
Partitionable Services Framework: Seamless
Access to Distributed Applications

by

Anca-Andreea Ivan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2004

Approved:

Research Advisor: Vijay Karamcheti

c� Anca-Andreea Ivan

All Rights Reserved 2004

Pentru Mau

iii

Acknowledgment

TBD

iv

Abstract

A key problem in contemporary distributed systems is how to satisfy user quality of

service (QoS) requirements for distributed applications deployed in heterogeneous,

dynamically changing environments spanning multiple administrative domains.

An attractive solution is to create an infrastructure which satisfies user QoS re-

quirements by automatically and transparently adapting distributed applications to

any environment changes with minimum user input. However, successful use of this

approach requires overcoming three challenges: (1) Capturing the application behav-

ior and its relationship with the environment as a set of compact local specifications,

using both general, quantitative (e.g., CPU usage) and qualitative (e.g., security) prop-

erties. Such information should be sufficient to reason about the global behavior of the

application deployment. (2) Finding the “best” application deployment that satisfies

both application and user requirements, and the various domain policies. The search

algorithm should be complete, efficient, scalable with regard to application and net-

work sizes, and guarantee optimality (e.g., resources consumed by applications). (3)

Ensuring that the found deployments are practical and efficient, i.e., that the efficiency

of automatic deployments is comparable with the efficiency of hand-tuned solutions.

This dissertation describes three techniques that address these challenges in the

v

context of component-based applications. The modularity and reusability of the latter

enable automatic deployments while supporting reasoning about the global connec-

tivity based on the local information exposed by each component. The first technique

extends the basic component-based application model with information about condi-

tions and effects of component deployments and linkages, together with interactions

between components and the network. The second technique uses AI planning to

build an efficient and scalable algorithm which exploits the expressivity of the appli-

cation model to find an application deployment that satisfies user QoS and application

requirements. The last technique ensures that application deployments are both prac-

tical and efficient, by leveraging language and run-time system support to automati-

cally customize components, as appropriate for the desired security and data consis-

tency guarantees. These techniques are implemented as integral parts of the Partition-

able Services Framework (PSF), a Java-based framework which flexibly assembles

component-based applications to suit the properties of their environment. PSF facili-

tates on-demand, transparent migration and replication of application components at

locations closer to clients, while retaining the illusion of a monolithic application.

The benefits of PSF are evaluated by deploying representative component-based

applications in an environment simulating fast and secure domains connected by slow

and insecure links. Analysis of the programming and the deployment processes shows

that: (1) the code modifications required by PSF are minimal, (2) PSF appropriately

adapts the deployments based on the network state and user QoS requirements, (3)

the run-time deployment overheads incurred by PSF are negligible compared to the

application lifetime, and (4) the efficiency of PSF-deployed applications matches that

of hand-crafted solutions.

vi

Contents

Dedication iii

Acknowledgment iv

Abstract v

List of Figures xiii

List of Tables xvii

List of Appendices xix

1 Introduction 1

1.1 Motivation . 1

1.2 Different adaptation approaches . 5

1.3 Thesis and methodology . 10

1.4 Contributions . 12

1.5 Thesis organization . 16

2 Problem Description 17

vii

2.1 Dynamic component-based frameworks 17

2.2 Challenges . 19

2.2.1 Specifying the information necessary for automatic deploy-

ments . 20

2.2.2 Finding valid application deployments 23

2.2.3 Automatic deployment of the application configuration 24

2.3 Motivating applications . 26

2.3.1 Security sensitive web-based e-mail application 26

2.3.2 Airline reservation system 27

2.4 Summary . 28

3 Related Work and Background 29

3.1 Adaptation-capable frameworks . 29

3.1.1 Globus Grid . 31

3.1.2 Ninja . 35

3.1.3 Conductor . 38

3.1.4 CANS - Composable, Adaptive Network Services Infrastructure 40

3.2 Individual techniques . 43

3.2.1 Application description . 43

3.2.2 Planning algorithms . 44

3.2.3 Security guarantees . 44

3.2.4 Data consistency protocols 47

3.2.5 Summary . 51

3.3 Background . 52

viii

3.3.1 Java Language and Runtime Environment 53

3.3.2 Java Remote Method Invocation 54

3.3.3 dRBAC . 56

3.3.4 Switchboard . 58

3.3.5 DisCo Discovery . 60

4 Describing Application and Environment Characteristics 61

4.1 Properties . 62

4.2 Environment specification model . 63

4.3 Application specification model . 65

4.3.1 Component and interface types 69

4.3.2 Deployment conditions and effects 71

4.3.3 Linkage conditions and effects 73

4.4 Summary . 74

5 Computing Application Configurations 76

5.1 Structure of the planning algorithm 77

5.2 Compiling the ACP into an AI-style planning problem 78

5.3 The planning algorithm . 80

5.4 Decompiling the AI-style solution into a PSF-specific solution 84

5.5 Example execution of the planning algorithm 85

5.6 Limitations of the planning algorithm 89

5.7 Summary . 90

6 Deploying Component-Based Applications: Efficiency and Practicality 91

ix

6.1 Challenges of the deployment process 92

6.2 Overview of the solution . 92

6.3 Views - Component customizations 95

6.3.1 Definition . 95

6.3.2 Specifying views . 96

6.3.3 View instantiation . 99

6.4 Using views to improve chances of successful planning 105

6.5 Using views to satisfy security guarantees 106

6.5.1 Authorizing entities across domains 107

6.5.2 Translating properties across domains 108

6.5.3 Enforcing the appropriate level of access control 109

6.5.4 Creating secure connections 111

6.5.5 Case study: Using views to securely deploy component-based

applications . 111

6.6 Using views to efficiently satisfy data consistency requirements 116

6.6.1 Overview of the data consistency protocol 117

6.6.2 Application specific information 119

6.6.3 Directory manager . 124

6.6.4 Cache manager . 126

6.6.5 Examples of interactions in the data consistency protocol . . . 128

6.7 Summary . 130

7 Partitionable Services Framework 132

7.1 PSF modules . 134

x

7.2 Module interactions . 136

8 Expressivity Evaluation 138

8.1 Expressivity of the application specification 138

8.1.1 Setting . 140

8.1.2 Linkages . 142

8.1.3 Interface properties . 143

8.1.4 Component properties . 145

8.1.5 Deployment conditions and effects 146

8.1.6 Linkage conditions and effects 147

8.1.7 View specification . 148

8.1.8 Security requirements . 151

8.1.9 Data consistency requirements 151

8.2 Analysis of the PSF-related code . 155

8.2.1 PSF . 155

8.2.2 Data consistency . 157

8.3 Summary . 157

9 Performance Evaluation of Individual Techniques 159

9.1 Analysis of the planning algorithm 160

9.2 View generator . 169

9.3 Data consistency protocol . 171

9.4 Switchboard . 176

9.5 Summary . 182

xi

10 Performance Evaluation of PSF 184

10.1 Experimental platform . 185

10.2 Deploying various application configurations 190

10.3 Costs of automatically deploying applications 193

10.4 Effects of automatic deployment on the application performance . . . 194

10.5 Finding non-obvious application configurations 195

10.6 Summary . 197

11 Summary and Future Work 198

11.1 Summary . 198

11.2 Conclusions . 203

11.3 Future work . 204

Appendices 206

Bibliography 248

xii

List of Figures

1.1 Example of using a distributed application in a heterogeneous envi-

ronment. 4

2.1 Basic architecture of a dynamic component-based framework. 18

4.1 Valid application configurations of the e-mail application. 70

5.1 Process flow graph for solving ACP. 77

5.2 The algorithm. RG stands for “regression graph”, PG for “progression

graph” . 81

5.3 Component deployment. 85

5.4 Regression graph. 87

5.5 Progression graphs. 88

6.1 Using views during deployment. 93

6.2 Distributed application deployment protocol - Secure vs. insecure. . . 106

6.3 Decentralized vs. centralized architectures 117

6.4 DM - Strong consistency . 124

6.5 DM - Weak consistency . 124

xiii

6.6 Directory manager - Transitions between levels of consistency 125

6.7 Cache manager . 126

6.8 Strong consistency - Data consistency protocol 128

6.9 Weak consistency - Data consistency protocol 130

7.1 PSF architecture. 133

8.1 Valid component compositions in the e-mail application. 142

9.1 Network with 99 nodes. 160

9.2 Network with 22 nodes. 160

9.3 Planning under various conditions. 161

9.4 Scalability w.r.t. network size for the e-mail application. 163

9.5 Scalability w.r.t. network size for the webcast application. 163

9.6 Logical component deployment for the webcast application. 164

9.7 Scalability w.r.t. increasing number of irrelevant components. 165

9.8 Scalability w.r.t. increasing number of relevant components. 166

9.9 Reuse of existing deployments. 167

9.10 Time to generate views . 170

9.11 Size of generated views . 171

9.12 Number of messages sent between the cache manager and the direc-

tory manager. 172

9.13 Time to execute a method vs. that quality of the used data, when the

cache manager switches from WEAK mode to STRONG mode, and

back. 173

xiv

9.14 Number of remote updates not seen by a cache manager running in

WEAK mode, when views define pull/push trigger or not. 174

9.15 Average time to make a Switchboard call. 178

9.16 Average time necessary for a message to reach the server. 178

9.17 Average CPU consumed by client when making Switchboard calls. . . 179

9.18 Average time necessary for a message to reach the server, when there

are multiple clients. 180

9.19 Average time necessary to make Switchboard call, when there are

multiple clients making requests. 180

9.20 Average cpu consumed by client to send a message. 181

9.21 Switchboard compared with RMI-SSL. 182

10.1 Test bed . 185

10.2 Performance of client in Domain 0 and Setting 2. 189

10.3 Performance of client in Domain 2 and Setting 2. 189

10.4 Various application configuration for Setting 1. 191

10.5 Various application configuration for Setting 2. 192

10.6 Costs of automatically deploying components. 193

10.7 Effects of automatic deployment on the application performance. . . . 195

10.8 Deploying components in resource constrained environments. 196

C.1 Average response time when the server deletes one message. 217

C.2 Average CPU utilization when the server deletes one message. 218

C.3 Average response time when the server gets account metadata. 219

C.4 Average response time when the server extracts messages. 220

xv

C.5 Average CPU utilization when the server extracts messages. 221

C.6 Average response time when the server adds a message into account. . 221

C.7 Average CPU utilization when the server adds a message into account. 222

C.8 Average response time when the client sends a message. 223

C.9 Average CPU utilization when the client sends a message. 224

C.10 Average response time when the client receives messages. 224

C.11 Average CPU utilization when the client receives messages. 225

C.12 Average round-trip latency when one client makes Switchboard calls. 228

C.13 Average one-way latency when one client makes Switchboard calls. . 228

C.14 Average CPU utilization when one client makes Switchboard calls. . . 229

C.15 Average CPU utilization when multiple clients are simultaneously

making Switchboard calls. 230

C.16 Average one-way latency, when multiple clients are simultaneously

making Switchboard calls. 231

C.17 Average round-trip latency when multiple clients are simultaneously

making Switchboard calls. 231

D.1 Test bed . 233

D.2 Traffic going through the ViewMailServer associated with a domain dp.235

xvi

List of Tables

1.1 Maximum available bandwidth of different types of links 2

1.2 Maximum available CPU and memory for different types of nodes –

2004 . 2

1.3 RTT from New York University, measured in March 2004. 3

3.1 Example of a policy file. 53

3.2 RMI pseudo-code. 55

3.3 dRBAC delegation types. 56

3.4 Switchboard code. 59

4.1 Node and link descriptions. 65

4.2 Component/Interface descriptions. 67

4.3 Application conditions and effects. 73

5.1 Example of AI operator - place ViewMailServer on a node. 79

5.2 AI operator - place MailClient on a node. 86

5.3 AI operator - cross link with MailServerInterface. 87

6.1 The original Java object. 96

xvii

6.2 The view specification. 96

6.3 View source code. 97

6.4 Grammar for XML-based description of views. 100

6.5 Access control rules associated with MailClient. These rules are

also used to trigger automatic view creation. 110

6.6 The roles and certificates generated by the Guard modules 113

8.1 ViewMailServer - XML description. 139

8.2 Linkage conditions and effects for the mail application. 147

8.3 The original Java object . 149

8.4 The rules to define a view . 149

8.5 View source code. 150

8.6 ViewMailServer code to create data properties. 152

8.7 ViewMailServer code to create the cache manager. 153

8.8 ViewMailServer pseudo-code to create data properties. 154

8.9 ViewMailServer pseudo-code. 156

10.1 Characteristics for user behavior. 188

10.2 The two user settings for the experiments. 188

C.1 Parameters for one-way latency function. 227

C.2 Parameters for two-way latency function. 228

C.3 Limits of request rates . 230

xviii

List of Appendices

A VIG Algorithm 206

A.1 VIG generation tool . 206

B Interactions Between the Entities of the Data Consistency Protocol 211

C Gathering Profiling Information 215

C.1 E-mail application . 216

C.1.1 Mail server . 216

C.1.2 Mail client . 222

C.2 Switchboard . 225

C.2.1 Experiment 1. 226

C.3 Conclusions . 231

D Computing Properties for the Mail Application 232

D.1 Modeling the communication between clients 232

D.2 Intermediary properties . 235

D.3 Computing e-mail application component properties 237

xix

E ViewMailServer Code 240

xx

Chapter 1

Introduction

1.1 Motivation

Over the last few years, the Internet has evolved from a distributed data repository to

an underlying infrastructure running complex services. An increasingly large number

of clients use these services to perform sophisticated actions (e.g., accessing e-mail,

executing sensitive bank transactions, playing music, or watching movies), while ex-

pecting that the accessed services satisfy required quality expectations. For example,

e-mail and banking applications should guarantee that transactions are efficient and

secure when crossing insecure environments. Similarly, users playing music or video

over the Internet expect that they will receive clear sounds/images in real time.

Unfortunately, satisfying clients’ expectations is a hard problem because the Inter-

net is a highly heterogeneous environment. Sources of heterogeneity include various

devices ranging from super-computers and PCs to hand-held devices, running diverse

software in terms of both operating software and middleware, and being connected by

1

Table 1.1: Maximum available bandwidth of different types of links

Link type Max. bandwidth

56K modem 56Kbps

Frame relay 56 Kbps-1.544 Mbps

WiFi 11Mbps

Ethernet 100-1000 Mbps

ADSL 1.5-8.2 Mbps down-

stream, 1 Mbps upstream

SDSL 1.544/2.048 Mbps

Link type Max. bandwidth

T-1 1.544 Mbps

E-1 (Europe) 2.048 Mbps

T-3 (or DS3) 44.736 Mbps

E-3 (Europe) 34.368 Mbps

OC-3 155.52 Mbps

OC-12 622.08 Mbps

OC-48 2.488 Gbps

Table 1.2: Maximum available CPU and memory for different types of nodes – 2004

System CPU Memory

Sun Fire E25k UltraSPARC III 1.2-GHz � 576 GB

Dell Dimension 8300 Intel Pentium IV 3.4GHz � 2 GB

Compaq Presario R3140US AMD Athlon 64 3GHz 512 MB

HP iPAQ h1945 Pocket PC Samsung 266MHz 64MB RAM

Palm Tungsten T3 400MHz Intel XScale 64MB RAM

links with different properties that differ in available bandwidth, latency, and security.

Tables 1.1, 1.2, and 1.3 are simple illustrations of the diversity of the Internet. Ta-

ble 1.1 shows the maximum available bandwidth of various types of links. Table 1.2

enumerates the characteristics of a small subset of devices, ranging from small Pocket

PCs to Sun Fire servers. Table 1.3 lists some possible link latencies, measured from a

host in New York University to hosts in other universities.

2

Table 1.3: RTT from New York University, measured in March 2004.

Site Min (ms) Avg (ms) Max (ms) Dev (ms)

New York University, US 0.657 1.022 1.895 0.316

Carnegie Mellon University, US 15.501 15.795 16.694 0.322

UC Berkeley, US 89.932 90.167 90.414 0.268

Stanford University, US 91.266 91.906 92.414 0.353

Georgia Insitute of Technology, US 38.353 38.796 39.731 0.344

Massachusetts Institute of Technology, US 7.208 7.948 11.112 0.761

University of Michigan, US 37.624 37.893 38.285 0.312

Academy Economical Studies, RO 137.846 139.264 141.894 0.878

Delft University of Technology, NL 90.358 90.590 91.246 0.398

University of Barcelona, SP 130.791 131.132 131.617 0.343

INRIA, FR 96.242 102.964 135.845 10.280

Tsinghua University, CN 288.429 325.047 348.602 13.931

Panjab University, IN 347.607 380.531 431.460 12.579

UTN National Technological Univ., AR 194.931 256.685 532.755 96.925

In addition, the resource availability in most real-world computing environments

changes dynamically. This happens because applications sharing resources are con-

tinuously changing their workloads and preferences. For example, the available band-

width of a link can increase or decrease depending on what other applications are

running in the network (e.g., bandwidth-consuming applications such as Kazaa [81]).

Similarly, the availability of software on nodes changes as a result of software updates

or, more catastrophically, node failures.

3

Mail server Secure, fast link
Insecure, slow link

CipherCipher

Cache mail server

Weak mail client
Mail clientBob

Alice

Figure 1.1: Example of using a distributed application in a heterogeneous environment.

Often, the network heterogeneity and the continuous changes prevent applications

from providing the expected quality. In principle, applications could be written such

that they are aware of their environment and adjust their behavior accordingly. How-

ever, such applications need to take several factors into account.

Figure 1.1 illustrates a situation when a simple e-mail application should take into

consideration the state of the environment in order to provide the required service.

Let’s assume that there are two domains connected by slow and insecure links, while

the intra-domain links are both secure and fast. The problem is allowing two users,

Alice and Bob, to securely and efficiently access a mail server. The static structure of a

classic client-server architecture cannot satisfy both Alice’s and Bob’s requirements.

A simple connection from the client to the mail server satisfies Bob’s requirements

because Bob connects to the mail server from within the same domain. However,

Alice accesses the same mail server from another domain, through an insecure and

slow link. Thus, a direct connection to the mail server will not satisfy Alice’s QoS

requirements. A possible approach is to add cryptographic functions to the original

client and server code. In this case, Alice’s security requirements are satisfied, while

4

Bob ends up paying the cost of executing cryptographic functions even if unneces-

sary. The natural solution to this second problem is to design the mail application as

a component-based application from components that implement basic functionality

(e.g., mail server, mail client, cache mail server, cryptographic modules). The main

advantage of such structured applications is that various component compositions can

be created to suit the environment characteristics. For example, the cache can be de-

ployed to offset the high latency of a link, while the cipher modules running at each

end of insecure links can guarantee message privacy and correctness. Further bene-

fits can be gained if the application structure is dynamically built, as this allows the

application to automatically adapt its structure to changes in the network state.

1.2 Different adaptation approaches

As the above example shows, it is desirable for applications to automatically adapt

their behavior depending on the user QoS requirements and the current state of the

environment. Depending on the implemented adaptation technique, current systems

can be divided into three classes: (1) network level systems that satisfy QoS require-

ments by controlling data flows and their usage of network resources, (2) application

level systems, where the applications are responsible for taking all adaptation deci-

sions, and (3) middleware level systems that provide a layer capable of taking and

executing all adaptation decisions. Each of these classes is discussed in the following

paragraphs.

5

Network level solutions. The Internet architecture, as described in the IP network

protocol, provides only point-to-point best-effort services [47]. However, an increas-

ing number of applications developed in the recent years have QoS requirements that

cannot be satisfied by the current Internet model. Examples of such applications are

video conferencing and remote video, where multiple clients connecting to multiple

servers are very sensitive to the provided QoS. In order to accommodate such appli-

cations, new techniques were developed to (1) reserve resources and control the load

admitted into the network (e.g., Integrated Services (IS) [9] and Differentiated Ser-

vices (DS) [5]) or (2) adjust the behavior of the data flowing through the transport

layer (e.g., active networks [63]).

In the Integrated Services architecture, applications must first set up paths and re-

serve resources. RSVP [98] is an example of a signaling mechanism used to perform

these operations. Unfortunately, the IS architecture requires applications to perform

extra steps before starting, thus becoming aware of the low-level protocol. The Differ-

entiated Services protocol does not require the application to reserve in advance the

necessary resources. Instead, DS marks packets with tags and divides them into sev-

eral classes. Depending on the class they belong to, packets receive different services.

There are three main disadvantages of these low-level approaches: (1) they can satisfy

only a limited set of QoS requirements (e.g., available bandwidth, delay), compared

to more general sets of QoS required by applications (e.g., security, frame rate, im-

age quality), (2) they require a drastic change of the existing Internet infrastructure,

and (3) because of their limited suite of mechanisms, i.e., routing packets, application

QoS metrics are not always satisfied.

The second class of techniques – active networks – partially solves the last prob-

6

lem by performing rich transformations on data packets; these transformations de-

pend on the current state of the link and the nature of the application. Examples

of packet forwarding using active networks include Transforming Tunnels [82], Pro-

tocol Boosters [20], and RON [2]. All these systems allow applications to specify

both application-dependent and -independent transformations to be executed on all

the packets crossing a set of links. Transforming Tunnels enable applications to de-

fine tunnels by deploying transforming functions at both ends of a tunnel. However,

they need to be configured by users, thus requiring comprehensive knowledge of the

underlying network. Protocol Boosters allow more flexibility than Transforming Tun-

nels by allowing users to inject any number of entities in the protocol graph, instead

of pairs of transformations at the level of links. Unfortunately, both techniques re-

quire the modification of existing infrastructures. RON is an example of an overlay

network built on top of the existing Internet infrastructure, where each overlay node

monitors the quality of Internet paths to other overlay nodes. RON can be used by

distributed applications to recover from path failure and improve their communica-

tion performance. The common shortcoming of all these approaches is the limited

use of application-specific information to control the data-packet adaptations.

Application level solutions. Traditionally, classic client-server applications were de-

veloped to provide only the required minimum functionality. Thus, they were unable

to satisfy users’ requirements when deployed and accessed under various conditions.

For example, a banking application with no security guarantees could not be used

over an insecure network. One solution is to add the extra functionality to the existing

application. For example, the privacy of all messages involved in a banking transac-

7

tion could be protected by adding cryptographic functionality to both the client and

the server code.

Systems designed to support such applications (e.g., EPIQ [29], ErDos [28], Ac-

tive Harmony [44], Odyssey [70], Application Tunability framework [15], Rover [52],

QuO [87]) assume that the application structure is more or less fixed. Such frame-

works provide a set of basic services that transmit to the application the information

necessary to make adaptation decisions. For example, as part of the framework, a

network monitoring system can send alerts to the application every time the available

bandwidth drops below a given threshold. Adaptation is achieved by the application,

by altering the internal behavior of one or more of the components (e.g., changing

an internal algorithm). The advantage is that the adaptation is fine-grained because

it uses information about the application internals. The main disadvantages are the

fixed application structure and the large effort required from programmers to design

adaptation mechanisms that deal with all possible faults in the network.

Middleware level solutions. In order to alleviate these disadvantages, middleware in-

frastructures are built to provide a virtual machine layer capable of taking adaptation

decisions. In this way, programmers can focus on the basic application functional-

ity and let the middleware systems monitor the environment, trigger the application

adaptation, and execute the adaptation steps. Some of the most successful middle-

ware systems are component-based frameworks (e.g., Globus Grid [33], CORBA [71],

CANS [40], Ninja [76]), where scalable distributed applications are constructed by

integrating reusable component services spanning multiple administrative domains.

Such component-based applications are defined as sets of components, where each

8

component exposes some minimal local information about its functionality and con-

nectivity. The modularity and reusability of these applications enable automatic de-

ployments while reasoning about the application structure based on the local informa-

tion exposed by each component.

Grid frameworks like Globus Grid [33], or component frameworks like DCE [75],

CORBA [71], and DCOM [88] provide infrastructural support to ease the construc-

tion of component-based applications, allowing services to register with a common

substrate that provides basic services — discovery, resource management, security.

Most such frameworks rely on static component linkages; thus, application adap-

tation is possible only by re-deploying the same components on various nodes and

connecting them as specified by the static linkages. Unfortunately, this restricted type

of adaptation is not always successful. In order to increase the chances of success-

ful adaptation, a growing number of systems (e.g., Ninja [76], Active Frames [66],

Eager Handlers [99], Active Streams [10], CANS [40], Conductor [64] and a recent

version of Globus Grid [33]) advocate a more dynamic model, where components are

combined at run-time, based on the current state of the environment and the client

QoS requirements. This dynamic model enables applications to flexibly and dynam-

ically adapt to changes in resource availability and client requests. As in the exam-

ple scenario described before, low bandwidth can be masked by deploying a cache

component close to clients. Similarly, security-aware applications can deploy cipher

modules to protect sensitive data crossing insecure links through the use of encryption

and signatures. Because of this flexibility, dynamic component-based frameworks are

an attractive solution to the problem of satisfying user QoS requirements by automat-

ically adapting distributed applications to the state of the environment.

9

However, a successful implementation of this solution requires addressing the fol-

lowing three challenges: (1) Capturing the application behavior and its relationship

with the environment as a set of compact local specifications, using both general,

quantitative (e.g., CPU usage) and qualitative (e.g., security) properties. Such in-

formation should be sufficient to reason about the global behavior of the application

deployment. (2) Finding the “best” application deployment that satisfies both appli-

cation and user requirements, and the various domain policies. The search algorithm

should be complete, efficient, scalable with regard to application and network sizes,

and guarantee optimality (e.g., resources consumed by applications). (3) Ensuring

that the found deployments are practical and efficient, i.e., that the performances of

automatic and hand-tuned deployments are comparable. Current systems only address

a subset of these challenges, such as working only with standard QoS properties, dy-

namically creating only chains of components, or considering that all entities belong

to only one administrative domain.

1.3 Thesis and methodology

This dissertation broadens the applicability of dynamic component-based frameworks

by describing general, extensible solutions to the three challenges above. These so-

lutions rely upon three techniques. The first technique extends the basic component-

based application model with information about conditions and effects of component

deployments and linkages, together with interactions between components and the

network. The second technique uses AI planning to build an efficient and scalable al-

gorithm which exploits the expressivity of the application model to find an application

10

deployment that satisfies user QoS and application requirements. The last technique

ensures that application deployments are both practical and efficient by leveraging

language and run-time system support to automatically customize components, as ap-

propriate for the desired security and data consistency guarantees.

These techniques are implemented as integral parts of the Partitionable Services

Framework (PSF), a Java-based framework which flexibly assembles component-

based applications to suit the properties of their environment. PSF facilitates on-

demand transparent migration and replication of application components at locations

closer to clients while still retaining the illusion of a monolithic application. The PSF

run-time system is responsible for registering applications with the framework and

serving incoming client requests. Whenever a client wants to access an application,

the run-time system performs the necessary security checks (authentication and au-

thorization), decides which level of service the client has the right to access, and asks

a planning module to compute a valid component deployment. Once a valid deploy-

ment is found, the PSF run-time system installs, instantiates, connects, and executes

the components on the appropriate nodes.

The benefits of PSF are evaluated by deploying representative component-based

applications in an environment simulating fast and secure domains connected by slow

and insecure links. The characteristics of the component-based applications used to

test PSF include: (1) a set of components rich in both number and properties, which

allows the creation of a large number of component deployments, and (2) require-

ments that change during the execution and directly impact the application efficiency.

Analysis of the programming and the deployment processes shows that: (1) the code

modifications required by PSF are minimal, (2) PSF appropriately adapts the deploy-

11

ments based on the network state and user QoS requirements, (3) the run-time deploy-

ment overheads incurred by PSF are negligible compared to the application lifetime,

and (4) the efficiency of PSF-deployed applications matches the efficiency of hand-

crafted solutions.

1.4 Contributions

The high-level contribution of this thesis is an integrated set of techniques that allows

automatic deployment of component-based distributed applications in heterogeneous

environments. These techniques include: (1) defining suitable component and net-

work models, (2) building a scalable planner which exploits the expressivity of the

component model to efficiently find a valid plan, and (3) building a practical and

efficient application deployment process.

Application models. The application model extends the basic model of component-

based applications [72] by allowing user-specified arbitrary expressions to capture

the conditions and the effects of component deployments and linkages, and the in-

teractions between the deployed components and the network. These expressions are

defined using component and interface properties as parameters. Unlike other models

(CORBA, Web Services, OGSA) which use only standard pre-defined properties such

as node CPU and link bandwidth, this model allows the specification of general, user-

or application-determined, qualitative (e.g., privacy) and quantitative (e.g., frame rate,

trust level) properties [48].

12

AI planning based algorithm. Given such an application model, it now becomes pos-

sible to automatically reason about which components should make up the application

and where they should be located such that the user QoS requirements are satisfied

(i.e., finding valid application configurations). A contribution of this thesis is an AI

planning-based algorithm for solving this application configuration problem. The

novel feature of this algorithm is that it combines and solves in one step both the com-

ponent composition and the component mapping problems, instead of dealing with

them separately. What differentiates this algorithm from similar algorithms is its abil-

ity to scale with the size of the network and its support for general resource functions

and application structures [58].

Because the chances of finding a valid plan increase with the diversity of the com-

ponent set, the initial set of application components can be enriched by dynamically

creating custom components with a larger range of property values than the origi-

nal components. The technique used to achieve this process is based on views, as

explained in the following paragraph.

Practical and efficient deployment process. Given a deployment plan, additional chal-

lenges must be overcome to ensure that the plan can be deployed in a practical and

efficient manner. Two challenges that this thesis focuses on are: (1) providing secu-

rity guarantees in an environment spanning multiple administrative domains, and (2)

reducing the cost of inter-component data consistency traffic.

The challenges of providing security guarantees in an environment spanning mul-

tiple administrative domains include finding a deployment that satisfies application-

specific security guarantees and dealing with cross-domain authentication and autho-

13

rization of entities. Solutions must work in environments where there may not exist

any third-party trusted by all domains to modulate their security relationships, and

security decisions may need to be taken without domains exposing complete informa-

tion to all parties. In such conditions, a secure application deployment requires not

only that all entities are properly authenticated and authorized before being allowed to

perform an action and that all communication is protected against eavesdroppers, but

also that there exists a way to translate any local properties and constraints governing

component deployment or resource usage in one domain into properties meaningful

to other domains.

The cost of maintaining data consistency impacts application performance when

multiple instances of the same component are simultaneously active in the wide-area

network environment. The challenge is to minimize the data consistency traffic be-

tween components without making any assumptions that may not be valid across all

component-based applications (i.e., these assumptions need to be application-neutral).

The key insight of the solution presented in this thesis is that frameworks can

satisfy both application security and data consistency requirements by deploying only

component views, instead of entire components. Views are customizations of original

components; they allow the application developer to specify the appropriate access

control granularity and capture the application information necessary in efficiently

maintaining data consistency.

In order to support the dynamic deployment of views, this thesis proposes a run-

time infrastructure built atop a decentralized role-based access control and trust man-

agement system and an application-neutral data consistency protocol.

The role-based trust management system provides an integrated solution to cross-

14

domain authentication, access control, and translation between local constraint spec-

ifications. The latter represents a novel use of a classic technique: properties are

viewed as credentials belonging to a local domain and the translation between two

properties is equivalent to finding a chain of credentials starting from the former and

finishing with the latter.

The data consistency protocol maintains consistency between different views of

the same component. The novel feature of the consistency protocol is that it satisfies

the consistency requirements of component-based applications (application-neutral)

deployed in various configurations (flexible), while using application-specific infor-

mation embodied in the view specification. The data consistency traffic is minimized

by allowing the application to specify (1) data properties to characterize the shared

data, (2) triggers to indicate when updates need to be pushed or pulled between views,

and (3) merge/extract methods to merge/extract updates from/into views and original

components [50], all using an application-neutral protocol.

Additional contributions include implementing these techniques in the context of a

Java-based component-based framework called the Partitionable Services Framework

(PSF), and evaluating them using several representative component-based applica-

tions. PSF relies on several modules, such as DisCo [38] and Javassist [85]. DisCo

is a middleware infrastructure that provides services such as: (1) a discovery mech-

anism that allows entities to discover running instances of PSF, (2) dRBAC [23], a

decentralized role-based access control and trust management system that provides

cross-domain authentication and authorization, and (3) Switchboard [24], a commu-

nication abstraction build on top of dRBAC to guarantee secure, and continuously

15

monitored communication channels. Javassist is a bytecode modifier tool that dy-

namically generates views based on Java bytecode and a set of rules.

1.5 Thesis organization

Chapter 2 describes the problems that need to be addressed in order to automatically

deploy dynamically configured component-based applications in heterogeneous envi-

ronments, and introduces two examples of component-based applications: a security

sensitive web-based e-mail application and an airline reservation system. Chapter 3

introduces the necessary background and discusses solutions employed by current

systems with similar goals. The three techniques making up the main contribution

of this thesis are described in the following three chapters. The application and en-

vironment specification models are presented in Chapter 4. Chapters 5 and 6 de-

scribe the planning algorithm that creates the appropriate application configurations

and the application deployment process. Chapter 7 introduces the Partitionable Ser-

vices Framework and describes how the three techniques help to automatically and

transparently deploy component-based applications in heterogeneous environments.

Chapters 8, 9, and 10 highlight the qualitative and quantitative benefits of each tech-

nique, both considered in isolation and as part of PSF, by evaluating the performance

of the applications deployed by the framework. This document ends by presenting

conclusions and ideas for future work.

16

Chapter 2

Problem Description

This chapter describes the basic features common to dynamic component-based frame-

works and highlights the challenges that must be overcome by such frameworks in

order to satisfy the QoS requirements specified by clients. It also introduces two rep-

resentative component-based applications that will be used throughout this document

to explain and evaluate the three techniques introduced in Section 1.3.

2.1 Dynamic component-based frameworks

Dynamic component-based frameworks satisfy user QoS requirements by automat-

ically deploying component-based applications into highly heterogeneous environ-

ments. Component-based applications are defined as sets of components, where each

component exposes local information about its behavior and linkages. This informa-

tion is used by frameworks to dynamically compute and deploy various component

compositions, given the current state of the heterogeneous environment.

17

module
Decision

module
Decision

module
Decision

2 = decision module looks for
 component composition

3 = decision module deploys and
 connects components

1 = client makes request

Daemon

Daemon

Daemon Daemon

Daemon

Daemon

Daemon

Wireless domain

1.

2.

3.

3.
Supercomputing center

University

���
���
���

���
���
���

��
��
��
��

�����
�
�
�
�
�
�

�
�
�
�
�
�
�

Figure 2.1: Basic architecture of a dynamic component-based framework.

General dynamic component-based frameworks rely on several modules that pro-

vide basic functionality – e.g., registering applications, monitoring the network and

the application, computing the application configuration (i.e., component compo-

sition), and securely deploying the components. During the application registra-

tion step, the application provides to the framework all the information necessary to

achieve the desired deployments. Examples of such information include the compo-

nent functionality and linkages. Whenever a client makes a request to access the

component-based application (Step 1 in Figure 2.1), the decision-making module

searches for a valid component composition based on the information provided by

the application, the QoS requirements specified by users, and the current state of the

network (Step 2). A component composition is valid if it satisfies both the application

and the user constraints. If such a composition is found, the framework is responsible

18

for securely deploying the components on the appropriate nodes and creating the nec-

essary connections (Step 3). This step is based on the assumption that all nodes are

aware of the framework by running a thin layer acting as a proxy between the node

and the framework (e.g., the daemon in Figure 2.1).

In general, entities involved in this process (i.e., users, nodes, links, applications)

may belong to different administrative domains. Satisfying users’ QoS requirements

in such conditions becomes even more challenging because each administrative do-

main can define its own policies. Examples of such policies include controlling the

information exported outside about its entities and the access of applications to its

internal resources.

2.2 Challenges

In the context of the applications and the environment described above, several chal-

lenges must be addressed to support fully automatic deployments. These challenges

include:

� How to specify the information about the application, the environment, and the

interactions between the two, necessary to achieve automatic application de-

ployments?

� How to use this information in order to find the “best” application configuration

that satisfies the user and application requirements, given the current state of the

environment?

� How to create a practical and efficient deployment process that maps the found

19

application configuration onto the heterogeneous environment?

Each challenge is briefly discussed in the following sections.

2.2.1 Specifying the information necessary for automatic deployments

The first challenge is identifying the types of information necessary to automatically

find and deploy application configurations that satisfy user QoS requirements. This

information should be minimal, yet sufficient to achieve such automatic deployments.

In the context of component-based applications, the information can be divided

into two classes: (1) application-specific information, and (2) environment-specific

information. The former class defines the application behavior and its relationship

with the environment. The latter describes the current state of the environment.

Application-specific information The application specification should capture infor-

mation about the component functionality, the conditions and the effects of deploying

a component into the network, and the conditions and the effects of connecting two or

more components. A classic component-based application provides only information

about the component functionality. This information is local (i.e., per component) and

indicates what services are provided by the component. In general, the functionality

is expressed at various levels of granularity – implemented interfaces (Java [83] and

CORBA [72]) or methods (WSDL [89]). Choosing the right granularity is an im-

portant task because it directly influences the creation of application configurations.

In order to automate the process of deploying components on nodes and connecting

them, applications should also provide local information about the deployment condi-

tions and effects, and linkage conditions and effects.

20

The component deployment requirements describe the conditions that need to be

satisfied in order for the component to be installed on a node. For example, a node

may need to have sufficient available computational power (e.g., in terms of CPU,

memory, OS, libraries) before a compute-intensive component can be executed.

The deployment effects indicate both the way the component installation affects

the environment (e.g., that node CPU and memory resources are consumed) and vice-

versa (e.g., that the insecurity of a node can affect the security of sensitive data pro-

cessed by the component).

The linkage conditions describe both the logical and the resource constraints that

need to be satisfied before creating a connection between two components running

on either the same or two different nodes. They are necessary to reason about the

way connections can be created between two components. For example, a client of

a video streaming application needs to be connected to a server producing the video

stream, ideally crossing a link with sufficient available bandwidth. If the connection

is established over a link with insufficient resources, the quality of the image received

by the client might degrade.

The linkage effects describe the effects of the newly created connection on the net-

work, and vice-versa. For example, a connection between a server producing video

stream and a client consumes some amount of available bandwidth. In addition, the

quality of the video stream received by the client is influenced by the available band-

width and the latency properties of the crossed links.

In order to capture such complex conditions and effects, the application specifica-

tion may require support for various types of expressions, which may differ in their

complexity (e.g., linear vs. non-linear), or in their support for various kinds of rea-

21

soning (e.g., whether the functions are reversible vs. non-reversible). In addition, the

standard QoS properties (i.e., node CPU and link bandwidth) are not always sufficient

to capture the application constraints and effects; they should be extended to a general

set comprising both qualitative (e.g, security) and quantitative (e.g., frame rate, trust

level) properties.

One additional problem is caused by the fact that application components may be

developed by different programmers; thus, the terms used to denote properties might

belong to different vocabularies. This is a problem because it hinders reusability and

co-operation between various applications, particularly those that need to run across

multiple administrative domains.

