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Abstract

Most cryptographic primitives require randomness (for example, to generate secret

keys). Usually, one assumes that perfect randomness is available, but, conceivably,

such primitives might be built under weaker, more realistic assumptions. This

is known to be achievable for many authentication applications, when entropy

alone is typically sufficient. In contrast, all known techniques for achieving privacy

seem to fundamentally require (nearly) perfect randomness. We ask the question

whether this is just a coincidence, or, perhaps, privacy inherently requires true

randomness?

We completely resolve this question for information-theoretic private-key en-

cryption, where parties wish to encrypt a b-bit value using a shared secret key

sampled from some imperfect source of randomness S .

Our main result shows that if such n-bit source S allows for a secure encryption

of b bits, where b > log n, then one can deterministically extract nearly b almost

perfect random bits from S . Further, the restriction that b > log n is nearly tight:

there exist sources S allowing one to perfectly encrypt (log n− loglog n) bits, but

not to deterministically extract even a single slightly unbiased bit.

Hence, to a large extent, true randomness is inherent for encryption: either

the key length must be exponential in the message length b, or one can determin-
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istically extract nearly b almost unbiased random bits from the key. In particular,

the one-time pad scheme is essentially “universal”. Our technique also extends

to related primitives which are sufficiently binding and hiding, including computa-

tionally secure commitments and public-key encryption.
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Chapter 1

Introduction

Randomness is important in many areas of computer science. It is especially indis-

pensable in cryptography: secret keys must be random, and many cryptographic

tasks, such as public-key encryption, secret sharing or commitment, require ran-

domness for every use. Typically, one assumes that all parties have access to a

perfect random source, but this assumption is at least debatable, and the question

of what kind of imperfect random sources can be used for various applications has

attracted substantial attention.

Extraction. The easiest such class of sources consists of extractable sources for

which one can deterministically extract nearly perfect randomness, and then use

it in any application. Although various examples of such non-trivial sources are

known [53, 25, 9, 34, 15, 8, 1, 12, 21, 32, 50], most natural sources, such as the so

called entropy sources1 [47, 14, 54], are easily seen to be non-extractable. One can

then ask the natural question of whether perfect randomness is indeed inherent

1Informally, entropy sources guarantee that every distribution in the family has a non-trivial
amount of entropy (and possibly more restrictions), but do not assume independence between
different symbols of the source. Thus, they are the most general sources one would wish to
tolerate, since cryptography clearly requires entropy.
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for the considered application, or perhaps one can do with weaker, more realistic

assumptions. Clearly, the answer depends on the application.

Positive Results. For one such application domain, a series of celebrated re-

sults [52, 47, 14, 54, 3] showed that entropy sources are sufficient for simulating

probabilistic polynomial-time algorithms — namely, problems which do not in-

herently need randomness, but which could potentially be sped up using random-

ization. Thus, extremely weak imperfect sources can still be tolerated for this

application domain. This result was later extended to interactive protocols by

Dodis et al. [19]. This line of work led to the introduction, by Nisan and Zuck-

erman [38], of the seeded extractor, which uses a short random “seed” of truly

random bits to extract randomness from the source. If the seed is small enough, it

is possible to enumerate through all random seeds and run the extractor on each.

Unfortunately, this is not enough for cryptography in general. For example, we

cannot encrypt by sending a large collection of ciphertexts, only half of which hide

the secret. Luckily, though, entropy sources are typically sufficient for authentica-

tion applications, since entropy is enough to ensure unpredictability. For example,

in the non-interactive (i.e., one-message) setting Maurer and Wolf [35] show that,

for a sufficiently high entropy rate (specifically, more than 1/2), entropy sources

are indeed sufficient for unconditional one-time authentication (while Dodis and

Spencer [22] showed that smaller rate entropy sources are not sufficient to authen-

ticate even a single bit). Dodis et al. [19] consider the existence of computationally

secure digital signature (and thus also message authentication) schemes, and, under

(necessarily) strong, but plausible computational assumptions, once again showed

that entropy sources are enough to build such signature schemes. From a different

angle, [22] also show that for all entropy levels (in particular, below 1/2) there exist
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“severely non-extractable” imperfect sources which are nevertheless sufficient for

non-trivial non-interactive authentication. Thus, good sources for authentication

certainly do not require perfect randomness.

Randomness for Privacy? The situation is much less clear for privacy appli-

cations, such as our encryption example above, whose security definitions include

some kind of indistinguishability. Of those, the most basic and fundamental is the

question of (private-key) encryption, whose definition requires that the encryptions

of any two messages are indistinguishable. (Indeed, this will be the subject of this

work.)

With one exception (discussed shortly), all known results indicate that true

randomness might be inherent for privacy applications, such as encryption. First,

starting with Shannon’s one-time scheme [48], all existing methods for building

secure encryptions schemes, as well as other privacy primitives, crucially depend

on perfect randomness somewhere in their design. And this is true even in the

computational setting. For example, the Goldreich-Levin [26] reduction from un-

predictability to indistinguishability, as well the the entire theory of pseudoran-

domness, crucially use a random seed to obtain the desired constructions. Second,

attempts to build secure encryption schemes (and other privacy primitives) based

on known “non-extractable” sources, such as various entropy sources, provably

failed, indicating that such sources are indeed insufficient for privacy. For example,

McInnes and Pinkas [36] showed that unconditionally secure symmetric encryption

cannot be based on entropy sources, even if one is restricted to encrypting a single

bit. This result was subsequently strengthened by Dodis et al. [19], who showed

that entropy sources are not sufficient even for computationally secure encryption

(as well as essentially any other task involving “privacy”, such as commitment,
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zero-knowledge and others).

The only reassuring result in the other direction is the work of Dodis and

Spencer [22], who considered the setting of symmetric encryption, where the shared

secret key comes from an imperfect random source, instead of being truly random.

In this setting, they constructed a particular non-extractable imperfect source,

nevertheless allowing one to perfectly encrypt a single bit. By itself, this result

is not surprising. For example, a uniform distribution on {0, 1, 2} allows one to

encrypt a bit (by addition modulo 3), but not to extract a bit, which is obvious.

Indeed, the actual contribution of [22] was not to show that the separation between

one bit encryption and extraction exists — as we just saw, this is trivial — but to

show that a very strong separation still holds even if one additionally requires all

the distributions in the imperfect source to have high entropy (in fact, very close

to n). In practice, however, we typically care about encrypting considerably more

than a single bit. In such cases, it is certainly unreasonable to expect that, say,

encryption of b bits will necessarily imply extraction of exactly b bits (which was

indeed disproved by [22] for b = 1). One would actually expect that an implication,

if true, would lose at least a few bits (perhaps depending on the statistical distance

ε from the uniform distribution that we want our extraction to achieve).

In particular, the results of [22] leave open the following extreme possibilities:

(a) perhaps any source encrypting already two bits must be extractable; or (b)

perhaps there exists an n-bit source allowing one to perfectly encrypt almost n

bits, and yet not to extract even a single bit. Clearly, possibility (a) would strongly

indicate that true randomness is inherent for encryption, while possibility (b) that

it is not. As we will see shortly, both (a) and (b) happen to be false, but our

point is that the results of [22] regarding one-bit encryption and extraction do not

4



answer what we feel is the more appropriate question:

Assume an imperfect source allows for a secure private-key encryption of b bits.

Does this necessarily imply one can deterministically extract at least one

(and, hopefully, close to b) nearly perfect bits from this source?

1.1 Our Result

We resolve the above question. Our main result shows that if an n-bit source S

allows for a secure (and even slightly biased) encryption of b bits, where b > log n,

then one can deterministically extract almost b nearly perfect random bits from S ;

see Theorem 1(a) for the precise bound. Moreover, the restriction that b > log n

is essentially tight: there exist imperfect sources allowing one to perfectly encrypt

b ≈ log n − loglog n bits, from which one cannot deterministically extract even a

single slightly unbiased (let alone random!) bit; see Theorem 1(b).2 Hence, to a

large extent, true randomness is inherent for encryption:

Either the key length n must be exponential in the message length b, or

One can deterministically extract almost b nearly random bits from the key.

In particular, in the case when b is large enough, so that it is infeasible to

sample more than 2b (imperfect) bits for one’s secret key, our result implies the

following. In order to build a secure b-bit encryption scheme, one must come up

with a source of randomness from which one can already deterministically extract

almost b nearly random bits! Notice, since such extracted bits can then be used

2This result is a non-trivial extension of the separation of [22] from 1-bit to (roughly) (log n)-
bit encryption. Indeed, without the entropy constraints, our proof is considerably more involved
than that of [22]. See also Section 4.5.
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as a one-time pad, we get that any b-bit encryption scheme can in principle be

converted to a “one-time-pad-like” scheme capable of encrypting nearly b bits! In

this sense, our results show that, for the purpose of encrypting a “non-trivial”

number of bits, the one-time pad scheme is essentially “universal”.

Extensions. Our result can be extended in several ways.

First, the basic extractor we construct is inefficient, even if the encryption

scheme is efficient (i.e., runs in time polynomial in n). However, using the tech-

nique of Trevisan and Vadhan [50] (see also [21, 16]), we can obtain the following

marginally weaker result which maintains efficiency: if a source S enables an

efficient encryption of b > log n bits, then there exists an efficient deterministic

extractor allowing one to extract roughly (b − log n) nearly perfect bits from S .

Despite the small loss of log n bits, we still get the same pessimistic conclusion:

unless the key is exponential in the message length, efficient encryption implies

efficient extraction of nearly the same number of bits.

