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Abstract

Free Parallel Data Mining

Bin Li

New York University, 1998

Research Advisor: Professor Dennis Shasha

Data mining is the emerging �eld of applying statistical and arti�cial intelligence tech-

niques to the problem of �nding novel, useful, and non-trivial patterns from large

databases. This thesis presents a framework for easily and e�ciently parallelizing data

mining algorithms. We propose an acyclic directed graph structure, exploration dag (E-

dag), to characterize the computation model of data mining algorithms in classi�cation

rule mining, association rule mining, and combinatorial pattern discovery. An E-dag

can be constructively formed in parallel from speci�cations of a data mining problem,

then a parallel E-dag traversal is performed on the 
y to e�ciently solve the problem.

The e�ectiveness of the E-dag framework is demonstrated in biological pattern discovery

applications.

We also explore data parallelism in data mining applications. The cross-validation

and the windowing techniques used in classi�cation tree algorithms facilitate easy de-

velopment of e�cient data partitioning programs. In this spirit, we present a new

classi�cation tree algorithm called NyuMiner that guarantees that every split in a

classi�cation tree is optimal with respect to any given impurity function and any given

maximum number of branches allowed in a split. NyuMiner can be easily parallelized

vi



using the data partitioning technique.

This thesis also presents a software architecture for running parallel data mining

programs on networks of workstations (NOW) in a fault-tolerant manner. The soft-

ware architecture is based on Persistent Linda (PLinda), a robust distributed parallel

computing system which automatically utilize idle cycles. Templates are provided for

application programmers to develop parallel data mining programs in PLinda. Par-

allelization frameworks and the software architecture form a synergy that makes free

e�cient data mining realistic.
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Chapter 1

Introduction

1.1 Why Free Parallel Data Mining?

Traditional methods of data analysis, based mainly on a person dealing directly with

the data, do not scale to voluminous data sets. While database technology has provided

us with the basic tools for the e�cient storage and lookup of large data sets, the issue

of how to help humans analyze and understand large bodies of data remains a di�cult

and unsolved problem. The emerging �eld of data mining promises to provide new

techniques and intelligent tools to encounter the challenge.

Data mining is sometimes called knowledge discovery in databases (KDD). Both

data mining and KDD are at best vaguely de�ned. Their de�nitions largely depend

on the background and views of the de�ners. Here are some sample de�nitions of data

mining:

� The essence of data mining is the non-trivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in data [35].

� Data mining is the use of statistical methods with computers to uncover useful
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patterns inside databases [58].

� Data mining is the process of extracting previously unknown, comprehensible, and

actionable information from large databases and using it to make crucial business

decisions. { Zekulin [38]

� Data mining is a decision support process where we look in large databases for

unknown and unexpected patterns of information. { Parsaye [38]

� Data mining is the process of discovering advantageous patterns in data [50].

From the beginning, data mining research has been driven by its applications.

While the �nance and insurance industries have long recognized the bene�ts of data

mining, data mining techniques can be e�ectively applied in many areas. Recently,

research in association rule mining, classi�cation rule mining, and pattern discovery

in combinatorial databases has provided many paradigms that are applicable to wide

application areas. As a result, more and more organizations have become interested in

data mining.

Data mining is computationally expensive by nature, as will be made evident by

data mining algorithms described in later chapters. However, since the bene�ts of data

mining results remain largely unpredictable, these organizations may not be willing to

buy new hardware for that purpose. Therefore, acquiring computing resources needed

by data mining applications is potentially a problem for these organizations. On the

other hand, there is a huge amount of idle cycles in the machines these organization

already have. Therefore, we have the need for systems that can harvest idle cycles for

e�cient data mining.
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1.2 Approach and Contributions

Our approach to e�cient data mining is parallelization, where the whole computation

is broken up into parallel tasks. The work done by each task, often called its grain size,

can be as small as a single iteration in a parallel loop or as large as an entire procedure.

When an application can be broken up into large parallel tasks, the application is called

a coarse grain parallel application. Two common ways to partition computation are task

partitioning, in which each task executes a certain function, and data partitioning, in

which all tasks execute the same functions but on di�erent data. We explore both task

parallelism and data parallelism in data mining applications.

Because of their wide availability and cost e�ectiveness, networks of workstations

(NOW) have recently emerged as a promising computing platform for long-running,

coarse grain parallel applications, such as data mining applications. Parallel data mining

algorithms implemented on NOW provide an e�cient and inexpensive solution to large

scale data mining on non-dedicated hardware. Persistent Linda (PLinda)[20, 47, 49, 1], a

distributed parallel computing system on NOW, is particularly suitable for data mining

applications. PLinda automatically utilizes idle workstations which makes parallel data

mining virtually free. Our implementations of parallel data mining programs use PLinda

as the computing platform.

The main contributions of this thesis are:

1. A framework for exploring task parallelism in data mining applications:

We present a framework for representing computation models of data mining

algorithms|Exploration Dag (E-dag). We identify four basic elements of a data

mining application and show how the computation in the context of the four

elements can be mapped to an E-dag. We give a generic parallel E-dag traversal
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algorithm to optimally solve data mining problems mapped into E-dags. The ef-

fectiveness of the E-dag framework is demonstrated in biological pattern discovery

applications [2].

2. A framework for exploring data parallelism in data mining applications:

We present a framework to partition data in a data mining application such that

each parallel thread runs the same program with a di�erent partition of the data

and the results are then combined together. Classi�cation tree algorithms, in

particular, can readily take advantages of data partitioning.

3. A new classi�cation tree algorithm:

We present a new classi�cation tree algorithm, NyuMiner, for �nding optimal splits

for both numerical and categorical variables with respect to any given impurity

function and any given maximum number of branches allowed in a split. NyuMiner

generally achieves higher accuracy than classi�cation tree algorithms having no

optimality guarantee. Because the tree structures generated by NyuMiner are

usually di�erent, it can be used with other classi�ers in a complementary way to

obtain higher classifying con�dence [4].

4. A software architecture for running data mining applications on net-

works of workstations:

We present a software architecture based on PLinda which enables parallel data

mining programs to run on networks of workstations in a fault-tolerant manner

[3]. We provide templates for writing parallel data mining programs in PLinda

and describe how to run these programs on a network of workstations.
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1.3 Organization of Thesis

The rest of the thesis is organized as follows.

Chapter 2: We survey state-of-the-art algorithms in classi�cation rule mining, asso-

ciation rule mining, and combinatorial pattern discovery. We discuss previous

attempts to parallelize algorithms in these �elds. We argue that the suitable

platform for e�cient and inexpensive data mining is networks of workstations

(NOW). We also survey four distributed computing systems on NOW.

Chapter 3: This chapter describes the E-dag framework for task parallelism in data

mining algorithms. We identify the four elements that each data mining problem

has and describe how to map them into an E-dag. We then present a parallel E-dag

traversal algorithm and discuss issues related to optimal parallel E-dag traversal.

Chapter 4: We describe the application of the E-dag framework to two biological pat-

tern discovery applications, discovery of motifs in protein sequences and discovery

of motifs in RNA secondary structures. We also present experimental results of

various implementation strategies used in protein sequence pattern discovery.

Chapter 5: This chapter presents a new classi�cation tree algorithm named NyuMiner

which guarantees an optimal split at every tree node with respect to any given

impurity function and any given maximum number of branches allowed in a split.

We compare the classi�cation accuracy of NyuMiner to those of C4.5[65] and

CART[24], two popular classi�cation tree algorithms. We also present the results

of complementarity tests among NyuMiner, C4.5 and CART. Finally, we present

the results of using NyuMiner to analyze historical foreign exchange rates.
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Chapter 6: This chapter explores data parallelism in classi�cation tree algorithms.

We describe the PLinda implementations of Parallel NyuMiner and Parallel C4.5

and present experimental results.

Chapter 7: The chapter describes the software architecture used to implement parallel

data mining applications. We discuss issues related to fault-tolerance of data

mining programs implemented in PLinda. We also brie
y describe how to run

data mining programs on a PLinda-enabled network of workstations. Finally, we

give URL's for downloading our PLinda data mining programs.

Chapter 8: This chapter summarizes the whole thesis and gives directions for future

work.
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Chapter 2

Related Work

A large amount of data mining research focuses on association rule mining, classi�cation

rule mining, and pattern discovery in combinatorial databases. Section 2.2, 2.1, and 2.3

survey related work in these three areas, including previous attempts to parallelize the

algorithms surveyed. Section 2.4 argues why networks of workstations (NOW) are a

suitable platform for parallel data mining. Four distributed computing systems that

run on NOW are surveyed in section 2.4.

2.1 Classi�cation Rule Mining

2.1.1 An Example

Let's take a look at the following imaginary heart disease diagnosis records for the

PLinda group (Table 2.1). Karp wasn't here, so he missed the doctor. But can we

decide whether he has heart disease or not?

Figure 2.1 is a decision tree built from all but Karp's records. According to this

decision tree, Karp does not have heart disease (but he should go see a doctor anyway).
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Name Weight Age Blood Pressure Heart Disease?

(lb.) (BP)

Jihai 180 27 Low Yes

Tom 140 20 Low No

Hansoo 150 30 Med No

Peter 150 31 Low No

Bin 150 35 High Yes

Dennis 150 62 Low Yes

Karp 140 32 Low ?

Table 2.1: Imaginary heart disease diagnosis records for the PLinda group.

NO YES NO NO YES

Wt. BP YES

30-60 yr.<30 yr. >60 yr.

>=160 lb. Low High<160 lb. Med

Age

Figure 2.1: The decision tree based on the heart disease diagnosis records for the
PLinda group.
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Rules like the following can also be induced from the tree:

(Age > 60)! Y es

(Age < 30 &Wt: � 160)! No

2.1.2 Classi�cation Rules

Classi�cation rules are of the form: D ! C, where D is a su�cient condition (formed

of a conjunction of attribute{value conditions) to classify objects as belonging to class

C. Classi�cation rules are sometimes represented by decision trees.

2.1.3 Decision Trees

A decision tree is a tree data structure with the following properties:

� Each leaf is labeled with the name of a class;

� The root and each internal node (called a decision node) is labeled with the name

of an attribute;

� Every internal node has a set of at least two children, where the branches to the

children are labeled with disjoint values or sets of values of that node's attribute

such that the union of these constitutes the set of all possible values for that

attribute.

Thus, the labels on the arcs leaving a parent node form a partition of the set of legal

values for the parent's attribute.

A decision tree can be used to classify a case by starting at the root of the tree

and moving through it until a leaf is reached [65]. At each decision node, the case's

outcome for the test at the node is determined and attention shifts to the root of the
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subtree corresponding to this outcome. When this process �nally (and inevitably) leads

to a leaf, the class of the case is predicted to be that labeled at the leaf.

2.1.4 Building Decision Trees

Every successful decision tree algorithm (e.g. CART [24], ID3 [63], C4.5 [65]) is an

elegantly simple greedy algorithm:

1. pick as the root of the tree the attribute whose values best separate the training

set into subsets (the best partition is one where all elements in each subset belong

to the same class);

2. repeat 1 recursively for each child node until a stopping criterion is met.

Examples of stopping criteria are:

� every subset contains training examples of only one class;

� the depth of the tree reaches a prede�ned threshold;

� lower bound on the number of elements that must be in a set in order for that set

to be partitioned further is reached (CART [24], C4.5 [65]).

The dominating operation in building decision trees is the gathering of histograms on

attribute values. As mentioned earlier, all paths from a parent to its children partition

the relation horizontally into disjoint subsets. Histograms have to be built for each

subset, on each attribute, and for each class individually.

2.1.5 Attribute Selection

Attribute selection is performed in three steps:
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1. Build histograms on attribute values;

2. Assign scores to attributes according to a quality metric:

� Information Gain Metric [63, 65]

The information conveyed by a message depends on its probability and can

be measured in bits as minus the logarithm to base 2 of that probability. So,

for example, if there are eight equally probable messages, the information

conveyed by any one of them is � log2(1=8) or 3 bits. Thus, if T is a set

of training cases, the average amount of information needed to identify the

class of a case in T is de�ned as:

info(T ) = �
cX

i=1

ni
N

log2
ni
N

where c is the number of classes, ni is the number of examples in class i, and

N =
Pc

i=1 ni.

Now consider a similar measurement after T has been partitioned in accor-

dance with the v possible values of an attribute A. The expected information

requirement can be found as the weighted sum over the subsets, as

infoA(T ) =

vX
j=1

Pc
i=1 nij
N

� info(Tj)

where nij is the number of examples of class i having attribute value j and

Tj is the jth partition. So
Pc

i=1 nij is the total number of examples of all

classes having attribute value j. The quantity

gain(A) = info(T )� infoA(T )

measures the information that is gained by partitioning T in accordance with

the attribute A.
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The gain criterion is used in ID3. Although it gives quite good results, this

criterion has a serious de�ciency|it has a strong bias in favor of tests with

many outcomes. The bias inherent in the gain criterion can be recti�ed by a

kind of normalization in which the apparent gain attributable to tests with

many outcomes is adjusted. Consider the information content of a message

pertaining to a case that indicates not the class to which the case belongs,

but the outcome of the test:

split info(A) = �
vX
i=1

Pc
i=1 nij
N

� log2

Pc
i=1 nij
N

:

This represents the potential information generated by dividing T into v

subsets, where the information gain measures the information relevant to

classi�cation that arises from the same division. Then,

gain ratio(A) = gain(A)=split info(A)

expresses the proportion of information generated by the split that is useful,

i.e., that appears helpful for classi�cation.

The gain ratio criterion, used in C4.5, is robust and typically gives a consis-

tently better choice of test than the gain criterion [64].

3. Pick the attribute with the highest score.

2.1.6 Parallelization Attempts

There have been two di�erent approaches to parallelizing decision tree algorithms.

The �rst approach is to use a parallel database management system as a back end.

Holsheimer and Kersten [43] used this approach with the Monet [53, 22] database server

developed at CWI. In their implementation, a database is partitioned vertically into
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Binary Association Tables and the Monet server processes search queries in parallel. The

search process is controlled by a front-end mining tool. Their experimentation platform

is a 6-node SGI machine with 150MHz processors and 256 MB of main memory. Up to

4 nodes are used in their experiments and they achieved a speedup of 2.5 when 4 nodes

are used.

The second approach is a divide{and{conquer scheme used in Meta-Learning

[31, 32]. In this approach, a database is horizontally divide into subsets and sequential

mining algorithms are applied to each subset. A tree of arbiter then combine results from

individual classi�ers into �nal results (Figure 2.2). In order to get good �nal results,

arbiters have to be trained to suit the set of classi�ers. This takes log s iterations if

the databases is partitioned into s subsets. Therefore, the theoretical speedup of this

approach is O(s= log s). They have achieved this theoretical speedup on a network of

Sun IPXs. However, training of arbiters is not done automatically.

A14

A12 A34

T1 T2 T3 T4

C1 C3 C4C2

Figure 2.2: An example of arbiter tree in Meta-Learning. T1, T2, T3, and T4 are
subsets of the training database; C1, C2, C3, and C4 are classi�ers; A12, A34, and
A14 are arbiters.
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Trans ID Items

1 pamper, soap, lipstick

2 soda, pamper, lipstick, candy

3 beer, soda

4 beer, candy, pamper

Table 2.2: An imaginary sales transaction database from K-mart.

The �rst approach is not suited for networks of workstations. The second

approach is natural for networks of workstations because each individual classi�er can

run independently on a workstation. However, we are more interested in parallelizing

the mining algorithms themselves. Clearly, building histograms on attribute values and

computing gain ratios for attributes can be done in parallel.

2.2 Association Rule Mining

2.2.1 An Example

Let's look at the following imaginary sales transaction database from K-mart (Table

2.2).

Here is an association rule mined from the above database:

PL : (pamper)! (lipstick)

which, translated into plain English, means that pampers sell well (75% of all trans),

and lipsticks usually (67% of the time) go with them.
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2.2.2 Association Rules

Let L = fi1; i2; : : : ; img be a set of m distinct literals called items. D is a set of variable

length transactions over L. An association rule is an implication of the form

R : X ! Y

where X;Y � L, and X \ Y = ;. X is called the antecedent and Y is called the

consequent of the rule.

In general, a set of items (such as the antecedent or the consequent of a rule) is

called an itemset. The number of items in an itemset is called the length of the itemset.

Itemsets of some length k are referred to as k-itemsets.

Each itemset has an associated measure of statistical signi�cance called support

de�ned as follows.

supp(X) = # of transactions containing all items in X

If supp(X) � smin for a given minimum support value smin, the set X is called frequent.

A rule has a measure of its strength called the con�dence de�ned as follows.

conf(R) =
supp(X [ Y )
supp(X)

The support for rule R is de�ned as supp(X [ Y ). A rule R holds with respect to some

�xed minimum con�dence level cmin and a �xed minimum support smin if conf(R) �
cmin and supp(R) � smin. Note that as a necessary condition for a rule to hold, both

the antecedent and consequent of the rule have to be frequent.

2.2.3 Properties of Frequent Sets

Four properties of frequent sets form the foundation of all association rule mining

algorithms.
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1. Support for Subsets

If A � B for itemsets A;B, then supp(A) � supp(B) because all transactions in

D that support B necessarily support A also.

2. Supersets of Infrequent Sets are Infrequent

If itemset A lacks minimum support in D, i.e., supp(A) < smin, every superset B

of A will not be frequent either because supp(B) � supp(A) < smin according to

property 1.

3. Subsets of Frequent Sets are Frequent

If itemset B is frequent in D, i.e., supp(B) � smin, every subset A of B is also

frequent in D because supp(A) � supp(B) � smin according to property 1. In

particular, if A = i1; i2; : : : ; ik is frequent, all its k (k � 1)-subsets are frequent.

Note that the converse does not hold.

