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We have not known a single great scientist who could not

discourse freely and interestingly with a child. Can it be that

the haters of clarity have nothing to say, have observed noth-

ing, have no clear picture of even their own fields? A dull man

seems to be a dull man no matter what his field, and of course it

is the right of a dull scientest to protect himself with feathers

and robes, emblems and degrees, as do other dull men who are

potentates and grand imperial rulers of lodges of dull men.

John Steinbeck, the Log From the Sea of Cortez.



To my parents and grandparents
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Preface

This thesis concerns the quantities indicating the degree of robustness of a dy-

namical system. Apart from the intuitive motivation that a dynamical system

is surrounded by uncertainties and we would like to know how much uncer-

tainty is tolerable, most of these quantities have proved to be useful at other

contexts. Thanks to the Kreiss matrix theorem, the robust stability measures

give insight into the transient behavior of the dynamical system. In a recent

work by Braman, Byers and Mathias, the distance to uncontrollability is shown

to measure the convergence of the QR iteration to particular eigenvalues and

experimentally this discovery is verified to provide significant speed-ups to the

traditional implementations of the QR algorihm.

The algorithms for the computation of these quantities benefit from the

equivalent singular-value or eigenvalue optimization characterizations. The op-

timization problems are nonsmooth, because of the possible ties in the eigenval-

ues or singular values, and nonconvex, indeed usually have more than one local

minimum. The algorithms are particularly devised to overcome these difficul-

ties. The main tool that is required by the algorithms is usually a structure-

preserving eigenvalue solver, at other times an iterative eigenvalue solver such

as Arnoldi and inverse iteration.

For the completion of this work I am indebted to my advisor Michael Over-
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ton for various reasons. First of all I could not be involved in these fascinating

problems that connect optimization, numerical linear algebra and control the-

ory without him being the advisor. Secondly he fulfilled the crucial task of

introducing me to quite a few researchers in numerical linear algebra and opti-

mization. Finally I have received strong and firm support in every respect that

I might expect from an advisor. It is also due to Michael Overton that I got to

know Adrian Lewis whose works I have always admired. Some of the results in

this thesis are simple modifications of the results of Adrian Lewis for analogous

problems. During this work I have spent two summers at the technical univer-

sity of Berlin thanks to Volker Mehrmann who hosted me generously and who

made me realize the importance of the structure-preserving eigenvalue solvers.

During my first visit I had the opportunity to interact with Daniel Kressner

from whom I received valuable comments on the algorithms for the distance to

uncontrollability. The earlier attempts to solve some of the problems in this

thesis were made by Ralph Byers during the late 1980s and early 1990s. His

works inspired the algorithms in this thesis. Nick Trefethen and Mark Embree

have been the strong advocates of the pseudospectra for various applications

and, as far as this work is concerned, in understanding the transient behavior

of dynamical systems. I am grateful to their detailed comments regarding the

algorithm for the pseudospectral radius. Ming Gu, who suggested the first poly-

nomial time algorithm for the distance to uncontrollability, initiated the idea

of extracting the real eigenvalues efficiently in the computation of the distance

to uncontrollability. The high-precision algorithm for the distance to uncon-

trollability was a product of interacting with Ming Gu and his students Jianlin

Xia and Jiang Zhu. I am also grateful to Olof Widlund and Margaret Wright

for accepting duties in the committees at various stages of this thesis. Their
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feedback improved the quality of the thesis.

When I was starting this thesis work, I had great expectations regarding

the quality of the outcome. Now I tend to believe that even in science the

degree of excellence is a subjective matter. Isn’t it contradictory especially for

scientists who are supposed to be rational people that even though the notion

of excellence may greatly vary, many of us seek excellence? Perhaps it is not

as long as one has a persistent view of excellence that stays intact and tries to

fulfill his or her view. In this sense I hope that my finer works are still to come.
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Abstract

A linear time-invariant dynamical system is robustly stable if the system and

all of its nearby systems in a neighborhood of interest are stable. An im-

portant property of robustly stable systems is that they decay asymptotically

without exhibiting significant transient behavior. The first part of this the-

sis work focuses on measures revealing the degree of robust stability. We put

special emphasis on pseudospectral measures, those based on the eigenvalues

of nearby matrices for a first-order system or matrix polynomials for a higher-

order system. We present new algorithms with quadratic rate of convergence

for the computation of pseudospectral measures and analyze their accuracy in

the presence of rounding errors. We also provide an efficient new algorithm

for computing the numerical radius of a matrix, the modulus of the outermost

point in the set of Rayleigh quotients of the matrix.

We call a system robustly controllable if it is controllable and remains con-

trollable under perturbations of interest. We describe efficient methods for the

computation of the distance to the closest uncontrollable system. Our first

algorithm for the distance to uncontrollability of a first-order system depends

on a grid and is well-suited for low-precision approximation. We then discuss

algorithms for high-precision approximation. These are based on the bisection

method of Gu and the trisection variant of Burke-Lewis-Overton. These algo-
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rithms require the extraction of the real eigenvalues of matrices of size O(n2),

typically at a cost of O(n6), where n is the dimension of the state space. We

propose a new divide-and-conquer algorithm for real eigenvalue extraction that

reduces the cost to O(n4) on average in both theory and practice, and is O(n5) in

the worst case. For higher-order systems we derive a singular-value characteri-

zation and exploit this characterization for the computation of the higher-order

distance to uncontrollability to low precision. The algorithms in this thesis

assume that arbitrary complex perturbations are applicable and require the ex-

traction of the imaginary eigenvalues of Hamiltonian matrices (or even matrix

polynomials) or the unit eigenvalues of symplectic pencils (or palindromic ma-

trix polynomials). Matlab implementations of all algorithms discussed are

freely available.

Keywords: dynamical system, stability, controllability, pseudospectrum, pseu-

dospectral abscissa, pseudospectral radius, field of values, numerical radius,

distance to instability, distance to uncontrollability, real eigenvalue extraction,

Arnoldi, inverse iteration, eigenvalue optimization, polynomial eigenvalue prob-

lem
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Chapter 1

Motivation and Background

1.1 Continuous-time control systems

We consider the linear time-invariant dynamical system

Kkx
(k)(t) + Kk−1x

(k−1)(t) + · · ·+ K0x(t) = Bu(t), (1.1a)

y(t) = Cx(t) + Du(t) (1.1b)

with the initial conditions

x(0) = c0, x′(0) = c1, . . . , x(k−1)(0) = ck−1

where u(t) : R→ Cm is the input control, y(t) : R→ Cp is the output measure-

ment, x(t) : R→ Cn is the state function and K0, K1, . . . Kk ∈ Cn×n, B ∈ Cn×m,

C ∈ Cp×n, D ∈ Cp×m are the coefficient matrices. We assume that the leading

coefficient Kk is nonsingular. Equation (1.1) is called a state-space description

of the dynamical system.

It is desirable that a dynamical system possess certain properties. Below we

briefly review stability, controllability, observability and stabilizability. Some

1



of these properties concern the autonomous state-space system when u(t) = 0.

The associated matrix polynomial

P (λ) =
k∑

j=0

λjKj

and its eigenvalues play crucial roles in the equivalent characterizations of

these properties. The scalar λ′ ∈ C is an eigenvalue of the polynomial P

if det P (λ′) = 0 in which case the left null space of P (λ′) is called the left

eigenspace, the right null space of P (λ′) is called the right eigenspace, each vec-

tor in the left eigenspace is called a left eigenvector and each vector in the right

eigenspace is called a right eigenvector corresponding to λ′. For a given matrix

A ∈ Cn×n, when P (λ) = A−λI, we obtain the definition of the standard eigen-

value problem. In this case the characteristic polynomial cs(λ) = det(P (λ)) is

of degree n, therefore has exactly n roots or equivalently A has n eigenvalues.

In general the degree of the polynomial c(λ) = det(P (λ)) is equal to nk, when

the leading coefficient is nonsingular and is strictly less than nk otherwise. Let

the degree of the characteristic polynomial be l, then the matrix polynomial P

has nk− l infinite eigenvalues and l finite eigenvalues. Specifically when k = 1,

the linear matrix function λK1 + K0 is called a pencil and each λ such that the

pencil λK1 + K0 is rank deficient is called a generalized eigenvalue.

Stability: The autonomous state-space system is stable if for all initial

conditions the state vector vanishes asymptotically, that is

lim
t→∞
‖x(t)‖ = 0, ∀c0, c1, . . . , ck−1.

The stability of the system (1.1) is equivalent to the condition that all of the
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eigenvalues of P lie in the open left half of the complex plane. Furthermore the

real part of the rightmost eigenvalue, called the spectral abscissa of P ,

α(P ) = max{Re λ : λ ∈ C s.t. det P(λ) = 0}

determines the decay rate as for all x0 and for all δ > 0

‖x(t)‖ = O(et(α(P )+δ)).

Controllability: The state-space system (1.1) or the tuple (K0, K1, . . . , Kk, B)

is called controllable if it is possible to drive the system into any desired state

at any given time by the proper selection of the input. Controllability is equiv-

alent to the rank problem [36] (a generalization of the characterization for the

first-order system when k = 1 and K1 = I due to Kalman [42])

rank [P (λ) B] = n, ∀λ ∈ C. (1.2)

Let an uncontrollable systems with zero initial conditions be the mapping y =

f1(u). The uncontrollable system is not minimal in the sense that there exists

a system y = f2(u) whose state lies in a smaller space and for all u the equality

f1(u) = f2(u) holds.

Observability: The autonomous state-space system is observable if each

possible output is caused by a unique initial condition. While controllability is

defined in terms of the set of possible output for a given initial state, observ-

ability is defined in the reverse direction in terms of the set of initial conditions

for a given output. It is not surprising that the rank characterization

rank

 P (λ)

C

 = n, ∀λ ∈ C (1.3)

for observability is analogous to (1.2).
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Stabilizability: The state-space system is stabilizable if for all initial condi-

tions there exists an input so that the state vector decays asymptotically. When

the system is controllable, the system is stabilizable, but the reverse implica-

tion is not necessarily true. The stabilizability of the state-space system can be

reduced to the condition

rank [P (λ) B] = n, ∀λ ∈ C+,

which is same as the controllability characterization except that the rank tests

need to be performed only in the closed right half of the complex plane.

An important special case of (1.1) is the first-order system

x′(t) = Ax(t) + Bu(t), x(0) = c0 (1.4a)

y(t) = Cx(t) + Du(t) (1.4b)

with A ∈ Cn×n. All the previous discussion applies for the first-order system.

Characterizations of stability, controllability, observability and stabilizability in

this case can be obtained by making the substitution P (λ) = A − λI. For the

controllability of the first-order system another equivalent characterization is

that the controllability matrix

[B AB A2B . . . An−1B] (1.5)

has full row rank. For a detailed description of all these fundamental proper-

ties and their characterizations for the first-order system we refer to the book

[22]. The characterizations for the higher-order system are derived from the

corresponding characterizations for the first-order system using a linearization

4



procedure which is a common way of embedding a higher-order system into a

first-order system. In the paper [58], the equivalent characterization for the

higher-order distance to uncontrollability was proved.

1.2 Discrete-time control systems

In many applications the dependence on time is discrete. In this case the state-

space system maps a discrete input function to a discrete output function in

the form

Kkxj+k + Kk−1xj+k−1 + · · ·+ K0xj = Buj+k, (1.6a)

yj = Cxj + Duj (1.6b)

with the initial conditions

x0 = c0, . . . , xk−1 = ck−1.

The definitions of stability, controllability, observability and stabilizability are

similar to those for continuous-time systems. For discrete-time systems the

moduli of the eigenvalues of the associated matrix polynomial P are relevant

rather than the real parts of the eigenvalues. In particular the system is stable

if and only if all of the eigenvalues of the polynomial P are strictly inside the

unit circle, and the spectral radius of P

ρ(P ) = max{|λ| : λ ∈ C s.t. det P(λ) = 0}

determines the asymptotic decay rate. The equivalent characterizations of con-

trollability and observability are identical to the continuous case, while for sta-

bilizability the rank tests need to be performed on and outside the unit circle,
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that is the discrete system is stabilizable if the condition

rank [P (λ) B] = n, ∀λ s.t. |λ| ≥ 1

holds.

1.3 Robustness

The state-space system is usually an approximation of a complicated system

that is subject to uncertainty. Therefore it is desirable that the properties

described in the previous section are preserved when the system is changed by

small perturbations.