Second, while the basic construction applies to information-theoretic private-

key encryption, the technique extends to computationally secure privacy primitives

which are sufficiently binding and hiding, which includes computationally secure

commitments and computationally secure private- or public-key encryption. For

example, if S allows an efficient computationally secure encryption of b > log n

bits, then there exists an efficient deterministic extractor which outputs almost

b− log n pseudo-random bits from S .

To summarize, non-trivial computationally secure primitives which are suffi-

ciently binding and hiding require some efficiently extractable true randomness.
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1.2 Other Models

Privacy Amplification. The goal of Privacy Amplification, first described by

Bennett, Brassard, and Robert [8], is to allow two parties holding correlated weak

sources to perform key agreement. Unlike in our setting, they assume the use

of local perfect non-secret randomness, which can be used as a seed to a strong

extractor. [8] assumed access to an authenticated public channel, but Renner and

Wolf [42] later showed that it is not necessary: an insecure channel is sufficient.

The results of [42] were further improved by [13, 23, 33].

Leakage Resilience. The area of Leakage-Resilient Cryptography [46, 24, 2] is

concerned with developing cryptographic primitives secure against arbitrary side-

channel attacks, where the only limit on the attacker is an upper bound on the

total entropy revealed to the attacker. Clearly, perfect randomness is available in

this setting, but (parts of it) can leak to the attacker. Once again, this makes this

setting different from our setting.

Multi-Source extractors. A variety of extractors have been constructed and

analyzed for the case where the source consists of multiple independent entropy

sources. Two-source extractors were first constructed by Chor and Goldreich [14].

Dodis and Oliveira [18] and Dodis et al [17] constructed strong two-source ex-

tractors, for which the extracted value is statistically independent from one of the

sources, and therefore can be reused as a seed to a seeded extractor. Their construc-

tions require the source to have rate at least 1/2. Multi-source extractor construc-

tions were subsequently improved by many works, including [4, 10, 5, 6, 40, 41].

Network Extractors. Sudan et al [27] construct protocols for Byzantine

agreement in which parties have access to independent weak sources. This work
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was further improved by Kalai et al. [30, 29], who construct network extractors,

which allow parties with access to independent weak sources to extract private

randomness. As we saw above, multiple independent sources are extractable. The

challenge in this case is to tolerate a subset of dishonest players.

Organization. We define the needed notation in Section 2, which also allows us

to formally state our main result (Theorem 1). In Section 3 we prove that encryp-

tion of b > log n bits using an n-bit key implies extraction of roughly b random

bits, and mention the “computational” extensions of this result. In Section 4, we

show that encryption of up to (log n − loglog n) bits does not necessarily imply

extraction of even a single bit. Finally, in Section 5 we conclude and state some

open problems.
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Chapter 2

Notation and Definitions

We use calligraphic letters, like X , to denote finite sets. The corresponding large

letter X is then used to denote a random variable over X , while the lowercase

letter x denotes a particular element from X . UX denotes the uniform distribution

over X . A source S over X is a set of distributions over X . We write X ∈ S

to state that S contains a distribution X. When X is clear from context, we let

px = Pr[X = x] denote the probability of sampling element x from distribution X.

We denote the expected value by E.

The Rényi entropy [45] of order α is defined for α ∈ (0, 1)∩ (1,∞) as Hα(X) =

1
1−α log (

∑
x←X p

α
x). 1 We will be particularly interested in the Rényi entropy of or-

der∞, also known as the min-entropy, which is defined byH∞(X) = limα→∞Hα(X) =

− log maxx∈X Pr[X = x]). We extend the notion of entropy to sources by defining

Hα(S ) = minX∈S Hα(X).

We need a definition of the distance between two random variables.

Definition 1 The statistical distance SD (X1, X2) between two random variables

1Rényi entropy can be defined through limit arguments at α ∈ {0, 1,∞}. For α = 1, the
Rényi entropy is equivalent to Shannon entropy.
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X1, X2 is

SD (X1, X2) =
1

2

∑
x∈X

∣∣Pr[X1 = x]− Pr[X2 = x]
∣∣ (2.1)

= max
T ⊆X

(Pr[X1 ∈ T ]− Pr[X2 ∈ T ]) (2.2)

If SD (X1, X2) ≤ ε, this means that no (even computationally unbounded) dis-

tinguisher D can tell apart a sample from X1 from a sample from X2 with an

advantage greater than ε. ♦

We will use the following well-known fact.

Fact 1 If f is a deterministic function, then for all X1, X2,

SD (f(X1), f(X2)) ≤ SD (X1, X2) . (2.3)

We use statistical distance to define a notion of randomness as follows.

Definition 2 A random variable R over R is ε-random if SD (R, UR) ≤ ε. Given

a source S over some set K, a function Ext : K → R is an (S , ε)-extractor if for

all K ∈ S , Ext(K) is ε-random:

SD (Ext(K), UR) ≤ ε (2.4)

If such Ext exists for S , we say that S is (R, ε)-extractable. ♦

We first define the security of an encryption algorithm.

Definition 3 An algorithm Enc : K×M→ C is (δ,S )-hiding if for all messages
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m1,m2 ∈M and all distributions K ∈ S we have

SD (Enc(K,m1), Enc(K,m2)) ≤ δ (2.5)

If δ = 0, we say that Enc is perfectly-hiding. ♦

Using this definition, we can now define secure encryption schemes.

Definition 4 An encryption scheme E over message space M, key space K and

ciphertext space C is a pair of algorithms Enc : K×M→ C and Dec : K×C →M,

which for all keys k ∈ K and messages m ∈M satisfies Dec(k,Enc(k,m)) = m. We

say an encryption scheme E = (Enc,Dec) is (δ,S )-secure if Enc is (δ,S )-hiding.

If S admits some (δ,S )-secure encryption scheme E we say that S is (δ,M)-

encryptable. When δ = 0, we say that Enc is perfect on S , and S is perfectly

encryptable (on M). ♦

Throughout we will use the following capital letters to denote the cardinalities

of various sets: key set cardinality |K| = N , message set cardinality |M| = B,

ciphertext set cardinality |C| = S, and extraction space cardinality |R| = L.

Although our results are general, for historical reasons it is customary to translate

the results into “bit-notation”. To accommodate these conventions, we let b =

logB, ` = logL, n = logN (here and elsewhere, all the logarithms are base 2),

and will use the terms “b-bit encryption”, “`-bit extraction” or “n-bit key” with

the obvious meanings attached. Moreover, we will slightly abuse the terminology

and say that a source S is (1) n-bit if it is over a set K and |K| = N ; (2) (`, ε)-

extractable if it is (R, ε)-extractable and |R| = L, and (2) (b, δ)-encryptable if it

is (M, δ)-encryptable and |M| = B. Clearly, when b, ` or n are integers, this

terminology is consistent with our intuitive understanding.
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With this in mind, our main result can be restated as follows:

Theorem 1 Secure encryption of b bits with an n-bit key requires nearly perfect

randomness (in fact, almost b random bits!) if and only if b is greater than log n.

More precisely,

(a) ∀ε > 0, if S is (b, δ)-encryptable, and b > log n + 2 log
(

1
ε

)
, then S is

(b−2 log
(

1
ε

)
, ε+δ)-extractable. Further, if the encryption scheme is efficient

(i.e., polynomial in n), then there exists an efficient extractor outputting

(b− log n−2 log
(

1
ε

)
−2) bits within statistical distance (ε+ δ) from uniform.

Thus, encryption of b > log n bits implies extraction of almost b nearly perfect

bits.

(b) For any b ≤ log n − loglog n − 2,2 there exists a source S which is (b, 0)-

encryptable, but not (1, ε)-extractable, where ε = 1
2
− 2(2b− n

2b
) ≥ 1

2
− 1

16n2 .

Thus, even perfect encryption of nearly log n bits does not imply extraction

of even a single slightly unbiased bit.

2The formula also holds for b = log n− loglog n−1, but yields a slightly smaller ε = 1
2−

1
4 logn .
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Chapter 3

Encryption Implies Extraction if

b > log n

In this section we prove the implication given in Theorem 1(a), which shows that

encryption of b bits implies extraction of nearly b bits. Assume we are given

E = (Enc,Dec) over message space M = {1, . . . , B}, key space K, and ciphertext

space C. Also, let ` (to be specified later) denote the number of bits we wish to

extract, L = 2`, and R be an arbitrary set of cardinality L.

We will prove the result for the most basic case in Section 3.1. In Section 3.2 we

describe the construction of efficient extractors. Then we consider computational

extensions in Section 3.3. Finally, in Section 3.4 we consider further generaliza-

tions.

3.1 Encryption Implies Extraction

Assume E = (Enc,Dec) is (δ,S )-secure. We start constructing the needed extrac-

tor Ext : K → R by showing that it is sufficient to construct a good extractor

13



Ext′ : C → R for an auxiliary source S ′, defined by

S ′ = {Enc(k, UM) | k ∈ K} (3.1)

Lemma 1 If S ′ is (`, ε)-extractable and E is (δ,S )-secure, then S is (`, ε+ δ)-

extractable. In fact, if Ext′ is the assumed extractor for S ′, then the following

extractor Ext is the claimed extractor for S :

Ext(k) = Ext′(Enc(k, 1)) (3.2)

Proof: Take any distribution K ∈ S . Then Also, let Ext′ be the assumed (S ′, ε)-

extractor. Thus, SD (Ext′(Enc(k, UM)), UR) ≤ ε for all k ∈ K.

SD (Ext(K), UR)

= SD (Ext′(Enc(K, 1)), UR) (3.3)

≤ SD (Ext′(Enc(K, 1)), Ext′(Enc(K,UM))) + SD (Ext′(Enc(K,UM), UR)) (3.4)

≤ SD (Enc(K, 1), Enc(K,UM)) + SD ((K,Ext′(Enc(K,UM))) , (K,UR)) (3.5)

≤ δ + SD ((K,Ext′(Enc(K,UM))) , (K,UR)) (3.6)

= δ + Ek∈K SD (Ext′(Enc(k, UM)), UR) (3.7)

≤ δ + ε (3.8)

Equation (3.3) is a consequence of the definition of Ext in Equation (3.2).