The information described above is sufficient to automatically search for appli-

cation configurations satisfying user QoS requirements. However, more information

might be required to make the deployment process both practical and efficient. Two

of the factors that directly influence the efficiency of the application deployment pro-

cess are the application security and data consistency requirements. In order to ad-

dress these issues, the application specification might need to include component cus-

tomization rules to enrich the initial set of components and increase the chances of

successfully finding the best application deployment, security specifications to con-

trol the deployment process, and data consistency specifications to minimize the data

consistency traffic between components.

Environment-specific information. The environment description should provide in-

formation about the environment structure and properties; the challenges are (1) ex-

tracting the relevant information from large amounts of irrelevant data, and (2) coping

22

with the fact that information can span multiple administrative domains. Depend-

ing on the policies defined by each domain, dynamic component-based frameworks

might use active (e.g., Remos [30]) or passive (e.g., WREN [97]) tools to monitor the

networks.

This work assumes that an external network monitoring layer exists and provides

the necessary information.

2.2.2 Finding valid application deployments

Finding an application configuration involves two aspects: (1) finding a set of logical

component compositions and (2) mapping the “best” composition onto the network.

In general, these two aspects cannot be separated out because of the inter-dependence

between them. The mapping of components on nodes and the connections between

components depend on the logical compositions; a logical composition depends on

whether the mapping of a component on the network satisfies its resource constraints.

A possible solution is to consider the application configuration as a list of instruc-

tions/actions to be executed, such as “place component on a node”, “connect two

components running on two nodes”, “remove component from node”, or “destroy

connection between components”. In this case, searching for the “best” application

configuration becomes equivalent to choosing a subset of actions from a complete set

of actions. This is a hard problem because the search space (i.e., the complete set of

actions) is proportional to the size of the application and the size of the network.

In dynamic component-based frameworks, a good search algorithm should (1) ef-

ficiently find mappings between valid application configurations and the environment,

(2) scale well in the presence of large amounts of irrelevant information, and (3) opti-

23

mize a given cost of the application deployment, given the complex expressions that

define user and application requirements.

All these desired properties are influenced by the centralized or decentralized na-

ture of the search algorithm. The main advantage of a centralized solution is that the

algorithm can use information about the entire search space. However, it is difficult to

aggregate all the information in one place, particularly if the environment is formed

by multiple administrative domains. A decentralized solution does not have this prob-

lem; however, each instance of the algorithm works only with local information and a

solution might not be always found. Thus, choosing the type of the algorithm directly

impacts the framework usability and the application performance.

2.2.3 Automatic deployment of the application configuration

Once a valid application configuration is found, the components should be automati-

cally deployed on the appropriate nodes and connected as required. The practicality

and the efficiency of the deployment process are influenced by (1) the complexity of

the run-time system responsible for automatically downloading, instantiating, start-

ing, and connecting components, and (2) the overhead introduced by the automatic

deployment process and its effects on the component-based application. The goal

is to install in the network a minimal run-time system which supports an efficient

deployment process; in addition, the performance of automatically deployed applica-

tions should be comparable to the performance of manually deployed ones.

Two of the major costs that affect the efficiency of automatically deployed applica-

tions are introduced by the application requirements for security and data consistency

guarantees.

24

Satisfying security guarantees. In general, component deployments may span multi-

ple administrative domains, necessitating cross-domain authentication and authoriza-

tion among dynamically created principals. Providing security guarantees in such

conditions is challenging because there is no centralized trusted third party to act as

mediator between participants, and the security decisions must be taken when only

partial knowledge about domains is exposed. In addition, the authorization process

ideally should guarantee single sign-on, fine-grained, and customizable access control

to resources.

Maintaining data consistency. In situations when several replicas sharing data are

running in the network, component-based frameworks should ensure that the applica-

tion consistency requirements are satisfied. What makes the data consistency problem

interesting in this context is that the assumptions are different when compared to the

same problem in distributed databases, distributed file-systems, or distributed-shared

memory systems. In such systems, the consistency protocols improve their efficiency

by making assumptions about the data structure or access patterns. Component-based

frameworks deploy general applications and cannot make similar assumptions that are

valid across all applications. In addition, applications deployed in component-based

frameworks dynamically adapt to environment and client QoS changes, thus poten-

tially modifying the application consistency requirements. For example, the airline

reservation system described in Section 2.3.2 should allow users to browse flights

(where weak consistency is appropriate), buy tickets (where strong consistency is

required), and switch between the two modes of operation. Therefore, a dynamic

component-based framework must provide a data consistency protocol that is flexi-

25

ble, application-neutral, but still capable of using application-specific information to

improve its efficiency.

2.3 Motivating applications

In order to better illustrate the challenges of automatically deploying distributed ap-

plications in heterogeneous environments, this section introduces two examples of

component-based applications: (1) a security sensitive web-based e-mail application

and (2) an airline reservation system. These applications serve as running examples

throughout the rest of this document.

2.3.1 Security sensitive web-based e-mail application

The e-mail service provides the expected functionality — user accounts, folders, con-

tact lists, and the ability to send and receive e-mail. In addition, it allows a user to

associate a trust level with each message depending on its sender or recipient. A mes-

sage is encrypted and signed according to the sender’s sensitivity and sent to the mail

server, which transforms the ciphertext into a valid encryption corresponding to the

receiver’s sensitivity and saves the new ciphertext into the receiver’s account. Such

a transformation can be performed by using proxy functions [51]. The cryptographic

keys are generated when the user first subscribes to the service.

The e-mail service is constructed by flexibly assembling the following compo-

nents: (i) a mail server that manages e-mail accounts, (ii) mail clients of differing

capabilities, (iii) cache mail servers that replicate the mail server as desired, and (iv)

ciphers that ensure confidentiality of interactions between the other components by

26

encrypting and signing messages. These components allow the e-mail application

to be deployed in different environments. If the environment is secure and has high

available bandwidth, the mail clients can be directly linked to the mail server. The

existence of insecure links and untrusted nodes requires the deployment of cipher pair

to protect message privacy. Similarly, the cache mail server can be used to overcome

links with low available bandwidth and high latencies.

Deployments of the e-mail application need to satisfy several quality requirements.

First, clients could ask for minimum execution times for various operations (e.g., to

send a message, or to receive messages). Second, given the sensitivity of most mes-

sages and the generally insecure environment, clients could require that their messages

are protected against eavesdroppers. In order to satisfy the security requirements,

components could be customized to implement cryptographic techniques (e.g., en-

cryption, signatures, obfuscation) to protect against malevolent nodes and eavesdrop-

pers. The efficiency requirements could be satisfied by replicating components close

to clients to offset high network latencies, and implementing efficient and flexible data

consistency protocols.

2.3.2 Airline reservation system

The airline reservation system allows users to browse and buy tickets for flights based

on flight number, departing and arriving cities, or travel dates. The main components

are reservation clients of different capabilities (viewers and buyers), a main flight

database that contains all information about existing flights, and travel agents that

can be replicated as necessary to assist the reservation clients when browsing the

database or buying tickets.

27

The airline reservation system needs to ideally provide several levels of QoS for

clients, where each level is defined by the transaction privacy, the latency in accessing

the required information, and the type of operations to be performed (e.g., browsing

the database or buying the tickets). The privacy of a transaction can be ensured by

deploying cipher modules around insecure links. The speed of accessing the database

can be increased by placing travel agents close to the clients.

For efficiency, in a distributed environment, the data consistency infrastructure can

exploit the differences between the consistency requirements for various components.

For example, a viewer does not require the most up-to-date information on flight

seat availability. However, a buyer may need fresh information in order to make an

educated decision. Thus, the travel agent assisting a viewer can have more relaxed

consistency requirements than a travel agent assisting a buyer. In addition, a viewer

can become at any point a buyer and the travel agent should be able to provide the

requested information in a timely manner.

2.4 Summary

This chapter has discussed the three main challenges of automatically deploying

component-based applications. Existing systems and techniques that partially address

these challenges are described in Chapter 3, which also identifies their shortcomings.

The solutions developed in this research to address these shortcomings are presented

in the Chapters 4, 5, and 6, and evaluated in Chapters 8, 9, and 10.

28

Chapter 3

Related Work and Background

This section is divided into two parts. The first part describes previous work re-

lated to adaptation-capable frameworks. The second part introduces the necessary

background to understand the solutions described in this document. The related

work part is further split into two parts. The first part describes four representa-

tive adaptation-capable systems which address the challenges presented in Chapter 2:

Globus Grid [33], Ninja [77], Conductor [94], and CANS [40]. The second part high-

lights how independent modules of other projects address subsets of those challenges.

3.1 Adaptation-capable frameworks

The goal of satisfying user QoS requirements when accessing distributed applications

is closely related to the goals of other recently proposed approaches for QoS-aware

deployment of applications in heterogeneous and dynamically changing distributed

environments. These approaches can broadly be classified into two categories. The

29

first category, exemplified by the systems such as Globus Grid [45] and Darwin [13],

focuses on identifying and reserving appropriate resources in the network to satisfy

application requirements, in a sense adapting the network to the application.

The second category complements the first by examining how the application can

itself be adapted to achieve desired QoS requirements, in situations where the network

resources should be treated as a given. The techniques that have been proposed can

be further broken down into two classes. The first class comprises systems such as

EPIQ [29], ErDos [28], Active Harmony [44], and the Application Tunability frame-

work [15], which assume that the application structure is more or less fixed and adap-

tation is achieved by altering the internal behavior of one or more of the components

(e.g., changing an internal algorithm). The second class of approaches, exemplified

by systems such as Active Frames [66], Active Streams [10], Eager Handlers [99],

Ninja [77] Conductor [94], and CANS [40], has focused on external behaviors by

looking at the adaptation of data streams flowing between static application compo-

nents and using application-specific filters that can be dynamically introduced and

placed at appropriate places in the network.

For a better understanding of these various approaches, the next sections describe

in detail four representative adaptation-capable systems spanning these categories:

Globus Grid, Ninja, Conductor, and CANS. Each framework description highlights

the solutions provided by the framework to the challenges presented in Chapter 2: (1)

designing an application model able to capture the application behavior (application

model), (2) searching for a valid application configuration (planning algorithm), (3)

creating an efficient and practical deployment process by efficiently providing security

and data consistency guarantees (security guarantees and consistency guarantees).

30

3.1.1 Globus Grid

Grid technologies were initially developed to enable resource sharing between appli-

cations belonging to dynamically created virtual organizations. Representative ap-

plications include collaborative visualization of large scientific datasets, distributed

computing for computational intensive applications, and coupling of scientific instru-

ments with remote computers and databases. The same way the Web has evolved

from a repository of information into a complex repository of services, the Grid is

evolving into an Open Grid Services Architecture (OGSA) [33], capable of support-

ing scientific applications, enterprise applications, and B2B partnerships. The Grid

architecture is defined as a combination of five layers: (1) the fabric layer, which

provides the resources shared by Grid applications, (2) the connectivity layer, which

defines the core communication and authentication protocols, (3) the resource layer,

which provides protocols for secure negotiation, initiation, monitoring, control, ac-

counting, and payment of sharing operation on individual resources, (4) the collective

layer, which captures interactions across collections of resources, and (5) the appli-

cation layer, which comprises the user applications that use the Grid technologies for

a successful execution. Of these layers, Globus solutions to the problems identified in

Chapter 2 are provided by the connectivity layer, the resource layer, and the collective

layer.

Application models. Grid applications are defined as sets of components that com-

municate with each other using files. This means that each component has as input

a set of files, processes the data contained in them, and writes the results into new

files. Whenever a user wants to execute a Grid application in the Grid infrastructure,

31

the user needs to provide complete information about how the components are con-

nected, where the original input and final output files are located, and what are the

application resource requirements (i.e., CPU, bandwidth, memory). An alternative

application model allows users to specify only abstract workflows, where an abstract

workflow is defined as a DAG whose the nodes are application components (i.e., log-

ical transformations) and the links represent the files that connect two components.

The language used to create application specifications is the Resource Specifica-

tion Language (RSL), which defines the syntax used to compose resource descrip-

tions. In RSL, components are allowed to define specific �attribute, value� pairs,

where each attribute is a resource description and serves as a parameter to control the

behavior of one or more components in the resource management system

The common shortcoming of both the file-based and abstract workflow-based

models is that they do not allow applications to define extensible sets of general prop-

erties. There are several causes for this: (1) the RSL language defines only a fixed set

of attributes, (2) GARA, the Globus Grid planning algorithm, uses the semantics of

each attribute during planning, and (3) most applications deployed in the Grid envi-

ronment are scientific applications which define their constraints based on properties

such as time, memory, and CPU.

Planning. The original design of the Globus toolkit [32] envisioned most planning

functionality to be realized by the GARA (Globus Architecture for Reservation and

Allocation) [34] module. In order to deploy applications with minimal resource

consumption, GARA assumes a pre-established relationship between the application

tasks. GARA supports resource discovery and selection based on attribute matches,

32

and allows advance reservation for resources like CPU, memory, and bandwidth.

However, it does not consider application specific properties and there is no mecha-

nism to specify component properties that are affected by the environment. Examples

of such properties include the communication security.1

More recently, the Globus toolkit has included an AI-based planner called Pega-

sus [21], which maps workflows onto the Grid environment. Pegasus relies on the

Globus Replica Location Service [17] to locate the replicas of the desired files and the

Globus Monitoring and Discovery Service [18] to find the available network resources

and their properties (e.g., load, memory, disk space). Based on the abstract flow and

the information provided by the Grid services, Pegasus transforms the abstract work-

flow into a concrete workflow. This concrete workflow describes in detail the order of

executing components on appropriate nodes and moving files between nodes.

Even though Pegasus selects at runtime the components that could achieve the

given goal, Pegasus does not consider quantitative application requirements such as

the time to execute an operation or the quality of the generated image.

Security guarantees. The Globus module responsible for deploying applications into

the network is GRAM (Grid Resource Acquisition and Management), which can be

invoked directly by users or by the GARA or Pegasus planning algorithms. GRAM

provides support for a secure deployment process based on two major software com-

ponents: the Job Manager and the Gatekeeper.

1Globus sets up secure connections between application components by default, thereby satisfying this partic-

ular constraint. However, more general properties, such as quality of data produced by a component as a function

of available bandwidth, cannot be specified.

33

The Job Manager is responsible for parsing the user job request, interfacing with

the resource’s control system, and initiating the user’s job. During the job execution,

the Job Manager monitors its progress and handles any job management requests (e.g.,

suspend, stop, resume).

The Gatekeeper handles all the authentication, authorization, and secure commu-

nication problems, based on the Globus Grid Security Infrastructure (GSI) [33]. GSI

assumes the existence of a Public Key Infrastructure (PKI) and a single shared names-

pace across domains. Recent work has looked into replacing the PK credentials with

Kerberos tokens [1]. In GSI, all resource providers (P) have the necessary authen-

tication/authorization information for all possible users (U), thus implying a storage

space proportional to P�U . Follow-on work to GSI, CAS (Community Authorization

Service) [61] divides the users into communities such that all providers know about

communities only. In this way, CAS improves the memory storage to C� �P�U�,

where C is the number of communities.

OGSA extends the Globus toolkit to support Web services; thus, the security in-

frastructure needs to provide solutions for the security issues of both classic Grid

applications and Web services. Examples of security challenges specific to Web ser-

vices include expressing Web Service security policies, creating format standards for

token exchanges, and designing standard mechanisms for authentication and estab-

lishment of secure contexts and trust relationships. The solutions are implemented as

part of the Globus Toolkit 3 (GT3) and represent a combination of the Web Services

Security standards and the GSI protocols [91].

From the point of view of the challenges identified in Chapter 2, the security

infrastructure proposed by OGSA/GSI falls short because it does not allow cross-

34

domain authentication and authorization when the communities are hiding part of the

information.

Consistency guarantees. Given the file-based interaction model assumed by Globus

applications, support for data consistency within the Globus toolkit is restricted to

files. It is expected that should components require any consistency guarantees, these

will be implemented as part of the application. For files, the Globus Grid support

consists of the Replica Location Service (RLS) [17]. RLS is responsible for finding

the physical files corresponding to one logical file name. As part of RLS, all hosts

must keep a Local Replica Catalog (LRC) that maps physical files to unique logical

file names. In addition, RLS keeps Replica Location Indexes scattered across a Grid

environment; the RLIs are responsible for keeping lists of pairs (logical file name,

RLC). The data consistency problem arises in Globus Grid when the RLS needs to

keep consistent the state saved by RLIs. The solution proposed by the Globus RLS is

to provide relaxed consistency guarantees by periodically refreshing the information

in RLIs.

Thus, RLS is the only module that has data consistency requirements. Globus Grid

does not provide any such guarantees to applications.

3.1.2 Ninja

Ninja [77] enables the construction of scalable, robust, distributed Internet services

and permits clients to access such services using a large class of heterogeneous de-

vices. Ninja achieves this goal by dynamically connecting the clients to the required

services, and transforming the data sent between them as necessary. The main archi-

35

tectural components are: (1) vSpace, an infrastructure that provides facilities for ser-

vice component replication, load-balancing, and fault-tolerance, (2) DDS, a cluster-

based, scalable data storage platform that exposes a coherent image of persistent data,

(3) SDS, a secure discovery service that provides all clients with a secure directory to

services, and (4) APC, an automatic path configuration module that computes the best

service configuration that can be accessed by clients.

Application model. Ninja regards applications as sets of operators, connectors, and

paths. An operator is responsible for processing the input data and producing output

data. A connector maintains the connection between two operators by implementing

specific communication protocols. A path is a sequence of operators and connectors

between a source (client) and a destination (service). The role of a data path is to

transform the data stream from the source into a data stream acceptable to the desti-

nation. For each operator and connector, the application needs to specify the name,

the URL where the sources are located, and sets of input and output data types. Each

data type contains information regarding network and media properties. The network

properties include reliability, minimum and maximum bandwidth, and port numbers.

The media properties include the type of supported media (e.g., text, image, audio,

speech, video, and slides) and any media-specific properties.

The shortcomings of the Ninja application model with respect to the challenges

from Chapter 2 are (1) both network and media properties sets are fixed, and (2) the

application specification does not capture any interactions between the application

and the environment.

36

Planning. The goal of the planning module, APC [14], is to create a Ninja path

given the endpoints of the required path, a partially ordered list of operators, and an

acceptable range of costs (e.g., latency, bandwidth, cpu consumption). APC performs

two steps: (1) logical path creation, and (2) physical path creation. The former selects

the appropriate operators and combines them depending on the data type information.

The output is a logical path that contains operators connected by connectors. The

latter takes as input the logical path and the state of the network, attempts to find the

nodes where the operators either exist or could be installed, and makes the necessary

connections.

The current implementation of APC does not deploy new instances of operators.

Instead, it takes into consideration only operators already running in the network. In

addition, APC optimizes only for the length of the logical path, as opposed to the gen-

eral quantitative and qualitative constraints that might be of interest to a component-

based application.

Security guarantees. Once APC finds a valid plan, Ninja starts any required dynamic

operators and sets up the appropriate connectors between operators. In addition, the

operators register with SDS [76], a secure discovery service. SDS is a scalable, secure,

and fault-tolerant data repository that provides clients with directory-style of access

to all available services. SDS is secure, because it employs cryptographic techniques

to authenticate both ends of a communication channel and ensure that all messages

are private. SDS provides two types of security services: (1) clients can specify which

services are trusted, and (2) services can specify what type of capabilities should be

owned by a client allowed to access them.

37

SDS performs PK-based authentication and authorization, instead of supporting

more dynamic and complex relationships between entities (e.g., role-based access

control lists). In addition, once SDS matches clients and services, Ninja provides no

security guarantees during application deployment.

Consistency guarantees. All persistent data is saved by Ninja services in a scalable,

available, and consistent cluster-based storage layer called DDS [42]. DDS organizes

data as a distributed hash table, split in partitions. In order to ensure that data is

available, DDS replicates the partitions on several nodes in the cluster. Even though

there exist several copies of the data, clients see a single logical copy of the data. This

is achieved by executing a two-phase commit protocol to keep all replicas strictly

consistent. In this way, any replica can serve read requests, but all replicas must be

updated upon a write request.

One of the missing pieces of the coherence protocol is the lack of support in

maintaining consistency between replicas spread across multiple clusters. Also, Ninja

does not support application-specific weak consistency requirements essential for ef-

ficiency in multiple cluster environments.

3.1.3 Conductor

Conductor [94] is a middleware system that adapts applications by injecting function-

ality (i.e., adaptors) into the network path between clients and services. Conductor

supports legacy applications by intercepting, examining, and eventually modifying

the communication between a client and service, if the setup costs are offset by the

adaptation benefits. Conductor provides the illusion of a normal TCP connection,

38

when in fact Conductor handles the reliable end-to-end delivery of data.

Application model. In the Conductor system, applications are defined as a set of

adaptors. Each adaptor is a stand-alone Java-based module, with fixed functional-

ity. The complete specification of an adaptor contains four parts: (1) the protocols

supported by the adaptor, (2) the node resources required by the adaptor, (3) pre-

conditions and post-conditions for deploying the adaptor expressed as functions of

link characteristics, and (4) a set of interoperability operators that restrict the adaptor

combinations.

Planning. Given the Conductor application model, the planning algorithm [73] finds

the best adaptor deployment on a route between a client and a service. The plan-

ning algorithm has two phases: (1) gathering link information, and (2) computing the

adaptor deployment. Conductor starts gathering information from the client toward

the service. Each node adds its own properties to the total state information and for-

wards it to the next node. Once the total state information reaches the destination node

(i.e., service), the second phase is executed on that node, in a centralized fashion. The

second phase contains two steps. First, Conductor associates link problems such as

low available bandwidth or lack of security with sets of adaptors that can solve those

problems. Second, the adaptors are combined and mapped onto network nodes.

As of this writing, the planning algorithm does not provide any optimality guaran-

tees. In addition, Conductor restricts itself to single input, single output components,

focusing on satisfying resource constraints.

39

Security guarantees. Once the adaptor combination is found, Conductor deploys the

adaptors on the appropriate nodes. Each Conductor-aware node relies on a security

box [64] to provide security guarantees. The security box is responsible for node

authentication, protection of the planning process, and data protection. Node authen-

tication is very important because only trusted nodes should be allowed to provide

information for the planning process and execute adaptors. Malevolent nodes can

affect the planning process by either providing misleading data or modifying the cor-

rect data or the planning decisions that pass through the nodes. Conductor protects

the planning algorithm by encrypting and signing the messages sent by trusted nodes.

In addition, Conductor can protect data messages sent between clients and services

through insecure links by deploying encryption/decryption adaptors.

The challenge in Conductor is to provide finer-grained control over the security

process and allow the security requirements to influence the planning decisions.

Consistency guarantees. Conductor does not provide any data consistency guaran-

tees to applications. The assumption is that adaptors would be designed to guarantee

data consistency if an application requires it.

3.1.4 CANS - Composable, Adaptive Network Services Infrastructure

CANS [40] is an application-level infrastructure that customizes the data path be-

tween clients and services by injecting application-specific functionality into the net-

work. CANS performs three types of application adaptation: (1) intra-component

adaptation, where each service detects and adapts to minor resource variations on its

own, (2) data path reconfiguration and error recovery, where the data path undergoes

40

localized changes, and (3) re-planning, where existing data paths are destroyed and

rebuilt as a result of large-scale variations.

Application models. CANS regards applications as sets of components, where each

component is a self-contained piece of code. There are two types of components:

soft-state drivers and hard-state services. The former are standalone mobile code core

modules that perform some operation on the data stream. The latter encapsulates more

heavy-weight functionality and can save persistent data. Both types of components

process data type streams and connect to each other depending on the compatibility

of their input and output data types. The type system defined by CANS allows appli-

cations to define stacks of data types in order to capture the effects of multiple drivers

on one data stream. In addition, each data type is augmented with a set of extensi-

ble link properties (e.g., security and reliability). This enables CANS to capture the

interactions between a data stream and a link when the data stream crosses that link.

CANS supports a sophisticated application model, but only allows applications to

specify their behavior using linear functions; the shortcoming is the lack of support

for arbitrary functions.

Planning. CANS adapts applications by computing at run-time the best data path

between applications and services. The planning algorithm [39] finds a data path that

transforms a source data type into a destination data type, given a route and a type

graph. The route contains a list of nodes connected by links into a chain and their

resources. The vertices in the data type graph represent the application data types. The

edges connecting two vertices represent components that transform one data type into

41

another data type. One of the goals of CANS is to minimize the resource consumption

while satisfying the application and user requirements. However, finding the optimal

solution is NP-hard. The novel idea introduced by CANS is discretizing the set of

values for resources and using a dynamic programming strategy to find the optimal

data path. CANS adopts similar component restrictions as Conductor, but can handle

constraints imposed by the interactions between application components and network

resources, and additionally can efficiently plan for a range of optimization criteria.

For example, the CANS planner can ensure that node and link capacities along the

path are not exceeded by deployed components, while simultaneously optimizing an

application metric of interest (e.g., response time).

Security guarantees. Once the planning algorithm finds the best data path, CANS

deploys the drivers and the services on the appropriate nodes. The infrastructure that

supports automatic deployment consists of communication adapters. The adapters

are responsible for creating the communication channels between (1) application and

drivers, and (2) drivers and services. From a security point of view, CANS ensures pri-

vacy of the data streams only if there are drivers that implement encryption services.

Otherwise, CANS does not provide any security guarantees.

Consistency guarantees. CANS provides consistency guarantees only during path

reconfiguration, to ensure that there is no loss of data when a path is reconfigured.

However, these mechanisms assume a specific filter model for components, which

may not be applicable in general component-based applications.

42

3.2 Individual techniques

As described in Chapter 2, the main challenges of automatically deploying component-

based applications in heterogeneous environments are (1) creating sophisticated ap-

plication models that capture the application behavior, (2) efficiently use these models

to find a valid component deployment, and (3) provide an efficient and practical de-

ployment process by satisfying application security and data consistency guarantees.

This section examines some other projects that have proposed isolated techniques to

address these challenges.

3.2.1 Application description

Most relevant previous work on application description models has occurred in the

context of component-based frameworks, including the four systems discussed earlier.

In general, the only information provided by the application to the framework

specifies the component functionality and required services. Both the component

functionality and the required services can be specified at the level of (1) interfaces

(Java [83] and CORBA IDL [72]), (2) methods (.NET WSDL [89]), or (3) data types

(Globus Grid [35]). This information is sufficient for frameworks to decide how to

download components into the network and connect them.

More recently, models capture additional information pertaining the application

deployment, such as deployment conditions and effects and interactions between ap-

plications and the environment. Examples of frameworks that use such sophisticated

models were described earlier in the chapter (i.e., Globus Grid, Ninja, Conductor,

CANS).

43

3.2.2 Planning algorithms

A growing number of projects are currently looking at building applications at run-

time by dynamically selecting and/or mapping components onto the network. Such

systems can be divided into two classes. The systems in the first class assume the

existence of an external planner (e.g., Active Frames [66], Eager Handlers [99], Ac-

tive Streams [10]). The systems in the second class implement their own planner, and

can be further divided into two subclasses. The first subclass includes systems which

assume a pre-established relationship between application tasks, in order to deploy

them with minimal resource consumption (e.g., Globus Grid). The second subclass of

planners both select and deploy a subset of components, while satisfying application

and network constraints (e.g., Ninja, Conductor, and CANS). A detailed discussion

of the planning algorithms implemented by these systems was given in the previous

sections of this chapter.

3.2.3 Security guarantees

Previous efforts in providing security guarantees have looked at (1) cross-domain au-

thorization, (2) support for fine-grained access control, and (3) modeling application

and network resource properties to permit their use by automated planning modules.

The first two are classic problems of providing security guarantees in a distributed en-

vironment. The last is more specific to this work. The next paragraphs discuss various

approaches for each of them.

Cross-domain authorization. Component-based frameworks target application de-

ployment in heterogeneous environments spanning multiple administrative domains;

44

thus, they raise new security issues. Several systems (e.g., DCE [75], DCOM [88],

CORBA [71], Globus Grid [33]) aim to solve the cross-domain authentication and

authorization problems that result in such systems.

DCE [75] provides authentication and authorization based on private-key cryptog-

raphy with a trusted third party. CORBA [71] and the Web services infrastructure [46]

provide a general interface for authentication and authorization, leaving it up to ap-

plication programmers on how exactly they choose to implement it. SESAME [54]

authenticates users and provides them with an authorization credential (Privilege At-

tribute Certificate) that can be used for all authorization decisions. The Legion sys-

tem [43] controls heterogeneous, independent, and distributed resources presenting

the user with the image of a single, coherent environment. From a security point of

view, all resources are considered to be objects residing in a single shared namespace,

and are uniquely identified by a Legion Object Identifier (LOID) [31] that contains a

public key. Users are authenticated using shortlived Legion credentials [93] generated

the first time the user logs on into the system. As described earlier, the Globus Grid

system relies on the Globus Grid Security Infrastructure (GSI) [33] to handle all of its

authentication, authorization, and secure communication problems.

Compared to the challenges described in Chapter 2, the shortcomings of these

projects include (1) assuming the existence of a single policy root (hence namespace)

for credentials, and (2) not providing support for translation between global system-

wide and local credentials (i.e., the rights associated with a request are modulated to

the credentials associated with it as opposed to the local credentials these translate to).

45

Granularity of access control. One of the challenges of providing security guaran-

tees is supporting fine-grained access control to resources. For example, applications

should permit users to access applications at the level of objects, interfaces, or meth-

ods, as required by the application policy.

The Java 2 environment [41] combined with the Java Authentication and Autho-

rization Service (JAAS) [62] addresses this challenge by relying on security managers

and policy files to define resources that in principle can support any granularity of ac-

cess control. Unfortunately, the security manager only checks rights to access JVM

resources, like files or sockets. In order to protect other resources, the applications

need to implement their own access control mechanisms.

DCE [75] and CORBA [71] enable any level of granularity for access control by

letting the applications to define their own notion of resource. DCOM [88] applica-

tions can control access to low level object only by taking advantage of the API’s

exposed by the DCOM programatic security. Legion [43] objects must implement a

special function, MayI that is called to check credentials every time a user invokes a

method on the object.

Such mechanisms are not appropriate to address the challenges presented in Chap-

ter 2, because they require applications to take the access control decisions at run-time

(Legion, DCOM). Ideally, the process of satisfying the security guarantees should be

completely transparent to the application.

Expressing component and network properties. Most dynamic component-based

frameworks rely on an application registration step, where complete specifications

of the application components are provided to the framework. As explained in Chap-

46

ter 2, the challenge is to give applications the necessary freedom in expressing their

behavior and requirements, and still be able to efficiently use the information to find

a valid application configuration.

Unfortunately, most component-based systems deal with this problem by restrict-

ing the applications to specifying only a small number of resource consumption prop-

erties (e.g., CPU usage, bandwidth consumption) determined a priori. Examples of

such systems include Ninja and Conductor, which were described earlier.

3.2.4 Data consistency protocols

The data consistency problem has been extensively researched in distributed databases,

distributed file systems (DFS), and distributed shared memory systems (DSM) for

symmetric multi-processors (SMP) and wide-area environments. A common theme

throughout is the use of application-specific information to efficiently satisfy applica-

tion consistency requirements.

Distributed shared memory - SMPs and cluster environments. Shared-memory multi-

processors have emerged as an efficient way of providing increased computing power

and speed. A shared-memory multiprocessor node contains multiple low-cost pro-

cessors connected with shared memory modules by an interconnection network. In

order to reduce the memory access time, a cache memory module is attached to ev-

ery processor. Often, several processes running on different processors are working

on different copies the same data. The data consistency problem states that all these

copies need to be consistent. Currently, there are hardware and software solutions.

Hardware solutions are efficient, but increasingly complex and implement only a

47

limited number of consistency protocols. Software-based data consistency protocols

were developed to avoid this complexity while providing multiple levels of consis-

tency. Munin [12], View Caching [55], Treadmarks [56], and HLRC [78] are exam-

ples of software DSM systems that parse application-specific information to choose

the appropriate level of consistency at the granularity of pages or objects.

Treadmarks and HLRC provide release consistency to a shared memory organized

as a linear array of bytes. Conflicts between memory accesses are prevented by mark-

ing the corresponding instructions as critical sections. The difference between these

two systems is the way they propagate updates. Treadmarks is a distributed system,

where updates are sent between peers. HLRC defines a home node for each page and

all updates are sent and merged into that home node.

More recent work [26, 3] indicates that providing only one protocol does not work

well for all parallel programs. Munin annotates variables with their expected access

pattern, while the View Caching system defines a view as the data used by a user-

defined method and uses view-specific knowledge (data access patterns) to choose

the appropriate coherence protocol.

Distributed shared memory - Wide area environments. The natural extension to exe-

cuting applications in SMPs is deploying the applications in wide-area environments

such as the Internet. The problem is to ensure data consistency between replicas

spread across a long latency network, while minimizing the synchronization traffic.

Interweave [16] and ObjectViews [65] are representative of the solutions in this area,

which solve this problem by using application-specific information on the data struc-

ture and/or access pattern. In InterWeave, applications define the consistency unit as a

48

data segment formed by data blocks and views as subsets of blocks. Views reduce the

synchronization traffic, because sharers of the same segment can have different views.

Object Views define views as restrictions of an original object such that all accesses

to the object are performed through its views. Based on the view information, a com-

bined run-time and compiler solution decides which object parts need to be updated

for correct execution.

Distributed databases. The consistency problem in distributed databases is to main-

tain data correctness (e.g., mutual consistency) and availability when multiple

read/write operations are simultaneously executed on several replicas. The provided

consistency guarantees range from one-copy serializability [4] to weak consistency [19]

and continuously weak consistency [95].

The general assumption is that the execution of a transaction transforms an ini-

tial correct database state into another correct state. A database state is considered

to be correct if the execution of a set of transactions is serializable and the execution

of any transaction is atomic (e.g., either all or none operations are executed). In this

context, ensuring that the execution of simultaneous operations on replicated data is

serializable is called one-copy serializability [4]. However, providing one-copy seri-

alizability can be very expensive and not necessarily required by all applications. The

solution is to relax the consistency guarantees and allow the read/write operations to

simultaneously execute on multiple replicas, even when the operations create con-

flicts between the database replicas. Bayou [19] is an example of a weakly connected

replicated storage system that uses application specific functions to resolve conflicts.

TACT [95] extends this work by recognizing that different applications have different

49

consistency requirements. TACT defines a continuous consistency space along three

dimensions and allows the applications to specify their consistency requirements as a

combination of three parameters: numerical error, order error, and staleness [96].

In the case of weak consistency, the challenge is how to allow the read/write oper-

ations to simultaneously execute on multiple replicas, even when the operations create

conflicts between the database replicas. Two of the implemented solutions are (1) to

continuously send updates between replicas based on application-specific information

about the data structure and access pattern [95], and (2) to use application-provided

functions to detect and resolve conflicts [19].

Distributed file systems (DFS). Similar to distributed databases, distributed file sys-

tem spread information across wide-area networks. Their goal is to allow users to

transparently access both their local and remote files [74]. Some of the differences

between databases and file systems are that: (1) databases are usually much larger

than file systems, (2) file systems allow operations on files and directories, and (3)

file systems save the information in files and directories organized as a tree. This

paragraph discusses only how some of the most successful DFS developed recently

(Unix [74], Locus [90], Sprite [69], Network File System (NFS) [79], Andrew File

System (AFS) [67], Ivy [68], Ficus [53], Coda [80]) use these differences to their ad-

vantage. From the point of view of the chosen consistency model, most distributed file

systems can be divided into systems that provide serializability of simultaneous con-

flicting writes [79, 53], and systems that guarantee close-to-open consistency [68, 80].

In order to efficiently provide such guarantees, distributed file systems use applica-

tion specific information. First, DFSs reduce the synchronization traffic by using

50

information on the data structure when choosing the appropriate granularity levels

(pages [90, 69], files [79, 68], volumes [67, 53, 80]). Second, disconnected replicas

are reconciled by using at least one of the following three methods: (1) executing

automatic procedures [90, 68, 80], (2) using application-specific procedures [68, 60],

and (3) triggering an error and allowing the user to fix conflicts manually [90, 80].

The common theme across all of these systems is that the underlying cache co-

herence protocols are able to make assumptions valid across applications and effi-

ciently use this information to design appropriate consistency protocols and define

granularity levels. However, none of these assumptions directly apply to component-

based systems, where components can encode arbitrary behavior. Before these tech-

niques can be applied, one needs mechanisms which address the challenges specific

to component-based frameworks.

3.2.5 Summary

The analysis of the related work leads to the conclusion that no system addresses all

challenges described in Chapter 2. Instead, the systems provide solutions to simpli-

fied subproblems. For example, Globus Grid restricts the application specifications,

CANS supports only applications composable as a chain, Conductor does not con-

sider any security requirements during planning, and Ninja does not deploy new com-

ponents, but uses already deployed ones.

This work addresses the challenges in their general form through the solutions

described in Chapters 4, 5, and 6. Chapter 4 introduces a flexible application spec-

ification model. Chapter 5 presents an AI-based planning algorithm which uses this

51

model to find valid application configurations. Chapter 6 describes how the applica-

tion configuration found by the planning algorithm can be deployed in an efficient and

practical manner, by satisfying the application security and data consistency guaran-

tees.

3.3 Background

In general, the techniques described in Chapters 4, 5, and 6 can be applied to a variety

of programming languages and component-based frameworks. To make the concepts

clearer, this thesis uses examples based on the Java implementation of these tech-

niques in the Partitionable Services Framework (PSF), as described in Chapter 7. The

implementations rely on DisCo [38], a middleware infrastructure that allows users to

automatically discover the required services, and securely download and install code

from remote locations. This section describes three of the main tools provided by

DisCo: Switchboard, dRBAC, and the DisCo Discovery Service. The communication

between PSF entities is achieved using either Java RMI or Switchboard; Switchboard

is a secure communication abstraction developed to continuously monitor the trust re-

lationships between entities. The security guarantees are provided based on dRBAC,

a distributed role based access control and trust management system. The discovery

service is used to discover instances of PSF running in the system.

For completeness, this section briefly discusses these technologies. Readers al-

ready familiar with them may wish to skip to Chapter 4.

52

3.3.1 Java Language and Runtime Environment

The Java language and runtime environment [83] allows applications to run on a va-

riety of machines, independent of the underlying software and hardware. Rather than

executing on the native operating system, Java programs are transformed into byte-

code and interpreted by a Java Virtual Machine (JVM).

This work takes advantage of several important features of the Java technology:

mobile code, sandboxes, and reflection.

Mobile code. When executing a Java program, the JVM is responsible for locating

and loading the appropriate bytecode. One of the features of Java is that JVMs can find

and download remote bytecode based on URLs. PSF uses this feature to automatically

deploy components into the network.

