,
and prove its security against semi-malicious adversaries. We then discuss how the protocol can be
modified in order to guarantee security against malicious adversaries.

4.1 Threshold FHE

In this section, we show that the FHE scheme described in Section 2.7 is a threshold FHE scheme.
However, before we are able to delve into key-homomorphism and distributed decryption, we must
first show that ciphertexts from this scheme can be rerandomized. This is necessary in order
to guarantee that evaluated ciphertexts do not leak information about the operations that were
performed, since these operations will sometimes depend on secret keys.

4.1.1 Ciphertext Rerandomization

We show that the FHE from Section 2.7 has rerandomizable ciphertexts: there exists an algo-
rithm ReRand such that for every polynomial-sized circuit C, given the public key pk and cipher-
text c := Eval(ek, C, c1, . . . , c`), where c1, . . . , c` are ciphertexts encrypting plaintexts m1, . . . ,m`

under pk, outputs a randomization ĉ of c that is indistinguishable from a fresh encryption of
y

def= C(m1, . . . ,m`), even given c1, . . . , c`. Essentially, this shows that a rerandomized ciphertext
does not leak any information about the circuit C.

As was observed by Gentry [Gen09a], this can be done by adding to c an encryption of
0 with noise that is super-polynomially larger than the noise in c. To this end, we let Encχ

denote the encryption algorithm that samples noise elements from distribution χ, and define
ReRandχ(pk, c) def= c+Encχ(pk, 0). Then the following lemma directly follows from Corollary 2.6.6.

Lemma 4.1.1. Suppose the magnitude of the noise in ciphertext c is bounded by B. If χ = DZn,r

for r ≥ 2ω(log κ)B, then the noise distributions of ReRandχ(pk, c) and a fresh encryption Encχ(pk, y)
are statistically close.

Corollary 4.1.2. Let c1, . . . , c` be ciphertexts with noise bounded by B, and let c :=
Eval(ek, C, c1, . . . , c`). If χ = DZn,r for r ≥ 2ω(log κ)B, then the noise distributions of ReRandχ(pk, c)
and a fresh encryption Encχ(pk, y) are statistically close.
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Looking ahead, parties will need to rerandomize ciphertexts when creating a joint evaluation
key and when performing distributed decryption, so as not to leak any information about the
homomorphic operations that were computed (which depend on their secret key).

4.1.2 Key Homomorphism

The FHE scheme from Section 2.7 is key homomorphic: it allows combining public keys pk1, . . . , pkN

into a combined public key pk, evaluation keys ek1, . . . , ekN into a combined evaluation key ek, and
secret keys sk1, . . . , skN into a combined secret key sk, such that if for all i, pki and eki are valid
public and evaluation keys for secret key ski, then pk and ek are valid public and evaluation keys
for sk. Formally, if for all i ∈ [N ], (pki, ski, eki) is in the support of Keygen, then (pk, sk, ek) is also
in the support of Keygen.

Combining Public Keys. Let a ← Rq, and let pk1 = p1 = [as1 + x1]q and pk2 = p2 =
[as2 + x2]q be two public keys corresponding to two (independent) secret keys sk1 = (1, s1) and
sk2 = (1, s2), but sharing the same parameter a. We have:

[p1 + p2]q = [a(s1 + s2) + (x1 + x2)]q

Thus, the public key pk := [pk1 + pk2]q is a valid public key for the secret key sk := sk1 + sk2.
Furthermore, bounds on the size of the combined secret key and the combined error can be obtained
by summing the bounds for the individual secret keys and error terms, respectively. Generalizing
this observation to multiple multi-level keys yields the following lemma.

Lemma 4.1.3. Let N ∈ N and for i ∈ [N ], let pki be a public key for secret key ski. Then,
pk

def= [pk1 + . . . + pkN ]q is a valid public key for secret key sk
def= sk1 + . . . + skN . Furthermore,

if for all i, ‖ski‖∞ < Bsk and the error in pki is bounded by Bχ, then ‖sk‖∞ < NBsk and the error
in pk is bounded by NBχ.

Combining Evaluation Keys. We describe how to compute a joint evaluation key in the sim-
plied case of two parties and a single multiplication. We then generalize the solution to the setting
of multiple multi-level keys.

Let sk1 = (s1, t1) and sk2 = (s2, t2) with si = (1, si) and ti = (1, t1), be two secret keys with
joint secret key sk = (s, t) def= (s1 + s2, t1 + t2). Let s

def= s1 + s2 and t
def= t1 + t2 so that

s = (1, s) and t = (1, t). Additionally, let (γ1, ζ1, . . .) and (γ2, ζ2, . . .) be evaluation keys for sk1

and sk2, respectively, and let (α1, ·), (α2, ·) be their corresponding parameters.
We wish to compute pseudo-encryptions of Pow (s) and Pow

(
s2

)
under t. This is possible with

some additional information: define b1,2,b2,1, c1, c2 as follows: for i 6= j, let bi,j
def= [αjti + ei,j ]q

for ei,j ← χdlog qe, and define

vj
def=

[
γj + bi,j

]
q

= [αj(t1 + t2) + ej + Pow (sj)]q = [αjt + ej + Pow (sj)]q

where the equality holds for some for “small” ej . We have,

[v1 + v2]q = [(α1 + α2)t + (e1 + e2) + Pow (s1 + s2)]q
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Therefore (γ, ζ), where γ
def= [v1 + v2]q and ζ

def= [−(α1 + α2)]q, is a pseudo-encryption of
Pow (s) under key t.

Moreover, given that s2 = (s1 +s2)2 = s2
1 +s1s2 +s2s1 +s2

2, we can compute pseudo-encryptions
of Pow

(
s2

)
by computing, for every i, j ∈ {1, 2}:

ci,j := [sivj ]q = [(siαj) t + (siej) + Pow (sisj)]q

Then, (γ̃, ζ̃), where γ̃
def=

 2∑
i=1

2∑
j=1

ci,j


q

, ζ̃
def=

 2∑
i=1

2∑
j=1

siαj


q

, is a pseudo-encryption of

Pow
(
s2

)
under key t.

We can therefore let ek :=
(
γ, ζ, γ̃, ζ̃

)
be the evaluation key for the combined secret key

sk = (s, t).

A few remarks are in order. First, it is easy to see that we can generalize the above discussion
to the setting of multiple multi-level keys. Second, note that in constructing the joint evaluation
key, we did not use the elements (γ̃i, ζ̃i) from the individual evaluation keys, since we obtained
pseudo-encryptions of Pow

(
s2
i

)
in a different manner (by computing ci,i). This means that in our

protocol, parties will not need to compute this part of their individual secret keys. Finally, note
that the joint evaluation key can be computed in a 2-round interactive protocol. In Round 1, each
party Pj computes and broadcasts its evaluation key γi and the elements bi,j for all i 6= j. In
Round 2, each party Pj computes and broadcasts ci,j for all i. With this information it is possible
to locally compute the combined evaluation key ek.

However, note that the ci,j ’s reveal information about sj , and it is therefore not secure for party
Pj to broadcast these values.1 This can be prevented by rerandomizing each ci,j , i.e. by adding to
it an encryption of 0 with super-polynomially larger noise, as explained above.

Lemma 4.1.4. Let N ∈ N and for i ∈ [N ], let eki be a valid evaluation key for secret key ski.
Then, ek, computed from ski and eki as described above, is a valid evaluation key for secret key
sk

def= sk1 + . . . + skN . Furthermore, if for all i, ‖ski‖∞ < Bsk and the error in eki is bounded by
Bχ, then the error in ek is bounded by N2[2nBskBχ + Brand], where Brand is a bound on the noise
added at randomization.

4.1.3 Distributed Decryption

The FHE scheme from Section 2.7 also has distributed decryption: it is possible to decrypt a
ciphertext under the combined public key pk by independently using the secret keys ski. More
formally, given a ciphertext c encrypting a plaintext m under pk, it is possible to compute a
decryption share µi using only ski such that no information is revealed about ski and combining
the ciphertext c with the shares µ1, . . . , µN yields the plaintext m. Our construction follows the
work of Asharov et al. [AJW11, AJL+12]. We remark that distributed decryption for a similar
LWE-based scheme was described by Bendlin and Damg̊ard [BD10].

Let sk1 = s1 and sk2 = s2 be two secret keys, and let pk1 = p1 and pk2 = p2 be two corresponding
public keys. Let sk = s = s1 + s2 be the combined secret key, and let pk = p = p1 + p2 be

1For example, given ci,j and ci,j′ for j 6= j′, it is possible to obtain (a multiple of) sj by computing their GCD.
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the combined public key. Furthermore, let c = (v, w) be an encryption of m under pk, so that
m =

[⌊
2
q · [〈c, s〉]q

⌉]
2
.

If we define µi = wsi, then [v − µ1 − µ2]q = 〈c, s〉, as desired. However, µi reveals information
about the secret key si. This is avoided by rerandomizing the share: we define decryption shares
µi

def= wsi + ei, where ei is super-polynomially larger than the noise in wsi.
As before, we can generalize this to the multikey setting.

Lemma 4.1.5. Let N ∈ N. For i ∈ [N ], let (pki, ski, ·) be a valid key tuple, and let pk be the
combined public key pk = pk1 + . . . + pkN . Let c = (v, w) be a ciphertext under public key pk, and
let B be a bound on the magnitude of the noise in c. Performing distributed decryption with shares
µi = wsi + ei, where ‖ei‖∞ < Brand, is correct as long as B + NBrand + 1 < q/4.

We remark that although each share µi = wsi + ei looks like a RLWE sample, we are unable
to base the security of distributed decryption on the RLWE assumption, as is done in the work
of Bendlin and Damg̊ard [BD10]. This is because in our setting, the ciphertext c = (v, w) being
decrypted is the output of a homomorphic evaluation (on possibly incorrectly distributed cipher-
texts), and therefore w is not guaranteed to be uniformly distributed. The result of this is that the
noise ei added to the share must be much larger than is required for RLWE to be hard.

We further note that a previous version of this work [LTV11] relies on the RLWE assumption
to prove the security of the decryption shares, and attempts to rerandomize the ciphertext c into
a ciphertext ĉ that is indistinguishable from a fresh encryption of y, in order to guarantee that w
is uniformly random. The ciphertext ĉ is computed by having each party contribute an encryption
of 0 with super-polynomially larger noise, and adding these ciphertexts to c. The hope is that if at
least one party is honest, then it will sample the noise correctly and this honest noise will flood the
noise in c. However, it must not only flood the noise in c, but also the noise of all the corrupted
parties, which can be just as large. Moreover, the adversary sees c and all the encryptions of 0, so it
can easily distinguish between ĉ and a fresh encryption of y. We are unable to prove the security of
this approach, and instead use the approach used in the work of Asharov et al. [AJW11, AJL+12],
as described above.

4.2 The Basic Protocol

Now that we have shown the RLWE-based FHE described in Section 2.7 is a threshold FHE and has
rerandomizable ciphertexts, we can describe our cloud-assisted MPC protocol. We first describe a
protocol that is secure against (static) semi-malicious corruptions, and then show how to transform
this protocol into one that is secure against (static) malicious corruptions (see Section 4.3). Both
protocols assume a common reference string (CRS).

4.2.1 Overview

Our construction follows Gentry’s blueprint [Gen09a] for how to construct MPC from FHE, but op-
timizes it by instantiating the FHE scheme with the RLWE-based scheme described in Section 2.7
and taking advantage of its key homomorphic, distributed decryption, and ciphertext rerandom-
ization properties.

The protocol has 4 rounds:
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Input: All parties and the server receives a common reference string (CRS) that contains parame-
ters for their public keys and evaluation keys. Crucially, the CRS contains a single parameter
vector

(
a(0), . . . , a(D)

)
for all public keys. This ensures that a joint public key can be com-

puted using the key homomorphic properties of the scheme. On the other hand, there is
an evaluation-key parameter vector

(
α

(0)
i , . . . ,α

(D)
i

)
for each party Pi. This is necessary to

maintain security.2

Round 1: Each party samples its own key pair (pki, ski, eki) and broadcasts (pki, eki) and the first
round in the 2-round protocol for computing the combined evaluation key.

Round 2: Having received all parties’ public keys, each party can now compute the combined
public key pk, and encrypt its input under pk. It broadcasts this ciphertext, ci, as well as the
second round in the 2-round protocol for computing the combined evaluation key.

Round 3: At this point, the server can compute the combined evaluation key ek and perform the
homomorphic evaluation c = Eval (ek, C, c1, . . . , cN ).

Round 4: Having received c, parties compute and broadcast their corresponding decryption shares.

Local computation: Once they obtain all decryption shares, the parties can combine these shares
with the ciphertext c and obtain the output.

We now give a formal description of the protocol.

4.2.2 Formal Protocol

The protocol uses four different distributions: χsk, χenc, χek, χdec. The distribution χsk is used to
sample secret keys, χenc is used by the encryption algorithm to sample noise for fresh ciphertexts,
χek is used for randomization in the computation of the joint evaluation key, and χdec is used for
rerandomization in distributed decryption. They are all (truncated) discrete Gaussians with differ-
ent standard deviations so as to guarantee the rerandomization requirements. We defer describing
the specific parameters until after the protocol description.

Input: All parties and the server receive as input the common reference string:

crs =
(

a(0), . . . , a(D),
{

α
(0)
i , . . . ,α

(D)
i

}
i∈[N ]

)

All parties will use the coefficient vectors
(
a(0), . . . , a(D)

)
to generate their public keys. Party

Pi will use
(
α

(0)
i , . . . ,α

(D)
i

)
to generate its evaluation key.

Round 1: For i ∈ [N ], party Pi:

2Otherwise, for each d and j, the elements b
(d)
i,j and γ

(d)
j would be RLWE samples with the same parameter α(d)

and the same secret key s
(d)
j , which is not secure.
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• Generates a key tuple using the CRS: For d ∈ {0, . . . , D}, samples ring elements s
(d)
i , x

(d)
i ←

χenc. Defines s(d)
i =

(
1, s

(d)
i

)
and p

(d)
i =

[
a(d)s

(d)
i + x

(d)
i

]
q
, and sets

ski :=
(
s(0)
i , . . . , s(D)

i

)
, pki :=

(
p
(0)
i , . . . , p

(D)
i

)
For d ∈ [D], samples ε

(d)
i , ε̃

(d)
i ← χ

dlog qe
enc , and sets eki :=

{
γ

(d)
i , ζ

(d)
i

}
d∈[D]

, where

γ
(d)
i :=

[
α

(d)
i · s

(d)
i + ε

(d)
i + Pow

(
s
(d−1)
i

)]
q
∈ Rdlog qe

q , ζ
(d)
i := −α

(d)
i

Recall that the elements
{

γ̃
(d)
i , ζ̃

(d)

i

}
d∈[D]

in the individual evaluation keys are not needed

to compute a combined evaluation key, and thus do not need to be computed at all.

• Generates ring elements to be used in creating the joint evaluation key: For all j ∈ [N ],
j 6= i, and d ∈ [D], samples e(d)

i,j ← χ
dlog qe
enc and computes

b(d)
i,j :=

[
α

(d)
j s

(d)
i + e(d)

i,j

]
q

• Broadcasts (pki, eki) and
{
b(d)

i,j

}
j∈[N ],j 6=i,d∈[D]

Round 2: For i ∈ [N ], party Pi:

• Computes the joint public key: For d ∈ {0, . . . , D}, computes
p(d) := p

(d)
1 + . . . + p

(d)
N and sets pk :=

(
p(0), . . . , p(D)

)
.

• Generates an encryption of its input mi under the joint public key pk: Samples ri, ei, e
′
i ←

χenc, and computes the ciphertext ci := (vi, wi) ∈ R2
q , where:

vi :=
[
p(0)ri + ei +

⌊q

2

⌋
mi

]
q
∈ Rq , wi :=

[
−a(0)ri + e′i

]
q
∈ Rq

• Generates ring elements to be used in creating the joint evaluation key: For all j ∈
[N ], d ∈ [D], samples ρ

(d)
j , ξ

(d)
j , ξ

′(d)
j ← χ

dlog qe
ek and computes

v(d)
j :=

γ
(d)
j +

N∑
k=1
k 6=j

b(d)
k,j


q

, w(d)
j := −α

(d)
j

c(d)
i,j :=

[
s
(d−1)
i v(d)

j + p(d)ρ
(d)
j + ξ

(d)
j

]
q

, z(d)
i,j :=

[
−s

(d−1)
i α

(d)
j − a(d)ρ

(d)
j + ξ

′(d)
j

]
q

Note that each pair
(
c(d)

i,j , z(d)
i,j

)
is rerandomized by adding an encryption of 0 with noise

that we will set to be super-polynomially larger. This ensures that the pair is statistically
close to a fresh encryption of s

(d−1)
i s

(d−1)
j and therefore does not reveal any information

about s
(d)
i .
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• Broadcasts ci and
{
c(d)

i,j , z(d)
i,j

}
j∈[N ],d∈[D]

Round 3: The server S:

• Computes the joint evaluation key: Sets ek :=
{

γ(d),γ(d), γ̃(d), ζ̃
(d)

}
d∈[D]

, where for

d ∈ [D]:

γ(d) :=

 N∑
j=1

v(d)
j


q

, ζ(d) :=

 N∑
j=1

w(d)
j


q

γ̃(d) :=

 N∑
i=1

N∑
j=1

c(d)
i,j


q

, ζ̃
(d)

:=

 N∑
i=1

N∑
j=1

z(d)
i,j


q

and the elements
{
v(d)

j ,w(d)
j

}
j∈[N ],d∈[D]

are computed as in Round 2.