Consider the autonomous first-order system with the coefficient matrix A

equal to the 50 × 50 “Grcar” matrix, a Toeplitz matrix with −1 on the sub-

diagonal and diagonal, 1 on the first, second and third super-diagonals and all

of the other entries zero. The system is stable, since the spectral abscissa is

equal to −0.3257. However perturbations ∆A with norm on the order of 10−2

are sufficient to move some of the eigenvalues to the right-half plane signifi-

cantly away from the imaginary axis. In Figure 1.1 the eigenvalues of 1000

nearby matrices are shown. The nearby matrices are obtained by perturbing

with matrices whose entries (both the real parts and the imaginary parts) are

chosen mutually independently from a normal distribution with zero mean and

standard deviation 10−2. The real part of the rightmost eigenvalue among the

1000 matrices selected is 0.6236. Therefore the system is not robustly stable

against perturbations on the order of 10−2.
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Figure 1.1: Eigenvalues of the matrices obtained by applying normally dis-

tributed perturbations with mean zero and standard deviation 10−2 to the Gr-

car matrix. The blue crosses and red asterisks illustrate the eigenvalues of the

perturbed matrices and the Grcar matrix, respectively.
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The first-order state-space system with

A =


0.5 0.2 0.3

0.4 0.32 0.3

0.2 0.5 0.26

 and B =


500

500

500

 (1.7)

is controllable. Indeed the smallest singular value of the controllability matrix

(1.5) is 1.23. However, the perturbation

∆A =


0 0 0

0 −0.02 0

0 0 0.04


to A yields an uncontrollable system. Figure 1.2 illustrates the variation in

the minimum singular values of the controllability matrix as the second and

third diagonal entries of A are perturbed. The minimum singular value for a

particular perturbation can be determined from the color bar on the right. The

perturbations to the second diagonal entry of A affect the minimum singular

value of the controllability matrix more drastically.

1.3.1 Robust stability

We call an autonomous control system robustly stable if it is stable and all

of the systems in a given neighborhood are stable. Formally the system (1.1)

with u(t) = 0 is robustly stable with respect to given sets ∆0, ∆1, . . . , ∆k if the

perturbed system
k∑

j=0

(Kj + ∆Kj)x
(j)(t) = 0

is stable for all ∆Kj ∈ ∆j, j = 0, . . . , k. Robust stability for the discrete

system (1.6) is defined analogously. In general the neighborhood of interest
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Figure 1.2: The level sets of the minimum singular value of the controllabil-

ity matrix for the pair (A + ∆A, B) where (A, B) is defined by (1.7) and the

perturbation matrix ∆A has nonzero entries only on the second and the third

diagonal. The horizontal and vertical axis correspond to negative perturba-

tions to the second and positive perturbations to the third diagonal entries,

respectively.
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depends on the application. For instance, if the coefficient matrices in (1.1) or

in (1.6) are real, it may be desirable to allow only real perturbations, that is

the sets ∆j, j = 0, . . . , k, contain only real matrices. In other applications the

perturbations may have multiplicative structure, e.g. the set ∆j, j = 0, . . . , k

consists of matrices of the form FjδjGj where Fj ∈ Cn×lj , Gj ∈ Crj×n are fixed

and δj ∈ Clj×rj is a variable. For real or structured perturbations [74], [65],

[43], [37], [62], [28] and [66] are good resources. In this thesis we consider only

complex unstructured perturbations. The next two chapters are mainly devoted

to robust stability measures based on the pseudospectrum, the set of eigenvalues

of nearby matrices or polynomials, and the field of values, the set of Rayleigh

quotients of a given matrix. Particular emphasis is put on the computation of

such measures.

The primary reason for interest in robust stability measures is to gain in-

formation about the level of robustness. Additionally, all of these measures are

relevant to the magnitude of the transient behavior of the system. As discussed

in §1.1 and §1.2, asymptotic behaviors of the continuous system (1.1) and the

discrete system (1.6) are completely determined by the spectral abscissa and

the spectral radius of the associated polynomial, respectively. Recall the Grcar

matrix whose rightmost real eigenvalue is in the left half-plane and considerably

away from the imaginary axis. Figure 1.3 shows that for the Grcar matrix the

norm of the exponential eAt decays fast (at t = 40 the norm drops to the order

of 10−4) but only after exhibiting a transient peak around t = 10 where the

norm is on the order of 103. On the other hand Figure 1.4 shows that for the

upper triangular matrix with all of the upper triangular and diagonal entries

equal to −0.3 the norm of eAt decays monotonically. One might see the sensi-

tivity of the eigenvalues of the Grcar matrix (as illustrated by Figure 1.1) as
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Figure 1.3: The norm of the exponential eAt on the vertical axis as a function

of time on the horizontal axis for the Grcar matrix.

responsible for the initial peak. While, as we will see, there is some truth in

this observation, the sensitivity of the eigenvalues alone does not explain why

the upper triangular matrix has initial behavior consistent with its asymptotic

behavior. The upper triangular matrix is similar to the Jordan block of size

50 with the diagonal entries equal to −0.3, so the eigenvalue −0.3 is defective

and extremely ill-conditioned. Indeed in Figure 1.5 the norm of the powers of

the same matrix with spectral radius equal to 0.3 reaches the order of 106. The

measures in Chapter 2 and Chapter 3 explain why the discrete system with the

upper triangular coefficient matrix exhibits an initial growth unlike the contin-

uous system. (Also see [70] for more examples whose initial behaviors can be

understood by the help of the pseudospectra.)

Below we review the basic tools that we will depend upon in the chapters

on robust stability measures.
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Figure 1.4: The norm of the exponential eAt for an upper triangular matrix

with all of the upper triangular and diagonal entries equal to −0.3.

Figure 1.5: The norm of the powers Aj for the upper triangular matrix with

all of the upper triangular and diagonal entries equal to −0.3.
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Distance to instability

One of the measures of robust stability is the distance to instability which we

define as

β(P, γ) = inf{‖[∆Kk ∆Kk−1 . . . ∆K0]‖ :

(Kk + γk∆Kk, Kk−1 + γk−1∆Kk−1, . . . , γ0∆K0) is unstable}

(1.8)

where the vector γ = [γk γk−1 . . . γ0] consists of nonnegative scalars not all zero.

Above and throughout this thesis ‖ · ‖ denotes the 2-norm unless otherwise

stated. Our motivation in introducing the vector γ is mainly to restrict the

perturbations to some combination of coefficient matrices by setting all of the

other γj to zero. It also serves the purpose of scaling the perturbations to the

coefficients. For instance, one may be interested in perturbations in a relative

sense with respect to the norm of the coefficients in which case it is desirable

to set γ = [‖Kk‖ . . . ‖K1‖ ‖K0‖]. Let Cg and Cb partition the complex plane

with the open set Cg denoting the stable region and Cb denoting the unstable

region. Thus for continuous systems Cg is the open left half-plane and for

discrete systems Cg is the open unit disk. Using the continuity of eigenvalues

with respect to perturbations to the coefficient matrices, the definition of the

distance to instability can be restated as

β(P, γ) = inf
λ∈∂Cb

ν(λ, P, γ) (1.9)

with ∂Cb denoting the boundary of Cb and

ν(λ, P, γ) = inf{‖∆Kk . . . ∆K0‖ :

det(P + ∆P )(λ) = 0 where ∆P (λ) =
k∑

j=0

λjγj∆Kj}.

13



The latter optimization problem is a structured singular value problem [65] and

therefore the equation (1.9) can be simplified to (see [28] for the details)

β(P, γ) = inf
λ∈∂Cb

σmin

[
P (λ)

pγ(|λ|)

]
(1.10)

where

pγ(x) =

√√√√ k∑
j=0

γ2
j x

2j. (1.11)

For the first-order system with k = 1, K0 = A, K1 = −I and γ = [0 1] the

definition (1.8) reduces to the one introduced by Van Loan [54],

β(A) = inf{‖∆A‖ : A + ∆A is unstable} (1.12)

and the characterization (1.10) reduces to

β(A) = inf
λ∈∂Cb

σmin[A− λI]. (1.13)

Pseudospectrum

For a given positive real scalar ε and a vector of nonnegative scalars γ =

[γk, . . . , γ0] (see the remark following (1.8) for the motivation in introducing

γ), we define the ε-pseudospectrum of P as the set

Λε(P, γ) = {z ∈ Λ(P + ∆P ) :

∆P (λ) =
k∑

j=0

γjλ
j∆Kj where ‖∆Kj‖ ≤ ε, j = 0, . . . , k}.

(1.14)

In [67] the equivalent singular value characterization

Λε(P, γ) = {λ ∈ C : σmin[P (λ)] ≤ εpγ(|λ|)} (1.15)

is given where pγ was defined in (1.11) . The ε-pseudospectrum of a matrix

Λε(A) = {z ∈ Λ(A + ∆A) : ‖∆A‖ ≤ ε} (1.16)
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has been extensively studied by Trefethen [68, 69, 70] and can be efficiently

computed by means of the characterization

Λε(A) = {λ ∈ C : σmin(A− λI) ≤ ε}. (1.17)

Note that (1.16) is obtained from (1.14) by setting γ0 = 1, γ1 = 0 so that

K1 = −I is not subject to perturbation.

The Matlab package EigTool [73] is a free toolbox for the computation

of the ε-pseudospectrum of a matrix. For techniques for the computation of

the ε-pseudospectrum of a matrix and matrix polynomial, see [69] and [67],

respectively.

Field of values

The field of values of the matrix A consists of the Rayleigh quotients of A, i.e.

F (A) = {z∗Az : z ∈ Cn, ‖z‖ = 1}. (1.18)

It is a convex set containing the eigenvalues of A. When A is normal, the

field of values is the convex hull of the eigenvalues of A. Furthermore when

A is Hermitian, the field of values lies on the real axis. In general the projec-

tions of F (A) onto the real and imaginary axis are the fields of values of the

Hermitian part F (H(A)) and the skew-Hermitian part F (N(A)) respectively,

where H(A) = A+A∗

2
and N(A) = A−A∗

2
. For the derivation of these and other

geometric properties of F (A) see [39].

For the matrix polynomial P the field of values can be generalized to

F (P ) = {λ : ∃z ∈ Cn s.t. z∗P (λ)z = 0}

which simplifies to (1.18) for the matrix A when P (λ) = A − λI. The paper

15



[52] and the book [29] analyze the geometrical properties of the field of values

of a matrix polynomial.

1.3.2 Robust controllability

The system (1.1) or (1.6) is called robustly controllable if the system itself is

controllable as are all the nearby systems in a given neighborhood. More specifi-

cally, robust controllability with respect to given sets ∆0, ∆1, . . . , ∆k, ∆B implies

that the perturbed system

k∑
j=0

(Kj + ∆Kj)x
(j)(t) = (B + ∆B)u(t)

is controllable for all ∆Kj ∈ ∆j, j = 0, . . . , k and ∆B ∈ ∆B. As with stability

the perturbations may be constrained to be real (see [40]) or to have structure,

but in this thesis we focus on robust controllability with respect to unstructured

complex perturbations.

One measure for the degree of robust controllability is the distance to un-

controllability which we define as

τ(P, B, γ) = inf{‖[∆Kk . . . ∆K1 ∆K0 ∆B]‖ :

(Kk + γk∆Kk, . . . , K0 + γ0∆K0, B + ∆B) is uncontrollable}

(1.19)

where the vector γ = [γk . . . γ1 γ0] fulfills the scaling task as in the definition

of the distance to instability in (1.8). When k = 1, K1 = I, K0 = −A and

γ = [0 1] we recover the definition introduced by Paige [61] for the first-order

system

τ(A, B) = inf{‖∆A ∆B‖ : the pair (A + ∆A, B + ∆B) is uncontrollable}.

(1.20)
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Note that even though in this thesis we consider the distances in the 2-norm, we

will see that the definitions (1.19) and (1.20) in the 2-norm and Frobenius norm

are equivalent. We present various techniques for computing the distance to

uncontrollability for the first-order system (1.4) and for the higher-order system

(1.1) in Chapter 4 and Chapter 5, respectively. The distance functions for

observability and stabilizability can be defined similarly. All of the algorithms

for the distance to uncontrollability can be modified in a straightforward fashion

for the distances to unobservability and unstabilizability.