Equation (3.4) follows from the triangle inequality. Equation (3.5) follows from

two applications of Equation (2.3) on statistical distance, with f(x) = Ext′(x) in

the first, and f(k, x) = x in the second. Equation (3.6) follows from rewriting
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the security of Enc. Equation (3.7) is obtained by rewriting the joint distributions

as an expected value. Equation (3.8) follows from the fact that Ext′ is an (`, ε)-

extractor for S ′. We note that in Equation (3.5), we are giving the key to free to

the attacker while using a random message. Even though we give the attacker the

key, with a random message, the encryption remains secure. ♦

The point of this reduction (which is the only place in our argument using

the (δ,S )-security of E) is to reduce the task of constructing an extractor for our

(potentially infinite) source S to an extractor for a source S ′ containing “only” N

distributions. Moreover, every distribution Dk
def
= Enc(k, UM) in S ′ contains b bits

of entropy. Indeed, for any k ∈ K and m1 6= m2, we have Enc(k,m1) 6= Enc(k,m2),

since otherwise one would not be able to recover the message from the ciphertext.1

Thus, each Dk is a uniform distribution on some B-element subset of the ciphertext

space C, and in particular, H∞(Dk) ≥ b. It turns out that this is the only thing

we need to know to ensure the existence of a good extractor for S ′!

Lemma 2 Assume S ′ = {Dk | k ∈ K} is any collection of 2n distributions over

some space C, where b > log n+ 2 log
(

1
ε

)
, and for all k, H∞(Dk) ≥ b. Then S ′ is

(b− 2 log
(

1
ε

)
, ε)-extractable.

The first assertion of Theorem 1(a) follows immediately by combining Lemma 1

and Lemma 2, whose proof we defer to Appendix A.1. In the following subsections

we describe extensions to efficient extraction, computational security, and other

“binding” primitives.

1This is the only place where we use the existence of the decryption algorithm. This is why
our result will later extend in Section 3.4 to any sufficiently “binding” primitive.
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3.2 Efficient Encryption Implies Efficient Extrac-

tion

Using Lemma 1 (and, in particular, Equation (3.2)), we see that when the encryp-

tion algorithm Enc is efficient (i.e., runs in time polynomial in n), to construct

an efficient extractor Ext for S it suffices to construct an efficient extractor Ext′

for the source S ′ consisting of N efficiently samplable min-entropy b distributions

Dk = Enc(k, UM), where k ∈ K. Unfortunately, the extractor Ext′ that we built

for S ′ via Lemma 2 was generally inefficient. Luckily, we can build an efficient

extractor for S ′ using the technique of Trevisan and Vadhan [51], which was later

explored in more detail by [16].

The idea is to sample the function f (which will define Ext′) at random from

any family Fα of α-wise independent functions from C to R. Recall, such families

have the property that for any distinct c1 . . . cα ∈ C, the values f(c1) . . . f(cα)

are random and independent from each other, if f is chosen at random from Fα.

Also, one can construct α-wise independent function families where each f can be

evaluated in time polynomial in α and s, where s is the length of an element of

C. Since the encryption scheme is efficient, s is polynomial in n. Thus, as long

as α is polynomial in n, every member f ∈ Fα will be efficiently computable. As

was shown by [51, 16], setting α = O(n) is already enough. The following Lemma

(essentially from [16]) is proven for self-containment and because we use a slightly

different parameter setting.

Lemma 3 ([16]) Choose ` such that ` ≤ b− log n−2 log
(

1
ε

)
−2. Let f be chosen

at random from a family of 2n-wise independent functions from C to R, where

|R| = L = 2`. Then for any source S ′ = {Dk | k ∈ K} of cardinality 2n satisfying
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H∞(S ′) ≥ b, it follows that Prf [ f is not an (S ′, ε)-extractor ] < 2−n.

The above lemma, which is proven in Appendix A.2, immediately gives a con-

structive probabilistic method for showing the existence of an efficient determin-

istic extractor claimed by the second part of Theorem 1(a). Namely, combining

Lemma 1 and Lemma 3 we get a concrete family of efficient functions most of which

are guaranteed to be good deterministic extractors for S . However, to actually fix

a concrete extractor, one must either directly look at the source S in question, or

choose the extractor obliviously by sampling it (using good randomness) from our

family once and for all, or rely on non-uniformity. Alternatively, in case the length

s of the ciphertext c is only slightly larger than the length b of the plaintext m,

we can use an explicit deterministic extractor of Trevisan and Vadhan [51] for the

efficiently samplable source S ′. Assuming some strong complexity assumptions

(see [51]), this would give us an explicit way to deterministically extract Ω(b) bits,

provided s < (1 + γ)b for a small enough constant γ.

3.3 Computational Security

We will now extend our results to the computational setting. For this, we will

need the following natural generalization of Definitions 1-4 taking into account the

efficiency of corresponding attackers. We will now define computational distance,

generalizing Equation (2.2) as follows.

Definition 5 We define the computational distance CDt(X1, X2) between two

random variables X1, X2 to be the maximum

max
D

(Pr[D(X1) = 1]− Pr[D(X2) = 1]) (3.9)
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over all distinguishers D which are (possibly probabilistic) 2 Turing Machines run-

ning in time at most t. Hence, if CDt(X1, X2) ≤ ε, then that no (possibly proba-

bilistic) distinguisher D running in time t can tell apart a sample from X1 from a

sample from X2 with an advantage greater than ε. ♦

We will use the following well-known fact.

Fact 2 If f is a deterministic function computable in time t2, then for all X1, X2,

CDt1(f(X1), f(X2)) ≤ CDt1+t2(X1, X2). (3.10)

Definition 6 A random variable R overR is (t, ε)-pseudorandom if CDt(R,UR) ≤

ε. Given a source S over some set K, a function Ext : K → R is an (t, ε,S )-

computational extractor if for all K ∈ S , Ext(K) is (t, ε)-pseudorandom:

CDt(Ext(K), UR) ≤ ε (3.11)

If such Ext exists for S , we say that S is (t, `, ε)-computationally extractable. ♦

Definition 7 An algorithm Enc : K×M→ C is (t, δ,S )-computationally hiding

if for all messages m1,m2 ∈M and all distributions K ∈ S we have

CDt(Enc(K,m1),Enc(K,m2)) ≤ δ (3.12)

♦

Definition 8 An encryption scheme E = (Enc,Dec) over message space M, key

spaceK and ciphertext space C is (t, δ,S )-computationally secure if Enc is (t, δ,S )-

2We allow the adversary to have access to true randomness, in order to achieve the most
general result.
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computationally hiding. If S admits some (t, δ,S )-secure encryption scheme E

over M, we say that S is (t, δ,M)-computationally encryptable. When δ = 0, we

say that E is perfect on S , and S is perfectly encryptable (on M). ♦

We note that when t = ∞, statistical distance is equivalent to computational

distance. In particular, definitions 6,7,8 become generalizations of earlier defi-

nitions 2,3,4. Thus we can state Lemma 1 and Lemma 2 in terms of (∞, δ,S )-

security and (∞, ε)-pseudorandomness. With this in mind, it should be no surprise

that we can obtain the following computational extension of Lemma 1.

Lemma 4 Assume E is (t1, δ,S )-computationally secure and Ext′ is a (t2, `, ε)-

computational extractor for S ′ = {Enc(k, 1)}k∈K. Then Ext = Ext′(Enc(k, 1)) is

a (t3, `, ε+ δ)-computational extractor for S , where t3 = min(t1 − tSamp, t2 − tK),

tSamp is the running time of Ext′, and tK is the time required to sample a key from

K ∈ S .

Proof: Take any distribution K ∈ S . Then
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CDt3(Ext(K), UR)

= CDt3(Ext
′(Enc(K, 1)), UR) (3.13)

≤ CDt3(Ext
′(Enc(K, 1)), Ext′(Enc(K,UM))) + CDt3(Ext

′(Enc(K,UM), UR))

(3.14)

≤ CDt1(Enc(K, 1), Enc(K,UM)) + CDt2((K,Ext
′(Enc(K,UM))), (K,UR))

(3.15)

≤ δ + CDt2((K,Ext
′(Enc(K,UM))), (K,UR)) (3.16)

= δ + Ek∈K CDt2(Ext
′(Enc(k, UM)), UR) (3.17)

≤ δ + ε (3.18)

The proof is virtually identical to the proof of Lemma 1. Equation (3.14)

follows from the triangle inequality. Equation (3.15) follows from two applications

of Equation (3.10) on computational distance, with f(x) = Ext′(x) in the first,

and f(k, x) = x in the second. Equation (3.16) is a consequence of the (δ,S )-

security of Enc. Equation (3.17) follows from rewriting the joint distributions as an

expected value. Equation (3.18) follows from the fact that Ext′ is an (`, ε)-extractor

for S ′. ♦

We now combine Lemma 4 and Lemma 3 to derive a computational version of

Theorem 1(a). Let Ext′ be an (`, ε)-extractor (equivalently, an (∞, `, ε)-extractor)

for S ′ = {Enc(k, 1)}k∈K . By Lemma 3, there exists such an Ext′ from the fam-

ily of polynomials of degree 2n over the ciphertext space, which is a family of

2n-wise independent functions computable in time tSamp = O(ns log s) using fast

multiplication. Applying Lemma 4 with t2 =∞, tSamp = O(ns log s), we obtain
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Corollary 5 ∀ε > 0, if S is (t, b, δ)-computationally encryptable, and b > log n+

2 log
(

1
ε

)
, then S is (t−O(ns log s), b− log n−2 log

(
1
ε

)
−2, ε+δ)-computationally

extractable for some extractor Ext. Further, if the encryption scheme is efficient

(i.e., runs in time tEnc = poly(n)), then there exists an efficient extractor Ext which

runs in time tEnc + O(ns log s). Thus, even computationally secure encryption of

b > log n bits implies efficient extraction of almost b− log n pseudorandom bits.