• Performs the homomorphic evaluation: c := Eval(ek, C, c1, . . . , cN ).

• Broadcasts c.

Round 4: For i ∈ [N ], party Pi:

• Computes its decryption share: Parses c = (v, w) and samples ei ← χdec. Computes:

µi := w · s(D)
i + ei ∈ Rq

• Broadcasts µi.

Local Computation: For i ∈ [N ], party Pi combines all the decryption shares to decrypt the
evaluated ciphertext: Computes

µ :=

2
q

v −
N∑

j=1

µj


q




2

4.2.3 Choice of Parameters

The following set of parameters simultaneously ensures that:

• RLWE is hard.

• rerandomization is successful in both the creation of the joint evaluation key and in distributed
decryption.

• distributed decryption is correct.
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Given N,D ∈ N, choose security parameter κ and set n such that

n = ω
(
D log n + log D + D log N + D · log2 κ

)
Note that the definition of n is circular. Although there is no analytical solution for such equa-

tion, programmatical solutions are available in terms of Lambert’s W function or the generalized
log function [Kal01]. Further set:

q = Θ(n3D+6DND+6 · 2(D+6)·log2 κ) , rsk = renc = 2log2 κ

rek = n2(N + 1)23 log2 κ , rdec = Θ
(
n3D+5DND+5 · 2(D+5)·log2 κ

)
For i ∈ {sk,enc,ek,dec}, we let distribution χi = DZ,ri , and observe that χi is Bi-bounded,

for

Bsk = Benc =
√

n · 2log2 κ , Bek =
√

n ·n2(N + 1)23 log2 κ , Bdec = Θ
(
n3D+6DND+5 · 2(D+5)·log2 κ

)
Security of RLWEφ,q,χenc (and therefore security of the FHE and of our protocol) is based on the

hardness of the 2ω(log n) · (q/renc)-approximate R-SVP problem. With our setting of parameters,
we have:

2ω(log n) · (q/renc) =2ω(log n) ·
Θ

(
n3D+6DND+6 · 2(D+6)·log2 κ

)
2log2 κ

≤2ω(log n) · 2O(D log n+log D+D log N+D·log2 κ) = 2ω(log n) · 2o(n)

This corresponds to solving the R-SVP problem to within a sub-exponential factor, which is
believed to be hard.

We now bound the error in different elements in the protocol, and show that rerandomization
requirements are met and that distributed decryption will be correct. The error of each v(d)

j is

bounded by (N + 1)Benc. Therefore, the error in s
(d−1)
j v(d)

j is bounded by n(N + 1)BskBenc. We
have set rek to be larger by a super-polynomial factor, as required for rerandomization.

The error of each ci,j is bounded by n(N + 1)BskBenc + nNBencBek + nNBskBek + Bek =
O(nNBencBek). This means that the error in the evaluation key γ, γ̃ is bounded by O(nN3BencBek).
By Theorem 2.7.1, and the fact that the secret key size is bounded by NBsk, this means that the
error of c is bounded by:

O
(
(n3NBsk)D

(
nB2

enc + nNBencBsk + n2N2B2
sk + n dlog qe · (nN3BencBek)

))
= O

(
(n3NBsk)D

(
n dlog qe · (nN3BencBek)

))
= O

(
(n3N · 2log2 κ)D

(
n4N4 dlog qe 24 log2 κ

))
= O

(
n3D+4ND+4 dlog qe 2(D+4) log2 κ

)
= O

(
n3D+5DND+52(D+4) log2 κ

)
We have set rdec to be larger than the error of c by a super-polynomial factor, in order to

guarantee success in rerandomizing the decryption shares.
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All that is left is to show that decryption will be correct. The error in decryption is the error
in c plus the sum of the errors in the decryption shares. Thus, the decryption error is bounded by:

O
(
n3D+5DND+52(D+4) log2 κ

)
+ N
√

n ·Θ
(
n3D+5DND+52(D+5) log2 κ

)
= O

(
n3D+6DND+62(D+5) log2 κ

)
Decryption is correct as long as this error is smaller than q/4; we guarantee this by setting q =
Ω

(
n3D+6DND+62(D+5) log2 κ

)
.

4.2.4 Security Against Semi-Malicious Adversaries

Theorem 4.2.1. Let f be an N -input function. Let C be a poly-sized circuit computing f , and let
F be the ideal functionality computing f . Assuming the hardness of RLWEφ, q, χenc, the protocol
described above securely implements F against (static) semi-malicious adversaries.

Proof of Theorem 4.2.1: We prove correctness, performance, and security.

Correctness: Correctness follows from Lemma 4.1.3, Lemma 4.1.4, Lemma 4.1.5, and our choice
of parameters described above.

Performance: By compactness of evaluation, we know that c is independent of the size of C.
This means that the computation of the clients, as well as the communication complexity of
the protocol, is independent of the size of C.

Security: We show security for the case when the server is corrupted; the case when the server
is honest is analogous. Let A be a real-world semi-malicious adversary corrupting t < N
clients and the server. Let T ( [N ] be the set of corrupted clients. We assume, without
loss of generality, that whenever the protocol instructs a corrupted party to sample form a
B-bounded distribution, A chooses an element that is B-bounded, though not necessarily
from the correct distribution3.

We construct a simulator Ssm as follows. The simulator receives the inputs of the corrupted
parties, {mi}i∈T . It creates the CRS honestly, and runs A on the inputs {mi}i∈T and the
CRS. It simulates the messages for all honest parties in the protocol execution with A. It
does this by first fixing an arbitrary honest party h ∈ T . For all honest parties Pj such
that j 6= h, the simulator creates all messages honestly, except the encryption of the input
mj , which it simulates with random ring elements. For the honest party Ph, the simulator
chooses all messages at random, and uses Ph’s decryption share µh to fix the outcome of the
computation. Details follow.

Round 1: For all i ∈ T , i 6= h, the simulator computes pki, eki,
{
b(d)

i,j

}
j 6=i

honestly. For party

Ph it samples uniform ring elements instead: For d ∈ {0, . . . , D}, samples p
(d)
h ← Rq and

sets pkh :=
(
p
(0)
h , . . . , p

(D)
h

)
. For d ∈ [D], samples γ

(d)
h ← R

dlog qe
q , sets ζ

(d)
h := − α

(d)
h

3This could be ensured by changing the protocol to explicitly mention sampling a B-bounded element. We choose
not to do this for the sake of clarity in the description of the protocol.
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and sets ekh :=
{

γ
(d)
h , ζ

(d)
h

}
d∈[D]

. For all j ∈ [N ], j 6= h, d ∈ [D], it samples b(d)
h,j ← Rq

uniformly at random.

For all honest parties i ∈ T , the simulator sends
(

pki, eki,
{
b(d)

i,j

}
j 6=i,d∈[D]

)
to A as Pi’s

broadcast message.

When it receives messages from A for all corrupted parties, it reads from A’s witness
tape the secret keys

{
sk

(d)
k

}
k∈T

for all corrupted parties Pk.

Round 2: For all i ∈ T , instead of computing an encryption of input mi (which it doesn’t
know), the simulator samples random ring elements: ci ← R2

q .

Furthermore, for i ∈ T , i 6= h, the simulator computes
{
c(d)

i,j , z(d)
i,j

}
honestly, but chooses

c(d)
h,j , z

(d)
h,j ← R

dlog qe
q for all j ∈ [N ], d ∈ [D].

For all i ∈ T , the simulator sends
(
ci,

{
c(d)

i,j , z(d)
i,j

}
j∈[N ],d∈[D]

)
to A as Pi’s broadcast

message.

When it receives messages from A for all corrupted parties, it reads from A’s witness
tape the inputs {mk}k∈T . The simulator sends these inputs to the trusted functionality
F and receives the output y.

Round 3: The simulator receives ciphertext c = (v, w) from A as the server’s broadcast
message.

Round 4: For k ∈ T , let skk =
(
s(0)
k , . . . , s(D)

k

)
with s(d)

k =
(
1, s

(D)
k

)
, be Pk’s secret key that

the simulator obtained at the end of Round 1. For all i ∈ T , i 6= h, the simulator com-
putes the decryption share µi honestly, and uses µh to fix the output of the decryption
to y:

µh = v − y −
N∑

i=1
i6=h

ws
(D)
i + e

where e← χdec.

Output: The simulator receives the output of the corrupted parties from A, and returns
these as its output.

We now show that REALΠsh,A(~x)
c
≈ IDEALF ,Ssm(~x) via a series of hybrids.

Hybrid 0: This is the real-world execution of the protocol.

Hybrid 1: In this hybrid, we change how the share µh is computed:

µh = v − y −
N∑

i=1
i6=h

ws
(D)
i + e
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where e ← χdec, and where for k ∈ T , skk =
(
s(0)
k , . . . , s(D)

k

)
with s(d)

k =
(
1, s

(D)
k

)
, is

Pk’s secret key.

We claim that the view of A in Hybrid 0 is statistically close to the view of A in
Hybrid 1. Everything is the same in both hybrids except the share µh. Furthermore, by
correctness of evaluation-key combination and homomorphic evaluation, we know that
c is an encryption of y with some noise ε. Then, in Hybrid 1,

µh = ws(D) + ε + y − y −
N∑

i=1
i6=h

ws
(D)
i + e = ws

(D)
h + ε + e

Since e ← χdec and we chose rdec to be super-polynomially larger than the magnitude
of ε, by Corollary 2.6.6 the distributions of µh in Hybrid 0 and Hybrid 1 are statistically
close.

Hybrid 2: In this hybrid, we change how the elements
(
c(d)

h,j , z
(d)
h,j

)
are computed. They are

fresh encryptions of s
(d−1)
h s

(d−1)
j with noise from χek. For elements ρ

(d)
j , ξ

(d)
j , ξ

′(d)
j ← χek:

c(d)
h,j =

[
pdρ

(d)
j + ξ

(d)
j + s

(d−1)
h s

(d−1)
j

]
q

, z(d)
h,j =

[
−adρ

(d)
j + ξ

′(d)
j

]
q

By Lemma 4.1.1, we know that Hybrid 1 and Hybrid 2 are statistically close.

Hybrid 3.(d, z) for d = D, . . . , 0 and z ∈ {0, 1}: In Hybrid 3.(d, 0), we change the protocol
so that the elements b

(d)
h,j , the public key p

(d)
h , and the evaluation key γ

(d)
h are now chosen

uniformly at random. Then, in Hybrid 3.(d, 1), we change the protocol once more so
that the elements c(d)

h,j , z
(d)
h,j are now chosen uniformly at random as well. We must do

this in two steps because to argue that the elements c(d)
h,j are pseudorandom, we must

first argue that the public key p
(d)
h is pseudorandom, and to argue that the public key

p
(d)
h is pseudorandom, we must first argue that the elements c(d+1)

h,j are pseudorandom.

In Hybrid 3.(d, 0), we sample:{
b(d)

h,j ← Rdlog qe
q

}
j 6=h

, p
(d)
h ← Rn

q , γ
(d)
h ← Rn

q

In Hybrid 3.(d, 1), we further sample:{
c(d)

h,j , z
(d)
h,j ← Rdlog qe

q

}
j∈[N ]

We define Hybrid 3.(D + 1, 1) to be the same as Hybrid 2. We first claim that the view
of A in Hybrid 3.(d, 0) and Hybrid 3.(d + 1, 1) are computationally indistinguishable
by the RLWE assumption with secret s

(d)
h . Indeed, notice that the only places in the

protocol that s
(d)
h is used is as a RLWE secret when constructing these elements, and

“encrypted” in the elements γ
(d+1)
h and c(d+1)

h,j . Our hybrid approach guarantees that
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in both Hybrid 3.(d, 0) and Hybrid 3.(d + 1, 1) the elements γ
(d+1)
h and c(d+1)

h,j are both
uniformly random (or in the case of d = D, don’t exist).

We now claim that Hybrid 3.(d, 0) and Hybrid 3.(d, 1) are computationally indistinguish-
able by the RLWE assumption with secret ρ

(d)
j (see Fact 2.6.8). In both hybrids, p

(d)
h is

uniformly random and thus the combined public key p(d) is uniformly random as well.
Furthermore, the element −a(d) is guaranteed to be uniformly random.

Hybrid 4: In this hybrid, we change how the ciphertexts ci are computed for all honest
parties. Instead of encrypting the real input mi, they are sampled as random ring
elements: {

ci ← R2
q

}
i∈T

We claim that Hybrid 4 is computationally indistinguishable from Hybrid 3 by the RLWE

assumption with secret r = (ri)i∈T (see Fact 2.6.8). This follows from the fact that p
(0)
h

is uniformly random and thus, the combined public key p(0) is also uniformly random.
Furthermore, the element −a(0) is guaranteed to be uniformly random.

Hybrid 4 is precisely the outcome of running the simulator Ssm. We conclude that
REALΠsh,A(~x)

c
≈ IDEALF ,Ssm(~x).

4.3 Achieving Security Against Malicious Adversaries

To guarantee security against malicious adversaries, we apply the AJW compiler [AJW11, AJL+12]
(see Section 2.4.2), to the protocol described in Section 4.2 which is secure against semi-malicious
corruptions. This entails requiring each party and the server to prove in zero-knowledge, at every
round, that its messages in that round are well-formed and consistent with the protocol transcript
so far.

However, verifying the server’s proof in Round 3 requires time proportional to the size of the
circuit C. Therefore, a simple application of the compiler eliminates the performance guarantees
of the cloud-assisted protocol. We therefore replace the server’s proof with a succinct argument.
We offer several solutions, each offering a unique set of advantages and drawbacks.

Verifying the Server’s Computation. The server needs to convince the parties that “c =
Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN ))”, or in other words, that a deterministic circuit of size
poly(|C|, κ) accepts. For any uniform circuit C (i.e., computable by a poly(κ)-time Turing machine),
the following offer poly(κ, log(|C|)) communcation and verification efficiency.4

1. Use the argument system of Kilian [Kil92, Kil95], yielding interactive 4-round verification. It
relies on expensive PCPs.

4For any given family of C, |C| = poly(κ), and thus, poly(κ, log(|C|)) = poly(κ); but the degree of this polynomial
depends on the circuit family.
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2. Use the succinct non-interactive arguments (SNARGs and SNARKs) of Micali [Mic94], Bi-
tansky et al. [BCCT12, BCCT13] or Goldwasser et al. [GLR11] (see Section 2.3). These are
non-interactive5 but are secure only in the random oracle model [BR93] (in the case of CS
proofs) or hold in the standard model but require a non-falsifiable assumption [Nao03]. Some
variants rely on PCPs, PIR or FHE.

If we allow a pre-processing phase in which clients are able to perform computation proportional
to the size of the function to be computed, we have two more solutions:

4. Use verifiable computation protocols in the pre-processing model (e.g. [GGP10, CKV10,
AIK10]). They rely on FHE.

5. Use SNARGs/SNARKs where the CRS depends on the circuit to be computed or where its
size is at least as big as the computation, e.g. [Gro10, Lip12, GGPR13, PHGR13, Lip13].
These are based on non-falsifiable assumptions.

Finally, in case that the evaluation circuit is in logspace-uniform NC, we have another alterna-
tive:

6. Use the argument system of Goldwasser et al. [GKR08] for a 1-round solution6. It relies on
PIR.

5In our protocol, each party can run Gen in Step 1 and send the vrs to the server in that step. Or in the case of
CS proofs, where only a description of a hash function is required, this can be added to the CRS of the protocol.

6The protocol has 2 rounds, but (as in the case of SNARGs and SNARKs) the first round is a challenge that
is independent of the language and the statement, and can therefore be precomputed by the clients in Round 1 or
2 of our protocol. Each challenge can only be used for one proof, so the client must send a new challenge in each
execution of the protocol.
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Chapter 5

Multikey FHE

Having constructed cloud-assisted MPC for all efficiently computable functions, we now focus on
constructing a protocol that satisfies the more stringent requirements of on-the-fly MPC. As men-
tioned earlier, the main building block in this construction is multikey FHE: fully homomorphic
encryption that allows homomorphic evaluation on ciphertexts encrypted under different and inde-
pendent keys. In this chapter, we formally define multikey FHE and show a construction for any
number of keys based on the NTRU encryption scheme [HPS98, SS11b] described in Section 2.8.
We also show that any FHE scheme is inherently multikey for a constant number of keys (in the
security parameter), and that the Brakerski-Vaikuntanathan scheme [BV11b, BGV12] is somewhat
homomorphic for a logarithmic number of keys.

5.1 Definition

To formally define multikey fully homomorphic encryption, we introduce a parameter N , which is
the number of distinct keys that the scheme can handle; all algorithms will depend polynomially
on N . This is similar to the definition of leveled homomorphic encryption from [BGV12] (see Defi-
nition 2.5.3), but we note that in our definition, the algorithms depend on N but are independent
of the depth of circuits that the scheme can evaluate. Thus, we consider schemes that are “leveled”
with respect to the number of keys N , but fully homomorphic (“non-leveled”) with respect to the
circuits that are evaluated. The construction of multikey FHE schemes that are not leveled with
respect to the number of keys (i.e., where all algorithms are independent of N) remains an open
problem.

Finally, we note that to guarantee semantic security, decryption requires all corresponding secret
keys.

Definition 5.1.1 (Multikey C-Homomorphic Encryption). Let C be a class of circuits. A family{
E(N) = (Keygen,Enc,Dec,Eval)

}
N>0

of algorithms is multikey C-homomorphic if for all integers
N > 0, E(N) has the following properties:

• (pk, sk, ek) ← Keygen(1κ): For a security parameter κ, outputs a public key pk, a secret key
sk and a (public) evaluation key ek.