1.4 Outline and contributions

This thesis is organized as follows. We start with a review of some of the

robust stability measures for continuous systems in Chapter 2 with emphasis

on pseudospectral measures. Specifically we review the algorithm by Burke,

Lewis and Overton [12] for the ε-pseudospectral abscissa of a matrix, the real

part of the rightmost point in the ε-pseudospectrum, show that it is backward

stable under reasonable assumptions and extend it to matrix polynomials. In

Chapter 3 on robust stability of discrete systems, we introduce an analogous

algorithm for the ε-pseudospectral radius, the modulus of the outermost point

in the ε-pseudospectrum, analyze the algorithm and generalize it for matrix

polynomials. In the same chapter we also present an algorithm for computing

the numerical radius of a matrix, the modulus of the outermost point in the

field of values, that combines the ideas in [9] and [34]. Chapter 4 is devoted to

the computation of the distance to uncontrollability for first-order systems. We

focus on two algorithms for the first-order distance to uncontrollability. The

first one works on a grid and is suitable for low-precision approximation. The
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second one reduces the computational cost of the algorithms in [31] and [13] to

O(n4) from O(n6). When comparing the computational costs of the algorithms,

throughout this thesis we assume that the computation of the eigenvalues of a

matrix or pencil of size n is an atomic operation with a cost of O(n3) unless oth-

erwise stated. Computation of the distance to uncontrollability for higher-order

systems is addressed in Chapter 5. We derive a singular value characteriza-

tion and describe an algorithm for low precision exploiting the singular value

characterization. We illustrate the performance of the algorithms in practice

with the numerical examples at the end of each chapter. All of the numerical

experiments are performed with Matlab 6.5 running on a PC with 1000 Mhz

Intel processor and 256MB RAM.

The contributions of this thesis are summarized below.

• Chapter 2: A backward stability analysis is provided for the pseudospec-

tral abscissa algorithm in [12], and the algorithm is extended to matrix

polynomials.

• Chapter 3: An algorithm for the computation of the pseudospectral radius

is presented. For generic cases the algorithm converges quadratically and

is proved to be backward stable under reasonable assumptions. Also an

algorithm for computing the numerical radius is described. To our knowl-

edge both of the algorithms are the most efficient and accurate techniques

available.

• Chapter 4: A low-precision approximation and a high-precision approxi-

mation technique for the first-order distance to uncontrollability are sug-

gested. The low-precision approximation is usually more efficient than

the other algorithms in the same category, particularly the algorithms in
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[16]. The high-precision technique reduces the computational cost of [31]

and [13] from O(n6) to O(n4), both in theory and in practice. It uses a

divide-and-conquer algorithm devised for real eigenvalue extraction which

is potentially applicable to other problems.

• Chapter 5: A minimum singular value characterization for the higher-

order distance to uncontrollability is given and an algorithm based on this

characterization is introduced.

• Software: All of the algorithms in this thesis have been implemented in

Matlab and the software is freely available at [58].
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Chapter 2

Robust Stability Measures for

Continuous Systems

The robust stability and initial behavior of the continuous-time autonomous

first-order system

x′(t) = Ax(t) (2.1)

and the autonomous higher-order system

Kkx
(k)(t) + Kk−1x

(k−1)(t) + · · ·+ K0x(t) = 0 (2.2)

are the subject of this chapter.

Pseudospectra are known to be good indicators of robust stability. In partic-

ular, the real part of the rightmost point in the ε-pseudospectrum of A, called the

ε-pseudospectral abscissa, is useful in determining the transient peaks and the

degree of robustness of the stability of (2.1). In §2.1 we recall the quadratically

convergent algorithm by Burke, Lewis and Overton [12] for the ε-pseudospectral

abscissa of A, analyze its backward error and extend it to the higher-order sys-

tem (2.2). In §2.2 computation of the distance to instability for (2.1) and (2.2)
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using the Boyd-Balakrishnan algorithm [9] is reviewed.

2.1 Pseudospectral abscissa

The largest of the real parts of the points in the ε-pseudospectrum of A is called

the ε-pseudospectral abscissa of A,

αε(A) = max{Re z : z ∈ Λε(A)} (2.3)

or equivalently

αε(A) = max{Re z : σmin(A− zI) ≤ ε}. (2.4)

Keeping in mind that the equality supx0
‖x(t)‖ = ‖eAt‖ holds for all t, an

immediate implication of the Kreiss matrix theorem [44]

sup
ε>0

αε(A)

ε
≤ sup

t
‖eAt‖ ≤ en sup

ε>0

αε(A)

ε
. (2.5)

justifies the importance of the ε-pseudospectral abscissa in determining the mag-

nitude of the maximum peak of the first-order autonomous system.

Figure 2.1 and Figure 2.2 illustrate the ε-pseudospectrum of the Grcar matrix

and the upper triangular matrix whose initial behaviors are compared in §1.3.1.

All of the pseudospectra plots in this thesis are generated by EigTool [73]. Both

of the matrices have very sensitive eigenvalues; however, unlike the eigenvalues

of the Grcar matrix, the perturbations to the upper triangular matrix move

its eigenvalues towards the imaginary axis very little. With perturbations with

norm ε = 10−3 applied to the Grcar matrix its eigenvalues cross the imaginary

axis, indeed αε = 0.13. The lower bound in (2.5) implies that the norm of the

matrix exponentials must exceed 130. On the other hand when perturbations

with norm 10−3 are applied to the upper triangular matrix, it remains stable

with αε = −0.15.
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Figure 2.1: The boundary of the ε-pseudospectrum of the Grcar matrix is shown

for various ε. The color bar on the right displays the value of ε in logarithmic

scale corresponding to each color. The black dots and the red disk mark the

locations of the eigenvalues and the location where the pseudospectral abscissa

is attained for ε = 10−1, respectively. The gray line is the imaginary axis.
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Figure 2.2: The boundary of the ε-pseudospectrum of the upper triangular

matrix with the entries aij = −0.3, j ≥ i is displayed for various ε. The ε-

pseudospectral abscissa for ε = 10−1 is attained at the location marked with the

red disk. The gray arc is the part of the unit circle.
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2.1.1 The algorithm of Burke, Lewis and Overton

To compute the pseudospectral abscissa, Burke, Lewis and Overton [12] intro-

duced an algorithm with a quadratic rate of convergence for generic matrices.

The algorithm was inspired by Byers’ bisection algorithm [15] and its quadrat-

ically convergent variant by Boyd and Balakrishnan [9] for the distance to un-

controllability. It exploits the characterization (2.4) and is based on vertical

and horizontal searches in the complex plane.

A vertical search finds the intersection points of a given vertical line with the

ε-pseudospectrum boundary. The next result, proved in [12] (a simple general-

ization of a result of Byers [15]), implies that a vertical search can be achieved

by solving an associated Hamiltonian eigenvalue problem (see §A.1 for the def-

inition and properties of a Hamiltonian eigenvalue problem).

Theorem 1 (Vertical Search). Let x be a real number and ε be a positive real

number. The matrix A− (x+yi)I has ε as one of its singular values if and only

if the Hamiltonian matrix

V (x, ε) =

 xI − A∗ εI

−εI A− xI

 (2.6)

has the imaginary eigenvalue yi.

The intersection points of the vertical line at x can be found by computing

the eigenvalues of V (x, ε) followed by a singular value test for each imaginary

eigenvalue of V (x, ε). For each yi ∈ Λ(V (x, ε)), we need to check whether

σmin(A − (x + yi)I) = ε. The current state of art for reliable and efficient

computation of the imaginary eigenvalues of a Hamiltonian matrix is reviewed

in §A.1.
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In a horizontal search the aim is to determine the intersection point of a

horizontal line and the ε-pseudospectrum boundary that is furthest to the right.

The next theorem (see [12] for the proof) indicates that a horizontal search

requires the solution of an associated Hamiltonian eigenvalue problem.

Theorem 2 (Horizontal Search). Let y be a real number and ε be a positive

real number. The largest x such that A− (x+yi)I has ε as the smallest singular

value is the imaginary part of the upper-most imaginary eigenvalue of

H̃(y, ε) =

 iA∗ − yI εI

−εI iA + yI

 . (2.7)

To find the intersection point of the horizontal line at y and the ε-pseudospectrum

boundary with the largest real part, it suffices to extract the largest imaginary

eigenvalue of H̃(y, ε).

The criss-cross algorithm (Algorithm 1) for the ε-pseudospectral abscissa

starts from the spectral abscissa as the initial estimate for the ε-pseudospectral

abscissa. At each iteration a vertical search finds the intersection points of the

vertical line passing through the current estimate and the ε-pseudospectrum

boundary. From the intersection points it is easy to determine the segments of

the vertical line lying inside the ε-pseudospectrum. From the midpoint of each

segment a horizontal search is performed. The estimate for the pseudospectral

abscissa is updated to the maximum value returned by the horizontal searches.

Figure 2.3 displays how the algorithm proceeds on a 10×10 companion example

that is taken from EigTool ’s demo menu [73] and shifted by −3.475I, for ε =

10−4.
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Figure 2.3: The progress of the criss-cross algorithm for the pseudospectral

abscissa on a companion matrix example for ε = 10−4.

26



Algorithm 1 Criss-cross algorithm for the pseudospectral abscissa

Call: α̂ε ← pspa(A,ε,tol).

Input: A ∈ Cn×n, ε ∈ R+, tol ∈ R+ (tolerance for termina-

tion).

Output: α̂ε ∈ R, the estimate value for the ε-pseudospectral

abscissa.

Let x0 = α(A) and j = 0.

repeat

perform vertical search: Perform a vertical search to find the intersec-

tion points of the vertical line at xj and the ε-pseudospectrum boundary.

Using the intersection points, determine the segments Ij
1 , Ij

2 ,. . ., Ij
mj on the

vertical line at xj lying inside the ε-pseudospectrum. Compute the set of

midpoints of the segments

yj = {u
j
l + ljl
2

, l = 1, . . . ,mj},

where Ij
l = (ljl , u

j
l ), for l = 1, . . . ,mj.

perform horizontal searches: Perform a horizontal search at each mid-

point yj
l ∈ yj. Compute

xj+1 = max{xε(y
j
l ) : yj

l ∈ yj} (2.8)

where xε(y) is the result of the horizontal search at y.

increment j

until xj − xj−1 < tol.

return xj
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2.1.2 Backward error analysis

For the sake of simplicity we assume that tol = 0, and that we are given an

implementation of Algorithm 1 in floating point arithmetic that produces a

monotonically increasing sequence of estimates {x̂r} and terminates when the

vertical search fails to return an intersection point because of rounding errors.

(The vertical search typically fails in practice when the estimate is sufficiently

close to αε.)

Suppose the numerical algorithm terminates at the mth iteration and the

value at termination is x̂m. We claim that provided a structure-preserving and

backward stable Hamiltonian eigenvalue solver is used, the value returned, x̂m, is

the (ε+β)-pseudospectral abscissa of A, where β = O(δmach(‖A‖+ε+ρε(A))), the

constant δmach is the machine precision and O(δmach) means “of the order of the

machine precision” [71]. Note that this result does not depend on perturbations

of the original matrix, but on the exact matrix for a perturbed value of ε. For

backward error analysis it is sufficient to bound x̂m from above and below in

terms of the abscissa of nearby pseudospectra. That is, we aim to show that

αε−βl
(A) ≤ x̂m ≤ αε+βu(A) (2.9)

holds for some positive βl = O(δmach(‖A‖+ ε+ρε(A))) and βu = O(δmach(‖A‖+

ε + ρε(A))). Then the backward error of of the algorithm is O(δmach(‖A‖+ ε +

ρε(A))) from the continuity of the ε-pseudospectral abscissa as a function of ε

[11, 51, 50].

For deriving these bounds we need to consider the accuracy of the hori-

zontal search and the vertical search. In a horizontal search, given a real y,

we need to find the greatest x such that σmin(A − (x + iy)I) = ε. In exact

arithmetic the horizontal search for a given y is performed by extracting the
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greatest pure imaginary eigenvalue of the Hamiltonian matrix H̃(y, ε) defined

by (2.7). In floating point arithmetic, when a structure preserving backward

stable Hamiltonian eigenvalue solver as discussed in §A.1 is used, the horizon-

tal search instead returns the imaginary part of the greatest pure imaginary

eigenvalue of a perturbed Hamiltonian matrix

L̃(y, ε) = H̃(y, ε) + Ẽ (2.10)

where ‖Ẽ‖ = O(δmach‖H̃(y, ε)‖). Notice that ‖H̃(y, ε)‖ ≤ 2(‖A‖ + ε + ρε(A))

holds, so ‖Ẽ‖ = O(δmach(‖A‖+ ε + ρε(A))).