A consequence of Corollary 5 is that any source which is not efficiently ex-

tractable cannot be efficiently encryptable. Of particular interest is a family of

efficiently samplable sources considered by Trevisan and Vadhan [50]. For some

polynomial t(n), let St(n) be the source of all n-bit distributions with min-entropy

at least n− 1 which are samplable in time t(n). Trevisan and Vadhan [51] showed

that there exists a constant c > 0 such that any (1, 1/5)-extractor for St(n) cannot

be computable in time less than c · t(n). Combining this fact with Corollary 5, we

obtain the following corollary.

Corollary 6 Any (t, log n + 8, 1/5)-encryption scheme Enc on St(n) with s-bit

ciphertexts must require time tEnc ≥ c · t(n)−O(ns log s) to compute. In particular,

either s = Ω
(

t(n)/n
log(t(n)/n)

)
or tEnc = Ω(t(n)).

This rules out the possibility of a generic construction of efficient encryption

for non-extractable sources.

Proof: Suppose Enc on St(n) is computable in time tEnc. It follows from Corollary 5

that there exists an (b− log n−2 log
(

1
ε

)
−2, ε)-extractor computable in time tEnc+

tSamp, where tSamp is the amount of time required to sample an α-wise independent

function f from C to R. Setting parameters ε = 1/5 and b = log n + 8 > log n +

2 log
(

1
ε

)
+ 2 + 1, it follows that there exists a (t, 1, 1/5)-computational extractor
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computable in time tEnc + tSamp. But any 1-bit pseudorandom bit is also a random

bit, so any (t, 1, 1/5)-computational extractor is also a (1, 1/5)-extractor. Trevisan

and Vadhan (see Prop. A.4) showed that no such extractor is computable in time

t(n). Recall that tSamp = O(ns log s). Therefore, tEnc + tSamp = tEnc +O(ns log s) ≥

c · t(n).

Suppose tEnc is not Ω(t(n)), and assume that t(n) > e · n. Then it follows that

ns log s = Ω(c · t(n)) = Ω(t(n)), which can be written as s log s = Ω(t(n)/n). Tak-

ing logarithms, it follows that log(s + log s) = log s + log log s = Ω(log(t(n)/n)).

Since the function f(x) = x
log x

is monotone increasing for x > e, it follows

that s log s
log s+log log s

= Ω
(

t(n)/n
log(t(n)/n)

)
. But s log s

log s+log log s
= s

1+ log log s
log s

= O(s). Thus

s = Ω
(

t(n)/n
log(t(n)/n)

)
, as required. ♦

The same result can be derived in the nonuniform model by substituting Propo-

sition A.3 of [51] in place of Proposition A.4.

3.4 Extension to Decryption Error γ and Bind-

ing Commitments

In essence, we only used the fact that for all keys k, Enc(k, UM) has min-entropy.

Other than that, we did not need to use the existence of the decryption algorithm at

all. Here we describe a general relaxation of the definition of encryption, which we

shall apply to allow imperfect decryption with error γ and commitment schemes.

Definition 9 We say that an algorithm Enc is (t, τ, δ, b,S )-good if Enc is (t, δ,S )-
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computationally hiding and there exists a source S ′′ = {Xk}k∈K such that

∀k ∈ K H∞(Xk) = b (3.19)

∀K ∈ S Ek∈KSD (Xk, Enc(k, UM)) ≤ τ , (3.20)

where the expected value is taken over keys k sampled from distribution K. ♦

Note that our auxiliary source S ′ no longer needs to have min-entropy b.

Instead, we only require S ′ to be close to a source S ′′ with min-entropy b. Fur-

thermore, distance is measured with respect to S rather than with respect to K:

we only require Enc(k, UM) to be close to Xk on average (over any K ∈ S ), which

is less strict than requiring every distribution Enc(k, UM) ∈ S ′ to be close to the

corresponding distribution Xk ∈ S ′′.

For the preceding results, it was sufficient to let Xk = Enc(k, UM) and τ = 0.

The next lemma shows that sources which permit “good” encryption are also

extractable. As a result, we can now consider Xk to be any distribution whose

expected statistical distance to Enc(k, UM) is bounded for all K ∈ S . With the

new definition, we can build extractors for more general sources. Using Definition 9,

we get the following generalization of Corollary 5, which combines a generalization

of Lemma 3 and Lemma 4.

Lemma 7 If Enc is (t, τ, δ, b,S )-good and b > log n + 2 log 1
ε
, then S is (t −

O(ns log s), b− log n− 2 log
(

1
ε

)
− 2, τ + ε+ δ)-computationally extractable.

Lemma 7 accommodates the broader definition of encryption while increasing

the distance to uniform by τ . Note that the number of bits extracted may remain

the same or decrease, since b is now a parameter separate from the number of bits

in the message space of Enc. As in Corollary 5, instead of using a generic extractor,
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we will use a particular extractor which runs in time O(ns log s). The proof is a

variant of the proof of Lemma 4. The argument is essentially identical except for

the addition of another triangle inequality.

Proof: As before, define Ext(K) = Ext′(Enc(K, 1)). Let t = t3 + O(ns log s) and

let tK be the time required to sample a key from K ∈ S .

CDt3(Ext(K), UR)

= CDt3(Ext
′(Enc(K, 1)), UR) (3.21)

≤ CDt3(Ext
′(Enc(K, 1)), Ext′(Enc(K,UM))) + CDt3(Ext

′(Enc(K,UM), UR))

(3.22)

≤ CDt(Enc(K, 1), Enc(K,UM)) + CDt3+tK ((K,Ext′(Enc(K,UM))), (K,UR))

(3.23)

≤ δ + CDt3+tK ((K,Ext′(Enc(K,UM))), (K,UR)) (3.24)

= δ + Ek∈K CDt3+tK (Ext′(Enc(k, UM)), UR) (3.25)

≤ δ + Ek∈K (CDt3+n(Ext′(Enc(k, UM)),Ext′(Xk)) + CDt3+n(Ext′(Xk), UR))

(3.26)

≤ δ + Ek∈K CDt3+n(Ext′(Enc(k, UM)),Ext′(Xk)) + ε (3.27)

≤ δ + Ek∈K CDt3+n(Enc(k, UM), Xk) + ε (3.28)

≤ δ + Ek∈K CDt(Enc(k, UM), Xk) + ε (3.29)

≤ δ + τ + ε. (3.30)

The proof begins identically to the proof of Lemma 4. Equation (3.22) fol-

lows from the triangle inequality. Equation (3.23) follows from two applications
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of Equation (3.10) on statistical distance, with f(x) = Ext′(x) in the first, and

f(k, x) = x in the second. Equation (3.24) is a consequence of the (δ,S )-security

of Enc. Equation (3.25) follows from rewriting the joint distributions as an expected

value. Equation (3.26) follows from the triangle inequality. Equation (3.27) follows

from the fact that Ext′ is an (`, ε)-extractor for S ′ for ` = b − log n − 2 log
(

1
ε

)
.

Equation (3.28) follows from Equation (3.10) with f(x) = Ext′(x). Equation (3.29)

follows from t = t3 + O(ns log s) > t3 + n. Equation (3.30) follows from Equa-

tion (3.20). ♦

3.4.1 Extension to Decryption Error γ

Next, we extend our results to allow errors in decryption. The difficulty in this case

is that H∞(Enc(k, UM)) = b no longer holds. We can correct for this by finding

Xk close to Enc(k, UM) with min-entropy b.

Definition 10 We say that an encryption scheme E = (Enc,Dec) is is (γ,S )-

correct for γ < 1 if for all K ∈ S ,

Pr
k←K,m←M

[Dec(k,Enc(k,m)) 6= m] ≤ γ. (3.31)

The following lemma shows that if E is δ-computationally secure and (γ,S )-

correct, we can construct an extractor in exchange for losing γ statistical distance

to uniform.

Lemma 8 Suppose E is (t, δ,S )-computationally secure and (γ,S )-correct. If

b > log n+ 2 log
(

1
ε

)
, then S is (t−O(ns log s), b− log n− 2 log

(
1
ε

)
− 2, δ+γ+ ε)-

computationally extractable.
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Proof: By Lemma 7, it is sufficient to show that E is (t, γ, δ, b,S )-good. For

all k ∈ K, let ϕk : M× C → C be an arbitrary injective mapping from the set

{m : Dec(k,Enc(k,m)) 6= m} of incorrectly decrypted messages under key k, whose

support consists solely of ciphertexts s ∈ C for which no message m encrypts to s.

More formally, if ϕk(m) = s, then Dec(k,Enc(k,m)) 6= m, and furthermore there

does not exist m1 such that Enc(k,m1) = s. Since the ciphertext space is larger

than the message space, ϕk must exist, although it may be inefficient. Intuitively,

we use ϕk to change Enc so that it is potentially inefficient, but has no decryption

error. Instead, we can think of the decryption error γ as being converted into an

additional hiding error. We choose the distribution Xk, considered as a function

of m (with ciphertexts in C disjoint from messages in M) as follows:

Xk(m) =

 Enc(k,m), Dec(k,Enc(k,m)) = m,

ϕk(m) otherwise.