Sandboxes. One of the challenges of executing mobile code on a remote node is

protecting the node from malevolent code. In Java, this challenge is addressed by

first verifying the bytecode and then executing it. During execution, the JVM uses

Table 3.1: Example of a policy file.

grant signedBy "Advisor" �
permission java.io.FilePermission "/tmp/*", "read,write";

�;
grant �

permission java.util.PropertyPermission "java.vendor";
�;
grant signedBy "superuser", codeBase "file:/home/superuser/*" �

permission java.security.SecurityPermission "Security.insertProvider.*";
permission java.security.SecurityPermission "Security.removeProvider.*";
permission java.security.SecurityPermission "Security.setProperty.*";

�;

53

a policy file to check whether the code is allowed to perform operations that could

damage the host (e.g., write a file). Such a policy file contains rules that specify how

the code coming from given URL’s and signed by recognized entities is granted or

not the permissions to execute on the node. Table 3.1 contains a simple example of a

policy file. PSF uses sandboxes to enforce that components deployed on remote nodes

execute with the correct permissions.

Reflection. Reflection is a mechanism provided by Java to inspect the structure of a

Java object without having access to its sources. With Java reflection, a Java object

can find the class of another Java object; get information about the class’s modifiers,

fields, methods, constructors, and super-classes; create instances of classes whose

names are not known until runtime; verify whether variables or methods are defined

by a class or interface; and determine the value of a variable or invoke a method even

if the name is unknown until runtime.

PSF uses reflection to complement the Javassist API’s [85] when automatically

generating components, and to instantiate components whose names are provided

only at runtime.

3.3.2 Java Remote Method Invocation

Java RMI [84] integrates the distributed object model into the Java [83] programming

language in a natural way while retaining most of the Java programming language’s

object semantics. The main features of Java RMI are: (1) supporting seamless remote

invocation on objects in different virtual machines, (2) preserving the type-safety pro-

vided by the Java platform’s runtime environment, and (3) maintaining the safe envi-

54

Table 3.2: RMI pseudo-code.

1 public class Client() �
2 public void run() �
3 String name = "//" + args[0] + "/Server";
4 ServerInterface server = (ServerInterface) Naming.lookup(name);
5 ��

6 public class Server extends UnicastRemoteObject
7 implements ServerInterface �
8 public void run() �
9 name = "//"+InetAddress.getLocalHost().getHostAddress()+"/Server";
10 Server engine = new Server();
11 Naming.rebind(name, engine);
12 ��

13 public interface ServerInterface extends Remote �
14 void foo() throws RemoteException;
15 �

ronment of the Java platform provided by security managers and class loaders. Java

RMI is one of the two communication abstractions used by PSF to create connec-

tions between components. The other communication abstraction is Switchboard, as

described in Section 3.3.4.

Table 3.2 shows the pseudo-code for an RMI client and an RMI server. In this ex-

ample, the ServerInterface describes the methods that could be accessed by clients

through remote calls; thus, it needs to extend the Serializable interface (line 13).

The Server implements the ServerInterface and extends the

UnicastRemoteObject (lines 6 and 7). The UnicastRemoteObject provides the

methods needed to create remote objects and export them (i.e., make them available

to remote clients). In order to register with the RMI Naming service, the server must

“bind” to the namespace (line 11). Once the server is registered with RMI, clients can

look up a server that presents a set of desired attributes (line 4). If such a server exists,

55

Table 3.3: dRBAC delegation types.

Self-certifying [Subject� Issuer.Role] Issuer with Attr1=Val1, Attr2=Val2, ...

Third-party [Subject� Entity.Role] Issuer with Attr1=Val1, Attr2=Val2, ...

Assignment [Subject� Entity.Role ’] Issuer with Attr1=Val1, Attr2=Val2, ...

the clients receive a reference to the server. All method calls will be executed against

that reference.

3.3.3 dRBAC

dRBAC [23] is a PKI-based trust management and role-based access control system

originally developed for expressing and enforcing security policies in coalition envi-

ronments spanning multiple administrative domains. Such environments are charac-

terized by partial trust and the absence of central policy roots. dRBAC credentials,

called delegations, express the mapping of an equivalence class of access rights in

one trust domain to members of another equivalence class, possibly in another trust

domain. Each of these equivalence classes is represented by a dRBAC role. These

delegations potentially include attenuation of valued attributes.

PSF uses dRBAC to authenticate and authorize entities across multiple adminis-

trative domains, and translate properties between namespaces. A summary of relevant

features of dRBAC follows; a more complete description appears in [23].

Each dRBAC delegation is cryptographically signed by its issuer. Additional cre-

dentials may be required as evidence of the issuer’s authorization to administer the

56

rights proved by the delegation. As with other role-based access control systems, dR-

BAC delegations may be transitively chained to form proof graphs indirectly authoriz-

ing a required class of access rights. A dRBAC credential can be tagged with expira-

tion dates and also may additionally require online validation monitoring from an au-

thorized “home” which is aware of any revocation of the delegation. Similar to other

distributed trust management engines (SPKI [27], KeyNote [6], PolicyMaker [7]),

dRBAC supports third party delegations and linked namespaces.

Table 3.3 presents the three types of dRBAC credentials: self-certifying, third-

party, and assignment delegations. The self-certifying and third-party delegations

allow an Issuer entity to give the permissions associated with an Entity.Role role to a

different entity or role (Subject). The difference between them is based on whether

the owner of that role is also the Issuer. An Issuer entity uses the assignment delega-

tion to give the right of assignment for Entity.Role to another entity (Subject) located

outside the Issuer’s space. The assignment delegations permit the usage of private

roles outside the defining domain. The (�) mark indicates that the Subject is allowed

to assign Entity.Role to other Subjects.

Using dRBAC, a trust-sensitive component C can determine if a set of dRBAC

credentials X gives some subject S the set of access rights represented by a role R

continuously over some duration. To do this, C presents the public identity of S, a set

of required access rights R, and the credentials X to a dRBAC implementation. The

dRBAC module first authenticates the signatures and establishes validity monitors for

all the credentials in X . Authorization is granted if the dRBAC module can construct

a graph (proof) from valid and authenticated credentials in X that “proves” that S

possesses the rights required by R.

57

dRBAC credentials are stored in a distributed repository. To assist in collecting

dRBAC credentials that authorize a particular role, dRBAC contains a mechanism that

relies on discovery tags associated with credential subjects and objects. These tags

identify an entity as “searchable from subject” or “searchable from object”, permitting

queries about credentials involving the entity to be directed as appropriate to its home

node.

3.3.4 Switchboard

Switchboard [24] permits the establishment of secure, authenticated, and continu-

ously authorized and monitored connections between a pair of components. The lat-

ter property distinguishes Switchboard from abstractions like SSL/TLS [37, 22]. As

mentioned before, PSF uses Switchboard and Java RMI to create connections between

the deployed components. In addition, Switchboard is used for the communication

between the the PSF modules as explained in Chapter 7.

Prior to forming a Switchboard connection, the components at either end provide

their authorization suites—PKI identities (including private keys for authentication),

dRBAC credentials to be supplied to the partner, and Authorizer objects for evaluat-

ing the partner’s credentials. Authorizers generate AuthorizationMonitors, which

inform either partner when the trust relationship changes. When Switchboard con-

nections span multiple hosts, a cipher is established using a key-exchange protocol,

and connectivity is monitored using replay-resistant heartbeats that indicate liveness

and round-trip latency. Switchboard connections provide a two-way procedure-call

(RPC) interface appearing as a custom socket on top of which requests can be routed.

Table 3.4 shows the pseudo-code necessary to create Switchboard connections.

58

Table 3.4: Switchboard code.

1 public class Client �
2 public void run() �
3 InetSocketAddress serverAddress = new InetSocketAddress(address,
4 port);
5 Authorizer authorizer = new DrbacAllAuthorizer();
6 SbEventHandler smockSbEventHandler = new DrbacSbEventHandler();
7 SbRpcStack stack = Switchboard.lookup(serverAddress, serverName,
8 clientKeys, authorizer,
9 clientCredentials,
10 smockSbEventHandler);
11 Object o = stack.getOutcallProxy();
12 ServerInterface server = (ServerInterface) o;
13 ��

14 public class Server implements ServerInterface �
15 public void run() �
16 Authorizer clientAuthorizer = new DrbacAllAuthorizer();
17 InetSocketAddress serverSocketAddr = new InetSocketAddress(address,
18 port);
19 Switchboard.serve(serverSocketAddr, serverName, serverKeys,
20 clientAuthorizer,
21 serverCredentials,
22 (Serializable) this);
23 ��

24 public interface ServerInterface extends Serializable �
25 public void foo();
26 �

The operations executed by the client and the server in order to communicate through

Switchboard are similar to the operations required by Java RMI. Similar to Java RMI,

the ServerInterface must extends the Serializable interface (line 24). However,

the Server must implement only this interface (line 14). The Server must bind with

the namespace (lines 19-22) before clients can search for it (lines 7-10). The dif-

ference is that Switchboard requires that the Server and the Client provide more

parameters beside the name and the reference of the object. They also have to pro-

vide their credentials, keys, and authorizers, which will be used by Switchboard to

59

perform the mutual authorization of both the client and the server. Additional details

about Switchboard can be found at http://pdsg.cs.nyu.edu/switchboard.

The continuous monitoring property of Switchboard connections is crucial for

supporting single sign-on access control in dynamic environments, where client and/or

network credentials can change in the middle of long-lived component interactions.

Such a change in credentials invalidates the corresponding dRBAC proofs, and re-

sults in notification to the AuthorizationMonitors at either end of the connection.

These monitors can then take appropriate action, including requiring a component to

re-validate itself prior to approving future requests.

3.3.5 DisCo Discovery

DisCo Discovery is a mechanism that allows users and application components to lo-

cate nearby instances or providers of needed services. In DisCo, each distinct service

is identified by a unique ServiceDescriptor. Providers must first register with DisCo

by providing signed credentials which reference themselves as authorized providers

for an enclosed ServiceDescriptor. To provide reliable fail-over in cases where the

discovery mechanism does not locate a local authorized provider, ServiceDescriptors

also identify a default service home.

Clients interested in connecting to a particular service, generate a discovery query

specifying a specific service descriptor. DisCo is responsible for matching the query

with an advertisement published by a provider. If such a match exists, DisCo returns

the information about the service provider.

In PSF, entities (e.g., clients, nodes) use the DisCo Discovery service to discover

and contact running instances of the PSF modules.

60

Chapter 4

Describing Application and

Environment Characteristics

A central feature of a dynamic component-based framework is its ability to adapt to

different network conditions by assembling distributed applications from an appropri-

ate combination of components. This chapter describes the information required by

the framework to achieve flexible application assemblies. Examples of such informa-

tion include (1) a high-level service specification model, which declares constraints

on linking one component to another instead of statically specifying linkages, and (2)

an environment specification model, which captures the structure and the state of the

environment. Both models use properties to capture aspects of the environment, the

application, and the interactions between them. The next section defines the general

notion of properties; the following two sections describe in detail the application and

the network models.

61

4.1 Properties

Properties represent attributes associated with the network and the applications. A

property is defined as a tuple �name�value�, where name is a unique name and value

can be a Boolean, real, or interval value – i.e., value�D, where D� � �� ������. 1

In general, a property can be defined as a function of other properties and its value

can be computed at run-time.

Properties are used to capture the current status of the network, the application

behavior, and how the network and the application affect each other. For example,

the network might be divided into secure and insecure links. Similarly, an application

might want to distinguish between sensitive and non-sensitive messages and require

that the former be protected against eavesdroppers when transiting across the network

links. In order to capture these requirements, two Boolean properties, Secure and

Privacy, can be created and associated with the network links, respectively the ap-

plication components. The insecure links will have the Secure property set to False,

while the secure links will set this property to True. Similarly, messages can be as-

sociated with the Privacy property. If a message is private (Privacy is True) and

crosses a secure link, the privacy of the message is intact after crossing. However, if

the message crosses an insecure link, its privacy is compromised. In order to capture

such a behavior, the application can specify that the Privacy property of the mes-

sage after crossing a link is equal to the Boolean AND operation between the Secure

property of the link and the Privacy property of the message before crossing the link.

1
� � �true� f alse� represents the set of Boolean values. � is the set of real values. ��� is the set of intervals

with real limits.

62

It is important to note that the framework does not assume any information about

the semantics of a given property with respect to the application. In the previous

example, the Privacy property refers to whether or not data produced by a component

can be deemed confidential. However, the dynamic component-based framework does

not “understand” the English word “Privacy”; its only concern is with the range of

values that can be associated with the property. The above model is very flexible and

allows the expression of a variety of application requirements and effects.

4.2 Environment specification model

As mentioned in Chapter 2, component-based applications are often deployed in en-

vironments which are highly heterogeneous, have a considerable size, and are divided

into multiple administrative domains. Capturing the state of the environment is im-

portant because the application behavior is often influenced by the environment and

dynamic component-based frameworks have to consider the current network state in

order to make correct decisions.

Example. To illustrate the requirements of the environment specification model, this

section starts with an example. Consider a network environment made up of hosts in-

terconnected with links. In order to dynamically deploy applications, the framework

needs various pieces of information about the characteristics of the environment. For

example, the model may need to capture the fact that a node has an IP address of

216.165.111.134, is running Windows XP, has installed the JDK 1.4 Java library, and

has 200 Mb memory and an Intel Pentium II processor with 100 units of normalized

63

CPU resource available. Similarly, for a link, the network model may need to capture

both quantitative features (e.g., the end points of the link are � N1�N2 �, the link la-

tency is 10ms, and the link maximum available bandwidth is 50Mbps), and qualitative

features (e.g., information about the security and the stability of the link).

These issues are addressed by modeling the environment as a set of nodes N con-

nected by a set of links L � N � N. Each node and link has tuples of properties

associated with it. If De � ��� � ����� is the set of possible values for properties,

we can define two functions, node (4.1) and link (4.2), to map nodes and links to

their respective sets of properties. In general, properties are defined as non-reversible

functions of other properties and computed at run-time based on the current values of

their parameters.

node�n� : N � Dkn
e �kn is the number of properties of node n � N (4.1)

link�l� : L�Dkl
e �kl is the number of properties of link l � L (4.2)

For the example described above, the sets of properties are:

1. node�n� � ��IP � 216�165�111�134���OS� WinXP���memory � 200�� ���	

2. link�n1�n2� � ��secure � T���stable � T���latency � 10�� ���	

One of the important features of this model is that it permits the specification of

two different classes of properties. In the first class, properties can be dynamic or

static. In the second class, properties can be classic or general properties.

Dynamic properties are associated with network resources that can be consumed,

e.g., node CPU, link bandwidth; thus, they are associated with non-negative real val-

ues that can be modified at run-time. Static properties represent network properties

64

assumed fixed during the life time of an application, e.g., the security of a link or the

trust level of a node.

Most dynamic component-based frameworks take into consideration only classic

network properties, such as the available CPU of a node and the available bandwidth

of a link. However, these properties are not always sufficient to reason about the “best”

application configuration given the current state of the network. For example, banking

applications might require that links be secure and nodes be trusted. Thus, a dynamic

component-based framework must capture general properties, such as security, trust,

existing software, nodes owned by the right organization, etc..

Table 4.1 illustrates how the node and link properties described at the beginning

of this section are captured by this model.

Table 4.1: Node and link descriptions.

�NodeList�
�Node�
�Properties�

Index :� 0
Address :� 216�165�111�134
CPU Type :� IntelPentiumII
CPU Available :� 100
OS :�Windows XP
Java :� JDK1�1�4
Memory :� 200Mb

�LinkList�
�Link�
� Nodes �

start :� 1 end :� 2
� Properties �

Latency :� 10ms
Bandwidth :� 50Mb�s
Security :� true
Stable :� true

4.3 Application specification model

Chapter 2 has described the challenges of capturing the application behavior and high-

lighted the need for a model able to describe the component functionality, the condi-

tions and the effects of deploying a component into the network, and the conditions

65

and the effects of connecting two or more components.

Example As example, this section describes the information that should be captured

by the application model for the security-sensitive web-based e-mail application in-

troduced in Section 2.3.1. The e-mail application is defined by a set of six compo-

nents (MailClient, ViewMailClient, MailServer, ViewMailServer, Encryptor,

Decryptor) that implement three interfaces corresponding to the normal and en-

crypted server interfaces (MailServerInterface, EncryptedMailInterface), and

the client interface respectively (MailClientInterface). For each component, the

application model should indicate when the component can be deployed on a node

and connected to another component. The only component discussed in detail below

is the ViewMailServer.

The deployment conditions associated with ViewMailServer should specify that

(1) the node should have enough capacity to serve incoming requests, (2) the number

of incoming requests should not exceed a certain maximum, and (3) the component

should be able to forward a certain portion of requests to other components.

The effects of deploying the ViewMailServer component should capture the in-

teraction between the ViewMailServer and the network. For example, they should

describe (1) how the ViewMailServer consumes the node’s CPU capacity, (2) what

is the capacity of the ViewMailServer to process incoming requests, (3) how the

ViewMailServer consumes link bandwidth because of the communication with other

components, and (4) how the communication is affected by the current state of the

environment. Table 4.2 shows the partial specification of the ViewMailServer com-

ponent, which will be used throughout this chapter to illustrate the application model.

66

Table 4.2: Component/Interface descriptions.

�Component name = VMS �

�Linkages�

�Implements�

�Interface name = MSIi �

�Properties�

MSIi�Trust�derived

MSIi�Privacy�derived

MSIi�NumReq�derived

MSIi�ReqSize�derived

MSIi�RRF :� 10

MSIi�ReqCPU :� 2

MSIi�MaxReq :� 100

�Requires�

�Interface name = MSIr �

�Conditions�

Node�NodeCPU � �MSIi�NumReq � MSIi�ReqCPU�

MSIr�NumReq� �MSIi�NumReq � MSIi�RRF�

MSIi�NumReq�MSIi�MaxReq

MSIr�Privacy � True

MSIr�Trust � 5

�Effects�

MSIi�Privacy :� True

MSIi�Trust :� Node�Trust

MSIi�ReqSize :� 1000

MSIi�NumReq :� MIN�MSIr�NumReq�MSIi�RRF�

MSIi�MaxReq� Node�NodeCPU�MSIi�ReqCPU�

Node�NodeCPU :� Node�NodeCPU�

MSIi�NumReq � MSIi�ReqCPU

�Interface name = MSI �

�Crosslink�

MSId �Privacy :� MSIo�Privacy AND Link�Secure

Link�BW :� Link�BW �MIN�Link�BW�MSIo�NumReq � MSIo�ReqSize�

MSId �NumReq :� MIN�MSIo�NumReq�Link�BW�MSIo�ReqSize�

MSId �ReqSize :� MSIo�ReqSize

VMS = ViewMailServer, MSI = MailServerInterface Superscripts r and i indicate required

and implemented interfaces, o and d correspond to interfaces at link origin and destination.

67

In order to capture such information as the one described above, the application

specification needs to capture (1) the application functionality, (2) the deployment

requirements effects, and (3) the linkage conditions and effects. This information

should be given per component (i.e., local), and yet be sufficient to reason about the

global behavior of the application.

The challenges that need to be addressed when providing the above information

are: (1) allowing applications to specify their behavior using general, application-

relevant quantitative (e.g., frame rate, operation time, number of messages) and qual-

itative (e.g., security) terms, (2) allowing application conditions and effects to be cap-

tured by sophisticated expressions, and (3) allowing the use of terms from different

namespaces when describing the application.

This model addresses the first two challenges by defining applications as sets of

interface types (It) and component types (Ct), similar to an object-oriented language

such as Java. In addition, the applications can define sets of properties which are

associated with interfaces and components, and use these properties to describe the

application functionality, requirements, and effects. Each interface and component

type can be regarded as a template. The dynamic component-based framework is

responsible for instantiating the templates by determining at run-time the expected

application behavior. The advantage of dynamically instantiating interfaces and com-

ponents is the flexibility in creating only instances which are appropriate to the given

network state and user requirements.

The solution to the last challenge above is deferred until Section 6.5. In this sec-

tion, the application and the network properties are considered to belong to the same

namespace.

68

4.3.1 Component and interface types

Each component type c � Ct is defined as the tuple

c � �Iimpl� Ireq�. Iimpl
 It is the set of implemented interfaces and describes the

component functionality. Ireq
 It is the set of required interfaces and indicates the

services needed by the component to execute correctly. The required interfaces are

similar to the Java RMI remote references, where a Java object can specify what

types of remote interfaces are needed for correct execution. In the case of the e-mail

application, the component types are ViewMailClient, MailClient, MailServer,

ViewMailServer, Encryptor, and Decryptor. The last two components represent

two instantiations of the cipher module described in Chapter 2. The interface types are

(1) MailClientInterface implemented by mail clients, (2) MailServerInterface

implemented by the MailServer, ViewMailServer, and Encryptor, and

(3) MailServerInterface Encrypted implemented by Decryptor.

Using the information provided by the implemented and required interfaces, a dy-

namic component-based framework can dynamically determine how to connect the

components and create possible application configurations. In general, a component

A can be connected with a component B if component B implements some of the

interfaces required by component A. Figure 4.1 shows how the e-mail application

components can be combined in various ways based on their implemented and re-

quired interfaces. Every path from the mail clients to the mail server indicates a

valid composition of the application. For example, the mail clients (MailClient and

ViewMailClient) can be connected directly to the mail server (MailServer), through

a cache mail server (ViewMailServer) (as might be required to offset high link laten-

69

MSI
MailServer

MailClient

ViewMailClient

MSI

MSI

ViewMailServer

Encryptor Decryptor

MSI MSI

MSIMSIMSI

Figure 4.1: Valid application configurations of the e-mail application.

cies), through a pair of cipher modules (Encryptor and Decryptor) (as they might

be required to ensure message privacy), or through any combination of these.

However, the framework cannot take decisions such as placing a cache only if

there are high latency links, or placing encryptor/decryptor pairs only if there are

insecure links, based on the implemented and required interfaces alone. The applica-

tion specification must also associate properties with interfaces, as explained below.

In such cases, the framework must also verify that the properties of the implemented

interfaces satisfy the properties of the required interfaces, before connecting two com-

ponents.

In addition to implemented and required interfaces, component and interface types

are characterized by sets of application-specific properties. Let’s assume that Dc and

Di represent the sets of possible values for component, respectively interface prop-

erties. The component and interface properties, which can be node specific, can be

captured by the function comp (4.3) and inter (4.4), where kc is the number of prop-

erties for component c �Ct and ki is the number of properties for interface i � It .

comp�c�n� : Ct �N � Dkc
c (4.3)

inter�i�n� : It �N � Dki
i (4.4)

70

These properties are used as parameters in functions that specify conditions and ef-

fects of component instances being deployed on nodes and interface instances cross-

ing links, as explained next.

In the e-mail application example, the application-specific properties include the

trust level (Trust) and message security (Privacy), which indicate, respectively,

the maximum message sensitivity level and whether or not the interface preserves

message confidentiality. Other properties include the number of incoming requests

(NumReq), the maximum response size for a request (ReqSize), the request reduc-

tion factor (RRF), the amount of CPU consumed to process each incoming request

(ReqCPU), and the maximum number of requests that can be processed by the compo-

nent (MaxReq). The RRF attribute gives the ratio of requests sent to required interfaces

in response to requests on the implemented interfaces. Using these properties, the

mail application is able to define the deployment and linkage conditions and effects,

as explained below.

4.3.2 Deployment conditions and effects

Deployment conditions define the conditions that need to be true before a component

can be deployed on a node. Similarly, the deployment effects capture the presence of

the component functionality on a node and the consumption of node resources by the

component.

The component model expresses these constraints and effects using in general

non-reversible functions involving the associated component type, interface type, and

network properties. Specifically, a component is deployed on a node only if the re-

quired interfaces are present on the node and there are sufficient node resources. Af-

71

ter deployment, the implemented interfaces become available on the node and the

dynamic properties of the node are altered. Functions Depl Cond, Effenv, Effinterf ,

and Effcomp capture the component deployment conditions, and the effects of de-

ploying a component on a node (see Table 4.3). The input for all these functions

contains the node properties, and the properties of the required interfaces. Using

this notation, a component c � �I impl� Ireq� � Ct can be deployed on a node n � N if

Depl Cond�node�n�� inter�ir�n��� � true, where ir � Ireq. 2 Similarly, the effects of

deploying a component on a node are captured by the functions shown below.

� node�n� � Effenv�node�n�� inter�ir�n��� models the network resource properties.

� comp�c�n� � Effcomp�node�n�� inter�ir�n��� computes the properties of the com-

ponent instance running on node n.

� inter�ii�n� � Effinterf �node�n�� inter�ir�n���� calculates the properties of each

interface ii � Iimpl implemented by the component.

Returning to the example, the following function from Table 4.2

Node�NodeCPU � �MSIi�NumReq � MSIi�ReqCPU� expresses the condition that a

ViewMailServer can be deployed only on a node with sufficient available CPU to

serve the required number of requests.

Similarly, Node�NodeCPU :� Node�NodeCPUMSIi�NumReq � MSIi�ReqCPU

expresses the fact that the ViewMailServer component consumes a portion of the

CPU resource, once it is deployed on a node.

2The inter�i�n�� notation is shorthand for inter�i1�n�� inter�i2�n�� ���� inter�ik�n�.

72

4.3.3 Linkage conditions and effects

Once a component is deployed on a node, all its implemented interfaces are available

on that node. In order to model the fact the application and environment properties

influence each other, the link crossing operation is introduced. The intuition behind

this operation is that connecting two components over a link is equivalent to having

the interfaces implemented by one component cross over the link until they reach the

other component. Using the link crossing operation, one can compute the proper-

ties of an interface on a destination node as a function (in general, non-reversible)

of the link properties and the properties of the interface on the source node. Simi-

lar functions can describe how the dynamic properties of the link are changed as a

result of this operation. In general, the interface functions can be evaluated either

(1) from required to implemented interfaces — publish-subscribe applications, or (2)

from implemented to required interfaces — request-reply applications. In publish-

subscribe applications, servers send data streams to clients. In request-reply appli-

Table 4.3: Application conditions and effects.

Component deployment Link crossing

Conditions Conditions

Depl Cond : Dkn
e �Di

ki
�� � Cross cond : Di

ki�De
kl � �

Effects Effects

Effenv : Dkn
e �Di

ki
�� Dkn

e

Effcomp : Dkn
e �Di

ki
�� Dkc

c

Effinterf : Dkn
e �Di

ki
�� Di

kc
�

Effenv : Di
ki�De

kl � De
kl

Effinterf : Di
ki �De

kl � Di
ki

73

cations, clients make requests to servers and servers send back replies. Although a

dynamic component-based framework could work with both types of applications,

this thesis focuses on request-reply applications. If function Cross Cond captures the

link crossing conditions, an interface i� It can cross a link l � �n1�n2�� L if the func-

tion Cross Cond�inter�ii�n1�� link�l�� evaluates to True. Functions Effenv and Effinterf

describe the effects of the interface on the link and vice-versa.

� link�n1�n2� � Effenv�inter�ii�n1�� link�n1�n2�� models the effects on link proper-

ties.

� inter�ir�n2� � Effinterf �inter�ii�n1�� link�n1�n2�� models the effects on interface

properties.

In the example illustrated by the Table 4.2, the fact that the MailServerInterface

should cross only links with sufficient available bandwidth is captured by the implicit

condition that the available bandwidth remaining after the interface crosses the link is

greater than 0:

Link�BW :� Link�BWMIN�Link�BW�MSIo�NumReq � MSIo�ReqSize�� 0

4.4 Summary

This chapter has described the application and the network specification models that

could be used by a dynamic component-based framework to automatically deploy

components into a heterogeneous environment. The application model extends the ba-

sic model of component-based applications by allowing user-specified non-reversible

expressions to capture the conditions and the effects of component deployments and

74

linkages, and the interactions between the deployed components and the network.

These expressions are defined using component and interface properties as parame-

ters. Unlike other models (CORBA, Web Services, OGSA) which use only standard

pre-defined properties such as node CPU and link bandwidth, this model allows the

specification of general, user-determined, qualitative (e.g., privacy) and quantitative

(e.g., frame rate, trust level) properties. The expressivity of these models is evaluated

in Chapter 8.

75

Chapter 5

Computing Application

Configurations

Dynamic component-based frameworks resolve incoming user requests by trying to

find application compositions that satisfy users’ QoS requirements and application

deployment conditions, given the current state of the network. As mentioned in

Chapter 2, the problem is to both select the appropriate set of components and map

those components onto the network, given that the application specification uses non-

reversible functions to define deployment and linkage conditions and effects. One

can think of this problem in terms of actions required to realize an application con-

figuration: “place component of a node” and “connect component A to component

B”.

This problem can be considered an instance of the classic AI planning problem,

where a planning algorithm searches for a set of actions that achieve a goal, given

some initial state. However, in the AI space, a similar planning problem is compu-

76

problem

component
placement
problem

plan
deployment

plan

framework

decompiler

planner

planning
compiler

Figure 5.1: Process flow graph for solving ACP.

tationally hard (PSPACE-complete), and complete algorithms, i.e., those that always

find a solution if one exists, usually do not scale well. Algorithms achieve good per-

formance on practical problems by effectively pruning different parts of the search

space, even though the worst case scenarios take exponential time. In component-

based frameworks, scalability concerns stem from two sources: the size of the net-

work, and the number of components. Thus, the planning algorithm needs to deal

with two issues: (1) scalability, and (2) complexity of resource expressions.

The following sections describe in detail the planning algorithm developed to

solve the problem of finding deployments for component-based applications.

5.1 Structure of the planning algorithm

The problem of finding component compositions which satisfy the user QoS require-

ments and the application conditions, given the current state of the network, is called

the Application Configuration Problem (ACP). The module responsible for finding

such valid deployments is the planning module with the structure shown in Fig-

ure 5.1. The compiler module transforms a framework-specific representation of the

ACP into an AI-style planning problem, which can be solved by the planner. The

77

decompiler performs the reverse transformation, converting the AI-style solution into

a framework-specific deployment plan.

The next sections explain in detail how each step is performed when searching for

a valid application deployment.

5.2 Compiling the ACP into an AI-style planning problem

The traditional STRIPS representation of the AI planning problem is defined by the

initial state of the world, a set of operators, and a goal [92]. The initial state contains

a complete set of ground literals. The operators represents actions that are available

to the planning algorithm and could change the state of the world. Each operator

is described with a conjunctive precondition and a conjunctive effect, and defines the

transition function from one world to another one. An operator can be executed in any

world w that satisfies the precondition function. The result of executing the operator

is a new world w� obtained by adding the literals from the effect to the starting world

w. The goal is a propositional conjunction of literals. In AI, any world w is good as

long as it satisfies the goal formula. This representation can be enriched with numeric

measures which capture resources consumed or produced by operators. In this case,

a goal is satisfied by a world w if both the propositional conjunction and the resource

constraints are satisfied.

The description of ACP can be mapped to an AI planning problem in the following

way. The initial state of the world is described by the network topology, the existence

of interfaces on nodes (Boolean values), and the availability of resources (real val-

ues). The set of operators contains two kinds of elements: (1) �pl component�(?n)

78

Table 5.1: Example of AI operator - place ViewMailServer on a node.

1 plVMS(?n: node)
2 PRE: avMSI(?n)
3 cpu(?n) > MSIMaxReq * MSIReqCPU
4 numReq(MSI,?n) > MSIMaxReq * MSIRRF
5 sec(MSI,?n) = True
6 trust(MSI,?n) > 5
7 EFF: avMSI(?n), plVMS(?n)
8 numReq(MSI,?n):=MIN(numReq(MSI,?n)/MSIRRF, MSIMaxReq,
9 cpu(?n)/MSIReqCPU)
10 cpu(?n):=cpu(?n) - numReq(MSI,?n) * MSIRRF * MSIReqCPU
11 sec(MSI,?n):=True
12 trust(MSI,?n):=ntrust(?n)
13 reqSize(MSI,?n):=1000

places a component on a node, and (2) �cr interface�(?n1,?n2) sends an inter-

face across a link. An operator schema has the following sections (line numbers refer

to the code fragment given in Table 5.1):

� logical preconditions of the operator, i.e., a set of Boolean variables (proposi-

tions) that need to be true for the operator to be applicable (line 2);

� resource preconditions described by arbitrary functions that return Boolean val-

ues (line 3-6);

� logical effects, i.e., a set of logical variables made true by an application of the

operator (line 7);

� resource effects represented by a set of assignments to resource variables (lines

8-13).

The schema shown in Table 5.1 describes the placement of the ViewMailServer

(VMS) component on a node. The preconditions result from the conditions in Ta-

ble 4.2 and the fact that MailServerInterface (MSI) is a required interface. The

79

effects come from the effects section of Table 4.2, with MaxReq providing the upper

bound on the NumReq parameter of the implemented interface.

Given the operator definition above, the compilation of the ACP into a planning

problem is straightforward. For each component type and node, the compiler gener-

ates an operator schema for a placement operator. In addition, an operator for link

crossing is generated for each interface type and link. One of the attractive features of

the compiler is that it generates operators on demand, i.e., only if they are necessary

during planning. The initial state is created based on the properties of the network.

The goal of the ACP is translated into a Boolean goal of the planning problem.

5.3 The planning algorithm

In ACP, the size of the network and the number of components affect the number of

operators in the compiled problem. Since often practical problems do not require the

use of all possible operators, what distinguishes a good ACP solution is its ability

to scale well in the presence of large amounts of irrelevant information. The solu-

tion combines multiple AI planning techniques and exploits the problem structure to

drastically reduce the search space.

The intuition behind the planning algorithm proposed in this chapter is to start first

from the goal and search for a subset of operators that achieve the goal; then, search in

this subset for operators achievable from initial state that reach the goal. By breaking

up the search into this two-step process, the search is focused only on the subset

of operators that are relevant for achieving the desired goal. Because the resource

constraints are in general non-reversible functions, the algorithm verifies whether the

80

replay succeeded

goal possible

create RG for goal

add layer to RG

build PG

return plan

NO

YES

NO

NO

YES

YES

extract plan

plan found

YES

NO

REGRESSION PROGRESSION SYMBOLIC EXECUTION

replay plan

PLAN EXTRACTION

goal reachable

Figure 5.2: The algorithm. RG stands for “regression graph”, PG for “progression graph”

resource constraints are satisfied during this second search, instead of the first one. If

no plan is found, the algorithm goes back to the first step and increases the subset of

operators.

The algorithm uses two data structures: a regression graph (RG) and a progression

graph (PG). RG contains operators relevant for the goal. An operator is relevant if it

can participate in a sequence of actions reaching the goal, and is called possible if it

belongs to a subgraph of RG rooted in the initial state. PG describes all world states

reachable from the initial state in a given number of steps. Only possible operators

of the RG are used in construction of the PG. The algorithm consists of four phases

shown in Figure 5.2 and described below.

1. First, a regression phase determines what operators are relevant for the goal.

An operator is relevant if it can participate in a sequence of actions reaching

the goal. The set of relevant operators is further reduced to a set of possible

operators. An operator is possible if it is relevant and belongs to a subgraph of

the regression graph rooted in the initial state.

81

2. Second, a progression phase finds all states possibly reachable from the initial

state given the set of possible operators, thus performing some additional prun-

ing of the regression graph.

3. Third, an exhaustive search in the resulting graph is performed to achieve com-

pleteness. An algorithm is complete if it finds a solution when a solution exists.

4. Plans found in the third phase are symbolically executed to ensure soundness in

the presence of non-reversible expressions in resource preconditions and effects.

If no plans are found, the algorithm re-iterates from the first step by adding one

more layer of operators.

Regression phase. The regression phase considers only logical preconditions and ef-

fects of operators in building the RG, an optimistic representation of all operators that

might be useful for achieving the goal. RG contains interleaving facts and operator

levels, starting and ending with a fact level, and is constructed as follows.

� Fact level 0 is filled in with the goal.

� Operator level i contains all operators that achieve some of the facts of level

i1.

� Fact level i contains all logical preconditions of the operators of the operator

level i.

RG is initially constructed until the goal becomes possible, but may be extended

if required.

82

Progression phase. RG provides a basis for the second phase of the algorithm, the

construction of the progression graph. This graph describes all states reachable from

the initial state in a given number of steps. PG also contains interleaving operator

and fact levels, starting and ending in a fact level. In addition, this graph contains

information about mutual exclusion (mutex) relations [59], e.g., that the placement of

a component on a node might exclude placement of another component on the same

node (because of CPU capacity restrictions). Because of this reason, the PG is less

optimistic than the RG.

� Fact level 0 contains facts true in the initial state.

� For each of the propositions of level i1 a copy operator is added to level i that

has that fact as its precondition and effect, and consumes no resources (marked

with square brackets in the figure).

� For each of the possible operators contained in the corresponding layer of the

RG, an operator node is added to the PG if none of the operator’s preconditions

is mutex at the previous proposition level.

� The union of logical effects of the operators at level i forms the ith fact level of

the graph.

� Two operators of the same level are marked as mutex if (1) some of their pre-

conditions are mutex, (2) one operator changes a resource variable used in an

expression for preconditions or effects of the other operator, or (3) their total

resource consumption exceeds the available value.

83

� Two facts of the same level are marked mutex if all operators that can produce

these preconditions are pairwise mutex.

Since the progression graph is less optimistic than the regression graph, it is pos-

sible that the last level of the PG does not contain the goal, or some of the goal

propositions are mutually exclusive. In this case a new step is added to the RG, and

the PG is reconstructed.

Plan extraction phase. If the PG contains the goal and it is not mutex, then the plan

extraction phase is started. This phase exhaustively searches the PG [8], using a mem-

oization technique to prevent re-exploration of bad sets of facts in subsequent itera-

tions.

Symbolic execution. Our work supports non-reversible functions in resource precon-

ditions and effects. For this reason, symbolic execution is the only way to ensure

soundness of a solution. It is implemented in a straightforward way: a copy of the

initial state is made, and then all operators of the plan are applied in sequence, their

preconditions evaluated at the current state, and the state modified according to the

effect assignments. Note that correctness of the logical part of the plan is guaranteed

by the previous phases; here, only resource conditions need to be checked.

5.4 Decompiling the AI-style solution into a PSF-specific solution

The plan is a sequence of operators: (1) place component on a node

pl�component��node� and (2) cross link with an interface

84

(cr�interface��from��to�). For example, plMSn2 represents the action of

placing the MailServer on node N2, and crMSIn2n1 indicates that

MailServerInterface crosses the link between nodes N2 and N1.

Given a set of such operators, it is straightforward to obtain a framework-specific

deployment plan, which consists of (component, node) pairs and linkage directives.

An example of the latter is (MS,n2,MSI,VMS,n1): send the MailServerInterface

implemented by the MailServer component located on node n2 to the ViewMailServer

component on node n1.

5.5 Example execution of the planning algorithm

To illustrate the planning algorithm, Figure 5.3 describes a simple scenario of deploy-

ing the e-mail application components into a heterogeneous network.