4. Inferring Whether Rules Hold [18]

For itemsets L;A;B and B � A,

conf(A! (L�A)) < cmin =) conf(B ! (L�B)) < cmin:

Using supp(B) � supp(A) (property 1) and the de�nition of con�dence we obtain

conf(B ! (L�B)) = supp(L)
supp(B) � supp(L)

supp(A) < cmin. Likewise, if a rule (L� C)! C

holds, so does (L�D)! D for D � C and D <> ;.

The last property will be used to speed up the generation of rules once all frequent

sets and their support is determined. See section 2.2.5 for details of the algorithms.

2.2.4 Basic Scheme for Association Rule Mining

An association rule mining process consists of two phases:
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Phase I. Find all frequent itemsets|generate-and-test.

Phase II. Rule construction:

for every frequent itemset X

for every Y � X

if conf(Y ! (X � Y )) � cmin then

new rule

else

no subset of Y needs to be considered

end if

end for

end for

2.2.5 State of the Art

Phase II is relatively straightforward. Various algorithms have been developed for Phase

I of the mining process. Among them, Apriori [18, 19] and Partition [66] are more

promising.

Apriori-gen has been so successful in reducing the number of candidates that it

is used in every algorithm that has been proposed since it was published [42, 62, 66, 67].

Partition takes a divide-and-conquer approach. Its four major steps are:

1. partition the database horizontally;

2. generate all frequent itemsets for each partition using Apriori;

3. merge these itemsets to get global candidate itemsets;

4. generate global frequent itemsets.
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Apriori

for k = 1 to jLj � 1 do

1. generate candidate (k + 1)-itemsets from frequent k-itemsets

|Apriori-gen

for each pair of frequent k-itemsets I1 and I2 that have their k � 1

smallest items in common

generate a prospective (k + 1)-itemset S = I1 [ I2
if every k-itemset � S other than I1 and I2 is also frequent then

insert S into the set of candidate (k + 1)-itemsets

end if

end for

2. count support for each candidate (k + 1)-itemset and determine if it is

frequent

end for

2.2.6 Parallelization Attempts

There have been a few attempts to parallelize association rule mining algorithms. PEAR

and PPAR [61], for example, parallelize Apriori and Partition.

PEAR and PPAR|parallel Apriori and Partition

� Modi�cations to Apriori: new data structure|pre�x tree (stores frequent item-

sets and candidate itemsets together), optimizations|dead branches and pass

bundling.
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� Parallel program platform: IBM SP2 (SPMD, Message Passing Library).

� Basic parallel scheme: processors count local support and compute global support

for candidates in parallel; candidate generation (Apriori-gen) is done sequentially.

� Speedup: 3.7 on 4 nodes and 12.2 on 16 nodes.

Although the implementation of PEAR and PPAR is on a massive parallel com-

puter, the parallel scheme can be e�ectively implemented on networks of workstations.

2.3 Pattern Discovery in Combinatorial Databases

2.3.1 An Example

Consider a toy database of sequences D=fFFRR, MRRM, MTRM, DPKY, AVLGg and
the query \Find the patterns P of the form �X� where P occurs in at least 2 sequences

in D and jP j � 2." (X can be a segment of a sequence of any length, and � represents
a variable length don't care.) The good patterns are �RR� (which occurs in FFRR and

MRRM) and �RM� (which occurs in MRRM and MTRM).

2.3.2 Pattern Discovery

Combinatorial databases store structures such as sequences, trees, and graphs. Such

databases arise in biology, chemistry, linguistics, document retrieval, botany, neuro-

anatomy, and many other �elds. An important set of queries on such a database concern

the comparison and retrieval of similar combinatorial structures. Such pattern matching

queries are useful when comparing a new structure to an existing set. A less constrained

but equally important problem is pattern discovery|�nd the pattern that approximately

characterizes a set of structures in the database given a pattern metric.
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2.3.3 Sequence Pattern Discovery

Pattern discovery in sets of sequences concerns �nding commonly occurring (or active)

subsequences (sometimes calledmotifs). The structures of the motifs we wish to discover

are regular expressions of the form �S1 � S2 � : : : where S1; S2; : : : are segments of a

sequence, i.e., subsequences made up of consecutive letters and � represents a variable

length don't care (VLDC). In matching the expression �S1 �S2 � : : : with a sequence S,

the VLDCs may substitute for zero or more letters in S. Segments usually allow certain

number of mutations; a mutation is a insertion, a deletion, or a mismatch.

Let S be a set of sequences. The occurrence number (or activity) of a motif

is the number of sequences in S that match the motif within the allowed number of

mutations. We say the occurrence number of a motif P with respect to mutation i

and set S, denoted occurrence noiS(P ), is k if �P� matches k sequences in S within at

most i mutations, i.e., the k sequences contain P within i mutations. Given a set S,
we wish to �nd all the active motifs P where P is within the allowed Mut mutations

of at least Occur sequences in S and jP j � Length, where jP j represents the number
of the non-VLDC letters in the motif P . (Mut, Occur, Length and the form of P are

user-speci�ed parameters.)

2.3.4 Sequence Pattern Discovery Algorithm

The best sequence pattern discovery algorithm was developed by Wang et al [68]. The

basic subroutine in the algorithm is to match a given motif against a given sequence

after an optimal substitution for the VLDCs in the motif. The algorithm consists of

two phases: (1) �nd candidate segments among a small sample A of the sequences; (2)

combine the segments to form candidate motifs and evaluate the activity of the motifs
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in all of S to determine which motifs satisfy the speci�ed requirements.

Phase (1) consists of two subphases. In subphase A, a generalized su�x tree

[44] (GST) for the sample of sequences is constructed. A su�x tree is a trie-like data

structure that compactly represents a string by collapsing a series of nodes having one

child to a single node whose parent edge is associated with a string [60, 54]. A GST

is an extension of the su�x tree, designed for representing a set of strings. Each su�x

of a string is represented by a leaf in the GST. Each leaf is associated with an index

i. The edges are labeled with character strings such that the concatenation of the edge

labels on the path from the root to the leaf with index i is a su�x of the ith string in

the set. The GST can be constructed asymptotically in O(n) time and space where n

is the total length of all sequences in the sample A.
In subphase B, we traverse the GST constructed in subphase A to �nd all

segments (i.e., all pre�xes of strings labeled on root-to-leaf paths) that satisfy the

length minimum. If the pattern speci�ed by the user has the form �X�, then the

length minimum is simply the speci�ed minimum length of the pattern. If the pattern

speci�ed by the user has the form �X1 �X2�, we �nd all the segments V1; V2 where at

least one of the Vi, 1 � i � 2, is larger than or equal to half of the speci�ed length and

the sum of their lengths satis�es the length requirement. If the user-speci�ed pattern

has the form �X1 � X2 � : : : � Xk�, we �nd the segments V1; V2; : : : ; Vk where at least

one of the Vi, 1 � i � k, is larger than or equal to 1=kth of the speci�ed length and the

sum of the lengths of all these segments satis�es the length requirement.

An important optimization heuristic that was implemented is to eliminate the

redundant calculation of occurrence numbers. Observe that the most expensive op-

eration in the discovery algorithm is to �nd the occurrence number of a motif with

respect to the entire set, since that entails matching the motif against all sequences.
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We say �U1 � : : : � Um� is a subpattern of �V1 � : : : � Vm� if Ui is a subsegment of Vi,

for every 1 � i � m. One can observe that if motif P is a subpattern of motif P 0,

occurrence nokS(P ) � occurrence nokS(P
0) for any mutation parameter k. Thus, if P

0

is in the �nal output set, then we need not bother matching P against sequences in S.
If P is not in the �nal output set, then P

0

won't be either, since its occurrence number

will be even lower.

2.4 Platforms for Parallel Data Mining

2.4.1 Networked Workstations as a Parallel Computing Platform

Recently, networks of workstations (NOW) have emerged as a promising parallel com-

puting platform. Their advantages over massively parallel computers are wide availabil-

ity and cost-e�ectiveness. First, unlike supercomputers installed in a few institutions,

these machines are widely available; many institutions have hundreds of high perfor-

mance workstations which are unused most of the time. Second, they are already

paid for and are connected via communication networks; no additional cost is required

for parallel processing. Finally, they can rival supercomputers with their aggregate

computing power and main memory.

However, most machines are \private" and the owners of these workstations do

not want to allow compute-intensive jobs to be run on their machines for fear of per-

formance degradation of their own processes. Therefore, it is crucial to guarantee that

workstations will be used only while they are idle. Also, it is necessary for a distributed

computing systems to run on networks of heterogeneous workstations because most

institutions have heterogeneous workstations in their computing environments.

When networks of workstations are used for parallel computing, the probability of
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failure grows as execution time or the number of processors increases. Since the suitable

applications for networks of workstations are long-running, coarse grain applications,

fault tolerance is crucial for a distributed computing system that runs on networks of

workstations. Without fault tolerance, a single component failure can cause an entire

computation to be lost.

2.4.2 Parallelism in Data Mining

Various pruningmechanisms are used extensively in data mining applications. Because a

powerful pruning mechanism leads to a highly variable search process that con
icts with

a uniform workload requirement for good performance, many data mining applications

have proved di�cult to parallelize. Fortunately, the computation is coarse grain parallel,

i.e., it can be parallelized into large, seldom interacting tasks. Coarse grain parallel

computations are suitable computations for networks of workstations [48]. The time it

takes to create, coordinate, and terminate parallel tasks is critical. Therefore a good

parallel programming environment and runtime environment is critical to parallel data

mining. In the remainder of this section, we survey four distributed computing systems

that run on networks of workstations, namely Condor, Calypso, Piranha, and Persistent

Linda.

2.4.3 Condor

Condor, developed at the University of Wisconsin, aims at utilizing idle workstations for

background sequential jobs [57]. It is a distributed resource management system that

can manage large heterogeneous clusters of workstations. Its design has been motivated

by the needs of users who would like to use the unutilized capacity of such clusters for

their long-running, computation-intensive jobs.
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Condor pays special attention to the needs of the interactive user of the worksta-

tion. It is the interactive user who de�nes the conditions under which the workstation

can be allocated by Condor to a batch user. Condor preserves a large measure of the

originating machine's environment on the execution machine, even if the originating and

execution machines do not share a common �le and/or password systems. Condor jobs,

which consist of a single process, are automatically checkpointed and migrated between

workstations as needed to ensure eventual completion.

The Condor System is not a multiprocessing system per se, but it supports

parallelism in the sense that multiple independent processes may be run in parallel.

Also, the checkpointing capability allows fault tolerance.

Due to the limitations of the remote execution and checkpointing mechanisms,

there are several restrictions on the type of program which can be executed by the

Condor facility. Most importantly only single process jobs are supported, (i.e. the

fork() and exec() system calls are not supported). Secondly, signal and IPC calls are

not implemented, (e.g. signal(), kill(), and socket() calls will fail). Therefore, there is

no communication primitive among Condor processes.

There are also some practical limitations regarding the use of disk space for

execution of Condor jobs. During the time when a job is waiting for a workstation to

become available, it is stored as a \checkpoint �le" on the machine from which the job

was submitted. The �le contains all the text, data, and stack space for the process,

along with some additional control information. This means that jobs which use a very

large virtual address space will generate very large checkpoint �les. Some advantage can

be gained by submitting multiple jobs which share the same executable as a single unit

or \job cluster". In that case, all jobs in a cluster share a single copy of the checkpoint

�le until they begin execution. Also the workstations on which the jobs will actually
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execute often have very little free disk. Thus it is not always possible to transfer a

Condor job to a machine, even though that machine is idle. Since large virtual memory

jobs must wait for a machine that is both idle, and has a su�cient amount of free disk

space, such jobs may su�er long turnaround times.

2.4.4 Calypso

Calypso is a shared memory parallel language currently under development at New

York University [21]. The language is novel in that it addresses fault tolerance and

provides high performance with the same mechanism: eager scheduling supported by

evasive memory.

Calypso programs are written in the Calypso Source Language (CSL) which

is C++ extended with shared variables and parallel threads. Shared variables must be

in a struct de�ned at the �le level. The syntax for creating parallel threads is as follows.

parbegin

routine1[number of instances] f
C++ statements

g
: : :

routinen[number of instances] f
C++ statements

g
parend

Routines can concurrently read shared variables and each shared variable may
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be written by at most one routine. This is known as concurrent read and exclusive

write (CR&EW). Parallel routines are not allowed to do any sort of input or output

and nested parbegins are not implemented.

The Calypso system consists of four components: a pre-processor, the progress

manager, the memory manager and the compute server(s). In the current implementa-

tion the memory manager and the progress manager are the same process. We separate

the explanation of their functionality as much as possible, although there is some overlap

due to shared data structures.

The run-time Calypso system consists of the centralized memory manager/

progress manager and at least one compute server. The memory manager/progress

manager process executes the sequential code of the Calypso program, services the

shared memory requests of the compute servers, and schedules parallel routines on the

compute servers. The memory manager has four states: executing sequential code,

calling the progress manager function with information on a parallel step that needs

to be executed, servicing the shared memory requests of the compute servers, and

updating the shared memory after a parallel step. Each compute server has three states:

executing a routine, sending dirty shared variable updates to the memory manager upon

completion of a routine, and waiting for the progress manager to send the next routine.

For any given Calypso program, there is only one executable. The executable

can function as a compute server or memory manager. This simpli�es shared memory

management|virtual memory addresses are the same in the compute servers and the

memory manager.

The C++ statements of each routine in a parbegin are wrapped into a function

by the pre-processor. The function takes as parameters the number of instances of the

routine (The number of instances may not be known at compile-time since it can be
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int main()

{

SHARED {

int result[100];

int a[100];

int b[100];

}

parbegin

routine doaddition(int numHosts,int me)[5] {

int offset = me * 20;

for(int i = 0 ; i < 20 ; i++)

result[offset + i] = a[offset + i] + b[offset + i];

}

parend;

}

Figure 2.3: A vector addition program in Calypso.

a general C++ expression) and the routine id which ranges from 0 to the number of

instances � 1. These functions along with a standard template that executes the three

states of a compute server are what the pre-processor generates for the compute servers.

The memory manager consists of the original source program with each parbegin

converted into a call to the progress manager with instructions on what routines need

to be run, code to handle compute server shared memory requests and code to update

the shared data after a parallel step.

The progress manager function takes as parameters the address and number of

instances of each function to be executed in a parallel step. From this information,

the progress table is constructed. The rows contain the addresses of functions and the

columns indicate whether the function has been executed at least once, whether this

function has been assigned to any compute server yet, the instance number and total
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number of instances for this function, and a linked list of the pages that were modi�ed

by this function. The progress manager gives each idle compute server the address of a

function and the instance number information through TCP/IP. Because the memory

manager and compute server are the same executable, the virtual address of the function

is the same in both processes.

The Calypso progress manager uses eager scheduling to allocate routines to

processors. Once all unstarted routines have been allocated to compute servers, routines

that have been started but not yet completed will be allocated. Calypso guarantees

that an execution schedule in which a routine is executed multiple times produces the

same result as an execution in which the routine is executed once. This is why threads

are not allowed to do I/O or have any interaction with the outside world. The bene�t

of eager scheduling is that a computation will not be slowed down by slow or busy

processors. This can be especially useful in a networked workstation environment where

machines may become busy with other user processes. This provides the same e�ect as

the the bag-of-tasks and master-worker paradigm in Linda when the tasks are small. The

bene�t of Calypso's method is apparent when there are only a few tasks left; it ensures

that the fast machines will not be left idle while waiting for slow machines to �nish the

tasks. There are three drawbacks to this approach. First, redundant computation

entails extra communication and the network is a limited resource. Second, hosts which

are doing a redundant task need to be noti�ed if that task is completed by another

machine before they �nish. Third, redundant task scheduling means extra contention

for a centralized server. For example, if task A is replicated on three machines and

task A requires 10 server requests (we are assuming that each machine needs the same

amount of requests to run the task, which may not be true because of caching) to the

server, the replication will cause 20 extra requests at the server.
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Because a failed processor is an in�nitely slow processor, fault tolerance is a side

e�ect of eager scheduling.

Evasive memory allows writes to shared variables to be idempotent. Each write

goes to a new location along with a time-stamp. When servicing a read operation the

evasive memory returns the value of the variable corresponding to the time step of the

read. Thus, slow processors cannot clobber the memory with out of date values.

The progress manager does not mark a routine as completed until all the mod-

i�cations it made to shared memory are communicated by the compute server that

executed the routine. Once a routine is marked as complete, subsequent data from

other compute servers that may have been working on that routine are ignored. This is

what provides the illusion of evasive memory.

Page protection, mprotect(), provides Calypso with an easy implementation of

the shared memory. The compute servers protect the memory pages that the shared

variables reside on. A page fault occurs whenever a compute server accesses a shared

variable. In the case of a read, the compute server requests the page from the memory

manager. In the case of a write, if the page is old 1 the compute server requests the page

from the memory manager. For a �rst-time write, the page must be twinned (copied) so

that upon completion of the routine the compute server can send the memory manager

the di� of the old page and the updated page. Sending only the di� is actually crucial,

since di�erent threads may update di�erent parts of the same page.

Locality of reference is exploited in Calypso. The memory manager records the

time step of each write to every page. This information is sent to the compute servers

at the beginning of each parallel step. The compute servers keep information about

the time step number of each page they have in their local memory. In this way, they

1Old in that the compute server does not have an up to date copy of this page.
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know if a page has been modi�ed since the last time they received it from the memory

manager.

The Calypso model is more powerful than SIMD and is indeed MIMD, but it

does not provide synchronization primitives or asynchronous communication between

routines. Calypso has yet to be implemented on networks of heterogeneous worksta-

tions.

2.4.5 Piranha

Piranha [52] is based on the Linda system developed at Stony Brook and Yale by

Gelernter and Carriero [26, 27, 29, 30, 55]. Linda also being the base of the Persistent

Linda system we describe in section 2.4.6, it is necessary for us to brie
y review Linda.