• c← Enc(pk,m): Given a public key pk and message m, outputs a ciphertext c.

• m := Dec (sk1, . . . , skN , c): Given N secret keys sk1, . . . , skN and a ciphertext c, outputs a
message m.

• c := Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)): Given a (description of) a boolean circuit C along
with ` tuples (ci, pki, eki), each comprising of a ciphertext ci, a public key pki, and an evalu-
ation key eki, outputs a ciphertext c.
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We require absence of decryption failures and compactness of ciphertexts. Formally: for
every circuit C ∈ C, all sequences of N key tuples

{(
pk′j , sk

′
j , ek

′
j

)}
j∈[N ]

each of which is in
the support of Keygen(1κ), all sequences of ` key tuples {(pki, ski, eki)}i∈[`] each of which is in{(

pk′j , sk
′
j , ek

′
j

)}
j∈[N ]

, and all plaintexts (m1, . . . ,m`) and ciphertexts (c1, . . . , c`) such that ci

is in the support of Enc(pki,mi), Eval satisfies the following properties:

Correctness: Let c := Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)). Then
Dec

(
sk′1, . . . , sk

′
N , c

)
= C(m1, . . . ,m`).1

Compactness: Let c := Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)). There exists a polynomial P
such that |c| ≤ P (κ, N). In other words, the size of c is independent of ` and |C|. Note,
however, that we allow the evaluated ciphertext to depend on the number of keys, N .

Definition 5.1.2 (Multikey Fully Homomorphic Encryption). A family of encryption schemes{
E(N) = (Keygen,Enc,Dec,Eval)

}
N>0

is multikey fully homomorphic if it is multikey C-homomor-
phic for the class C of all circuits.

Semantic security of a multikey FHE follows directly from the semantic security of the un-
derlying encryption scheme in the presence of the evaluation key ek. This is because given ek,
the adversary can compute Eval himself. Note that taking N = 1 in Definition 5.1.1 and Defi-
nition 5.1.2 yield the standard definitions of C-homomorphic and fully homomorphic encryption
schemes (Definition 2.5.1 and Definition 2.5.2).

5.2 Multikey FHE for a Small Number of Keys

As a prelude to our main result in Section 5.3, we show that multikey homomorphic encryption for
a small number of keys can be easily achieved. In particular, we show that any (standard) FHE
can be converted into a multikey FHE for a constant number of keys, N = O(1). Furthermore,
we show that the Brakerski-Vaikuntanathan (ring-based) FHE [BV11b] is multikey homomorphic
for a logarithmic number of keys, N = O(log κ). Unfortunately, once we introduce multiple keys
we are unable to use either relinearization or squashing, and can therefore only obtain a somewhat
homomorphic encryption scheme.

5.2.1 O(1)-Multikey FHE from any FHE

We show that any FHE scheme is inherently multikey for a constant number of keys, N = O(1).2

Let E = (Keygen,Enc,Dec,Eval) be an FHE scheme with message space {0, 1} and ciphertext space
{0, 1}λ where λ = p(κ) for some polynomial p(·). For x ∈ {0, 1}∗, define x[i] to be the ith bit of x,
and define Ẽnc to be the bit-wise encryption of x:

Ẽnc(pk, x) def= (Enc(pk, x[1]), . . . ,Enc(pk, x[|x|]))

1Note that correctness still holds even if the circuit C completely ignores all ciphertexts encrypted under a public
key pk′i, or if none of the original ciphertexts were encrypted under this key. In other words, using superfluous keys
in the decryption process does not affect its correctness (as long as decryption uses at most N keys).

2The idea for this construction was originally suggested to us by an anonymous STOC 2012 reviewer. We include
it in this dissertation and formally prove its correctness for the sake of completeness.
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Furthermore, for any k ∈ N, recursively define “onion” encryption and decryption:

Enc∗(pk, x) def= Enc(pk, x)

Enc∗ (pk1, . . . , pkk, x) def= Enc∗
(
pk1, . . . , pkk−1,Enc (pkk, x)

)
= Enc (pk1,Enc (pk2, . . . ,Enc ((pkk, x)))

Dec∗(sk, x) def= Dec(sk, x)

Dec∗ (sk1, . . . , skk, x) def= Dec∗ (sk2, . . . , pkk,Dec (sk1, x))
= Dec (skk,Dec (skk−1, . . . ,Dec (sk1, x)))

We highlight two properties of “onion” encryption and decryption:

1. First, note that Enc∗ and Dec∗ satisfy correctness: if (pki, ski) ← Keygen(1κ) for all i ∈ [k],
then for all m ∈ {0, 1}:

Dec∗ (sk1, . . . , skk,Enc∗ (pk1, . . . , pkk,m)) = m

2. Second, note that the bit-size of the ciphertext Enc∗ (pk1, . . . , pkk,m) is λk. Recall that the
ciphertext space of Enc is {0, 1}λ and λ = p(κ) for some polynomial p(·).

Construction Overview. We now give an overview of the construction. Given N ciphertexts
ci ← Enc (pki,mi) encrypting plaintext mi under key pki, for all i ∈ [N ], it is possible to homomor-
phically compute “onion” ciphertexts:

zi ≈ Enc∗ (pk1, . . . , pkN ,mi)

This is done by homomorphically evaluating the function Enc∗
(
pki+1, . . . , pkN , ·

)
on cipher-

text ci. This outputs an onion encryption z̃i ≈ Enc∗ (pki, . . . , pkN ,mi). The ciphertext zi can be
obtained by onion encrypting z̃i with the remaining keys: zi = Enc∗

(
pk1, . . . , pki−1, z̃i

)
Once the ciphertexts z1, . . . , zN have been obtained, we can recursively perform homomorphic

evaluations corresponding to the keys pk1, . . . , pkN (in that order), to obtain a ciphertext:

c ≈ Enc∗ (pk1, . . . pkN , C (m1, . . . ,mN ))

By correctness of “onion” encryption, decrypting c can be easily achieved using “onion” de-
cryption:

Dec∗ (sk1, . . . , skk, c) = C (m1, . . . ,mN )

However, recall that the size of each ciphertext zi is λN = p(κ)N for some polynomial p(·). This
means that the multikey homomorphic evaluation is efficient only if N = O(1). Thus, this generic
construction of multikey FHE from (standard) FHE allows only a constant number of keys.

Formal Description. We now give a formal description of the generic multikey construction,
and prove its correctness. Let E = (Keygen,Enc,Dec,Eval) be an FHE scheme with message space
{0, 1} and ciphertext space {0, 1}λ where λ = p(κ) for some polynomial p(·). Let Enc∗ and Dec∗

be the “onion” encryption and decryption algorithms described above.

• GMK.Keygen(1κ) : Run Keygen(1κ).
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• GMK.Enc(pk,m) : Run Enc(pk,m).

• GMK.Dec (sk1, . . . , skN , c) : Output Dec∗ (sk1, . . . , skN , c).

• GMK.Eval (C, (c1, pk1, ek1) , . . . , (cN , pkN , ekN )) : For i ∈ [N ], define

Gi(x) def= Enc∗
(
pki+1, . . . , pkN , x ; r

)
for some fixed and valid randomness r,3 and recursively define

C(k) (x1, . . . , xN ) def=
{

C (x1, . . . , xN ) for k = N

Eval
(
ekk+1, C

(k+1), x1, . . . , xN

)
for k < N

For i ∈ [N ], compute

z̃i
def= Eval (eki, Gi, ci) , zi

def= Enc∗
(
pk1, . . . , pki−1, z̃i

)
and output the ciphertext c

def= Eval
(
ek1, C

(1), z1, . . . , zN

)
.

Theorem 5.2.1. The encryption scheme EGMK = (GMK.Keygen,GMK.Enc,GMK.Dec,
GMK.Eval) is multikey fully homomorphic for N = O(1) keys.

Proof. To prove correctness of evaluation, we wish to prove that if (pki, ski, eki) is in the support
of GMK.Keygen(1κ) = Keygen(1κ) and ci ← GMK.Enc (pki,mi) = Enc (pki,mi), then

GMK.Dec (sk1, . . . , skN , c) = Dec∗ (sk1, . . . , skN , c) = C (m1, . . . ,mN )

We first show that each zi is a valid “onion” encryption of mi. By correctness of evaluation
with evaluation key eki, we know that

Dec (ski, z̃i) = Gi (mi) = Enc∗
(
pki+1, . . . , pkN ,mi ; r

)
and by correctness of encryption, we conclude that

Dec∗ (ski, . . . , skN , z̃i) = mi and Dec∗ (sk1, . . . , skN , zi) = mi

We now make the following claim, which constitutes the bulk of the proof.

Claim 5.2.1.1. For every k ∈ [N ],

Dec∗ (sk1, . . . , skk, c) = Ck

(
z
(k)
1 , . . . , z

(k)
N

)
where z

(k)
i

def= Dec∗ (sk1, . . . , skk, zi).

In particular, for k = N , this claim implies:

Dec∗ (sk1, . . . , skN , c) = C(N)
(
z
(N)
1 , . . . , z

(N)
N

)
= C (m1, . . . ,mN )

where the second equality follows from the fact that CN = C by definition, and the fact that
z
(N)
i = Dec∗ (sk1, . . . , skN , zi) = mi, which we proved earlier.

It thus suffices to prove Claim 5.2.1.1 to conclude the proof of the theorem.
3We need to include the randomness in the definition because we want Gi(x) to be a deterministic circuit with

x as its sole input.
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Proof. We prove Claim 5.2.1.1 by induction. The base case, k = 1, follows directly from correctness
of evaluation and correctness of decryption:

Dec∗ (sk1, c) = C(1) (Dec (sk1, z1) , . . . ,Dec (sk1, zN )) = C(1)
(
z
(1)
1 , . . . , z

(1)
N

)
Now suppose that the claim holds for k − 1; that is, suppose

Dec∗ (sk1, . . . , skk−1, c) = C(k−1)
(
z
(k−1)
1 , . . . , z

(k−1)
N

)
Decrypting both sides by skk yields:

Dec∗ (sk1, . . . , skk, c) = Dec
(
skk, C

(k−1)
(
z
(k−1)
1 , . . . , z

(k−1)
N

))
= Dec

(
skk,Eval

(
ekk, C

(k), z
(k−1)
1 , . . . , z

(k−1)
N

))
= C(k)

(
Dec

(
skk, z

(k−1)
1

)
, . . . ,Dec

(
skk, z

(k−1)
N

))
= C(k)

(
z
(k)
1 , . . . , z

(k)
1

)
where the second-to-last equality follows from correctness of evaluation and correctness of decryp-
tion. This concludes the inductive step and the proof.

5.2.2 O(log κ)-Multikey FHE from Ring-LWE

We now show that the Brakerski-Vaikuntanathan FHE [BV11b] based on the RLWE assumption is
multikey somewhat homomorphic for N = O(log κ) keys.

Recall from Section 2.7 that decryption in Regev encryption consists of computing the inner
product 〈c, s〉 (mod 2), where c, s ∈ R2

q are the ciphertext and secret key, respectively. Brakerski
and Vaikuntanathan [BV11b] generalize this to allow the ciphertext and secret key to grow in
dimension. For c, s ∈ Rd

q , they define: Dec(s, c) = 〈c, s〉 (mod 2). Homomorphic operations are
then defined as follows:

• Given two same-length ciphertexts c1 and c2, output the ciphertext cadd
def= c1 + c2 as an

encryption of the sum of the underlying messages.

The ciphertext cadd is decryptable with the same secret key s since

〈c1 + c2, s〉 = 〈c1, s〉+ 〈c2, s〉

• Given two ciphertexts c1 and c2 of potentially different length, output the ciphertext cmult
def=

c1 ⊗ c2 as the product of the underlying messages.

The ciphertext cmult is now decryptable with the secret key s⊗ s since

〈c1 ⊗ c2, s⊗ s〉 = 〈c1, s〉 · 〈c2, s〉

We can extend this to the multikey setting. Multiplication is trivial, but some changes are
necessary in the case of addition.
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• Given two same-length ciphertexts c1 and c2 decryptable with secret keys s1, s2 respectively,
output the ciphertext cadd

def= (c1, c2) as an encryption of the sum of the underlying messages.

The ciphertext cadd is decryptable with the same secret key (s1, s2) since

〈(c1, c2), (s1, s2)〉 = 〈c1, s1〉+ 〈c2, s2〉

• Given two ciphertexts c1 and c2 decryptable with secret keys s1, s2 respectively, and of poten-
tially different length, output the ciphertext cmult

def= c1⊗c2 as the product of the underlying
messages.

The ciphertext cmult is now decryptable with the secret key s1 ⊗ s2 since

〈c1 ⊗ c2, s1 ⊗ s2〉 = 〈c1, s1〉 · 〈c2, s2〉

Observe that each homomorphic operation (at most) doubles the size of the ciphertext. Starting
with fresh ciphertexts of length 2, after (N−1) operations (which can combine ciphertexts encrypted
under at most N distinct keys), the size of both the ciphertext and the joint decryption key is 2N .
This is only feasible if N = O(log κ).

As shown in the work of Brakerski and Vaikuntanathan [BV11b], the scheme can evaluate
circuits of depth D < ε log n− log log n+Θ(1), where q = 2nε

for constant ε ∈ (0, 1). Unfortunately,
we do not know how to apply relinearization or squashing in the multikey setting, and are therefore
not able to convert the resulting multikey scheme into a leveled or fully homomorphic one.

5.3 Multikey Somewhat Homomorphic Encryption for Any
Number of Keys

We now turn to our main result in this chapter. In this section, we construct a multikey somewhat
homomorphic encryption scheme based on the (modified) NTRU encryption scheme [HPS98, SS11b]
described in Section 2.8. Unlike the schemes in Section 5.2, the scheme we describe in this section
will be multikey for N ≈ nε keys, with constant ε ∈ (0, 1). In Section 5.4, we show how to convert
the scheme into a multikey fully homomorphic scheme for N ≈ nε keys. By setting n ≈ N1/ε, we
can construct a multikey FHE for any number of keys N , as long as N is known a-priori.

We begin by informally describing the multikey homomorphic properties of NTRU encryption
and some of the problems encountered when trying to convert the scheme from Section 2.8 into a
somewhat homomorphic one. We then show a formal description of our somewhat homomorphic
scheme, formally prove its homomorphic properties, and discuss its security. In Section 5.4, we
show how to convert this scheme into a fully homomorphic scheme.

5.3.1 Multikey Homomorphism

Recall from Section 2.8 that an NTRU key pair consists of ring elements (h, f) such that h =[
2gf−1

]
q
, where g, f are “small” ring elements sampled from a B-bounded distribution χ, and f−1

is the inverse of f in Rq. Further recall that an NTRU ciphertext has the form c = [hs + 2e + m]q
for “small” elements s, e sampled from χ, and decryption computes [fc]q (mod 2).

Let (h1, f1) and (h2, f2) be two different NTRU public/secret key pairs, and let c1
def=

[h1s1 + 2e1 + m1]q and c2
def= [h2s2 + 2e2 + m2]q be two ciphertexts, encrypted under public

62



keys h1 and h2, respectively. We show how to compute ciphertexts that decrypt to the sum and
the product of the underlying plaintexts, m1 and m2. In particular, we show that the “ciphertexts”
cmult

def= c1 · c2 and cadd
def= c1 + c2 can be decrypted to the product and the sum of m1 and m2

respectively, using the secret key f12
def= f1 · f2.

To see this, note that

[f1f2(c1 + c2)]q = [2f1f2e1 + 2f1f2e2 + 2f2g1s1 + 2f1g2s2 + f1f2(m1 + m2)]q

[f1f2(c1 · c2)]q = [4g1g2s1s2 + 2g1s1f2(2e2 + m2) + 2g2s2f1(2e1 + m1) +

2f1f2(e1m2 + e2m1 + 2e1e2) + f1f2(m1m2)]q
= m1 ·m2 (mod 2)

Since f1 ≡ f2 ≡ 1 (mod 2), we can conclude that as long as there is no reduction modulo q,

[f1f2(c1 + c2)]q (mod 2) = m1 + m2 (mod 2)

[f1f2(c1 · c2)]q (mod 2) = m1 ·m2 (mod 2)

In other words, the “joint secret key” f12
def= f1f2 can be used to decrypt cadd = [c1 + c2]q and

cmult = [c1 · c2]q. We can extend this argument to any combination of operations, with ciphertexts
encrypted under multiple public keys.

Of course, the error in the ciphertexts will grow with the number of operations performed (as
with all known fully homomorphic encryption schemes). Thus, correctness of decryption will only
hold for a limited number of operations. We can show that the scheme can correctly evaluate
circuits of depth roughly ε log(n) when q = 2nε

and B = poly(n).

Problems in Multikey Decryption. An astute reader will have observed that in order to
successfully decrypt a ciphertext that was the result of a homomorphic evaluation, we must know
the circuit that was evaluated. For example, to decrypt c2

1+c2 we need to multiply by f2
1 f2, whereas

to decrypt c1 + c2
2 we need to multiply by f1f

2
2 . This is unsatisfactory.

Furthermore, consider what happens when we add or multiply two ciphertexts c, c′ that are
themselves a result of homomorphic evaluation. Suppose, for example, that c = c1c2 and c′ = c2c3,
where ci is encrypted under hi for i ∈ {1, 2, 3}. We know c can be decrypted using f1f2 and c′ can
be decrypted using f2f3. Thus, we know that

[f1f2 · c]q = 2e + f1f2m ,
[
f2f3 · c′

]
q

= 2e′ + f2f3m
′

for some messages m and m′ and error terms e and e′. Following the discussion above, we can see
that c + c′ can be decrypted using the key f1f2f3:[

f1f2f3 · (c + c′)
]
q

=
[
f3(f1f2 · c) + f1(f2f3 · c′)

]
q

= 2(f3e + f1e
′) + f1f2f3(m + m′)

In general, given a ciphertext c encrypted under a set of keys K, and c′ encrypted under a set
of keys K ′, their sum can be decrypted using the product of the keys in the union K ∪ K ′. We
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note that the absolute magnitude of the coefficients of this product grows exponentially with the
number of keys in K ∪K ′, i.e. the total number of keys involved in the homomorphic computation.