First we examine the min-entropy ofXk. SupposeXk(m1) = Xk(m2). This can-

not happen if Xk(m1) = m1 or Xk(m2) = m2. Therefore Enc(k,m1) = Enc(k,m2),

which implies Dec(k,Enc(k,m1)) = Dec(k,Enc(k,m2)). It follows that one of

m1,m2 is decrypted incorrectly, which contradicts our assumption. It follows that

H∞(Xk) = b.

Next we consider Equation (3.20). Ek∈KSD (Xk, Enc(k, UM)) can be rewrit-

ten as Prk←k,m←M[Dec(k,Enc(k,m) 6= m)], which is ≤ γ by (γ,S )-correctness.

Therefore Equation (3.20) is satisfied with parameter τ = γ. It follows that Enc is

(t, γ, δ, `,S )-good. The claim now follows immediately from Lemma 7. ♦

Setting t =∞ and using Lemma 2 in place of Lemma 3, we obtain the following

information-theoretic corollary.
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Corollary 9 Suppose E is (δ,S )-secure and (γ,S )-correct. If b > log n+2 log
(

1
ε

)
,

then S is (b− 2 log
(

1
ε

)
, δ + γ + ε)-extractable.

3.4.2 Commitments

We use (t, τ, δ, `,S )-goodness to extend our results above to handle privacy prim-

itives which are sufficiently “binding,” which includes commitments. This means

that there exists an algorithm Enc, which takes input m ∈ M and “randomness”

k ∈ K, and outputs a binding “commitment” c to m. Here k denotes all the

randomness needed to evaluate Enc once. For example, for secret- or public-key

encryption, k includes the randomness used to sample the secret and/or public key,

and, if required, the local randomness used to encrypt the message. On the other

hand, for commitment, k includes the randomness used to set-up the global com-

mitment parameters, as well as the randomness used to commit to the messages.

We define binding and hiding as follows.

Definition 11 An algorithm Enc is (t, β,S )-computationally binding for β ≥ 0

if for any adversary A running in time t, for any K ∈ S ,

Pr
k←K

[A(k)→ (m0,m1) : m0 6= m1,Enc(k,m0) = Enc(k,m1)] ≤ β

If β = 0, we call Enc perfectly binding. ♦

A note on perfect binding. Clearly, Definition 11 applies to the perfectly-

binding encryption and commitment applications above, with β = 0. Our notion

of perfect binding even includes some primitives which are traditionally not con-

sidered perfectly-binding. For example, Pedersen’s commitment [39] computes

Enc((r, g, h, p),m) = grhm mod p, where k = (r, g, h, p) includes a prime p, two
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generators g and h of some large-enough subgroup G of Z∗p of prime order q, and

local randomness r ∈ Zq used to mask the message m ∈ Zq. Traditionally, this

commitment scheme is considered perfectly-hiding (in the setting of ideal random-

ness), since for any m, the value Enc((r, . . .),m) is uniformly distributed for a

random r. However, it is perfectly-binding according to our definition, since for

any fixed value of r, the value of m is (inefficiently but) uniquely determined given

c (and g, h, p). Thus, our notion of perfect binding is a weaker restriction than

what might originally appear.

We begin with an observation about Rényi entropy.

Lemma 10 Assume Enc is (δ,S )-secure and (t, β,S )-binding, for t > 2b. Then

∀K ∈ S , Ek←KH2(Enc(k, UM)) ≥ log
(

1
β+2−b

)
.

Proof: Recall that for any distribution X, the Rényi entropy of order 2 is de-

fined as H2(X) = − log
∑

x∈X p
2
x, where px is the probability of sampling x from

X. Let X = Enc(k, UM). Consider the distinguisher which runs in time t = 2b,

simply picking two random messages. This distinguisher finds a collision (possibly

involving the same message) with probability 2−H2(X) =
∑

x∈X p
2
x. Since the prob-

ability of drawing the same message twice is 2−b, the distinguisher succeeds with

probability 2−H2(X) − 2−b ≤ β. It follows that H2(X) ≥ log
(

1
β+2−b

)
. ♦

Existence of Extractor. Our approach will be to consider the auxiliary

source S ′ = {Enc(k, UM)}k∈K , as before. By Lemma 10, it follows that S ′ has

high Rényi entropy of order 2. Next we use a well-known lemma which shows that

a distribution having high Rényi entropy of order 2 is close to a distribution having

high min-entropy. The lemma is closely related to a more general lemma of Renner
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and Wolf, which appears as Lemma I.3 of [43] and Lemma 2 of [44]. For simplicity

and self-containment, we state and prove our version of the lemma for α = 2.

Lemma 11 For all K, ε, there exists K ′ such that H∞(K ′) ≥ H2(K)− log 1
ε
, and

SD (K, K ′) ≤ ε.

Proof: Let pk = Pr[k = K] and p′k = Pr[k = K ′] be the probabilities of obtaining

key k from distributions K and K ′, respectively. Let α = e−H2(K) =
∑
p2
k. For a

parameter 0 ≤ p ≤ 1, let Kp = {k : pk > p} be the set of all “heavy” elements

k ∈ K which occur with probability greater than p. It is easy to see that there

exists a probability distribution K ′ such that maxk←K′ p
′
k = p and SD (K, K ′) =∑

k∈Kp(pk − p). K ′ can be obtained from K by setting all probabilities larger

than p to p. We can then compensate for the loss of probability mass by either

increasing the value of the smallest probabilities or adding new elements, each

of which occurs with probability at most p. It follows that α =
∑

k∈K p
2
k ≥∑

k∈Kp p
2
k ≥ p

∑
k∈Kp pk ≥ p

∑
k∈Kp(pk − p) ≥ pSD (K, K ′). Setting p = α

ε
gives

ε ≥ SD (K, K ′), and H∞(K ′) = − logα + log ε = H2(K)− log
(

1
ε

)
. ♦

As a corollary, it follows that if Enc is binding and hiding, then it must be

“good”.

Corollary 12 ∀ε > 0, if Enc is (t, β,S )-binding and (t, δ,S )-hiding, and b >

log n+ 2 log
(

1
ε

)
, then Enc is (t, ε, δ, log

(
1

β+2−b

)
− log

(
1
ε

)
,S )-good.

Proof: Consider a (t1, β,S )-binding and (t2, δ,S )-hiding Enc. By Lemma 10,

we know that H2(Enc(k, UM)) ≥ log
(

1
β+2−b

)
. It follows from Lemma 11 that that

there exists Xk such that SD (Xk, Enc(k, UM)) ≤ ε and H∞(Xk) ≥ log
(

1
β+2−b

)
−

log
(

1
ε

)
. Since Enc is also (t2, δ,S )-hiding, it follows that Enc is (t, ε, δ, log

(
1

β+2−b

)
−

log
(

1
ε

)
,S )-good. ♦
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Combining Corollary 12 and Lemma 7, we immediately obtain a version of

Theorem 1(a) for commitments.

Theorem 2 ∀ε > 0, if Enc is (t, β,S )-binding and (t, δ,S )-hiding, and b >

log n+ 2 log
(

1
ε

)
, there exists an extractor which is (t, log

(
1

β+2−b

)
− 3 log

(
1
ε

)
, 2ε+

δ,S )-pseudorandom. Further, if the commitment scheme is efficient (i.e., polyno-

mial in n), then there exists an efficient extractor which is (t, log
(

1
β+2−b

)
− log n−

3 log
(

1
ε

)
− 2, 2ε+ δ,S )-pseudorandom.

As a result, even commitment of b > log n bits implies extraction of almost

log
(

1
β+2−b

)
− log n nearly perfect bits.
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Chapter 4

Encryption Does Not Require

Extraction if b < log n− loglog n

In this section we prove the non-implication given in Theorem 1(b), which shows

that even perfect encryption of up to (log n − loglog n) bits does not necessarily

imply extraction of even a single bit. For that we need to define a specific b-bit

encryption scheme E = (Enc,Dec) and a source S , such that S is perfect on E ,

but “non-extractable”. The proof will proceed in several stages.

4.1 Defining Good Encryption

As the first observation, we claim that we only need to define the encryption scheme

E , and then let the source S = S (E) be the set of all key distributions K making

E perfect:

S (E) = {K | ∀ m1,m2 ∈M, c ∈ C ⇒ Pr[Enc(K,m1) = c] = Pr[Enc(K,m2) = c]}
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Indeed, S (E) is the largest source which is (b, 0)-encryptable by means of E , so it

is the hardest one to extract even a single bit from. We call distributions in S (E)

perfect (for E).

Although we are not required to do so, let us intuitively motivate our choice

of E before actually defining it. For that it is very helpful to view our key space

K in terms of the encryption scheme E as follows. Given any E = (Enc,Dec), we

identify each key k ∈ K with an ordered B-tuple of ciphertexts (c1, . . . , cB), where

Enc(k,m) = cm. Technically, some B-tuples might repeat for several keys, but

it is easy to see that such “repeated” keys will only complicate our job.1 More

interestingly, some B-tuples might not correspond to valid keys. For example, this

is the case when ci = cj for some i 6= j, since then encryptions of i and j are the

same under this key. Intuitively, however, the larger is the set of valid B-tuples

of ciphertexts, the more variety we have in the set of perfect distributions S (E),

and the harder it would be to extract from S (E). This suggests that every B-

tuple (c1, . . . , cB) of ciphertexts should correspond to a potential key, except for the

necessary constraint that all the cm’s must be distinct to enable unique decryption.

A bit more formally, we assume that N can be written as N = S(S−1) . . . (S−

B + 1) for some integer S > B.2 Then we define the set C = {1, . . . S} to be the

set of ciphertexts, M = {1, . . . , B} be the set of plaintexts, and view the key set

K as the set of distinct B-tuples over C:

K = {k = (c1, . . . cB) | ∀ i 6= j ⇒ ci 6= cj}
1We omit the argument, since it is not very illuminating. Essentially, such keys force us to

consider more extractors when arguing lack of extraction, without expanding the “geometry” of
perfect key distributions.