Linda

Linda is a set of extensions which can be added to any programming language. The

extensions consist of six operations which provide a means for process creation, commu-

nication, and coordination. The beauty of Linda is that the extensions are orthogonal

to the sequential semantics of the language in which they are used, and the extensions

are simple and yet provide a powerful programming model.

Linda's shared memory is generative|meaning that it is generated and destroyed

as a computation proceeds. Each memory entity is a tuple. The memory is addressed

by �eld matching, rather than a static memory addressing scheme. The shared memory

is called Tuple Space and has been implemented both as a centralized server and as

decentralized servers. We discuss the decentralized approach.

Generative communication results in un-coupled communication: two processes

can communicate even though they are not executing at the same time and they can do
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so anonymously. This frees the programmer from some of the nuances of coordination

at the cost of an extra level of indirection which hurts performance.

void parallelVectorAddition(int a[100],int b[100], int result[100])

{

for(i = 0 ; i < 5 ; i++)

eval("doaddition", i, &a[i] : 20,&b[i] : 20)

for(i = 0 ; i < 5; i++)

in("result", i, ? &result[i]);

}

Figure 2.4: Vector addition master in Linda.

void doaddition(int me, int a[20], int b[20])

{

int result[20];

for(int i = 0 ; i < 20; i++)

result[i] = a[i] + b[i];

out("result", me , result : 20);

}

Figure 2.5: Vector addition slave in Linda.

A tuple is a sequence of typed values. A pattern is a sequence of types. A template

is a pattern and a sequence of values for some of the types in the pattern. The �elds of

the template whose values are speci�ed are actuals and the other �elds are formals.

Here is a description of the Linda operations:

� in(template): If a tuple with the same pattern exists, and the values of the

corresponding actual �elds match, assign the corresponding values of the tuple

to the formals. Otherwise, block until a match exists. The tuple is destroyed from

tuple space.
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� inp(template): the same as in except do not block if the tuple does not exist.

True is returned if the match is successful and false is returned on failure.

� rd(template): the same as in except do not destroy the tuple in tuple space.

� rdp(template): the same as inp except do not destroy the tuple in tuple space.

� out(tuple): create a tuple in tuple space.

� eval(tuple): create processes for each actual that is a function call and continue

execution of the process that made the eval call. When all the spawned processes

have terminated the tuple is created.

Linda supports the master-worker and the bag-of-tasks programming paradigms.

In the master-worker paradigm, a master process has a large task that can be broken

into smaller pieces. Worker processes are created to do these tasks. In the bag-of-tasks

paradigm there are a number of tasks to be done and each process will get a task and

do the task until there are no more tasks. In both schemes, the number of workers is

much less than the number of tasks. This provides automatic load balancing: if one

task is larger or some machines are slower, workers that are doing smaller tasks and/or

workers on faster machines will do more tasks.

Implementation of X-Linda|where X is the base language that Linda is being

added to|can be broken into two areas: compile time and run time.

A Linda compiler takes an X-Linda program and produces an X program with the

Linda statements transformed into function calls. The compilation process involves �rst

partitioning the tuples and templates into an equivalence relation and then classifying

each partition of the relation [26].

The partitioning phase splits the tuples and templates in such a way that no

32



template in one partition can match a tuple in another partition. Thus, runtime

matching is reduced and in a distributed tuple space implementation each partition

could reside on a di�erent machine.

The classi�cation phase uses information about the number, the types, and the

values of the �elds in each tuple to determine the best data structure for storing each

set of tuples. For example, if a partition consists of only the tuple/template (\ticket"),

this partition can be represented as an integer counter.

The runtime implementation needs to do three things: handle client out requests,

client in (inp, rd and rdp are treated in the same manner) requests, and client eval

requests.

How to handle in and out requests depends on where tuples are stored. There

are a number of ways in which tuples can be mapped to machines in a distributed

implementation of Linda. These include replicating each tuple across all machines,

mapping locally outed tuples to the local machine, and mapping outed tuples to all

machines in the row of the machine that performed the out for mesh type architectures.

For loosely-coupled systems, communication is expensive and the memory size on each

machine is limited. Therefore, it is advantageous to have each tuple stored on only

one machine and for each machine to know a priori which machine has all the tuples

that match a given template. If tuples are mapped to machines using the equivalence

relation produced during compilation, these properties are satis�ed.

Evals can be handled by compiling all the functions that will be used in evals

into one program with a system driver loop. The driver loops by ining system tuples

which denote that an eval has been requested. The appropriate function is then called

and upon its return the function's result is outed into tuple space.
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Piranha

Piranha enables Linda programs to run on idle distributed workstations. Each task in a

Piranha program is called a Piranha. When a user return to his or her workstation, the

Piranha \retreats" after perhaps writing some state into tuple space. The Piranha sys-

tem encourages programmers to write their program in a restricted form of the master-

worker paradigm, whereby each Piranha process reads a work description \tuple", does

some computation, outputs a tuple, then dies. Because data mining algorithms hold

substantial state and each Piranha process must read that state, retreats can be very

expensive. The current implementation of Piranha is not fully fault-tolerant and it does

not run on networks of heterogeneous workstations.

Commercial products based on Linda and Piranha are available from Scienti�c

Computing Associates.

2.4.6 Persistent Linda

Persistent Linda (PLinda) [20, 47, 48] is a set of extensions to Linda to support robust

parallel computation. It is currently under development at New York University.

The three major extensions to Linda are:

� Lightweight transactions. Transactions are a sequence of operations that are

always executed atomically regardless of failure. That is, all the operations take

e�ect (called commit) or none of them do (called abort). No partial e�ect of a

transaction is accessible to other transactions (or, processes) until the transaction

commits. In PLinda, a process is executed as a series of transactions. If a process

fails while executing a transaction, the runtime server detects the failure and

aborts the transaction automatically. Runtime mechanisms ensure that no other
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int main()

{

int a[100],b[100],result[100],tranNumber = 0;

if(xrecover(a : 100, b: 100, tranNumber))

cout << "Master process recovering from failure" << endl;

if(tranNumber == 0) {

xstart;

for(i = 0 ; i < 5 ; i++)

proc_eval(SLAVENAME);

out("task", i, a[i * 20] : 20, b[i *20] : 20);

xcommit(a,b, ++tranNumber);

}

if(tranNumber == 1) {

xstart;

for(i = 0 ; i < 5; i++)

in("result", i, ?result[i * 20] : 20);

xcommit(a,b,++tranNumber)

}

}

Figure 2.6: Vector addition master in Persistent Linda.

int main()

{

int a[20],b[20],result[20],which;

while(1) {

xstart;

in("task", ?which, ? a : 20,? b : 20);

for(int i = 0 ; i < 20; i++)

result[i] = a[i] + b[i];

out("result", me , result : 20);

xcommit();

}

}

Figure 2.7: Vector addition slave in Persistent Linda.
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processes have accessed intermediate updates to the tuple space and the updates

are removed from the tuple space on abort. Thus, the resulting e�ect appears as

if the transaction had never occurred.

Lightweight transactions are used to maintain a consistent global state e�ciently

regardless of failure. A transaction is started with the xstart command and ended

with the xcommit command. These transactions use locking for concurrency and

recoverability control and therefore inhibit communication. That is, the e�ects of

the outs and evals in a transaction are not visible to other transactions until the

xcommit.

� Continuation committing. Transactions commits result in writes to tuple space,

but not to disk. The xcommit operation takes a tuple as a parameter. This tuple

is used to save local state|continuation. The tuple is only accessible when the

xcommit operation is �nished and is only accessible using the xrecover operation.

Continuation committing is used to make processes resilient to failure without

relying on disk. A continuation consists of the live local variables of a process and

an indication of which transaction last successfully completed. This information

is saved at the end of each transaction by passing a tuple with these variables to

the xcommit command.

� Checkpoint-protected tuple space. The PLinda runtime server manages the entire

tuple space and saves it to disk periodically|checkpointing. If the server fails, it

restores the latest checkpointed state from disk on recovery and resumes execution

from that state|rollback recovery.

Also, PLinda replaces the eval statement of Linda with the proc eval state-

ment. The proc eval statement takes as its parameters an executable �le name and
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command line arguments for that executable. This is so that standard Unix calls can be

used for process creation. Using these three mechanisms and a process failure detection

scheme, PLinda provides a tool-based fault tolerance scheme for Linda programs.

A PLinda program is divided into a sequence of transactions which are executed

in an all-or-nothing manner by the runtime system. In this way the programmer

need only worry about failures between transactions. To ensure recoverability, each

transaction commit statement must include all live variables|those variables which may

be used in the rest of the program without �rst being assigned. The PLinda system

automatically detects process failure and reruns the process on a di�erent machine.

Using the xrecover operation, the programmer may retrieve the continuation of the

last committed transaction and continue from that point.

In this way, the PLinda system can support fault tolerance in a heterogeneous

environment. The reason is that no stack information is saved, only live variables, but

the programmer must write code that can be chopped into transactions. This is a

somewhat labor-intensive programming model.

2.4.7 Comparisons

In this section, we examined four systems for parallel programming on networks of

workstations. Table 2.3 summarizes the features of these four systems.

Condor does not provide an abstract programming model for writing parallel

programs. Calypso is easy to program and is e�cient for applications which are

highly data parallel. But, it does not provide mechanisms for processes to synchronize

and communicate under programmer control; these types of mechanisms are needed to

e�ciently implement some algorithms [46]. Calypso is not fully fault-tolerant because it

does not sustain failures of the machine where the compute server is running. Systems
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Condor Calypso Piranha Persistent

Linda

Parallel programming model no yes yes yes

Easy to program yes yes no no

Utilization of idle workstations yes yes yes yes

Fault tolerant yes somewhat somewhat yes

Heterogeneity yes no no yes

Table 2.3: Comparison of Condor, Calypso, Piranha, and Persistent Linda.

such as Piranha and Persistent Linda o�er a trade o� between high level constructs and

e�ciency. However, Persistent Linda achieves fault-tolerance and heterogeneity with

lower overhead.

2.5 Other Parallel Computing Systems on NOW

2.5.1 Cilk-NOW

Cilk-NOW [6] is a runtime system designed to execute Cilk [5] program in parallel on

a network of UNIX workstations. Cilk (pronounced \silk") is a parallel multi-threaded

extension of the C language, and all Cilk runtime systems employ a provably e�cient

thread-scheduling algorithm. A Cilk program contains one or more Cilk procedures, and

each Cilk procedure contains one or more Cilk threads. A Cilk procedure is the parallel

equivalent of a C function, and a Cilk thread is a non-suspending piece of a procedure.

The Cilk runtime system manipulates and schedules the threads. The runtime system

is not aware of the grouping of threads into procedures.

A Cilk thread generates parallelism at runtime by spawning a child thread that is
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the initial thread of a child procedure. After spawning one or more children, the parent

thread must additionally spawn a successor thread to wait for the values \returned" from

the children. The child procedures return values to the parent procedure by sending

those values to the parent's waiting successor. Spawning successor and child threads

is done with the spawn next and spawn keywords, respectively. Sending a value to a

waiting thread is done with the send argument statement. Figure 2.8 shows how a

function to calculate the Fibonacci numbers is written as a Cilk procedure consisting of

two Cilk threads: Fib and Sum.

thread Fib (cont int k, int n)

{

if (n<2)

send_argument (k, n);

else

{

cont int x, y;

spawn_next Sum (k, ?x, ?y);

spawn Fib(x, n-1);

spawn Fib(y, n-2);

}

}

thread Sum (cont int k, int x, int y)

{

send_argument (k, x+y);

}

Figure 2.8: A Cilk procedure to compute the nth Fibonacci number. This procedure
contains two threads, Fib and Sum.

The Cilk-NOW system adaptively executes Cilk programs on a dynamically

changing set of otherwise-idle workstations. When a given workstation is not being used

by its owner, the workstation automatically joins in and helps out with the execution
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of a Cilk program. When the owner returns to work, the machine automatically

retreats from the Cilk program. The Cilk-NOW runtime system automatically performs

checkpointing, detects failures, and performs recovery while Cilk programs themselves

remain fault oblivious. That is, Cilk-NOW provides fault tolerance without requiring

that programmers code for fault tolerance.

It is important to note that Cilk-NOW provides these features only for Cilk-2

programs which are essentially functional. Cilk-NOW does not support more recent

versions of Cilk (Cilk-3 and Cilk-4) that incorporate virtual shared memory, and in

particular, Cilk-NOW does not provide any kind of distributed shared memory. In

addition, Cilk-NOW does not provide fault tolerance for its I/O facility.

2.5.2 TreadMarks

TreadMarks [10] is a distributed shared memory (DSM) system for networks of UNIX

workstations. It has been implemented on most UNIX platforms, including IBM RS-

6000, DEC Alpha, HP, SGI, SUN Sparc.

TreadMarks' design focuses on reducing the amount of communication necessary

to maintain memory consistency. To this end, it presents a release consistency memory

model [8] to the user. Release consistency is a relaxed memory consistency model that

permits a processor to delay making its changes to shared data visible to other processors

until certain synchronization accesses occur. Shared memory accesses are categorized

either as ordinary or as synchronization accesses, with the latter category further di-

vided into acquire and release accesses. Acquires and releases roughly correspond to

synchronization operations on a lock, but other synchronization mechanisms can be

implemented on top of this model as well. For instance, arrival at a barrier can be

modeled as a release, and departure from a barrier as an acquire. Essentially, releases
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consistency requires ordinary shared memory updates by a processor p to become visible

at another processor p, only when a subsequent release by p becomes visible at q. In

the lazy implementation of release consistency in TreadMarks [9], the propagation of

modi�cations is postponed until the time of the acquire. At this time, the acquiring

processor determines which modi�cations it needs to see according to the de�nition of

release consistency.

False sharing is a source of frequent communication for many DSM systems. It

occurs when two or more processors access di�erent variables within a page, with at

least one of the accesses being a write. To address this problem, TreadMarks uses a

multiple-writer protocol [28]. With multiple-writer protocols two or more processors

can simultaneously modify their local copy of a shared page. Their modi�cations are

merged at the next synchronization operation in accordance with the de�nition of release

consistency, thereby reducing the e�ect of false sharing.

The TreadMarks application programming interface (API) provides facilities

for process creation and destruction, synchronization, and shared memory allocation.

Shared memory allocation is done through Tmk malloc(). Only memory allocated

by Tmk malloc() is shared. Memory allocated statically or by a call to malloc() is

private to each process. TreadMarks provides two synchronization primitives: barrier

and exclusive locks. A process waits at a barrier by calling Tmk barrier(). Barriers

are global: the calling process is stalled until all processes in the system have arrived

at the same barrier. A Tmk lock acquire call acquires a lock for the calling process,

and Tmk lock release releases it. No process can acquires a lock while another process

is holding it. This particular choice of synchronization primitives is not in any way

fundamental to the design of TreadMarks; other primitives can be added later.

The TreadMarks system does not provide adaptive parallelism or fault tolerance.
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2.5.3 PVM

PVM [7] stands for Parallel Virtual Machine. It is a software package that allows a

heterogeneous network of parallel and serial computers to appear as a single concurrent

computational resource. PVM consists of two parts: a daemon process that any

user can install on a machine, and a user library that contains routines for initiating

processes on other machines, for communicating between processes, and changing the

con�guration of machines. The unit of parallelism in PVM is a task (often but not

always a Unix process), an independent sequential thread of control that alternates

between communication and computation. No process-to-processor mapping is implied

or enforced by PVM; in particular, multiple tasks may execute on a single processor.

PVM uses a explicit message-passing model where collections of computational tasks,

each performing a part of an application's workload using data-, functional-, or hybrid

decomposition, cooperate by explicitly sending and receiving messages to one another.

In general, the distributed shared memory approach is more attractive since

most programmers �nd it easier to use than a message passing paradigm, which requires

them to explicitly partition data and manage communication. With a global address

space, the programmer can focus on algorithmic development rather than on managing

partitioned data sets and communicating values.

PVM does not provide adaptive parallelism or fault tolerance.

2.6 Parallel Search Algorithms

Search is a major computational paradigm in Arti�cial Intelligence. There has been a

fair amount of work which has looked at pruning, load-balancing, locality, granularity,

and anomalous speedup issues in parallel search applications.
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A common search problem concerns exploring a large state-space for a goal state.

The state space is usually structured as a tree, with operators that can transform one

state \node" to another forming arcs between di�erent states. In a large class of such

problems, the computations tend to be unpredictably structured and have multiple

solutions. Saletore and Kal�e [17] considered the problem of parallel state-space search

for a �rst solution.

In their scheme, every node in the state-space is associated with a priority bit

vector, which is a sequence of bits of any arbitrary length. Priorities are assigned in a

way such that (a) The relative priority of the sibling nodes preserves the left to right

order of the sibling nodes; and (b) every descendent of a higher priority node gets higher

priority than all the descendents of low priority nodes. This re
ects the policy that until

there is no prospect of a solution from the left subtree beneath a node, the system should

not spend its resources on the right subtrees, unless there are idle processors. That is, if

for a time period, if the work available in the left subtree is not su�cient to keep all the

processors busy, the idle processors may expand the right subtrees. But as soon as high

priority nodes become available in the left subtree, the processors must focus their e�orts

in that left subtree. Thus, the parallel search behaviour is similar to that of sequential

depth-�rst search. As a result, their algorithm yields consistent linear speedups over

sequential depth-�rst search on a multi-processor system (Sequent Symmetry).