The initial state of the ACP problem contains the e-mail application components

described in Chapter 2 and a network with three nodes (N0, N1, and N2) and three

links. Nodes N0 and N1 are connected by a fast and secure link. Nodes N0 and N2

are connected through a slow and insecure link, while the link between nodes N1 and

N2 is secure, but slow. The goal of the ACP problem is to allow a user executing

on node N0 to efficiently and securely access the MailServer running on node N2.

50Mb/s
50Mb/s

200Mb/s

MS

MCN0

N2

N1VMS

Secure link

Insecure link

Figure 5.3: Component deployment.

85

The only possible solution is to deploy the MailClient on node N0 and connect it to

the MailServer through a ViewMailServer deployed on node N1. Directly linking

the MailClient to the MailServer is not possible because the link between them

does not have enough available bandwidth to satisfy the MailClient requirements.

In addition, the direct link is considered unsafe.

The component (MailClient and ViewMailServer) and interface

(MailServerInterface) specifications were discussed in Chapter 4. Tables 5.2 and

5.3, together with Table 5.1, illustrate the way the planning algorithm compiles the

specifications into operators.

Figure 5.4 shows the RG built by the planning algorithm in order to solve the

problem described above, given the original set of operators. Bold, solid, and dashed

lines correspond to possible subgraphs with 3, 4, and 5 steps respectively. Figure 5.5

shows the progression graph corresponding to the regression graph. Straight lines

show relations between propositions and operators, and the dotted arc corresponds to

a mutex relation. For example, there exists a mutex relationship between crMSIn2n1

(i.e., crossing MailServerInterface from N2 to N1) and crMSIn1n2 (i.e., crossing

MailServerInterface from N1 to N2) because their preconditions are in conflict.

Table 5.2: AI operator - place MailClient on a node.

1 plMC(?n: node)
2 PRE: avMSI(?n)
3 cpu(?n) > MSIMaxReq * MSIReqCPU
4 numReq(MSI,?n) > 100
5 sec(MSI,?n) = True
6 trust(MSI,?n) > 5
7 EFF: plMC(?n)
8 cpu(?n):=cpu(?n) - numReq(MSI,?n) * MSIReqCPU

86

Table 5.3: AI operator - cross link with MailServerInterface.

1 crMSI(?n1: node,?n2: node)
2 PRE: avMSI(?n1)
3 bw(?n1,?n2) > numReq(MSI,?n1) * reqSize(MSI,?n1)
4 EFF: avMSI(?n2)
5 bw(?n1,?n2):=bw(?n1,?n2) - numReq(MSI,?n1) * reqSize(MSI,?n1)
6 sec(MSI,?n2):= sec(MSI,?n1) && sec(?n1,?n2)
7 reqSize(MSI,?n2):=reqSize(MSI,?n1)

The graphs are constructed as described below.

The RG starts with the goal placedMCn0 and searches for all operators that achieve

this goal (Level 0). The only eligible operator is to place MailClient on node

N0 (plMCn0), and it requires that MailServerInterface be available on node N0

(avMSIn0) (Level 1). There are two possible ways of having MailServerInterface

available on that node: cross the MailServerInterface from node N2 or from node

N1; however, both ways require that MailServerInterface is available on those two

Level 5

avMSIn2 avMSIn1

plVMSn1 crMSIn2n1plVMSn2

avMSIn2 avMSIn1

plMSn2 crMSIn1n2

plMSn2 plVMSn2 crMSIn2n1

avMSIn2

plMSn2

crMSIn2n0 crMSIn1n0

avMSIn0

plMCn0

Level 3

Level 2

Level 0G=placedMCn0

Level 1

Level 4

Figure 5.4: Regression graph.

87

crKIn3n0

crKIn1n0

crMSIn3n0

crMSIn1n0

avKIn0

avMSIn0

plMCn0 placedMCn0

Level 2

avKIn3

avMSIn1

avMSIn3

avKIn1

avKIn0

avMSIn0

Level 4Level 3

crKIn2n3

crKIn2n1

crKIn3n0

crMSIn2n1

crMSIn2n3

crMSIn3n0

Level 1

avKIn3

avMSIn3

avMSIn2

avKIn2

plMSn3

plKRn3

plMSn2

plKRn2
em

pt
y

Figure 5.5: Progression graphs.

nodes (avMSIn2 and anMSIn1) (Level 2). Interface MailServerInterface is avail-

able on node N2 if (1) the MailServer is placed on node N2, (2) the interface crosses

from node N1, or (3) the ViewMailServer component is placed on node N2. Similarly,

MailServerInterface is available on node N1 if the ViewMailServer component is

placed on node N1 or the MailServerInterface crosses from node N2 (Level 3). At

this moment, the RG reached a point where the operator avMSIn2 is achievable from

the initial state, because MailServer is running on node N2. Thus, a possible solution

is to directly connect the MailClient on node N0 to the MailServer on node N2.

However, the planning algorithm determines that this is not a valid solution because

the security constraint is not satisfied.

In this case, the algorithm re-iterates by adding an extra step to the RG. In order

to execute any of the operators from Level 3, the MailServerInterface interfaces

needs to be available on nodes N2 and N1. Level 4 is similar to Level 3, and will not be

described again. However, in Level 4, the RG reaches again a state achievable from

the initial state, plMSn2. The new plan is to connect the MailClient on node N0 to

88

the MailServer on node N2, where the connection is routed through node N1. Such a

plan respects the security requirements of the MailClient, but violates the efficiency

requirements. The efficiency of the connection is limited by the worst link, in this

case �N0�N1�. Thus, the plan is not valid and the algorithm needs to re-iterate.

In Level 5, RG reaches once more the initial state and the new plan is to place a

ViewMailServer on node N1, connect the ViewMailServer to the MailServer, and

connect the MailServer on node N0 to the ViewMailServer. This plan satisfies both

the security and efficiency requirements of the MailServer and represents the output

of the planning algorithm.

5.6 Limitations of the planning algorithm

The ACP planning problem is complex and, although the planning algorithm de-

scribed in this chapter is sufficient for the example applications motivating this work,

several additional challenges must be addressed in order to obtain an ideal solution.

� The planning algorithm does not support formulae involving parameters of im-

plemented interfaces; instead, it generates a conservative solution by using up-

per bounds on values of such parameters. These upper bounds are computed

during the progression step.

� The planning algorithm uses the level-based expansion of the RG/PG to opti-

mize only the number of steps required to achieve a goal. Ideally, it should

optimize more complex application-specific cost functions.

� The solution returned by the planning algorithm is greedy, meaning it consumes

89

the maximum of the resources available. Ideally, the algorithm should plan in

such a way that the solution consumes only the minimum necessary resources.

� The algorithm’s response is always Boolean: it returns a plan if one exists, or

none otherwise. A more desirable approach would be for the algorithm to nego-

tiate with the user in case the user requirements cannot be satisfied.

� The planning algorithm plans only one request at a time. This prevents the plan-

ner from providing generally optimal solutions. A possible solution would be to

allow the planner to aggregate several incoming requests and plan accordingly.

Some of these shortcomings are starting to be addressed by other researchers (e.g.,

see [86]).

5.7 Summary

This chapter has presented a planning algorithm able to deploy component-based ap-

plications into heterogeneous environments, while dealing with scalability and arbi-

trary resource functions. The novel feature of this algorithm is that it combines and

solves in one step both the component composition and the component mapping prob-

lems, instead of dealing with them separately. What differentiates this algorithm from

similar algorithms is its ability to scale with the size of the network and its support

for non-reversible resource functions and application structures. Chapter 9 presents a

detailed evaluation of the planning algorithm.

90

Chapter 6

Deploying Component-Based

Applications: Efficiency and

Practicality

This chapter starts by briefly re-iterating the challenges faced by dynamic component-

based frameworks when deploying distributed applications in heterogeneous environ-

ments, and then presents a solution based on the notion of views. Section 6.3 defines

views as component customizations. The next three sections describe how views

improve the automatic deployment process by increasing the chances of successful

planning, and providing efficient support for satisfying security and data consistency

guarantees.

91

6.1 Challenges of the deployment process

As explained in Section 2.2.3, the challenges of achieving a practical and efficient de-

ployment process include the facts that: (1) the original set of components might not

be always sufficient to find a valid configuration that satisfies the application require-

ments, and (2) the efficiency of automatically deployed applications might degrade

because of application requirements for security and data consistency guarantees.

Providing security guarantees when deploying components across multiple admin-

istrative domains is challenging because there is no centralized trusted third party to

act as mediator between participants, and the security decisions must be taken when

only partial knowledge about domains is exposed. In addition, the authorization pro-

cess ideally should guarantee single sign-on, fine-grained, and customizable access

control to resources.

The data consistency problem arises when several replicas sharing data are de-

ployed into the network. In general, component-based applications dynamically adapt

to environment and client QoS changes, thus potentially modifying the application

consistency requirements. Therefore, a dynamic component-based framework must

implement a data consistency protocol that is flexible, application-neutral, but still

capable of using application-specific information to improve its efficiency.

6.2 Overview of the solution

Views represent one possible solution to addressing all of these challenges. Views [65]

were originally introduced in the context of parallel programming languages support-

92

ing a shared object space. In that context, views allowed the reduction of coherence

traffic by defining a coherence granularity smaller than the object and encapsulating

application-specific protocols. Views can be more generally thought of as customiza-

tions of components providing the needed flexibility to generate configurations that

satisfy application requirements. They allow the application developer to specify the

appropriate access control granularity and capture the application information nec-

essary in efficiently maintaining data consistency. In order to support the dynamic

deployment of views, this thesis proposes a run-time infrastructure built atop a decen-

tralized role-based access control and trust management system and an application-

neutral data consistency protocol.

The role-based access control and trust management system provides an integrated

solution to cross-domain authentication, access control, and translation between local

constraint specifications. The latter represents a novel use of a classic technique:

properties are viewed as credentials belonging to a local domain and the translation

between two properties is equivalent to finding a chain of credentials staring from the

former and finishing with the latter.

Gateway that connects a
domain to Internet

Clients accessing the service
provided by the original component.

Data defined by the
original component and
shared with the views.

Nodes running the service
provided by the original
component and its views.

View 2

View 1

Original component

��
��
��

��
��
��
��
��
��
����
��
��
��

�
�
�

�
�
�

��
��
��
���
�
�
�

��
��
��

��
��
��
��
��
��
����
��
��
��

��
��
��

��
��
��
��
��
��
����
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 6.1: Using views during deployment.

93

The data consistency protocol maintains consistency between different views of

the same component. The novel feature of the consistency protocol is that it satisfies

the consistency requirements of component-based applications (application-neutral)

deployed in various configurations (flexible), while using application-specific infor-

mation embodied in the view specification. The data consistency traffic is minimized

by allowing the application to specify (1) data properties to characterize the shared

data, (2) quality triggers to indicate when updates need to be pushed or pulled be-

tween views, and (3) merge/extract methods to merge/extract updates from/into views

and original components [50], all using an application-neutral protocol.

Figure 6.1 illustrates one example of using views. In this example, the application

consists of only one component that can be replicated as desired, and several clients

who want to access the functionality of this application from three domains. The main

characteristics of this component are that: (1) the data, which is represented in the fig-

ure by the four geometric shapes, used by the component needs to be kept consistent

among replicas, and (2) the component consumes a large amount of resources while

running. In order to satisfy the user QoS requirements, a framework might decide

to instantiate the component in each domain. However, such a decision might not

always be realizable. First, the network resources might not be sufficient to satisfy

the component resource constraints. Second, from a security point of view, a client

would get access to the entire component, even if he might not have the appropriate

rights. Third, the application efficiency might degrade because of the cost of main-

taining consistency of the component state. A different approach is to automatically

customize the original component based on the resource availability and/or client cre-

dentials, thereby creating new components with different properties and requirements,

94

i.e., views. In Figure 6.1, the views are using subsets of the original data. Using such

views may prove beneficial in this example scenario because they can (1) consume

fewer resources than their “parent”, (2) enforce the appropriate access control to the

component functionality and data, and (3) reduce the consistency traffic by defining a

smaller coherence granularity than the entire object.

6.3 Views - Component customizations

6.3.1 Definition

Views provide a mechanism by which to define multiple physical realizations of the

same logical component. A component is a view of another component, called origi-

nal component, if it shares (1) functionality or (2) data with the original component.

For a more formal definition, let’s assume that Ct is the set of component types be-

longing to an application, and a component c � Ct implements a set of methods Fc

and defines a set of public variables Vc. A new component v � Ct is a view of the

original component c if the view has at least one of the following two properties: (1)

Fv�Fc �� �, and (2) Vv�Vc �� �. We refer to the former as object views, and to lat-

ter as data views. In practice, most views are likely to exhibit characteristics of both

object and data views.

In the context of dynamic component-based frameworks, views define a family of

auxiliary components that embody different ways of realizing the component func-

tionality. In general, the functionality of the original component can either be com-

pletely replicated in the auxiliary component, be completely present in the original

component (with the auxiliary component just serving as a gateway to this function-

95

ality), or be somewhere between these two extremes.

Table 6.1: The original Java object.

public interface MessageI �
void sendMessage(Message m)
Set receiveMessages() �

public interface AddressI �
String getPhone(String name)
String getEmail(String name) �

public interface NotesI �
void addNote(String note)
boolean addMeeting(String name) �

public class MailClient implements
MessageI, AddressI, NotesI �
Account[] accounts;
void sendMessage(Message mes)��
Set receiveMessages()��
String getPhone(String name)�
findAccount(name).getPhone();

�
String getEmail(String name)�
findAccount(name).getEmail();

�
void addNote(String note)��
String addMeeting(String name)��
Account findAccount(String name)�
� return accounts.get(name); �

�

Table 6.2: The view specification.

�View�
�Name = ViewMailClient Partner�
�Represents�
�Name = MailClient�

�Restricts�
�Interface� name=MessageI

type=local
�Interface� name=NotesI

type=rmi
�Interface� name=AddressI

type=switch
�Adds Fields�
�Field name = accountCopy

�Adds Methods�
�MSign� VMC Partner()
�MBody� /** constructor body **/
/** Additional methods, including some
required by the data consistency
protocol (see Section 6.6)
**/

�Customizes Methods�
�MSign� addMeeting(String)
�MBody� /** new code for method**/

6.3.2 Specifying views

There are several possible ways of obtaining the information required for constructing

a specific view. The approach adopted in this work is based on annotations, where

users can identify which parts of an original component need to be copied, added, or

modified into the view.

96

Table 6.3: View source code.

public interface MessageI �
void sendMessage(Message mes)
Set receiveMessages()

�

public interface AddressI extends Serializable �
String getPhone(String name)
String getEmail(String name)

�

public interface NotesI extends Remote �
void addNote(String note) throws RemoteException
boolean addMeeting(String name) throws RemoteException

�

public class ViewMailClient Partner implements
MessageI, AddressI, NotesI �

Account[] accounts; NotesI notesI_rmi;
AddressI addrI_switch;

public ViewMailClient Partner (String[] args) �
/** rmi code **/
notesI_rmi = (NotesI) Naming.lookup(...);
/** switchboard code **/
addrI_switch = (AddressI) Switchboard.lookup(...);
/** user supplied code **/

�

void sendMessage(Message mes)�/** the original code **/�
Set receiveMessages() �/** the original code **/�
String getPhone(String name)�return addrI_switch.getPhone();�
String getEmail(String name)�return addrI_switch.getEmail();�
void addNote(String note) �notesI_rmi.addNote(); �
boolean addMeeting(String name)�/** user supplied code **/�

�

97

For a better illustration of the view concept, Table 6.2 shows a simple schema

that can be used as a guideline, using as example a component from the mail applica-

tion given in Table 6.1. The ViewMailClient Partner is a restricted version of the

MailClient component, able to send/receive messages, add notes into a remote diary,

and query the address book in a secure fashion. Such a component is useful if clients

use untrusted machines (e.g., an airport terminal) to check their e-mail. This example

assumes that the components are written in Java. A minimal view is fully described

by a name (ViewMailClient Partner), and a represented component (MailClient).

The minimal view can be enriched by providing a list of implemented interfaces, such

as MessageI, AddressI, NotesI, defining new methods and fields, and copying or

customizing existing methods. For each interface, the view description can specify a

type (local, rmi, or switch) to indicate how the interface is available to clients. The

methods defined by a local interface should be available only to clients running in

the same JVM as the view. Interfaces can be also required to be only available on

the original component. Access to such interfaces is permitted either via RMI (rmi)

or a secure communication channel called Switchboard (switch), as described in Sec-

tion 6.5. As part of the view definition, the user can also specify methods required for

data consistency, as discussed in Section 6.6.

The actual generation of the code for a view is deferred to the time this view is

first deployed. This ensures that despite their flexibility, views incur management

costs proportional to their utility.

98

6.3.3 View instantiation

VIG (View Generator) is a tool developed to automatically generate Java-based views.

VIG takes as input the class file of the original component and the definition of the

view given as a set of rules. The output is a new classfile corresponding to the view.

Table 6.3 shows the Java code corresponding to the view bytecode, generated from

the original component from Table 6.1 and the set of rules from Table 6.2.

VIG extends the API’s provided by the Javassist [85] toolkit to manipulate Java

objects at the bytecode level. The view generation process consists of two steps: (1)

reading the view description and the represented component, and (2) modifying exist-

ing method/interfaces and adding new methods to the view. If the view already exists,

VIG does not attempt to recreate the view. If VIG is unable to generate correct byte-

code (e.g., a new method uses a variable that is not defined in the original component

or the method), it triggers an error that indicates how the rules can be rectified. There-

fore, VIG can be used to both generate views at runtime and guide the programmer’s

effort to correctly write the view rules. The grammar of the view definition rules (Ta-

ble 6.4) is very simple, but expressive enough to comprise a large set of operations.

In general, a view is specified by the name of the view and the original class. How-

ever, such a minimal view can be enriched with a set of imported packages, possible

extended classes/views, and a list of operations (e.g., add/copy/customize fields/meth-

ods/interfaces). The following paragraphs enumerate and describe in detail each op-

eration described by a rule. All line numbers refer to the Table 6.4. A more complete

description of the VIG tool is given in Appendix A.

99

Table 6.4: Grammar for XML-based description of views.

1. ViewDefinition := <views> ViewRules </views>
2. ViewRules := ViewRule | ViewRules
3. ViewRule := <view> ViewName RepresentedClass ImportedPackages

ExtendedClass ExtendedView RestrictedInterfaces
CopyList AddList CustomizeList </view>

4. ViewName := <name> ViewClassName </name>
5. ViewClassName := String
6. RepresentedClass := <represents> RepresentedClassName </represents>
7. RepresentedClassName := String
8. ImportedPackages := ImportedPackages | ImportedPackage | empty
9. ImportedPackage := <imports> ImportedPackageName </inports>
10. ImportedPackageName := String
11 ExtendedClass := <extends> ExtendedClassName </extends> | empty
12. ExtendedClassName := String
13. ExtendedView := <vextends> ExtendedViewName </vextends> | empty
14. ExtendedViewName := String
15. RestrictedInterfaces := <restricts> InterfaceList </restricts> |

empty
16. InterfaceList := InterfaceList | Interface
17. CopyList := <copy> CopyFields CopyMethods </copy> | empty
18. CopyFields := CopyFields | Field | empty
19. CopyMethods := CopyMethods | Method | empty
20. AddList := <add> AddFields AddMethods AddConstructors

AddInterfaces </add> |empty
21. AddFields := AddFields | Field | empty
22. AddMethods := AddMethods | Method | empty
23. AddConstructors := AddConstructors | Constructor | empty
24. AddInterfaces := AddInterfaces | Interface | empty
25. CustomizeList := <modify> CustomizeMethods </modify> | empty
26. CustomizedMethods := CustomizeMethods | Method
27. Field := <field> FieldDeclaration </field>
28. FieldDeclaration := String
29. Method := <method> MethodDeclaration </method>
30. MethodDeclaration := String
31. Constructor := <constructor> ConstructorDeclaration </constructor>
32. ConstructorDeclaration := String
33. Interface := <interface name= InterfaceName type= InterfaceType > |

<interface name= InterfaceName >
34. InterfaceName := String
35. InterfaceType := String

100

View name (lines 4-5). The name of the view is a mandatory field and should contain

the fully qualified name of the view. (e.g., mail.client.ViewMailClient).

Original class name (lines 6-7). The name of the original component is a mandatory

field and should contain the fully qualified name of the original class

(e.g., mail.client.MailClient).

Imported packages (lines 8-10). Similar to the Java language, VIG allows the use

of import declarations to specify the location of used methods and fields. Whenever

VIG encounters a method or a field that is not defined in the original class or its super

classes, VIG searches the list of imported packages for the class that declares the field

or the method.

Extended class (lines 11-12). Similar to the Java language, a view can extend one

Java class. The name of the extended class should be a fully qualified name.

Extended view (lines 13-14). In addition, VIG allows a view v to extend another

view v�. The only condition is that the original class of the extended view v� is either

the same or is extended by the original component of the initial view v. The view

extension consists of three steps: (1) generating the extended view v�, if the extended

view does not exist, (2) adding the descriptions of the two views v�� � v� v�, and (3)

generating the newly formed view. The process iterates if the extended view extends

another view. It is important to note that a view cannot extend both a class and another

view.

101

Restricted interfaces (lines 15-16). The list of restricted interfaces indicates how

the functionality of the view is a subset of the functionality of the original compo-

nent. A restricted interface is specified by the fully qualified name and the type of

the interface. The type can be local, rmi, or switch. The default type is local. Lo-

cal interfaces represent that part of the functionality of the original component that

could be executed on a remote node. Thus, local interfaces do not require any pro-

cessing, and can be copied as is. rmi and switch interfaces represent the function-

ality of the original component that should be accessed only by remote invocation.

Such interfaces are transformed by VIG by extending java.rmi.Remote, respectively

java.io.Serializable. In addition, all methods defined by interfaces are annotated

by VIG as local, rmi, or switch, depending on their corresponding interfaces. The

processing of the actual method implementations is described below.

Add interfaces (line 24). VIG is responsible only for adding the given interfaces into

the view declaration. The programmer needs to ensure that all the methods declared

by the interfaces are also implemented in the view. The prototype VIG implementa-

tion does not check whether all methods have implementations.

Copy fields (line 18). VIG looks up the class that contains the field declaration and

copies the field into the view. In general, fields are added either because they are used

by a method, or because they are declared by the view description. Similar to the case

of methods, the only problem is finding the correct field declaration. VIG solves this

problem by following the inheritance chain.

102

Add fields (line 21). VIG adds the field to the view, if the field is not already defined

in the view.

Copy methods (line 19). As in the case of interfaces, methods can be defined as

local, rmi, or switch. Methods are defined as local when they can be copied and

locally executed on remote nodes. This is useful when methods are compute-intensive

and do not process sensitive data. Methods are annotated as rmi and switch when

they should always be accessed through remote invocations. For example, methods

that implement a secret algorithm or process secure data should not be executed on

remote, untrusted nodes.

Methods defined as local or by local interfaces are copied from the represented

component into the view. The bodies of the methods defined by rmi or switch in-

terfaces are transformed into simple RMI, respectively Switchboard calls against the

original component. The main problem when copying existing methods from the

original class into the view is to find the correct implementation. This problem arises

when there is an inheritance chain from the original component to a unique super

class. VIG solves this problem by following the inheritance chain and looking for the

right implementation. Once the right method implementation is found, VIG parses

the method code and recursively copies the declarations of all used class fields and

invoked local methods.

Add methods (line 22). In order to add a new method, VIG extracts the method

signature and body from the view description. The actual addition is simplified by

the fact that Javassist allows the correct insertion of pure Java code into the view

103

bytecode. 1

Add constructors (line 23). The view should always have at least the default con-

structor. In addition, one can define other constructors. The process of adding a

constructor is identical to adding a method.

Customize methods (line 26). Customizing a method is equivalent to a combination

of copying and adding methods. First, VIG searches for the correct implementation

of the given method. Next, it creates a new method by changing the body of the found

method with the new body. Then, VIG adds the new method to the view.

In addition to generating the bytecode for views, VIG can be also used as a de-

bugging tool when writing the rules. There are two common checks executed by VIG

before each operation. The first one triggers a BadFormatException if the field or the

method to be added/copied/customized already exists in the view. The second check

is triggered as a consequence of VIG trying to find the correct definition of a given

field or method. VIG searches, in order, the original component, the super classes of

the original component, and the classes belonging to any of the imported packages.

If the search is successful, VIG uses that field or method declaration to perform the

operation. Otherwise, VIG triggers a BadFormatException. The programmer can

use the feedback provided by VIG to correct the rules.

As mentioned before, views offer three advantages in the context of dynamic

component-based frameworks: (1) improving the likelihood of successful component

1Javassist verifies the syntax of the added Java code.

104

deployment, (2) providing a finer granularity at which to authorize and enforce access

control, and (3) minimizing the data consistency traffic by defining smaller granular-

ities than the entire component. The following three sections explain in more detail

each of these advantages.

6.4 Using views to improve chances of successful planning

Dynamic component-based frameworks work with a set of reusable components, se-

lecting among and customizing these components as appropriate for the application

and client QoS requirements. Whether or not the planning module is in fact able to

come up with a deployment schedule is dependent on the set of available component

types.

Views provide a convenient mechanism for enriching the set of components, with-

out requiring onerous application developer input. By merely distributing component

functionality between the original and auxiliary objects, views increase the likelihood

of the planner finding a component deployment in constrained environments.

Additional flexibility arises from allowing view properties to be configured at cre-

ation time. For example, the Privacy property of a newly created view is set to True,

if the view definition adds cryptographic mechanisms to protect the outgoing mes-

sages. Such properties can be specified in the same way as the original component

properties (see Chapter 4).

105

6.5 Using views to satisfy security guarantees

Views help to satisfy security guarantees by providing a flexible mechanism to restrict

access control to original components. In order to better understand how views can be

used to provide security guarantees, Figure 6.2 illustrates the security requirements in

a dynamic component-based framework by contrasting an insecure deployment pro-

cess with its secure version. The shaded boxes represent the additional steps which

transform an insecure deployment process into a secure one. Clients requesting ac-

cess to an interface (which triggers new deployments or attachment of the clients to

existing components) must first be authenticated and then authorized to receive the ap-

propriate level of service. Based on the client credentials, the framework must enforce

the appropriate level of access. Then, the planning module takes into consideration

the client credentials, the component credentials, and network resource credentials

to generate a valid deployment that achieves the desired level of service. If such a

Receive request Deploy components Create connectionsFind plan

Receive request

Translate properties

Authorize user

Customize component

Authorize node Authorize component

Deploy components Create connectionsFind plan

Insecure

Secure

Figure 6.2: Distributed application deployment protocol - Secure vs. insecure.

106

deployment exists, the framework deploys the components on the appropriate nodes

and makes the necessary connections between components. This requires that the

components and the network resources authorize each other: a node is authorized to

host a component, and a component is authorized to execute on a node. Addition-

ally, deployed components may make their own requests for their required interfaces,

which triggers this process recursively. In order to ensure that the communication

between components is private, the framework creates connections on top of a secure

communication abstraction (e.g., SSL or Switchboard).

The additional steps of the secure deployment process can be divided into four

distinct classes: (1) cross-domain authorization of entities (i.e., users, components,

nodes), (2) translating environment properties into properties meaningful for the ap-

plication, (3) enforcing the appropriate access control, and (4) creating secure chan-

nels between components. First, the following sections introduce the mechanisms

employed in order to achieve these goals. Then, their use is illustrated in the context

of the e-mail application example in Section 6.5.5.

6.5.1 Authorizing entities across domains

As described in Chapter 2, dynamic component-based frameworks need to deal with

the problem of authorizing entities across multiple administrative domains, when each

domain is allowed to define its own space of credentials and only make public a

subset of this space. One approach to this problem, advocated by systems such as

Globus Grid [36, 61], is to translate between a system-wide “grid credential” (vir-

tual organization-level credential in CAS) and local accounts to authorize and enforce

security policy for client requests.

107

This section proposes a solution to this problem, which generalizes this approach.

The solution is based on dRBAC, the distributed role-based access control system

and trust management system described in Section 3.3.3. dRBAC offers advantages

of scalability (multiple policy roots are permitted), easier configuration (local policy

need not include translation between grid and local credentials, which is automatically

inferred), and finer-grained control (the rights afforded a request can be modulated to

the credentials associated with it as opposed to the account these translate to). A

detailed discussion of the latter advantage is deferred to Section 6.5.3.

dRBAC provides mechanisms by which each administrative domain can issue in-

dependent credentials to its clients, components, and network resources, and yet these

credentials can be combined to permit cross-domain authorization decisions. The

latter is enabled using dRBAC delegations, which provide a mechanism for map-

ping roles in other domains to roles in the current one. This allows domains/resource

owners to set their own security policy, independent of who is likely to access them.

Clients belonging to other domains are authorized for a service as long as they present

credentials that prove their possession of a role local to the service’s domain. In-

stantiated components receive their own set of credentials permitting use of similar

mechanisms for servicing their requests.

6.5.2 Translating properties across domains

Most component-based systems restrict the set of properties used by application spec-

ifications to a fixed set. One of the goals of this work is to allow applications to define

general, quantitative, and qualitative properties belonging to different namespaces.

One of the main challenges in achieving this goal is translating between properties

108

belonging to different namepaces.

The solution to this problem is motivated by the observation that dRBAC cre-

dentials are just statements about entities within and across administrative domains,

whose authenticity can be cryptographically verified. Thus, a dRBAC credential that

grants the permissions associated with an Object role to a Subject role can also be

interpreted as the statement that “it is true that Subject is an Object”.

This interpretation allows the use of dRBAC credentials to encode various appli-

cation and network-level properties and constraints on these properties, which drive

the deployment process. Properties associated with application components and net-

work resources are encoded using dRBAC credentials. Constraints are specified in

terms of dRBAC system queries: “is X a Y?” (more precisely, the constraint is that X

must possess role Y). Note that by design, dRBAC permits properties and constraints

to be defined in terms of local names, relying on role mapping delegations to define

translations across domains.

6.5.3 Enforcing the appropriate level of access control

Once client credentials are verified and accepted, the framework is responsible for

ensuring that the client cannot access application functionality beyond its rights. Re-

stricting access at the level of methods or interfaces is easily achievable by defining

appropriate views, because views can be built to implement a subset of the function-

ality of the original object. Also, views can be customized to have different internal

implementations depending on their intended uses, say by selecting appropriate prop-

erty values. Access control lists can be established, per component, which specify

the level of service (the view) associated with a given dRBAC role. As described

109

Table 6.5: Access control rules associated with MailClient. These rules are also used to

trigger automatic view creation.

Role View name

Comp.NY.Member ViewMailClient Member

Comp.NY.Partner ViewMailClient Partner

others ViewMailClient Anonymous

earlier, such policy can be established using only roles within the local namespace:

cross-domain requests are first translated by dRBAC into local roles before any access

control decisions are made.

Table 6.5 depicts the description of some access control rules created for the e-mail

application scenario. All members of a company (Comp.NY.Member) are allowed ac-

cess to a view (ViewMailClient Member) to send/receive messages, access the phone

and email directories, and add notes and meetings to their calendar. Partners of that

company (Comp.NY.Partner) can access the ViewMailClient Partner and execute

the same operations, with the exception that the functionality for setting up a meeting

is reduced to only requesting the right to set up a meeting. All other clients have only

the right to access the ViewMailClient Anonymous and browse the email directory.

Enforcing such access control decisions comes naturally because views contain

only the subset of object state required for their local methods, and must interact with

the original component to realize the rest of their functionality (if any). Views permit

single sign-on usage, because authentication and authorization decisions can be com-

pleted when the view is first instantiated. After that, clients are free to access the view

110

they receive, without additional access control. Moreover, by using a Switchboard

secure communication channel between the view and the original component, as de-

scribed below, requests that are deferred to the original component can also proceed

without requiring additional checks.

6.5.4 Creating secure connections

Once the views are generated, the deployment infrastructure issues to the generated

view its own set of credentials, downloads them onto their target nodes, and con-

nects them to other components using secure channels. These channels ensure that

component interactions possess the desired security properties, and avoid the need for

additional access checks after the channel has been established.

6.5.5 Case study: Using views to securely deploy component-based applications

The following example uses the e-mail application described in Chapter 2 to illustrate

the use of views for satisfying security requirements.

In this example, three sites (e.g., New York, San Diego, and Seattle) have users,

nodes, and links, and are running a dynamic component-based framework in order to

automatically provide access to the e-mail application owned by the New York site.

The sites in New York and San Diego represent two offices of the Comp organization.

The site in Seattle represents the office of the Inc organization, which is a partner of

the Comp organization.

For each site, the framework has a security module (Guard) that generates certifi-

cates, defines roles, creates access control lists, authenticates, and authorizes entities.

111

The assumptions are that (1) NY-Guard is responsible for the correct use of the e-

mail application and all clients located in New York, (2) SD-Guard manages the San

Diego clients even though they should be considered as belonging to the same logical

domain as the New York clients, and (3) SE-Guard manages all clients from Seattle.

In order to provide security guarantees, a dynamic component-based framework

should:

1. Authorize clients before accessing a service. The three users are: Alice from

New York, Bob from San Diego, and Charlie from Seattle. They should be

allowed to access the e-mail application only if they have credentials accepted

by the New York site.

2. Authorize nodes before choosing them for component deployment. In this ex-

ample, the New York site has Dell machines running Linux, San Diego site has

Dell machines running SuSe, and the Seattle site has IBM machines running

Windows. Components should be deployed on a node only if the node is trusted

by the New York site, the owner of the application. This step also includes

mapping the network properties onto application specific properties.

3. Provide the necessary credentials, such that nodes can authorize components

before executing them. In this example, all components owned by the New

York site are trusted and can be executed on any node of the three sites.

Table 6.6 presents an example of dRBAC credentials that ensures correct autho-

rization of clients, nodes, and components. As explained in Chapter 3, dRBAC cor-

rectly authorizes an entity to own a required role if there is a valid chain of dRBAC

credentials that maps the entity’s original role into the required role.

112

Table 6.6: The roles and certificates generated by the Guard modules

New York

User Auth. (1) [Alice � Comp.NY.Member] Comp.NY

(2) [Comp.SD.Member� Comp.NY.Member] Comp.NY

(3) [Comp.SD � Comp.NY.Partner ’] Comp.NY

Node Auth. (4) [Dell.Linux� Mail.Node with Secure=�true,false� Trust=(0,10)] Mail

(5) [Dell.SuSe � Mail.Node with Secure=�true,false� Trust=(0,7)] Mail

(6) [IBM.Windows� Mail.Node with Secure=�false� Trust=(0,1)] Mail

(7) [Comp.NY.PC � Dell.Linux] Dell

Comp. Auth. (8) [Mail.MailClient � Comp.NY.Executable with CPU=100] Comp.NY

(9) [Mail.Encryptor� Comp.NY.Executable with CPU=100] Comp.NY

(10) [Mail.Decryptor� Comp.NY.Executable with CPU=100] Comp.NY

San Diego

User Auth. (11) [Bob � Comp.SD.Member] Comp.SD

(12) [Inc.SE.Member� Comp.NY.Partner] Comp.SD

Node Auth. (13) [Comp.SD.PC � Dell.SuSe] Dell

Comp. Auth. (14) [Comp.NY.Executable� Comp.SD.Executable with CPU=80] Comp.SD

Seattle

User Auth. (15) [Charlie � Inc.SE.Member] Inc.SE

NodeAuth. (16) [Inc.SE.PC � IBM.Windows] IBM

Comp. Auth. (17) [Comp.NY.Executable� Inc.SE.Executable with CPU=40] Inc.SE

Client authorization. The goal is to allow clients to use credentials defined by their

local Guard for both local and cross-domain authorization. The framework achieves

this goal by using dRBAC to find a mapping from a role to another role, even if

113

the roles are created by different domains. For example, Bob works in San Diego and

holds credential (11) created by SD-Guard, which associates the role Comp.SD.Member

with Bob’s identity. If Bob wants to access the mail service, he should be authorized as

one of the roles defined by NY-Guard (e.g. Comp.NY.Member or Comp.NY.Partner).

In this case, the run-time system is able to to conclude that Bob is entitled to the role

of Comp.NY.Member because of the availability of credentials (2) and (11).

Node authorization. The node authorization process consists of two steps: (1) the

actual authorization of the node, and (2) the transformation of the node properties

into properties meaningful to the application. The second step decides whether the

node is useful during planning or not. The first part of the node authorization can be

easily achieved in a similar way to the client authorization.

A more interesting question is how to transform the node properties generated by

one administrative domain into properties that are meaningful to the application. The

challenge arises from the fact that the component developer has no a priori knowledge

of the node(s) where the component may be deployed. For example, the policy of the

e-mail application in Table 6.6 is expressed only in terms meaningful to the program-

mer’s domain, and states that (1) Dell machines installed with Linux are secure and

have a trust level between 0 and 10 (credential 4); (2) Dell machines installed with

Suse are secure with a trust level between 0 and 7 (credential 5); and (3) IBM ma-

chines installed with Windows are not secure and have a trust level between 0 and 1

(credential 6). Similarly, all node credentials are defined in terms of properties local

to their domains. For example, all machines from the San Diego site have a credential

(13) generated by Dell, stating that they are running SuSe. The framework decides

114

to deploy a mail component on a node only if run-time infrastructure finds a possible

chain of credentials that maps a node credential to a policy credential. In this example,

the machines from San Diego can be mapped from credential (13) to credential (5).

A similar process can be used to map link properties onto application properties.

Component authorization. The second part of the mutual authorization between a

node and a component requires that a node accept the component before allowing

it to run. In this case, nodes should be able to authorize components, even if the

components might belong to a different domain. In this example, NY-Guard creates

local credentials for three components that need to be deployed in different domains:

MailClient in New York, Encryptor in San Diego, and Decryptor in Seattle. SD-

Guard defines a Comp.SD.Executable role to specify that all components having this

role will be allowed to run on the San Diego machines with a limit of 80% in CPU

consumption. In a similar way, SE-Guard defines a Inc.SE.Executable role that

restricts the CPU consumption to 40%. Then, both SD-Guard and SE-Guard asso-

ciate these roles to the Comp.NY.Executable role. This allows NY-Guard to generate

only local credentials (Comp.NY.Executable) for the MailClient, Encryptor, and

Decryptor components. Whenever a component is deployed on a node, it presents

a chain of credentials. Using dRBAC, the guard associated with the site authenti-

cates the signatures and establishes the validity of all the credentials in the chain. The

component is accepted only if the guard recognizes the chain of credentials as valid.

115

6.6 Using views to efficiently satisfy data consistency requirements

The data consistency problem arises when a dynamic component-based framework

deploys several data views of the same component. In such cases, the views and the

original component might require that the shared data be synchronized. There are

several challenges in providing consistency for component-based applications that

differentiate this problem from ensuring consistency in distributed shared memory,

distributed database or distributed file systems. First, the data consistency protocol

must work with general component-based applications, without any knowledge on the

application internals. Thus, the consistency protocol cannot make any assumptions

(e.g., read/write patterns or the data structure) that are valid across all applications.