Analogously, in the context of homomorphic multiplication, we need f1f
2
2 f3 to decrypt c · c′:[

f1f
2
2 f3 · (c · c′)

]
q

=
[
(f1f2 · c) · (f2f3 · c′)

]
q

= 2Emult + f1f
2
2 f3(m ·m′)

where Emult
def= 2ee′ + ef2f3m

′ + e′f1f2m. This hints at the fact that the magnitude of the
coefficients of the joint secret key needed to decrypt an evaluated ciphertext grows exponentially
with the degree of the evaluated circuit (and not just with the number of keys involved, as in the case
of addition). Indeed, after M multiplications, the joint secret key needed to decrypt the evaluated
ciphertext will be the product of M polynomials, and the magnitude of the coefficients of this
product will be exponential in M .

Our Solution. To solve the above problems, we use relinearization (also known as key-switching),
a technique first introduced by Brakerski and Vaikuntanathan [BV11a]. Informally, we introduce
a (public) evaluation key ek that will be output by the Keygen algorithm. Every time we multiply
ciphertexts that share a key fi, we will use the evaluation key to ensure that we only need fi, and
not f2

i , to decrypt the new ciphertext. This ensures two things.

1. First, it ensures that to decrypt a ciphertext c∗, we only need to multiply it by one copy of
each secret key, making decryption independent of the circuit used to produce c∗.

2. Second, it ensures that the size of the joint secret key needed to decrypt the new ciphertext
depends only on the number of keys N , and not on the degree of the circuit C that was
evaluated.

Though we are able to eliminate the dependence (of the magnitude of the coefficients of the
joint secret key) on the degree of the circuit, we remark that we do not succeed in eliminating the
exponential dependence on N , the number of keys – indeed, this is the reason why our solution will
eventually assume an a-priori upper bound on N .

5.3.2 Formal Description

We present a formal description of our multikey somewhat homomorphic encryption scheme based
on the (modified) NTRU encryption scheme [HPS98, SS11b] described in Section 2.8.

• SH.Keygen(1κ) : Sample f ′, g ← χ and set f := 2f ′ + 1 so that f ≡ 1 (mod 2). If f is not
invertible in Rq, resample f ′; otherwise let f−1 be the inverse of f in Rq. Set

pk
def= h :=

[
2gf−1

]
q
∈ Rq , sk

def= f ∈ R

Sample s̃, ẽ ← χdlog qe and compute ek
def= [hs̃ + 2ẽ + Pow (f)]q ∈ R

dlog qe
q . Output the key

tuple (pk, sk, ek).

• SH.Enc(pk,m) : Sample s, e← χ. Output the ciphertext c := hs + 2e + m ∈ Rq.

• SH.Dec(sk1, . . . , skN , c) : Parse ski = fi for i ∈ [N ]. Compute µ = [f1 · · · fN · c]q ∈ Rq and
output m := µ (mod 2).
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• SH.Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)): We show how to evaluate an `-variate boolean
circuit C : {0, 1}` → {0, 1} of depth D. To this end, we show how to homomorphically add
and multiply two elements in {0, 1}. Given two ciphertexts c, c′, we assume that we also have
a set of distinct public keys associated with each ciphertext.4 We will denote these lists by
K, K ′, respectively. The public-key set of a fresh encryption is simply the set {pk} containing
the public key under which it was encrypted. For convenience, in our analysis we sometimes
assume that the set contains the indices of the public keys instead of the keys themselves.

– Given two ciphertexts c and c′ with corresponding public-key sets K and K ′, output the
ciphertext

cadd =
[
c + c′

]
q
∈ Rq

as an encryption of the sum of the underlying messages. Output the set Kadd = K ∪K ′

as its corresponding public-key set.

– Given two ciphertexts c and c′ with corresponding public-key sets K and K ′, compute
ciphertext c0 = [c · c′]q ∈ Rq.

∗ If K ∩K ′ = ∅, let cmult = c0.
∗ Otherwise, let K ∩ K ′ =

{
pki1 , . . . , pkit

}
. For j ∈ [t], compute cj =[〈

Bit (cj−1) , ekij

〉]
q
, and let cmult = ct at the end of the iteration.

In either case, output cmult as an encryption of the product of the underlying messages,
and output the set Kmult = K ∪K ′ as its corresponding public-key set.

For a set S ⊆ [N ], let fS
def=

∏
i∈S

fi. Note that the ciphertext c0 can be decrypted to

m ·m′ with the “joint” secret key fKfK′ , which contains the term f2
i1

. . . f2
it
. The goal

of relinearization is to convert it into a ciphertext that decrypts to the same message
under the secret key

fKfK′

( ∏
j∈K∩K′

fj

)−1

= fK∪K′

which replaces the term f2
i1

. . . f2
it

with the term fi1 . . . fit .

We first show that the scheme works correctly as advertised:

Lemma 5.3.1. If q = 2nε
for ε ∈ (0, 1) and χ is a B-bounded distribution for B = poly(n), then

the encryption scheme ESH = (SH.Keygen,SH.Enc,SH.Dec,SH.Eval) described above is multikey
homomorphic for N = O

(
nδ

)
keys and circuits of depth D < (ε− δ) log n− log log n−O(1).

Proof. We define the (multikey) error of a ciphertext c with corresponding public-key set K to be
µ

def= [fK · c]q. We start by showing that the magnitude of the error coefficients does not grow
too much after a homomorphic evaluation.

Claim 5.3.1.1. Let c, c′ be ciphertexts encrypting m and m′, respectively, and suppose that the
magnitude of their error coefficients is bounded by E < q/2. Then cadd and cmult correctly decrypt
to m + m′ and m ·m′, respectively, and their error coefficients are bounded by (nB)2NE2.

4That is, we assume each set contains distinct public keys, but the intersection of any two sets might not be
empty.
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Proof. Let c, c′ be encryptions of m,m′, respectively, with corresponding public-key sets K, K ′. We
know that for some e, e′ ∈ R we have:

[fK · c]q = 2e + m ,
[
fK′ · c′

]
q

= 2e′ + m′

and ‖2e + m‖∞ , ‖2e′ + m‖∞ < E. Then

[fKadd
· cadd]q =

[
fK∪K′ · (c + c′)

]
q

=
[
fK\K′(fK · c) + fK′\K(fK′ · c′)

]
q

= fK\K′(2e + m) + fK′\K(2e′ + m′)

We can thus bound the magnitude of the coefficients of [fKadd
· cadd]q by 2(nB)NE < (nB)2NE2, as

desired. Furthermore, it easy to see that [fKadd
· cadd]q (mod 2) = m + m′.

The multiplication case is more complex. Let K ∩ K ′ = {i1, . . . , it}, as before. Define
F0

def= fKfK′ , and for j ∈ [t], define Fj = Fj−1 · f−1
ij

. Then Fr = fK∪K′ is a simple product
of the secret keys fi, without any quadratic terms. We know that

[F0 · c0]q = [(fK · c)(fK′ · cK)]q = (2e + m)(2e′ + m′)

so that
∥∥∥[F0 · c0]q

∥∥∥
∞

< nE2 and [F0 · c0]q (mod 2) = m ·m′. Furthermore, for all j ∈ [t],

[Fj · cj ]q =
[
Fj ·

〈
Bit (cj−1) , hij s̃ + 2ẽ + Pow

(
fij

)〉]
q

=
[
Fj ·

〈
Bit (cj−1) , hij s̃

〉
+ Fj · 〈Bit (cj−1) , 2ẽ〉+ Fjcj−1fij

]
q

= Fjf
−1
ij
·
〈
Bit (cj−1) , 2gij s̃

〉
+ Fj · 〈Bit (cj−1) , 2ẽ〉+ Fj−1cj−1

Using the fact that each Fj is the product of at most (2N − j) keys, we have that∥∥∥[Fj · cj ]q
∥∥∥
∞

< 2 dlog qen2B2 · (nB)2N−j−1 + 2 dlog qenB · (nB)2N−j +
∥∥∥[Fj−1 · cj−1]q

∥∥∥
∞

= 4 dlog qe (nB)2N−j+1 +
∥∥∥[Fj−1 · cj−1]q

∥∥∥
∞

This yields the following bound on the error of cmult:∥∥∥[FK∪K′ · cmult]q
∥∥∥
∞

=
∥∥∥[Ft · ct]q

∥∥∥
∞
≤ nE2 +

t∑
j=1

4 dlog qe (nB)2N−j+1

= nE2 + 4 dlog qe (nB)2N+1
t∑

j=1

(nB)−j

≤ nE2 + 8 dlog qe (nB)2N+1

≤ (nB)2NE2

where the last inequality holds by the fact that q = 2nε
.

Furthermore, notice that [Fj · cj ]q ≡ Fj−1cj−1 (mod 2). Since [F0 · c0]q (mod 2) = m ·m′, we
can conclude that [FK∪K′ · cmult]q (mod 2) = [Ft · ct]q (mod 2) = m ·m′.
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Once we have bounded the magnitude of the error coefficients after a homomorphic operation,
we can bound the overall error incurred after evaluating a circuit of depth D. Starting with error
E0 ≤ 3(nB)2, after D levels of homomorphic operations, the error magnitude can grow to at most:(

(nB)2NE0

)2D

≤
(
(3nB)2

D·(2N+2)
)

This results in correct decryption as long as D < log log q − log log n − log N − O(1), where
we use the fact that B = poly(n). In particular, for N = O(nδ) keys and q = 2nε

, we get
D < (ε− δ) log n− log log n−O(1).

5.3.3 Security

Recall from Section 2.8 that the security of the (modified) NTRU encryption scheme can be based
on two assumptions – the RLWE assumption and the DSPR assumption. Recall further that Stehlé
and Steinfeld [SS11b] showed that the DSPRφ,q,χ assumption is unconditionally true if n is a power
of 2, φ(x) = xn + 1 is the nth cyclotomic polynomial, and χ is the discrete Gaussian DZn,r for
r >

√
q · poly(n). This allowed them to prove semantic security for the modified NTRU scheme

under the RLWEφ,q,χ assumption alone.
Unfortunately, their result holds only if r >

√
q · poly(n), which is too large to permit even a

single homomorphic multiplication. To support homomorphic operations, we need to use a much
smaller value of r, for which it is easy to see that the DSPRφ,q,χ assumption does not hold in a
statistical sense any more. Thus, it is necessary to assume that the decisional small polynomial
ratio problem is hard for our choice of parameters.

Additionally, note that the evaluation key ek contains elements of the form [hsτ + 2eτ + 2τf ]q,
which can be thought of as “pseudo-encryptions” of (multiples of) the secret key f under the
corresponding public key h.5 The security of the scheme must then additionally rely on a “circular
security” assumption that states that semantic security of the scheme is maintained given the
evaluation key as constructed above. We remark that this assumption can be avoided at the cost
of obtaining a leveled homomorphic encryption scheme (where the size of the evaluation key grows
with the depth of the circuits that the scheme supports).

Thus, we can base the security of the scheme on the DSPR assumption, the RLWE assumption,
and the “circular security” assumption described above.

Lemma 5.3.2. Let n be a power of 2, let φ(x) = xn + 1, let q = 2nε
for ε ∈ (0, 1) and χ = DZn,r

with r = poly(n). Then the somewhat homomorphic encryption scheme ESH = {SH.Keygen,SH.Enc,
SH.Dec,SH.Eval described above is secure under the DSPRφ,q,χ and RLWEφ,q,χ assumptions, and the
assumption that the scheme remains semantically secure even given the evaluation key ek.

5.4 From Somewhat to Fully Homomorphic Encryption

We use a generalization of Gentry’s bootstrapping theorem [Gen09b, Gen09a] (see Section 2.5)
to convert the multikey somewhat homomorphic scheme from Section 5.3 into a multikey fully
homomorphic one. We modify Gentry’s bootstrapping theorem and the corresponding definitions
from their original presentation to generalize them to the multikey setting.

5We point out that these are not true encryptions of the “message” 2τf since 2τf is not a binary polynomial,
whereas our scheme is only equipped to correctly encrypt polynomials m ∈ R2.
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Definition 5.4.1 (Multikey Bootstrappable Schemes). Let E ={
E(N) = (Keygen,Enc,Dec,Eval)

}
N>0

be a family of multikey C-homomorphic encryption
schemes, and let fadd and fmult be the the augmented decryption functions of the scheme defined as

f c1,c2
add (sk1, . . . , skN ) = Dec(sk1, . . . , skN , c1) XOR Dec(sk1, . . . , skN , c2)

f c1,c2
mult (sk1, . . . , skN ) = Dec(sk1, . . . , skN , c1) AND Dec(sk1, . . . , skN , c2)

Then E is bootstrappable if
{
f c1,c2
add , f c1,c2

mult

}
c1,c2
⊆ C. Namely, the scheme can homomorphically

evaluate fadd and fmult.

We now state a generalization of Gentry’s bootstrapping theorem to the multikey setting. Tak-
ing N = 1 yields the theorem and the definitions from [Gen09b, Gen09a] and Section 2.5.

Theorem 5.4.1 (Multikey Bootstrapping Theorem). Let E be a bootstrappable family of multikey
homomorphic schemes that is also weakly circular secure. Then there is a multikey fully homomor-
phic family of encryption schemes E ′.

Unfortunately, the somewhat homomorphic scheme described in Section 5.3 is not bootstrap-
pable. Recall that the scheme can only evaluate circuits of depth less than ε log(n), where ε < 1.
However, the shallowest implementation of the decryption circuit we are aware of has depth
c log N · log n for some constant c > 1.We therefore turn to modulus reduction, a technique in-
troduced by [BV11a] and refined by [BGV12], to convert our somewhat homomorphic scheme into
a bootstrappable scheme.

5.4.1 Modulus Reduction

Modulus reduction [BV11a, BGV12] is a noise-management technique that provides an exponential
gain on the depth of the circuits that can be evaluated, while keeping the depth of the decryption
circuit unchanged. Informally, if Ddec is the depth of the decryption circuit of the multikey scheme
described in Section 5.3.1, then we modify the scheme so that its decryption circuit is unchanged
but the scheme can now evaluate circuits of depth Ddec. Hence, the new scheme can evaluate its
own decryption circuit, making it bootstrappable. Details follow.

Let (h, f) be a key pair and let c be a ciphertext under public key h. Recall that for decryption
to be successful, we need the error [fc]q to be equal to fc ∈ R. However, each homomorphic
operation increases this error. Modulus reduction allows us to keep the error magnitude small by
simply scaling the ciphertext after each operation. The key idea is to exploit the difference in how
the error affects security and homomorphism:

• The growth of error upon homomorphic multiplication is governed by the magnitude of the
noise.

• Security is governed by the ratio between the magnitude of the error and the modulus q.

This suggests a method of reducing the magnitude of the error and the modulus by roughly the
same factor, thus preserving security while at the same time making homomorphic multiplications
“easier”. In particular, modulus reduction gives us a way to transform a ciphertext c ∈ Rq into
a different ciphertext c′ ∈ Rp (for p < q) while preserving correctness: for “joint” secret key
f =

∏N
i=1 fi,

[fc]p = [fc′]q (mod 2)

The transformation from c to c′ involves simply scaling by (p/q) and rounding appropriately.
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Lemma 5.4.2 ([BGV12]). Let p and q be two odd moduli, and let c ∈ Rq. Define c′ to be the
polynomial in Rp closest to (p/q) · c such that c′ ≡ c (mod 2). Then, for any f with ‖[fc]q‖∞ <
q/2− (q/p) · ‖f‖1, we have

[fc′]p = [fc]q (mod 2) and
∥∥[fc′]p

∥∥
∞ < (p/q) · ‖[fc]q‖∞ + ‖f‖1

where ‖·‖∞ and ‖·‖1 are the `∞ and `1, respectively.

Proof. Let fc =
∑n−1

i=0 dix
i, and consider a coefficient di. We know that there exists k ∈ Z such

that:

[di]q = di − kq ∈
[
−q

2
+

q

p
‖f‖1 ,

q

2
− q

p
‖f‖1

]
,

so that
(p/q) · di − kp ∈

[
−p

2
+ ‖f‖1 ,

p

2
− ‖f‖1

]
Let fc′ =

∑n−1
i=0 eix

i. Then −‖f‖1 ≤ (p/q) · ei − di ≤ ‖f‖1. Therefore,

ei − kp ∈
[
−p

2
,
p

2

]
and [ei]p = ei − kp

This proves the second part of the lemma. To prove the first part, notice that since p and q are
both odd, we know kp ≡ kq (mod 2). Moreover, we chose c′ such that c ≡ c′ (mod 2). We thus
have

ei − kp ≡ di − kq (mod 2)
[ei]p ≡ [di]q (mod 2)

[fc′]p ≡ [fc]q (mod 2)

The beauty of Lemma 5.4.2 is that if we know the depth D of the circuit we want to evaluate,
then we can construct a ladder of decreasing moduli q0, . . . , qD and perform modulus reduction
after each operation so that at level i all ciphertexts reside in Rqi and the magnitude of the
noise at each level is small. In particular, this is true at level D so that once the evaluation is
complete, it is possible to decrypt the resulting ciphertext without decryption errors. This yields a
leveled homomorphic encryption scheme. A bootstrappable scheme can then be obtained by setting
D = Ddec, the depth of the augmented decryption circuit.