2If not, take largest S such that N ≥ S(S − 1) . . . (S − B + 1), and work on the subset of
N ′ = S(S − 1) . . . (S −B + 1) keys, but this will not change our bounds.
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We then define Enc((c1 . . . cB),m) = cm, while Dec((c1, . . . , cB), c) is defined to be

the (necessarily unique) m such that cm = c, and arbitrarily if no such m exists.

4.2 Defining Bad Extraction

Let us now fix an arbitrary bit extractor Ext : K → {0, 1} and argue that it is

not very good on the set of perfect distributions S (E). We will show that either

Ext can be completely biased to output 0 on some distribution, or there must

exist a distribution for which Ext is almost completely biased to output 1. More

specifically, we will show that either there exists K such that Pr[Ext(K) = 0] = 1,

implying SD(Ext(K), U1) = 1
2
; or there exists K such that Pr[Ext(K) = 0] ≤ B2

S
.

Clearly, in the first case, SD(Ext(K), U1) = 1
2

(here and below, U1 is the uniform

distribution of {0, 1}), and we would be done. Thus, for the remainder of the proof

we assume that S (E) does not contain K such that Pr[Ext(K) = 0] = 1. The

heart of the proof then will consist of designing a perfect encryption distribution

K such that

Pr[Ext(K) = 0] ≤ B2

S
(4.1)

Once this is done, since N < SB implies S > N1/B = 2n/2
b
, we immediately get

SD(Ext(K), U1) =

∣∣∣∣12 − Pr[Ext(K) = 0]

∣∣∣∣ ≥ 1

2
− 2(2b− n

2b
)

as claimed by Theorem 1(b). Thus, we concentrate on building a perfect distribu-

tion K satisfying Equation (4.1). For that, in the following subsections we will (1)

characterize perfect distributions using linear algebra; (2) use this characterization

to understand the implication of the lack of 0-monochromatic perfect distributions;

33



and, finally, (3) use this implication to construct the required perfect distribution

K.

4.3 Characterizing Perfect Distributions

We say that a distributionK is 0-monochromatic (with respect to Ext) if Pr[Ext(K) =

0] = 1. As in the previous section, we can assume that the set of perfect distribu-

tions S (E) does not contain any 0-monochromatic distributions.

Let K be any distribution on K. Given a key k = (c1 . . . cB), let pk = p(c1...cB) =

Pr[K = (c1 . . . cB)] and p be the N -dimensional column vector whose k-th compo-

nent is equal to pk. Notice, being a probability vector, we know that
∑
pk = 1 and

p ≥ 0 (which is a shorthand for pk ≥ 0 for all k). Conversely, any such p defines a

unique distribution K.

Assume now that K is a perfect encryption distribution for E . This adds

several more constraints on p. Specifically, a necessary and sufficient condition for

a perfect encryption distribution is to require that for all c ∈ C and all m > 1, we

have

Pr[Enc(K, 1) = c] = Pr[Enc(K,m) = c] (4.2)

We can translate this into a linear equation by noticing that the left probability

is equal to
∑
{(c1...cB):c1=c} p(c1...cB), while the second — to

∑
{(c1...cB):cm=c} p(c1...cB).

Thus, Equation (4.2) can be rewritten as

∑
{(c1...cB):c1=c}

p(c1...cB) −
∑

{(c1...cB):cm=c}

p(c1...cB) = 0 (4.3)

We can then rewrite all these constraints on p into a more compact notation by
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defining a constraint matrix V = {vi,j}, which has (1+(B−1)S) rows (correspond-

ing to the constraints) and N columns (corresponding to keys). The first row of

V will consist of all 1’s: v1,k = 1 for all k ∈ K. This will later correspond to the

fact that
∑
pk = 1. To define the rest of V , which would correspond to (B − 1)S

constraints from Equation (4.3), we first make our notation more suggestive. We

index the N columns of V by tuples (c1, . . . cB), and the remaining (B − 1)S rows

of V by tuples (m, c), where m ∈ {2, . . . B} and c ∈ {1 . . . S}. Then, we define

v(m,c),(c1,...,cB) =


1, c = c1,

−1, c = cm,

0, otherwise.

(4.4)

Now, Equation (4.3) simply becomes
∑

k v(m,c),k · pk = 0. Finally, we define a

(1 + (B − 1)S)-column vector e by e1 = 1 and ei = 0 for i > 1. Combining all this

notation, we finally get

Lemma 13 An N-dimensional real vector p defines a perfect distribution K for

E if and only if V p = e and p ≥ 0.

4.4 Using the Lack of 0-Monochromatic Distri-

butions

Next, we use Lemma 13 to understand our assumption that no perfect distribution

K is 0-monochromatic with respect to Ext. Before that, we remind the reader of

a well known Farkas Lemma (e.g., see [49]):

Farkas Lemma. For any matrix A and column vector e, the linear system Ax = e
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has no solution x ≥ 0 if and only if there exists a row vector y s.t. yA ≥ 0 and

ye < 0.

Now, let Z = {k | Ext(k) = 0} be the set of “0-keys” under Ext, and let A

denote the (1 + (B− 1)S)×|Z|-matrix equal to the constraint matrix V restricted

its |Z| columns in Z. Take any real vector p such that pk = 0 for all k 6∈ Z. By

Lemma 13, p corresponds to a (necessarily 0-monochromatic) perfect distribution

K if and only if V p = e and p ≥ 0. But since pk = 0 for all k 6∈ Z, the above

conditions are equivalent to saying that the |Z|-dimensional restriction x = p|
Z

of

p to its coordinates in Z satisfies Ax = e and x ≥ 0. Conversely, any x satisfying

the above constraints defines a 0-monochromatic perfect distribution p by letting

p|
Z

= x and pk = 0 for k 6∈ Z.

Thus, Ext defines no 0-monochromatic perfect distributions if and only if the

constraints Ax = e and x ≥ 0 are unsatisfiable. But this is exactly the precondition

to the Farkas’ Lemma above! Using the Farkas Lemma on our A and e, we get

the existence of the (1 + (B − 1)S)-dimensional row vector y such that yA ≥ 0

and ye < 0. Just like we did for the rows of V , we denote the first element of y

by y1, and use the notation y(m,c) to denote the remaining elements of y. We now

translate the constraints yA ≥ 0 and ye < 0 using our specific choices of A and e.

Notice, since e1 = 1 and ei = 0 for i > 1, it means that ye = y1, so the

constraint that ye < 0 is equivalent to y1 < 0. Next, recalling that A is just the

restriction of V to its columns in Z, and that the first row of V is the all-1 vector,

we get that yA ≥ 0 is equivalent to saying that for all (c1, . . . , cB) ∈ Z we have

y1 +
∑
m>1

∑
c

y(m,c) · v(m,c),(c1,...,cB) ≥ 0 (4.5)
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Notice, since y1 < 0, this equation implies that the double sum above is strictly

greater than 0. Thus, recalling the definition of v(m,c),(c1,...,cB) given in Equa-

tion (4.4), we conclude that for all k = (c1, . . . , cB), such that Ext(k) = 0, we

have ∑
m>1

(
y(m,c1) − y(m,cm)

)
> 0 (4.6)

The last equation finally allows us to derive the implication we need:

Theorem 3 Assume Ext defines no 0-monochromatic perfect distributions. Then

there exist real numbers
{
y(m,c) | m ∈ {2 . . . B} , c ∈ {1 . . . S}

}
such that the follow-

ing holds. If a key k = (c1, . . . , cB) is such that

y(m,c1) − y(m,cm) ≤ 0 for all m > 1, (4.7)

then Ext(k) = 1.

Proof: Summing Equation (4.7) for all m > 1 we get a contradiction to Equa-

tion (4.6), which means that Ext(k) 6= 0; i.e., Ext(k) = 1. ♦

4.5 Developing Intuition: Special Case b = 1

To get some intuition, we take a momentary detour and consider the special case

b = 1, therefore reproving the result of [22]. Theorem 3 tells us that if Ext cannot

be fixed to 0, there exists real numbers y1 . . . yS such that yi ≤ yj implies that the

key k = (i, j) gets mapped to 1 by Ext. Thus, by rearranging the y’s in the non-

decreasing order y1 ≤ y2 ≤ . . . ≤ yS, we get that Ext((i, j)) = 1 for any i < j. In

particular, the uniform distribution on S keys {(1, 2), (2, 3), . . . , (S − 1, S), (S, 1)}

is easily seen to define a perfect encryption distribution K (as both Enc(K, 1) and
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Enc(K, 2) sample a uniformly random ciphertext) at most one of whose components

— the key (S, 1) — could conceivably get mapped to 0 by Ext. Thus, Pr[Ext(K) =

0] ≤ 1/S, showing (even stronger) Equation (4.1) and thus completing this special

case.

Interestingly, Dodis and Spencer [22] used a simpler “graph-theoretic” method

to show the existence of exactly the same perfect distribution K as above. They

viewed ciphertexts as vertices of the complete directed graph G on S vertices, and

keys k = (c1, c2) (where c1 6= c2) — as directed edges connecting c1 = Enc(k, 1) to

c2 = Enc(k, 2). With this notation, it is easy to see that a uniform distribution on

any cycle in this graph defines a perfect encryption distribution. Now, considering

first 2-cycles {(c1, c2), (c2, c1)}, the fact that none of them is 0-monochromatic

implies that at least one of Ext((c1, c2)) = 1 or Ext((c2, c1)) = 1 is true, for any

c1 6= c2. Taking one such edge from every 2-cycle yields what is called a tournament

graph, every one of whose edges extracts to 1. Now, a well known (and simple to

prove) result in graph theory states that every tournament graph has a Hamiltonian

path. In other words, there exists an ordering of ciphertexts c1 . . . cS such that every

edge (ci, cj) belongs to the 1-monochromatic tournament subgraph whenever i < j;

i.e., Ext((ci, cj)) = 1 if i < j. Completing this Hamiltonian path to a Hamiltonian

cycle (by adding the edge (cS, c1)) yields the same kind of perfect distribution K

we built earlier using Theorem 3.