Kumar, Ramesh, and Rao presented many di�erent parallel formulations of

depth-�rst and best-�rst search algorithms as well [14, 15, 16]. These are all one-solution

algorithms. In other words, the goal of the search is one (optimal) solution on the state-

space. However, data mining problems require �nding all solutions. Furthermore, most

of these parallel search techniques require frequent communication among processors,

which is not suitable for NOW.
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2.7 Domain-Speci�c Parallelism Frameworks

2.7.1 Multipol

Multipol [11] is a library of distributed data structures designed for irregular applica-

tions such as discrete event simulation, symbolic computation, and search problems.

Multipol has data structures for both bulk-synchronous applications with irregular

communication patterns and asynchronous applications. The Multipol runtime system

contains a thread system and a simple producer-consumer synchronization construct

for expressing dependencies between threads. The threads also create opportunities

for overlapping communication latency with computation, and for aggregating multiple

remote operations in large physical messages to reduce communication overhead.

The design and implementation of Multipol target distributed memory architec-

tures, including the Thinking Machines CM-5, Intel Paragon, and IBM SP1. It is also

being ported to networks of workstations.

2.7.2 LPARX

LPARX [12] is a parallel programming model for dynamic, non-uniform scienti�c compu-

tations. It provides run-time support for these computations with a data decomposition

model for block irregular data structures. The LPARX system was motivated by a

number of design considerations. First, LPARX does not rely on architecture-speci�c

facilities, such as �ne-grain message passing, and therefore it is portable across a variety

of MIMD architectures. Second, LPARX assumes no compiler support and all decisions

about data decomposition, the assignment of data to processors, and the communication

of data dependencies are made at run-time. Finally, since modern scienti�c codes often

use elaborate data structures which require special treatment when communicated across
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address spaces, LPARX provides support for arrays of complicated objects in addition

to standard built-in types.

LPARX, implemented as a C++ class library, requires basic message passing

support. It is currently running on the CM-5, Paragon, iPSC/860, nCUBE/2, KSR-1,

single processor workstations, Cray-90 (single processor), and networks of workstations

under PVM.
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Chapter 3

E-Dag: Framework for Finding

Lattices of Patterns

3.1 Exploration Dag

3.1.1 Modeling Data Mining Applications

In sections 2.2, 2.1, and 2.3, we surveyed three major classes of data mining applications,

namely association rule mining, classi�cation rule mining, and pattern discovery in com-

binatorial databases. In this section, we note the resemblance among the computation

models of these three application classes. Table 3.1 is a comparison of speci�cations of

these three classes of applications.

A task is the main computation applied on a pattern. Not only are all tasks of

any one application of the same kind, but tasks of di�erent applications are actually

very similar. They all take a pattern and a subset of the database and count the number

of records in the subset that match the pattern. In the classi�cation rule mining case,

counts of matched records are divided into c baskets, where c is the number of distinct
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Pattern Discovery Assoc. Rule Mining Class. Rule Mining

database sequences transaction records database relation

pattern partial sequence itemset attribute{value

condition

good occurrencepattern supportpattern info gainattribute =

pattern > min occurrence > min support maxsibling attributes

(info gainattribute)

task counting occurrence counting support of building histogram of

of pattern in subset itemset over subset pattern on classes over

of database of database subset of database

Table 3.1: A comparison of speci�cations of three classes of data mining applications.

classes.

The similarities among the speci�cations of these applications are obvious, which

inspired us to study the similarities among their computation models. As we can see

from previous sections, they usually follow a generate-and-test paradigm|generate

a candidate pattern, then test whether it is any good. Furthermore, there is some

interdependence among the patterns that gives rise to pruning, i.e., if a pattern occurs

too rarely, then so will any superpattern. These interdependences entail a lattice of

patterns, which can be used to guide the computation.

In fact, this notion of pattern lattice can apply to any data mining application

that follows this generate-and-test paradigm. We call this application class pattern lat-

tice data mining. In order to characterize the computation models of these applications

more concretely, we de�ne them more carefully in Section 3.1.2.
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3.1.2 De�ning Data Mining Applications

In general, a data mining application de�nes the following elements.

1. A database D.

2. Patterns and a function len(pattern p) which returns the length of p. The length

of a pattern is a non-negative integer.

Example 3.1.1 Patterns of length k in the three application class are shown

below:

sequence pattern discovery �C1C2 : : : Ck�
C1; C2; : : : ; Ck are letters

association rule mining fi1; i2; : : : ; ikg
i1; i2; : : : ; ik are items

classi�cation rule mining (A1 = v1i1) ^ (A2 = v2i2) ^ : : : ^ (Ak = vkik)

A1; A2; : : : ; Ak are attributes, and

v1i1 ; v2i2 ; : : : ; vkik are attribute values

We use ��, fg, and ; to represent zero-length patterns in sequence pattern discov-

ery, association rule mining, and classi�cation rule mining, respectively.

3. A function goodness(pattern p) which returns a measure of p according to the

speci�cations of the application.

Example 3.1.2 The goodness of a pattern p in sequence pattern discovery is the

occurrence number of p in the set of sequences; the goodness of a pattern p in

association rule mining is the support of p over the set of items; the goodness of a

pattern p in classi�cation rule mining is the info gain by partitioning the training

set by p.
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4. A function good(p) which returns 1 if p is a good pattern or a good subpattern

and 0 otherwise. Zero-length patterns are always good.

Example 3.1.3 In sequence pattern discovery, a pattern p is good if goodness(p)

is greater than or equal to some prespeci�ed min occurrence; in association rule

mining, pattern p is good if goodness(p) � some prespeci�ed min support; in

classi�cation rule mining, a pattern p is good if goodness(p) � goodness(p0), for

any p0 such that len(p0) = len(p).

Sometimes there are such additional requirements as minimum and/or maximum

lengths of good patterns (e.g., in sequence pattern discovery). Without loss of

generality, we disregard these requirements in our discussion unless otherwise

noted.

The result of a data mining application is the set of all good patterns. If a pattern

is not good, neither will any of its superpatterns be. In other words, it is necessary to

consider a pattern if and only if all of its subpatterns are good.

Let us de�ne an immediate subpattern of a pattern q to be a subpattern p of q

where len(p) = len(q)� 1. Conversely, q is called an immediate superpattern of p.

Example 3.1.4 Immediate subpatterns of a length k pattern p:

sequence pattern discovery all (k � 1)-pre�xes and

all (k � 1)-su�xes of p

association rule mining all (k � 1)-itemsets

classi�cation rule mining the pattern consisting of the �rst

k � 1 attribute-value pairs in p
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Except for the zero-length pattern, all the patterns in a data mining problem are

generated from their immediate subpatterns. In order for all the patterns to be uniquely

generated, a pattern q and one of its immediate subpatterns p have to establish a child-

parent relationship (i.e., q is a child pattern of p and p is the parent pattern of q). Except

for the zero-length pattern, each pattern must have one and only one parent pattern.

For example, in sequence pattern discovery, �FRR� can be a child pattern of �FR�; in
association rule mining, f2, 3, 4g can be a child pattern of f2, 3g; and in classi�cation

rule mining, (C = c1)^(B = b2)^(A = a1) can be a child pattern of (C = c1)^(B = b2).

3.1.3 Solving Data Mining Applications

Having de�ned data mining applications as above, it is easy to see that an optimal

sequential program that solves a data mining application does the following:

1. generates all child patterns of the zero-length pattern;

2. computes goodness(p) if all of p's immediate subpatterns are good;

3. if good(p) then generate all child patterns of p;

4. applies 2 and 3 repeatedly until there are no more patterns to be considered.

Because the zero-length pattern is always good and the only immediate sub-

patterns of its children is the zero-length pattern itself, the computation starts on all

its children, which are all length 1 patterns. After these patterns are computed, good

patterns generate their child sets. Not all of these new patterns will be computed|only

those whose every immediate subpattern is good will be.
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3.1.4 Exploration Dag

We propose to use a directed acyclic graph (dag) structure called exploration dag (E-

dag, for short) to characterize pattern lattice data mining applications. We �rst describe

how to map a data mining application to an E-dag.

The E-dag constructed for a data mining application has as many vertices as

the number of all possible patterns (including the zero-length pattern). Each vertex is

labeled with a pattern and no two vertices are labeled with the same pattern. Hence

there is a one-to-one relation between the set of vertices of the E-dag and the set of

all possible patterns. Therefore, we refer to a vertex and the pattern it is labeled with

interchangeably.

There is an incident edge on a pattern p from each immediate subpattern of p.

All patterns except the zero-length pattern have at least one incident edge on them.

The zero-length pattern has an outgoing edge to each pattern of length 1.

Figure 3.1 (Figure 3.2, Figure 3.3, respectively) shows an E-dag mapped from a

simple sequence pattern discovery (association rule mining, classi�cation rule mining)

application.

3.1.5 A Data Mining Virtual Machine

The input of the proposed data mining virtual machine (DMVM) is a data mining

application with all the elements de�ned in Section 3.1.2. The output of the DMVM

is the result of the data mining application. In the remainder of this section, we show

that the E-dag structure enables us to build an e�cient data mining virtual machine.

Fact 1 All E-DAGs built from the same input are isomorphic.
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**

*M**R**F*

*MRR*

*RM**RR**FR* *MT* *TR*

*T*

*TRM**MTR*
*RRM**FRR*

*FF* *MR*

*FFR*

*MRRM* *MTRM*  *FFRR*

Figure 3.1: A complete E-DAG for a sequence pattern discovery application on sequences
FFRR, MRRM, and MTRM.
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{}

{1,3,4} {2,3,4}{1,2,3} {1,2,4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

{1,2,3,4}

Figure 3.2: A complete E-DAG for an association rule mining application on the set of
items f1, 2, 3, 4g.
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o

A=a1 A=a2 B=b1 B=b2 B=b3

A=a1
B=b1

A=a1
B=b2

A=a1
B=b3

A=a2
B=b1

A=a2
B=b2

A=a2
B=b3

B=b1
A=a1

B=b1
A=a2

B=b2
A=a1

B=b2
A=a2

B=b3 B=b3
A=a2A=a1

Figure 3.3: A complete E-DAG for a classi�cation rule mining application on a simple
database with attributes A (possible values a1 and a2), and B (possible values b1, b2,
and b3).

This guarantees that the following discussion applies on all E-dags built for a

single application.

De�nition 1 In an E-dag traversal (EDT), a vertex n is visited only if all vertices that

have an incident edge on n have been visited.

Fact 2 There is a plenty of pruning in an E-dag traversal.

If a pattern p is not good, neither is any of its superpatterns. Therefore, there is

no need to build the complete E-dag before we perform an E-dag traversal. Instead, an

E-dag is lazily constructed|vertices are generated only when it is necessary to look at

the patterns on them|while an E-dag traversal is performed on the E-dag on the 
y.

For an E-dag E built from a data mining application A and a sequential program

P that solves A, an E-dag traversal of E is said to be equivalent to an execution of P
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if and only if (1) the results (good patterns) from the E-dag traversal are the same as

those from the execution of P, and (2) the same potential patterns are tested ( in other

words, all patterns that the function goodness(p) would have been applied on are the

same in the E-dag traversal as in the execution of P).

Theorem 1 For a (i) data mining application A, (ii) an E-dag E built from A, and
(iii) a sequential program P that solves A and that is optimal, an E-dag traversal of E
is equivalent to an execution of P on input A.

Because P is optimal, an execution of P will test the least number of potential

patterns. Until it has tested all length k patterns, it will not test any pattern whose

length is greater than k, because the goodness result of a length k pattern may make

testing (some) patterns of greater length unnecessary. Therefore, an execution of P will

test all length 1 patterns �rst, and then test all length 2 patterns, and so on, until there

are no more patterns to be considered.

According to the de�nition of E-dag traversal, all patterns of length 1 are

considered before any pattern of length 2 are, as is true in an execution of P. Because
the same result would be obtained on each length 1 pattern, exactly the same length

2 patterns will be considered in an E-dag traversal as in an execution of P. Similarly,
exactly the same length 3 patterns will be tested. This goes on until all length k patterns

are not good (in other words, there are no more patterns to be considered.) Because an

E-dag traversal and an execution of P test exactly the same length 1 patterns, exactly

the same length 2 patterns, : : : , exactly the same length k pattern all the patterns they

test are the same. And because each test yields the same result, the same good patterns

are found. Therefore, an E-dag traversal of E is equivalent to an execution of P. In fact,
for every two patterns of di�erent length, the goodness function would have applied in
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the same order in an E-dag traversal of E as in an execution of P. �
At the end of the computation, the resultant E-dag gives the results of the data

mining application. For a sequence pattern discovery application, motifs on the vertices

of the resultant E-dag are active motifs. For an association rule mining application, all

itemsets on the vertices of the resultant E-dag are frequent itemsets (these are answers

to phase I in association rule mining, but phase II is rather straightforward and is much

less time-consuming). For a classi�cation rule mining application, a simple transition

from the resultant E-dag gives the decision tree. For an attribute{value pair A = a on

a node n, move A up into n's parent p (if there is not an attribute name in p already),

and make a the label along the path from p to n. Having done this to all the nodes

except the root of the tree, the root and each of the internal nodes will have an attribute

name. Finally label the leaves with the names of the appropriate classes they belong to.

3.2 A Parallel Data Mining Virtual Machine

3.2.1 A Parallel Data Mining Virtual Machine

We can now de�ne a parallel data mining virtual machine (PDMVM). The input of the

PDMVM is a data mining application with all the elements de�ned in Section 3.1.2.

The output of the PDMVM is the result of the data mining application. The input and

the output of the PDMVM are exactly the same as those of the DMVM presented in

Section 3.1.5.

De�nition 2 A parallel E-dag traversal (PEDT) is an E-dag traversal done in parallel.

Imagine that we have an unlimited number of visiting workers each of which can

individually visit any vertex of an E-dag. If, at the beginning of the EDT, there are n1
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patterns of length 1, n1 visiting workers can visit these patterns in parallel. After all

length 1 patterns have been visited, there are, say, n2 patterns of length 2 to be visited;

then n2 visiting workers can visit these patterns in parallel; so on and so forth.

A PEDT is done in a manner that no two patterns of di�erent length on which

goodness(p) would have applied in a di�erent order in an EDT of E than in a PEDT of

E .

Lemma 1 The result of a PEDT is the same as the result of an EDT.

This follows immediately from the de�nition of PEDT. �

Theorem 2 For (i) a data mining application A, (ii) an E-dag E built from A, and
(iii) a sequential program P that solves A and that is optimal, a PEDT of E is equivalent

to an execution of P on input A.

The de�nition of PEDT and Theorem 1 guarantee that a PEDT and an execution

of P test exactly the same potential patterns. And Lemma 1 guarantees that the result

of a PEDT is the same as the output of an execution of P. �

3.2.2 PLinda Implementation of PDMVM

In this section, we describe an implementation of the parallel data mining virtual

machine on the Persistent Linda system.

A parallel E-dag traversal PLinda program (PLED) consists of a PLED master

and a PLED worker. A PLED worker plays the role of a visiting worker described

above. Figure 3.4 (�gure 3.5, respectively) is the pseudo-PLinda code of a PLED master

(worker).

The function child pattern(node) generates all child patterns of the pattern on
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child_pattern(zero-length pattern);

while !done do {

xstart;

in(?node, ?score);

if good(node) then {

child_pattern(node);

} else if (task_sent == task_done) then {

done=1;

}

xcommit;

}

out(poison tasks);

Figure 3.4: Pseudo-PLinda code of a PLED master.

while !done {

xstart;

in("task", ?node);

if !(poison task) {

out(node, goodness(node));

} else {

done=1;

}

xcommit;

}

Figure 3.5: Pseudo-PLinda code of a PLED worker.
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the input node, but it outs only those children whose immediate subpatterns are all

good into tuple space. As a result, a PLED worker can take only patterns that are

known to be necessary to be considered. Work tuples are of the form ("task", node).

Goodness of a node is outed by a worker in a result tuple of the form (node, score).

The function good(node) will determine if node is a good pattern according to goodness

of all of its immediate subpatterns.

3.3 Optimal Implementation of PDMVM

Our PLinda implementation of the parallel data mining virtual machine generates

the correct result for any data mining application because it faithfully implements a

parallel E-dag traversal. But what would be an optimal implementation of a parallel E-

dag traversal on networks of workstations? Would an optimal implementation have

an equivalent execution as the optimal sequential program on any input? In the

distributed shared memory model, with the presence of complicated communication and

synchronization costs, the �rst question is unanswerable in general. And the answer to

the second question is no.

So what is our approach to optimality? In order to answer this question, we

�rst introduce a tree structure that is closely related to the E-dag structure. The tree

structure is called exploration tree (E-tree, for short).

3.3.1 Exploration Tree

An E-tree is a tree transformed from an E-dag. The transformation is very simple. If

we make edges from all patterns to their non-child immediate superpatterns dashed,

all the vertices in the E-dag and all the solid edges constitute the E-tree. The root of
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the E-tree is the zero-length pattern. Figure 3.6, Figure 3.7, and Figure 3.8 are E-trees

transformed from the corresponding E-dags in Section 3.1.4.

**

*M**R**F*

*MRR*

*RM**RR**FR* *MT* *TR*

*T*

*TRM**MTR*
*RRM**FRR*

*FF* *MR*

*FFR*

*FFRR* *MRRM* *MTRM*

Figure 3.6: An E-tree for a sequence pattern discovery application on sequences FFRR,
MRRM, and MTRM.

3.3.2 E-tree Traversal

De�nition 3 In an E-tree traversal (ETT), a node of a tree is visited only if its parent

has been visited and is good.
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{}

{1,3,4} {2,3,4}{1,2,3} {1,2,4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

{1,2,3,4}

Figure 3.7: An E-tree for an association rule mining application on the set of items f1,
2, 3, 4g.
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A=a1 A=a2 B=b1 B=b2 B=b3

B=b1
A=a1
B=b2

A=a1
B=b3

A=a2
B=b1

A=a2
B=b2

A=a2
B=b3

B=b1
A=a1

B=b1
A=a2

B=b2
A=a1

B=b2
A=a2

B=b3 B=b3
A=a2A=a1

A=a1

Figure 3.8: An E-tree for a classi�cation rule mining application on a simple database
with attributes A (possible values a1 and a2), and B (possible values b1, b2, and b3).