The estimate at termination, x̂m, is generated by a horizontal search at the

previous iteration. Therefore for some y the perturbed Hamiltonian matrix

L̃(y, ε) has ix̂m as its greatest pure imaginary eigenvalue. According to the

following theorem, having ix̂m in the spectrum of L̃(y, ε) implies that x̂m + iy

belongs to a nearby pseudospectrum. We omit the proof because of its similarity

to the proof of Theorem 18 in Chapter 3.

Theorem 3 (Accuracy of the Horizontal Search). Suppose the Hamilto-

nian matrix L̃(y, ε) has the imaginary eigenvalue ix. Then ix ∈ Λ(H̃(y, ε + β))

for some real β such that |β| ≤ ‖Ẽ‖.

Now that we know the complex number x̂m + iy belongs to the (ε + β)-

pseudospectrum for some β ≤ ‖Ẽ‖, we deduce the upper bound on x̂m,

x̂m ≤ αε+‖Ẽ‖(A). (2.11)

Recall that ‖Ẽ‖ = O(δmach(‖A‖+ ε + ρε(A))) as desired.

To derive a lower bound we exploit the fact that the vertical search at the

final iteration fails to return an intersection point. In a vertical search we are
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interested in the intersection points of the ε-pseudospectrum boundary and a

given vertical line. This is achieved by computing the imaginary eigenvalues

of the Hamiltonian matrix V (x, ε) defined by (2.6). The imaginary parts of

the pure imaginary eigenvalues of V (x, ε) consist of a superset of the intersec-

tion points of the ε-pseudospectrum boundary with the vertical line through x.

On the other hand, in floating point arithmetic, assuming a backward stable

and structure-preserving algorithm is used, the potential intersection points we

obtain are the imaginary parts of the imaginary eigenvalues of a Hamiltonian

matrix

L(x, ε) = V (x, ε) + Ê (2.12)

with ‖Ê‖ = O(δmach(‖A‖+ ε + ρε(A))).

The termination of the algorithm at x = x̂m occurs because the vertical

search with x = x̂m fails in floating point arithmetic, which in turn implies

that the Hamiltonian matrix L(x̂m, ε) does not have any imaginary eigenvalue.

Combining this fact with Theorem 4 below, we deduce that the vertical line at

x̂m does not intersect the boundary of nearby pseudospectra.

Theorem 4 (Accuracy when the Vertical Search Fails). Suppose ε > ‖Ê‖.

If the matrix L(x, ε) does not have any pure imaginary eigenvalue, then for all

γ ∈ (0, ε−‖Ê‖], the matrix V (x, γ) does not have any pure imaginary eigenvalue.

Proof. Denote the eigenvalues of the Hermitian matrices R(y) = JL(x, 0)− iyJ

and T (y) = JV (x, 0)−iyJ by sj(y) and tj(y), j = 1 . . . 2n, ordered in descending

order. It follows from Weyl’s Theorem [38][Theorem (4.3.1)] that the difference

between the corresponding eigenvalues of T (y) and R(y) can be at most the

norm of the perturbation matrix ‖Ê‖, i.e for all j and y,

|sj(y)− tj(y)| ≤ ‖Ê‖. (2.13)
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Also notice that the eigenvalues of T (y) are plus and minus the singular values

of A− (x+ iy)I. Moreover as y →∞, all of the singular values of A− (x+ iy)I

are unbounded below, so using (2.13), we have

lim
y→∞

tj(y) = lim
y→∞

sj(y) =


∞ for 1 ≤ j ≤ n,

−∞ for n + 1 ≤ j ≤ 2n.

(2.14)

Now since L(x, ε) does not have any imaginary eigenvalue, for all y

det(JL(x, ε)− iyJ) = det(JL(x, 0)− iyJ − εI) = det(R(y)− εI) 6= 0

is satisfied, meaning for all y and j, sj(y) 6= ε. For the sake of contradiction

assume that for some real γ in the interval (0, ε− ‖Ê‖], the matrix V (x, γ) has

the imaginary eigenvalue iŷ. Then

det(JV (x, γ)− iŷJ) = det(JV (x, 0)− iŷJ − γI) = det(T (ŷ)− γI) = 0.

In other words since γ is positive, there exists a j ≤ n such that tj(ŷ) = γ.

But according to (2.13), sj(ŷ) and tj(ŷ) cannot differ by more than ‖Ê‖. Hence

we see that sj(ŷ) ≤ ε. We infer from (2.14) and from the intermediate value

theorem that there must be a ỹ ≥ ŷ such that sj(ỹ) = ε. Therefore we have a

contradiction, completing the proof.

Because of the assumption that the estimates are in increasing order, the

computed value x̂m is strictly greater than the spectral abscissa. Furthermore

it cannot be between the spectral abscissa and αε−‖Ê‖. Theorem 2.6 in [12]

states that for all x values between the (ε − ‖Ê‖)-pseudospectral abscissa and

the spectral abscissa some part of the vertical line at x must lie inside the

(ε − ‖Ê‖)-pseudospectrum. But we infer from Theorem 4 that there is no y
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such that σmin(A − (x̂m + iy)I) < ε − ‖Ê‖. Hence we conclude that the lower

bound on x̂m

αε−‖Ê‖ ≤ x̂m (2.15)

is satisfied. Combined with (2.11) this completes the argument that a numerical

implementation of Algorithm 1 generating an increasing sequence of estimates

and terminating when the vertical search fails has a backward error on the order

of δmach(‖A‖+ ε + ρε(A)).

2.1.3 The pseudospectral abscissa of a matrix polyno-

mial

For the higher-order system the ε-pseudospectral abscissa is defined as

αε(P, γ) = max{Re z : z ∈ Λε(P, γ)} (2.16)

or

αε(P, γ) = max{Re z :
σmin(P (z))

pγ(|z|)
≤ ε}. (2.17)

Algorithm 1 easily generalizes for the higher-order system. All we need to

explain is how to do vertical and horizontal searches on the polynomial ε-

pseudospectrum.

The next theorem states how to perform vertical searches.

Theorem 5 (Vertical Search on the Polynomial ε-Pseudospectrum).

Given a real x and a positive real ε, let

Bl(x) =
∑k

j=l

 j

l

xj−lKj
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and

bl(x) = (−1)l/2+1

 k∑
j=l/2

γ2
j

 j

l/2

x2j−l


for l = 1, . . . , k. At least one of the singular values of P (x+yi)

pγ(
√

x2+y2)
is equal to ε if

and only if the matrix polynomial V(x, ε) =
∑k

j=0 λjVj(x, ε) has the eigenvalue

yi where

V0(x, ε) =

 b0(x)εI (B0(x))∗

B0(x) −εI

 ,

when l is odd,

Vl(x, ε) =

 0 −(Bl(x))∗

Bl(x) 0

 1 ≤ l ≤ k,

Vl(x, ε) = 0 k + 1 ≤ l < 2k,

and, when l is even,

Vl(x, ε) =

 bl(x)εI (Bl(x))∗

Bl(x) 0

 1 ≤ l ≤ k,

Vl(x, ε) =

 bl(x)εI 0

0 0

 k + 1 ≤ l ≤ 2k.

Proof. The matrix P (x+yi)

pγ(
√

x2+y2)
has ε as a singular value if and only if the matrix

is  −εI (P (x+yi))∗

pγ(
√

x2+y2)

P (x+yi)

pγ(
√

x2+y2)
−εI


or, by multiplying the leftmost blocks and upper blocks by pγ(

√
x2 + y2), the

matrix  −ε(pγ(
√

x2 + y2))2I P (x + yi)∗

P (x + yi) −εI

 =
2k∑
l=0

(iy)lVl(x, ε)
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is singular, that is iy is an eigenvalue of the matrix polynomial V(x, ε).

To find the intersection points of the boundary of Λε(P ) and the vertical line

at x, we first extract the imaginary eigenvalues of V(x, ε). If yi is an imaginary

eigenvalue of V(x, ε), the above theorem ensures that the matrix P (x+yi)

pγ(
√

x2+y2)
has

ε as a singular value, but not necessarily the smallest one. Therefore at a second

step we check whether σmin

(
P (x+yi)

pγ(
√

x2+y2)

)
for all yi ∈ Λ(V(x, ε)). Note that the

even coefficients of V(x, ε) are Hermitian, while its odd coefficients are skew-

Hermitian. Such a matrix polynomial is called a ∗-even matrix polynomial in

§A.3 and has eigenvalues either purely imaginary or in pairs (λ,−λ̄). See §A.3

for further discussions on ∗-even matrix polynomials and particularly how to

reliably extract the imaginary eigenvalues of such matrix polynomials.

The horizontal search can be accomplished by extracting the uppermost

imaginary eigenvalue of a ∗-even polynomial. Unlike the ε-pseudospectrum of a

matrix, the ε-pseudospectrum of a matrix polynomial is not bounded when

γk > 0 and σmin

(
Kk

γk

)
≤ ε. We shall only consider the case when the ε-

pseudospectrum is bounded and therefore αε(P ) is finite.

Theorem 6 (Horizontal Search on the Polynomial ε-Pseudospectrum).

Assume that a real y and a positive real ε satisfying σmin

(
Kk

γk

)
> ε are given.

Let

Cl(y) =
k∑

j=l

 j

l

 (−y)j−l(−i)jKj

and

cl(y) = (−1)l/2+1

 k∑
j=l/2

γ2
j

 j

l/2

 (−y)2j−l


for l = 1, . . . , k. The largest x such that σmin

(
P (x+yi)

pγ(
√

x2+y2)

)
= ε is the imaginary
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part of the uppermost imaginary eigenvalue of the matrix polynomial H̃(y, ε) =∑k
l=0 λjH̃l(y, ε) with

H̃0(y, ε) =

 −εγ2
0I K∗

0

K0 −εI

 ,

when l is odd,

H̃l(y, ε) =

 0 −(Cl(y))∗

Cl(y) 0

 1 ≤ l ≤ k,

H̃l(y, ε) = 0 k + 1 ≤ l < 2k,

and, when l is even,

H̃l(y, ε) =

 cl(y)εI (Cl(y))∗

Cl(y) 0

 1 ≤ l ≤ k,

H̃l(x, ε) =

 cl(y)εI 0

0 0

 k + 1 ≤ l ≤ 2k.

Proof. The input polynomial can be rearranged as

P (x + yi) =
k∑

j=0

(−y + ix)j(−i)jKj.

Therefore by making the substitutions x = −y and replacing Kj by (−i)jKj

for j = 1, . . . , n in Theorem 5 it follows that the set of x for which ε is a

singular value of P (x+yi)

pγ(
√

x2+y2)
is the set of x such that xi ∈ Λ(H̃(y, ε)). Let the

rightmost intersection point of the horizontal line with Λε(P, γ) be x̂. Clearly

x̂i ∈ Λ(H̃(y, ε)); therefore the largest x such that xi ∈ Λ(H̃(y, ε)) is greater than

or equal to x̂. If such largest x is strictly greater than x̂, the strict inequality

σmin

(
P (x + yi)

pγ(
√

x2 + y2)

)
< ε
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holds, which contradicts the fact that the minimum singular value of P (x+yi)

pγ(
√

x2+y2)

is a continuous function of x and approaches a value that is greater than ε as

x→∞.

2.2 Distance to instability

The distances to the closest unstable continuous systems for the systems (2.1)

and (2.2) are the norms of the smallest perturbations moving one or more eigen-

values of the matrix A and the matrix polynomial P onto the imaginary axis,

respectively. By substituting the imaginary axis for the boundary of the unsta-

ble region ∂Cb in (1.12) and (1.8), the relationship between the ε-pseudospectral

abscissa and the distance to instability can be stated as

βc(A) ≤ ε ⇐⇒ αε(A) ≤ 0

βc(P, γ) ≤ ε ⇐⇒ αε(P, γ) ≤ 0

where βc denotes the continuous distance to instability. For the Grcar matrix

and the upper triangular matrix whose pseudospectra are illustrated in Fig-

ure 2.1 and Figure 2.2, the distances to instability are 2.97 × 10−4 and 0.15,

respectively.