5.4.2 Obtaining A Leveled Homomorphic Scheme

We change the somewhat homomorphic scheme from Section 5.3 to use modulus reduction during
the evaluation. The main changes to the scheme are as follows:

• The scheme is now additionally parametrized by an integer D, which is the maximum circuit
depth that it can homomorphically evaluate, and a ladder of decreasing moduli q0, . . . qD.

• We cannot use a single key f for all levels (at the expense of assuming the circular security),
as in Section 5.3. This is because the public key h depends on the modulus q (recall that
h = 2gf−1, where f−1 is the inverse of f in Rq). With the new ladder of moduli, this
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would require that the following two conditions be met simultaneously: First, that f−1 is
the inverse of f in RqD (to guarantee correctness of decryption) and second, that h = 2gf−1

is (indistinguishable from) uniformly random in Rq0 (to guarantee semantic security). This
would require making a much stronger (and perhaps false) hardness assumption.

Instead, key generation computes a different key pair
(
h(d), f (d)

)
for each level d ∈ {0, . . . , D}.

Encryption uses pk
def= h(0) as the public key, and decryption uses sk(d) def= f (d) to decrypt

a “level-d” ciphertext, ie. a ciphertext that is the output of a depth-d circuit evaluation.
W.l.o.g. we assume any ciphertext to be decrypted is a level-D ciphertext and set the secret
key to be sk = f (D).

Homomorphic operations will ensure that if c, c′ are level-(d − 1) ciphertexts in Rqd−1
de-

cryptable with f (d−1), then cadd and cmult are level-d ciphertexts in Rqd
decryptable with

f (d).

• Relinearization will now serve two purposes: it will ensure that only linear terms of keys
are needed to decrypt the resulting ciphertext, but it will also switch the level-(d − 1) key
to the corresponding level-(d) key. (Indeed, relinearization is also known as key-switching
in the literature). Moreover, note that we must perform the key-switching step not only for
quadratic terms but also for linear terms. Thus, we now perform relinearization/key-switching
after every homomorphic operation, both addition and multiplication, and furthermore, we
relinearize/key-switch every key in K ∪K ′, instead of only those in K ∩K ′.

• To perform the relinearization/key-switching step described above, the evaluation key consists
of pseudo-encryptions of f (d−1) and

(
f (d−1)

)2
under the public key h(d), for all d ∈ [D].

Note in particular that we now need pseudo-encryptions of the quadratic terms of the key. In
the scheme from Section 5.3, relinearization only required pseudo-encryptions of (multiples of)
f because the term 〈Bit (c) ,Pow (f)〉 only performed “partial decryption” of the ciphertext c;
it computes fc but f2 is required to decrypt c. Decryption of c was completed at decryption
time when the ciphertext was multiplied by f once more, obtaining f2c.

In our new setting, because decryption is performed using a different key, relinearization needs
to “completely decrypt” c with the original key. For a key in K ∩K ′, this means computing[〈

Bit (c) ,Pow
((

f (d−1)
)2

)〉]
q

=
[(

f (d−1)
)2

c
]
q
. Since Pow

((
f (d−1)

)2
)

is encrypted under

h(d), the new ciphertext can be decrypted using f (d).

Pseudo-encryptions of the linear terms of the keys are also required in order to relinearize/key-
switch keys in K4K ′, the symmetric difference of K, K ′.

Formal Description

We now give a formal description of the leveled homomorphic encryption scheme resulting from
applying the changes described above to the somewhat homomorphic scheme ESH described in
Section 5.3.

• LH.Keygen(1κ) : For every i ∈ {0, . . . , D}, sample g(i), u(i) ← χ and set f (i) := 2u(i) + 1 so
that f (i) ≡ 1 (mod 2). If f (i) is not invertible in Rqi , resample u(i); otherwise, let

(
f (i)

)−1
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be the inverse of f (i) in Rq. Let h(i) def=
[
2g(i)

(
f (i)

)−1
]
qi

∈ Rqi , and set

pk
def= h(0) ∈ Rq0 , sk

def= f (D) ∈ RqD

For all i ∈ [D], sample s̃(i)
γ , ẽ(i)

γ , s̃(i)
ζ , ẽ(i)

ζ ← χdlog qe and compute

γ(i) :=
[
h(i)s̃(i)

γ + 2ẽ(i)
γ + Pow

(
f (i−1)

)]
qi

∈ Rdlog qie
qi

ζ(i) :=
[
h(i)s̃(i)

ζ + 2ẽ(i)
ζ + Pow

((
f (i−1)

)2
)]

qi

∈ Rdlog qie
qi

Set ek
def=

{
γ(i), ζ(i)

}
i∈[D]

, and output the key tuple (pk, sk, ek).

• LH.Enc(pk,m) : Sample s, e← χ. Output the ciphertext c := [hs + 2e + m]q0
∈ Rq0 .

• LH.Dec(sk1, . . . , skN , c) : Assume w.l.o.g. that c ∈ RqD . Parse ski = fi for i ∈ [N ]. Let
µ := [f1 · · · fN · c]qD

∈ RqD . Output m′ := µ (mod 2).

• LH.Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)): We show how to evaluate an `-variate boolean
circuit C : {0, 1}` → {0, 1} of depth D. To this end, we show how to homomorphically add
and multiply two elements in {0, 1}. As before, given two ciphertexts c, c′, we assume that
we also have a set of distinct public keys associated with each ciphertext, and denote these
lists by K, K ′, respectively. The public-key set of a fresh encryption is simply the set {pk}
containing the public key under which it was encrypted. For convenience, in our analysis
we sometimes assume that the set contains the indices of the public keys instead of the keys
themselves.

– Given two ciphertexts c, c ∈ Rqd
with corresponding public-key sets K, K ′, compute

c0 = [c + c′]qd
∈ Rqd

and let K ∪K ′ =
{
pki1 , . . . , pkit

}
. For j = 1, . . . , r, parse ekij ={

γ
(δ)
ij

, ζ
(δ)
ij

}
δ∈[D]

and compute

cj =
[〈

Bit (cj−1) ,γ
(d)
ij

〉]
q
∈ Rqd

Finally, reduce the modulus: let cadd be the integer vector closest to (qd+1/qd) · ct such
that cadd ≡ ct (mod 2). Output cadd ∈ Rqd+1

as an encryption of the sum of the

underlying messages. Output the set Kadd
def= K ∪K ′ as its corresponding public-key

set.

– Given two ciphertexts c, c ∈ Rqd
with corresponding public-key sets K, K ′, compute

c0 = [c + c′]qd
∈ Rqd

and let K ∪K ′ =
{
pki1 , . . . , pkit

}
. For j = 1, . . . , r, parse ekij ={

γ
(δ)
ij

, ζ
(δ)
ij

}
δ∈[D]

and compute cj as follows:

∗ If pkij ∈ K ∩K ′, let

cj =
[〈

Bit (cj−1) ,γ
(d)
ij

〉]
q
∈ Rqd
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∗ Otherwise, let
cj =

[〈
Bit (cj−1) , ζ

(d)
ij

〉]
q
∈ Rqd

Finally, reduce the modulus: let cmult be the integer vector closest to (qd+1/qd) · ct such
that cmult ≡ ct (mod 2). Output cmult ∈ Rqd+1

as an encryption of the product of the

underlying messages. Output the set Kmult
def= K ∪K ′ as its corresponding public-key

set.

Leveled Homomorphism. We can now show the following lemma, characterizing the circuits
and number of keys that the scheme can handle in evaluation.

Lemma 5.4.3. Let χ is a B-bounded distribution for B = poly(n), let q0 = 2nε
for ε ∈ (0, 1) and for

d ∈ [D], let qd−1/qd = 8n(nB)2N+2. Then the encryption scheme ELH = (LH.Keygen, LH.Enc, LH.Dec,
LH.Eval) described above is multikey homomorphic for N keys and circuits of depth D as long as
ND = O (nε/ log n).

Proof. We claim that for all d ∈ {0, . . . , D}, the error of a level-d ciphertext is bounded by
E

def= (1/2n) · (qd−1/qd) = 4(nB)2N+2, and prove it by induction. The base case follows im-
mediately since the error of a freshly encrypted ciphertext is bounded by 3(nB)2 < 4(nB)2N+2.

We now turn to the inductive step. Let c, c′ be level-(d − 1) ciphertexts with corresponding
public key sets K, K ′. The inductive hypothesis tells us the error in c and c′ is bounded by E. Using
the same analysis as in the proof of Lemma 5.3.1, we can show that relinearizing all keys in K ∪K ′

generates an additive error less than 8 dlog qde (nB)2N+1 < (nB)2N+2, where we used the fact that
qd < q0 = 2nε

for ε < 1. Recall that ct is the ciphertext obtained in a homomorphic operation after
relinearization has been completed but before modulus reduction is performed. Then:

• In a homomorphic addition, the error of ct is bounded by 2(nB)NE + (nB)2N+2. By
Lemma 5.4.2, the error of cadd is bounded by:

qd

qd−1
·
(
2(nB)NE + (nB)2N+2

)
+ ‖f‖1 ≤

2(nB)NE + (nB)2N+2

2nE
+ nB

≤ 2(nB)NE

2nE
+ (nB)2N+2 + nB

≤ (nB)N

n
+ (nB)2N+2 + nB

≤ 4(nB)2N+2 = E

• In a homomorphic multiplication, the error of ct is bounded by nE2 + (nB)2N+2. By
Lemma 5.4.2, the error of cmult is bounded by:

qd

qd−1
·
(
nE2 + (nB)2N+2

)
+ ‖f‖1 ≤

nE2 + (nB)2N+2

2nE
+ nB

≤ nE2

2nE
+ 2(nB)2N+2

≤ E

2
+

E

2
= E
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This concludes the inductive step and the proof that ciphertexts of all levels have error at most E.
To correctly decrypt a level-D ciphertext, we must have that

(nB)2N+2 = E <
qD

2
<

q0

2(8n(nB)2N+2)D
=

2nε

2(8n(nB)2N+2)D

which yields the theorem statement: ND = O (nε/ log n).

Security. As in Section 5.3, the security of the scheme ELH can be based in the DSPRφ,q,χ and
RLWEφ,q,χ assumptions. However, unlike in Section 5.3, we do not need to assume circular security
of the encryption scheme. This is due to the fact that the evaluation key consists of pseudo-
encryptions of (multiples of) f (d−1) and

(
f (d−1)

)2
under a different public key h(d), for all d ∈ [D].

Semantic security even given the evaluation key can then be established by a hybrid argument that
converts all pseudo-encryptions in the evaluation key, one-by-one, to uniform elements in Rq.

Lemma 5.4.4. Let n be a power of 2, let φ(x) = xn + 1, let q = 2nε
for ε ∈ (0, 1) and

χ = DZn,r with r = poly(n). Then the multikey leveled homomorphic encryption scheme ELH =
(LH.Keygen, LH.Enc, LH.Dec, LH.Eval) described above is secure under the DSPRφ,q,χ and RLWEφ,q,χ

assumptions.

5.4.3 Multikey Fully Homomorphic Encryption

To convert the leveled homomorphic encryption scheme described in Section 5.4.2 into a fully
homomorphic scheme, we use the multikey bootstrapping theorem (Theorem 5.4.1). First, we show
an upper bound on the depth of the decryption circuit and show that the scheme is bootstrappable.

Lemma 5.4.5. The N -key decryption circuit of the leveled homomorphic encryption scheme de-
scribed above can be implemented as a polynomial-size arithmetic circuit over GF (2) of depth
O(log N · (log log qD + log n)).

Proof. The decryption circuit for a ciphertext encrypted under N keys can be written as

Dec(f1, . . . , fN , c) = c ·
N∏

i=1

fi

Multiplying two polynomials over RqD can be done using a polynomial-size Boolean circuit of depth
O(log log qD +log n) (see, e.g., [BV11a, Lemma 4.5] for a proof). Using a binary tree of polynomial
multiplications, the decryption operation above can then be done in depth O(log N · (log log qD +
log n)), as claimed.

This means that the modified scheme is bootstrappable, and therefore applying the bootstrap-
ping theorem gives us:

Theorem 5.4.6. Let χ is a B-bounded distribution for B = poly(n), let q0 = 2nε
for ε ∈ (0, 1) and

for d ∈ [D], let qd−1/qd = 8n(nB)2N+2. Then, there exists a multikey fully homomorphic encryption
scheme for N = O(nε/ log3 n) keys, secure under the DSPRφ,q,χ and RLWEφ,q,χ assumptions, and the
assumption that the leveled homomorphic encryption scheme ELH = (LH.Keygen, LH.Enc, LH.Dec,
LH.Eval) described above is weakly circular secure.
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Proof. To apply the multikey bootstrapping theorem (Theorem 5.4.1), we require that the depth of
the decryption circuit is smaller than the depth of the circuits that the scheme can evaluate. That
is, we require that

log N · (log log qD + log n) < C · log q0

N · log n

for some universal constant C > 0. For N ≤
√

C/2 · (nε/2/ log n), we have,

N · log n · log N · (log log qD + log n) ≤ N2 · log n · ·(log log q0 + log n)

≤ C

2
· nε

log2 n
· (1 + ε) · log2 n

≤ C · nε = C · log q0

as required.

Remark 5.4.2. Theorem 5.4.6 implies that for any N ∈ N, there exists a multikey fully ho-
momorphic encryption scheme for N keys. This is achieved by choosing ε′ such that nε′ ≤√

C/2 · (nε/2/ log n) and setting n ≥ N1/ε′.

We emphasize the fact that bootstrapping (and therefore assuming weak circular security) can
be avoided at the cost of obtaining a leveled homomorphic encryption scheme.
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Chapter 6

On-the-Fly MPC from Multikey FHE

We now show how to construct on-the-fly MPC from multikey FHE. We first construct a basic
protocol that is secure against semi-malicious adversaries, and then describe how to modify the
protocol to obtain security against malicious adversaries. As mentioned earlier, the main building
block of our construction is multikey fully homomorphic encryption, defined and constructed in
Chapter 5.

6.1 The Basic Protocol

Let
{
E(N) = (Keygen,Enc,Dec,Eval)

}
N>0

be a multikey fully-homomorphic family of encryption
schemes. The following construction is an on-the-fly MPC protocol secure against semi-malicious
adversaries. The protocol is defined as follows:

Step 1: For i ∈ [U ], party Pi samples a key tuple (pki, ski, eki) ← Keygen(1κ) and encrypts its
input xi under pki: ci ← Enc(pki, xi). It sends (pki, eki, ci) to the server S.

At this point a function F , represented as a circuit C, has been selected on inputs {xi}i∈V for some
V ⊆ U . Let N = |V |. For ease of notation, assume w.l.o.g. that V = [N ]. The parties proceed as
follows.

Step 2: The server S computes c := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN )) and broadcasts c to
parties P1, . . . , PN .

Step 3: The parties P1, . . . , PN run a secure MPC protocol Πdec
sm to compute the function

gc(sk1, . . . , skN ) def= Dec(sk1, . . . , skN , c).

We remark that an upper bound on the number of computing parties must be known in advance.
This is a direct consequence of the “leveled” nature of our multikey FHE construction with respect
to the number of keys.

6.1.1 Security Against Semi-Malicious Adversaries

Theorem 6.1.1. Let
{
E(N) = (Keygen,Enc,Dec,Eval)

}
N>0

be a multikey fully-homomorphic en-
cryption scheme, and let Πdec

sm be an N -party MPC protocol for computing the decryption function
gc(sk1, . . . , skN ) def= Dec(sk1, . . . , skN , c). If E is semantically secure, and Πdec

sm is secure against
semi-honest adversaries corrupting t < N parties, then the above construction is an on-the-fly
MPC protocol secure against (static) semi-malicious adversaries corrupting t parties and possibly
the server S.

Proof. We prove that the protocol is correct and secure, and that it satisfies the performance
requirements of an on-the-fly protocol.
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Correctness: Correctness follows directly from the correctness properties of homomorphic evalu-
ation and the MPC protocol Πdec

sm for decryption.

Performance: By compactness of evaluation, we know that c is independent of |C|. This means
that the communication complexity and the computation time of the parties is independent
of |C|.

Security: We show security for the case when the server is corrupted; the case when the server
is honest is analogous. Let Asm be a real-world semi-malicious adversary corrupting t clients
and the server. Recall that for security, we only need to consider adversaries corrupting a
subset T of the parties P1, . . . , PN involved in the computation. Thus, we assume t < N , let
T ( [N ] be the set of corrupted clients, and let T = [N ]\T .

We construct a simulator Ssm as follows. The simulator receives the inputs of the corrupted
parties, {xi}i∈T and runs Asm on these inputs {xi}i∈T . It simulates the messages for all
honest parties in the protocol execution with Asm by sampling all key tuples correctly, but
encrypting 0 instead of the honest input xi (which it doesn’t know). In Step 3, it runs the
simulator Ssm

Πdec
for the protocol Πdec

sm.

Step 1: For non-computing parties i ∈ {N + 1, . . . , U} and for honest parties i ∈ T , Ssm

computes (pki, ·, eki) ← Keygen(1κ) honestly and computes ci ← Enc(pki, 0). For each
party Pi, the simulator sends (ci, pki, eki) to Asm on behalf of Pi.

At the end of this round, it reads from Asm’s witness tape the secret keys {ski}i∈T and
the inputs {x̃i}i∈T . The simulator sends these inputs to the trusted functionality F and
receives the output ỹ = f(x̃1, . . . , x̃N ), where x̃i = xi for honest inputs i ∈ T

Step 2: The simulator receives c from Asm as the server’s broadcast message.