Unfortunately, it seems hard to extend this graph-theoretic argument to “hy-

pergraphs” corresponding to b > 1. Instead, we chose to rely on linear algebra

(i.e., Theorem 3) to get a better handle on the problem. Still, our proof below for

general b > 1 is quite more involved than the proof above for b = 1.
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4.6 Building Non-Extractable yet Perfect K

Returning to the general case, we build a special perfect distribution K which

contains many keys satisfying Equation (4.7), meaning that Ext(K) is very biased

towards 1. We will construct such K having a very special form below.

Definition 12 Assume π1, . . . , πd : C → C are d permutations over the ciphertext

space C = {1 . . . S}. We say that π1, . . . , πd are d-valid if for every c ∈ C, and

distinct i, j ∈ {1 . . . d}, we have πi(c) 6= πj(c). ♦

The reason for this terminology is the following. Given any B-valid π1, . . . , πB,

where recall that B = |M|, we can define S valid keys k1, . . . , kS ∈ K by kc =

(π1(c), . . . , πB(c)), where the B-validity constraint precisely ensures that all the B

ciphertexts inside kc are distinct, so that kc is a legal key in K. Now, we denote

by K(π1,...,πB) the uniform distribution over these S keys k1, . . . , kS.

Lemma 14 If π1, . . . , πB are B-valid permutations, then K(π1,...,πB) is a perfect

encryption distribution.

Proof: For any message m, Enc(K(π1,...,πB),m) is equivalent to outputting πm(UC),

where UC is the uniform distribution over C. Since each πm is a permutation over

C, this is equivalent to UC. Thus, encryption of every message m yields a truly

random ciphertext c ∈ C, which means K(π1,...,πB) is perfect. ♦

Choosing Good Permutations. We will construct our perfect distribution

K = K(π1,...,πB) by carefully choosing a B-valid family (π1, . . . , πB) such that

Ext(K) is very biased towards 1. We start by choosing π1 to be the identity

permutation π1(c) = c (for all c), and proceed by defining π2 . . . πB iteratively.

After defining each πd, we will maintain the following invariants which clearly hold

for the base case d = 1:
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(i) π1, . . . , πd are d-valid.

(ii) There exists a large set Td of “good” ciphertexts (where, initially, T1 = C)

of size qd > S − d2, which satisfies the following equation for all c ∈ Td and

1 < m ≤ d:3

y(m,c) − y(m,πm(c)) ≤ 0 (4.8)

Now, assuming inductively that we have defined π1 = id, π2, . . . , πd which satisfy

properties (i) and (ii) above, we will construct πd+1 still satisfying (i) and (ii).

This inductive step is somewhat technical, and we will come back to it in

the next subsections. But first, assuming it is true, we show that we can easily

finish our proof. Indeed, we apply the induction for B − 1 iterations and get B

permutations π1, . . . , πB satisfying properties (i) and (ii) above. Then, property

(i) and Lemma 14 imply that K(π1,...,πB) is a perfect encryption distribution. On

the other hand, property (ii) and the definition of kc = {c, π2(c), . . . , πB(c)} imply

that any key kc ∈ TB satisfies Equation (4.7). Thus, by Theorem 3 we get that

Ext(kc) = 1 for every c ∈ TB. Since, |TB| > S −B2, we get that at most B2 out of

S keys kc extract to 0. Thus, since K(π1,...,πB) is uniform over its S keys, we get

Pr[Ext(K(π1,...,πB)) = 0] ≤ B2

S

which shows Equation (4.1) and completes our proof (modulo the inductive step).

3To get some intuition, we will see shortly that “good” ciphertexts c will lead to keys kc
satisfying Equation (4.7), so that Ext(kc) = 1 by Theorem 3.
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4.7 Preparing for Induction: Detour to Match-

ings

Before doing the inductive step, we recall some basic facts about bipartite graphs,

which we will need soon. A (balanced) bipartite graph G is given by two vertex

sets L and R of cardinality S and an edge set E = E(G) ⊆ L×R. A matching P

in G is a subset of node-disjoint edges of E. P is perfect if |P | = S. In this case

every i ∈ L is matched to a unique j ∈ R and vice versa.

We say that a subset L′ ⊆ L is matchable (in G) if there exists a matching P

containing L′ as the set of its endpoints in L. In this case we also say that L′ is

matchable with R′, where R′ ⊆ R is the set of P ’s endpoints in R. (Put differently,

L′ is matchable with R′ precisely when the subgraph induced by L′ and R′ contains

a perfect matching.) The famous Hall’s marriage theorem gives a necessary and

sufficient condition for L′ to be matchable.

Hall’s Marriage Theorem. L′ is matchable if and only if every subset A of

L′ contains at least |A| neighbors in R. Notationally, if N (A) denotes the set of

elements in R containing an edge to A, then L′ is matchable iff |N (A)| ≥ |A|, for

all A ⊆ L′.

We will only use the following two special cases of Hall’s theorem.

Corollary 15 Assume every vertex v ∈ L∪R has degree at least S−d: degG(v) ≥

S − d. Then, for any L′ ⊂ L and R′ ⊂ R of cardinality 2d, we have that L′ is

matchable with R′.

Proof: Let us consider the 2d× 2d bipartite subgraph G′ of G induced by L′ and

R′. Clearly, that every vertex v ∈ L′ ∪ R′ has degree at least d in G′, since each
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such v is not connected to at most d opposite vertices in the entire G, let alone

G′. We claim that L′ meets the conditions of the Hall’s theorem in G′. Consider

any non-empty A ⊆ L′. If |A| ≤ d, then any vertex v in A had degG′(v) ≥ d ≥ |A|

neighbors, so |N (A) ≥ |A|. If d < |A| ≤ 2d, let us assume for the sake of

contradiction that |N (A)| < |A|. Consider now any vertex v ∈ R\N (A). Such v

exists as |N (A)| < |A| ≤ 2d = |R′|. Then no element in A can be connected to v,

since v 6∈ N (A). Thus, the degree of v can be at most 2d − |A| < d, which is a

contradiction. ♦

Corollary 16 Assume L contains a subset L′ = {c1, . . . , c`} such that degG(ci) ≥

i, for 1 ≤ i ≤ `. Then L′ is matchable in G. In particular, G contains a matching

of size at least `.

Proof: We show that L′ satisfies the conditions of Hall’s theorem. Assume A =

{ci1 , . . . , cia}, where 1 ≤ i1 < i2 < . . . < ia ≤ `. Notice, this means ij ≥ j

for all j. Then the neighbors of A at least include the neighbors of ia, so that

|N (A)| ≥ degG(cia) ≥ ia ≥ a = |A|. ♦

4.8 Mapping Induction into a Matching Problem

We return to our induction. Recall, we are given permutations π1 = id, π2, . . . , πd

satisfying properties (i) and (ii), and need to construct πd+1 also satisfying proper-

ties (i) and (ii). We translate this task into some graph matching problem, starting

with the property (i) first.

For every c ∈ C, we define the “forbidden” set Fc = {c, π2(c), . . . , πd(c)}.

Then, the (d+ 1)-validity constraint (i) is equivalent to requiring πd+1(c) 6∈ Fc for

all c ∈ C. Next we define a bipartite “constraint graph” G on two copies L and R
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of C containing all the non-forbidden edges: (c, c′) ∈ E(G) if and only if c′ 6∈ Fc.

We observe two facts about G. First,

Lemma 17 Every vertex v ∈ L∪R has degree at least S−d: degG(v) ≥ S−d. In

particular, by Corollary 15 every two 2d-element subsets of L and R are matchable

with each other in G.

Proof: The claim is obvious for v ∈ L as |Fv| = c. It is also true for v ∈ R,

since any value v ∈ R is forbidden by exactly d (necessarily distinct) elements

v, π−1
2 (v), . . . , π−1

d (v). ♦

Second, any perfect matching P of G uniquely defines a permutation π on S

elements such that P = {(c, π(c))}c∈L. Since, by definition, π(c) 6∈ Fc, it is clear

that this π will always satisfy constraint (i). Thus, we only need to find a perfect

matching P for G which will define a permutation πd+1 satisfying condition (ii).

Notice, our inductive assumption implies the existence of a subset Td of L

(recall, L is just a copy of C) of size qd > S − d2 such that Equation (4.8) is

satisfied for all c ∈ Td and 1 < m ≤ d. Irrespective of the permutation πd+1 we

will construct later, we will restrict Td+1 to be a subset of Td. This means that

Equation (4.8) will already hold for all c ∈ Td+1 and 1 < m ≤ d. Thus, we will

only need to ensure this equation for m = d+ 1; i.e., that for all c ∈ Td+1

y(d+1,c) − y(d+1,πd+1(c)) ≤ 0 (4.9)

This constraint motivates us to define a subgraph G′ of our constraint graph G

as follows. An edge (c, c′) ∈ E(G′) if and only if (c, c′) ∈ E(G) (i.e., c′ 6∈ Fc) and

y(d+1,c) − y(d+1,c′) ≤ 0. In other words, we only leave edges (c, c′) which will satisfy
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Equation (4.9) if we were to define πd+1(c) = c′. The key property of G′ turns out

to be

Lemma 18 G′ contains a matching P ′ of size at least S − d.