An E-tree traversal is di�erent from an E-dag traversal in that a pattern can be

considered even if not all of its subpatterns are good. Because of this, there may be

wasted work done on some nodes. For the same reason, however, it does not require a

synchronization at each level of the tree, which gives rise to good load balancing when

it is done in parallel.

Opportunities for pruning are still apparent in an E-tree traversal. Once a

pattern p is found not good, the whole subtree rooted at p is pruned. Therefore, we

should still take advantages of lazy construction of E-trees when we perform E-tree

traversals.

Lemma 2 The result of an ETT is the same as the result of an EDT.

It is easy to see that all good patterns produced in an EDT are also produced in

an ETT since all patterns ever considered in an EDT are also considered in an ETT. If

62



any subpattern of p is not good, neither is p. So if a pattern is considered even if not all

of its subpatterns are good, it will eventually be pronounced not good and hence does

not produce more patterns to be considered. Therefore, no more good patterns will be

produced in an ETT than in an EDT. Thus Lemma 2 holds. �

De�nition 4 A parallel ETT (PETT) is an ETT done in parallel.

If the root of the E-tree has n1 children, then n1 visiting workers can traverse

them in parallel. Once any of these pattern is found good, then all its children can be

visited by the same number of visiting workers in parallel. This applies recursively until

the end of computation.

Because each branch of any subtree can proceed independently, it is certainly

possible that some visiting workers are working at a lower level in the E-tree than some

other visiting workers. Furthermore, it is possible that there are two patterns of di�erent

length on which goodness(p) would have been applied in a di�erent order in an EDT of

E than in a PETT of E .

Lemma 3 The result of a PETT is the same as the result of an ETT.

All the good patterns produced by an ETT are produced by a PETT. Similar

to the proof of Lemma 2, no more good patterns are produced by a PETT than by an

ETT. Therefore, the above lemma holds. �

Theorem 3 For a data mining application A, an E-dag E built from A, and a sequential
program P that solves A and that is optimal, the result of a PETT of E is the same as

the output of P on input A.

This follows from Theorem 1, Lemma 2, and Lemma 3. �
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3.3.3 PLinda Implementation of PETT

A parallel E-tree traversal PLinda program (PLET) also consists of two parts: a PLET

master and a PLET worker. Figure 3.9 (�gure 3.10, respectively) is the pseudo-PLinda

code of a PLET master (worker).

The function termination(node) detects if the computation has completed. It

works as follows.

1. Mark node as pruned (in this case no descendants of node will be visited);

2. Check if all siblings of node are pruned; if so, mark the parent of node as pruned;

3. If the root is pruned, the computation has completed.

3.3.4 Optimal PLinda Implementation of PDMVM

The optimal PLinda implementation of the parallel data mining virtual machine is a

combination of PLED and PLET.

We observe that one can bene�t more from the pruning due to a non-good

subpattern in early stages of an E-dag traversal than in later stages. One possibility is

that the optimal PLinda program will start with PLED, in the middle of which, will

switch to PLET. When to switch is the crucial question in this scheme. The answer will

depend on the particular environment on which the program is running and the data

mining application itself.

Another possibility for the optimal program is a hybrid from PLED and PLET,

in which, when a visiting worker becomes free, it visits the non-pruned node as high

as possible in the E-tree. If the result is not good, then it prunes all its superpatterns.

This algorithm would be optimal under the assumptions of free network bandwidth and

free access to shared storage.
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child_pattern(root);

while !done {

xstart;

in("pruned", ?node);

if termination(node) then {

out(poison tasks);

done=1;

}

xcommit;

}

Figure 3.9: Pseudo-PLinda code of a PLET master.

while !done {

xstart;

in("task", ?node);

if !(poison task) then {

compute goodness(node);

if good(node) then {

child_pattern(node);

} else {

out("pruned", node);

}

} else {

done=1;

}

xcommit;

}

Figure 3.10: Pseudo-PLinda code of a PLET worker.
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Theorem 4 For (i) a data mining application A, (ii) an E-dag E built from A, and
(iii) a sequential program P that solves A and that is optimal, the result of an optimal

PLinda E-dag traversal of E is the same as the output of an execution of P on input A.

Since the optimal PLinda program is a combination of PLED and PLET, this

theorem follows from Theorem 2 and Theorem 3. �

3.4 Summary

We proposed the E-dag framework for �nding pattern lattices based on analysis of

computation models of three classes of data mining problems. We described how an E-

dag traversal would solve the data mining problem the E-dag represents and proved that

an E-dag traversal is equivalent to any optimal sequential program that solves the same

problem. E-dag construction and traversal can be done e�ciently in parallel. However,

network latency can slow down parallel E-dag traversal if there is a fair amount of inter-

process communication. In an E-tree traversal, much communication is eliminated by

giving up some pruning opportunities. We observe that an optimal parallel program is

some form of combination of E-dag and E-tree traversal.
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Chapter 4

Biological Pattern Discovery

4.1 Biological Pattern Discovery

Biological pattern discovery problems are computationally expensive. A possible tech-

nique for reducing the time to perform pattern discovery is parallelization. Since each

task in a biological pattern discovery application is usually time consuming by itself, we

might be able to use networks of workstations (NOW).

Finding active motifs in sets of protein sequences and in multiple RNA secondary

structures are two examples of biological pattern discovery. We will demonstrate that,

using the E-dag framework, it is easy to parallelize these applications and it is e�cient

to run the parallel programs in PLinda on NOW.

4.1.1 Discovery of Motifs in Protein Sequences

Biologists represent proteins as sequences made from 20 amino acids, each represented as

a letter. Figure 4.1 is the sequence representation of a real protein named \CG2A DAUCA

G2/MITOTIC-SPECIFIC CYCLIN C13-1 (A-LIKE CYCLIN)". If two sequences are
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APSMTTPEPASKRRVVLGEISNNSSAVSGNEDLLCREFEVPKCVAQKKRKRGVKEDVGVD

FGEKFDDPQMCSAYVSDVYEYLKQMEMETKRRPMMNYIEQVQKDVTSNMRGVLVDWLVEV

SLEYKLLPETLYLAISYVDRYLSVNVLNRQKLQLLGVSSFLIASKYEEIKPKNVADFVDI

TDNTYSQQEVVKMEADLLKTLKFEMGSPTVKTFLGFIRAVQENPDVPKLKFEFLANYLAE

LSLLDYGCLEFVPSLIAASVTFLARFTIRPNVNPWSIALQKCSGYKSKDLKECVLLLHDL

QMGRRGGSLSAVRDKYKKHKFKCVSTLSPAPEIPESIFNDV

Figure 4.1: Sequence representation of a real protein named \CG2A DAUCA
G2/MITOTIC-SPECIFIC CYCLIN C13-1 (A-LIKE CYCLIN)".

almost the same or share very similar subsequences, it may be that the common part

may perform similar functions via related biochemical mechanisms [40, 45, 51, 56]. Thus,

�nding a frequently occurring subsequences in a set of protein sequences is an important

problem in computational biology.

Consider a database of imaginary protein sequences D=fFFRR, MRRM, MTRM,

DPKY, AVLGg and the query \Find the patterns P of the form �X� where P occurs in

at least 2 sequences in D and the size of P jP j � 2." (X can be a segment of a sequence

of any length, and � represents a variable length don't care.) The good patterns are

�RR� (which occurs in FFRR and MRRM) and �RM� (which occurs in MRRM and

MTRM).

Pattern discovery in sets of sequences concerns �nding commonly occurring

subsequences (sometimes calledmotifs). The structures of the motifs we wish to discover

are regular expressions of the form �S1 � S2 � : : : where S1; S2; : : : are segments of a

sequence, i.e., subsequences made up of consecutive letters and � represents a variable

length don't care (VLDC). In matching the expression �S1 �S2 � : : : with a sequence S,

the VLDCs may substitute for zero or more letters in S. Segments may allow a speci�ed

number of mutations; a mutation is a insertion, a deletion, or a mismatch.

We use terminology proposed in [Wang et al., 1994]. Let S be a set of sequences.
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The occurrence number of a motif is the number of sequences in S that match the motif

within the allowed number of mutations. We say the occurrence number of a motif P

with respect to mutation i and set S, denoted occurrence noiS(P ), is k if �P� matches
k sequences in S within at most i mutations, i.e., the k sequences contain P within i

mutations. Given a set S, we wish to �nd all the active motifs P where P is within the

allowed Mut mutations of at least Occur sequences in S and jP j � Length, where jP j
represents the number of the non-VLDC letters in the motif P . (Mut, Occur, Length

and the form of P are user-speci�ed parameters.)

4.1.2 Discovery of Motifs in RNA Secondary Structures

Finding approximately common motifs (or active motifs) in multiple RNA secondary

structures helps to predict secondary structures for a given mRNA [Zuker, 1989; Le et

al., 1989] and to conduct phylogenetic study of the structure for a class of sequences

[Shapiro and Zhang 1990]. Adopting the RNA secondary structure representation

previously proposed in [Shapiro and Zhang, 1990], we represent both helical stems

and loops as nodes in a tree. Figure 4.2 illustrates a RNA secondary structure and

its tree representation. The structure is decomposed into �ve terms: stem, hairpin,

bulge, internal loop and multi-branch loop. In the tree, H represents hairpin nodes, I

represents internal loops, B represents bulge loops, M represents multi-branch loops,

R represents helical stem regions (shown as connecting arcs) and N is a special node

used to make sure the tree is connected. The tree is considered to be an ordered one

where the ordering is imposed based upon the 5' to 3' nature of the molecule. This

representation allows one to encode detailed information of RNA by associating each

node with a property list. Common properties may include sizes of loop components,

sequence information and energy.
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We consider a motif in a tree T to be a connected subgraph of T , viz., a subtree U

of T with certain nodes being cut at no cost. (Cutting at a node n in U means removing

n and all its descendants, i.e., removing the subtree rooted at n.) The dissimilarity

measure used in comparing two trees is the edit distance, i.e., the minimum weighted

number of insertions, deletions and substitutions (also known as relabelings) of nodes

used to transform one tree to the other [Shapiro and Zhang, 1990; Wang et al., 1994].

Deleting a node n makes the children of n the children of the current parent of n.

Inserting n below a node p makes some consecutive subsequence of the children of p

become the children of n. For the purpose of this work, we assume that all the edit

operations have unit cost.

Consider the set S of three trees in Figure 4.3(a). Suppose only exactly coinciding

connected subgraphs occurring in all the three trees and having size greater than 2 are

considered as active motifs. Then S contains two active motifs shown in Figure 4.3(b).

If connected subgraphs having size greater than 4 and occurring in all the three trees

within distance one are considered as active motifs, i.e., one substitution, insertion or

deletion of a node is allowed in matching a motif with a tree, then S contains two active

motifs shown in Figure 4.3(c).

We say a tree T contains a motifM within distance d (orM approximately occurs

in T within distance d) if there exists a subtree U of T such that the minimum distance

between M and U is less than or equal to d, allowing zero or more cuttings at nodes

from U . Let S be a set of trees. The occurrence number of a motif M is the number of

trees in S that containM within the allowed distance. Formally, the occurrence number

of a motif M with respect to distance d and set S, denoted occurrence nodS(M), is k if

there are k trees in S that contain M within distance d. Given a set S of trees, we wish

to �nd all the motifs M where M is within the allowed distance Dist of at least Occur
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Figure 4.2: Illustration of a typical RNA secondary structure and its tree representation.
(a) Normal polygonal representation of the structure. (b) Tree representation of the
structure.
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trees in S and jM j � Size, where jM j represents the size, i.e., the number of nodes, of
the motif M . (Dist, Occur and Size are user-speci�ed parameters.)
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Figure 4.3: (a) The set S of three trees (these trees are hypothetical ones used solely
for illustration purposes). (b) Two motifs exactly occurring in all three trees. (c) Two
motifs approximately occurring, within distance 1, in all three trees.

4.2 Parallel Pattern Discovery in PLinda

4.2.1 Applying the E-dag Model

The computation models of the two pattern discovery applications �t well into the E-dag

framework. Their key elements are listed in Table 4.1.
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Pattern Discovery in Pattern Discovery in

Protein Sequences RNA Secondary Structures

database a set of protein a set of trees (representing
sequences RNA secondary structures)

pattern partial sequence subtree

good occurrencepattern occurrencepattern
pattern > min occurrence > min occurrence

task counting occurrences of counting occurrences of subtrees
partial sequences in subset in subset of database
of database

Table 4.1: A comparison of speci�cations of two biological pattern discovery applica-
tions.

4.2.2 PLinda Implementation

We have implemented parallel sequence pattern discovery in PLinda. Two parallel E-

tree traversal programs in PLinda have been implemented. In the �rst program, the

master produces a work tuple for each top level pattern. Each worker then takes one

work tuple and �nishes the computation on the whole subtree. and puts the results in the

tuple space. The master reads the results and concludes the program. This approach

requires little communication between processes. It is optimistic in that it does not

provide consideration for load-balancing. When computation on some of the branches

are signi�cantly more than that on the other branches, some workers may continue work

for a long time while other workers wait. This is not e�cient when a large number of

workers have to wait during the whole computation. Figure 4.4 (Figure 4.5 respectively)

shows the pseudo-PLinda code of the master (worker).

The function child pattern(node) generates all child patterns of the pattern on
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child_pattern(root);

xstart;

for (i=0; i<num_of_tasks; i++) {

pl_in("done", ?j);

}

xcommit;

out(poison tasks);

Figure 4.4: Pseudo-PLinda code of optimistic parallel sequence pattern discovery
master.

while (!done) {

xstart;

in("task", ?node);

if !(poison task) then {

push node onto stack;

while(stack not empty) {

pop node from stack;

compute goodness(node);

if good(node) then {

push child_pattern(node) onto stack;

}

}

pl_out("done", node);

} else {

done=1;

}

xcommit;

}

Figure 4.5: Pseudo-PLinda code of optimistic parallel sequence pattern discovery
worker.
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the input node. Work tuples are of the form ("task", node). The function good(node)

will determine if node is a good pattern according to goodness of all of its immediate

subpatterns.

Our second program is load-balanced. The master produces top level tasks as

in the optimistic version but the workers can generate work tuples themselves and

put them in the tuple space. When the computation requires that more patterns to be

looked at because a good pattern is found, the worker who has that branch will generate

appropriate work tuples so that other idle workers can help. This approach adds some

overhead to the computation in that there is some delay between the time a work tuple

is created and the time when the work tuple is taken by another worker or even the

same worker. Figure 4.6 (Figure 4.7, respectively) shows the pseudo-PLinda code of the

master (worker).

The function termination(node) detects if the whole computation has completed.

It works as follows.

1. Mark node as pruned (in this case no descendants of node will be visited);

2. Check if all siblings of node are pruned; if so, mark the parent of node as pruned;

3. If the root is pruned, the computation has completed.

4.3 Experimental Results

The protein sequence set we used in our experiments is cyclins.pirx. It has 47 sequences;

the average length of a sequence is about 400. The E-tree for this data set has 20 top

level patterns and 397 second level patterns. A single task takes anywhere from several

seconds to several minutes to compute while the average is between 20 and 30 seconds.
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child_pattern(root);

while !done {

xstart;

in("pruned", ?node);

if termination(node) then {

out(poison tasks);

done=1;

}

xcommit;

}

Figure 4.6: Pseudo-PLinda code of load-balanced parallel sequence pattern discovery
master.

while !done {

xstart;

in("task", ?node);

if !(poison task) then {

compute goodness(node);

if good(node) then {

child_pattern(node);

} else {

out("pruned", node);

}

} else {

done=1;

}

xcommit;

}

Figure 4.7: Pseudo-PLinda code of load-balanced parallel sequence pattern discovery
worker.
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The machines we used in all our experiments (unless otherwise noted) are Sun Sparc 5

workstations with 32 MB RAM connected on a LAN.

4.3.1 Load-balanced vs. Optimistic

We ran our experiments with two sets of parameter settings, which are listed in Table 4.2.

The e�ciencies of the load-balanced program and the optimistic program are compared

in �gure 4.8 and �gure 4.9. The e�ciency of a parallel execution is de�ned as follows.

E�ciency =
speedup

number of machines
� 100%;

where

speedup =
sequential running time

parallel running time
:

40%

50%

60%

70%

80%

90%

100%

Number of Machines

E
ff

ic
ie

n
cy

load-
balanced

90% 88% 85% 68% 58% 52%

optimistic 94% 94% 90% 68% 57% 48%

1 2 4 6 8 10

Figure 4.8: Comparison of optimistic and load-balanced parallel sequence pattern
discovery programs on setting 1 of cyclins.pirx.

The experimental results con�rm our analysis in the previous section. While the

overhead in the load-balanced version makes it slower than the optimistic version when
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Setting Minimum Minimum Maximum Number Sequential

Number Length Occurrence Mutations of Motifs Time (sec.)

Setting 1 12 5 0 3 1134

Setting 2 16 12 4 65 1299

Table 4.2: Parameter settings and sequential program results of cyclins.pirx.

40%
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E
ff

ic
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n
cy

load-
balanced

91% 90% 86% 84% 68% 62%

optimistic 96% 94% 93% 83% 62% 51%

1 2 4 6 8 10

Figure 4.9: Comparison of optimistic and load-balanced parallel sequence pattern
discovery programs on setting 2 of cyclins.pirx.
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the number of machines is small (6 or less), it outperforms the optimistic version when

there are more machines (8 and 10).