The only application-specific information used by the protocol is the one exposed by

the application through its interfaces, properties, and requirements. Second, different

component-based applications require different consistency levels and the protocol

should be able to accommodate all applications. Third, the data consistency proto-

col should be able to dynamically adapt to any dynamic changes in the application

consistency requirements.

Therefore, the goal is to design a data consistency protocol that satisfies the consis-

tency requirements of component-based applications (application-neutral) deployed

in various configurations (flexible), while using application-specific information to

improve efficiency.

This section describes such a protocol which uses views to satisfy the data con-

sistency requirements of component-based applications. This protocol is application-

neutral because it does not make any assumptions about the data structures defined

116

View 1 View 1Original component Original component

View 3View 3

View 4 View 4

View 2 View 2

a) The decentralized architecture b) The centralized architecture

Figure 6.3: Decentralized vs. centralized architectures

by component-based applications, or their data access patterns. However, the protocol

uses application-specific information in order to minimize the data consistency traffic.

The flexibility of this protocol stems from two factors. First, the protocol implements

two modes of operation – strong and weak – in order to support applications with

different consistency requirements. The strong consistency mode ensures that there is

only active view running in the system, providing essentially one-copy serializability

semantics. The weak consistency mode allows multiple active views to simultane-

ously work on the shared data and specify more relaxed consistency levels. Second,

the protocol allows views to either modify at run-time their weak consistency levels

or switch between the strong and weak modes of operation.

6.6.1 Overview of the data consistency protocol

One way of understanding the data consistency protocol is to consider how one might

enforce data consistency in a system where all views associated with an original com-

ponent are identical. In such a system, the functionality of a centralized data con-

117

sistency protocol is realized by two entities: (1) a directory manager associated the

original component and (2) a cache manager associated with each view. The respon-

sibility of the directory manager is to keep track of which views are running in the

system and control which views are allowed to be active (i.e., working on the shared

data). The role of the cache managers is to forward to the directory manager any

requests made by the views, and execute the commands sent back by the directory

manager. In other words, the cache managers are responsible for controlling the flow

of updates between the views and the directory manager.

One of the challenges in designing a data consistency protocol is deciding which

information should be propagated as an update. Current systems propagate either

logs of modifications to be replayed by replicas or modified data to be merged into

replicas. The first solution does not work in the context of component-based applica-

tion because views represent different layouts of the same component and might not

implement the same methods. A log defined by one view might not be executable

on a different view. Thus, the second solution seems to be more appropriate. The

challenge in this case is how to extract and merge the data from/into views and the

original component if the framework has no knowledge about the data structure and

semantics. The solution is to use application-specific functions to extract and merge

data.

The data consistency protocol described at the beginning of this section has a

centralized architecture. The centralized version is more appropriate in the context

of component-based applications because it takes advantage of the pre-established

relationship between the involved entities. All views are logical representations of the

same original component and the original component is regarded as a sink (primary-

118

copy) where all updates are propagated (Figure 6.3). Another advantage of using

a centralized protocol is the reduced number of merge/extract methods necessary to

communicate updates. A decentralized protocol, which considers all views as peers,

requires merge/extract methods between each pair of views (O�n2�); the centralized

protocol requires only such methods between views and the original object (O�n�).

The downside of the centralized protocol is its assumption that the original component

is always running in the system. Fail-safe mechanisms can be implemented; however,

they are not the focus of this thesis.

The interactions between the directory manager and the cache managers are con-

trolled by application-specific information provided at view granularity. The next

sections describe in detail the nature of the information provided by the application

and its use by the the data consistency protocol to satisfy application consistency

requirements. A detailed description of the messages passed between views, cache

managers, and the directory manager can be found in Appendix B.

6.6.2 Application specific information

In general, a dynamic component-based framework has no knowledge of the appli-

cation internals, except what is exposed by the application through its interfaces. In

addition, the framework cannot make any assumptions (e.g., data structure or access

patterns) that are valid across all applications. Without using any application-specific

information about the shared data, the data consistency protocol can only execute

based on worst-case assumptions, such as that all views conflict and that updates

should be sent to all views.

The solution proposed in this section requires the application to expose additional

119

information, which is used to improve the efficiency of the consistency management.

This information is specified at the level of views and falls into three categories:

(1) data properties to characterize the shared data and indicate which views need

to be synchronized, (2) quality triggers to indicate when updates need to be pushed or

pulled between views, and (3) merge/extract methods which define what information

should be synchronized.

Data properties. Both the original component and the views use data properties to

inform the underlying infrastructure of the characteristics of the shared data. A prop-

erty p is defined as a tuple �namep�Dp�, where namep is a unique name and Dp repre-

sents the property values. Dp can be an interval Dp � �dmin�dmax� or a set of discrete

values Dp � �d1�d2� ����dn	.

The framework uses data properties to determine which views share the same data,

if such sharing relationships cannot be statically described. Static relationships are

specified using a static map. The map is created once, when the directory manager

is initialized. The map contains a symmetric matrix, where the number of rows and

columns equals the number of views. If two views vi and v j share data, than the

elements �i� j� and � j� i� in the matrix are set to 1. Otherwise, the elements are set to

0.

Sometimes, it is difficult to statically specify the relationship between two views.

The static matrix indicates such a possibility by setting the corresponding cell value

to1. In such cases, a dynamic set of data properties (see Definition 6.1) can be used

to search for views that share data. If two views vp and vq are defined by two property

sets P and Q, and the sets have a non-empty intersection, the framework considers that

120

the two views share data. Views can dynamically change their shared state, and the

framework captures this behavior by allowing views to change their sets of properties

at run-time. This method is very flexible and can reduce the coherence traffic by not

triggering false conflicts.

dynamic conflict : Ct �Ct ��0�1	

dynamic conflict�vp�vq� �

��
� 0 , if P�Q ��

1 , if P�Q ���

(6.1)

The intersection of two property sets P � �p1� p2� ���	 and Q � �q1�q2� ���	 is defined

as the set of intersections between any two properties of P and Q (see Definition 6.2),

with the assumption that a set of properties does not contain two properties with the

same name (i.e., namei �� namej �i� j).

P�Q �
�

r � �pi � P and �q j � Q s�t� pi�q j � r
�

(6.2)

The intersection between two properties p � �namep�Dp� and q � �nameq�Dq� is not

empty if the properties have the same name and the intersection of the value sets is

not empty (see Definition 6.3).

p�q �

��
� � , if namep �� nameq

�namep�Dp�Dp� , if namep � nameq

(6.3)

Quality triggers. In general, replicas are responsible for deciding when updates should

be either pushed or pulled. This is natural because the synchronization decisions

closely depend on the state of the data and the consistency requirements defined by

the application. This consistency protocol accommodates such behavior by allowing

views to explicitly pull and push updates.

121

One of the goals of a dynamic component-based framework is to simplify appli-

cations by taking such decisions on behalf of the application. In addition to making

explicit calls to push/pull data, views are also allowed to delegate to the system the

right to make the synchronization decisions by defining push/pull/validity triggers. 2

Push triggers indicate when to send the current value of data from the view to the

original component. Pull triggers indicate when the view needs to update the shared

data with the value held by the original component. Validity triggers are executed by

the directory manager upon receiving a pull request from a view, and indicate if the

data currently held by the original component is “good enough” for the requesting

view. If it is not “good”, the directory manager is responsible for getting the most

recent data from the other conflicting views and send it to the requesting view.

If � is a discrete representation of time, push/pull triggers defined by a view v

specify the synchronization moments as a boolean expression of time (t � �) and

view variables �x1�x2� ����, where xi � Vv��i (see Definition 6.4). Similarly, a validity

trigger defined by a view v of an original component c is defined as a function of time

(t � �) and variables of the original component (xi �Vc��i).

Tv�t�x1�x2� ���� :� �Vv
���true� f alse	 (6.4)

There are two ways for the cache manager to evaluate the current values of the object

variables: (1) the object provides the necessary methods to access the variables, or

(2) the cache manager uses reflection to examine the variables (when the components

are defined in languages that support this feature). The implemented prototype of the

dynamic component-based framework described in Chapter 7 works with Java-based

2These triggers are used only when there are multiple active views running in the system (i.e., weak mode).

122

applications, so the latter mechanism is used.

Merge/Extract methods. In order to synchronize the state of all active entities (i.e.,

views and original component), the framework needs to propagate the updates from

views to the original component and in reverse direction. The questions are (1) what

information to propagate, and (2) how to reconcile any conflicts?

As discussed earlier, the consistency protocol creates updates by using merge/ex-

tract methods defined for each view. As in Coda [80] and Bayou [19], the data con-

sistency protocol uses these functions to detect and resolve possible conflicts. Ideally,

the code for the merge and extract methods should be automatically generated by

the framework at run-time, as part of view generation process. An alternative solu-

tion, which admits the possibility of application specific customization and which is

adopted in this thesis, is to add to the view definition the descriptions for the cache

coherence-specific methods that extract the view state and merge updates into it. In

this way, the framework is able to create views and associate the appropriate caching

information at run-time.

The next three sections explain in detail how the data consistency protocol uses

the data properties, triggers, and merge/extract methods to guarantee the required

consistency between views. The first two sections describe the directory manager,

the cache manager, and the interactions between them. The behavior of both the di-

rectory manager and the cache manager is captured using state machines that interact

through messages. A complete description of the messages sent between views, cache

managers, and the directory manager can be found in Appendix B. The last section

123

presents two examples that illustrate the data consistency protocol.

6.6.3 Directory manager

The directory manager is the central entity of the data consistency protocol. Each

original component is associated with a directory manager, and its role is to keep

track of all active views in the system, deal with conflicts, and assist the views in

acquiring or releasing the most current image.

Figures 6.4 and 6.5 describe the behavior of the directory manager protocol when

the consistency level is strong, respectively weak. Strong consistency ensures that

there exists only one active view at any moment of time. Weak consistency allows

several views to simultaneously execute on active images. Initially, the directory man-

ager is in the DM VALID state. This means that the only entity running in the system

is the original component. Upon creation, cache managers register with the direc-

tory manager by sending a unique ID and a set of view properties (registerCM).

When the directory manager receives a getImage request from a cache manager,

it checks whether the the view conflicts with other views. If there are conflicting

DM_Valid

DM_Strong

sendImageDM /
mergeImageObject

extractImageObject
sendImageCM

registerCM /
unregisterCM /

getImage /
invalidateImage

DM_Strong_waiting

getImage /
extractImageObject
sendImageCM

Strong /

Figure 6.4: DM - Strong consistency

DM_Valid

DM_Weak

DM_Weak_waiting

registerCM /
unregisterCM /

sendImageDM /
mergeImageObject

sendImageDM* /
mergeImageObject*

extractImageObject
sendImageCM

Weak /

getImage /
releaseImage

sendImageCM
extractImageObject
getImage /

Figure 6.5: DM - Weak consistency

124

Weak
DM_WeakDM_Strong

Weak_to_Strong_waiting

Weak /

sendImageDM /
mergeImageObject

Strong /
invalidateImage

DM_Strong_waiting DM_Weak_waiting

Weak_to_Strong_waiting

sendImageDM /
mergeImageObject

Strong /
invalidateImage

Figure 6.6: Directory manager - Transitions between levels of consistency

views, the directory manager asks them to send the current images, merges these into

the original component, and sends the final image to the requesting cache manager

(sendImageCM). A cache manager is removed from the list of active cache managers

only if it sends an unregisterCM message.

The difference between strong and weak consistency lies in the way the direc-

tory manager behaves when there are multiple views running in the system compared

with only one active view, and a getImage request arrives. In the strong consistency

case, the directory manager asks the only view that has an active image to release

the image (invalidateImage) and enter a CM INVALID state. In the weak consistency

case, the directory manager asks all conflicting views to send their updated image

(releaseImage). However, the views remain in the IM ACTIVE state and can keep

working. The images extracted from views (extractImageView) are merged into

the original component (mergeImageObject). Only after this, the directory manager

extracts the image from the original component and sends it to the requesting view.

The directory manager can dynamically switch between the two levels of consis-

tency. Switching from strong to weak consistency does not require additional steps,

because the strong case is equivalent to a weak one with only one active view. The

directory manager can simply change the mode of operation. Switching from weak to

strong consistency is achieved by gathering all the active images and merging them

125

into the original component (invalidateImage). In this way, the directory manager

ensures that there is only one active view in the system.

6.6.4 Cache manager

A cache manager is automatically initialized when the view is created. Figure 6.7

shows how the cache manager changes its state depending on external events. The

initial state of the cache manager is CM INVALID. First, the cache manager registers

with the directory manager by presenting a list of properties that characterizes the

data used by the view (registerCM). Once registered, the cache manager changes its

state to CM REGISTER. This means that the cache manager is ready to start. However,

the data contained by the view is incorrect. The view initializes its state by sending

an initImage request to the cache manager. The cache manager forwards the request

to the directory manager (getImage), changes the state to CM WAITING and waits for

the correct image of the original object to arrive from the directory manager. When

the directory manager has the correct image, it sends the image to the cache man-

startUseImage /

CM_registeredCM_invalid IM_active
startUseImage /

endUseImage /
IM_currentCM_waiting

initImage /
getImage

acquireImage /
getImage

initImage /
getImage

initImage /
acquireImage /

sendImageToCM /
mergeImageView

sendImageDM

releaseImage /
extractImageView

IM_invalid
invalidateImage /
extractImageView
sendImageDM

sendImageToCM /
mergeImageView

getImage
startUseImage /

releaseImage /
invalidateImage /

killImage /
unregisterCM

killImage /
unregisterCM

/ registerCM

endUseImage /

Figure 6.7: Cache manager

126

ager (sendImageDM). The cache manager merges the latest image of the data into the

view by executing (mergeImageView) and changes the state to IM ACTIVE. Upon fin-

ishing, the view releases the current image (killImage) to the directory manager and

announces that the view is no longer active (unregisterCM).

During execution, the view uses the startUseImage and endUseImage messages

to delimit the portions of the code which process shared data. In the strong consis-

tency case, a view uses these two messages to (1) acquire and release the control over

the shared data and (2) prevent the cache manager from extracting the image of the

working data while it is being modified. In the weak consistency case, the usage of

both triggers and the startUseImage and endUseImage methods reduces the traf-

fic between the cache manager and directory manager. Without triggers, the cache

manager would ask pull and push updates every time either of the two methods is ex-

ecuted. Without the methods, the cache manager would send updates every time the

triggers would evaluate to true. The combination of the triggers and methods forces

the cache manager to send and receive updates only when the methods are executed

and the triggers evaluate to True.

There are two reasons for the cache manager to extract the current image and send

it to the directory manager: (1) the directory manager asks for the image by sending

invalidateImage or releaseImage messages, and (2) the synchronization policy of

the object requires it (i.e. the caching trigger evaluates to true). In both cases, the

cache manager extracts the current state of the image (extractImageView) and sends

it to the directory manager (sendImageCM).

127

6.6.5 Examples of interactions in the data consistency protocol

Strong consistency

Figure 6.8 illustrates the interactions between the directory manager and the cache

managers associated with two views running in the strong mode. In this example,

the only active entities in the system are the original component C and its views V1

and V2. The property defined by all entities is P. The values associated to P by the

three entities are different: �x�y	 for V1, �x�z	 for V2, and �x�y�z	 for the original

component.

When the view V1 is deployed, the view creates a cache manager (step 1) that

registers with the directory manager (step 2) and asks for the current data (steps 3,4).

CM_1 DM CM_2

2. registerCM (V1,(P,{x,y}))1. new CM (V1,(P,{x,y}))

4. getImage

5. sendImageCM

9. registerCM (V2,(P,{x,z}))

11. getImage

12. invalidateImage

18. sendImageDM

19. unregisterImage
20. killImage 21. unregisterCM

13. sendImageDM 14. sendImageCM

8. new CM (V2,(P,{x,z}))

10. initImage

15. startUseImage

16. endUseImage

17. killImage

6. startUseImage

7. endUseImage

V1 (P,{x,y}) V2 (P,{x,z})

3. initImage

C (P,{x,y,z})

Figure 6.8: Strong consistency - Data consistency protocol

128

The directory manager looks for other views sharing data with the requesting view.

Currently, there is none and the directory manager extracts the data from the original

component and sends it to the view (step 5). When view V2 asks for the current data,

the directory manager finds that V1 is active and conflicts with V2. The directory

manager sends an invalidation request to V1, waits until V1 executes endUseImage,

stops V1 from working, and gives the control to V2 (steps 12,13,14). This ensures that

there is only one active view in the system. In order to prevent the cache manager to

merge or extract updates while working on it, the view needs to mark the code that

processes the data as mutually exclusive (steps 6,7). At the end, the view announces

to the cache manager and thus the directory manager about its intention to stop using

the data (steps 20,21).

Weak consistency

Figure 6.9 illustrates the behavior of the two views V1 and V2 when their data consis-

tency requirements are weak. In addition, the view V1 defines time-based pull triggers

that periodically evaluate to True. There are a few differences between the way the

directory manager and the cache managers interact in the strong and weak scenar-

ios. First, the directory manager no longer invalidates the data images used by views,

when it needs to extract updates. In the weak case, the directory manager only asks

the cache managers to release the data, and allows the views to continue running on

stale data. Second, the cache manager associated with the view V1 does not ask the

directory manager for the current image of the data every time the view executes

startUseImage. Because the view has also defined pull triggers, the cache man-

agers send a getImage request to the directory manager only when the view execute

129

startUseImage and the pull trigger evaluates to True.

6.7 Summary

This chapter has presented several mechanisms based on views which could be em-

ployed by a dynamic component-based framework to achieve the goals of a secure,

efficient, and practical deployment. Views are defined in Section 6.3 as customiza-

tions of original components, which could be dynamically instantiated at run-time

using the VIG tool. Views help achieve a practical and efficient deployment process,

Pull
trigger

Pull
trigger

CM_1 DM CM_2

2. registerCM (V1,(P,{x,y}))1. new CM (V1,(P,{x,y}))

4. getImage

11. registerCM (V2,(P,{x,z}))

13. getImage

16. sendImageCM

10. new CM (V2,(P,{x,z}))

12. initImage

17. startUseImage

18. endUseImage

6. startUseImage

7. endUseImage

25. killImage 26. unregisterCM 27. killImage28. unregisterImage

5. sendImageCM

20. getImage

23. sendImageCM

19. startUseImage

24. endUseImage

22. sendImageDM

8. startUseImage

9. endUseImage

V2 (P,{x,z})V1 (P,{x,y})

3. initImage

C (P,{x,y,z})

21. releaseImage

14. releaseImage

15. sendImageDM

Figure 6.9: Weak consistency - Data consistency protocol

130

by permitting planning flexibility, by customizing components to satisfy application

security requirements, and by serving as the granularity at which application consis-

tency is achieved using application-specific weak consistency protocols.

Views, used together with dRBAC and Switchboard for a secure deployment, of-

fer advantages of scalability (multiple policy roots are permitted), easier configura-

tion (local policy need not include translation between global system-wide and local

credentials, which is automatically inferred), and finer-grained control (the rights af-

forded a request can be modulated to the credentials associated with it as opposed to

the local credentials these translate to).

Views, together with the data consistency protocol described in this chapter, help

reduce the cost of maintaining consistency among replicated application components

by allowing the application to provide application-specific information at the level of

views and thus customize the consistency protocol as necessary.

Chapter 9 illustrates the costs of generating views, and the benefits of using views

as the coherence granularity of a data consistency protocol.

131

Chapter 7

Partitionable Services Framework

This chapter describes the Partitionable Services Framework (PSF), a dynamic

component-based framework built to test and evaluate the techniques presented in

the previous chapters.

As described in Chapter 2, component-based frameworks consider applications

as being dynamically built out of independent components that can be flexibly as-

sembled to suit the properties of their environment. The frameworks facilitate on-

demand transparent migration and replication of these components at locations closer

to clients while still retaining the illusion of a monolithic service. PSF is an instance

of a dynamic component-based framework which uses the modeling, planning, and

deploying techniques to achieve an efficient and practical deployment process.

The PSF architecture contains two main components: the PSF Runtime and the

PSF Deployment infrastructure. The former is responsible for taking the decisions

that provide users with seamless access to distributed applications, while the latter

actually executes those decisions.

132

Planner

Discovery

Consistency

Discovery

Consistency

Discovery

Consistency

Discovery

Consistency

3.plan 1. application
registration

PSF Runtime
4. deploy

2. make
request

Deployer

Network Monitor

Registrar Service Description

Wrapper Wrapper

Node

Wrapper

Node

Wrapper

NodeNode

Figure 7.1: PSF architecture.

The PSF Runtime contains three modules: (1) the registrar, (2) the planner, and

(3) the deployer. The PSF deployment infrastructure is formed by wrapper daemons

assumed to be running on every node. Beside supporting component deployment,

wrappers provide other services such as discovering the PSF Runtime upon starting,

and implementing the data consistency protocol described in Section 6.6. All PSF

modules communicate through Switchboard secure channels built on top of dRBAC.

In Figure 7.1, the PSF modules are represented by shaded boxes, and the secure chan-

nels are marked on the figure with thick lines.

PSF is implemented in Java and benefits from the latter’s support for dynamic class

loading, verification, and installation. The prototype PSF implementation has focused

only on run-time aspects that are novel to the framework. In a complete system, PSF

needs to be integrated with other components that are responsible for fault handling

and network monitoring [30].

133

7.1 PSF modules

Registrar. Before users can use PSF, the applications must perform a registration

step. During this step, a component-based application provides full specifications for

each of its components, including the component functionality, and their deployment

requirements and effects (see Chapter 4). These specifications are described in XML-

based files, similar to the ones shown in Chapter 8.

Planner. The main active component of the PSF framework is the planning module,

which is responsible for determining how best to satisfy client requests by instantiat-

ing service components at appropriate locations in the network. The planner makes

this decision based on three inputs: (1) the application specification, (2) the current

state of the network, and (3) the user-specified QoS requirements, by implementing

the algorithm described in Chapter 5. The output of the planner is a valid component

composition described as a list of actions. PSF supports two actions: start component

and connect component. The former specifies the name of the component, the web

server where the source code of the component is located, and any initialization pa-

rameters. The latter contains a list of connections to other components that need to be

created in order for this component to execute correctly. Depending on the application

requirements, the planner may be invoked one or more times to realize an application

deployment.

One of the choices which had to be made when building PSF was whether to de-

sign PSF as a centralized or a decentralized framework. A centralized version has

the advantage of having access to all of the information and using it to make deci-

134

sions, but poses the challenge of how to gather and filter the required information.

The decentralized version eliminates this challenge; however, it bases its decisions on

incomplete information about the status of the entire system. In the end, PSF was

designed as a centralized system because it is difficult to reason about the behavior

of the planning algorithm were it to operate with only partial information. This issue

represents an avenue of future work to further refine the techniques developed in this

thesis.

Deployer. Once the planner finds a valid application composition that satisfies the

user-specified QoS requirements, it communicates the solution to the deployment

module. This module is responsible for securely deploying the components and con-

necting them as necessary, by contacting the wrapper daemons running on each node

and sending them the appropriate instructions. Chapter 6 has discussed the steps in-

volved in this process.

Wrappers. To ensure that the service deployment appears seamless to clients, the

framework relies upon run-time functionality embodied in the wrapper modules; wrap-

pers represent the minimal functionality that must be implemented by every node that

is part of the PSF environment. Once a component is downloaded on a node, the wrap-

per running on that node is responsible for initializing and connecting the component

to other components, according to the required interfaces specifications.

Beside deploying the component, the wrappers provide additional services, such

as discovery and data consistency. Upon starting, wrappers need to contact the PSF

Runtime and register the nodes as participants in the PSF infrastructure. The discov-

135

ery service searches for an active instance of the PSF Runtime and create the initial

connection. The discovery service is provided using the DisCo infrastructure, as ex-

plained in Section 3.3.5. Once the components are deployed and running, the wrap-

pers are responsible for satisfying the application data consistency requirements by

implementing the data consistency protocol presented in Chapter 6.

Secure communication. All PSF entities (clients, wrappers, and the PSF Runtime)

communicate through Switchboard secure channels; the authentication and the autho-

rization services are built on top of dRBAC, as discussed in Chapter 6.

7.2 Module interactions

This section describes the time-line of actions enabled by the framework, as illustrated

in Figure 7.1.

� The runtime system is responsible for registering applications with the frame-

work and serving incoming client requests. The service registers itself with the

framework, providing a meta-description of its constituent pieces and proce-

dures for their assembly (Step 1).

� Whenever a client wants to access the service, the client sends the request to the

run-time system (Step 2), along with supporting credentials.

� Once the runtime system receives a client request, the runtime system performs

the necessary security checks (authentication and authorization), decides which

level of service the client has the right to access, and calls the planner module

136

to compute a valid application configuration. In general, calls to the planner can

be made (1) at run-time, when clients make requests, or (2) offline, when PSF

receives aggregated requests from clients.

� The planning module considers both the service specification and the current

network conditions to come up with a service partitioning that best satisfies the

client request (Step 3).

� To achieve this partitioning, the run-time system of the framework may need

to deploy additional components; wrappers running on each node facilitate

remote installation and coherence modules enable application-specific consis-

tency among replicas (Step 4).

Once the service components have been installed, the client can seamlessly access the

service provided by the application.

137

Chapter 8

Expressivity Evaluation

This chapter evaluates the expressivity and ease-of-use of the three techniques pre-

sented in Chapters 4, 5, and 6. The e-mail application described in Chapter 2 is used

as an example to illustrate both the type of application properties that can be captured,

and the amount of code necessary to enable a component-based application to use the

techniques. Section 8.1 describes the information provided by the application speci-

fication, given as XML files. Section 8.2 analyzes the PSF-related code added to the

e-mail application.

8.1 Expressivity of the application specification

One of the main challenges in automatically deploying component-based applications

into heterogeneous environments is capturing the relevant, yet sufficient information

about application behavior. As described in Chapter 2, the application specification

needs to describe: (1) the application linkages and the properties of interest for those

138

Table 8.1: ViewMailServer - XML description.

<Name>ViewMailServer</Name>

<Linkages>

<Implements>MailServerInterface

<Requires>MailServerInterface

<Init>

ViewMailServer.RRF:=50

<Conditions>

Node.NodeCPU > (Node.Sin*(0.39*Node.Sin-0.4) +

Node.Sout*2*(0.39*Node.Sout-0.4) +

Node.TotalRR*(Node.Rout+Node.Rin)*((0.5*Node.TotalDF)+

(0.39*Node.TotalRecvRate-0.4)) +

Node.TotalRR*(2+0.39*Node.TotalRR-0.4)

Node.RRF > ViewMailServer.RRF

MailServerInterface.Privacy = True

<Effects>

MailServerInterface.Privacy:=True

Node.NodeCPU:=Node.NodeCPU - Node.Sin*(0.39*Node.Sin-0.4) +

Node.Sout*2*(0.39*Node.Sout-0.4) +

Node.TotalRR*(Node.Rout+Node.Rin)*((0.5*Node.TotalDF)+

(0.39*Node.TotalRecvRate-0.4)) +

Node.TotalRR*(2+0.39*Node.TotalRR-0.4)

ViewMailServer.RRF:=Node.RRF

MailServerInterface.MessageSize:=1

MailServerInterface.SendRate:=MailServerInterface.SendRate * Node.RRF

MailServerInterface.LinkBandwidth:=MailServerInterface.SendRate*Node.RRF*

MailServerInterface.MessageSize

MailServerInterface.TFMS:=3

MailServerInterface.TLMS:=3+MailServerInterface.TLMS

139

linkages, (2) the component deployment conditions and effects, (3) the component

customization rules (views), and (4) if relevant, the data consistency properties, qual-

ity triggers, and merge and extract methods.

Table 8.1 presents the XML-like specification for the ViewMailServer component

of the mail application. The expressions shown in this example are computed based

on the profiling results obtained for the e-mail application components and presented

in Appendix C. The complete description of how such expressions were obtained can

be found in Appendix D.

The following sections illustrate how the e-mail application takes advantage of

the expressivity of the application model. For clarity, the examples presented in this

chapter are simplified versions of the one given in Table 8.1.

8.1.1 Setting

The goal of the application specification is to provide to PSF all information necessary

to automatically deploy the components in heterogeneous environments, such that

the user QoS requirements are satisfied. Ideally, the application specification should

capture the application behavior, requirements, and effects.

Behavior. Given the e-mail application, clients can request access to its services by

contacting and informing PSF of their QoS requirements. For example, clients may

want to connect from insecure sites (e.g., airport terminals) and ask for privacy (i.e.,

all sensitive messages should be protected against eavesdroppers) and efficiency (i.e.,

the time spent to send and receive messages should be below a given threshold) when

accessing their e-mail.

140

Once a client makes a request, the request is handled directly by the mail server,

or by a cache mail server. Once a client connects to the cache mail server, the cache

asks the original mail server for the most up-to-date information related to that client.

Then, the cache mail server executes client requests on the local copy of the accounts,

only if the account exists on the cache. Otherwise, the request is forwarded to the

original mail server.

Requirements. The application specification should provide all the information nec-

essary to satisfy user QoS requirements. Examples of user requirements include (1)

message protection (e.g., sensitive messages should not be seen on untrusted nodes

such as airport terminals, or sensitive messages should not be transmitted in the clear

on insecure links), and (2) efficiency (e.g., the server should sustain the required re-

quest rate or the time to reach the first/last mail server should be under a threshold).

The network resources that could affect the user QoS requirements are available node

CPU, available link bandwidth, link latency, node trust, and link security. The first

three resources may influence the efficiency of the e-mail application. The last two

resources may affect the user’s security requirements.

Effects. In order to satisfy the user QoS requirements, the framework needs to use

the application-provided information to take certain decision. In case the connec-

tion between a client and the mail server crosses a slow link, the efficiency require-

ments can be satisfied by placing a cache mail server close to the client. Similarly,

Encryptor/Decryptor pairs can be placed to protect messages transmitted over inse-

cure links.

141

In order to take such decisions, the application needs to provide information about:

(1) when to create linkages between components (Section 8.1.2), (2) what are the ap-

plication properties (Sections 8.1.3 and 8.1.4), and the deployment conditions (Sec-

tion 8.1.5) and effects (Sections 8.1.6), and (3) what is the resource consumption

(Section 8.1.6). As discussed in Chapter 6, the application can improve the auto-

matic deployment process by also providing information about (1) view configurations

(Section 8.1.7), (2) security requirements (Section 8.1.8), and (3) data consistency re-

quirements (Section 8.1.9).

8.1.2 Linkages

In order to create valid component deployments, a dynamic component-based frame-

work needs to determine how components should be connected to each other.

The e-mail application indicates how components should be logically connected

by specifying the interfaces implemented and required by each component. Fig-

ure 8.1, which first appeared in Chapter 2, is included here to illustrate all possible

compositions for the e-mail application. The MailServer component implements

the MailServerInterface interface. The ViewMailServer component both imple-

MSI
MailServer

MailClient

ViewMailClient

MSI

MSI

ViewMailServer

Encryptor Decryptor

MSI MSI

MSIMSIMSI

Figure 8.1: Valid component compositions in the e-mail application.

142

ments and requires the MailServerInterface interface. The Encryptor compo-

nent requires the MailServerInterface interface, but implements a new interface

MailServerInterface Encrypted, which is required by the

Decryptor component. The two mail clients require the MailServerInterface in-

terface. Based on this local information, PSF can create different component linkages.

For example, the two types of mail clients can be connected to the mail server (1) di-

rectly, (2) through the ViewMailServer, (3) through the Encryptor / Decryptor, or

(4) through any combination of the above.

However, more information is required before the framework can use the compo-

nents as intended. For example, the ViewMailServer should be used as a cache mail

server that offsets the high link latencies, and the encryptor/decryptor pair should be

deployed only when the privacy of messages needs to preserved against eavesdrop-

pers. The e-mail application can capture such information about the components by

associating properties with the components and their interfaces. For example, in order

to protect the client messages, the mail application can define and associate a Boolean

Privacy property with the MailServerInterface interface; PSF can use this prop-

erty to deploy the Encryptor/Decryptor pair and ensure that the client messages are

protected. The properties and their usage are discussed in more detail in the following

section.

8.1.3 Interface properties

The properties of interest for the MailServerInterface interface are as below:

143

� Privacy takes the value True or False depending on whether the messages

should be protected or not. This property can be used to ensure that messages

are protected when sent over insecure links. For example, if the MailServer

saves sensitive messages, the Privacy property associated with its implemented

MailServerInterface is set to True. If the link between the MailClient and

the MailServer is insecure, i.e., the Secure property is set to False, the appli-

cation specification can capture the effects of a sensitive message crossing an

insecure link by setting the Privacy property of the MailServerInterface af-

ter crossing the link to False. This means that a direct connection between the

MailClient and the MailServer is not valid if the client wants his messages

to be protected, i.e., the required MailServerInterface to have the Privacy

property set to True.

� Trust is equivalent to the notion of clearance level in a military organization,

where one person is allowed to read a document only if his clearance level is

higher than the one of the document. In the e-mail application, this property is

very useful to differentiate untrusted nodes, such as airport terminals, where a

user can read only the messages with a required trust level less than the trust

level of the node.

� ReqCPU is the amount of CPU consumed by processing one request from the

client (e.g., send a message). This property is used to compute the maximum

amount of CPU required by the ViewMailServer, and ensure that the

ViewMailServer is deployed only on nodes that have more CPU resources

available than the amount required.

144

� NumReq is the average number of requests made by a component in one second

and is used to characterize the flow of messages between components. For ex-

ample, a client which needs to interact with the mail server at a certain rate,

should not be connected to a MailServer whose request processing rate cannot

sustain the incoming requests (see the experiment in Section 10.5 for a discus-

sion of what happens in such cases).

� ReqSize is the average size of a message and it is used by the application to

estimate the CPU consumption and the request processing time.

� BW is the amount of bandwidth consumed when two components communicate

with each other. Correctly estimating the value of this property allows the frame-

work to accurately keep record of the network resources consumed by the ap-

plication, and thus ensure that application has the expected performance.

� TFMS and TLMS represent the time it takes for a message to reach the first in-

stance of a mail server, respectively last mail server. In general, clients might

be connected through a series of ViewMailServer components and a final mail

server. TFMS is important because it measures the application efficiency, as seen

by the client. TLMS captures the time necessary for a message to reach the last

mail server, thus represents the time to propagate a message to all users.

8.1.4 Component properties

Beside the properties associated with interfaces, the application specification can also

define properties associated with the components. In the ViewMailServer example,

there are two such properties: NodeCPU and RRF.

145

NodeCPU indicates how much CPU resource is required by the ViewMailServer

component in order to execute in an efficient way. A simple expression that defines it

is ������� � ������ ��	
���. More complex and realistic expressions obtained by

profiling the e-mail application are given in Appendix D.

RRF captures the benefits of placing a ViewMailServer component close to clients.

RRF is defined as the fraction of the incoming requests that cannot be processed by the

ViewMailServer component and therefore needs to be forwarded to a MailServer

component. RRF is important because it quantifies the caching benefits offered by the

ViewMailServer component when placed close to clients. In Table 8.1, the RRF is

given as a constant. A more detailed explanation of how the RRF value can be com-

puted at run-time is provided in Appendix D.

Given these properties, the deployment and linkage conditions and effects can be

expressed as follows.

8.1.5 Deployment conditions and effects

The deployment conditions illustrated in Table 8.1 can be divided into qualitative and

quantitative conditions. A qualitative condition evaluates to True or False, depend-

ing on the current state of the environment. For example, the ViewMailServer should

be deployed on a node only if the connection between the ViewMailServer and the

MailServer is secure. In general, the quantitative conditions can be further divided

into resource requirements and component-specific requirements. An example of the

former is that a node should have sufficient available CPU resource, before deploy-

ing a component on that node. Examples of the latter include the ViewMailServer

requirements to be deployed on a trusted node, or inside a domain where caching

146

benefits exceed a certain threshold.

The effects of deploying the ViewMailServer on a node, as captured by the ap-

plication model described in Chapter 4, include: (1) consumption of resources by the

component, and (2) availability of the interfaces implemented by the component on

that node. The properties of the newly deployed component are computed given the

properties of the environment and the properties of the required interfaces.

Table 8.2: Linkage conditions and effects for the mail application.

<Property type = Boolean> Secure
<Crosslink>Interface2.Secure:=Interface.Secure & Link.Secure

<Property type = Float>LinkBandwidth
<Crosslink>Interface2.BW:=min(Link.BW, Interface.BW)
<Crosslink>Link.BW:=Link.BW - min(Link.BW, Interface.BW)

<Property type = Interval>Trust
<Crosslink>Interface2.Trust:=Interface.Trust

<Property type = Float>SendRate
<Crosslink>Interface2.SendRate:=min((Link.BW/Interface.MessageSize),

Interface.SendRate)
<Property type = Float>Latency
<Crosslink>Interface2.Latency:=2*Link.Latency + Interface.Latency

<Property type = Float>TLMS
<Crosslink>Interface2.TLMS:=Interface.TLMS +

Interface.MessageSize*Link.Latency/Link.BW

8.1.6 Linkage conditions and effects

Table 8.2 illustrates the linkage conditions and effects for some of the properties asso-

ciated with interfaces. For the e-mail application, they should capture how the privacy

of e-mail messages and the time to execute an operation are affected by the state of

the network.

147

The linkage conditions determine what are the properties and resources required

by an interface before crossing a link. For example, the MailServerInterface re-

quires that the available bandwidth of the link supports the traffic created by users.

The linkage effects describe the relationships between the interface and the link,

once an interface has crossed the link. For example, the Privacy property of the

MailServerInterface interface is affected when crossing insecure links. In addi-

tion, the traffic created by users consumes part of the available bandwidth of the link.

8.1.7 View specification

In order to improve the deployment process as discussed in Chapter 6, the e-mail ap-

plication defines two views: ViewMailClient Partner and ViewMailServer. The

first one implements only a subset of the MailClient functionality, and represents

a secure alternative of the original MailClient, designed to be executed by un-

trusted users. The latter implements the same functionality as its original component,

MailServer, but caches only a subset of the original user accounts. Such a view is

useful to offset high link latencies, when placed close to clients.

Table 8.5 illustrates the view generation process described in Section 6.3, by pre-

senting the code for the ViewMailClient Partner view, as defined in Table 8.4.