For continuous systems the equivalent characterizations (1.13) and (1.10)

reduce to

βc(A) = inf
ω∈R

σmin(A− ωiI), (2.18)

βc(P, γ) = inf
ω∈R

σmin

(
P (ωi)

pγ(|ω|)

)
. (2.19)
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In [15] Byers introduced a bisection algorithm for the computation of βc(A).

The bisection algorithm, given an estimate β̂, infers whether or not there is an

ω satisfying σmin(A − ωiI) = β̂ by the existence of an imaginary eigenvalue of

the Hamiltonian matrix V (0, β̂) defined by (2.6). It either updates an upper

bound or a lower bound, accordingly.

Bruinsma and Steinbuch in [10] and Boyd and Balakrishnan in [9] replaced

the bisection technique with quadratically convergent algorithms. Here we focus

on the algorithm of Boyd and Balakrishnan. Algorithm 2 is the general Boyd-

Balakrishnan algorithm for the distance to instability applicable whenever for

a given estimate β̂ we are capable of finding all λ ∈ ∂Cb such that

f(λ) = σmin(A− λiI) = β̂

for the first-order system or

h(λ) = σmin

(
P (λi)

pγ(|λ|)

)
= β̂

for the higher-order system. Once this set is available, by the continuity of the

minimum singular value functions with respect to λ, it is straightforward to

determine the intervals in which the inequalites f(λ) < β̂ and h(λ) < β̂ hold.

The estimate is refined to the minimum value that the function f or h attains

over the midpoints of these intervals.

For the system (2.1) all real ω such that f(ωi) = β̂ can be found by extract-

ing the set of imaginary eigenvalues of the Hamiltonian matrix V (0, β̂). Sim-

ilarly for the higher-order system (2.1), the set of real ω satisfying h(ωi) = β̂

correspond to the imaginary parts of the imaginary eigenvalues of the ∗-even

matrix polynomial V(0, β̂) (see Theorem 5 for the definition of the matrix poly-

nomial V). In [9] the Boyd-Balakrishnan algorithm is proved to be quadratically

convergent for the first-order continuous system.
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Algorithm 2 Generic Boyd-Balakrishnan algorithm for the distance to insta-

bility

Call: β̂ ← distinstab(A,tol) or β̂ ← distinstab(P ,γ,tol) .

Input: A ∈ Cn×n or P ∈ Ck×n×n (matrix polynomial), and γ ∈ Rk+1
+ and

nonzero (scaling vector), tol ∈ R+ (tolerance for termination).

Output: β̂ ∈ R+, the estimate value for the distance to instability of A or

P subject to perturbations determined by γ.

Set j = 0, Φ0 = [λ0] where λ0 ∈ ∂Cb and β̂0 =∞.

repeat

Update the estimate for the distance to instability: Refine the estimate for the

distance to instability for the first-order system to

β̂j+1 = min{f(λ) : λ ∈ Φj} (2.20)

or the estimate for the distance to instability for the higher-order system to

β̂j+1 = min{h(λ) : λ ∈ Φj}. (2.21)

Update the set of the midpoints: Determine the set of λ ∈ ∂Cb satisfying f(λ) =

β̂j+1 or h(λ) = β̂j+1. From these infer the open intervals Ij+1
d = (lj+1

d , uj+1
d ), for

d = 1, . . . ,mj+1 such that ∀λ ∈ Ij+1
d , f(λ) < β̂j+1 or h(λ) < β̂j+1. Calculate the new

set of midpoints

Φj+1 = {
uj+1

d + lj+1
d

2
, d = 1, . . . ,mj+1}.

Increment j.

until β̂j − β̂j−1 < tol.

return β̂j
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2.3 Numerical examples

In the next subsection we compute the ratio αε(A)/ε for various ε using Algo-

rithm 1 for the Grcar and the upper triangular matrices discussed in §2.1. Then

in §2.3.2 we illustrate that quadratic convergence is achieved for the algorithms

in §2.1 and §2.2 in practice. In §2.3.3 the running times of the algorithms are

provided for Demmel matrices of various size. Finally the last subsection is

devoted to examples for matrix polynomials.

2.3.1 Bounding the continuous Kreiss constant

One of the reasons for our interest in the computation of the ε-pseudospectral

abscissa is because it appears in the Kreiss constant

Kc(A) = sup
ε>0

αε(A)

ε
, (2.22)

which is a good estimator of the magnitude of the maximum transient peak of

the continuous system as revealed by (2.5). In Figure 2.4, αε(A)/ε is plotted

as a function of ε for the Grcar matrix on the top and the upper triangular

matrix at the bottom. For these plots αε(A) is computed for various ε using

Algorithm 1. In both of the figures, for all ε such that αε(A) is negative, we

replace the ratio by zero for convenience as the negative values are irrelevant

for the transient peak. The computed values are also listed in Table 2.1.

We see that for the Grcar matrix example the supremum is achieved around

ε = 10−3, which is slightly greater than the distance to instability of the matrix.

For the upper triangular matrix the supremum is equal to one and attained in

the limit as ε → ∞, consistent with the good transient behavior of the upper

triangular matrix.
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Figure 2.4: The ratio αε/ε is plotted as a function of log10ε for the Grcar matrix

on the top and the upper triangular matrix at the bottom.
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ε αε

ε
for the Grcar matrix αε

ε
for the upper triangular matrix

10−4 −1.125076668581613e + 003 −1.575128249363217e + 003

10−3 1.336232734017432e + 002 −1.526302151021469e + 002

10−2 4.206404810678649e + 001 −1.408713338112931e + 001

10−1 8.070545282717980e + 000 −5.010790044998323e− 001

1 1.913868744168375e + 000 8.499889226137701e− 001

10 1.096897359709284e + 000 9.849998889272065e− 001

102 1.009758733899733e + 000 9.984999988889766e− 001

103 1.000976583115880e + 000 9.998499999888924e− 001

104 1.000097665429625e + 000 9.999849999998980e− 001

105 1.000009766614169e + 000 9.999985000000028e− 001

106 1.000000976662132e + 000 9.999998500000047e− 001

107 1.000000976662132e + 000 9.999999850000044e− 001

Table 2.1: The ratios αε/ε for the Grcar matrix and the upper triangular

matrix.
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Iteration Estimate xj for αε

0 −0.100129771527858

1 1.066949720709850

2 1.085214307719376

3 1.085216433113323

4 1.085216433113349

Table 2.2: The values of the estimate for the ε-pseudospectral abscissa at

each iteration for a companion matrix example and ε = 10−5 are given. The

algorithm reaches the limits of the machine precision in four iterations.

2.3.2 Quadratic convergence

The algorithms in §2.1 and §2.2 are proved to be quadratically convergent in

[12] and [9], respectively. For a 10× 10 companion matrix example available in

EigTool ’s demo menu, shifted by −3.475I, and ε = 10−5, the algorithm for the

pseudospectral abscissa converges in four iterations. In Table 2.2 the number of

accurate digits of the estimate for the pseudospectral abscissa is at least doubled

at each iteration until the error in the estimate is close to machine precision.

Similarly in Table 2.3 the number of accurate digits of the estimate is at least

doubled at the 7th, 8th and 9th iterations when the distance to instability of the

companion matrix is computed using the Boyd-Balakrishnan algorithm. This

example is an extreme one for the computation of the distance to instability;

only after the first six iterations do we observe rapid convergence.
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Iteration Estimate β̂j for βc

0 7.638415697927511e− 04

1 1.914153978309624e− 04

2 5.526298624300591e− 05

3 1.968319726613891e− 05

4 8.451406155777241e− 06

5 3.015678091250249e− 06

6 8.555365518847272e− 07

7 7.499990333283894e− 07

8 7.499529185454231e− 07

9 7.499529185323792e− 07

Table 2.3: The values of the estimate for the continuous distance to instability

at each iteration for the companion matrix example are given. The algorithm

reaches the limits of the machine precision in nine iterations.
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Size Total running time in secs Running time per iteration in secs.

10 0.070 0.012

20 0.180 0.026

40 1.030 0.129

80 5.990 0.856

160 54.960 7.851

320 574.500 71.8125

Table 2.4: The total and average running times in seconds per iteration of

Algorithm 1 on the Demmel example of various size and ε = 10−2.

2.3.3 Running times

We ran the algorithms for the ε-pseudospectral abscissa and the continuous

distance to instability on Demmel matrices [21] of various size and ε = 10−2.

Demmel matrices are upper triangular Toeplitz matrices. For all j the ratio

a1,j+1/a1,j is a constant greater than one and chosen so that a1,1 = −1 and

a1,n = −10−4. From Tables 2.4 and 2.5 it is apparent that the running time

is cubic with respect to the size of the input matrix, as the computations are

dominated by the solution of the Hamiltonian eigenvalue problems of double

size. In the tables both the overall running times and the average running

times per iteration are listed. In general the computation of the distance to

instability requires less time, since for the pseudospectral abscissa we need to

apply both the vertical and the horizontal searches, while for the distance to

instability only the level sets of the minimum singular value function need to

be determined by solving Hamiltonian eigenvalue problems.
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Size Total running time in secs Running time per iteration in secs.

10 0.070 0.007

20 0.170 0.015

40 0.650 0.059

80 3.290 0.329

160 34.520 3.452

320 374.450 34.041

Table 2.5: The total and average running time per iteration of the Boyd-

Balakrishnan algorithm in §2.2 for the continuous distance to instability on the

Demmel example of various size.

2.3.4 Matrix polynomials

The algorithm in §2.1.3 for matrix polynomials converges to the ε-pseudospectral

abscissa rapidly but with a cost of O(n3k3) (the time required to solve ∗-even

polynomial eigenvalue problems of size 2n and degree 2k) at each iteration.

Consider the quadratic 4× 4 matrix polynomial Q(λ) =
∑2

j=0 λjQj with

Q2 =


−12 −36 −72 −72

3 0 0 0

0 3 0 0

0 0 03 0


, Q1 =


4 3 2 1

3 3 2 1

0 2 2 1

0 0 1 1


and

Q0 =


−3− i −0.5i −1/3i −2.5i

π −3− i −0.5i −1/3i

i π −3− i −0.5i

0.5i i π −3− i


.

(2.23)
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Iteration Estimate xj for αε(Q, γ)

0 0.131033609557413

1 0.964129453835321

2 0.969445951451222

3 0.969446006137978

4 0.969446006137979

Table 2.6: The value of the estimate for the ε-pseudospectral abscissa at each

iteration are given for the matrix polynomial Q, γ = [0.1 1 0.1] and ε = 3.

The ε-pseudospectra of Q with the scaling vector γ = [1 1 1] for ε = 0.1, 0.3,

0.5, 0.7, 0.9 and the scaling vector γ = [0.1 1 0.1] for ε = 1, 3, 5, 7, 9 are

displayed in Figure 2.5 on the top and at the bottom, respectively. The ε-

psedospectral abscissa values are computed by Algorithm §2.1.3 and the points

where the ε-pseudospectral abscissas are attained are marked by black circles

in the figures. In Table 2.6 the estimates generated by the algorithm are given

for γ = [0.1 1 0.1] and ε = 3. We again observe fast convergence; in particular

at the 2nd and 3rd iterations the precision of the estimate is doubled.