4.3.2 Adaptive Master

40%

50%

60%

70%

80%

90%

100%

Number of Machines

E
ff

ic
ie

n
cy

w/o adaptive
master

90% 88% 85% 68% 58% 52%

w/ adaptive
master

90% 88% 85% 84% 73% 63%

1 2 4 6 8 10

Figure 4.10: Comparison of load-balanced version with and without adaptive master
on setting 1 of cyclins.pirx.

Because of the limited number of initial tasks, when the number of workers increases,

the chances of load imbalance also increases (even for the load-balanced version of the

program). To alleviate this problem, the master can execute in the E-dag traversal

mode for several levels and then generate the initial tasks for workers. For example,

when the master goes to the second level in our experiments, it produced 387 work

tuples. Our experience shows that when there are 6 or more machines, the master going

to the second level is much more e�cient than just going to the �rst level.

Therefore, the adaptive master determines the appropriate level for the initial
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94% 94% 90% 68% 57% 48%

w/ adaptive
master

94% 94% 90% 87% 71% 60%

1 2 4 6 8 10

Figure 4.11: Comparison of optimistic version with and without adaptive master on
setting 1 of cyclins.pirx.

tasks based on the number of workers. In our experiments, when the number of workers

is 5 or less, the adaptive master goes down to only the �rst level, and when there are 6

or more machines, it goes down to the second level. Figure 4.10 to �gure 4.13 show the

improvements of e�ciencies due to the adaptive master.

4.3.3 Experiments on a Large Network

We have put our load-balanced version with adaptive master to the test on a LAN of

about 50 Sun Sparc workstations (they are not identical machines). Figure 4.14 shows

the experiment results of the program running on 5, 10, 15, 20, 25, 30, 35, 40, and

45 machines. These experiments were run after 5pm at a major research lab. Good

speedup is achieved even when as many as 45 machines joined the computation. For 15

and less machines, the speedup is particularly good.
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Figure 4.12: Comparison of load-balanced version with and without adaptive master
on setting 2 of cyclins.pirx.
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Figure 4.13: Comparison of optimistic version with and without adaptive master on
setting 2 of cyclins.pirx.
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Figure 4.14: Running time of our parallel sequence pattern discovery program on 5,
10, 15, 20, 25, 30, 35, 40, and 45 machines.
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Chapter 5

NyuMiner: Classi�cation Trees

by Optimal Sub-K-ary Splits

5.1 Introduction

The problem of learning classi�cation trees is formulated as follows: A training set is a

set of data elements, each of which is associated with particular values of a number of

independent variables (or attributes). Each data element also takes a particular value

of a dependent variable (this value is said to be the class of the data element). Each

independent variable may be categorical (a �nite set of distinct values, no ordering

among values) or numerical (integer or real values, all values are ordered). The task is to

develop a classi�er in the form of a tree to predict the classes of further, unclassi�ed data

elements. For example, in a data set of potential heart disease patients, the record for

each patient may show the age (integer), the weight (real), the blood pressure (\high",

\medium", or \low"), and the test result (\positive" or \negative") of the patient. In

this data set, blood pressure is a categorical attribute, age and weight are numerical
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attributes, and test result is the dependent variable. A classi�cation tree built from this

data set can be used to predict whether a new patient has heart disease or not.

A classi�cation tree is a decision tree. From each interior node n of a classi�cation

tree, the edges pointing to the children of n are associated with conditions (e.g. age

> 50) on an independent variable. These conditions are mutually exclusive. At the

leaves a decision (e.g. \positive") is suggested about the dependent variable. Building

a classi�cation tree is a top-down process in which each node is expanded by splitting|

partitioning the data elements in a node into several sub-nodes that are more \pure".

A set of data elements is pure if every element has the same value of the dependent

variable. An impure set is one in which there is an equal distribution of values of

the dependent variable among the data elements. At each tree node, each independent

variable is considered a potential splitting variable. For each potential splitting variable,

a best split is found from potentially an in�nite number of possible splits. The best of

these best splits is chosen to partition the data elements into sub-nodes. This goes on

until all leaves of the tree are pure.

There are many criteria to measure the goodness of a split, but the most com-

monly used functions belong to the family of impurity measures. They include such

well-known functions as the Gini index used in CART [24] and C4.5's information gain

and gain ratio [65]. The di�erence between a node n's impurity and the weighted sum

of its children's impurities (their aggregate impurity) measures the goodness of the split.

The bigger the di�erence, the better the split. Many classi�cation algorithms limit

each split to a �xed number of branches. For example, CART and SLIQ [59] allow only

binary splits for both categorical and numerical variables. C4.5 allows only binary splits

for numerical variables and only �xed m-way split for categorical variables where m is

the cardinality of the category. Allowing a variable to appear more than once on a path
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from the roof to a leaf can compensate to some extent by providing a way of eventually

splitting the variable into �ner partitions, but this damages the intelligibility of the tree.

And unfortunately, the repetitive binarization of a variable cannot guarantee an optimal

multi-way split even if each binary split is optimal [37]. NyuMiner is a classi�cation

tree algorithm which selects an optimal multi-branch split with respect to any given

impurity function and any given maximum number of branching at every tree node.

The rest of this chapter is organized as follows. In section 5.2, we discuss related

work. In section 5.3, we describe the algorithm to �nd optimal sub-K-ary splits. In the

next section, we discuss the use of cross validation for pruning and o�er an alternative

to pruning|rule selection. In section 5.5, we compare NyuMiner to C4.5 and CART in

terms of classi�cation accuracy on 7 benchmark data sets. In this section, we also present

the results on complementarity tests on the same benchmark data sets. In section 5.6,

we describe a real world application of NyuMiner|predicting foreign exchange rate

movement.

5.2 Related Work

There has been some work on how to obtain an optimal split for numerical variables.

Let us �rst present the problem with an example used in [33]. There are a set of 27 data

elements as shown in Figure 5.1. The variable being considered is a numerical variable

of which each data element has a value between 0 and 9. Each data element belongs to

one of 3 di�erent classes \A", \B", and \C".

The standard technique is to sort the data elements in an ascending (or descend-

ing) order by values of the variable in question and then consider each adjacent pair

of data elements as a potential cut point for a split. Clearly, it is impossible to divide
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Item 1 2 3 4 5 6 7 8 9 10 11 12 13 : : :

Class A A A A B B B B B C C C B : : :

Value 0 0 0 1 1 1 1 2 2 3 3 3 4 : : :

... 14 15 16 17 18 19 20 21 22 23 24 25 26 27

... B B C A A A C C C C C C C C

... 4 4 4 5 5 6 7 7 7 8 8 9 9 9

Figure 5.1: A set of 27 data elements with values of a numerical variable showing.

the data between two data elements that have the same value. Thus, we can collapse

all data elements with the same value into one basket and consider only cut points in

between baskets. The data elements in Figure 5.1 are thus grouped into the 10 baskets

in Figure 5.2.

Class AAA ABBB BB CCC BBBC AA A CCC CC CCC

Value 0 1 2 3 4 5 6 7 8 9

Figure 5.2: The set of 27 data elements grouped into 10 baskets by value.

Class Label A M B C M A A C C C

Value 0 1 2 3 4 5 6 7 8 9

Figure 5.3: The 10 baskets with class labels.

If all data elements in a basket belong to the same class, we label the basket with

the class symbol. If a basket has a mixed class distribution, we label the basket with

an \M". The resultant baskets with their class labels are shown in Figure 5.3. Finally,

by combining adjacent baskets having the same class labels (except for adjacent \M"

baskets), we get the 7 baskets in Figure 5.4. The points between adjacent baskets are

called boundary points [36] 1.

1De�nition of boundary points: A value T in the range A is a boundary point if and
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Class Label A M B C M A C

Values 0 1 2 3 4 5,6 7-9

Figure 5.4: 7 baskets divided by boundary points.

Fayyad and Irani proved that optimal binary splits always fall on these boundary

points when using average class entropy as the impurity measure. The average class

entropy for a binary split T on set S

E(T ) =
jS1j
jSj Ent(S1) +

jS1j
jSj Ent(S2);

where

Ent(S) = �
JX
i=1

P (Ci; S) log(P (Ci; S));

where J is the number of classes and P (Ci; S) stands for the proportion of data elements

in S of class Ci. This led them to propose a greedy top-down method of recursively

applying binary splitting to a numerical variable in order to obtain the optimal split

on that variable [37]. Although this scheme has been reported to give good results

in practice, no guarantee can be given to the resulting multi-branch split induced by

recursive optimal binary splitting. More recently, Elomaa and Rousu [33] proved that

only boundary points need to be inspected in order to �nd the optimal multi-way split

of a numerical variable. Their proof relies on Fayyad and Irani's theorems and assumes

average class entropy as the impurity measure.

only if in the sequence of examples sorted by the value of A, there exist two examples
e1; e2 2 S, having di�erent classes, such that A(e1) < T < A(e2); and there exists no
other example e0 2 S such that A(e1) < A(e0) < A(e2).
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5.3 Optimal Sub-K-ary Splits

To formalize the problem, let us assume that we are to select a split at a node that has

a set s of N data elements. A sub-K-ary split is a split that partitions s into K or fewer

baskets. Our goal is to �nd optimal sub-K-ary splits for both numerical and categorical

variables for any given K with respect to any given impurity measure.

De�nition 5 An impurity function is a function � de�ned on the set of all J-tuples

(p1; p2; : : : ; pJ) where J is the number of classes, 0 � pj � 1; j = 1; 2; : : : ; J , and

PJ
j=1 pj = 1. � has the following properties:

1. � achieves its maximum only at the point ( 1
J
; 1
J
; : : : ; 1

J
);

2. � achieves its minimum only at the points (1; 0; : : : ; 0), (0; 1; : : : ; 0), : : : , (0; 0; : : : ; 1);

3. � is a symmetric function of p1; p2; : : : ; pJ ;

4. � is strictly concave in the sense that for r + s = 1, r � 0, s � 0,

�(rp1 + sp01; rp2 + sp02; : : : ; rpJ + sp0J) � r�(p1; p2; : : : ; pJ) + s�(p01; p
0
2; : : : ; p

0
J)

and the equality holds only when

pj = p0j; 1 � j � J:

The last property of impurity functions implies that if either partition in a binary

split has a di�erent class distribution from that of the other partition (or from that of the

original set), the split makes the original set more \pure". Popular impurity measures

such as the Gini index and the information gain all satisfy this de�nition.
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Suppose a split S partitions a set of N data elements into k subsets s1; s2; : : : ; sk.

The impurity of a subset si

I(si) = �(
ci1
ni
;
ci2
ni
; : : : ;

ciJ
ni

);

where cij is the number of elements of class j in si, 1 � j � J , ni is the total number

of elements in subset si, and
Pk

i=1 ni = N . The aggregate impurity of all partitions in

the split S

I(S) =

kX
i=1

ni
N
I(si):

De�nition 6 S is an optimal K-ary split if and only if there does not exist another

K-ary split S0 and I(S0) < I(S).

De�nition 7 S is an optimal sub-K-ary split if and only if

1. I(S) � I(Sk) for any optimal k-ary split Sk, 1 < k � K;

2. There does not exist a split S0 such that I(S0) � I(S) and S0 partitions the data

elements into fewer baskets than S does.

In other words, an optimal sub-K-ary split is one with the fewest branches among

all sub-K-ary splits having the least aggregate impurity.

Lemma 4 If two partitions in a split S are merged into one forming split S0, then

I(S) � I(S0).

Proof. Let us consider a k-ary split S and a (k� 1)-ary split S0 resulted from merging

two partitions in S into one (Figure 5.5). Without loss of generality, we assume that

partitions k � 1 and k in S merged into partition (k � 1)0 in S0. We have,

I(S) =
n1
N
I(s1) +

n2
N
I(s2) + : : : +

nk�1
N

I(sk�1) +
nk
N
I(sk)
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Figure 5.5: A k-ary split S and a (k � 1)-ary split S0 resulted from merging two
partitions in S into one.

and

I(S0) =
n10

N
I(s10) +

n20

N
I(s20) + : : :+

n(k�1)0

N
I(s(k�1)0):

According to Property 4 of impurity functions,

I(s(k�1)0) �
nk�1
n(k�1)0

I(sk�1) +
nk

n(k�1)0
I(sk):

Thus,

I(S0) � n10

N
I(s10) +

n20

N
I(s20) + : : : +

n(k�1)0

N
[
nk�1
n(k�1)0

I(sk�1) +
nk

n(k�1)0
I(sk)]

=
n10

N
I(s10) +

n20

N
I(s20) + : : : +

nk�1
N

I(sk�1) +
nk
N
I(sk)

= I(S):

This holds for every pair of S and S0 for every k > 1. Therefore, the lemma is true. �

Let us look at the example introduced in the previous section again. When the

data elements are sorted and grouped into the 10 baskets of Figure 5.3, we can think of

these 10 baskets as partitions in a split S0. By inspection, S0 is an optimal 10-way split.

In fact, only basket 1 and 4 contribute to the aggregate impurity of the split. The other

baskets all have zero impurity. Thus, when we combine adjacent baskets with the same
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class labels (that are not \M"'s) into one basket, which results into the 7-way split S1 of

Figure 5.4, the aggregate impurity does not change. And from Lemma 4 we know that

there does not exist another 7-way split with less aggregate impurity. Furthermore,

according to Property 4 of impurity functions, any more merging of partitions will

increase the aggregate impurity because any merge now will involve partitions with

di�erent class distributions. Therefore, S1 is an optimal sub-K-ary split for all K � 7.

In general, we have the following theorem.

Theorem 5 If S1 is the split whose cut points are all boundary points and only boundary

points, B is the number of baskets in S1, and N is the total number of data elements

before splitting, then S1 is an optimal sub-K-ary split for all B � K � N .

5.3.1 Numerical Variables

In practice, it is usually necessary to have an upper boundK on the number of partitions

each split can have. If K � B, S1 is an optimal sub-K-ary split. If K < B, we have to

use a dynamic programming technique to �nd an optimal sub-K-ary split for numerical

variables.

Let I(k; j; i) denotes the minimum aggregate impurity that results when baskets

j through i are partitioned into k intervals. We de�ne that

I(k; 1; i) = min
1�j<i

[

Pl�k�1
l=1 nl
N

I(k � 1; 1; j) +
n0

N
I(1; j + 1; i)];

where nl is the number of elements in partition l of the split that minimizes I(k�1; 1; j),
n0 is the number of elements in baskets j + 1 through i, and

Pl�k�1
l=1 nl + n0 = N .

Thanks to Theorem 5, the set of data elements can �rst collapse to form the

B-way split S1. Then, the optimal K-ary split is the one that minimizes I(K; 1; B).

The optimal sub-K-ary split is the one that minimizes I(k; 1; B) for all k � K. This
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leads to an algorithm with an asymptotic time complexity of O(KB2). In the worst

case (B = N), the complexity is O(KN2).

5.3.2 Categorical Variables

Categorical variables can be treated exactly the same way as numerical variables if we

pretend values in the category are ordered. B can simply be the number of distinct

values in the category. Therefore, the optimal sub-K-ary split can be obtained by

�nding an optimal sub-K-ary split for every possible order of the values and choosing

the one with the least aggregate impurity. The time complexity of this algorithm is

O(B! � KB2). Normally B is small, but when it is big, the running time may be a

concern.

This can be improved by the following optimization. Let the set of distinct values

in the category be V (so B = jV j). If all data elements having a value v belong to the

same class c, we label v with c's class symbol. Otherwise, we label v with an \M" (for

\mixed"). Let sc denotes the set of distinct values that are labeled with c's class symbol.

It is easy to prove that in an optimal sub-K-ary split, all values in sc must be in one

basket. We then use a logical value vc to represent all values in sc. Let VL denotes the

set of all logical values and \M"-labeled values. Clearly, jVLj � jV j and the equality

holds only when no logical value represents more than one real value. Therefore, using

VL instead of V in the above algorithm can reduce the running time (by reducing B)

without compromising the correctness of the algorithm.
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5.4 To Prune or Not to Prune

Growing a full-sized tree is not the end of a classi�cation tree algorithm. Because the

trees have been grown to \�t" the training data, they have to be pruned so that they

work better on new, unclassi�ed data. CART uses a technique called minimal cost

complexity pruning with V-fold cross validation, which is proved very e�ective. A 
avor

of NyuMiner, NyuMiner-CV, adopts this pruning technique.

5.4.1 Minimal Cost Complexity Pruning

Cost complexity is a measure of the resubstitution error of a tree further penalized by

the size of the tree. The �rst step is to grow a maximum sized tree Tmax by letting the

splitting procedure continue until all leaves are pure. Let us use eT to denote the set of

terminal nodes (leaves) in a tree T .

De�nition 8 For any subtree T � Tmax, de�ne its complexity as j eT j, the number of

terminal nodes in T . Let � � 0 be a real number called the complexity parameter and

de�ne the cost complexity measure R�(T ) as

R�(T ) = R(T ) + �j eT j;
where R(T ) is the resubstitution error estimate2 of T .

Thus, R�(T ) is a linear combination of the cost of the tree and its complexity. For any

node t 2 T , denote by ftg the sub-branch of Tt consisting of the single node ftg. Set

R�(t) = R(t) + �:

2The resubstitution error estimate of a classi�cation tree is the number of training
data misclassi�ed by the classi�cation tree.
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For any branch Tt, de�ne

R�(Tt) = R(Tt) + �j eTtj:
As long as

R�(Tt) < R�(t);

the branch Tt has a smaller cost complexity than the single node ftg. But at some

critical value of �, the two cost complexities become equal. At this point the sub-

branch t is smaller than Tt, has the same cost complexity, and is therefore preferable.