Table 8.3 contains the Java code for the MailClient. Table 8.4 indicates how the

ViewMailClient Partner bytecode should be generated from the MailClient byte-

code. The output of VIG is presented in Table 8.5. The ViewMailClient Partner

is a restricted version of the MailClient component, able to send/receive messages,

add notes into a remote diary, and query the address book in a secure fashion. Such a

component is useful if clients use untrusted machines (e.g., the airport terminal in our

148

Table 8.3: The original Java object

public interface MessageI �
void sendMessage(Message m)
Set receiveMessages() �

public interface AddressI �
String getPhone(String name)
String getEmail(String name) �

public interface NotesI �
void addNote(String note)
boolean addMeeting(String name) �

public class MailClient implements
MessageI, AddressI, NotesI �
Account[] accounts;
void sendMessage(Message mes)��
Set receiveMessages()��
String getPhone(String name)�
findAccount(name).getPhone();

�
String getEmail(String name)�
findAccount(name).getEmail();

�
void addNote(String note)��
String addMeeting(String name)��
Account findAccount(String name)�
� return accounts.get(name); �

�

Table 8.4: The rules to define a view

�View�
�Name = ViewMailClient Partner�
�Represents�
�Name = MailClient�

�Restricts�
�Interface� name=MessageI

type=local
�Interface� name=NotesI

type=rmi
�Interface� name=AddressI

type=switch
�Adds Fields�
�Field name = accountCopy

�Adds Methods�
�MSign� VMC Partner()
�MBody� /** constructor body **/
/** Additional methods, including some
required by the data consistency
protocol (see Section 6.6)
**/

�Customizes Methods�
�MSign� addMeeting(String)
�MBody� /** new code for method**/

setting) to check e-mail.

The minimal view is fully described by a name (ViewMailClient Partner), and

a represented object (MailClient). In addition, the view implements a list of re-

stricted interfaces (MessageI, AddressI, NotesI), defines new fields (accCopy) and

methods, and customizes existing methods (addNote). The AddressI and the NotesI

interfaces are defined as rmi, respectively switch. According to the Java RMI and

Switchboard schemas presented in Chapter 3, the interfaces and the methods defined

149

Table 8.5: View source code.

public interface MessageI �
void sendMessage(Message mes)
Set receiveMessages()

�

public interface AddressI extends Serializable �
String getPhone(String name)
String getEmail(String name)

�

public interface NotesI extends Remote �
void addNote(String note) throws RemoteException
boolean addMeeting(String name) throws RemoteException

�

public class ViewMailClient Partner implements
MessageI, AddressI, NotesI �

Account[] accounts; NotesI notesI_rmi;
AddressI addrI_switch;

public ViewMailClient Partner (String[] args) �
/** rmi code **/
notesI_rmi = (NotesI) Naming.lookup(...);
/** switchboard code **/
addrI_swi = (AddressI) Switchboard.lookup(...);
/** user supplied code **/ �

void sendMessage(Message mes)�/** the original code **/�
Set receiveMessages() �/** the original code **/�
String getPhone(String name)�return addrI_swi.getPhone();�
String getEmail(String name)�return addrI_swi.getEmail();�
void addNote(String note) �notesI_rmi.addNote(); �
boolean addMeeting(String name)�/** user supplied code **/�

�

150

by the AddressI and NotesI interfaces are modified to become RMI, respectively

Switchboard. In general, a view definition must also contain descriptions of several

special methods: at least one constructor declaration, and complete implementa-

tions for data consistency-specific methods, if data consistency is needed.

8.1.8 Security requirements

The security requirements of the e-mail application are captured by the Privacy and

Trust properties. These two properties are influenced by the environment, and reflect

how the actual messages would be affected if they would traverse that environment.

For example, a sensitive message has the property Privacy set to True, and the Trust

levels very high. By setting high levels of Trust, a user specifies that those messages

are very sensitive and should not be transmitted to components running on untrusted

nodes (i.e., the Trust level of the nodes is less than the Trust level of the message). If

this message crosses an insecure link with the Secure property set to False, its own

Privacy property becomes False, meaning that the message is no longer protected.

Similarly, if the message is saved on a machine with Trust level very low, the message

could be read by users who should not have that right.

8.1.9 Data consistency requirements

The only components that have data consistency requirements are the ViewMailServer

and the MailServer components. A ViewMailServer is defined as a data view of

the MailServer, because it serves a subset of the users who have accounts on the

MailServer. As described in Chapter 6, a component-based application can effi-

151

ciently use the data consistency protocol implemented by PSF, if the application spec-

ifies: (1) data properties, (2) quality triggers, and (3) extract and merge methods.

Table 8.6: ViewMailServer code to create data properties.

1 ViewPropertyList createPropertyList() �
2 ViewProperty v1 = new ViewProperty(property User,

ViewProperty.SET,users);
3 Vector value = new Vector(); value.add(new String("null"));
4 ViewProperty v2 = new ViewProperty(property Folder,

ViewProperty.SET,value);
5 value = new Vector(); value.add(minLevel);
6 ViewProperty v3 = new ViewProperty(property MinLevel,

ViewProperty.SET,value);
7 value = new Vector(); value.add(maxLevel);
8 ViewProperty v4 = new ViewProperty(property MaxLevel,

ViewProperty.SET,value);
9 value = new Vector(); value.add(strength);
10 ViewProperty v5 = new ViewProperty(property Strength,

ViewProperty.SET,value);
11 value = new Vector(); value.add(new String("null"));
12 ViewProperty v6 = new ViewProperty(property StartingDate,

ViewProperty.SET,value);
13 ViewPropertyList vpl = new ViewPropertyList();
14 vpl.addProperty(v1); vpl.addProperty(v2);
15 vpl.addProperty(v3); vpl.addProperty(v4);
16 vpl.addProperty(v5); vpl.addProperty(v6);
17 return vpl;
�

Data properties. The data properties capture the most important features of the shared

data that needs to be kept consistent. In the case of the e-mail application (see Ap-

pendix: E), these properties are:

� User: The name of the user who has an account on the mail server;

� Folder: The name of the folder that needs to be kept consistent;

152

� Minimum and maximum levels: Only the messages with Trust levels between

these two levels should be saved on the ViewMailServer;

� Strength: Depending on the value of this property, the entire message is saved

on the ViewMailServer (1), or only its header (0);

� Starting date: Only the messages received after this date should be sent to the

ViewMailServer.

These properties are sufficient to both determine which replicas need to see which

updates, and what data should be sent. Table 8.6 illustrates how the ViewMailServer

component creates the list of data properties.

Quality triggers. In general, triggers can be defined as a Boolean expression with

any number of parameters. In the realization of the ViewMailServer component, the

only triggers of interest are time-based. The lines of code from Appendix E, which

define the triggers are given below. As part of constructing an instance of the cache

manager, the ViewMailServer provides the following parameters: the name of the

view (line 2), the list of data properties (line 4), the initial mode of operation (weak

consistency in this example – line 5), and the time-based quality triggers (line 6).

Table 8.7: ViewMailServer code to create the cache manager.

1 cm = new CacheManagerImpl(cmArgs,
2 "ViewMailServer’’,
3 this,
4 createPropertyList(),
5 CacheManagerImpl.CM WEAK,
6 ‘‘t < 10000’’, ‘‘t < 10000’’, ‘‘t < 0’’,
7 null, 1);

153

Merge and extract methods. A view needs to provide implementations for the meth-

ods that extract updates from- and merge updates into- the view and the original com-

ponent. The following table illustrates the merge and extract methods provided by the

ViewMailServer view definition. The complete code can be found in Appendix E.

Each extract method is responsible for using the property list to extract the relevant

data from each object (i.e., view and original component). Similarly, the merge meth-

ods take as input the most up-to-date data and copies it into the object.

Table 8.8: ViewMailServer pseudo-code to create data properties.

1 ObjectImage extractFromObject(Object object,ViewPropertyList propList)�
2 MailServerInterface parentMailServer = (MailServerInterface) object;
3 Vector accounts = parentMailServer.getAccounts(propList)
4 return new ObjectImage(accounts);
5 �

6 ObjectImage extractFromView(ViewPropertyList propList) �
7 Vector accounts = parentMailServer.getAccounts(propList)
8 return new ObjectImage(aAccounts);
9 �

10 void mergeIntoObject(Object object, ObjectImage image,
11 ViewPropertyList propList) �
12 MailServerInterface parentMailServer = (MailServerInterface) object;
13 Vector accounts = image.getImage(propList);
14 parentMailServer.mergeAccount(accounts);
15 �

16 void mergeIntoView(ObjectImage image, ViewPropertyList propList) �
17 Vector accounts = image.getImage(propList);
18 this.mergeAccount(accounts);
19 �

Conclusion. In order to use PSF, users and application developers must specify QoS

requirements and the application specification, and reason about what properties and

expressions make sense. While this process may be non-trivial and time-consuming

154

for some applications, this process is (1) natural, because properties and expressions

are realistic representations of the actual user requirements and application behav-

iors, (2) and local, because all specifications are provided at the level of components.

Hence, it is our hope that the benefits offered by this process outweighs its costs.

8.2 Analysis of the PSF-related code

In order to evaluate whether the process of using PSF is burdensome, this section

presents the PSF-specific code added to the ViewMailServer component of the e-mail

application. The added code represents the second type of information provided by

the application, beside the application specification discussed in the previous section.

Appendix E lists the complete Java code of the ViewMailServer component.

8.2.1 PSF

Table 8.9 uses the ViewMailServer component to illustrate how a component can be-

come PSF-aware. A component is enabled to use the PSF framework if it extends the

PSFObject class. This class contains only one function which is used by PSF to au-

tomatically connect components: setInterface(String interf, Object obj).

When the PSF deployment module receives from the planning module a list of compo-

nents that need to be deployed and instantiated, the deployment module is responsible

for sending the appropriate commands to the wrappers. Each wrapper is then respon-

sible for instantiating the components on nodes, advertising their functionality, creat-

ing the necessary connections, and starting the components. In order to connect two

components, the wrapper associated with one component needs to discover the inter-

155

faces advertised by the other component (using DisCo, as explained in Section 3.3.5),

obtain a remote reference to the other component, and assign the remote reference

to the appropriate variable of the first component. In Table 8.9, the setInterface

method receives as input the remote reference to a component that implements the

MailServerInterface interface, and assigns this reference to a variable defined by

ViewMailServer as of type MailServerInterface.

Table 8.9: ViewMailServer pseudo-code.

1 public class ViewMailServerDiscoMultiThreaded extends PSFObject
2 implements MailServerInterface, ViewInterface, Runnable �

3 CacheManagerImpl Disco cm = null;
4 ViewPropertyList propertyList;

5 public void run() �
6 parseArguments(arguments);
7 server = new Server MultiThreaded(arguments);
8 new Thread(server).start();
9 cm = new CacheManagerImpl Disco(cmArgs,
10 "ViewMailServerDiscoMultiThreaded,
11 this,createPropertyList(),CacheManagerImpl.CM WEAK,
12 ‘‘t<10000’’, ‘‘t<10000’’, ‘‘t<0’’, null, 1);
13 cm.switchToWeak();
14 cm.initImage();
15 �

16 public void sendMessage(Message message) �
17 cm.startUseImage("send message");
18 server.sendMessage(message);
19 cm.endUseImage("send message");
20 �

21 public void setInterface(String interf, Object obj) �
22 if(interf.equals("mailSW.server.MailServerInterface"))
23 remoteServer = (MailServerInterface) obj;
24 �
25�

156

8.2.2 Data consistency

As described in Section 6.6, the API’s exposed by the cache manager to the view are

very simple and easy to use. Table 8.9 highlights the consistency-related lines of code.

The flow of operations is as follows: (1) ViewMailServer creates at start-up the

cache manager (lines 9-12), (2) initializes the data (line 13,14), (3) works with data

(lines 16-19), and (4) stops the cache manager. Beside the functionality of a mail

server, the ViewMailServer is also responsible for extending the ViewInterface

interface (lines 21-26), which requires the implementation of the extract/merge meth-

ods. Table 8.8 shown earlier in this chapter illustrates the merge and extract methods.

Note that this information just communicates what state is extracted/merged and is

not concerned with when exactly this functionality is invoked at run-time by the co-

herence system.

8.3 Summary

This chapter has evaluated the expressivity of the models described in Chapter 4 by

showing how the models are capable of capturing the behavior of the e-mail applica-

tion.

As expected, the e-mail application specification identifies the appropriate prop-

erties that could be used to define the component deployment and linkage conditions

and effects, and describes the security and data consistency requirements. The first

advantage of PSF is the fact that the process of providing this information is natural

(i.e., properties and expressions are realistic representations of the actual user require-

ments and application behaviors), and local (i.e., all specifications are provided at the

157

level of components).

Beside the application specifications, application developers must also modify the

original components in order to use PSF. The second advantage of PSF is the small

number of additional lines required in order for a component to become PSF-aware.

158

Chapter 9

Performance Evaluation of Individual

Techniques

This chapter evaluates the performance, in isolation, of each of the techniques dis-

cussed in the previous chapters: (1) the planning algorithm, (2) the view generation

tool, (3) the Switchboard communication abstraction, and (4) the data consistency

protocol. The techniques are evaluated as integral parts of PSF in Chapter 10.

This evaluation helps assess the run-time overheads of PSF. Once a client makes

a request to access the functionality of a component-based application that is regis-

tered with PSF, PSF is responsible for constructing a valid application configuration

(technique 1) using customized components (technique 2), and installing and connect-

ing the components into the network (technique 3). In addition, PSF provides a data

consistency service (technique 4) to satisfy application data consistency requirements.

The following four sections present a thorough analysis of each technique.

159

9.1 Analysis of the planning algorithm

This section characterizes the run time and the nature of the deployments produced

by a Java-based implementation of the planning algorithm, for different application

behaviors and network conditions. Ideally, the planning algorithm should be efficient,

scale well with the size of the network and the complexity of the application, and find

solutions if they exist.

The measurements were taken on an AMD Athlon XP 1800+ machine, running

Red Hat 7.1 and the J2RE 1.3.1 IBM Virtual Machine.

Figure 9.1: Network with 99 nodes.

17

6

9

5

15

MS

MC

VMS

E

D

Figure 9.2: Network with 22 nodes.

The testbed for all experiments consists of eight different wide-area network topolo-

gies (Nk) generated by the GT-ITM tool [11], where k � �22, 33, � � � , 99	 represents

the number of nodes in the network. Figures 9.1 and 9.2 illustrate the N99 and the

N22 networks. Each topology simulates a WAN formed by high speed and secure

stubs connected by slow and insecure links. The initial topology configuration files

(.alt) were augmented with link and network properties using the Network EDitor

160

tool [57]. Examples of such properties include latency, available bandwidth, and se-

curity. The links inside a stub were developed to have 100Mbps available bandwidth

and the Secure property set to True. The links connecting the stubs were labeled to

have 10Mbps available bandwidth and their Secure property set to False.

The performance of the planner is evaluated using two applications — the e-mail

service described in Section 2.3.1, and a webcast service described later in this sec-

tion. The goal in both applications is to place the client components on specific nodes.

In both cases, the “best” deployment is defined as the one with the fewest number of

components.

The planner was tested by running six different experiments. The next paragraphs

present in more detail the goal, the description, and the results of each experiment.

Experiment 1: Planning under various conditions. The purpose of the first experi-

ment is to show that the planner finds a valid component deployment plan even in

0

5000

10000

15000

20000

25000

30000

T
im

e[
m

s]

22 99887766554433

Number of nodes in the network

Figure 9.3: Planning under various conditions.

161

hard cases, and usually does so in a small amount of time. The experiment, involving

the mail service application, is conducted as follows. For each network topology Nk,

where k � 22�33� ����99, and for each node n in the network Nk, the goal is to deploy a

MailClient component on the node n, given that the MailServer is running on some

node. The algorithm indeed finds a solution when one exists.

Figure 9.3 shows the time needed to find a valid plan; each Nk network is marked

by dashed lines. The data points in the figure correspond to the following cases.

When the client and the server are located in the same stub, the algorithm essentially

finds the shortest path between two nodes. This case corresponds to the data points

almost equal to 0 in every region of the graph. Placement of a client in a different stub

requires inserting the ViewMailServer, Encryptor, and Decryptor components into

the path, and therefore takes longer. The large run-times for the N22 and N77 networks

can be explained by the fact that many resource conflicts are identified only during

the last phase of the algorithm. The two networks above have a bigger number of

low-bandwidth insecure links between stubs as compared to the others. Because of

this, the algorithm constructs and checks many logically correct plans that fail during

symbolic execution due to resource restrictions.

Experiment 2: Scalability w.r.t. network size. This experiment shows how the perfor-

mance of the algorithm is affected by the size of the network. Taking the N99 network

topology as reference, this experiment starts with a small network with only two stubs,

and then adds one stub at a time until the original 99-node configuration is achieved.

For each of the obtained networks, the planner is asked to place MailClient on a

fixed node.

162

0

500

1000

1500

2000

2500

20 30 40 50 60 70 80

Number of nodes in the network

P
la

nn
in

g
tim

e(
m

s)

Figure 9.4: Scalability w.r.t. network size for the e-mail application.

As shown in Figure 9.4, the running time of the planner increases very little with

the size of the network. Moreover, the graph tends to flatten. Such behavior can

be explained by the fact that the regression phase of the algorithm considers only

stubs reachable in the number of steps bounded by the length of the final plan. Even

this set is further pruned at the progression stage. Therefore, the planning algorithm

is capable of identifying the part of the network relevant for the solution, without

0

1000

2000

3000

4000

5000

20 30 40 50 60 70 80

Number of nodes in the network

P
la

nn
in

g
tim

e(
m

s)

Figure 9.5: Scalability w.r.t. network size for the webcast application.

163

additional preprocessing.

Experiment 3: Complex application structure. The e-mail application used in the

above experiments requires only a chain of components. An important feature of the

planning algorithm is that it can support more complicated application structures, i.e.,

DAGs and even loops. To verify that the planner behavior is not negatively affected

by DAG-like structures, this experiment generates deployments for a webcast service.

The webcast application (Figure 9.6) consists of a Server that produces images and

text, a Client that consumes both, and additional Splitter, Zip/Unzip, and Filter

components for splitting the stream and reducing the bandwidth requirements for the

text and image data respectively. The DAG structure arises because of splitting and

merging the image and text streams.

Client Webcast
Server

Splitter

ZipUnzip

Filter

Figure 9.6: Logical component deployment for the webcast application.

In this case, the goal for the planner is deployment of the Client component on a

specific node, given that the Server was separated from it by links with low available

bandwidth. Figure 9.5 illustrates the running time of the algorithm as a function of

the network size and validates our assertion.

Experiment 4: Scalability w.r.t irrelevant components. The scalability of the planning

algorithm depends on whether components are (1) absolutely useless components that

164

can never be used in any application configuration, (2) components useless given

availability of interfaces in the network, or (3) useful components, i.e., those that

implement an interface relevant for achieving the goal and whose required interfaces

are either present or can be provided by other useful components.

Figure 9.7 shows the performance of the planner in the presence of irrelevant com-

ponents. The two plots correspond to two situations: the mail service application

augmented first with ten useless components which implement interfaces not used by

the e-mail application, and then with ten components that implement interfaces mean-

ingful to the application, but require interfaces that cannot be provided. The useless

components are rejected by the regression phase of the algorithm and do not affect its

performance at all. Slight fluctuations are a result of artifacts such as garbage collec-

tion. Components whose implemented interfaces are useful, but required interfaces

cannot be provided can be pruned out only during the second phase, which also takes

into account the initial state of the network (the required interfaces might be avail-

able somewhere from the very beginning). The running time increases as a result of

processing these components in the first phase (polynomial in the number of compo-

0

1

2

3

4

5

6

Number of nodes in the network

R
at

io

22 33 44 55 66 77 88 99

Figure 9.7: Scalability w.r.t. increasing number of irrelevant components.

165

nents). This phase takes time polynomial in the size of the relevant part of the network

and the number of components, so, even though the ratio of total running times shown

on Figure 9.7 can reach 5, the actual difference is small, and becomes less significant

as the size of the problem increases.

Experiment 5: Scalability w.r.t. relevant components. Figure 9.8 shows that the plan-

ner performance scales with increasing number of useful components. The plots cor-

respond to four cases: 5 comp represents the first experiment on the original N99

topology, where all five components of the mail service may need to be deployed; 4

comp, 3 comp, and 2 comp cases represent situations where the network properties are

modified such that all links become fast (i.e., ViewMailServer is not needed), secure

(i.e., the Encryptor/Decryptor pair is not needed), or both secure and fast (i.e., only

MailClient and MailServer need to be deployed) respectively.

The choice of whether a useful component is actually used in the final plan is made

during the third phase of the algorithm, which in the worst case takes time exponential

in the length of the plan. Larger numbers of useful components increase the branching

10

100

1000

10000

0 20 40 60 80 100

Node Index

T
im

e[
m

s]

2 components

3 components

4 components

5 components

Figure 9.8: Scalability w.r.t. increasing number of relevant components.

166

factor of the progression graph described in Chapter 5, and therefore the base of the

exponent. This means that in hard cases (very strict resource constraints, multiple

component types implementing the same interface, highly connected networks) the

initial planning can take long. However, as shown below, new components can be

added quickly to extend existing plans.

Experiment 6: Reusability of existing deployments. In practical scenarios, by the time

a new client requests a service, the network may already contain some of the required

components. In order to see how the planning time is affected by reuse of existing

deployments, this experiments starts with the webcast application and the N99 topol-

ogy where the Server was present on a fixed node, and analyzes the planning costs

for the goal of putting the Client on each of the network nodes in turn. The x-axis

in Figure 9.9 represents the order in which the nodes were chosen. The network state

is saved between the runs, so that clients can join existing paths. The assumptions are

that clients are using exactly the same datastream, and there is no overhead for adding

0

200

400

600

800

1000

1200

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71

Index node

P
la

nn
in

g
tim

e[
m

s]

Node Index

Figure 9.9: Reuse of existing deployments.

167

a new client to a server.

As expected, it is very cheap to add a new client to a stub that already has a client of

the same type deployed (this corresponds to the majority of the points in Figure 9.5),

because most of the path can be reused. The problem in this case is effectively reduced

to finding the closest node where the required interfaces are available.

Other points on the graph correspond to the following cases. The initial deploy-

ment of a client in a stub other than that of the server is the most expensive. Deploy-

ment of a client in the stub where the server is running is almost free. Deployment of

the first component at each stub given that there is a component deployed somewhere

in the network is much cheaper than the very first deployment: at least the path inside

the server’s stub and, possibly, a part of the path through transit nodes are reused.

Conclusion. These experiments show that the planning algorithm is efficient and

scales well with the size of the network and the number of components and interfaces

defined by the application. However, there are cases when the algorithm degenerates

into an exhaustive search algorithm. In order to deal with such cases, the algorithm

can take advantage of various memoization techniques and remember partial solu-

tions. In addition, the planning algorithm returns solutions that consumed resources

in a greedy way. Follow-on work by other researchers has started studying possible

solutions to reduce the amounts of consumed resources by discretizing the resource

space [86].

168

9.2 View generator

This section evaluates whether the view generation process described in Section 6.3.3

is suitable for use by PSF to generate views at run-time. Ideally, the view generation

process should take a small amount of time compared with the rest of the deployment

process.

In general, VIG can be considered efficient if its performance is comparable to

the performance of Javac when compiling a similar Java program. The experiments

described below measure the running time and the size of the generated classes for

both VIG and Javac [83]. The experiments were run on a 800MHz machine running

Windows XP and using the JDK 1.4 environment.

For a correct comparison between VIG and Javac, views are defined by the orig-

inal bytecode and the VIG-specific XML files. The views are contrasted with their

corresponding Java files. VIG uses the XML files to generate bytecode, while JAVAC

compiles the Java files. The Javac execution time and the size of the generated classes

depend on the flags set for Javac. For a thorough examination, Javac is executed with

the following flags: -g (full debugging information), -g:none (no debugging informa-

tion), -O (optimization turned on), and no flags (some debugging information).

The two views used in this evaluation are (1) vms, the ViewMailServer described

in the section 2.3.1, and (2) Vtest, a complex example developed for debugging rea-

sons. The former is simple but large (the original object has 427 lines of code, the

Java file corresponding to the generated view has 974 lines of codes, and the XML

description file has 149 lines). The latter example is very complex, but small (the orig-

inal code has almost 100 lines of code, the Java file corresponding to the generated

169

view has 50 lines of code, and the XML file has 87 lines).

The running time and the sizes of the generated classes are measured and com-

pared in Figures 9.10 and 9.11. The time to generate the complex example (Vtest)

with VIG is smaller than the time to generate it with Javac, while the opposite is valid

for vms. The explanation is that the example is very small and full of code to be

optimized (unused variables, unused methods, and unreachable code), while vms is

large and barely optimizable. VIG does not perform any type of optimization, thus

taking less time for Vtest and more for vms. Javac tries to optimize the Java code, thus

executing more for Vtest and less vms.

Figure 9.11 shows that VIG generates classes almost equal in size with the ones

generated by Javac -g:none, if there are no optimizations to be performed. Otherwise,

VIG generates smaller files.

Conclusion. From the point of view of running time and sizes of the generated byte-

code files, VIG is comparable with Javac. In fact, the size of the generated files can

Time to generate views - VIG vs. JAVAC

0

0.5

1

1.5

2

2.5

3

3.5

Vtest vms

T
im

e[
s]

vig

javac -g

javac -g:none

javac -O

javac

Figure 9.10: Time to generate views

170

Size of generated views

0

5

10

15

20

Vtest vms

S
iz

e[
kb

]
vig

javac -g

javac -g:none

javac -O

javac

Figure 9.11: Size of generated views

be improved by carefully adding compiler optimization techniques to VIG without

paying major running time penalties. The efficiency of VIG makes it suitable for use

in dynamic environments, where views need to be generated at run-time, on demand.

9.3 Data consistency protocol

This section evaluates the costs and the benefits of the data consistency protocol by

observing its behavior when PSF deploys the airline reservation application system

described in Section 2.3.2. The goal of this evaluation is to show that the data consis-

tency protocol augmented by application specific information, is efficient (it reduces

the number of messages sent between cache managers and the directory manager),

adaptable (it switches between various consistency levels), and flexible (allows the

application to control the consistency levels by defining quality triggers).

Experiment 1: Eficiency. The efficiency of the data consistency protocol is evalu-

ated by measuring the number of messages generated by the consistency protocol and

171

0

20000

40000

60000

80000

100000

120000

140000

10 20 30 40 50 60 70 80 90 100

Number of cache managers

N
u

m
b

er
 o

f
m

es
sa

g
es

Flecc
Time-sharing
Multicast

Figure 9.12: Number of messages sent between the cache manager and the directory manager.

comparing it with the number of messages generated by a time-sharing protocol and a

multicast-based protocol. The time-sharing protocol schedules the travel agents one at

a time and allows them to execute until completion. In this way, the number of control

messages between the directory manager and the cache managers is minimum, since

no conflicting operations are present. The multicast-based protocol runs all agents

concurrently and does not discriminate between cache managers. Because it receives

updates between all of them, the number of messages between the directory manager

and the cache manager is maximum.

The testbed for this experiment is a cluster with 30 Linux-based nodes simulating

a LAN environment. The experiment executes 100 travel agents connected to a main

database. All travel agents execute the same sequence of operations: (1) create the

cache manager, (2) set the mode of operation to weak, (3) initialize the data, (4) exe-

cute in a loop pullImage, startUseImage, reserve tickets for a flight, endUseImage,

(5) stop the cache manager. Each travel agent defines a property (“Flights”) that con-

tains a list of all the served flights. The number of travel agents that serve similar

flights is initially 10, and increases in increments of 10 up to 100. The consistency

172

0

200

400

600

800

1000

1200

1400

T
im

e
[m

s]

0

5

10

15

20

25

30

35

N
u

m
b

er
 o

f
u

n
se

en

u
p

d
at

es

Time to execute a method Data quality

WEAK WEAKSTRONG

Figure 9.13: Time to execute a method vs. that quality of the used data, when the cache

manager switches from WEAK mode to STRONG mode, and back.

requirements of each travel agent is to always execute on the most current data; thus

updates need to be sent between travel agents. Figure 9.12 shows how the data con-

sistency protocol adapts the number of control messages by computing the conflicting

travel agents based on their properties. The data consistency protocol reduces the

number of messages sent between the directory manager and the cache managers, by

sending messages only to interested parties.

Experiment 2: Adaptability. Often, component-based applications dynamically change

their data consistency requirements at run-time. For example, a travel agent might

serve a set of users browsing for tickets, and thus start with weak consistency require-

ments. If a user changes from a browser to a buyer, the travel agent must immediately

change its consistency requirements to strong consistency. Ideally, component-based

frameworks should support such applications by changing the data consistency proto-

col accordingly.

173

0

5

10

Time line [ms]

D
at

a
q

u
al

it
y

0

10

20

30

40

Time line [ms]

D
at

a
q

u
al

it
y

Figure 9.14: Number of remote updates not seen by a cache manager running in WEAK mode,

when views define pull/push trigger or not.

In order to measure the adaptability of the data consistency protocol, this experi-

ment deploys ten conflicting travel agents connected to the main database, all running

in the same LAN. Initially, the travel agents start in weak mode and execute in a

loop pullImage, followed by a sequence of several � startUseImage, reserve tick-

ets, endUseImage � operations. After that, the travel agents switch to strong mode,

and execute the same set of operations. In the last phase, the travel agents switch

back to weak and execute the same operations. This experiment measures the time

to execute a method (including startUseImage and endUseImage) and the quality

of the data seen during the execution. The quality of the data is computed as the

174

number of remote unseen updates to the shared data. Figure 9.13 shows the trade-off

between the time to execute a method and the quality of the data used during the exe-

cution. On the y-axis, the graph is split into two parts. The upper part represents the

time to execute the methods, while the lower part shows the quality of the data. On

the x-axis, the graph shows the travel agent execution time line: WEAK, STRONG,

WEAK. The conclusion is that the execution time is small when the travel agent is

willing to execute on stale data (WEAK mode of operation, where the data quality de-

creases in time) and increases if the data needs to be most recent (STRONG mode of

execution, where the data quality is always the best). More importantly, this trade-off

is simply communicated by the application to the underlying system as consistency

requirements.

Experiment 3: Flexibility. The impact of quality triggers on the number of messages

and the quality of the data is evaluated in this experiment by running ten conflicting

travel agents in weak mode, with and without triggers. The triggers are responsible

for pulling and pushing updates between the cache managers and the directory man-

ager. The experiment measures the quality of the data and the number of messages

generated between the cache managers and the directory managers. The graph from

Figure 9.14 illustrates the usefulness of controlling data update requests by explicit

pullImage requests and pull triggers. The x-axis shows the moments in time when

the actual updates are received by a representative travel agent (the updates are marked

by stars). The y-axis shows the measured data quality for every method executed by

the travel agent. The lower plot represents a travel agent which explicitly pulls the im-

age before executing every fourth method. The upper plot represents the same travel

175

agent that defined a time-based pull trigger. Figure 9.14 shows how the quality of data

is improved when the travel agents define triggers compared with the case when the

travel agent do not specify triggers. However, the cost of the improved data quality is

an increased number of messages (116 – without triggers versus 182 – with triggers).

Conclusion. As explained in Chapter 2, a practical and efficient deployment process

depends on several factors, including having an efficient and flexible data consistency

protocol. The experiments described above assert the claim that the data consistency

protocol described in Chapter 6 is efficient by reducing the number of messages sent

between replicas, and is able to flexibly adapt to changes in the application consis-

tency requirements.

9.4 Switchboard

Switchboard represents the secure communication abstraction used by PSF to create

secure channels between all entities. Because of this, the efficiency of Switchboard

directly influences the efficiency of the entire deployment process.

First, this section evaluates the Switchboard performance by measuring the time

and the CPU resource consumed by a client and a server when communicating through

Switchboard. The first two experiments described below were run on a cluster of 30

Linux-based nodes divided into five domains; the available bandwidth and latency of

each link were emulated by the Click modular router [25]. In both experiments, the

Switchboard server was running in one domain and clients were located in each of

the five domains. Also, different rates of client requests were obtained by injecting

176

controlled delays between client Switchboard calls. The goal of these experiments

is to verify whether Switchboard has a predictable behavior and scales well with the

number of clients simultaneously making calls to the same Switchboard server.

The second part of this evaluation measures the performances of both Switch-

board and RMI-SSL. RMI-SSL is a communication abstraction that emulates the Java

RMI protocol on top of SSL [37]. Ideally, the performance of Switchboard should be

comparable to the one of RMI-SSL.

Experiment 1. The first experiment assumes the following network configuration.

Intra-domain links have 100Mbps available bandwidth and 0ms latency. The links

connecting the four domains to the one where the server is located have the following

characteristics:

� 50Mbps available bandwidth and 20ms latency;

� 70Mbps available bandwidth and 10ms latency;

� 20Mbps available bandwidth and 70ms latency;

� 56Kbps available bandwidth and 100ms latency.

Given such a network, one client connects to the server from each domain and

makes Switchboard RPC calls with messages of different sizes (1K, 5K, 10K) and

various delays (0ms, 50ms, 100ms, and 150ms). This experiment measures (1) the

average time for a message to reach the server (one-way), (2) the average time to

make the call and receive the answer from the server (two-way), and (3) the average

CPU consumed by a client to make a Switchboard call. The goal is to see how the

time and the CPU consumption are influenced by the network characteristics.

177

Measured time to make Switchboard call --
round trip

0

50

100

150

200

250

T
im

e
[m

s] message size 1k

message size 5k

message size 10k

 1 10 20 70
Link latency [ms]

Figure 9.15: Average time to make a Switchboard call.

Measured time to make Switchboard call
one way

0

50

100

150

200

T
im

e
[m

s]

message size 1k

message size 5k

message size 10k

 1 10 20 70
Link latency [ms]

Figure 9.16: Average time necessary for a message to reach the server.

Latency: Figures 9.15 and 9.16 illustrate the time consumed by the Switchboard

client to make calls against a remote server. The first figure shows the time spent until

a message reaches the server; the second figure also contains the time until the client

receives an answer back from the server. One notices that the times are proportional

with the latency between links, which is the expected behavior.

CPU usage: The CPU resource consumed by a client when making Switchboard

requests is affected mainly by the available bandwidth and the delay between requests.

Figure 9.17 illustrates the measured values of the CPU consumption. As expected, the

178

Measured average CPU consumed by Switchboard
client when making calls

0

5

10

15

20

25

30

C
P

U
 [

%
] latency 10ms

latency 20ms
latency 70ms
latency 0ms

0ms 100ms50ms

Delay between requests [ms]

Figure 9.17: Average CPU consumed by client when making Switchboard calls.

average amount of the CPU resource consumed by a client when making Switchboard

calls is not significant.

Experiment 2. In the second experiment, the network is defined as one domain con-

taining all 30 nodes, where all the links have 100Mbps available bandwidth and 0ms

latency. The number of clients connected to the server increases from 5 to 20 in in-

crements of 5, the message sizes vary from 1k, 5k, to 10k, and the delays between

client calls are 50ms, 100ms, and 150ms. The average time to make a Switchboard

call is measured on the client side, while the average CPU consumed is measured on

the server side. The goal of this experiment is to determine how the server behav-

ior is influenced by the rate of incoming Switchboard calls, and ascertain any scaling

bottlenecks .

Latency: Figures 9.18 and 9.19 show that the average time consumed by a client

to make a Switchboard request, when multiple clients connect to the server, linearly

179

depends on the number of clients simultaneously connected to the server.

Measured max time to make Switchboard call

0

50

100

150

5 10 15 20

Number of clients

T
im

e
[m

s]

Figure 9.18: Average time necessary for a message to reach the server, when there are multiple

clients.

Measured maximum time consumed by server to
process incoming requests

0
20
40
60
80

5 10 15 20
Number clients

T
im

e
[m

s]

Figure 9.19: Average time necessary to make Switchboard call, when there are multiple

clients making requests.

CPU usage: The CPU resources consumed by the server when accepting Switch-

board requests from multiple clients depends on the number of incoming requests and

the size of the messages sent in those requests. Figure 9.20 illustrates the actual CPU

share consumed by the server when accepting and processing requests. The results

show that the CPU consumption grows linearly with the number of client requests,

180

Measured average CPU consumed by Switcboard
server

0

20

40

60

80

100

C
P

U
 [

%
]

1024 5120 10240
Message size [bytes]

Figure 9.20: Average cpu consumed by client to send a message.

until it reaches a maximum.

The two experiments described above show that Switchboard has a predictable be-

havior and scales well with the number of clients simultaneously making Switchboard

calls.

Experiment 3. The third experiment was run between two Linux machines running

within the same domain. This means that the latency between them is practically

0ms and the available bandwidth is 100 Mbps. Both the RMI-SSL and the Switch-

board communication abstractions were tested by sending messages of various sizes

between a client and a server. In the case of RMI-SSL, the experiment varies also the

frequency of authenticating the client and the server. Usually, SSL authenticates the

two entities only once, upon creating the connection. However, one of the advantages

of Switchboard is its continuous monitoring of the network. This means that, in the

extreme case, the effect of running Switchboard is equivalent to authenticating entities

for every method call in RMI-SSL. In this experiment, the authentication frequency

181

Average time to execute Switchboard vs. RMI-SSL

1

10

100

1000

1024 5120

Message size [bytes]

T
im

e
[m

s]

switchboard

rmi-ssl no authentication

rmi-ssl authentication every
10 requests

rmi-ssl authentication every
5 requests

rmi-ssl authentication every
1 request

Figure 9.21: Switchboard compared with RMI-SSL.

changes from 0 (no verification), 1 (verification for every method call), 5 (verification

every 5 method calls), to 10 (verification every 10 method calls).

The results are presented in Figure 9.21 show that the performance of Switchboard

is comparable with the one of RMI-SSL. In average, Switchboard outperforms RMI-

SSL because Switchboard provides continuous monitoring of the trust relationship

more efficiently that RMI-SSL. In Switchboard, one entity is immediately notified

if the other entity lost its credential and the secure channel is terminated. RMI-SSL

obtains a similar effect by verifying the identities of both entities for every method,

which results in the worst performance of all cases.

9.5 Summary

This chapter has evaluated the techniques used to automatically deploy component-

based applications, as independent modules. The results show that: (1) the planning

algorithm is efficient, scales well with the size of the network and the application

182

complexity, and finds a solution if one exists, (2) the efficiency of the view genera-

tion process enables component-based frameworks to generate views at runtime and

on-demand, (3) the data consistency protocol is efficient by minimizing the update

messages exchanged between replicas, and support flexible data consistency require-

ments, and (4) the Switchboard communication abstraction is efficient and behaves

in a predictable manner. The next chapter evaluates how these mechanisms come

together in the context of a complete application.

183

Chapter 10

Performance Evaluation of PSF

This chapter evaluates the benefits and the costs of using the Partitionable Services

Framework (PSF) to automatically deploy component-based applications in hetero-

geneous environments by deploying a complete application and measuring its perfor-

mance when accessed by multiple users. The main goal of this evaluation is to answer

the following questions:

1. Does the dynamic, automatic configuration selection feature of PSF help? Is

it sufficient to select some small subset of component deployments, or does

choosing between different application configurations help?

2. What is the cost incurred by component-based applications when they are auto-

matically deployed by PSF?

3. How does the efficiency of the automatically deployed applications compare

with the efficiency of manual deployments of similar configurations?

4. What is the nature of the deployments chosen by PSF? In particular, can PSF

184

automatically reach deployments that may be non-obvious because PSF takes

into consideration the user QoS requirements, the application specification, and

the current state of the network?

The next section describes the testbed and the application used to run the experi-

ments. The following four sections evaluate each of the questions listed above.