Step 3: The simulator Ssm runs the simulator Ssm
Πdec

for the decryption protocol (interact-
ing with Asm). When Ssm

Πdec
queries the ideal decryption functionality with secret keys{

s̃ki

}
i∈T

, Ssm returns ỹ.

Output: The simulator receives the output of the corrupted parties from Asm, and returns
these as its output.

We prove that IDEALF ,Ssm(~x)
c
≈ REALΠsm,Asm(~x) via a series of hybrids.

Hybrid 0: This is the real-world execution of the protocol.

Hybrid 1: We change how Step 3 is performed. Instead of executing the protocol Πdec
sm

where honest parties use their individual secret keys, we run the simulator Ssm
Πdec

(in-
teracting with Asm). When Ssm

Πdec
queries the ideal decryption functionality with secret

keys
{

s̃ki

}
i∈T

, we return

ỹ = gc(s̃k1, . . . , s̃kN ) = Dec(s̃k1, . . . , s̃kN , c)

where s̃ki = ski for honest secret keys i ∈ T . The output of the corrupted parties is
defined to be the output of Ssm

Πdec
, and the output of the honest parties is defined to be

ỹ.
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We claim that Hybrid 0 is computationally indistinguishable from Hybrid 1 by the
security of Πdec

sm. Indeed, the security of the decryption protocol Πdec
sm guarantees

that as long as we correctly emulate the ideal decryption functionality, the joint output of
all parties is computationally indistinguishable in a real-world execution of the protocol
with adversary Asm (Hybrid 0), and in an ideal-world execution of the protocol with
adversary Ssm

Πdec
(Hybrid 1). We correctly emulate the ideal decryption functionality, by

definition.

Hybrid 2: We now change how we compute ỹ, the value returned to the simulator Ssm
Πdec

when
it queries the decryption ideal functionality. Instead of computing ỹ = gc(s̃k1, . . . , s̃kN ) =
Dec(s̃k1, . . . , s̃kN , c), we instead compute

ỹ = f(x̃1, . . . , x̃N )

where x̃i = xi for honest inputs i ∈ T , and where for corrupt parties i ∈ T , we recover
x̃i by reading Asm’s witness tape at the end of Step 1.

We claim that Hybrid 1 and Hybrid 2 are identically distributed. The adversary Asm

follows the protocol as specified, so in particular, it performs the homomorphic eval-
uation correctly. By correctness of multikey evaluation we know that c decrypts to
f(x̃1, . . . , x̃N ) when decrypted using the secret keys it computed in Step 1, {ski}i∈[N ];
that is, Dec(sk1, . . . , skN , c) = f(x̃1, . . . , x̃N )
Furthermore, because the adversary Asm follows the protocol as specified, we know
that the secret keys it uses in Step 3 are the same as the ones it computed in Step 1,
i.e. ski = s̃ki for all i ∈ T . We conclude that Dec(s̃k1, . . . , s̃kN , c) = f(x̃1, . . . , x̃N ).

Hybrids 3.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 3.k we change cik so
that instead of encrypting xik it now encrypts 0. More formally, in Hybrid 3.k we have:{

cij ← Enc(pkij , 0)
}

j≤k
,

{
cij ← Enc(pkij , xij )

}
j>k

For ease of notation we let Hybrid 2 be Hybrid 3.0. We claim that the view of Asm

in Hybrid 3.k is indistinguishable from its view in Hybrid 3.(k − 1) by the semantic
security of E under public key pkik

. Indeed, now that we run the simulator Ssm
Πdec

in
Step 3 instead of the real decryption protocol, the secret key skik is only used to encrypt
cik . So suppose, for the sake of contradiction, that there exists an algorithm D that
distinguishes between hybrids 3.k and 3.(k − 1). We construct an adversary B that
breaks the semantic security of E under public key pkik

. The reduction B works as
follows:

1. The reduction chooses arbitrary {xi}.
2. It receives (pk, ek) from the semantic security challenger and sets pkik

= pk and
ekik = ek. Gives m0 = 0 and m1 = xik to the challenger and receives c =
Enc(pk,mb). Sets cik = c. For all i ∈ T , i 6= ik, computes (pki, ·, eki) ← Keygen(1κ)
honestly. For j < k, computes cij ← Enc(pkij , 0) and for j > k, computes cij ←
Enc(pkij , xij ).

3. The reduction runs Asm: for all i ∈ T gives (pki, eki, ci) to Asm on behalf of Pi, and
receives c from Asm.

77



4. It reads from Asm’s witness tape the inputs {x̃i}i∈T and runs the simulator Ssm
Πdec

(interacting with Asm). When Ssm
Πdec

queries the ideal decryption functionality, it
returns ỹ = f(x̃1, . . . , x̃N ) where x̃i = xi for inputs i ∈ T .

5. The reduction then gives D ỹ as the output of all honest parties, as well as the
output of Ssm

Πdec
.

6. Finally, B outputs the bit output by D.
When b = 0, B perfectly emulates Hybrid 3.k, whereas if b = 1, B perfectly emulates
Hybrid 3.(k−1). Therefore, if D can distinguish between Hybrids 3.k and 3.(k−1), then
B can distinguish between an encryption of m0 and an encryption of m1, contradicting
the semantic security of E .

We have proved that the joint output in Hybrid 0 is computationally indistinguishable from
the joint output in Hybrid 3.(N − t). But notice that the joint output in Hybrid 3.(N − t) is
precisely IDEALF ,Ssm(~x), and the joint output in Hybrid 0 is defined to be REALΠsm,Asm(~x).
We conclude that IDEALF ,Ssm(~x)

c
≈ REALΠsm,Asm(~x), as desired.

6.2 Achieving Security Against Malicious Adversaries

The protocol described in Section 6.1, though secure against semi-malicious adversaries, is not
secure against fully malicious adversaries. We transform the protocol into one that is secure against
malicious corruptions in three steps:

1. First, we replace the decryption protocol in Step 3 with one that is secure against malicious
corruptions. More importantly, we change the function it computes to ensure that the secret
key used in this protocol is consistent with the public and evaluation keys that the parties
computed in Step 1.

2. Second, we add zero-knowledge proofs at each step in the protocol, following the AJW com-
piler [AJW11, AJL+12] (which is based on the GMW compiler [GMW87]).

3. Finally, in order to maintain the performance guarantees of the scheme, in Step 2 we replace
the server’s proof with a succinct argument (not necessarily ZK). This allows the server to
prove that it correctly performed the homomorphic evaluation, and the clients to verify the
validity of the proof in time that is significantly less than the size of the circuit.

6.2.1 The New Decryption Protocol

Our first step in handling malicious attacks is to replace the decryption protocol Πdec
sm with one

that is secure against malicious adversaries; we will denote it by Πdec
mal. The function being

computed by this protocol also needs to change in order to guarantee that the secret key used by
each party is consistent with its public and evaluation keys:

gc,pk1,ek1,...,pkN ,ekN
((sk1, r1) . . . , (skN , rN ))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N ]
⊥ otherwise
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Intuitively, if the protocol outputs something other than ⊥, then in particular every corrupt
party Pi “knows” a secret key s̃ki that is consistent with its public and evaluation keys (pki, eki). By
correctness of decryption, this binds Pi to the input x̃i = Dec

(
s̃ki, c̃i

)
, which by semantic security

of the FHE, must be independent of the honest party’s inputs.
We remark that the proceedings version of this work [LTV12] does not change the decryp-

tion function, but instead adds to Step 1 a zero-knowledge proof πgen
i for the relation Rgen =

{ ( (pki, eki) , (ski, ri) ) | (pki, ski, eki) := Keygen(1κ ; ri) }. While this guarantees that the pub-
lic and evaluation keys are well-formed, it does not guarantee that the secret key used in the
decryption protocol in Step 3 is consistent with the public and evaluation keys (pki, eki) created
and used in Step 1. This allows a corrupt party to use a different secret key sk∗i in Step 3 and
potentially change the outcome of the decryption. We are therefore unable to prove security of
that construction. However, the zero-knowledge proofs πgen

i can be required as an optimization,
to guarantee that an honest server does not accept, store, or compute on ciphertexts that are
encrypted under malformed keys (even though the outcome of any joint computation on such a
ciphetext would not be decryptable using protocol Πdec

mal).
Finally, we highlight the fact that if the protocol Πdec

mal can implemented using the cloud-
assisted protocol described in Chapter 4. Jumping ahead, this yields a 5-round on-the-fly MPC
protocol in the CRS-model, secure against malicious corruptions of any t < [N ] parties and possibly
the server.

6.2.2 Adding Zero-Knowledge Proofs

The second step in our transformation is to apply the AJW compiler [AJW11, AJL+12] (based
on the GMW compiler [GMW87]) to the rest of the protocol (Steps 1 and 2), in order to ensure
that parties do not deviate from the protocol specifications. This entails having each party and the
server compute a zero-knowledge proof at every round, proving that their message in that round is
well-formed and consistent with the protocol transcript.

Because the well-formedness of the public and evaluation keys (pki, eki) is checked in the de-
cryption protocol Πdec

mal, the parties do not need to compute a separate zero-knowledge proof for
this statement (unless required for the optimization described above). Therefore, each party only
needs to prove that their ciphertext ci is well-formed by providing a non-interactive zero-knowledge
(NIZK) proof for the NP relation:

Renc = { ( (pki, ci) , (xi, si) ) | ci = Enc(pki, xi ; si) }

We highlight the fact that the proof πenc
i must be non-interactive, for reasons that will become

apparent shortly. Informally, this proof will either be broadcast by the server in Step 2 for all
parties to verify, or it will be used as a witness in the proof of another NP relation. An interactive
zero-knowledge proof would not be convincing it either of these cases since a valid proof transcript
can always be simulated without knowing a witness and without the use of any trapdoors.

6.2.3 Maintaining Performance Guarantees.

Unfortunately, verifying a standard zero-knowledge proof for the server’s computation in Step 2
requires time proportional to the size of the circuit. On the other hand, this computation is de-
terministic and public; indeed, anyone can verify the validity of the server’s broadcast message by
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performing the homomorphic evaluation themselves, albeit by also computing in time proportional
to the size of the circuit. We solve this problem by replacing the server’s proof with a succinct
argument (not necessarily ZK), that allows the server to prove that it correctly performed the
homomorphic evaluation, and the clients to verify the validity of the proof in time that is signifi-
cantly less than the size of the circuit. We offer several solutions, each with its own benefits and
drawbacks.

Verification for Small Inputs

We first consider the case where the ciphertexts (c1, . . . , cN ) are small enough to be broadcast to
the N parties in V , allowing communication complexity in the online phase to be linear in the
total input size of the participating parties. In this case, the server will broadcast all ciphertexts
and proofs {ci, π

enc
i }i∈[N ], the evaluated ciphertext c, and a succinct argument ϕ showing that it

performed the homomorphic evaluation correctly. The server needs to convince the participating
parties that “c = Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN ))”, i.e., that a deterministic circuit of size
poly(|C|, κ) accepts. For any uniform circuit C (i.e., computable by a poly(κ)-time Turing machine),
the following offer poly(κ, log(|C|)) communcation and verification efficiency.1

1. Use the argument system of Kilian [Kil92, Kil95], yielding interactive 4-round verification. It
relies on expensive PCPs.

2. Use the succinct non-interactive arguments (SNARGs and SNARKs) of Micali [Mic94], Bi-
tansky et al. [BCCT12, BCCT13] or Goldwasser et al. [GLR11] (see Section 2.3). These are
non-interactive2 but are secure only in the random oracle model [BR93] (in the case of CS
proofs) or hold in the standard model but require a non-falsifiable assumption [Nao03]. Some
variants rely on PCPs, PIR or FHE.

In case that the evaluation circuit is in logspace-uniform NC, we have another alternative:

4. Use the argument system of Goldwasser et al. [GKR08] for a 1-round solution3. It relies on
PIR.

Unfortunately, we are unable to use verifiable computation protocols in the pre-processing model
(e.g. [GGP10, CKV10, AIK10]) or SNARGs/SNARKs where the CRS depends on the circuit to
be computed or where its size is at least as big as the computation, e.g. [Gro10, Lip12, GGPR13,
PHGR13, Lip13]. These require the clients to participate in a pre-processing phase where their
computation is proportional to the size of the circuit, violating the performance requirements
of on-the-fly MPC. Moreover, with this pre-processing step the model loses its dynamic nature,
where users can compute many different functions on their inputs and can choose these functions
dynamically, “on-the-fly”. Indeed, using these solutions would limit the parties to only compute
functions for which they have already performed the corresponding pre-processing work or computed
the corresponding CRS.

1For any given family of C, |C| = poly(κ), and thus, poly(κ, log(|C|)) = poly(κ); but the degree of this polynomial
depends on the circuit family.

2In our protocol, each party can run Gen in Step 1 and send the vrs to the server in that step. Or in the case of
CS proofs, where only a description of a hash function is required, this can be added to the CRS of the protocol.

3The protocol has 2 rounds, but (as in the case of SNARGs and SNARKs) the first round is a challenge that
is independent of the language and the statement, and can therefore be precomputed by the clients in Step 1 of
our protocol. Each challenge can only be used for one proof, so the client must refresh the challenge after each
computation.
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Verification for Large Inputs

We can make the communication and verification complexities depend merely polylogarithmically
on the size of the relevant inputs x1, . . . , xN . This requires a succint argument system that is a
proof of knowledge. This is satisfied by Micali’s construction of CS proofs under Valiant’s anal-
ysis [Mic94, Val08], and by SNARKs [BCCT12, BCCT13]. The complexity of these arguments
depends polynomially on the size of the statement being proven, but merely polylogarithmically on
the size of the witness for the statement. We thus move ci from the instance into the witness. To
recognize the correct ci, each party Pi remembers the digest of ci under a collision-resistant hash
function family H = {Hhk : {0, 1}∗ → {0, 1}κ}.

In the offline stage, every party Pi samples a hash key hki and computes the digest di = Hhki
(ci).

Party Pi then sends (ci, π
enc
i , hki, di) to the cloud. Each party Pi remembers its own (hki, di)

pair but can forget the potentially long xi, ci, π
enc
i . In the online stage, the server broadcasts

(hk1, d1), . . . , (hkN , dN ) and proves the following NP statement: “there exist c̃1, π̃
enc
1 , . . . , c̃N , π̃enc

N

such that di = Hhki
(c̃i) and c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN )) and π̃enc

i is a valid proof”.
The construction is secure, since whenever the server convinces the clients, it actually “knows”

such c̃1, π̃
enc
1 , . . . , c̃N , π̃enc

N which can be efficiently extracted from the server (by the arguments’
proof of knowledge property). For an honest party, the extracted c̃i must be the one originally sent
by the party (by the collision-resistance of H). For a corrupt party, the extracted c̃i must be a
valid ciphertext (by the soundness of π̃enc

i ) and its plaintext can be efficiently extracted using the
secret key used by Pi in the decryption protocol in Step 3.

6.2.4 Formal Protocol

We now write a formal description of our construction of on-the-fly MPC, secure against mali-
cious adversaries, and providing correct verification for large inputs. Our construction requires the
following building blocks:

• A semantically-secure multikey fully-homomorphic family of encryption schemes E ={
E(N) = (Keygen,Enc,Dec,Eval)

}
N>0

.

• A family of collision-resistant hash functions H = {Hhk : {0, 1}∗ → {0, 1}κ}hk.

• A NIZK argument system Πenc = (Setupenc,Proveenc,Verifyenc,Simenc) for the NP relation
Renc = { ( (pk, c) , (x, s) ) | c = Enc(pk, x ; s) }.

• An adaptively extractable SNARK system Φ =
(
SetupΦ,ProveΦ,VerifyΦ,ExtΦ

)
for all of NP.

• An N -party MPC protocol, secure against malicious adversaries corrupting t < N parties,
for computing the family of decryption functions

gc,pk1,ek1,...,pkN ,ekN
((sk1, r1) . . . , (skN , rN ))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N ]
⊥ otherwise

The protocol is defined as follows:
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Input: All parties and the server receive as input the common reference string crsenc for the NIZK
proof system Πenc. If CS proofs are used as the SNARK system, the (description) of the
random-oracle hash function is also given to all parties and the server.

Step 1: For i ∈ [U ], party Pi samples a key tuple (pki, ski, eki), encrypts its input xi, and computes
a NIZK showing that the ciphertext is well-formed:

(pki, ski, eki) := Keygen(1κ ; ri) , ci := Enc(pki, xi ; si)

πenc
i ← Proveenc( (pki, ci) , (xi, si) )

It also samples a hash key hki and computes the digest of the ciphertext: di = Hhki
(ci). It

additionally creates a verification reference string and private verification key: (vrsi, privi)←
SetupΦ(1κ).

Party Pi sends the tuple (pki, eki, ci, π
enc
i , hki, di, vrsi) to the server, who verifies all proofs

{πenc
i }i∈[U ].

From this point forward, party Pi can forget its (potentially long) input xi, ciphertext ci, and
proof πenc

i . It need only remember its secret key and key-generation randomness (ski, ri), the
hash key and digest (hki, di), and its private verification key privi.

A function F , represented as a circuit C, is now selected on inputs {xi}i∈V for some V ⊆ U .
Let N = |V |. For ease of notation, we assume w.l.o.g. that V = [N ].