Proof: We will use Corollary 16. Let us sort the vertices v1 . . . vS of L and R in

the order of non-decreasing y(d+1,·) values; i.e.

y(d+1,v1) ≤ y(d+1,v2) ≤ . . . ≤ y(d+1,vS)

Then, the edge (vi, vj) satisfies y(d+1,vi) − y(d+1,vj) ≤ 0 whenever i ≤ j. Thus,

such (vi, vj) belongs to G′ if and only if it also belongs to the larger constraint

graph G; i.e., vj 6∈ Fvi . But since each vi has at most d forbidden edges in

G, and | {j | j ≥ i} | = S − i + 1, we have that degG′(vi) ≥ (S − i + 1) − d. In

particular, degG′(vS−d) ≥ 1, . . . , degG′(v1) ≥ S−d. By Corollary 16, {vS−d, . . . , v1}

is matchable in G′, completing the proof. ♦

4.9 Finishing the Proof

Finally, we can collect all the pieces together and define a good matching P in G

(corresponding to πd+1). With an eye on satisfying property (ii), we start with a

large (but not yet perfect) matching P ′ of G′ of size at least S − d, guaranteed

by Lemma 18. Ideally, we would like to extend P ′ to some perfect matching in

the full graph G, by somehow matching the vertices currently unmatched by P ′.

Unfortunately, we do not know how to argue that such extension is possible, since

there are at most d vertices unmatched, and we can only match arbitrary sets of

size at least 2d by Lemma 17. So we simply take an arbitrary sub-matching P ′′ of
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P ′ of size S − 2d, just throwing away any |P ′| − (S − 2d) edges of P ′.

Notice, P ′′ is also a matching of G which has exactly 2d unmatched vertices

on both sides. By Lemma 17, we know that we can always match these missing

vertices, and get a perfect matching P of the entire G. We finally claim that this

perfect matching P defines a permutation πd+1 on C satisfying properties (i) and

(ii).

Property (i) is immediate since P is a perfect matching of G. As for property

(ii), let L′ denote the S − 2d endpoints of P ′′ in L. Now, every c ∈ L′ satisfies

Equation (4.9), since this is how the graph G′ was defined and (c, πd+1(c)) ∈ P ′′ ⊆

E(G′). Thus, we can inductively define Td+1 = Td ∩ L′ and have Td+1 satisfy

property (ii). We only need to argue that Td+1 is large enough, but this is easy.

Since L′ misses only 2d ciphertexts, we get by induction that

|Td+1| ≥ |Td| − 2d > S − d2 − 2d > S − (d+ 1)2

completing the induction and the whole proof.
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Chapter 5

Conclusions

We study the question of whether true randomness is inherent for achieving privacy,

and show a largely positive answer for the case of information-theoretic private-

key encryption, as well as computationally secure perfectly-binding primitives. The

most interesting question is to study other privacy primitives (either information-

theoretic or computational) not immediately covered by our technique. For ex-

ample, what about 2-out-2 secret sharing (which is strictly implied by private-key

encryption [20]) or general multi-party computation? Do they still require true

randomness? More generally, we hope that our result and techniques will stimu-

late further interest in understanding the extent to which cryptographic primitives

can be based on imperfect randomness.
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Appendix A

Proofs of Lemma 2 and Lemma 3

A.1 Proof of Lemma 2

Proof: Let ` = b−2 log
(

1
ε

)
, so that L = ε2B. We show that a completely random

function f : C → R gives a required deterministic extractor Ext′ with non-zero (in

fact, overwhelming!) probability, implying that the claimed Ext′ exists. Take any

fixed k ∈ K and any fixed subset T ⊆ R. Let p
def
= |T |/|R| be the density of T .

For any fixed f , define the quantity

∆f (k, T )
def
= Pr[f(Dk) ∈ T ]− Pr[UR ∈ T ] (A.1)

and let us estimate Prf [∆f (k, T ) > ε] as follows. First, it is clear that Pr[UR ∈

T ] = p.

Second, assumeDk is a distribution of min-entropy≥ b over some set {c1, . . . , cβ}

in C for some β ≥ B, and let Xm denote an indicator random variable which is

1 if and only if f(cm) ∈ T . Let pm = PrY←Dk(Y = cm) denote the probability

that cm is drawn from Dk. Then
∑

m⊆C pm = 1. Let Zm = Xm · pm. Clearly,
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if f is random, we have Prf [Zm = cm] = p. Also, letting X̂ =
∑

m pm · Xm

be the average of independent indicator variables Xm, for any fixed f we get

Pr[f(Dk) ∈ T ] =
∑

m pm ·Xm = X̂.

We will apply the standard additive Hoeffding bound, Theorem 2.6 of [28]:

Pr(Ẑ − µ ≥ tn) ≤ e
− 2n2t2∑n

i=1
(bi−ai)2 ,

where Ẑ =
∑
Zi, µ = E[Ẑ], and am ≤ Zm ≤ bm. Recalling the definition of

∆f (k, T ) from Equation (A.1), we have µ = E[Ẑ] = p = Pr[UR ∈ T ]p. Setting

n = β ≥ B, am = 0, bm = pm, and t = ε/n, we find that

Pr
f

[ ∆f (k, T ) > ε ] = Pr
f

[ Ẑ − p > ε ]

≤ e−2ε2/
∑β
m=1 p

2
m

= e−2ε22H2(Dk)

≤ e−2Bε2 ,

since the Rényi entropy − log
∑β

m=1 p
2
m = H2(Dk) ≥ H∞(Dk) = b. We now take a

union bound over all T ⊆ R and all k ∈ K. Recalling the definition of ∆f (k, T )

(Equation (A.1)), using b > loglogN+2 log
(

1
ε

)
(so N < 2ε

2B) and ` = b−2 log
(

1
ε

)
(so 2L = 2ε

2B), we conclude that

Pr
f

[ ∃ k, T s.t. Pr[f(Dk) ∈ T ]− Pr[UR ∈ T ] > ε ] ≤ N · 2L·−2ε2B = 2−Ω(ε2B) � 1

Thus, there exists a specific f such that Pr[f(Dk) ∈ T ]− Pr[UR ∈ T ] ≤ ε, for all

subsets T and keys k. Using the definition of statistical distance (Equation (2.2)),
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this means that SD(f(Dk), UR) ≤ ε for all k ∈ K, completing the proof. ♦

A.2 Proof of Lemma 3

Proof: The first attempt to prove this result would be to use the same proof

template as in Lemma 2. Namely, to prove that for any subset T ⊆ R and

any distribution Dk ∈ S ′ with min-entropy ≥ b, Prf [f(Dk) ∈ T ] is unlikely to

be different from its expectation Pr[UR ∈ T ] by more than ε. Unfortunately,

with “only” a t-wise independent function f , the tail bound we would get for this

undesirable event is not strong enough to take the union bound over all subsets

T (unless t is exponential in b, which was the case when a truly random f was

chosen in Lemma 2). Instead, we will only consider “singleton” sets T = {r}, for

r ∈ R, but will prove a stronger bound on ∆f (k, {r})
def
= (Prf [f(Dk) = r]− 1

L
) when

` ≤ b−2 log
(

1
ε

)
−log n−2. This stronger bound will enable us to use Equation (2.1)

(rather than Equation (2.2)) when bounding the statistical distance, and then take

a union bound over “only” L singleton sets {r} instead of 2L subsets T . Details

follow.

We fix any k ∈ K, r ∈ R, and estimate Prf [ |∆f (k, {r})| > 2ε
L

]. We do it

similarly to Lemma 2. Assume Dk is a distribution over some set {c1, . . . , cβ} ⊆ C,

with H∞(Dk) ≥ b, and let Xm denote an indicator random variable which is 1 if

and only if f(cm) = r. Let pm = PrY←Dk(Y = cm) denote the probability that cm

is drawn from Dk. Then
∑

m⊆C pm = 1. Let Zm = Xm · pm ·B ≤ Xm ≤ 1.

Since f is 2n-wise independent, so are the variables {Zm}: any 2n of them are

random and independent from each other. Let Z =
∑

m Zm. Then Prf [Xm = 1] =
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Prf [f(cm) = r)] = 1
L

, and E[Z] =
∑

m
B·pm
L

= B
L
. Also,

∆f (k, {r}) =
∑
m

Pr[f(cm) = r]− 1

L
=

1

B
(Z − E[Z]) (A.2)

Next, we use the tail bound for the sum Z of t-wise independent random variables

from [16] (Theorem 5, page 48), which is a special case of a more general bound

from [7]. It says that if t ≥ 8 is an even integer and ε < 1
2
, then Pr[|Z−E[Z]| ≥ 2ε ·

E[Z]] ≤
(

t
4ε2E[Z]

)t/2
. In our case, t = 2n, E[Z] = B

L
, and we get by Equation (A.2)

Pr
f

[
|∆f (k, {r})| >

2ε

L

]
= Pr

f
[ |Z − E[Z]| > 2ε · E[Z] ] ≤

(
2nL

4ε2B

)n
≤ 2−3n

where the last inequality used ` ≤ b− 2 log
(

1
ε

)
− log n− 2. Taking now the union

bound over all k ∈ K and r ∈ R, we get that with probability at least (1−2−n) over

the choice of f , we have |∆f (k, {r})| ≤ 2ε
L

for all k ∈ K and r ∈ R. In other words,

for any k ∈ K, f(Dk) hits every element r ∈ R with probability between (1±2ε)/L.

Using the definition of statistical distance in Equation (2.1), this implies that with

probability at least (1−2−n) over the choice of f , SD(f(Dk), UR) ≤ ε for all k ∈ K,

which completes the proof. ♦
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