Quadratic matrix polynomials with positive definite Hermitian coefficients

are stable as all of the eigenvalues are contained in the left half-plane [67]. For

the quadratic matrix polynomial Q̃(λ) =
∑2

j=0 λQ̃j with the positive definite
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Figure 2.5: The ε-pseudospectrum of Q defined by (2.23) is displayed for γ = [1 1 1]

and ε = 0.1, 0.3, 0.5, 0.7, 0.9 on the top and for γ = [0.1 1 0.1] and ε = 1, 3, 5, 7, 9 at

the bottom. The black circles and asterisks mark the points furthest to the right on each ε-

pseudospectrum and the eigenvalues.
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Hermitian coefficients

Q̃2 =


124 33 72 72

33 100 −3 0

72 −3 100 −3

72 0 −3 100


, Q̃1 =


7.2 −6 −2 −1

−6 9.2 −4 −1

−2 −4 11.2 −2

−1 −1 −2 13.2


and

Q̃0 =


9 −π + 0.5i 4/3i 0.75i

−π − 0.5i 9 −π + 0.5i 4/3i

−4/3i −π − 0.5i 9 −π + 0.5i

−0.75 −4/3i −π − 0.5i 9



(2.24)

plots of the function h(ω) = σmin(P (ω)/pγ(|ω|)), ω ∈ R are provided for γ =

[0.1 1 1], γ = [0.3 1 1] and γ = [0.7 1 1] in Figure 2.6. The figure on the

top displays the functions in the interval [−0.5, 0.5], while the figure at the

bottom displays the same functions over the interval [−5, 5]. In the figure on

the top we use black asterisks to indicate the points where the functions are

minimized (equivalently, where the distances to instability are attained). It is

apparent from the figures that the function h(ω) for small ω in absolute value

is very sensitive to changes in the scaling α0, while the same function is very

insensitive to changes in the scalings to the other coefficients. This is justified

by the fact that the eigenvalues closest to the imaginary axis that are of interest

have small moduli. These eigenvalues are more sensitive to perturbations to Q0

rather than perturbations to Q̃1 and Q̃2. Furthermore, the eigenvalues of the

matrix Q̃0 are highly ill-conditioned. For large ω in absolute value the functions

h(ω) with the scalings γ = [0.1 1 1], γ = [0.3 1 1] and γ = [0.7 1 1] at the

bottom in Figure 2.6 are similar and in the limit as ω → ∞ and ω → −∞

they become identical. Notice also that the function h(ω) is nonconvex and
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Iteration Estimate xj for βc(Q̃, γ)

0 2.067475497667851e + 000

1 8.174502767041282e− 001

2 8.127462094636189e− 001

3 8.127461887310047e− 001

Table 2.7: The values of the estimates generated by the Boyd-Balakrishnan

algorithm for the continuous distance to instability of Q̃ with γ = [0.3 1 1]

indicate rapid convergence.

nonsmooth around the origin, so standard smooth optimization techniques may

fail to locate the global minimum. The fast convergence of Algorithm 2 to

compute βc(Q̃, γ) on this example, with γ = [0.3 1 1], is illustrated in Table 2.7.
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Figure 2.6: The function h(ω) for the quadratic matrix polynomial Q̃ with

γ = [0.1 1 1], γ = [0.3 1 1] and γ = [0.7 1 1] are displayed. On the top and

at the bottom the functions are shown over the intervals [−0.5, 0.5] and [−5, 5],

respectively. The black asterisks show the global minimizers.
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Chapter 3

Robust Stability Measures for

Discrete Systems

In this chapter we present algorithms for the computation of various measures

for the robust stability and the initial behavior of the autonomous first-order

discrete-time dynamical system

xk+1 = Axk (3.1)

and the higher-order discrete-time dynamical system

Kkxj+k + Kk−1xj+k−1 + · · ·+ K0xj = 0. (3.2)

The algorithms that we introduce in §3.1 for the pseudospectral radius of

a matrix and a matrix polynomial are the first efficient techniques for high-

precision computation. The numerical radius algorithm for a matrix in §3.2

combines the ideas in [9] and [34]. Finally in §3.3 we briefly specify the details

of the Boyd-Balakrishnan algorithm for the distance to instability for discrete

first-order and higher-order systems. The algorithms for the pseudospectral

radius and numerical radius have also been described in [59].
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Figure 3.1: The eigenvalues (solid dots) and the ε-pseudospectra of a random

50× 50 matrix are shown for various values of ε. The bar on the right shows

the values of ε on a log 10 scale. The point where the ε-pseudospectral radius

is attained for ε = 1 is in the lower right corner and is marked with a circle.

3.1 Pseudospectral radius

We start with the first-order system and extend the ideas to the higher-order

system in the last subsection. For the first-order discrete system the point in

the ε-pseudospectrum furthest away from the origin, called the ε-pseudospectral

radius,

ρε(A) = max{|z| : z ∈ Λε(A)}, (3.3)

is useful for estimating the norms of the powers of A. Figure 3.1 illustrates the

pseudospectra of a random matrix (i.e. the real and imaginary components of

the entries of the matrix are chosen from a normal distribution with mean 0

and standard deviation 1 independently) for various values of ε together with

the point in the ε-pseudospectrum with the largest modulus for ε = 1.

For the pseudospectral radius it can be deduced from the Kreiss matrix
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theorem [44, 70, 72] that

sup
ε>0

ρε(A)− 1

ε
≤ sup

k
‖Ak‖ ≤ en sup

ε>0

ρε(A)− 1

ε
. (3.4)

In (3.4) the supremum of the norms of the matrix powers is bounded above

and below in terms of the ε-pseudospectral radius. The lower bound is espe-

cially useful as an indicator of how large the norms of the matrix powers grow.

In Figure 2.2 we have seen that the real parts of the eigenvalues of the upper

triangular matrix with the entries aij = −0.3, j ≥ i are not sensitive to per-

turbations. In the same figure we observe that the moduli of the eigenvalues

increase rapidly as the norms of the perturbations increase. Perturbations with

norms 10−7 move the eigenvalues outside of the unit circle. More precisely,

for ε = 10−7 the ε-pseudospectral radius is 1.06 and the lower bound in (3.4)

indicates that the norm of the matrix powers must exceed 6× 105.

In this section we put emphasis on the computation of the pseudospectral

radius. We will exploit the singular value characterization (1.17) and also refer

to the strict ε-pseudospectrum

Λ′ε(A) = {z ∈ C : σmin(A− zI) < ε}. (3.5)

For the convergence of continuous-time systems the analogous quantity to the

pseudospectral radius is the pseudospectral abscissa, the maximum of the real

parts of the points in the pseudospectrum. We described in the previous chapter

the quadratically convergent algorithm to compute the pseudospectral abscissa

from [11]. A first thought to compute the pseudospectral radius of A might be

to reduce the problem to the computation of the pseudospectral abscissa of a

related matrix. Given a complex number reiθ in the pseudospectrum, by taking

the logarithm, we obtain ln r+iθ. Denoting the set that is obtained by taking the
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logarithm of every point in Λε(A) by ln(Λε(A)), we conclude that the real part of

the rightmost point in ln(Λε(A)) is equal to the logarithm of the pseudospectral

radius of A. However, there may not be any matrix with the pseudospectrum

ln(Λε(A)). For instance, as we discuss later in this section, there are matrices for

which the boundary of the ε-pseudospectrum contains an arc of a circle centered

at the origin. For such a matrix A, a line parallel to the imaginary axis intersects

the boundary of the set ln(Λε(A)) at infinitely many points, but in [11], it is

shown that vertical cross sections of the ε-pseudospectrum of a matrix have only

finitely many boundary points. Therefore, we derive an algorithm tailored to

the pseudospectral radius, following the ideas in [11].

Before presenting a locally quadratically convergent algorithm for the ε-

pseudospectral radius in §3.1.2 and §3.1.3, we discuss its variational properties.

The convergence analysis of the algorithm is similar to that in [12], so we briefly

justify our claims about its convergence properties in §3.1.4. The boundary of

the pseudospectrum of a matrix may contain arcs of circles which may po-

tentially cause numerical trouble for the pseudospectral radius algorithm. We

investigate this phenomenon in §3.1.5. In §3.1.6 we specify a version of the algo-

rithm in floating point arithmetic which is expected to produce accurate results

as long as the pseudospectral radius problem is well conditioned. Finally, the

extension of the algorithm to higher-order systems is discussed in §3.1.7.

3.1.1 Variational properties of the ε-pseudospectral ra-

dius

In this subsection we are interested in how the pseudospectral radius ρε(X)

varies with respect to ε and X. Thus we view the pseudospectral radius as a
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mapping from R+ × Cn×n to R+. The most basic result we are looking for is

the continuity of the pseudospectral radius with respect to ε and X. For this

purpose, notice that the pseudospectral radius is the robust regularization of

the spectral radius in the sense of [51], i.e.

ρε(X) = sup
Y
{ρ(Y ) : ‖Y −X‖ ≤ ε}. (3.6)

Since the spectral radius is continuous in matrix space, the continuity of ρε(X)

in matrix space immediately follows from Proposition 3.5 in [51]. In fact, joint

continuity with respect to X and ε can also be shown by proving upper and

lower semicontinuity separately [50] :

Theorem 7 (A.S. Lewis). The function ρε(X) is jointly continuous with re-

spect to ε and X everywhere.

The next result states that the (ε + β)-pseudospectral radius of X depends

on the ε-pseudospectral radius of the matrices in the β neighborhood of X.

Theorem 8. Let β and ε be nonnegative real numbers. Then

ρε+β(X) = sup
‖X′−X‖≤β

ρε(X
′).

Proof. By definition (3.6)

ρε+β(X) = sup
Y
{ρ(Y ) : ‖Y −X‖ ≤ ε + β}

= sup
Y,X′
{ρ(Y ) : ‖X ′ −X‖ ≤ β, ‖Y −X ′‖ ≤ ε}

= sup
X′
{ρε(X

′) : ‖X ′ −X‖ ≤ β}.

Therefore the result follows.
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Next we focus on the differentiability of ρε(X). For this purpose let us

introduce the function p(ε,X) : R+× [0, 2π)→ R for a given ε and X defined by

p(ε,X)(r, θ) = σmin(X − reiθI)− ε. (3.7)

Note that p(ε,X)(r, θ) is less than or equal to 0 if and only if the complex num-

ber reiθ belongs to the ε-pseudospectrum of X. Well known properties of the

minimum singular value function imply that p(ε,X)(r, θ) is a continuous function

of r and θ. The theorem below specifies the conditions under which the func-

tion p(ε,X)(r, θ) is differentiable with respect to r and θ. A real-valued function

defined on a real domain is called real-analytic at a given point if the function

has a real convergent Taylor expansion at the given point.

Theorem 9. Let ε ∈ R+ and X ∈ Cn×n. If the minimum singular value of

X − reiθI is greater than 0 and has multiplicity one, then at (r, θ) the function

p(ε,X)(r
′, θ′) is real-analytic with respect to r′ and θ′ with derivatives

∇p(ε,X)(r, θ) = (−Re eiθu∗v, Im reiθu∗v)

where u and v are any consistent pair of unit left and right singular vectors

corresponding to σmin(X − reiθI).

Proof. The function σmin(X−r′eiθ′I) is real-analytic at (r, θ) provided σmin(X−

reiθI) is positive and has multiplicity one. This immediately follows from the

fact that X2(r
′, θ′) = (X∗ − r′e−iθ′I)(X − r′eiθ′I) is analytic with respect to r′

and θ′ and therefore σ2
min(X−r′eiθ′I), the smallest eigenvalue of X2(r

′, θ′), is real

analytic whenever σ2
min(X − r′eiθ′I) has multiplicity one. The derivatives can

be derived by applying the chain rule to the result of Theorem 7.1 in [11].
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For a fixed ε and X, we call the constrained optimization problem

sup
p(ε,X)(r,θ)≤0

r (3.8)

the ε-pseudospectral radius problem at X. By the definition of p(ε,X)(r, θ) and

the definition of the ε-pseudospectral radius given in (1.17), we see that the

value attained at a global maximizer of the ε-pseudospectral radius problem at

X is equal to ρε(X). Now we are ready to derive the derivatives of ρε(X) with

respect to ε and X

Theorem 10. Let a matrix X0 ∈ Cn×n and ε0 ∈ R+ be given. Suppose that

(r0, θ0) is a local maximizer of the ε0-pseudospectral radius problem at X0 and

the multiplicity of σmin(X0 − r0e
iθ0I) is one. Then the gradient of p(ε0,X0)(r, θ)

at (r0, θ0) is a nonnegative multiple of (1, 0).

Moreover, if the point (r0, θ0) is the unique global maximizer, ∇p(ε0,X0)(r0, θ0)

is nonzero and the Hessian of p with respect to r and θ, ∇2p(ε0,X0)(r0, θ0), is

nonsingular, then at (ε0, X0) the function ρε(X) is differentiable with respect to

ε and X with derivatives

dρε0(X0)

dε
=

−1

Re eiθ0u∗v
, ∇Xρε0(X0) =

uv∗

Re eiθ0u∗v
,

where u and v are any consistent pair of unit left and right singular vectors

corresponding to σmin(X0 − r0e
iθ0I).

Proof. By assumption (r0, θ0) is a local maximizer of the ε0-pseudospectral ra-

dius problem at X0 and by Theorem 9, p(ε0,X0)(r, θ) is differentiable with respect

to r and θ at this maximizer. Therefore, provided the gradient of p(ε0,X0)(r, θ)

is nonzero, standard first-order necessary conditions must be satisfied. Thus

either the gradient of p(ε0,X0) at (r0, θ0) is 0 or there exists a positive µ such that

(1, 0)− µ∇p(ε0,X0)(r0, θ0) = 0.