Step 2: The server S computes c := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN )) and creates succinct
arguments {ϕi}i∈[N ] for the NP language

L = { {(pki, eki, hki, di)}i∈[N ] | ∃ (c̃1, π̃
enc
1 ) , . . . , (c̃N , π̃enc

N ) such that

di = Hhki
(c̃i) and

Verifyenc( (pki, c̃i) , π̃enc
i ) = 1 and

c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN )) }

To compute ϕi, the server uses the verification reference string vrsi. If CS proofs are used as
the SNARK system, the server need only compute a single proof ϕ that can be verified by
all.

The server broadcasts (c, ϕ1, . . . , ϕN ) to all parties P1, . . . , PN , together with the tuple
{(pki, eki, hki, di)}i∈[N ].

Step 3: Party Pi runs VerifyΦ({(pki, eki, hki, di)}i∈[N ] , ϕi) to verify the argument ϕi. If verification
is successful for all partiers, they run an MPC protocol Πdec

mal to compute the function

gc,pk1,ek1,...,pkN ,ekN
((sk1, r1) . . . , (skN , rN ))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N ]
⊥ otherwise
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6.2.5 Proof of Security

Theorem 6.2.1. Let E ,Πdec
mal,H,Πenc,Φ be as described in Section 6.2.4. Then the above con-

struction is an on-the-fly MPC protocol secure against malicious adversaries corrupting t < N
parties and possibly the server S.

Proof. We prove that the protocol is correct and secure, and that it satisfies the performance
requirements of an on-the-fly protocol.

Correctness: Correctness follows directly from the correctness properties of homomorphic evalu-
ation and the decryption MPC protocol Πdec

mal.

Performance: The zero-knowledge proofs πenc
i are independent of C and the size of c is inde-

pendent of |C| by compactness of homomorphic evaluation. Moreover, the proof ϕ has size
polylogarithmic in |C| and its verification depends only polylogarithmically on the size of the
ciphertexts ci (and therefore polylogarithmically on the size of the inputs xi as well). Thus,
the communication complexity of the protocol is polylogarithmic in |C|, and the computation
time of each party Pi is at most polylogarithmic in |C| and the total size of the inputs, and
polynomial in y and its input xi.

Security: We show security for the case when the server is corrupted; the case when the server is
honest is analogous. Let Amal be a real-world semi-malicious adversary corrupting t clients
and the server. Recall that for security, we only need to consider adversaries corrupting a
subset T of the parties P1, . . . , PN involved in the computation. Thus, we assume t < N , let
T ( [N ] be the set of corrupted clients, and let T = [N ]\T .

We construct a simulator Smal as follows. The simulator receives the inputs of the corrupted
parties, {xi}i∈T and runs Amal on these inputs {xi}i∈T . It simulates the messages for all hon-
est parties in the protocol execution with Amal. In Step 1, it samples all key tuples correctly,
but encrypts 0 instead of the honest input xi (which it doesn’t know), and computes simulated
proofs πenc

i . In Step 2, it fixes an honest party h and extracts the witness {c̃i, π̃
enc
i }i∈[N ] of

the argument ϕh. For all corrupted parties i ∈ T , the simulator extracts the corrupted input
x̃i from the proof π̃enc

i , submits these to the ideal functionality F , and obtains an output ỹ.
In Step 3, it runs the simulator Smal

Πdec
for the protocol Πdec

mal, returning ỹ when it calls the
ideal decryption functionality. More formally:

Step 1: The simulator creates the CRS for the NIZK Πenc, together with a trapdoor key
and an extraction key:

(crsenc, tkenc, extkenc)← Setupenc(1κ)

For non-computing parties i ∈ {N + 1, . . . , U} and for honest parties i ∈ T , the simulator
computes (pki, ·, eki) ← Keygen(1κ) and samples hki honestly. The simulator also runs
the verification setup honestly: (vrsi, privi)← SetupΦ(1κ).
The simulator computes an encryption of 0 and simulated zero-knowledge proofs:

ci ← Enc(pki, 0) , πenc
i ← Sim( tkenc , (pki, ci) )

It computes the digest di = Hhki
(ci) honestly. For each party Pi, Smal sends (pki, eki, ci,

πenc
i , hki, di, vrsi) to Amal on behalf of Pi.
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Step 2: The simulator receives (c, ϕ1, . . . , ϕN ) from Amal, together with the tuples
{(pki, eki, hki, di)}i∈[N ]. The simulator verifies ϕi for all honest parties i ∈ T and for
a fixed honest party h ∈ T , uses the SNARG extractor to extract witness {c̃i, π̃

enc
i }i∈[N ]

from ϕh:
{c̃i, π̃

enc
i }i∈[N ] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N ] , ϕh

)
It outputs ⊥ if for any i ∈ [N ], verification fails for ϕi or π̃enc

i , or if di 6= Hhki
(c̃i). It also

outputs ⊥ if c 6= Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN )), or if c̃i 6= ci for some honest
i ∈ T .

Step 3: The simulator runs the decryption simulator Smal
Πdec

for protocol Πdec
mal (interacting

with Amal). When Smal
Πdec

queries the ideal decryption functionality with secret key and

randomness pairs
{

s̃ki, r̃i

}
i∈T

, the simulator checks that Keygen(1κ ; r̃i) = (pki, s̃ki, eki)

for all i ∈ T . If the check fails, it outputs ⊥. Otherwise, it decrypts c̃i with the secret
key s̃ki to obtain the corrupted input x̃i (if Dec

(
s̃ki, c̃j

)
= ⊥, it returns ⊥):

x̃i := Dec
(
s̃ki, c̃j

)
Finally, it submits inputs {x̃i}i∈T to the ideal functionality F , and obtains output ỹ =
f(x̃1, . . . , x̃N ), where x̃i = xi for honest parties i ∈ T . It returns ỹ to the simulator
Smal

Πdec
.

Output: The simulator receives the output of the corrupted parties from Smal
Πdec

, and returns these
as its output.

We prove that IDEALF ,Smal(~x)
c
≈ REALΠmal,Amal(~x) via a hybrid argument.

Hybrid 0: This is a real-world execution of the protocol.

Hybrid 1: We change how Step 3 is performed. Instead of executing the protocol Πdec
mal where

honest parties use their individual secret keys, we run the simulator Smal
Πdec

(interacting with
Amal). When Smal

Πdec
queries the ideal decryption functionality with secret keys and randomness{

s̃ki, r̃i

}
i∈T

, we return

ỹ = gc,pk1,ek1,...,pkN ,ekN

((
s̃k1, r̃1) . . . , (s̃kN , r̃N

))
where s̃ki = ski and r̃i = ri for honest parties i ∈ T . We define the output of the corrupted
parties to be the output of Smal

Πdec
, and the output of the honest parties to be ỹ.

We claim that Hybrid 0 is computationally indistinguishable from Hybrid 1 by the security
of Πdec

mal. Indeed, the security of the decryption protocol Πdec
mal guarantees that as long

as we correctly emulate the ideal decryption functionality, the joint output of all parties
is computationally indistinguishable in a real-world execution of the protocol with adversary
Amal (Hybrid 0), and in an ideal-world execution of the protocol with adversary Smal

Πdec
(Hybrid

1). We correctly emulate the ideal decryption functionality, by definition.
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Hybrid 2: Hybrid 2 is the same as Hybrid 1 except that we use the extractor ExtΦ to extract a
witness {(c̃i, π̃

enc
i )}i∈[N ] from ϕh:

{c̃i, π̃
enc
i }i∈[N ] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N ] , ϕh

)
We define the output of the protocol to be ⊥ if for any i ∈ [N ], verification fails for π̃enc

i or
di 6= Hhki

(c̃i). We also output ⊥ if c 6= Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN )), where c is
the ciphertext returned by Amal in Step 2. By the adaptive extractability property of Φ, we
know that this event happens with negligible probability. Therefore, Hybrid 1 and Hybrid 2
are statistically close.

Note that we require Φ to satisfy adaptive extractability because the adversary is free to
choose the statement of the proof after it sees vrsh.

Hybrid 3: In Hybrid 3, we additionally let the output of the protocol be ⊥ if c̃i 6= ci for any
honest i ∈ T .

We claim that Hybrid 2 and 3 are statistically close by the collision-resistance of H. Indeed,
Hybrids 2 and 3 are identical except in the case when all previous checks pass but there exists
j ∈ T such that c̃j 6= cj . Let ε be the probability, conditioned on all other checks passing,
that there exists such a j ∈ T . Suppose, for the sake of contradiction, that ε is non-negligible.
Then we construct an adversary B that breaks the collision-resistance of H. The reduction B
works as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It creates the NIZK CRS honestly: (crsenc, ·)← Setupenc(1κ), and runs Amal on inputs
{xi}i∈T and crsenc as the CRS.

3. For all non-computing parties and honest parties, it samples key tuples
(pki, ski, eki) ← Keygen(1κ), and encrypts the input correctly: ci ← Enc(pki, xi ; si).
It creates honest proofs πenc

i ← Proveenc( (pki, ci) , (xi, si) ). It also runs the verifica-
tion setup honestly to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

4. When it receives a hash key hk from the collision-resistance challenger, the reduction
guesses an honest index i∗ ← T uniformly at random and sets hki∗ = hk. For all other
i 6= i∗, it samples hki honestly. Finally, for all non-computing and honest parties, it
computes the digest di = Hhki

(ci).

5. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N ] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N ] , ϕh

)
7. Finally, it submits ci∗ and c̃i∗ to the collision-resistance challenger as its collision.

If all previous checks pass, then in both hybrids we have that H(cj) = H(c̃j) = dj . Therefore
the probability that B submits a valid collision to the collision challenger is ε/

∣∣T ∣∣. If ε is
non-negligible, then B breaks the collision-resistance property of the hash family H.
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Hybrid 4: In Hybrid 4, we additionally let the output of the protocol be ⊥ if Dec(s̃ki, c̃i) = ⊥ for
any corrupt i ∈ T , where s̃ki is the secret key output by the decryption protocol simulator
Smal

Πdec
and c̃i is extracted from the succinct argument ϕh, as in Hybrids 2 and 3.

We claim that Hybrid 3 and Hybrid 4 are statistically close by the soundness of the NIZK
Πenc. Indeed, Hybrids 3 and 4 are identical except in the case when all previous checks pass
but there exists j ∈ T such that Dec(s̃kj , c̃j) = ⊥. By correctness of decryption, this happens if
and only if @ (x̃j , s̃j) such that Enc(pkj , x̃j ; s̃j) = c̃j , or in other words, if (pkj , c̃j) /∈ Lenc. Let
ε be the probability, conditioned on all other checks passing, that there exists an index j ∈ T
such that (pkj , c̃j) /∈ Lenc. Suppose, for the sake of contradiction, that ε is non-negligible.
Then we construct an adversary B that breaks the soundness of Πenc. The reduction B works
as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It receives the CRS from the soundness challenger, and runs Amal on inputs {xi}i∈T and

the CRS.

3. For all non-computing parties and honest parties, it samples key tuples (pki, ski, eki)←
Keygen(1κ), and encrypts the input correctly: ci ← Enc(pki, xi ; si). It creates honest
proofs πenc

i ← Proveenc( (pki, ci) , (xi, si) ). It also runs the verification setup honestly
to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

4. It samples hki honestly and computes the digest di = Hhki
(ci).

5. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N ] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N ] , ϕh

)
7. It runs the simulator Smal

Πdec
(interacting with Amal). When Smal

Πdec
queries the ideal de-

cryption functionality with secret key and randomness pairs
{

s̃ki, r̃i

}
i∈T

, it checks that

(pki, s̃ki, eki) = Keygen(1κ ; r̃i) for all i ∈ [N ]. If this check fails, it returns ⊥. Otherwise,
it chooses a corrupt i∗ ← T uniformly at random and submits π̃enc

i∗ as its proof forgery.

If all previous checks pass, then in both hybrids we have that Verify ( (pki, c̃i) , π̃enc
i ) = 1

for all i ∈ [N ] (see Hybrid 2). Therefore, the probability that B submits a valid forgery to the
soundness challenger is ε/ |T |. If ε is non-negligible, then B breaks the soundness property of
the NIZK Πenc.

Hybrid 5: We now change how we compute ỹ, the value returned to the simulator Smal
Πdec

when it
queries the decryption ideal functionality. Instead of computing
ỹ = gc,pk1,ek1,...,pkN ,ekN

((
s̃k1, r̃1) . . . , (s̃kN , r̃N

))
, we first check if (pki, s̃ki, eki) =

Keygen(1κ ; r̃i) for all i ∈ T . If this check fails, we return ⊥; otherwise we decrypt each
malicious c̃i and evaluate f on the resulting inputs:

ỹ =
{

f(x̃1, . . . , x̃N ) If (pki, s̃ki, eki) = Keygen(1κ ; r̃i) ∀i ∈ T
⊥ Otherwise
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where x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T

We claim that Hybrid 5 and Hybrid 4 are statistically close. In the case when (pki, s̃ki, eki) 6=
Keygen(1κ ; r̃i) for some i ∈ T , both hybrids output ⊥. We focus on the case when this check
passes for all parties, so that s̃ki is guaranteed to be a valid secret key for its corresponding
public and evaluation keys. In both hybrids, we know that c = Eval(C, (c̃1, pk1, ek1), . . . ,
(c̃N , pkN , ekN )) (see Hybrid 2). By soundness of Πenc, we know that all c̃i’s are fresh
encryptions, so by correctness of multikey evaluation we know that Dec(s̃k1, . . . , s̃kN , c) =
f(x̃1, . . . , x̃N ), where we define s̃ki = ski for all honest i ∈ T and x̃i := Dec(s̃ki, c̃i) for all
i ∈ [N ]. Furthermore, since c̃i = ci for all honest i ∈ T (see Hybrid 3), we know that x̃i = xi

for all i ∈ T by correctness of decryption.

Hybrid 6: In Hybrid 6, we change how we compute the proofs πenc
i . Instead of computing real

proofs, we use the NIZK simulator to create simulated proofs:

{πenc
i ← Sim( tkenc , (pki, ci) )}i∈T

We claim that Hybrid 6 is computationally indistinguishable from Hybrid 5 by the unbounded
zero-knowledge property of the proof system Πenc. Suppose, for the sake of contradiction, that
there exists an algorithm D that distinguishes between hybrids 5 and 6. We construct an
adversary B that breaks zero-knowledge of Πenc. The reduction B works as follows:

1. The reduction chooses arbitrary inputs {xi}.

2. It receives the CRS from the zero-knowledge challenger, and runs Amal on inputs {xi}i∈T

and the CRS.

3. For all non-computing parties and honest parties, it samples key tuples (pki, ski, eki)←
Keygen(1κ), and encrypts the input correctly: ci ← Enc(pki, xi ; si). It creates proofs
πenc

i by calling its oracle with statement (pki, ci) and witness (xi, si). It also runs the ver-
ification setup honestly to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

4. It samples hki honestly and computes the digest di = Hhki
(ci).

5. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N ] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N ] , ϕh

)
7. It runs the simulator Smal

Πdec
(interacting with Amal). When Smal

Πdec
queries the ideal de-

cryption functionality with secret key and randomness pairs
{

s̃ki, r̃i

}
i∈T

, it checks that

(pki, s̃ki, eki) 6= Keygen(1κ ; r̃i). If this check fails, it returns ⊥; otherwise it returns
ỹ = f(x̃1, . . . , x̃N ) where x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T .

8. At the end of the protocol, it forwards Amal’s output to D as the output of the corrupt
parties, and gives ỹ to D as the output of the honest parties.
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When B’s oracle is the prover oracle P(·), then B perfectly emulates Hybrid 5, whereas if the
oracle is the simulation oracle SIMtk(·), B perfectly emulates Hybrid 6. Therefore, if D can
distinguish between Hybrids 5 and 6, then B breaks the zero-knowledge property of Πenc.

Hybrids 7.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 7.k we change cik so that
instead of encrypting xik it now encrypts 0. More formally, in Hybrid 7.k we have:{

cij ← Enc(pkij , 0)
}

j≤k
,

{
cij ← Enc(pkij , xij )

}
j>k

For ease of notation we let Hybrid 6 be Hybrid 7.0. We claim that the view of Amal in Hybrid
7.k is indistinguishable from its view in Hybrid 7.(k− 1) by the semantic security of E under
public key pkik

. Indeed, now that we run the simulator Smal
Πdec

in Step 3 instead of the real
decryption protocol, the secret key skik is only used to encrypt cik . So suppose, for the sake
of contradiction, that there exists an algorithm D that distinguishes between hybrids 7.k and
7.(k − 1). We construct an adversary B that breaks the semantic security of E under public
key pkik

. The reduction B works as follows:

1. The reduction chooses arbitrary {xi}.
2. It creates the NIZK CRS honestly: (crsenc, tkenc) ← Setupenc(1κ), and runs Amal on

inputs {xi}i∈T and crsenc as the CRS.
3. It receives (pk, ek) from the semantic security challenger and sets pkik

= pk and ekik = ek.
Gives m0 = 0 and m1 = xik to the challenger and receives c = Enc(pk,mb). Sets cik = c.
For all i ∈ T , i 6= ik, computes (pki, ·, eki) ← Keygen(1κ) honestly. For j < k, computes
cij ← Enc(pkij , 0) and for j > k, computes cij ← Enc(pkij , xij ).

4. For all non-computing and honest parties, it creates simulated proofs πenc
i ←

Sim( tkenc , (pki, ci) ) using the trapdoor tkenc. It also runs the verification setup
honestly to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

5. It samples hki honestly and computes the digest di = Hhki
(ci).

6. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

7. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N ] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N ] , ϕh

)
8. It runs the simulator Smal

Πdec
(interacting with Amal). When Smal

Πdec
queries the ideal de-

cryption functionality with secret key and randomness pairs
{

s̃ki, r̃i

}
i∈T

, it checks that

(pki, s̃ki, eki) 6= Keygen(1κ ; r̃i). If this check fails, it returns ⊥; otherwise it returns
ỹ = f(x̃1, . . . , x̃N ) where x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T .