10.1 Experimental platform

Testbed. The testbed used to run the experiments is presented in Figure 10.1, and

consists of 30 nodes, organized in 3 domains: Domain 0, Domain 1, and Domain

2. Each domain is represented by a fully-connected graph. The intra-domain links

are considered to be secure and fast (i.e., 100Mbps available bandwidth and 0ms

latency), while the links connecting the three domains are insecure and slow (i.e., the

Mail
Server

member in group G 1

member in group G 2

Domain 1

Domain 0

Domain 2

��
��
��
��

������
����

G 1

G 2 G 2

G 1

G 1

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

G 2

G 2

G 1G 1

G 2

Figure 10.1: Test bed

185

link between domains 0 and 1 has 70Mbps available bandwidth and 10ms latency,

the link between domains 0 and 2 has 20Mbps available bandwidth and 70ms latency,

and the link between domains 1 and 2 has 56Kbps available bandwidth and 100ms

latency). Nodes are additionally classified as internal or gateway nodes. The only

difference between them is that gateway nodes are resource constrained. The testbed

is simulated on a cluster with 30 nodes running Linux 2.4.19, with 512M of memory,

and AMD Duron 1.2GHz processor. The link available bandwidth and latency were

emulated using the Click modular router.

Application. The experiments measure the performance of the e-mail application

introduced in Section 2.

The application specification model described in Chapter 4 requires that the e-mail

application provide the following information for each of its components: the deploy-

ment conditions and effects, the linkage conditions and effects, and the interactions

between the components and the environment. The actual application specification

presented in Chapter 8 follows this model, and lists the set of properties relevant to

the e-mail application and the functions that capture the application behavior. These

functions were obtained by using the profiling results shown in Appendix C, as ex-

plained in Appendix D.

The results given in Appendix C indicate the costs of executing different opera-

tions for each component of the e-mail application. Appendix D computes the CPU

consumption and the response time when sending messages for the MailClient,

MailServer, and ViewMailServer components; in addition, the appendix computes

the RRF value for the ViewMailServer component. The average CPU share utilized

186

by a component in the unit of time is calculated as the sum of the CPU shares con-

sumed for each operation, as described in Appendix D. Similar reasoning is done for

computing the response time and the RRF.

Beside the application specification, the application also provides information to

be used by the data consistency protocol. In the e-mail applications, all updates are

pushed and pulled based on triggers defined using time (e.g., in this scenario, every

10 seconds).

These characteristics are very important because they affect the performance of the

clients connected to the ViewMailServer, and the benefits of placing a cache close to

clients (see the explanation in Section 10.2).

User behavior. Clients are divided into two groups Group1 and Group2, where each

group has four clients. For each group, clients are characterized by the following

parameters:

S The number of messages sent in the unit of time;

R The number of “receive messages” operations executed in the unit of time;

D The fraction of new received messages deleted by the client for every “receive

message” operation;

M The percentage of messages sent by the client from one group to the clients from

another group.

The actual values for each parameter are given in Table 10.1. Beside the QoS

requirements, users were also required to provide the information about their behavior

187

Table 10.1: Characteristics for user behavior.

Group1 Group2

S [messages/sec] 1 2
R [receive operations/sec] 0.2 0.1
D [%] 50 70
M Group1 [%] 80 10
M Group2 [%] 20 90

to PSF. Appendix D explains in more detail how the application models incorporate

this information to derive component conditions and effects.

Once connected to a mail server, clients start sending and receiving messages; in

addition, clients delete a portion of the incoming messages every time they receive

new messages.

Settings. The experiments were run in the context of two different settings. The

common factor in both settings is the goal – all users are trying to simultaneously

access their e-mail accounts by connecting to the MailServer running in Domain 0.

The difference between the two settings is the way the eight users are divided between

the three domains, as shown in Table 10.2. The columns show how many users from

each group are located in each domain. Figure 10.1 illustrates the first setting, where

the users are identified by their group number.

Table 10.2: The two user settings for the experiments.

Setting 1 Setting 2
Group1 Group2

Domain 0 2 1
Domain 1 1 1
Domain 2 1 2

Group1 Group2

Domain 0 4 0
Domain 1 0 0
Domain 2 0 4

188

Setting 2 - Domain 0
Client is connected directly to mail server

0

5

10

15

20

Timeline

T
im

e
[m

s]

Figure 10.2: Performance of client in Domain 0 and Setting 2.

Setting 2 - Domain 2
Client is connected to a cache

0

500

1000

Timeline

T
im

e
[m

s]

Figure 10.3: Performance of client in Domain 2 and Setting 2.

Figures 10.2 and 10.3 illustrate the behavior of representative clients in Setting

2, if the users are manually connected to the mail server. The manual configuration

chosen as the reference point for the following experiments, connects the clients from

Domain 0 directly to the MailServer, and the clients in Domain 2 to the MailServer

through a ViewMailServer. The reason for placing the ViewMailServer is to offset

the high latency of the links between domains 0 and 2. For each client, the graphs

show the measured time to send a message. The results show that clients in Domain 0

189

take between 10ms and 15ms to send a message, while the time seen by clients in Do-

main 2 is affected by the periodic caching-related activities of the ViewMailServer.

However, the time seen by clients in Domain 2 between caching events is equal to the

time seen by clients in Domain 0.

The goal of observing the client behavior (Figures 10.2 and 10.3) is to observe the

performance of the e-mail application and see how it compares with the performance

of the e-mail application when automatically deployed by PSF. Ideally, PSF should

find application configurations which improve or are comparable to this manual con-

figuration. All results shown in the following experiments are compared against aver-

ages taken over the results shown in Figures 10.2 and 10.3.

10.2 Deploying various application configurations

For each setting, this first set of experiments measures the average time to send a mes-

sage if the mail components are deployed under various configurations. For Setting 1,

PSF found the following application configuration:

� MailClient components are deployed in Domain 0 and directly connected to

the MailServer;

� One ViewMailServer component is deployed in Domain 1 and connected to the

MailServer; multiple MailClient components are deployed in Domain 1 and

connected to the ViewMailServer;

� Similarly to Domain 1, one ViewMailServer and multiple MailClient com-

ponents are deployed in Domain 2; the ViewMailServer is connected to the

190

MailServer, and the MailClient components are connected to the

ViewMailServer.

The automatic deployment found by PSF for Setting 2 is identical with the au-

tomatic deployment found for Setting 1 with the exception that no components are

deployed in Domain 1.

For clarity, the graphs show only the measurements for representative clients. The

x-axis represents one client in each of the three domains. The y-axis is the average

time to send a message.

For Setting 1, the graph shown in Figure 10.4 illustrates how the average time

to send a message is influenced by the state of the environment and by the compo-

nents deployed in the network. The two deployments compared are (1) connecting

the clients directly to the MailServer (“manual deployment-direct connection”) and

(2) connecting the clients from Domain 0 directly to the MailServer and the clients

from Domain 1 and 2 through caches located inside the respective domains (“auto-

matic deployment”). For the clients in Domain 0, the direct connection has the best

performance because the links have low latency and high bandwidth. However, the

Setting 1 - Effects of caching compared to direct connections

0

100

200

300

400

Domain 0 Domain 1 Domain 2

T
im

e
[m

s] automatic deployment

manual deployment -
direct connection

Figure 10.4: Various application configuration for Setting 1.

191

Setting 2 - Effects of caching compared to direct connections

1

10

100

1000

Domain 0 Domain 2

T
im

e
[m

s]

automatic deployment

manual deployment -
direct connection

manual deployment -
cached connection

Figure 10.5: Various application configuration for Setting 2.

same application configuration does not work as well for the clients from Domains

1 and 2, because the inter-domain links have high latencies. The performance is im-

proved by placing a cache close to the client. However, the improvement is not drastic

because the clients are sending messages to all other clients, which are spread almost

equally between domains. Thus, the average is dominated by that cost.

For Setting 2, where there is more locality of traffic, the results are as shown in Fig-

ure 10.5. In this case, the two application configurations compared are (1) connecting

all clients directly to the MailServer (“manual connection-direct connection”), (2)

connecting all clients through caches deployed in each domain (“manual connection-

cached connection”), and (3) connecting the clients from Domain 0 directly to the

MailServer and the clients from Domain 2 to a ViewMailServer placed in their do-

main (“automatic deployment”). Obviously, the first configuration is not good for

the clients from Domain 2 because they are connected through a slow link, while the

second configuration is not good for the clients from Domain 0 because it introduces

unnecessary costs. The only solution that provides good performance for all clients is

the third one, which is exactly what PSF finds as a valid solution.

192

This first set of experiments is indeed validating the claim that there is no single

application configuration that satisfies general user and application requirements.

10.3 Costs of automatically deploying applications

This section evaluates the cost of deploying component-based applications into het-

erogeneous environments. In this experiment, four clients from Domain 0 and four

clients from Domain 2 asked PSF to connect to the MailServer running in Do-

main 0 (i.e., Setting 2). The automatic deployment found by PSF consisted of (1)

MailClient components deployed in Domain 0 and connected to the MailServer, (2)

a ViewMailServer component deployed in Domain 2 and connected to the MailServer,

and (3) MailClient components deployed in Domain 2 and connected to the

ViewMailServer.

Ideally, the cost of automatically deploying the application should be negligible

Setting 2 - Costs of automatically deploying components

0

2000

4000

6000

8000

10000

T
im

e
[m

s]

connect MSI
install MC
install VMS
contact wrapper
planning

Domain 0 Domain 2

MC

VMS

MC
MC

MCMC
MCMCMC

Figure 10.6: Costs of automatically deploying components.

193

when compared to the application life-time. In PSF, the deployment process is com-

posed out of the following actions: (1) planning for a valid application configuration,

(2) contacting the wrappers and sending the installation commands, (3) downloading

and instantiating the components, and (4) creating the necessary connections between

components. The actual costs are shown in Figure 10.6. The x-axis represents the two

domains where components are deployed in Setting 2. The y-axis represents the time

to execute each of four steps listed above. As discussed in Chapter 9, the planning

cost depends on the size of the network and the complexity of the application. In

these experiments, the planning takes less than 4 seconds. The other important costs

are the time to contact the wrapper and connect the components with the required

components, which together take less than 10 seconds.

In conclusion, the total cost to satisfy a client request depends on how many com-

ponents need to be deployed and connected. In this experiment, the cost to deploy

and connect the MailClient varies from 6-8 seconds for most clients to 15 sec-

onds for the first client in Domain 2 (this client also pays for the deployment of the

ViewMailServer). Even the 15 seconds can be reduced by parallelizing the deploy-

ment process. For many long lived applications, such a cost is acceptable.

10.4 Effects of automatic deployment on the application perfor-

mance

This set of experiments measures the average time to send a message for two rep-

resentative clients, in two cases. In the first case, the clients from Setting 2 are si-

multaneously asking PSF to access the MailServer; the application configurations

194

are automatically computed and dynamically deployed by PSF. In the second case,

the components are manually deployed in exactly the same configuration as the one

found by PSF. Figure 10.7 shows that the differences between the application perfor-

mance in the two cases is negligible, most probably due to the variable behavior of

the JVM (e.g., because of the garbage collection). Therefore, this set of experiments

shows that the application performance is not affected in any way by the fact that the

application is manually or dynamically deployed.

10.5 Finding non-obvious application configurations

One of the goals of PSF is to find valid application configurations that respect both

the client QoS requirements and the application resource requirements. This problem

is even more challenging when the environments have resource constraints.

The following four experiments use Setting 2 to measure the average time to send

a message when the MailServer is running on a node where the available CPU share

Setting 2 - Comparison between manually and dynamically
deployed applications

0

50

100

150

Domain 0 Domain 2

T
im

e
[m

s]

automatic deployment

manual deployment

Figure 10.7: Effects of automatic deployment on the application performance.

195

drops from 100% to 50%, and clients are deployed in the following configurations:

(1) manually connecting all clients directly to the MailServer, (2) manually con-

necting the clients from Domain 0 directly to the MailServer and the clients from

Domain 2 through a ViewMailServer placed in Domain 2, (3) manually connecting

all clients through ViewMailServer components placed in Domain 0 and 2, and (4)

automatically deployed by PSF. The automatic configuration found by PSF consisted

of two ViewMailServer components deployed in Domains 0 and 2 and connected to

the MailServer, and multiple MailClient components deployed in Domains 0 and

2 and connected to the respective ViewMailServer components.

The results are presented in Figure 10.8. The x-axis shows only two representative

clients from Domains 0 and 2. The y-axis is the average time to send a message,

measured in milliseconds. The worst performance is given by the direct connection

because all clients are sending their requests to the MailServer which is working

on a CPU-bound node. The performance is improved for the clients in Domain 2 by

placing a ViewMailServer in their domain. However, the clients from Domain 0 are

Effects of deploying caches in resource constrained environments

1

10

100

1000

Domain 0 Domain 2

T
im

e
[m

s]

direct connection - manual
deployment

cache in Domain 2 - manual
deployment

caches in Domains 0 and 2
- manual deployment

caches in Domains 0 and 2
- automatic deployment

Figure 10.8: Deploying components in resource constrained environments.

196

still paying an increased cost. The solution found by PSF is to connect all clients

through cache components, and the graph shows that this solution yields the best

performance.

10.6 Summary

This chapter has evaluated the benefits and the costs of PSF when used to deploy a

complete component-based application in heterogeneous environments. The results

obtained show: (1) it is beneficial to design applications as sets of components be-

cause their flexibility enables dynamic component-based frameworks to find valid

solutions under a variety of network conditions, (2) PSF is able to find solutions that

satisfy both the user QoS requirements and the application deployment conditions, (3)

PSF deploys applications in an efficient and practical fashion, and (4) the application

performance is not affected once the application is deployed into the network.

197

Chapter 11

Summary and Future Work

This chapter summarizes the work presented in this dissertation and identifies some

avenues for future work.

11.1 Summary

The key problem in contemporary distributed systems is automatically deploying dis-

tributed applications in dynamically changing heterogeneous networks, while ensur-

ing that the user’s QoS requirements are satisfied.

One attractive solution is to write distributed applications as sets of components

that express at a high level their efficiency, security requirements, and their mal-

leability to environment changes and continuous user input, and create adaptable

component-based infrastructures that automatically and transparently deploy the ap-

plications with minimal user input.

The challenges in this approach are: (1) modeling the applications and the environ-

198

ment to capture complex application and environment properties and the relationships

between them, (2) finding in a timely manner the best application deployment that

satisfies both application and network constraints, and the user’s QoS requirements

(planning), and (3) deploying the applications in an efficient and practical manner.

This dissertation work has explored the thesis that by exposing qualitative and

quantitative properties and relationships between component-based applications and

heterogeneous environments, automatic deployment in resource constrained and dy-

namically changing environments becomes feasible. Feasibility implies that a valid

application deployment is found if it exists, the automatic deployment process does

not incur significant overhead compared to manually deployed solutions, and the QoS

requirements specified by users are satisfied.

In order to validate this idea, this dissertation has described three techniques which:

(1) model component-based applications, (2) search for valid deployments in resource

constrained environments, and (3) deploy the applications in heterogeneous environ-

ments. In addition, this work has described how the three techniques work together

as part of a dynamic component-based framework (PSF), in order to achieve the goal

described above.

Application and network models. The models presented in Chapter 4 describe the ap-

plication as a set of components, and the network as a set of nodes connected by links.

A component is defined by sets of implemented and required interfaces, where each

interface is associated with application-specific properties. These properties are used

to express component deployment conditions and effects. Similarly, nodes and links

are associated with network-specific properties that specify the effects of the environ-

199

ment on the deployed application and vice-versa. These models are richer than other

models (CORBA, Web Services, OGSA) because they allow the specification of gen-

eral qualitative properties (e.g., privacy, trust level) in addition to standard quantitative

properties (e.g., CPU, bandwidth, latency) [48].

Planning. Given such a model, it now becomes possible to automatically decide

which components make up the application and where they are located. The solution

presented in Chapter 5 develops an efficient planning algorithm based on classical AI

techniques, that takes advantage of the application and network description models.

What differentiates this planning algorithm from similar algorithms is its ability to

scale with the size of the network and the complexity of the application [58]. Rec-

ognizing that the chances of finding a valid plan increase with the diversity of the

component set, the set of application components can be enriched by creating at run-

time new custom components (views) that have different properties than the original

components.

Efficient and practical deployment process. Even after finding a suitable plan, sev-

eral challenges need to be addressed before the process of deploying the components

into network could be considered as efficient and practical. Two of the main prob-

lems are providing security and data consistency guarantees and they are discussed in

Chapter 6.

Achieving a secure deployment process is difficult because all entities (i.e. users,

applications, nodes, links) belong to different administrative domains. The assump-

tion is that each domain defines its own space of properties and credentials, and no

200

domain has complete knowledge of all spaces. Thus, the challenges of efficiently pro-

viding security guarantees include: (1) authenticating and authorizing entities across

domains, (2) translating network properties into application properties, (3) enforcing

the appropriate access control rules, and (4) creating secure connections between all

entities.

The solution presented in this thesis is based on the dRBAC trust management sys-

tem, views,and a secure communication abstraction called Switchboard. dRBAC is a

PKI-based trust management and role-based access control system originally devel-

oped for expressing and enforcing security policies in coalition environments span-

ning multiple administrative domains. With dRBAC, domains can define roles and

properties as credentials belonging to private spaces, and associate those credentials

with each entity. Both problems of entity authorization and property transformation

can be reduced to the problem of mapping a role/property local to one domain to

a role/property local to another domain. Thus, the framework authorizes entities or

transforms properties by building dRBAC credentials graphs that solve the mapping

problem [49]. Views are defined as customizations of original components. They

represents a natural solution for providing appropriate granularity for access control,

because one can restrict access to a component by simply removing its functionality.

Switchboard addresses the last challenge by creating secure channels and continu-

ously monitoring the trust relationships between communicating entities.

Th second problem of creating an efficient deployment process is maintaining con-

sistency among several instances of the same component. The solution consists of a

flexible data consistency protocol that uses views as the appropriate consistency gran-

ularity. The data consistency protocol described in Chapter 6 satisfies the consistency

201

requirements of general component-based applications (application-neutral) deployed

in a variety of configurations (flexible), while using application-specific information.

The performance of the data coherence protocol is improved by allowing the appli-

cation to specify (1) data properties to characterize the shared data, (2) triggers to

indicate when updates need to be pushed or pulled between views, and (3) merge/ex-

tract methods to merge/extract updates from/into views and original components [50].

PSF. The three techniques were implemented and tested as integral parts of the Par-

titionable Services Framework (PSF), as described in Chapter 7. PSF is a dynamic-

component-based framework which views applications as being dynamically built out

of independent components that can be flexibly assembled to suit the properties of

their environment, and facilitates on-demand transparent migration and replication

of these components at locations closer to clients while still retaining the illusion of

a monolithic service. A run-time system is responsible for registering applications

with the framework and serving incoming client requests. Whenever a client wants to

access a service, the run-time system performs the necessary security checks (authen-

tication and authorization), decides which level of service the client has the right to

access, and asks a planning module to compute a valid component deployment.

The benefits of PSF have been evaluated by deploying representative component-

based applications in an environment simulating fast and secure domains connected

by slow and insecure links. Analysis of the programming and the deployment pro-

cesses has shown that: (1) the code modifications required by PSF are minimal, (2)

PSF appropriately adapts the deployments based on the network state and user QoS

requirements, (3) the run-time deployment overheads incurred by PSF are negligible

202

compared to the application lifetime, and (4) the efficiency of PSF-deployed applica-

tions matches that of hand-crafted solutions.

11.2 Conclusions

This work has presented a set of techniques that could improve the process of dy-

namically deploying component-based applications into heterogeneous environments

when integrated into a dynamic component-based framework. The main contributions

of this work are:

� Defining suitable component and network models that capture the application

behavior, deployment conditions and effects, and the network properties. These

models allow applications to use general, quantitative and qualitative properties,

and black-box functions to create local specifications (i.e., per component).

� Building a scalable planner which exploits the expressivity of the component

model to reason about the global behavior of the application and efficiently find

a valid plan.

� Building an efficient and practical application deployment process, which uses

views to efficiently provide security and data consistency guarantees.

In conclusion, PSF manifests the desired behavior of a dynamic component-based

framework, which automatically adapts distributed applications to their environment

so as to satisfy user and application QoS requirements.

203

11.3 Future work

PSF addresses a subset of the issues raised by the process of automatically deploying

component-based applications: modeling of applications and environments, efficient

planning in resource constrained environments, authorizing entities in a loosely cou-

pled federation of domains, and ensuring continuous and flexible application-level

consistency for component-based applications. However, there are many other chal-

lenges that remain.

Extending the application model. The PSF application model should be extended to

automatically infer the properties of component compositions based on the properties

of the individual component. Similarly, the PSF linkage model should be enriched

with semantics information, in the same spirit as emerging web services specifications

such as BPEL4WS and OWL-S.

Extending the planning algorithm. The application configuration planning problem

is complex and, although the planning algorithm described in Chapter 5 is sufficient

for the example applications motivating this work, several additional challenges must

be addressed in order to obtain an ideal solution. These challenges include: (1)

supporting formulae involving parameters of implemented interfaces, (2) optimizing

more complex application-specific cost functions than just the length of the plan, (3)

allowing users to negotiate when their QoS requirements cannot be satisfied, and (4)

allowing the planner to aggregate several incoming requests and plan accordingly.

204

Closer integration of networking monitoring systems. While the current implementa-

tion of PSF assumes a traditional network monitoring system like NWS or Remos,

several interesting research problems need to be addressed to build a monitoring

system that is secure (i.e. do not reveal state information on one domain to other

domains), non-intrusive (i.e. some domains might not accept intrusive monitoring

systems) and able to extract both qualitative (e.g. trust, privacy) and quantitative in-

formation (e.g. CPU, bandwidth) on the state of the environment.

Decentralization of PSF. Several modules of PSF which rely on a centralized data

store should be decentralized. For example, a decentralized planning algorithm would

eliminate the assumption of complete knowledge on both the application and the net-

work, and would allow each domain to compute and deploy partial plans on its nodes.

205

Appendix A

VIG Algorithm

Chapter 6 defines the notion of views and presents a high-level view of the tool that

generates views. For completeness, this Appendix describes in details the steps re-

quired to generate views.

A.1 VIG generation tool

Let’s assume that � � �p1� p2� � � �	 is the set of available packages and

� � �c
p j
i �cpn

m � � � �	 is the set of all classes, where c
p j
i denotes a classic Java class

ci defined in a package p j. The notation c will be used if the package it belongs to

is not important. A class c � � is defined by a set of imported packages IPc �� , a

set of implemented interfaces IIc � � , a set of declared fields Fc � � f1� f2� ���	, and

a set of implemented methods Mc � m1�m2� ���. Each method mi� fi� f j� ��mk�ml� ���� is

fully described by the used fields � fi� f j� ���	 and the called methods �mk�ml� ���	. We

define the following relations between classes:

206

� i � c : class c implements interface i;

� v � c : view v represents class c;

� c1 � c2 : class c2 extends class c1.

class ViewDef �

String viewName;

String representedClassName;

Vector importedPackages;

String extendedClass;

ViewDef extendedView;

Vector restrictedInterfaces;

Vector copyFields;

Vector copyMethods;

Vector addFields;

Vector addMethods;

Vector addInterfaces;

Vector customizeMethods;

�

generate view(String xmlFile) �

/** look for the represented object **/

ViewDef viewDef = parse XML file(xmlFile);

cq = look for class(viewDef.representedClassName);

if (c �� �) or (q ���) trigger ClassNotFoundException;

/** create the view **/

create vp, where v � � � p ��

set view name(vp, viewDef.viewName)

207

/** set the imported packages **/

define IPv � �p1� p2� � � � �, where pi ��

/** set the extended class **/

excl = look for class(viewDef.extendedClass)

if (excl �� �) trigger ClassNotFoundException;

set excl such that ec � vp

/** set the extended view **/

excl exv = viewDef.extendedView.representedClass;

if !(excl exv � c) trigger ExtendedViewNotCorrectException;

v = add XML descriptions(v, exv);

/** copy fields **/

for each field f in viewDef.copyFields do

if (f � Fv) trigger FieldExistsInViewException;

f d = find field(f);

Fv � Fv� f

done

/** add fields **/

for each field f in viewDef.addFields do

if (f � Fv) trigger FieldExistsInViewException;

Fv � Fv� f

done

/** add constructors - is similar to add methods **/

/** customize methods **/

208

for each method m in viewDef.customizeMethods do

if (m � Mv) trigger MethodsExistsInViewException;

md = find_method(m);

change body(md);

copy method(md, v);

done

/** add methods **/

for each method m in viewDef.addMethods do

if (m � Mv) trigger MethodsExistsInViewException;

copy method(m, v);

done

/** copy methods **/

for each method m in viewDef.copyMethods do

if (m � Mv) trigger MethodsExistsInViewException;

md = find_method(m);

copy method(md, v);

done

/** add local interfaces **/

for each interface i in viewDef.addInterfaces do

for each method m defined by interface i do

copy method(m, v);

done

�

find field(f) �

if (f �� Fc) or

(f �� Fb� �b s�t� b � c) or

209

(f �� Fb� �b� p s�t� bp � � and p � IPv)

trigger FieldNotDefinedException;

return field definition;

�

find method(m) �

if (m �� Mc) or

(m �� Mb� �b s�t� b � c) or

(m �� Mb� �b� p s�t� bp � � and p � IPv)

trigger MethodNotDefinedException;

return implementation of m

�

copy method(m, v) �

for each used field f by method m do

if (f �� Fv) do

f d = find field(f);

Fv � Fv� f

done

done

for each called method mm by method m do

if (mm �� Mv) do

mmd = find method(mm);

copy method(mmd, v);

done

done

Mv � Mv �m

�

210

Appendix B

Interactions Between the Entities of

the Data Consistency Protocol

Chapter 6 describes the data consistency protocol implemented by PSF to provide

consistency guarantees to component-based application. For both the cache manager

and the directory manager, the chapter shows the state machines that capture the in-

teractions between views and cache managers, and cache managers and the directory

manager. For completeness, this Appendix describes the messages exchanged be-

tween all entities (i.e., views, cache manager, and directory manager).

The data consistency interactions are divided into two classes: (i) view - cache

manager interactions, and (ii) cache manager - directory manager interactions. The

two classes contain the following messages, as described next.

View - Cache manager interactions.

new CM() The view creates a new cache manager and provides all the information

211

necessary: mode of operation, data properties, quality triggers, and merge/ex-

tract methods;

initImage The view asks the cache manager to initialize the shared data;

startUseImage, endUseImage The view marks the code that uses the shared data.

This is necessary because the cache manager should never extract or merge up-

dates from/into the shared data, when the view is working with it;

pullImage The view explicitly asks the cache manager for the current data;

releaseImage The view explicitly asks the cache manager to send the current data

to the directory manager;

killImage The view announces the cache manager that it will stop running.

Cache manager - directory manager interaction.

registerCM The cache manager registers the view with the directory manager and

provides the necessary application-specific information: mode of operation, data

properties, validity trigger, and merge/extract methods;

getImage The cache manager asks the directory manager for the most recent data.

This message is sent to the directory manager if the either the view explicitly

requested it (pullImage) or the pull trigger associated with view was evaluated

to true;

invalidateImage The directory manager asks a view to invalidate its data, if there

was a getImage request from another view running in strong mode that conflicts

212

with the former view. Invalidation implies that the former view is no longer

allowed to continue its work (e.g. is no longer active);

releaseImage The directory manager asks a view to release its data, if there was a

getImage request from another view running in weak mode and if the two view

conflict. After releasing the data, the view is allowed to keep working (e.g. is

active);

sendImageDM The cache manager sends the current value of the shared data from

the view to the directory manager. The possible causes of such a message are:

(i) the view explicitly asked for it (releaseImage), (ii) the push trigger was

evaluated to true, or (iii) as an answer to invalidateImage or releaseImage.

Once it receives the data, the directory manager merges the data into the original

component;

sendImageCM The directory manager sends the value of the data to the cache manager

as an answer to a getImage request. First, the directory manager verifies if the

current data is “good enough” for the requesting view by evaluating the validity

trigger associated with view. If the result is true, the directory manager extracts

the data from the original component and sends it to the cache manager. If the

trigger evaluates to false, the directory manager uses the static conflict map and

the dynamic sets or properties to find out which other views conflict with th

requesting view. If the requesting view is running in strong mode, the direc-

tory manager sends invalidateImage to the conflicting view. Otherwise, the

directory manager sends releaseImage. Upon receiving data from the conflict-

ing views, the directory manager merges the data into the original component,

213

extracts the new value, and sends it to the cache manager;

unregisterCM The cache manager announces to the directory manager that the view

has finished executing.

214

Appendix C

Gathering Profiling Information

Chapters 4 and 8 have described and evaluated the application specification model

introduced by this thesis. However, the expressions used to illustrate the expressiv-

ity of this model capture the behavior of the e-mail application in a simplistic way.

Appendix D presents a more complete model that accurately captures the resources

utilized by the e-mail application components.

In order to create such a complete model, the following assumptions are made:

all interactions between components at either end are the result of executing a limited

set of operations, and all interactions pass through the Switchboard communication

abstraction. For each component of the e-mail application, the experiments described

in Section C.1 separately measure the resources consumed by each operation imple-

mented by the component. In addition, Section C.2 performs similar measurements

for Switchboard. They are put together to obtain expressions for overall application

behavior in Appendix D. These expressions are then fed to the planner presented in

Chapter 5 and used to generate the deployments characterized in Chapter 10.

215

C.1 E-mail application

This section describes two resources — response time and CPU utilization — con-

sumed by two of the e-mail application components: MailClient and MailServer.

The reason for measuring only these two is that the ViewMailClient and the

ViewMailServer are views of the first two components, as defined in Chapter 6, and

their resource consumption can be deduced from these results.

In order to profile the average CPU share utilized by a component in the unit of

time, the experiments measure the average CPU shared consumed by the component

when independently executing different operations. This information is then used to

calculate the total CPU share consumed by the component as the sum of the CPU

shares consumed for each operation, as described in Appendix D. Similar reasoning

is done for measuring the response time.

The following sections describe in detail what are the resources consumed by com-

ponents when executing various operations.

C.1.1 Mail server

The main operations performed by the MailServer component are: (1) allowing

clients to send messages and merging the incoming messages in the appropriate ac-

counts, (2) sending to clients meta-information about their accounts (e.g., number of

folders, names of folders, number of messages present in each folder), and (3) sending

to clients the messages present in their accounts, in response to a “receive messages”

operation.

Each operation is discussed in detail in the following sections.

216

Delete message operation

This experiment measures the response time and the CPU utilization when the

MailServer deletes a message from a user account. The experiment starts with one

user account with one folder having different numbers of messages (100, 300, 500),

of various sizes (1k, 5k, 10k), and measures the response time and the CPU utilization

when deleting one message every 0.5s, 1s, or 1.5s. The server performs a linear search

in order to find the right message.

Response time. The response time when deleting a message depends on how many

messages are in the folder, as shown in Figure C.1. The measured data is fit very

well by the expression response timeserver delete�n� � 0�052561�0�000906n, where n

is the number of messages in one folder.

Average time to delete one message

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
[m

s]

computed value

measured value

100 300 500
Number of messages

Figure C.1: Average response time when the server deletes one message.

217

CPU utilization. The average CPU utilization when the server deletes a message

depends mainly on the size of the message; one function that approximates the mea-

sured values is: CPUserver delete�s� � 0�325585�0�0000585s, where s is the size of

the message. Figure C.2 shows that the computed values approximate well the mea-

sured values.

Average CPU consumed by mail server to delete a message

0

0.2

0.4

0.6

0.8

1

1.2

C
P

U
 [

%
] measured value

average measured value

computed average value

10240 5120 1024
Message size [bytes]

Figure C.2: Average CPU utilization when the server deletes one message.

Get account metadata operation

In order to evaluate the response time and the CPU utilization when extracting the

meta-information of a user account, this experiment executes the getAccountMetadata

command while varying the number of folders in the user accounts, and the delay be-

tween requests (0.5s, 1s, and 1.5s). The observation for both the response time and

the CPU utilization is that neither is significant.

218

Response time. The average response time when the server gets the account metadata

is insignificant and can be approximated by its upper bound. In this experiment, the

upper bound is response timeserver getAccountMetadata � 0�14, as shown in Figure C.3.

Average time to get account metadata

0.124
0.126
0.128

0.13
0.132
0.134
0.136

T
im

e
[m

s]
average time measured time

1024 5120 10240
Message size [bytes]

Figure C.3: Average response time when the server gets account metadata.

CPU utilization. The CPU utilization when the server extracts the account metadata

belonging to a user depends on the number of folders in the account. In this experi-

ment, it is almost 0: CPUserver getAccountMetadata � 0.

Get messages operation

This experiment initializes the mail server with one account and one folder. However,

the number of messages in the folder varies from 100, 300, to 500, and the message

size increases from 1k, 5k, to 10k. In addition, the requests are made with delays of

0.5s, 1s, and 1.5s between them.

Response time. The average response time when extracting messages from an ac-

count depends on the number of messages in the account. The measured response

219

Time to get messages

0
0.2
0.4
0.6
0.8

1
1.2

100 300 500

Number of messages into account

T
im

e
[m

s]

measured value

computed value

Figure C.4: Average response time when the server extracts messages.

times are shown in Figure C.4. The function that fits well these measurements is

response timeserver getMessages�n� � 0�110456�0�001863n, where n is the number of

messages.

CPU utilization. From the measured data shown in Figure C.5, one can notice that

the CPU utilization depends on the number of messages and the size of the messages.

However, the value is small enough to be considered a constant:

CPUserver getMessages�n�s� � 0�8659821140�001435318n�0�0000841s� 2

, where n is the number of messages in the user account, and s is the average size of

those messages.

Send message operation

During the “send message” operation, the server is responsible for adding the sent

message into the user’s account. This experiment measures the response time and the

220

Average CPU consumed by server to get messages

0

0.5

1

1.5

2

0 100 200 300 400 500 600

Number of mesages into account

C
P

U
 [

%
]

computed value measured value

5120 bytes

1024 bytes

10240 bytes

Figure C.5: Average CPU utilization when the server extracts messages.

average CPU utilization when varying several parameters: the number of messages in

the destination folder (100, 300, 500), the delay between send message requests (0.5s,

1s, 1.5s), and the message size (1k, 5k, 10k).

Response time. The response time varies only a bit; thus, the measured values pre-

sented in Figure C.6 can be approximated by the maximum measured response time

Average time consumed by server to add
message into account

0

1

2

3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Number of messages sent per second

T
im

e
[m

s]

Figure C.6: Average response time when the server adds a message into account.

221

necessary: response timeserver send � 2.

CPU utilization. The CPU utilization can be fit well by the function:

CPUserver send�s�n� � 0�590181003�0�0000774s0�000787544n� 2

, where n is the number of messages and s is the size of the message. The max value

is so small, that it can also be considered as constant. Figure C.7 shows the measured

CPU utilization.

C.1.2 Mail client

This section evaluates the performance of the MailClient component in a similar

fashion as the previous section. The experiments measure the response time and the

average CPU utilization when the client sends and receives messages.

Average CPU consumed by server to add a message into the right account

0

0.5

1

1.5

2

100 300 500 100 300 500 100 300 500

Number messages in the account

C
P

U
 [

%
]

measured value

computed value

Message size [bytes]
10240 5120 1024

Figure C.7: Average CPU utilization when the server adds a message into account.

222

Send message operation

This experiment measures the resources consumed by the client when sending mes-

sages. Without the actual communication with the server, the experiments evaluate

only the response time and the CPU utilization when the client creates the messages

to be sent. The parameters which are varied are: the message size (512 bytes, 1k, 2k,

5k, and 10k), and the delay between requests (50ms, 100ms, 150ms).

Average time consumed by client to send a message

0

0.1

0.2

0.3

0.4

512 1024 2048 5120 10240

Message size [bytes]

T
im

e
[m

s]

measured value

computed value

Figure C.8: Average response time when the client sends a message.

Response time. The response time when the client sends a message depends on the

size of the message. Figure C.8 shows the measured response time, which can be

fit by the following function: response timeclient send�s� � 0�139453�0�0000205s. In

this expression, s represents the size of the message.

CPU utilization. The CPU utilization depends on the size of the message. However,

the measured data shown in Figure C.9 can be approximated by the upper bound.

CPUclient send�� � 4.

223

Average CPU consumed by client to send a message

0

1

2

3

4

Message size [bytes]

C
P

U
 [

%
]

 512 1024 2048 5120 10240

Figure C.9: Average CPU utilization when the client sends a message.

Average time to receive messages

0

0.1

0.2

0.3

T
im

e
[m

s] 100 messages

300 messages

500 messages

1024 5120 10240
Message size [bytes]

Figure C.10: Average response time when the client receives messages.

Receive messages operation

In order to measure the response time and the CPU utilization when the client re-

ceives messages from the mail server, the following experiment was conducted: the

mail client executes the “receive messages” operation, while varying the size of the

message (1k, 5k, and 10k), the delay between requests (0.5s, 1s, and 1.5s), and the

number of messages received (100, 300, and 500).

Response time. The observed response time is sufficiently small to be considered

constant: response timeclient recv � 0�2. Figure C.10 shows that the measured average

224

response time when the client receives messages and merges them into the account is

less than 0.2ms.

Average CPU consumed by mail client to receive
messages

0

1

2

3
T

im
e

[m
s]

computed value measured value

10240 5120 1024

Message size [bytes]

Figure C.11: Average CPU utilization when the client receives messages.

CPU utilization. Figure C.11 shows the measured CPU utilization when the client

receives messages. The function that fits well the measured data is

cpuclient recv�s�r�n� � 0�23�0�000115s�0�000355n�0�1896r

, where s the size of the messages received from the mail server, r the rate of making

requests to receive messages, and n the number of messages received from the mail

server.

C.2 Switchboard

Switchboard represents the secure communication abstraction used by PSF to create

secure channels between all entities. Because of this, the efficiency of Switchboard

directly influences the efficiency of the entire deployment process. This section eval-

uates the Switchboard performance by measuring the round-trip and one-way latency,

225

and the CPU utilization when a client and a server communicate through Switch-

board. The two experiments described below were run on a cluster of 30 Linux-based

nodes divided into five domains; the Switchboard server is running in one domain and

clients are located in each of the five domains. In both experiments, the rate of client

requests are obtained by injecting various delays between client Switchboard calls.

C.2.1 Experiment 1.

The first experiment assumes the following network configuration. Intra-domain links

have 100Mbps available bandwidth and 0ms latency. The links connecting the do-

mains to the one where the server is located have the following characteristics:

� 50Mbps available bandwidth and 20ms latency;

� 70Mbps available bandwidth and 10ms latency;

� 20Mbps available bandwidth and 70ms latency;

� 56Kbps available bandwidth and 100ms latency.