57



In either case the gradient is a nonnegative multiple of (1, 0) as desired. From

Theorem 9, we know that

∇p(ε0,X0)(r0, θ0) = (−Re eiθ0u∗v, Im r0e
iθ0u∗v),

so when u∗v 6= 0, we have µ = −1
Re eiθ0u∗v

.

When (r0, θ0) is the unique global maximizer with nonzero gradient and

nonsingular Hessian, we deduce from a standard sensitivity result such as

Theorem 5.53 in [8] that
dρε0 (X0)

dε
= −µ

dp(ε0,X0)(r0,θ0)

dε
= µ and ∇Xρε0(X0) =

−µ∇Xp(ε0,X0)(r0, θ0) = −µuv∗ hold (since ∇Xp(ε0,X0)(r0, θ0) = uv∗; see Theo-

rem 7.1 in [11]).

3.1.2 Radial and circular searches

The algorithm depends on the steps that we call circular and radial searches.

Figure 3.2 illustrates a radial and a circular search for a variant of a 3 × 3

example given by Demmel [21] and for ε = 10−3.18. This matrix is an upper

triangular Toeplitz matrix with the entry dj,k, k > j, equal to −102(k−j) and

the entries on the diagonal equal to 0.1 + 0.01i. For the rest of this section,

let us fix ε ∈ R+ and the matrix A ∈ Cn×n for which we are computing the

pseudospectral radius. We drop the subscripts of the function p(ε,A)(r, θ) for

convenience.

The aim of a radial search is to find the point on the boundary of the ε-

pseudospectrum with the largest modulus in a given direction. More formally,

given θ ∈ [0, 2π) such that there exists a positive real number r′ satisfying

p(r′, θ) = 0 , we want to calculate

ηε(θ) = max{r ∈ R+ : p(r, θ) = 0}. (3.9)
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a) b)

Figure 3.2: The boundary of the ε-pseudospectrum for an example due to

Demmel. a) The radial search finds the point with the maximum modulus

on the pseudospectrum boundary in a given search direction. b) The circular

search determines the intersection points of the ε-pseudospectrum boundary

with a circle of given radius.
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We will state a theorem which suggests how we can compute the r values such

that p(r, θ) = 0 holds for a fixed θ ∈ [0, 2π).

Theorem 11. Let r, ε ∈ R+ and θ ∈ [0, 2π). The matrix A− reiθI has ε as one

of its singular values if and only if the matrix

K(θ, ε) =

 ieiθA∗ εI

−εI ie−iθA

 (3.10)

has the pure imaginary eigenvalue ir.

Proof. The matrices A − reiθI and iAe−iθ − irI have the same set of singular

values. It follows from [15](Theorem 1) and [11](Lemma 5.3) that the matrix

iAe−iθ − irI has the singular value ε if and only if the imaginary number ir is

an eigenvalue of the matrix in (3.10).

We note that the matrix K(θ, ε) is Hamiltonian, i.e. JK(θ, ε) is Hermitian

where J is defined by (A.1). By definition (3.9) and Theorem 11, ηε(θ)i is

an imaginary eigenvalue of K(θ, ε). According to the next corollary ηε(θ)i is

actually the imaginary eigenvalue with the largest imaginary part.

Corollary 12 (Radial Search). Given a number θ ∈ [0, 2π) with p(r′, θ) = 0

for some r′, the quantity ηε(θ) defined in (3.9) is the largest of the imaginary

parts of the pure imaginary eigenvalues of K(θ, ε).

Proof. Since there exists r′ such that p(r′, θ) = 0, Theorem 11 implies that

the matrix K(θ, ε) has an imaginary eigenvalue. Let rε(θ)i be the imaginary

eigenvalue of the matrix K(θ, ε) with greatest imaginary part. By definition

(3.9) and Theorem 11, ηε(θ)i ∈ Λ(K(θ, ε)), i.e. rε(θ) ≥ ηε(θ). Now suppose

that rε(θ) is strictly greater than ηε(θ). Again from Theorem 11, we deduce
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that A − rε(θ)e
iθI has a singular value ε (not necessarily the smallest one), so

p(rε(θ), θ) ≤ 0. Since p is a continuous function of r and p(r, θ) approaches ∞

as r goes to∞, from the intermediate value theorem we conclude that for some

r̂ ≥ rε(θ) > ηε(θ), p(r̂, θ) = 0. But this contradicts the definition of ηε(θ) in

(3.9). Therefore ηε(θ) = rε(θ) must hold.

In a circular search we identify the set of points on the boundary of the

pseudospectrum with a given modulus. In other words, given a positive real

number r, we need to determine those θ values in the interval [0, 2π) for which

p(r, θ) = 0 is satisfied. A result of Byers [15] implies that A−eiθI has ε as one of

its singular values if and only if the pencil P (1, ε)−λQ(1, ε) has the generalized

eigenvalue eiθ where

P (r, ε) =

 −εI A

rI 0

 , Q(r, ε) =

 0 rI

A∗ −εI

 (3.11)

The pencil P (r, ε)∗−λQ(r, ε)∗ is symplectic, i.e. P (r, ε)∗JP (r, ε) = Q(r, ε)∗JQ(r, ε)

for the matrix J defined in (A.1). Apart from the ∗-symplectic structure of the

pencil P (r, ε)−λQ(r, ε), we note that D(θ)(P (r, ε)−eiθQ(r, ε)) is Hermitian for

all θ where

D(θ) =

 I 0

0 −e−iθI

 . (3.12)

The error analysis in §3.1.6 exploits this structure.

We present a generalized version of Byers’ result, establishing a relation

between the singular values of A−reiθI and the eigenvalues of the pencil P (r, ε)−

λQ(r, ε). We recall that a 2n × 2n pencil X − λY is said to be singular if

det(X − λY ) = 0 for all λ ∈ C; otherwise it is said to be regular in which case

it has at most 2n finite eigenvalues.
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Theorem 13 (Circular Search). The matrix A − reiθI has ε as one of its

singular values if and only if the pencil P (r, ε) − λQ(r, ε) has the generalized

eigenvalue eiθ or the pencil P (r, ε)− λQ(r, ε) is singular.

Proof. The matrix A− reiθI has the singular value ε if and only if 0 A− reiθI

A∗ − re−iθI 0


has ε as one of its eigenvalues. But this holds if and only if

det

 −εI A− reiθI

A∗ − re−iθI −εI

 = 0

or equivalently, multiplying the matrix above by D∗(θ) on the left,

det

 −εI A− reiθI

−eiθA∗ + rI εeiθI

 = 0.

By rearranging the matrix above, we see that det(P (r, ε)− eiθQ(r, ε)) = 0.

Unlike in a radial search, in a circular search we wish to determine all of the

zeros of p(r, ·). Hence, as long as P (r, ε)− λQ(r, ε) is regular, to find the points

on the ε-pseudospectrum boundary with modulus r we need to check whether

A − reiθI has ε as its minimum singular value for each θ ∈ [0, 2π) such that

eiθ ∈ Λ(P (r, ε), Q(r, ε)).

3.1.3 The algorithm

We now combine radial and circular searches to obtain an algorithm for the

ε-pseudospectral radius. For now, we assume that the pencil we use for circular

searches is regular for all values of r. The issue of singular pencils is the theme
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of §3.1.5. In particular, we explain how the algorithm below can be modified

for singular pencils.

Algorithm 3 is based on the Boyd-Balakrishnan algorithm [9] and the

criss-cross method for the pseudospectral abscissa introduced by Burke et. al.

[12]. It keeps an estimate of the pseudospectral radius and a set of open

“intervals”, Ij
1 , I

j
2 , · · · , Ij

mj
. Actually all these are intervals (ιjk, ζ

j
k) ⊂ [0, 2π)

with the possible exception of Ij
mj

which may “wrap around the circle”, i.e.,

Ij
mj

= (ιjmj
, 2π) ∪ [0, ζj

mj
) with ιjmj

> ζj
mj

. Let the real number ηj be the esti-

mate of the pseudospectral radius at the jth iteration and let θ ∈ [0, 2π). Then

for j > 1 the point ηjeiθ lies inside the strict pseudospectrum if and only if the

angle θ is contained in one of Ij
1 , I

j
2 , · · · , Ij

mj
. In the description of the algorithm

we use the notation x mod 2π which refers to the real number in the interval

[0, 2π) such that x = l 2π + x mod 2π for some integer l.

At each iteration, the algorithm applies a radial search in the direction of the

midpoint of each interval. The estimate of the pseudospectral radius is refined

to the maximum of the modulus values returned by the radial searches. The

open intervals are updated by the application of a circular search. New open

intervals contain the angles of the points lying inside the strict pseudospectrum

and on the circle with radius equal to the new estimate of the pseudospectral

radius. Initially, we start with a radial search in the direction of the angle of an

arbitrary eigenvalue whose modulus is equal to the spectral radius.

In Figure 3.3, the first two iterations of a sample run of the algorithm are

shown. The initial radial search is followed by a circular search which detects

four intersection points. Next we perform two radial searches in the directions

of the midpoints of two intervals in which p(η1, ·) is negative. The maximum

of the values returned by the radial searches is our next estimate η2 for the ε-
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Figure 3.3: First two iterations of the pseudospectral radius algorithm on a

shifted companion matrix.
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Algorithm 3 Radial-circular algorithm for the pseudospectral radius

Call: ρ̂ε ← pspr(A,ε,tol).

Input: A ∈ Cn×n, ε ∈ R+, tol ∈ R+ (tolerance for termination).

Output: ρ̂ε ∈ R+, the estimate value for the ε-pseudospectral radius.

Let θρ be the angle of an eigenvalue with modulus ρ(A), set j = 0, η0 = ρ(A) and Φ0 = [θρ].

repeat

perform radial searches: Perform a radial search for each midpoint Φj
d ∈ Φj . Com-

pute

ηj+1 = max{ηε(Φ
j
d) : Φj

d ∈ Φj} (3.13)

where ηε is defined in (3.9).

perform circular search: Perform a circular search to find the intersection points of

the circle with radius ηj+1 and the ε-pseudospectrum boundary. Using these intersection

points, determine the open intervals Ij+1
1 , Ij+1

2 ,. . ., Ij+1
mj+1 in which p(ηj+1, ·) is negative.

Compute the new set of midpoints

Φj+1 = {Φj+1
1 ,Φj+1

2 , . . . ,Φj+1
mj+1},

where Φj+1
d is the midpoint of the interval Ij+1

d ,

Φj+1
d =


ιj+1
d +ζj+1

d

2 if ιj+1
d < ζj+1

d ,

ιj+1
d +ζj+1

d +2π

2 mod 2π otherwise

increment j

until ηj − ηj−1 < tol.

return ηj
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pseudospectral radius. For the specific example, the input matrix is real, so the

values returned by the radial searches are equal. We continue with a circular

search as before.

It is possible to obtain a slight improvement in Algorithm 3 by changing

the radial search to return the largest r in absolute value such that p(r, θ) = 0.

Corollary 12 can be extended to show that the modulus of the pure imaginary

eigenvalue of K(θ, ε) with the largest imaginary part in absolute value is the

largest zero of p(·, θ) in absolute value. This version of the radial search may

occasionally provide a better initial estimate; however, for the later iterations

the gain is likely to be insignificant. To keep the description and analysis simple

we use the definition (3.9).

In Algorithm 3 one point that is left unspecified is how the intervals

Ij
1 , I

j
2 , . . . I

j
mj

can be determined from the intersection points returned by a cir-

cular search. One trivial and robust way is to sort the intersection points and

compute σmin(A − ηjeiθI) at the midpoint θ of each adjacent pair. The adja-

cent pair constitutes an interval in which p(ηj, ·) < 0 is satisfied if and only if

σmin(A−ηjeiθI) < ε. Another possibility is to classify the intersection points as

crossing or noncrossing zeros. We call the intersection point θ′ a crossing zero

of p(r, ·) if p(r, ·) has opposite sign on (θ′ − ε, θ′] and [θ′, θ′ + ε′) for sufficiently

small positive ε. Otherwise the intersection point is called a noncrossing zero of

p(r, ·). We can distinguish the crossing zeros from noncrossing zeros using the

theorem below under the assumption that σmin(A− reiθI) is of multiplicity one

for each intersection point reiθ.