9. At the end of the protocol, it forwards Amal’s output to D as the output of the corrupt
parties, and gives ỹ to D as the output of the honest parties.

When b = 0, B perfectly emulates Hybrid 7.k, whereas if b = 1, B perfectly emulates Hybrid
7.(k − 1). Therefore, if D can distinguish between Hybrids 7.k and 7.(k − 1), then B can
distinguish between an encryption of m0 and an encryption of m1, contradicting the semantic
security of E .

88



We have proved that the joint output in Hybrid 0 is computationally indistinguishable from
the joint output in Hybrid 7.(N − t). Notice that the joint output in Hybrid 7.(N − t) is precisely
IDEALF ,Smal(~x), and the joint output in Hybrid 0 is defined to be REALΠsm,Amal(~x). We conclude
that IDEALF ,Smal(~x)

c
≈ REALΠmal,Amal(~x), as desired.

6.2.6 Efficient NIZKs to Prove Plaintext Knowledge

The protocol described in Section 6.2.4 requires a NIZK argument system for the relation NP
relation Renc = { ( (pk, c) , (x, s) ) | c = Enc(pk, x ; s) }. While it is known how to construct
NIZK argument systems for all of NP [GOS06, GOS12], using this construction requires expensive
NP reductions. In this section, we show how to construct an efficient gap Σ-protocol for Renc

when the encryption scheme is the NTRU-based multikey FHE scheme from Section 5.4. By
Theorem 2.2.2 this suffices to construct an efficient NIZK argument system for Renc in the random
oracle model. Our construction follows the ideas of Asharov et al. [AJW11, AJL+12].

Recall that in the aforementioned FHE scheme, a ciphertext has the form c = [hs + 2e + m]q
for public key h, message m ∈ {0, 1}, and ring elements s, e, sampled from B-bounded distribution
χ. We construct a gap Σ-protocol for proving that “c encrypts 0 under h”. That is, we show a
protocol for relation

Renc
0 =

{
( (h, c) , (s, e) ) | c = [hs + 2e]q ∧ ‖s‖∞ , ‖e‖∞ ≤ B

}
with corresponding language Lenc

0 . By Theorem 2.2.1, we can then construct a gap Σ-protocol for
Renc using an OR protocol to prove that “c ∈ Lenc

0 or c− 1 ∈ Lenc
0 ”.

Gap Σ-protocol for Encryptions of 0. Our construction of a gap Σ-protocol for Renc
0 uses

the same parameters as the encryption scheme: degree n, polynomial φ(x) = xn + 1, modulus q,
and distribution χ = DZn,r over the ring R = Z[x]/〈φ(x)〉. It is additionally parametrized by a
distribution χ̃ = DZn,er over R, such that 2ω(log κ)r ≤ r̃ ≤ q/4

√
n−r. To simplify notation, we recall

from Lemma 2.6.4 that χ is B-bounded and χ̃ is B̃-bounded for B = r
√

n and B̃ = r̃
√

n. By our
choice of r̃, this means that B̃ + B ≤ q/4.

To formally describe our protocol, we must first define relations Rzk and Rsound. We set Bzk =
Renc

0 and set Bsound to be essentially the same as Renc
0 , differing only in the requirement set for

‖s‖∞ and ‖e‖∞:

Rsound =
{

( (h, c) , (s, e) ) | c = [hs + 2e]q ∧ ‖s‖∞ , ‖e‖∞ ≤ 4
(
B̃ + B

) }
Note that since B̃ ≥ B, we have Rzk ⊆ Rsound. We can now describe our construction:

• P1((h, c), (s, e)) : Samples s̃, ẽ← χ̃ and outputs a = [hs̃ + 2ẽ]q and st = (s̃, s).

• V1((h, c)) : Outputs a random bit b← {0, 1}.

• P2(st, b) : Parses st = (s̃, s) and outputs z = [s̃ + bs]q.

• V2((h, c), a, b, z) : Computes ε = [(a + bc)− hz]q and outputs 1 if and only if ‖z‖∞ ≤ B̃ + B,

‖ε‖∞ ≤ 2
(
B + B̃

)
, and ε is even.
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Theorem 6.2.2. Let Rzk, Rsound be the NP relations described above. The construction 〈P, V 〉 with
P = (P1, P2) and V = (V1, V2) is a gap Σ-protocol for (Rzk, Rsound).

Proof. We show that the above construction satisfies the completeness, special soundness, and
HVZK properties.

Completeness: Let ((h, c), (s, e)) ∈ Lzk, and let (a, b, z) be a transcript for protocol 〈P, V 〉. Then

ε = [(a + bc)− hz]q = [hs̃ + 2ẽ + bhs + 2be− hs̃− hbs]q = [2(ẽ + be)]q = 2(ẽ + be)

where the last inequality holds by the fact that B̃ + B ≤ q/4. It is clear that ε is even, and
its coefficients are bounded by 2(B̃ + B). Furthermore, z = s̃ + bs, so ‖z‖∞ ≤ B̃ + B, as
required.

Special Soundness: Let (h, c) be a public key and ciphertext pair, and let (a, 0, z0) and (a, 1, z1)
be two accepting transcripts. The extractor Ext outputs (s∗, e∗), where s∗ = z1 − z0 and
e∗ = [c− hs∗]q.

We now argue that ((h, c), (s∗, e∗)) ∈ Rsound. By construction, we have that c = [hs∗ + 2e∗]q.
It remains to show the bound on the size of the coefficients of s∗ and e∗. Since (a, 0, z0) and
(a, 1, z1) are accepting transcripts, we know that ‖z0‖∞ , ‖z1‖∞ ≤ B̃ + B, so that ‖s∗‖∞ ≤
2

(
B̃ + B

)
.

We now bound e∗. Let ε0 = [a− hz0]q and ε1 = [(a + c)− hz1]q. Since (a, 0, z0) and (a, 1, z1)

are accepting transcripts, we know that ‖ε0‖∞ , ‖ε1‖∞ ≤ 2
(
B̃ + B

)
and both ε0 and ε1 are

even. Furthermore, ε1 − ε0 = [(a + c)− hz1 − (a− hz0)]q = [c− h(z1 − z0)]q = e∗. This
means that e∗ is even since both ε0 and ε1 are even, and we also have that ‖e∗‖∞ ≤ ‖ε0‖∞+

‖ε1‖∞ ≤ 4
(
B̃ + B

)
, as desired.

Honest-Verifier Zero-Knowledge: Let ((h, c), (s, e)) ∈ Lzk and let b ∈ {0, 1}. The simulator
Sim chooses z′, e′ ← χ̃, sets a′ = hz′ + 2e′ + bc, and outputs (a′, b, z′). We argue that the
output of Sim is statistically close to the transcript (a, b, z) of an execution of the protocol
〈P, V 〉. In a real transcript, we have a = hs̃ + 2ẽ and z = s̃ + σs. In the simulated transcript,
we have a′ = h(z′ + bs) + 2(e′ + be). If b = 0, then the distributions are identical because
s̃, ẽ, z′, e′ are all sampled from the same distribution χ̃. On the other hand, if b = 1, then the
distributions are statistically close by Corollary 2.6.6.

Consequences of Having a Gap. We have shown how to construct efficient NIZK arguments
for the relation Renc for the NTRU-based multikey FHE scheme from Section 5.4. However, there
is a gap in the relations for which soundness and zero-knowledge hold: zero-knowledge holds for an
honest prover with a statement in Rzk, but an honest verifier is only convinced that the statement
is in Rsound ⊇ Rzk. We must show that this gap does not affect the correctness of our protocol.
It suffices to prove that the scheme is fully homomorphic when the error in fresh ciphertexts is
bounded by B∗

def= 4(B̃ + B).
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Our analysis in Section 5.4 does not immediately guarantee this, as it sets B = poly(n). Since
we must have n = poly(κ) for efficiency of the scheme, this means B = poly(κ). However B∗ is
super-polynomial in κ. Nevertheless, we can easily modify our parameters and analysis to guarantee
that the scheme remains fully homomorphic with ciphertext noise that is super-polynomial in κ.

The proof of Lemma 5.4.3 shows that the leveled homomorphic scheme ELH described in Sec-
tion 5.4.2 is multikey homomorphic for N keys and circuits of depth D as long as

(nB∗)2N+2 <
2nε

2(8n(nB∗)2N+2)D

which yields the requirement ND = O (nε/(log n + log B∗)). We can then follow the proof of
Theorem 5.4.6 and show that there exists a multikey fully homomorphic encryption scheme for
N = O

(√
(nε/ log n(log n + log B∗))

)
. If we set B̃ = 2log2 κ ·B for B = poly(n) and n ≥ κ, this is

guaranteed if N = O

(√
(nε/ log3 n)

)
since

nε/(log3 n) = O(nε/(log n · (log n + log2 κ))) = O(nε/(log n · (log n + log B∗)))

(In)Security in the Standard Model. We have shown a NIZK argument for relation Renc.
Though secure in the random oracle model, we remark that care must be taken if we want to
hope for security in the standard model. More specifically, since our gap Σ-protocol has only
constant soundness, we need to use parallel repetition for soundness amplification. For efficiency,
we would like to repeat the protocol only polylog(κ) many times as this already achieves negligible
soundness. However, our results in an independent work [DJKL12, BDG+13] (see remarks after
Theorem 2.2.2) show that if we use such a small number of repetitions, the resulting NIZK cannot
be proven sound (in the standard model) via a black-box reduction to a (super-polynomially hard)
falsifiable assumption.

6.3 Impossibility of a 2-Round Protocol

We have shown that there exists an on-the-fly MPC protocol with a 5-round online phase. We
now ask whether we can achieve the optimal solution of having a completely non-interactive online
phase. In this section we answer this question negatively: we show that the existence of such a
protocol (secure against semi-honest adversaries)4 implies general circuit obfuscation as a virtual
black-box with single-bit output, which we know to be impossible [BGI+01]. Our techniques are
inspired by those of van Dijk and Jules [vDJ10].

We begin by reviewing the definition of general circuit obfuscation [BGI+01].

Definition 6.3.1 (Circuit Obfuscation [BGI+01]). A probabilistic algorithm O is a circuit obfus-
cator if the following three conditions hold:

Functionality: For every circuit C, the string O(C) describes a circuit that computes the same
function as C.

Polynomial Slowdown: There is a polynomial p such that for every circuit C, |O(C)| ≤ p(|C|).
4Considering semi-honest adversaries instead of semi-malicious or malicious adversaries only makes our result

stronger.
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“Virtual Black-Box” Property: For any PPT adversary A, there is a PPT simulator S such
that for all circuits C∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]

∣∣∣ ≤ negl(|C|)

Barak et al. [BGI+01] show that assuming one-way functions exist, there does not exist any
algorithm O satisfying Definition 6.3.1, even if we do not require that O run in polynomial time.
Thus, our results imply that assuming one-way functions exist, there does not exist any on-the-fly
MPC protocol with a non-interactive online phase.

We now show the connection between on-the-fly MPC and obfuscation. We consider an on-
the-fly MPC protocol with a non-interactive online phase, and assume that only one function is
evaluated and the function is chosen a-priori, before the start of the protocol (i.e. it does not
depend on the offline stage messages). Let N be the number of inputs of the circuit; without loss
of generality, we assume that the computing parties are P1, . . . , PN . Note that considering such a
restricted protocol only makes our impossibility result stronger. A protocol like this can be modeled
by efficient and possibly randomized algorithms: In1, . . . , InU ,Compute,Out1, . . . ,OutN , where:

• (di, ci) ← Ini(xi): On input xi, the algorithm Ini outputs two elements, ci to be sent to the
server S and di to be kept by party Pi.

• (z1, . . . , zN ) ← Compute(C, c1, . . . , cN ) : On input a circuit C and c1, . . . , cN , which are the
messages the server received from parties P1, . . . , PN , Compute outputs N elements z1, . . . , zN .
The server sends back zi to party Pi.

• y ← Outi(zi, di) : On input zi which was received from the server, and the auxiliary informa-
tion di output by Ini, Outi computes the output y.

We know from the work of Halevi, Lindell, and Pinkas [HLP11] that in the non-interactive
setting, the server can always evaluate the circuit multiple times, keeping some parties inputs but
plugging in fake inputs of its choosing for the other parties. Thus we must relax the definition of
security so that when the server is corrupted, the simulator is allowed to submit queries of the form
(S, ~x), where S is a non-empty subset of the honest parties and ~x is any input vector of size n−|S|.
The trusted functionality evaluates the function on ~x and the honest inputs in S. Furthermore,
our result holds even when the real-world adversary is only allowed to output 1 bit.5

Theorem 6.3.1. If there exists an on-the-fly MPC protocol with a non-interactive online phase that
computes all efficiently computable functions with 2 inputs, and is secure against semi-honest ad-
versaries (with the relaxed definition of security), then there exists a circuit obfuscator O satisfying
Definition 6.3.1.

Proof. We start by defining a family of “meta-circuits”
{
F (m)

}
m∈N. For a fixed m ∈ N, F (m)

is such that given a circuit C of size m and bit-string x, it evaluates C on x and outputs C(x),
i.e. F (m)(C, x) = C(x). van Dijk and Juels [vDJ10] show to construct a family of meta-circuits
such that for all m ∈ N, |F (m)| = O(m2).

5Considering a restricted class of adversaries for the on-the-fly MPC protocol only makes our impossibility result
stronger.
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We now show how to construct a circuit obfuscator O using an on-the-fly MPC protocol Π =
(In1, . . . , InU ,Compute,Out1,Out2) with the properties described in the theorem statement. Given
a circuit C of size m, O computes (·, c1) ← In1(C), samples random coins ρ, σ, τ , and outputs a
circuit G that on input x:

• Computes (c2, d2) := In2(x ; ρ).

• Computes (·, z2) := Compute(F (m), c1, c2 ;σ)

• Computes and outputs y := Out2(z2, d2 ; τ).

We now show that this obfuscator satisfies the functionality, polynomial slowdown, and virtual
black-box properties from Definition 6.3.1.

Functionality: The correctness property of the on-the-fly MPC protocol guarantees that G(x) =
F (m)(C, x) = C(x) for all x.

Polynomial Slowdown: Using van Dijk and Juel’s construction [vDJ10], we have that |F (m)| =
O(m2). Since all algorithms of the on-the-fly MPC protocol run in polynomial time, we have
that there exists a polynomial p such that |G| = p(|C|).

Virtual Black-Box: To prove the virtual black-box property, we observe that given an attacker
A trying to break the obfuscation, we can construct a real-world semi-honest adversary B
attacking the on-the-fly MPC protocol, corrupting the server and party P2. The honest party
receives input C and B receives a dummy value x̃ for P2, which it ignores. Instead it receives
c1 from the honest party, builds G as specified and runs A on G. When A outputs a bit b, B
completes Steps 2 and 3 in the protocol as specified, and outputs b. We emphasize that any
action taken by A is valid for a semi-honest adversary, so B is semi-honest.

Security of Π says that there exists simulator S such that for all inputs C, x̃, we have
IDEALF ,S(C, x̃)

c
≈ REALΠ,B(C, x̃), where in the ideal world, S is given access to an ora-

cle as described above. In the setting we are considering, the only valid subset that S can
provide in a query to this oracle is {1}. Thus, S has oracle access to F (m)(C, ·) = C(·). We
can build a simulator S ′ with oracle access to C(·) that on input |C|6, chooses an arbitrary
x̃ and runs S(x̃) (which runs B, which runs A), anwers S’s queries with its own oracle, and
outputs S’s output.

Since B outputs whatever A outputs and S ′ outputs whatever S outputs, the fact that
IDEALF ,S(C, x̃)

c
≈ REALΠ,B(C, x̃) implies that S ′(|C|)

c
≈ A(G). The theorem statement fol-

lows.

6In most applications it is ok to leak the size of the honest input. Indeed this is implied in most constructions,
including our construction from Section 6.1.
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Chapter 7

Conclusion

In this dissertation, we introduced the notions of cloud-assisted MPC and on-the-fly MPC, modeling
the setting in which mutually distrusting parties wish to compute a joint function of their inputs
with the aid of a powerful but untrusted server or “cloud”. We also showed how to construct
cloud-assisted MPC from threshold FHE, which we showed can be obtained from the Ring-LWE
assumption. Moreover, we showed how to construct on-the-fly MPC from multikey FHE, a new
notion also introduced in this dissertation. We further showed how to construct multikey FHE
for any number of keys from the NTRU encryption scheme, based on the DSPR and Ring-LWE
assumptions.

Several interesting and important questions remain open. First, is it possible to construct a
multikey FHE based solely on the Ring-LWE assumption? In a follow-up work, Bos et al. [BLLN13]
combine Brakerki’s techniques [Bra12] with our NTRU FHE construction and construct an NTRU-
based FHE whose security is based on the Ring-LWE assumption alone. However, their scheme is
only multikey for a constant number of keys, which we have shown to be an inherent property of
any FHE. A possible approach to solving this problem could be to reduce the DSPR assumption to
the Ring-LWE assumption, or to worst-case problems in ideal lattices. Showing a search-to-decision
reduction for the DSPR assumption is a possible first step. Another interesting problem that is
left open is constructing a multikey FHE scheme that is not “leveled” with respect to the number
of keys. Recall that in our construction all algorithms depend on the number of keys, N ; removing
this dependence remains an open problem. Finally, we are unaware of any other constructions
of multikey FHE for any number of keys. Building other multikey FHE schemes, from possibly
different assumptions, remains open.
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