Given such a network, one client connects to the server from each domain and

makes Switchboard RPC calls with parameters of different sizes (1K, 5K, 10K) and

delays of 0ms, 50ms, 100ms, and 150ms. This experiment measures (1) the average

time for a message to reach the server (one-way latency), (2) the average time to make

the call and receive the answer from the server (two-way latency), and (3) the average

CPU utilization of a client when making a Switchboard call. The goal is to see how

the latencies and the CPU utilization are influenced by the network characteristics.

226

Latency. The following two functions approximate the average time to make a call.

r � s�d is the rate of bits sent by the client, s is the message size, d is the delay between

messages, l is the link latency, and b is the amount of link available bandwidth. The

actual values for aow, bow, cow, atw, btw, and ctw are shown in Tables C.1 and C.2.

Figures C.12 and C.13 compare how accurate the approximations are when compared

to measured times.

latencyoneway�s�r� l�b� � aow �bows� cowlr�b

latencytwoway�s�r� l�b� � atw �btws� ctwlr�b

Table C.1: Parameters for one-way latency function.

Latency[ms] Bandwidth[bits/ms] aow bow cow

1 100000 3.639302 0.0000552 1.003602

20 50000 23.92174 -0.000375 1.126531

10 70000 14.33129 -0.000077 1.031183

70 20000 74.60529 -0.011782 3.397377

100 56 244.4245 -5.194152 2.9192

CPU utilization. The CPU utilization when a client makes Switchboard requests is

affected mainly by the link available bandwidth and the delay between requests. The

function that approximates well the measured CPU utilization is given by the fol-

lowing expression, where b is the amount of available bandwidth and d is the delay

227

Table C.2: Parameters for two-way latency function.

Latency[ms] Bandwidth[bits/ms] atw btw ctw

1 100000 7.86287802 0.000054 1.003397911

20 50000 49.18318197 -0.00037079 1.116180956

10 70000 28.99475639 -0.0000749 1.028514878

70 20000 150.2371395 -0.011577819 3.337880997

100 56 476.9670374 -6.036063322 3.390659259

Time to make Switchboard call -- round trip

0

50

100

150

200

250

T
im

e
[m

s]

computed value measured value

 1 10 20 70
Latency [ms]

Figure C.12: Average round-trip latency when

one client makes Switchboard

calls.

Time to make Switchboard call -- one way

0

50

100

150

T
im

e
[m

s]

computed value measured value

 1 10 20 70
Latency [ms]

Figure C.13: Average one-way latency when

one client makes Switchboard

calls.

between requests. Figure C.14 illustrates the accuracy of the function.

CPUSW client�b�d� � 833�84466116b�0�00936185d0�091357796b�d

Experiment 2. In the second experiment, the network is defined as one domain con-

taining all 30 nodes, where all the links have 100Mbps available bandwidth and 0ms

latency. The number of clients connected to the server increases from 5 to 20 in in-

crements of 5, the message sizes vary from 1k, 5k, to 10k, and the delays between

228

Average CPU consumed by Switchboard client when
making calls

0

5

10

15

20

25

30

C
P

U
 [

%
]

measured value
computed value

0 50 100 150
Delay between requests [ms]

Figure C.14: Average CPU utilization when one client makes Switchboard calls.

calls are 50ms, 100ms, and 150ms. The average round-trip latency is measured on

the client side, while the average CPU consumed is measured on the server side. The

goal of this experiment is to determine how the server behavior is influenced by the

rate if incoming Switchboard calls.

CPU utilization. The CPU utilization when the server accepts Switchboard requests

from multiple clients, depends on the number of incoming requests and the size of

the messages sent in those requests. r � req � 1000�d represents the rate of incom-

ing requests per second, where req is the number of clients making requests and d

is the delay between the requests, measured in milliseconds. CPUSW server�r�s� �

0�442988� 0�002377s� 0�395118r, if r � limit. The table C.3 gives the limits,

which depend on the message size. Figure C.15 illustrates the accuracy of the func-

tion by comparing the computed values with the measured ones.

Latency. The measured round-trip and one-way latencies, when multiple clients si-

multaneously make Switchboard requests, are shown in Figures C.16 and C.17. The

229

Table C.3: Limits of request rates

Message size [bytes] Limit

1024 200

5120 133

10240 100

Average CPU consumed by Switcboard server

0

20

40

60

80

100

C
P

U
 [

%
]

computed value measured value

1024 5120 10240
Message size [bytes]

Figure C.15: Average CPU utilization when multiple clients are simultaneously making

Switchboard calls.

functions that fit well the measured data are given by the following expressions, where

n is the number of clients.

latencymulticlients oneway �6�503749228�4�140272273n

latencymulticlients twoway �8�501716537�5�516912531n

The two experiments described above assert the claim that Switchboard is an effi-

cient communication abstraction which provides inexpensive security guarantees.

230

Maximum time consumed by server to process
incoming requests

0

50

100

5 10 15 20
Number clients

T
im

e
[m

s]

measured value computed value

Figure C.16: Average one-way latency, when

multiple clients are simultane-

ously making Switchboard calls.

Max time to make Switchboard call

0

50

100

150

5 10 15 20

Number of clients

T
im

e
[m

s]

measured value computed value

Figure C.17: Average round-trip latency when

multiple clients are simultane-

ously making Switchboard calls.

C.3 Conclusions

This appendix has evaluated the resources consumed by two components of the e-mail

application components when executing individual operations. The results presented

here are used in Appendix D to accurately model the behavior of each component.

This model is provided as input to the planning module described in Chapter 5.

The functions that fit well the measured resource consumption are (1) constant,

(2) polynomial, and (3) non-polynomial functions. Hence, the planner’s support for

non-reversible functions is necessary.

231

Appendix D

Computing Properties for the Mail

Application

Chapter 8 evaluates the expressivity of the application model introduced in Chapter 4,

by illustrating how the model captures the behavior of the e-mail application described

in Chapter 2. The expressions used in that example are only simplified versions.

This Appendix explains how more complete expressions can be created to capture the

application behavior in a more realistic way. This model takes into consideration the

real load created by clients, given the behavior of each client.

D.1 Modeling the communication between clients

In order to capture the behavior of the e-mail application, the following assumptions

are made: the environment is divided into domains, the MailServer is running in one

domain, and clients are spread among all domains. Figure D.1, which was initially

232

Mail
Server

member in group G 1

member in group G 2

Domain 1

Domain 0

Domain 2

��
��
��
��

������
������

G 1

G 2 G 2

G 1

G 1

�
�
�
�
�

�
�
�
�
�

G 2

G 2

G 1G 1

G 2

Figure D.1: Test bed

presented in Chapter 10, is used in this Appendix to illustrate the assumed setting. In

this figure, the environment has three domains, and there are only two groups with four

clients in each group. The clients are spread between the three domains as follows:

(1) 2 clients from Group1 and 1 client from Group2 are in the same domain as the

MailServer, (2) 2 clients from Group2 and 1 client from Group1 are in Domain 2,

and (3) one client from each group is in Domain 1.

Client behavior. In order to better capture the application behavior, this section de-

scribes a generalization of the scenario presented above. Clients are divided into K

groups, where each group gi has Ci clients, 1 � i � K. Clients in each group gi are

characterized by the following properties:

Si The rate of sending messages in the unit of time;

Ri The rate of executing the “receive messages” operation in the unit of time;

Di The percentage of new received messages deleted by the client;

233

M j
i The percentage of messages sent by the client from group gi to the clients from

group g j.

In addition, each client is assumed to execute the same operations in a loop: (1) send-

ing messages, (2) executing one “receive messages” operation, and then (3) deleting

part of the incoming messages. This is important because it permits reasoning about

the flow of messages in the system.

If the network has D domains, each domain dp serves a number of clients from

each group, i.e., �np
1 �n

p
2 � �����n

p
K	.

E-mail application. Creating a realistic model for the e-mail application requires

two pieces of information: the client behavior and the application behavior. The

main components discussed in this Appendix are MailClient, ViewMailServer, and

MailServer.

Clients use the MailClient component to connect to a ViewMailServer or a

MailClient, and access their e-mail accounts. The ViewMailServer is a cache

mail server which can be placed close to clients to offset high latencies. In gen-

eral, a ViewMailServer serves only a subset of the clients who have accounts on the

MailServer. The ViewMailServer and the MailServer synchronize their informa-

tion according to the following rules: (1) if a client connected to a ViewMailServer

sends a message to a user who does not have an account on the ViewMailServer,

the ViewMailServer forwards the message to the MailServer; (2) all new mes-

sages saved on the ViewMailServer are sent to the MailServer when the quality

triggers discussed in Chapter 6 evaluate to True, and (3) for every message deleted

on the ViewMailServer, the ViewMailServer sends an update notification to the

234

MailServer; all notifications are packed and sent as one batch when the quality

triggers evaluate to True. All communication between components is done through

Switchboard.

Figure D.2 illustrates the message flow in and out the ViewMailServer, if the

ViewMailServer is located in domain dp.

Modeling both the client and application behavior permits the creation of a more

complete application specification for each component. For example, the RRF property

of the ViewMailServer can be defined as the ratio between the traffic forwarded to

the MailServer and the total traffic seen by the ViewMailServer.

For clarity, this section starts by defining intermediary properties and then uses

them to build expressions for the component properties.

D.2 Intermediary properties

Sp
in�i� j� represents the rate of messages sent by clients in group gi in domain dp to

clients in group g j in domain dp.

Sp
in�i� j� � np

i SiM
i
jn

p
j �Cj

VMS

S

R

S

Rin

in out

out

Update
new

Update notify+
Domain d

d

d d

d

d d

Figure D.2: Traffic going through the ViewMailServer associated with a domain dp.

235

Sp
in is the rate of messages sent by clients from domain dp to clients from domain

dp is:

Sp
in �

K

∑
i�1

K

∑
j�1

Sp
in�i� j� �

K

∑
i�1

K

∑
j�1

np
i SiM

i
jn

p
j �Cj

Sp
out�i� j� is the rate of message sent by clients from group gi in domain dp to clients

in group g j outside the domain dp is:

Sp
out�i� j� � np

i SiM
i
j

�
Cjnp

j

�
�Cj

Sp
out is the rate of messages sent by clients in domain dp to clients outside the

domain dp is:

Sp
out �

K

∑
i�1

K

∑
j�1

Sp
out�i� j� �

K

∑
i�1

K

∑
j�1

np
i SiM

i
j

�
Cjnp

j

�
�Cj

Rp
out�j� is the rate of messages received by clients from group g j in domain dp,

which were sent by clients from outside domain dp is:

Rp
out�j� �

D

∑
q�1�q	�p

K

∑
i�1

Sq
out�i� j�n

p
j �Cj

Rp
out is the rate of messages received by clients from domain dp, which were sent

by clients from outside domain dp is:

Rp
out �

K

∑
j�1

Routp�j� �
D

∑
q�1�q	�p

K

∑
j�1

K

∑
i�1

Soutq�i� j�np
j �Cj

Updatep
new is the rate of messages received by clients in domain dp that need to be

forwarded outside the domain is:

Updatep
new �

K

∑
j�1

��
K

∑
i�1

Sinp�i� j�

	
�1Dj�

236

Updatep
notify is the rate of notifications (to indicate which messages received from

outside the domain were deleted) forwarded from domain dp outside is:

Updatep
notify �

K

∑
j�1

�Routp�j��1Dj��

Given these measurements, one can create a model that completely captures the

properties of the e-mail application components.

D.3 Computing e-mail application component properties

Chapter 8 listed the properties of the e-mail application and explained why the prop-

erties are relevant to the application. The only properties discussed in this Appendix

are RRF for ViewMailServer, CPU utilization, TFMS, and TLMS.

RRF. By definition, the RRF factor for the ViewMailServer represents the fraction

of the requests created by the clients located in one domain d that cannot be processed

locally by the ViewMailServer, but need to be forwarded to the required interfaces.

Given this definition, the RRF can be captured by the formula:

���d �
�

Soutd �Updated
new �Updated

del

�
�
�

Sind �Soutd �Updated
new �Updated

del

�

CPU utilization. For each component of the e-mail application, the total CPU uti-

lization is defined as the sum of the CPU utilizations when the component executes

various operations. For example, the ViewMailServer consumes CPU when deleting

messages, processing messages sent by clients, sending messages to clients, and send-

ing and receiving updates to and from the MailServer. The expression D.2 represents

the total CPU utilization for the ViewMailServer component. In this expression, Nd

237

is the number of clients in domain d, Rd is the total receive rate, Rpull is the rate to

pull messages from the MailServer, and Rpush is the rate to such messages. The CPU

utilization for the MailServer has the same expression.

The CPU utilization for the MailClient can be deduced in a similar fashion. Ex-

pression D.4 capture the CPU utilization for MailClient, where RM�d �� i� represents

the total number of messages received by clients from domain d � and group i. The

intuition is to add the CPU consumed by the MailClient when sending messages

with rate Si, receiving messages with rate Ri and deleting a fraction Di of the received

messages.

Response time. For a better understanding of how the response time is computed,

let’s consider the following scenario: the MailClient is connected to a

ViewMailServer, which is connected to the MailServer. In this case, the time to

reach the first server (TFMS) is equal to the sum of (1) the client response time when

creating the message, (2) the round-trip latency to reach the ViewMailServer using

Switchboard, and (3) the response time of the ViewMailServerwhen adding the mes-

sage to the account. In order to compute the round-trip latency in step (2), the formula

needs to sum over all the links crossed by the message. Formula D.5 shows exactly

how the response time is computed.

Similarly, TLMS is the sum of the TFMS and the round-trip latency of the commu-

nication between ViewMailServer and MailServer, as shown in Formula D.6. The

first sum represents the time spent crossing all the links between the MailClient

and the MailServer; the second sum generalizes the first formula by considering

that between the MailClient and the MailServer there might be any number of

238

ViewMailServer components.

CPUVMS � Sind �CPUserver send �CPUSW server��2SoutdCPUSW server �

R�Nd
�

Routd �Rind
�
�CPUserver deleteDF �CPUSW serverDF��

R�Nd �CPUserver recv�CPUSW server��

Rpull
�
CPUpull �CPUSW server

�
�

Rpush
�
CPUpush�CPUSW server

�
(D.1)

Rd �
K

∑
i�1

Rin
d
i (D.2)

CPUMC � Si �CPUclient send �CPUSW client��

Ri �CPUclient recv �CPUSW client��

RiRM�d�� i�Di �CPUclient delete �CPUSW client� (D.3)

RM�d�� i� �
D

∑
d�1

K

∑
i�1

nd
i SiM

d�

i �Ci (D.4)

���send � response timeclient send �

∑
�
latencymulticlients twoway � latencyclient twoway

�
�

response timeserver send (D.5)

���send � response timeclient send �

∑
�
latencymulticlients twoway � latencyclient twoway

�
�

∑�response timeserver send� (D.6)

239

Appendix E

ViewMailServer Code

Chapter 8 evaluates the usability of the PSF framework by describing the lines of

code to be added to a component in oder to become PSF-aware. For completeness,

this Appendix lists the complete code for the ViewMailServer component. The lines

of interest are:

� lines 1-2: The ViewMailServer becomes PSF-aware by extending the PSFOb-

ject class; in addition, the ViewMailServer can use the consistency protocol

provided by PSF if it extends the ViewInterface interface;

� lines 8-16: These lines contain the declarations for the cache manager, the list

of properties, and each of the properties;

� lines 21-24: The cache manager is created; as part of the creation, the ViewMailServer

provides the cache manager with information about the properties, and the qual-

ity triggers;

� line 25: The cache manager is started in the WEAK mood;

240

� line 26: The cache manager is asked for the most up-to-date data;

� lines 28-50: The functionality of the ViewMailServer is modified to interact

with the cache manager; each method calls startUseImage and endUseImage

around the code processing shared data;

� lines 51-56: This method is inherited from the PSFObject and allows the wrap-

pers to create the connection with other components;

� lines 57-85: The ViewMailServer initializes the list of properties;

� lines 86-164: The ViewMailServer implements the extract and merge methods.

1 public class ViewMailServer extends PSFObject

2 implements MailServerInterface, ViewInterface, Runnable �

3 Server MultiThreaded server = null;

4 Integer minLevel, maxLevel;

5 Integer securityClearance;

6 Integer strength;

7 String accounts file;

8 CacheManagerImpl Disco cm = null;

9 ViewPropertyList propertyList;

10 String property User = new String ("user");

11 String property Folder = new String ("folder");

12 String property MinLevel = new String ("minLevel");

13 String property MaxLevel = new String ("maxLevel");

14 String property Strength = new String ("strength");

15 String property SecurityClearance = new String ("secClearance");

16 String property StartingDate = new String ("startingDate");

241

17 public void run() �

18 parseArguments(arguments);

19 server = new Server MultiThreaded(arguments);

20 new Thread(server).start();

21 cm = new CacheManagerImpl Disco(cmArgs,

22 "ViewMailServerDiscoMultiThreaded,

23 this,createPropertyList(),CacheManagerImpl.CM WEAK,

24 ‘‘t<10000’’, ‘‘t<10000’’, ‘‘t<0)’’, null, 1);

25 cm.switchToWeak();

26 cm.initImage();

27 �

28 public void sendMessage(Message message) �

29 cm.startUseImage("send message");

30 server.sendMessage(message);

31 cm.endUseImage("send message");

32 �

33 public void deleteMessage(String user, String folder,

int index) �

34 server.deleteMessage(user, folder, index);

35 �

36 public Account getAccountMetadata(String name,

Integer secClearance) �

37 cm.startUseImage("get account metadata");

38 Account acc = server.getAccountMetadata(name, secClearance);

39 cm.endUseImage("get account metadata");

40 return acc;

41 �

242

42 public synchronized Account getMessages(

43 Account acc, Folder folder, Integer min, Integer max,

44 Integer secClearance, Integer strength, Date startingTime) �

45 cm.startUseImage("get messages");

46 Account ac = server.getMessages(acc, folder, min, max,

47 secClearance, strength,

startingTime);

48 cm.endUseImage("get messages");

49 return ac;

50 �

51 public void setInterface(String interf, Object obj) �

52 if(interf.equals("mailSW.server.MailServernterface"))

53 remoteServer = (MailServerInterface) obj;

54 if(interf.equals("flecc.dm.DirectoryManagerInterface"))

55 cm.connectToDM((DirectoryManagerInterface) obj);

56 �

57 ViewPropertyList createPropertyList() �

58 ViewProperty v1 = new ViewProperty(property User,

59 ViewProperty.SET,users);

60 Vector value = new Vector();

61 value.add(new String("null"));

62 ViewProperty v2 = new ViewProperty(property Folder,

63 ViewProperty.SET,value);

64 value = new Vector(); value.add(securityClearance);

65 ViewProperty v3 = new ViewProperty(property SecurityClearance,

66 ViewProperty.SET,value);

67 value = new Vector(); value.add(minLevel);

68 ViewProperty v4 = new ViewProperty(property MinLevel,

69 ViewProperty.SET,value);

70 value = new Vector(); value.add(maxLevel);

243

71 ViewProperty v5 = new ViewProperty(property MaxLevel,

72 ViewProperty.SET,value);

73 value = new Vector(); value.add(strength);

74 ViewProperty v6 = new ViewProperty(property Strength,

75 ViewProperty.SET,value);

76 value = new Vector(); value.add(new String("null"));

77 ViewProperty v7 = new ViewProperty(property StartingDate,

78 ViewProperty.SET,value);

79 ViewPropertyList vpl = new ViewPropertyList();

80 vpl.addProperty(v1); vpl.addProperty(v2);

81 vpl.addProperty(v3); vpl.addProperty(v4);

82 vpl.addProperty(v5); vpl.addProperty(v6);

83 vpl.addProperty(v7);

84 return vpl;

85 �

86 ObjectImage extractFromObject(Object object,

ViewPropertyList propList)�

87 Date lastDate = null; Folder folder = null;

88 MailServerInterface parentMailServer =

(MailServerInterface) object;

89 Vector value =

(Vector) propList.getValue(property SecurityClearance);

90 Integer securityClearance = (Integer) value.get(0) ;

91 Integer minLevel =

((Vector)propList.getValue(property MinLevel)).get(0);

92 Integer maxLevel =

((Vector)propList.getValue(property MaxLevel)).get(0);

93 Integer strength =

(Vector) propList.getValue (property Strength).get(0);

94 String fold = (Vector) propList.getValue (property Folder).get(0);

244

95 if (! fold.equals ("null")) folder = new Folder (fold);

96 String d =

(Vector) propList.getValue (property StartingDate).get(0);

97 Date startingDate = null;

98 if (! d.equals ("null")) startingDate = new Date (d);

99 int numberUsers =

propList.getProperty (property User).getValues().size();

100 Vector accounts = new Vector (20, 10);

101 for (int i=0; i<numberUsers; i++) �

102 Account acc = parentMailServer.getAccountMetadata(

103 ((User) values.get (i)).getName (),

securityClearance);

104 Account acc1 = parentMailServer.getMessages (acc, folder,

minLevel, maxLevel,

105 securityClearance, strength, startingDate);

106 Date dd = acc1.getLastDate();

107 if((lastDate == null) || (dd.after(lastDate)))

lastDate = dd;

108 accounts.add (acc1);

109 �

110 Vector v = new Vector();

111 if(lastDate == null) v.add("null");

112 else v.add(lastDate.toString());

113 propList.setValues(property StartingDate, v);

114 ObjectImage image = new ObjectImage (accounts);

115 return image;

116 �

245

117 ObjectImage extractFromView(ViewPropertyList vpl) �

118 ObjectImage image = null; Date lastDate = null;

Folder folder = null;

119 Vector value =

(Vector) vpl.getValue(property SecurityClearance);

120 Integer secClearance = (Integer) value.get(0) ;

121 Integer minLevel =

((Vector)propList.getValue(property MinLevel)).get(0);

122 Integer maxLevel =

((Vector)propList.getValue(property MaxLevel)).get(0);

123 Integer strength =

(Vector) propList.getValue (property Strength).get(0);

124 String fold =

(Vector) propList.getValue (property Folder).get(0);

125 if (! fold.equals ("null")) folder = new Folder (fold);

126 String d =

((Vector) vpl.getValue (property StartingDate)).get(0);

127 Date startingDate = null;

128 if (! d.equals ("null")) startingDate = new Date (d);

129 Vector values =

vpl.getProperty (property User).getValues ();

130 int numberUsers = values.size ();

131 Vector accounts = new Vector (20, 10);

132 for (int i=0; i<numberUsers; i++) �

133 User user = (User) values.get(i);

134 Account acc = server.getAccountMetadata(user.getName(),

secClearance);

135 Account acc1 = server.getMessages (acc, folder, minLevel,

136 maxLevel, securityClearance, strength, startingDate);

137 accounts.add (acc1);

246

138 Date dd = acc1.getLastDate();

140 if((lastDate == null) || (dd.after(lastDate)))

lastDate = dd;

141 �

142 Vector v = new Vector();

143 if(lastDate == null) v.add("null");

144 else v.add(lastDate.toString());

145 vpl.setValues(property StartingDate, v);

146 image = new ObjectImage (accounts);

147 return image;

148 �

149 void mergeIntoObject(Object object, ObjectImage image,

150 ViewPropertyList propertyList) �

151 MailServerInterface parentMailServer =

(MailServerInterface) object;

152 Vector accounts = image.getImage ();

153 for(int i = 0; i < accounts.size(); i ++) �

154 Account acc = (Account) accounts.get(i);

155 parentMailServer.mergeAccount (acc);

156 �

157 �

158 void mergeIntoView(ObjectImage image,

ViewPropertyList vpl) �

159 Vector accounts = image.getImage ();

160 for(int i = 0; i < accounts.size(); i ++) �

161 Account acc = (Account) accounts.get(i);

162 server.mergeAccount (acc);

163 �

164 �

247

Bibliography

[1] William Adamson and O. Kornievskaia. A Practical Distributed Authorization

System for GARA. Technical Report 01-14, Center for Information Technology

Integration, University of Michigan, 2001.

[2] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris.

Resilient Overlay Networks. In 18th ACM SOSP, 2001.

[3] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive Software Cache Man-

agement for Distributed Shared Memory Architectures. In 17th Annual Int’l

Symp. on Computer Architecture (ISCA’90), pages 125–135, 1990.

[4] Phil Bernstein and Nathan Goodman. The Failure and Replicated Distributed

Databases. In ACM Transactions on Database Systems, 1984.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and

W.Weiss. RFC 2475 - An Architecture for Differentiated Services.

http://www.faqs.org/rfcs/rfc2475.html, December 198.

[6] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust

248

Management for Public-Key Infrastructures. In Security Protocols International

Workshop, volume 1550, pages 59–63. Springer LNCS, 1998.

[7] Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance checking in

the policymaker trust management system. In Financial Cryptography, pages

254–274, 1998.

[8] A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial

Intelligence, 90(1-2):281–300, 1997.

[9] R. Braden, D. Clark, and S. Shenker. RFC 1633 - Integrated Services in the

Internet Architecture: an Overview. http://www.faqs.org/rfcs/rfc1633.html, June

1994.

[10] F. Bustamante and K. Schwan. Active Streams: An Approach to Adaptive Dis-

tributed Systems. In HotOS, 2001.

[11] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling internet

topology. IEEE Communications Magazine, 35(6):160–163, June 1997.

[12] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Perfor-

mance of Munin. In 13th ACM Symp. on Operating Systems Principles (SOSP-

13), pages 152–164, 1991.

[13] P. Chandra. Darwin: Customizable Resource Management for Value-Added

Network Services. In ICNP, 1998.

[14] Sirish Chandrasekaran, Samuel Madden, and Mihut Ionescu. Ninja paths: An

architecture for composing services over wide area networks.

249

[15] F. Chang and V. Karamcheti. A Framework for Automatic Adaptation of Tun-

able Distributed Applications. Cluster Computing, 4:49–62, 2001.

[16] DeQing Chen, Sandhya Dwarkadas, Srinivasan Parthasarathy, Eduardo Pinheiro,

and Michael L. Scott. InterWeave: A Middleware System for Distributed Shared

State. In Languages, Compilers, and Run-Time Systems for Scalable Computers,

pages 207–220, 2000.

[17] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,

C. Kesselman, P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger,

K. Stockinger, and B. Tierney. Giggle: A Framework for Constructing Scalable

Replica Location Services. In Proceedings of Supercomputing 2002 (SC2002),

2002.

[18] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information

Services for Distributed Resource Sharing. In Proceedings of the 10th IEEE

International Symposium on High-Performance Distributed Computing (HPDC-

10), 2001.

[19] D. B. Terry et al. Managing Update Conflicts in Bayou, a Weakly Connected

Replicated Storage System. In Proceedings of the fifteenth ACM symposium on

Operating systems principles, pages 172–182. ACM Press, 1995.

[20] D.C.Feldmeier, A.J. McAuley, J.M. Smith, D. Bakin, W.S. Marcus, and

T. Raleigh. Protocol Boosters. IEEE JSAC, Special Issue on Protocol Archi-

tectures for 21st Century, 16(3):437–444, 1998.

[21] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,

250

Sonal Patil, Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus : Mapping Sci-

entific Workflows onto the Grid. In Proceeding of the Across Grids Conference,

2004.

[22] Tim Dierks and Eric Rescorla. The TLS Protocol, Version 1.1. In Internet Draft,

2004.

[23] E. Freudenthal et al. dRBAC: Distributed Role-based Access Control for Dy-

namic Coalition Environments. In ICDCS, 2001.

[24] E. Freudenthal et al. Switchboard: Secure, Monitored Connections for Client-

Server Communication. In RESH, 2002.

[25] E. Kohler et al. The Click Modular Router. ACM Transactions on Computer

Systems, 18(3):263–297, August 2000.

[26] Susan Eggers and Randy Katz. A Characterization of Sharing in Parallel Pro-

grams and its Application to Coherency Protocol Evaluation. In 15th Annual

International Symposium on Computer Architecture, pages 373–383, 1988.

[27] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. Spki

certificate theory, rfc 2693. In Network Working Group, The Internet Society,

1999.

[28] J. Sydir et al. QoS Middleware for the Next-Generation Internet. NASA/NREN

Quality of Service Workshop, 1998.

[29] Mallikarjun Shankar et al. An End-To-End QoS Management Architecture.

Proc. of the 5th IEEE Real-Time Technology and Applications Symposium, 1999.

251

[30] Peter Dinda et al. The Architecture of the Remos System. HPDC, 2001.

[31] Adam Ferrari, Frederik Knabe, Marty Humphrey, Steve Chapin, and Andrew

Grimshaw. A Flexible Security System for Metacomputing Environments. In

HPCN, pages 370–380, 1999.

[32] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.

Intl. J. of Supercomputer Applications and High Performance Computing,

11(2):115–128, 1997.

[33] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems Integration.

http://www.globus.org/research/papers.html, 2002.

[34] I. Foster, A. Roy, and V. Sander. A Quality of Service Architecture that Com-

bines Resource Reservation and Application Adaptation. In IWQOS, 2000.

[35] Ian Foster. The anatomy of the Grid: Enabling scalable virtual organizations.

Lecture Notes in Computer Science, 2150, 2001.

[36] Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security

architecture for computational grids. In ACM CCS, pages 83–92, 1998.

[37] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol, Version 3.0. In Internet

Draft, 1996.

[38] Eric Freudenthal and Vijay Karamcheti. DisCo: Middleware for Securely De-

ploying Decomposable Services in Partly Trusted Environments. In ICDCS,

pages 494–503, 2004.

252

[39] Xiaodong Fu and Vijay Karamcheti. Planning for Network-Aware Paths. In

DAIS, pages 187–199, 2003.

[40] Xiaodong Fu, Weisong Shi, Anatoly Akkerman, and Vijay Karamcheti. CANS:

Composable, Adaptive Network Services Infrastructure. In USITS, 2001.

[41] Li Gong. Java security: present and near future. IEEE Micro, 17(3):14–19,

1997.

[42] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, Distributed Data

Structures for Internet Service Construction. In OSDI, 2000.

[43] A. Grimshaw, Adam Ferrari, Frederik Knabe, and Mart Humphrey. Wide-Area

Computing: Resource Sharing on a Large Scale. Computer, 32(5):29–37, 1999.

[44] Jeffrey K. Hollingsworth and Peter J. Keleher. Prediction and adaptation in ac-

tive harmony. Cluster Computing, 2(3):195–205, 1999.

[45] I. Foster et al. A Distributed Resource Management Architecture that Supports

Advance Reservations and Co-Allocation. In Intl. Workshop on Quality of Ser-

vice, 1999.

[46] IBM Corporation and Microsoft Corporation. Security in a Web Services World:

A Proposed Architecture and Roadmap. htpp://msdn.microsoft.com/, 2002.

[47] Information Sciences Institute, University of Southern California. RFC 793 -

Transmission Control Protocol. http://www.faqs.org/rfcs/rfc793.

html, September 1981.

253

[48] A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Partitionable Services: A

Framework for Seamlessly Adapting Distributed Applications to Heterogenous

Environments. In The 11th IEEE International Symposium on High Performance

Distributed Computing, 2002.

[49] A. Ivan and V. Karamcheti. Using Views for Customizing Reusable Components

in Component-Based Frameworks. In The 12th IEEE International Symposium

on High Performance Distributed Computing, 2003.

[50] A. Ivan and V. Karamcheti. Flecc: A Flexible Cache Coherence Protocol for

Dynamic Component-Based Systems. In Submitted to the International Parallel

and Distributed Processing Symposium, 2004.

[51] Anca Ivan and Yevgeniy Dodis. Proxy Cryptography Revisited. In NDSS, 2003.

[52] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K. Gifford, and M. F.

Kaashoek. Rover: a toolkit for mobile information access. In Proceedings of

the fifteenth ACM symposium on Operating systems principles, pages 156–171.

ACM Press, 1995.

[53] Thomas W. Page Jr., Richard G Guy., Gerald J. Popek, and John S. Heidemann.

Architecture of the Ficus Scalable Replicated File System. Technical Report

UCLA-CSD 910005, Los Angeles, CA (USA), 1991.

[54] P. Kaijser, J. Parker, and D. Pinkas. SESAME: The Solution to Security for Open

Distributed Systems. In Computer Communications, 1994.

[55] V. Karamcheti and A. A. Chien. View caching: Efficient software shared mem-

254

ory for dynamic computations. In Proc. of the 11th Int’l Parallel Processing

Symp. (IPPS’97), pages 483–489, 1997.

[56] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Treadmarks: Dis-

tributed Shared Memory on Standard Workstations and Operating Systems. In

Proceedings of the Winter 1994 USENIX Conference, pages 115–131, 1994.

[57] T. Kichkaylo and A. Ivan. Network EDitor. http://www.cs.nyu.edu/

pdsg/projects/partitionable-services/ned/ned.htm, 2002.

[58] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained Component Deployment

in Wide-Area Networks Using AI Planning Techniques. In The International

Parallel and Distributed Processing Symposium, 2003.

[59] J. Koehler. Planning under resource constraints. In ECAI, 1998.

[60] Puneet Kumar and M. Satyanarayanan. Flexible and safe resolution of file con-

flicts. In USENIX Winter, pages 95–106, 1995.

[61] L. Pearlman at el. A Community Authorization Service for Group Collaboration.

In IEEE Workshop on Policies for Distributed Systems and Networks, 2002.

[62] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland Schemers.

User authentication and authorization in the Java platform. In 15th Annual

Computer Security Applications Conference, pages 285–290. IEEE Computer

Society Press, 1999.

[63] Ulana Legedza, David J. Wetherall, and John Guttag. Improving the Perfor-

255

mance of Distributed Applications Using Active Networks. In IEEE INFOCOM,

1998.

[64] Jun Li, Mark Yarvis, and Peter Reiher. Securing Distributed Adaptation. In

OpenArch, 2001.

[65] Ilya Lipkind, Igor Pechtchanski, and Vijay Karamcheti. Object Views: Lan-

guage Support for Intelligent Object Caching in Parallel and Distributed Com-

putations. In OOPSLA, pages 447 – 460, 1999.

[66] Julio Lopez and David O’Hallaron. Support for Interactive Heavyweight Ser-

vices. In HPDC, 2001.

[67] J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, and

F. Smith. Andrew: A Distributed Personal Computing Environment. Communi-

cations of the ACM, 29(3):184–201, 1986.

[68] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy:

A Read/Write Peer-to-Peer File System. In 5th Symposium on Operating Sys-

tems Design and Implementation, 2002.

[69] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in

the Sprite Network File System. ACM Transactions on Computer Systems,

6(1):134–154, 1988.

[70] B.D. Noble and M. Satyanarayanan. Experience with Adaptive Mobile Applica-

tions in Odyssey. Mobile Networks and Applications, 4, 1999.

256

[71] Object Management Group. CORBA Security Services, Ver. 1.8.

http://www.omg.org/, 2002.

[72] Object Management Group. CORBA Component Model. http://www.omg.org/,

2003.

[73] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Automated planning for open

architectures. OPENARCH, 2000.

[74] D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System. The Bell

System Technical Journal, 57(6 (part 2)):1905+, 1978.

[75] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O’Reilly &

Associates, Inc., 1992.

[76] S. Czerwinski et al. An architecture for a secure service discovery service. In

Mobile Computing and Networking, pages 24–35, 1999.

[77] S. Gribble at el. The ninja architecture for robust internet-scale systems and

services. Computer Networks, 35(4):473–497, 2001.

[78] R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based SVM Protocols

for SMP Clusters: Design and Performance. In Proceedings of the 4th IEEE

Symposium on High-Performance Computer Architecture (HPCA-4), 1998.

[79] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.

Design and Implementation of the Sun Network Filesystem. In Summer 1985

USENIX Conf., pages 119–130, Portland OR (USA), 1985.

257

[80] M. Satyanarayanan. Mobile information access. IEEE Personal Communica-

tions, 3(1), 1996.

[81] Sharman Networks. Kazaa. http://www.kazaa.com.

[82] Pradeep Sudame and B. R. Badrinath. Transformer Tunnels: A Framework for

Providing Route-Specific Adaptations. In USENIX Annual Technical Confer-

ence, pages 191–200, 1998.

[83] Sun Microsystems. Java 2 Enterprise Edition.

http://java.sun.com/j2ee.

[84] Sun Microsystems. Java Remote Method Invocation.

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmitoc.html.

[85] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A Byte-

code Translator for Distributed Execution of Legacy Java Software. In ECCOP,

pages 236–255, 2001.

[86] T.Kichkaylo and V.Karamcheti. Optimal Resource-Aware Deployment Planning

for Component-based Distributed Applications. In HPDC, 2004.

[87] Rodrigo Vanegas, John A. Zinky, Joseph P. Loyall, David Karr, Richard E.

Schantz, and David E. Bakken. QuO’s Runtime Support for Quality of Service

in Distributed Objects. In Middleware’98,the IFIP International Conference on

Distributed Systems Platforms and Open Distributed Processing, 1998.

[88] W. Rubin et al. Understanding DCOM. Prentice Hall, 1999.

258

[89] W3C. Web Services Description Language (WSDL) 1.1.

http://www.w3.org/TR/wsdl, 2003.

[90] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS Dis-

tributed Operating System. In 9th Symposium on Operating System Principles,

pages 49–70, 1983.

[91] Von Welch, Frank Siebenlist, Ian Foster, John Bresnahan, Karl Czajkowski,

Jarek Gawor, Carl Kesselman, Sam Meder, Laura Pearlman, and Steven Tuecke.

Security for Grid Services. In HPDC, 2003.

[92] Daniel S Weld. Recent Advances in AI Planning. AI Magazine, 20(2):93–123,

1999.

[93] W. Wulf, C. Wang, and D. Kienzle. A New Model of Security for Distributed

Systems. Technical Report CS-95-34, CS Department, University of Virginia,

1995.

[94] Mark Yarvis, Peter L. Reiher, and Gerald J. Popek. Conductor: A framework for

distributed adaptation. In HotOS-6, 1999.

[95] Haifeng Yu and Amin Vahdat. Design and Evaluation of a Continuous Consis-

tency Model for Replicated Services. In Proceedings of the Fourth Symposium

on Operating Systems Design and Implementation (OSDI), 2000.

[96] Haifeng Yu and Amin Vahdat. Combining Generality and Practicality in a Conit-

Based Continuous Consistency Model for Wide-Area Replication. In Proceed-

ings of the 21st International Conference on Distributed Computing Systems

(ICDCS), 2001.

259

[97] Marcia Zangrilli and Bruce B. Lowekamp. Comparing passive network moni-

toring of grid application traffic with active probes. In Proceedings of the 4th In-

ternational Workshop on Grid Computing (GRID2003), pages 84–91, Phoenix,

AZ, November 2003. IEEE.

[98] Lixia Zhang, Stephen Deering, and Deborah Estrin. RSVP: A new resource

ReSerVation protocol. IEEE network, 7(5):8–?, September 1993.

[99] Dong Zhou and Karsten Schwan. Eager Handlers - Communication Optimiza-

tion in Java-based Distributed Applications with Reconfigurable Fine-grained

Code Migration. 3rd Intl. Workshop on Java for Parallel and Distributed Com-

puting, 2001.

260