To �nd this critical value of �, solve the inequality

R�(Tt) < R�(t);

getting

� <
R(t)�R(Tt)

j eTtj � 1
:

Let T1 denote the smallest subtree of Tmax satisfying

R(T1) = R(Tmax):

De�ne a function g1(t), t 2 T1, by

g1(t) =

8>><
>>:

R(t)�R(Tt)

j eTtj�1
t 62fT1

+1 t 2fT1
(5.1)

Then de�ne the weakest link t1 in T1 as the node such that

g1(t1) = min
t2T1

g1(t)

and set

�2 = g1(t1):
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The node t1 is the weakest link in the sense that as the parameter � increases,

it is the �rst node such that R�(ftg) becomes equal to R�(Tt). Then ft1g becomes

preferable to Tt1 , and �2 is the value of � at which the equality occurs.

De�ne a new tree T2 < T1 by pruning away the branch Tt1 , that is,

T2 = T1 � Tt1 :

Now, using T2 instead of T1, �nd the weakest link t2 in T2 and de�ne

T3 = T2 � Tt2 :

Continuing this procedure, we get a sequence of subtrees of decreasing sizes

T1 > T2 > T3 > : : : > ft0g

where t0 is the root of all trees. The problem now is to select one of these as the

optimum-sized tree.

In V-fold cross validation, the original learning sample L is divided by random

selection into V subsets, Lv; v = 1; 2; : : : ; V , each containing the same number of data

elements (as nearly as possible). Then the vth learning sample is

V (v) = L� Lv; v = 1; 2; : : : ; V;

so that V (v) contains the fraction (V � 1)=V of the total data elements. V auxiliary

trees are then grown together with the main tree grown on L. The vth auxiliary tree is

grown using the learning sample V (v).

For each value of the complexity parameter �, let T (�); T (v)(�); v = 1; 2; : : : ; V ,

be the corresponding minimal cost complexity subtree of Tmax, T
(v)
max. For each v, the

trees T
(v)
max, T (v)(�) have been constructed without ever seeing the data elements in Lv.

Thus, the data elements in Lv can serve as an independent test set for the tree T (v)(�).
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Put Lv down the tree T
(v)
max; v = 1; 2; : : : ; V . Fix the value of the complexity

parameter �. For every value of v; i; j, de�ne

N (v)
e = the number of data elements misclassi�ed by T (v)(�);

and set

Ne =
VX
v=1

N (v)
e ;

so Ne is the total number of misclassi�ed test data.

The idea now is that for V large, T (v)(�) should have about the same classi�ca-

tion accuracy at T (�). Therefore, the cross validation error estimate

RCV (T (�)) =
1

N
Ne:

Although � may vary continuously, the minimal cost complexity trees grown on

L are equal to Tk for �k � � � �k+1. Set

�0k =
p
�k�k+1

so that �0k is the geometric midpoint of the interval such that T (�) = Tk. Then

RCV (Tk) = RCV (T (�0k)):

That is, RCV (Tk) is the estimate gotten by putting the test set Lv through the trees

T (v)(�0k). Now the rule for selecting the right sized tree is: Select the tree Tk0 such that

RCV (Tk0) = min
k

RCV (Tk):

Breiman et al. argue from their empirical studies that V should be set to

about 10. Thus, we use 10-fold cross validation for CART and NyuMiner-CV in all

our experiments in this chapter.
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5.4.2 Multiple Incremental Sampling and Rule Selection

Another 
avor of NyuMiner, NyuMiner-RS, o�ers an alternative to pruning by combin-

ing multiple incremental sampling and rule selection.

Multiple incremental sampling is like the windowing technique used in C4.5. It

starts with a randomly selected subset of training set, which is used to build an initial

classi�cation tree. This tree is then used to classify the remaining data elements (those

that were not selected); usually with the result that some are misclassi�ed. A selection

of these \di�cult" data elements is then added to the initial training set. This enlarged

training set is used to build a second tree, which is again tested on the remaining data

elements. The cycle is repeated until a tree from the current training set correctly

classi�es all the remaining data elements or all data elements are used to build the tree.

The �nal training set, usually a small portion of the data elements, can be thought

of as a screened set of data elements that contains all the ones needed to guide the

tree-building.

Di�erent initial training sets generally lead to di�erent initial trees and quite

frequently to di�erent �nal trees. Like the windowing technique, NyuMiner-RS gen-

erate several alternate trees from di�erent initial training sets. Unlike the windowing

technique, NyuMiner builds a classifying rule list from these trees instead of using any

single tree to classify unseen data. The technique for building a classifying rule list

is called rule selection which is inspired by PRIM [39], where a sequence of induced

subregions of the independent variable space can be regarded as an ordered list that are

used to classify. Every node in a classi�cation tree can be thought of as a classifying

rule. Each rule r has a condition, a decision class, a con�dence, and a support. The

condition of r is the conjunction of variable-value pairs obtained by traversing from
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the root to the node representing r and the decision class of r is the majority class of

these data elements. The con�dence of r Conf(r) is the percentage of data elements of

the majority class over all data elements in the node. The support of r Supp(r) is the

percentage of data elements in the node over all data elements in the training set. (The

concepts of con�dence and support of a classi�cation rule are very similar to those of

an association rule).

Let R be the set of all rules (from all alternate trees) whose con�dence is greater

than or equal to some threshold Cmin and whose support is greater than or equal to

some threshold Smin. Let us de�ne a partial order on R.

De�nition 9 A rule r is ordered higher than another rule r0 (r > r0) if and only if

Conf(r) > Conf(r0) and Supp(r) > Supp(r0).

Thus, if we sort the rules in R in descending order, we have a classifying rule

list. Given a test case, we �nd the �rst rule whose condition matches the test case. If

there are several matching rules that have the same order, we choose the one with the

highest con�dence. The decision class of the chosen rule is the classi�cation of the test

case. Note that Cmin should be greater than the con�dence of the rule represented by

the root (call this the plurality rule). And Smin should be greater than 1
N

where N is

the total number of data elements in the training set.

5.5 Comparing NyuMiner to C4.5 and CART

We used seven benchmark data sets in our experiments to compare NyuMiner to C4.5

and CART. Most of these data sets are from the UCI Machine Learning Database

Repository. However, we re-prepared each data set in the way described below. The

C4.5 program we used is the release 8 of the program distributed with Quinlan's book
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\C4.5: Programs for Machine Learning". We used the implementation of CART in

Version 2.1 of the IND package by Buntine [23].

5.5.1 Description of Data Sets

Data Set Description

diabetes Predicting whether a patient has diabetes based on data recorded

on possible diabetes patients (several weeks' to months' worth of

glucose, insulin, and lifestyle data per patient and a description of

the problem domain).

german Predicting whether annual income exceeds $50K based on census

data of Germany.

mushrooms Predicting whether a mushroom is poisonous or edible based on

attributes of physical characteristics.

satimage From multi-spectral values of pixels in 3x3 neighbourhoods in a

satellite image, classifying the central pixel in each neighbourhood.

smoking Predicting attitude towards restrictions on smoking in the workspace

(prohibited, restricted, or unrestricted) based on bylaw-related,

smoking-related, and sociodemographic covariates.

vote To classify a Congressman as a Democrat or a Republican based on

the votes for each U. S. House of Representatives Congressman on

the 16 key votes identi�ed by the Congressional Quarterly Almanac.

yeast Predicting the cellular localization sites of proteins.

Table 5.1: Descriptions of the 7 benchmark data sets.

Table 5.1 has a brief description for each of the seven benchmark data sets. Relevant

statistical features such as number of numerical and categorical attributes, number of

classes, and percentage of missing values of each data set are listed in Table 5.2.
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Total % of Cases with % of Missing Variables Number

Data Set Number At Least One Values Over Catego- Nume- of

of Cases Missing Value All Values rical rical Total Classes

diabetes 768 0.0% 0.0% 0 8 8 2

german 1000 0.0% 0.0% 13 7 20 2

mushrooms 8124 30.5% 1.4% 22 0 22 2

satimage 6434 0.0% 0.0% 0 36 36 7

smoking 2854 0.0% 0.0% 10 3 13 3

vote 435 46.7% 5.8% 16 0 16 2

yeast 1483 0.0% 0.0% 0 8 8 10

Table 5.2: Statistical features of the 7 benchmark data sets.

5.5.2 Comparison of Accuracy

For each data set, we �rst joined the original training set and testing set to form a

complete set. We then randomly divided each complete set into almost-equal subsets

while maintaining the same class distribution in both subsets: We �rst partition data

elements into baskets according to their class values. Suppose we are to order the data

elements in a basket and there are n possible permutations of ordering. We randomly

select a number k between 1 and n. Then from the kth permutation, the odd-indexed

data elements go to the �rst subset and the even-indexed data elements go to the second

subset (the two subsets might not have exactly the same number of data elements).

Repeat this for all baskets.

The �rst subset is used as training set and the second as testing set. We prepared

10 training{testing set pairs for each data set. A classi�er's classifying accuracy on a

data set is the average accuracy over the 10 pairs. Table 5.3 compares the classifying

accuracies of the four classi�ers (C4.5, CART, NyuMiner-CV, NyuMiner-RS) on each

data set.
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NyuMiner-RS scored the highest on 5 of the 7 data sets and NyuMiner-CV

scored the highest on 3 data sets (the numbers do not add up to 7 because of the tie

on mushrooms). While NyuMiner-CV uses exactly the same pruning technique as in

CART, its accuracy is either higher or the same on all 7 data sets. This is expected

because of the optimal multi-way splits. However, it is interesting to note that the

di�erence is not much, which may imply that: 1. Although not optimal in general,

binary splits may be very e�ective in practice; 2. At least sometimes, pruning plays a

more signi�cant role than the quality of splits.

Data Set Plurality Rule C4.5 CART NyuMiner-CV NyuMiner-RS

diabetes 65.1% 73.6% 73.0% 73.8% 74.4%

german 60.0% 72.0 72.0 72.3% 71.8%

mushrooms 51.8% 100.0% 100.0% 100.0% 100.0%

satimage 23.8% 85.0% 84.9% 85.2% 86.8%

smoking 69.5% 67.1% 69.5% 69.5% 69.6%

vote 61.4% 94.7% 94.7% 94.7% 95.2%

yeast 31.2% 54.6% 56.0% 56.3% 55.5%

Table 5.3: Comparison of classi�cation accuracies of C4.5, CART, NyuMiner-CV, and
NyuMiner-RS.

NyuMiner-RS generates the same splits as NyuMiner-CV does, but it did better

on 4 of the 7 data sets and was very close or equal to NyuMiner-CV in the other 3

data sets. This demonstrates that multiple incremental sampling plus rule selection is

a viable alternative to pruning.

5.5.3 Complementarity Tests

We compared C4.5, CART, and NyuMiner-RS' decisions on the testing set of each

benchmark data set. They are said to \all agree" on a test case when all three give the
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same classi�cation. Table 5.4 summarized the results on the 7 testing sets.

Total All Agree Not All Agree

Data Set Test % of At Least

Cases Subtotal Coverage Accuracy Subtotal Coverage One Correct

diabetes 384 337 87.8% 76.3% 47 12.2% 100.0%

german 500 356 71.2% 81.2% 144 28.8% 100.0%

mushrooms 4062 4062 100.0% 100.0% 0 0.0% N/A

satimage 3137 2513 80.1% 94.8% 624 19.9% 87.0%

smoking 1425 1303 91.4% 69.7% 122 8.6% 99.2%

vote 217 213 98.2% 96.7% 4 1.8% 100.0%

yeast 738 432 58.5% 67.4% 306 41.5% 77.5%

Table 5.4: Complementarity test results on the benchmark data sets.

The table shows that when the three classi�ers agree, the classi�cation has a

higher accuracy than any one of them alone (except in the case of \mushrooms" where

there is no room for improvement). For \german", \satimage", and \yeast" especially,

the improvement is substantial.

The data sets that have more than three classes are \satimage" (7) and \yeast"

(10). It is useful to note that for these data sets, when not all three classi�ers agree,

the likelihood that at least one of them is correct (87.0%, 77.5%) is signi�cantly higher

than their respective plurality rule accuracy (23.8%, 31.2%).

NyuMiner generates classi�cation trees with di�erent structures from those gen-

erated by C4.5 and CART. When a data set has numerical variables, their tree struc-

tures can be drastically di�erent. This partially explains the complementarity among

NyuMiner, C4.5, and CART.
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5.6 Application: Making Money in Foreign Exchange

5.6.1 Preparing Data

We started with a list of daily exchange rate between Japanese Yen and U. S. Dollar

for the past 27 years (1971{1997). For each day, we generated the following 10 values

from the rate data: 1. Percentage change of today's rate over yesterday's (one, for

shorthand); 2. Percentage change over the day before yesterday (two); 3. Percentage

change over three days ago (three); 4. Percentage change over four days ago (four);

5. Percentage change over �ve days ago (�ve); 6. Average percentage change in the

last �ve days (a business week) (average); 7. Weighted average percentage change in

the last �ve days (weighted); 8. Percentage change over a month ago (month); 9.

Percentage change over six months ago (six-month); 10. Percentage change over a

year ago (year).

For the dependent variable, we used the movement of tomorrow's rate with

respect to today's rate (1 for up, -1 for down). Thus, we have a data set for predicting

tomorrow's movement of the exchange rate between Japanese Yen and U. S. Dollar

based on historical rates. We did the same for four other pairs of currencies. The �ve

prepared data sets are listed in Table 5.53.

We then divided each data set into equal halves. The �rst half covers roughly

data from 1972{1984 and the second half covers roughly data from 1985{1997.

3Due to unavailability of original rates, every data set does not have the same number
of data elements.
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Currency Pair Data Set Number of Data Elements

Japanese Yen vs. U. S. Dollar yu 5904

Deutcshe Mark vs. U. S. Dollar du 6076

Japanese Yen vs. Deutcshe Mark yd 6162

French Franc vs. U. S. Dollar fu 6344

U. S. Dollar vs. Great Britain Sterling up 6419

Table 5.5: Descriptions of foreign exchange data sets.

5.6.2 Selecting Rules

We used the �rst half of each data set to build classi�cation trees. When we used

the second half to test the trees, all four classi�ers (C4.5, CART, NyuMiner-CV, and

NyuMiner-RS) did a poor job (accuracies range from 49% to 52%). Complementarity

tests turned out to be not so useful either.

Fortunately, it is acceptable for a classi�er to be non-decisive on most days

because foreign exchange traders do not trade every day anyway. This inspired us to

use the rule selection technique to choose just the best rules from each tree and use only

these rules in predicting the rate movement.

Let us use the yu data set as an example to illustrate how this is done. Figure

5.6 shows the complete �rst level and a partial second level of a tree that NyuMiner-RS

built. On each intermediate node, the �rst line is the splitting attribute, the second line

is the decision of that node, and the third line is the con�dence and support (in that

order) of the rule represented by the node. The edges from an intermediate node to its

children are associated with ranges of the splitting attribute on the intermediate node.

These ranges are shown in basis points (a basis point is one-hundredth of one percent).

We chose the con�dence threshold Cmin to be 80% and the support threshold

104



five
<1>
(53%, 3.1%)

two
<-1>

<1>
(55%, 1.1%)

(84%, 0.8%)

two

average
<1>

Intermediate
node

Selected
node

Leaf

. . . . . .

. . . . . .

. . . . . .

four

(56%, 43.3%)

six-month

(70%, 3.2%)

month
<-1>
(53%, 6.6%)

one
<-1>
(91%, 0.4%)

<1>

<1>

month
<1>
(83%, 1.0%)

two
<-1>
(81%, 1.6%)

two
<-1>
(50%, 15.5%)

six-month
<-1>
(53%, 23.1%)

year
<-1>
(52%, 46.3%)

(52%, 100.0%)

. . . . . .

[-259, -1]

[29, 34]

[0, 28]

[35, 72]

[106, 136]

[139, 145]

[-309, -287]

[-286, -199]

[-198, -60]

[-59, -50]

[-49, 125]

[126, 139]

[140, 312]

<1>
(100%, 0.1%)

<-1>
(100%, 0.1%)

[73. 101]

Figure 5.6: A partial classi�cation tree NyuMiner-RS built for the yu data set.
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Smin to be 1%. Only two rules are over both thresholds. They are

average in [�2:59%;�0:01%] & year in [�2:86%;�1:99%] =)�1

and

average in [�2:59%;�0:01%] & year in [�0:59%;�0:50%] =) 1:

The �rst rule applies to 94 days on the yu testing set; on 54 out these 94 days the

rule predicts correctly. The second rule applies to 80 days on the testing set and the

rule predicts correctly on 45 days. Combined, 99 out of 174 days on the testing set are

correctly classi�ed, with a accuracy of 56.9%.

The Cmin (80%) and Smin (1%) we chose is not the only combination that

would generate good results. In fact, it is not a combination that would generate

the best results on the yu data set. Rather, this combination is appropriate because it

successfully sifts out the rules we are looking for that have high accuracy and enough

support. And this combination happens to produce rules that cover 100{200 days on the

testing set for each pair of currencies. In order to be consistent, we used this combination

for all �ve data sets. The number of rules that were selected and the number of days

they cover for each data set are shown in table 5.6. Rules from each data set cover

between 110 and 180 days for the 13 years in the testing set. This translates roughly

to one trade per month. On these selected days, NyuMiner-RS's classi�cation accuracy

increases to 56.9% to 62.5%.

5.6.3 Making Money

So how do we make money if we were told about these rules in 1985? Suppose we use

the simplest strategy:

1. For every pair of currencies, start with an amount of money in either currency;
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# of # of Accuracy 1000 Currency Units in 13 Years

Data Rules Days on Days In First In Second Average

Set Selected Covered Covered Currency % Gain Currency % Gain % Gain

yu 2 174 56.9% 1128 12.8% 1025 2.5% 7.7%

du 2 112 62.5% 1062 6.2% 1029 2.9% 4.5%

yd 3 164 57.3% 1063 6.3% 1069 6.9% 6.6%

fu 5 159 57.9% 1044 4.4% 1124 12.4% 8.4%

up 4 135 60.6% 1112 11.2% 1081 8.1% 9.7%

Table 5.6: Money made in foreign exchange.

2. On the days that are covered by our rules, if the predicted movement is to our

advantage (e.g. we hold Japanese Yens and the rule predicts that Yen goes up

again U. S. Dollar tomorrow), we convert all our money to the other currency and

convert back the next day;

3. Keep our positions on all other days.

Even with this simple strategy, we can be quite successful in the past 13 years (see Table

5.6).
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Chapter 6

Parallel Classi�cation Tree

Algorithms

In this chapter, we explore data parallelism in classi�cation tree algorithms. In Sec-

tion 6.1, we describe how to explore data parallelism in cross validation and present

the parallel NyuMiner-CV algorithm. In Section 6.2, we describe how to explore data

parallelism in the windowing technique and the multiple incremental sampling technique

and present Parallel C4.5 and the parallel NyuMiner-RS algorithm. We also give

experimental results on PLinda implementations of these three parallel classi�cation

tree algorithms.

6.1 Parallelism in Cross Validation

CART and NyuMiner-CV use minimal cost complexity pruning with V -fold cross vali-

dation to �nd the best pruned tree. In a V -fold cross validation, V auxiliary trees have

to be grown besides a main tree, making the total number of trees to grow V +1. These
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V + 1 trees are grown in exactly the same way but with V + 1 di�erent training sets.

They are clearly candidates for data partitioning.

6.1.1 Parallel NyuMiner-CV

Parallel NyuMiner-CV builds the main tree and V auxiliary trees concurrently, each as

a parallel task. The master divides the original training set into V subsets and produces

V learning sets, each of size (V � 1)=V . It then goes on to build a tree based on the

whole training set|the main tree. The V auxiliary trees are to be built by the workers

from the V learning sets produced by the master. Figure 6.1 (Figure 6.2, respectively)

shows the pseudo-PLinda code of the master (worker).

To measure the performance of Parallel NyuMiner-CV, we ran the program on

1, 2, 3, 4, 5, and 6 machines. Because growing the main tree (including resubstitution

error estimation) uses more data than each auxiliary tree and requires a lot more book-

keeping, it takes signi�cantly longer to build the main tree than an auxiliary tree. Our

experience with the yeast and the satimage data sets shows that growing the main

tree takes roughly the same time it takes to grow 4 auxiliary trees. Therefore, in our

experiments, we run NyuMiner-CV with 4-fold, 8-fold, 12-fold, 16-fold, and 20-fold cross

validation on 2, 3, 4, 5, and 6 machines, respectively. The main tree is grown by the

master and each worker grows 4 auxiliary trees. Sequential running times are listed in

Table 6.1. Figure 6.3 and �gure 6.4 show the running time and speedup results on the

yeast and the satimage data sets. Because we run NyuMiner-CV with 4-fold cross

validation on 2 machines, the speedup for a 2 machine run is the 4-fold cross validation

sequential running time divided by the 2 machine parallel running time. Speedups for

3, 4, 5, and 6 machines are calculated similarly.

In our experiments with the yeast data set, each parallel task takes approx-
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xstart;

partition training set into V subsets;

for (i=0; i<V; i++) {

pl_out("learning set", i, set[i]);

}

xcommit;

xstart;

build the main tree;

xcommit;

xstart;

for (i=0; i<V; i++) {

pl_in("alpha_list", ?j, ?alpha[i]);

}

xcommit;

out(poison tasks);

pick the right alpha;

Figure 6.1: Pseudo-PLinda code of Parallel NyuMiner-CV master.

while (!done) {

xstart;

in("learning set", ?i, ?set);

if !(poison task) then {

build tree on set;

pl_out("alpha_list", i, alpha);

} else {

done=1;

}

xcommit;

}

Figure 6.2: Pseudo-PLinda code of Parallel NyuMiner-CV worker.
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imately 15 seconds with small variation (� 3 seconds). Each parallel task for the

satimage data set takes approximately 120 seconds, also with small variation (� 20

seconds). Since the total number of tasks is 4 times the number of workers and all tasks

are of similar size, each worker will mostly likely execute 4 tasks. Therefore, work load

is normally balanced among workers.

V in V -fold CV 0 4 8 12 16 20

yeast 53 108 153 181 216 249

satimage 470 980 1499 1880 2302 2723

Table 6.1: Sequential running time (sec.) of NyuMiner-CV on the data sets yeast and
satimage. (V = 0 means no cross validation.)
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Figure 6.3: Running time and speedup results of Parallel NyuMiner-CV experiments
on the yeast dataset.

111



200

300

400

500

600

700

800

Number of Machines

R
un

ni
ng

 T
im

e 
(s

ec
.)

0.0

1.0

2.0

3.0

4.0

5.0

S
pe

ed
up

time 480 498 512 529 541 561

speedup 1.0 2.0 2.9 3.6 4.3 4.9

1 2 3 4 5 6

Figure 6.4: Running time and speedup results of Parallel NyuMiner-CV experiments
on the satimage dataset.

6.2 Parallelism in Multiple Incremental Sampling

The multiple incremental sampling technique and the windowing technique require

building trees from a small initial training set multiple times. The number of trees

to grow is called the number of trials in C4.5. This is equivalent to building multiple

trees from di�erent initial training sets at the same time. This makes it natural to

parallelize C4.5 and NyuMiner-RS using data partitioning.

6.2.1 Parallel C4.5

We implemented the windowing technique in parallel so that each PLinda worker builds

a tree from a randomly sampled initial training set. We used two datasets to compare

the running time of Parallel C4.5 to that of the original C4.5. The results are shown

in Figure 6.5 and Figure 6.6. The sequential running times are shown in Table 6.2.
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As in our parallel NyuMiner-CV experiments, parallel task grain-size is relatively large

(approximately 10 seconds for the smoking data set and 200 seconds for the letter

data set) and load-balancing is normally achieved.

Trials 1 2 4 6 8 10

smoking 8.8 15.7 31.7 46.4 60.4 74.0

letter 205 407 866 1284 1689 2165

Table 6.2: Sequential running time (sec.) of C4.5 on the data sets smoking and letter.
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Figure 6.5: Running time and speedup results of Parallel C4.5 experiments on the
smoking dataset.

Note that for the letter dataset, PC4.5 sometimes achieve super-linear speedup

against the sequential program. The reason for this is as follows. C4.5 is memory

intensive, especially when the windowing technique is used. The letter dataset is

relatively large with 20000 cases, 17 attributes and 26 classes. Building one tree for
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Figure 6.6: Running time and speedup results of Parallel C4.5 experiments on the
letter dataset.

the letter data set takes about 14 MB memory space. The machines we use all have 32

MB RAM. Because all intermediate trees have to be kept until the end of computation,

there is going to be some paging during the sequential execution if more than 2 trials

are used. In PC4.5, only one tree grows on each machine and thus paging is eliminated.

This explains the super-linear speedup.

6.2.2 Parallel NyuMiner-RS

Parallel NyuMiner-RS implements multiple incremental sampling and rule selection in

parallel. Each tree from a di�erent initial training set is built in a di�erent process.

We used the datasets yeast and satimage to compare the performance of Parallel

NyuMiner-RS to the sequential version. The sequential running times are shown in

Table 6.3. The experiment results are show in Figure 6.7 and Figure 6.8. For the yeast
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data set, the parallel task grain-size is approximately 50 seconds and for the satimage

data set approximately 600 seconds. Again, because the variation in grain-sizes is small,

work load is normally balanced.

Number of Trees 1 2 4 6 8 10

yeast 51 104 166 214 324 391

satimage 573 1148 2414 3231 4446 5825

Table 6.3: Sequential running time (sec.) of NyuMiner-RS on the data sets yeast and
satimage.
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Figure 6.7: Running time and speedup results of Parallel NyuMiner-RS experiments
on the yeast dataset.
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Figure 6.8: Running time and speedup results of Parallel NyuMiner-RS experiments
on the satimage dataset.

6.3 Summary

As demonstrated by the three parallel classi�cation tree algorithms presented in the

chapter, it is easy to explore data parallelism in data mining applications. Good

performance is achieved using the same software architecture as with task partitioning

programs. Because of higher main memory e�ciency, sometimes super-linear speedup

can be achieved.
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Chapter 7

Software Architecture

Throughout the previous chapters, we have provided a set of PLinda templates for

writing parallel data mining programs. These templates not only help data mining

programmers to understand the parallelism in data mining algorithms, but also give

them good starting points for their programs. The e�ectiveness of these templates are

already demonstrated in our own implementations of several data mining applications.

In this chapter, we discuss the fault-tolerance of PLinda programs developed from these

templates. We also describe how to run PLinda programs on a network of workstations.

7.1 Fault-Tolerance

The distributed computing environment that exists in many organizations usually con-

sists of a number of networked workstations. When using multiple workstations on

a network as a virtual parallel machine, any network fault or individual workstation

failure will \break" the virtual machine. To address this problem, PLinda provides a

fault-tolerant execution environment.
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7.1.1 Parallel Virtual Machine in PLinda

The current PLinda prototype allows the user to use networks of workstations as

one fault-tolerant parallel virtual machine whose processors are only idle workstations.

However, the current implementation assumes that the user runs the server and user

interface processes on machines dedicated to the parallel application. That is, the server

and user interface processes are not migrated during execution.

The parallel virtual machine consists of a pool of processors which are running or

failed. A PLinda daemon is created on each workstation. Idle workstations are treated

as running processors and busy or failed workstations are treated as failed processors.

Only running processors participate in computation. When a running processor fails

(because of either owner activity or a real processor failure), its daemon immediately

destroys all the running client processes on the machine. Then, the server is either

informed of the simulated failure or it detects the real failure. The retreated processes

are then restarted on other running processors. In this way, PLinda programs can run

in a manner that is fault-tolerant and does not disturb the owners of the workstations

at all (we have tested this empirically).

7.1.2 PLinda's Fault-Tolerance Guarantee

PLinda's transaction mechanism guarantees that a completed PLinda computation, with

or without failures, achieves the same �nal state as a failure-free execution of the

associated Linda program, where the associated Linda program is identical to the PLinda

program but without the transaction and recovery statements [49].
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7.1.3 PLinda Data Mining Programs Are Fault-Tolerant

Our data mining programs written in PLinda has this null hypothesis: there is no special

accommodation for existence of failure. The correctness of our programs is assured by

the PLinda fault-tolerance guarantee.

7.2 Running PLinda Programs

All of our parallel data mining programs run as normal PLinda programs. This section

describes how to start the PLinda environment on a network of workstations, how

to start a PLinda program, and how to observe and control execution behaviors of a

running PLinda program.

7.2.1 How to Start the PLinda User Interface

The PLinda user interface can be started in the ~/plinda directory by typing plm. The

menu panel of the user interface will pop up (see Figure 7.1). The PLinda kernel will

create some �les and subdirectories in the directory where it is run from. Therefore, it

is important that the system be run from the directory ~/plinda.

Figure 7.1: A snapshot of PLinda runtime menu window.
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7.2.2 How to Start the PLinda Server

Before we start the PLinda server, we need to set some con�guration parameters for

the server. These parameters can be de�ned in the ~/.plindarc �le but they can be

changed in the \Settings" window (see Figure 7.2). After these parameters are set, we

can use the \System" window to start the server (see Figure 7.3). This windows allows

you to specify the name and type of the machine on which you want to start the server.

The default values are read from the �le ~/.plindrc. You can also change the working

directory and display host, although normally they need not to be changed. Check the

radio button \Boot" and then click \Apply" to start the server.

Figure 7.2: A snapshot of PLinda runtime
\Settings" window.
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Figure 7.3: A snapshot of PLinda runtime
\System" window.

7.2.3 How to Add Hosts

The user must supply the �le ~/.plinda.hosts with the names of workstations, their

architecture types, and the user account name for each machine he will use. Click the

\Hosts" button on the menu bar and a window with host information will pop up (see

Figure 7.4). It lists all the machines in the ~/.plinda.hosts �le. Check the radio

button besides a host name to select the host and click the \Add" button to add it to

the PLinda host pool. Multiple hosts can be selected and added together. To delete a

machine from the PLinda host pool, select the host and click on the \Delete" button.

7.2.4 How to Select a PLinda Program to Run

The environment variable $PLINDA HOME points to the PLinda installation direc-

tory. All PLinda executables should be located in the directory $PLINDA HOME/lib/

$ARCHTYPE (where $ARCHTYPE may be sunos, solaris, linux, etc.). Ones to

be started from the interface should have a .exe extension. The PLinda kernel will use
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Figure 7.4: A snapshot of PLinda runtime
\Hosts" window.

the Unix rsh command to run processes on remote machines. Therefore, it is necessary

to be able to access those machines from within an executable. To facilitate this the

user needs to have an .rhosts �le on each remote machine listed in the .plinda.hosts

�le. The �le must de�ne all machines and alternate login names from which the PLinda

user interface will be run.

To select a PLinda program to rum, click on the \Apps" button on the menu bar.

This brings up regular �le selection interface that starts with the directory ~/plinda/lib

(see Figure 7.5). You can go to the directory (e.g. sunos, solaris, or linux) which

has the right executable and start the program by clicking on the \Select" button. You

must compile source code for each of the types of architectures you plan to use in your

virtual machine host pool. The runtime system assumes you have compiled code for all

those types of machines.
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Figure 7.5: A snapshot of PLinda runtime
\Apps" window.

7.2.5 How to Observe and Control Execution Behaviors

When you start an application, two additional windows should pop up. The �rst one is

the \Process Watch" window (you can also get it by clicking on the \Monitor" button

on the menu bar) (see Figure 7.6). This window shows you all running PLinda processes

with process id (pid), the name of the host the process is on, etc. The \Process Watch"

window is refreshed every Update Interval seconds, where Update Interval can be

de�ned either in plinda.defaults or by changing the value in the dialog box that pops

up when you click the \Settings" button on the menu bar. The second window is an

xterm used as an I/O shell for the PLinda master. Figure 7.7 shows the complete screen

when a PLinda program is running.

One important piece of information about a process is its status. When a PLinda

process is spawned, its status is \DISPATCHED". When a PLinda process is waiting

for a tuple, its status is \BLOCKED"; most of the time its status is \RUNNING".

When a process goes from \RUNNING" to \BLOCKED", there is a middle stage called
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Figure 7.6: A snapshot of PLinda runtime \Monitor" window.

Figure 7.7: A screen snapshot of PLinda environment.
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\READY". But \READY" holds for a very short period of time and will be rarely seen

in the \Process Watch" window. When the PLinda server re-spawns a failed process,

the status of the process is \FAILURE HANDLED".

The user can \Kill", \Migrate", \Suspend", or \Resume" processes by clicking

on appropriate buttons in the \Process Watch" window. These functions are mostly

used to test the fault-tolerance of a PLinda program.

7.3 Software Available on the WWW

All of our data mining software are freely available, including source code. For the

PLinda software, please download from

http://merv.cs.nyu.edu:8001/~binli/plinda/.

For all data mining software, please download from

http://merv.cs.nyu.edu:8001/~binli/datamining/.

Installation instructions and user guides are on the web pages as well.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Data mining is becoming more and more of a interest for \ordinary" people (who do

not have easy access to super-computers). In this thesis, we have argued that to make

data mining practical for them, data mining algorithms have to be e�cient and data

mining programs should not require dedicated hardware to run. On these fronts, we

can conclude from this thesis that:

� Parallelization is a viable solution to e�cient data mining;

� Task parallelism and data parallelism exist in most data mining algorithms;

� The E-dag framework for task partitioning can be used to easily and e�ciently

parallelize most data mining applications;

� Classi�cation tree algorithms can readily take advantages of data parallelism.

We can also conclude from this thesis that networks of workstations are a suitable

platform for e�cient parallel data mining. PLinda is a suitable computing system for
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parallel data mining on NOW. PLinda software being able to automatically utilize

idle workstations makes parallel data mining on NOW virtually free. Parallelization

frameworks coupled with PLinda templates for data mining make free e�cient data

mining realistic.

In software practice, normal programmers seldom write parallel programs, al-

though they usually know the parallelism in their applications. The computer science

community has failed to provide them with language constructs and programming

environments that support concurrency and are easy to use. In some sense, this

thesis work �lls the gap between data mining programmers and a parallel computing

system. This gap needs to be �lled for other application programmers and other parallel

computing paradigms. To achieve this, frameworks like ours need to be developed.

We presented a new classi�cation tree algorithm|NyuMiner. NyuMiner gen-

erally achieves better classi�cation accuracy than other classi�cation tree algorithms.

Because of the usually di�erent tree structures generated by NyuMiner, it can be used to

complement other classi�ers to obtain higher classifying con�dence than one classi�er

used alone. NyuMiner's advantages of being able to �nd �ner ranges in numerical

attributes can be very useful in some classi�cation applications.

8.2 Future Work

Our overall plan for future research in parallel data mining and data mining in general

are outlined below.

1. The E-dag framework for task partitioning and the data partitioning technique

can be applied to many other data mining applications, such as market basket

analysis, frequent episode discovery, etc. Many applications �t the pattern lattice
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paradigm and thus are suitable for the E-dag framework. Data partitioning is

especially bene�cial to applications that require a very large amount of data.

2. Further theoretical study and experimenting on parallel E-dag and E-tree traver-

sals should reveal an e�ective cost model for choosing parallelization strategies for

di�erent applications.

3. NyuMiner is a promising algorithm to obtain better classi�cation trees. To make

it more database-friendly, we need to develop additional modules for it to interface

directly with database systems. Visualizing resultant trees and making it possible

to consult the trees interactively will make NyuMiner easier to use.

4. A challenge for data mining in general is how to develop a data mining model so

that growth and change in data requires minimal additional mining. We need to

tackle this challenge in the context of free parallel data mining.
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