Theorem 14 (Crossing versus Noncrossing Zeros during the Circular

Searches). Let r ∈ R+ and eiθ0 be an eigenvalue of the pencil P (r, ε)−λQ(r, ε).
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Moreover, suppose that σmin(A− reiθ0I) is simple and equal to ε. Then θ0 is a

crossing zero of p(r, ·) if and only if the algebraic multiplicity of the eigenvalue

eiθ0 is odd.

Proof. By the definitions of P (r, ε) and Q(r, ε) (see (3.11))

P (r, ε)− λQ(r, ε) = det

 −εI A− λrI

rI − λA∗ λεI

 .

We define the function q : C → C as the determinant of this matrix with the

bottom block multiplied by −λ̄,

q(λ) = (−1)nλ̄n det(P (r, ε)− λQ(r, ε)) = det

 −εI A− λrI

|λ|2A∗ − λ̄rI −|λ|2εI

 .

(3.14)

Define a function g : R→ C by g(θ) = q(eiθ). Now if the multiplicity of eiθ0 as

the eigenvalue of the pencil P (r, ε)− λQ(r, ε) is m, we have

g(θ) = q(eiθ) = β(θ)(eiθ − eiθ0)m, (3.15)

where β : R → C is a continuous function with β(θ0) 6= 0. Furthermore, when

we make the substitution λ = eiθ in the right-hand side of (3.14), we see that

the eigenvalues of the resulting matrix are ±σj(A − reiθI) − ε, i.e. plus and

minus the singular values of A− reiθI decremented by ε. Therefore

g(θ) = (−1)n

n∏
j=1

(σj(A− reiθI)− ε)(σj(A− reiθI) + ε), (3.16)

implying g(θ) is real valued for all θ.

Now for real small ε, we deduce from the equality

ei(θ0+ε) − eiθ0 = eiθ0(eiε − 1) = eiθ0iε + O(ε2) = ε
(
ei(θ0+π/2) + O(ε)

)
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and from (3.15) that

g(θ0 + ε) = εm(β(θ0 + ε)emi(θ0+π/2) + O(ε)) ≡ εmf(θ0, ε)

holds where f : R×R→ R is continuous. Notice that because of the continuity

of f and the fact that f(θ0, 0) = β(θ0)e
mi(θ0+π/2) is a nonzero real number,

f(θ0, ε) and f(θ0,−ε) are nonzero with the same sign. Therefore for all small

r̂, g(θ + r̂) = r̂mf(θ0, r̂) and g(θ − ε) = (−ε)mf(θ0,−ε) have different signs if

and only if m is odd. But according to (3.16) the sign of g(θ) changes around

θ0 if and only if the sign of p(r, θ) changes.

Theorem 14 allows us in principle to classify in which intervals p(ηj, ·) is

negative by evaluating σmin(A−ηjeiθI) only at the midpoint of one pair of inter-

section points computed in step 3, provided the assumption that σmin(A−reiθI)

is simple at the intersection points is valid. In practice, however, evaluation of

σmin(A − ηjeiθI) at every midpoint seems a simpler and more robust way to

determine in which intervals p(ηj, ·) is negative.

3.1.4 Convergence analysis

We claim that the sequence of iterates {ηj} generated by Algorithm 3 converges

to the ε-pseudospectral radius of A when tol = 0 so that the algorithm does not

terminate. Recall that we assume the pencil for the circular searches is regular,

which implies that there are at most 2n intersection points of the circle of radius

r and the ε-pseudospectrum boundary. The convergence proof is analogous

to that of the criss-cross method to compute the pseudospectral abscissa [12]

(Theorem 3.2). Therefore we shall just give an outline of the proof.

First note that on a circle centered at the origin and with radius strictly

between the spectral radius and the ε-pseudospectral radius, there are points

68



lying in the strict ε-pseudospectrum as shown by the following argument. Given

a point z on the boundary of the ε-pseudospectrum, according to definition

(1.16), z ∈ Λ(A + E) for some E with norm ε. But the eigenvalues of A + tE

are continuous functions of t ∈ [0, 1]. Therefore there must be a continuous

path from each point on the ε-pseudospectrum boundary to an eigenvalue of

A that, excluding the end point on the boundary, lies entirely in the strict

ε-pseudospectrum.

If at some iteration j the ε-pseudospectral radius estimate ηj is equal to the ε-

pseudospectral radius, there is nothing to prove. Thus suppose that none of the

estimates is equal to the ε-pseudospectral radius. In this case the estimates {ηj}

are monotonically increasing, bounded above by the ε-pseudospectral radius and

bounded below by the spectral radius. This can be easily shown by induction

considering the update rule (3.13) and the definition of ηε(θ) in (3.9).

Since the estimates are in increasing order bounded above by the ε-pseudospectral

radius, they must converge to a real number η∞ less than or equal to the ε-

pseudospectral radius. Suppose η∞ is strictly less than the ε-pseudospectral

radius. There must be open intervals such that the function p(η∞, θ) is non-

positive. Otherwise we obtain a contradiction with the result stating that for

all r between the spectral radius and the pseudospectral radius there are points

lying inside the ε-pseudospectrum and on the circle centered at the origin with

radius r. But from the existence of the open intervals in which the inequality

p(η∞, θ) ≤ 0 is satisfied, it is possible to deduce p(η∞, Φj
k) ≤ 0 for sufficiently

large j and for some k. Therefore the inequality ηj+1 ≥ η∞ holds for sufficiently

large j. This contradicts the fact that the iterates are monotonically increasing.

Therefore the limit η∞ must be equal to the ε-pseudospectral radius. Thus we

have the following theorem.
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Theorem 15. Suppose that the pencil P (r, ε)−λQ(r, ε) is regular for all positive

r. Then the sequence {ηj} generated by Algorithm 3 converges to ρε(A).

Just as in the criss-cross algorithm for the pseudospectral abscissa, we expect

Algorithm 3 to converge to the pseudospectral radius quadratically under the

same regularity assumption stated in [12], namely, that the global maximizers

of the ε-pseudospectral radius problem (3.8) are regular. In [12] a point in

the complex plane (x, y) is called regular if the multiplicity of the minimum

singular value of A − (x + iy)I is one and the pair of left and right singular

vectors corresponding to this minimum singular value are not orthogonal to

each other. To show the quadratic convergence, the approach in [12] (Section

4 and Section 5) can be followed. The crucial point that is worth noting here

is that by Theorem 9 the function p(r, θ) is analytic whenever the minimum

singular value of A − reiθI is positive and has multiplicity one. Additionally

by Theorem 10, around a regular local maximum of the pseudospectral radius

problem the gradient of p must be a positive multiple of (1, 0). Suppose that

the point (r0, θ0) is a regular local maximum. Now an analogous argument to

that of Theorem 4.1 and Corollary 4.5 in [12] applies to deduce the existence of

a real-analytic function f(θ) near zero such that p(r, θ) and r − r0 + f(θ − θ0)

have the same signs for all r and θ sufficiently close to (r0, θ0). Moreover, the

function f satisfies the properties

f(0) = f ′(0) = . . . = f (2k−1)(0) = 0 , f (2k)(0) > 0 (3.17)

for some k ≥ 1. According to Section 5 in [12], since the pseudospectrum around

a local maximum can be described by a function satisfying (3.17), Algorithm

3 converges quadratically to the global maximum, which is the pseudospectral

radius in our case.
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As argued in [12], generically (with probability one over the space of ma-

trices) the multiplicity of σmin(A− reiθI) is one at the maximizer (r, θ). If the

multiplicity of the minimum singular value is greater than one at a maximizer,

the quadratic convergence proof outlined above does not apply, although it may

be possible to extend the proof to cover such cases.

3.1.5 Singular pencils in the circular search

We first consider the geometrical interpretation of the singularity of the pencil

in a circular search. When the boundary of the ε-pseudospectrum of A contains

an arc of the circle of radius r centered at the origin, we infer from Theorem 13

that the pencil P (r, ε)−λQ(r, ε) is singular. Notice that the reverse implication

does not necessarily hold. For generic matrices the minimum singular value of

A − reiθI has multiplicity one for all θ (see [12]) and Theorem 16 tells us that

there are actually only two possibilities when the pencil P (r, ε) − λQ(r, ε) is

singular.

Theorem 16 (Singular Pencils and Circular Pseudospectra). Given a

positive real number r, suppose that the pencil P (r, ε)− λQ(r, ε) is singular and

that σmin(A− reiθI) has multiplicity one for all θ ∈ [0, 2π). Then either

• the circle with radius r lies completely inside the strict ε-pseudospectrum,

or

• the ε-pseudospectrum boundary contains the circle of radius r.

Proof. By Theorem 13 the singularity of the pencil guarantees that, given an

arbitrary θ ∈ [0, 2π), the matrix A − reiθI has ε as one of its singular values,

so p(r, θ) ≤ 0. If for all θ, p(r, θ) < 0 is satisfied, the first case of the theorem
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holds. So assume that there is a zero of p(r, ·). By way of contradiction, suppose

that there exists θ̃ such that p(r, θ̃) < 0. Let θ̂ be the zero of p(r, ·) closest to

θ̃. Without loss of generality, assume θ̂ is greater than θ̃. For all θ ∈ [θ̃, θ̂),

p(r, θ) < 0, so the smallest singular value of A − reiθI is strictly less than ε,

and hence the second smallest singular value of A − reiθI is less than or equal

to ε. It follows by the continuity of singular values that the second smallest

singular value of A − reiθ̂I is less than or equal to ε. This contradicts the fact

that σmin(A− reiθ̂I) is equal to ε and has multiplicity one. Thus p(r, θ) = 0 for

all θ, so the second case holds.

Now returning to Algorithm 3, we note that for all j there is a zero of the

function p(ηj, ·) because of the way we update the estimates of the pseudospec-

tral radius (3.13). Therefore, the circle of radius ηj cannot completely lie inside

the strict pseudospectrum. In other words, for generic matrices the singular-

ity of the pencil used by Algorithm 3 for the circular search implies that the

ε-pseudospectrum boundary contains a circle.

In general, the presence of singular pencils is not desirable for Algorithm

3, because it is difficult to determine the singularity of a pencil. Thus our

strategy to handle singular pencils is to try to avoid them. This turns out to

be surprisingly simple. The next result is a corollary of Theorem 13.

Theorem 17 (Avoiding Singular Pencils). Let r be a positive real number

such that σmin(A− reiθI) > ε for some θ. Then the pencil P (r, ε)− λQ(r, ε) is

regular.

For all r greater than η1, by (3.9) σmin(A − reiθρI) > ε. Therefore, as

long as the initial estimate computed in floating point arithmetic η̂1 is greater

than the exact initial estimate η1, no singular pencils will be encountered. In
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particular, the convergence analysis of the previous subsection is valid. Trouble

may occur, however, when η̂1 < η1, in which case there may not exist θ such

that σmin(A − reiθI) > ε. In general, when σmin(A − η̂1eiθI) < ε for all θ, the

circle of radius η̂1 lies completely inside the ε-pseudospectrum, so the circular

search in floating point arithmetic may potentially fail to return any intersection

point.

All this discussion suggests raising the initial estimate η̂1 by a tolerance.

In the next subsection we show that, provided structure-preserving backward

stable eigenvalue solvers are used for the radial searches, η̂1 is the imaginary part

of the largest imaginary eigenvalue of K(θρ, ε+β), where β = O(δmach(‖A‖+ε)).

We have (see Theorem 11 and Corollary 12)

σmin(A− η̂1eiθρI) = ε + β.

We essentially want to increment η̂1 by a value δr such that

σmin(A− (η̂1 + δr)eiθρI) > ε. (3.18)

In a numerical implementation of Algorithm 3, the case we need to worry about

is when β is negative. Assuming that the multiplicity of σmin(A− η̂1eiθρI) is one

(so that Theorem 9 implies that σmin(A− reiθρI) is real-analytic at r = η̂1), it

follows from the equality

(ε + β) + δr
∂σmin(A− reiθρI)

∂r
|r=η̂1 + O(δr2) = σmin(A− (η̂1 + δr)eiθρI)

that for δr = −β/∂σmin(A−reiθρI)
∂r

|r=η̂1 , σmin(A−(η̂1+δr)eiθρI) = ε+O(δr2) holds.

Since according to Theorem 9, ∂σmin(A−reiθρI)
∂r

|r=η̂1 = ∂p(r,θρ)

∂r
|r=η̂1 = −Re eiθρu∗v

where u and v are unit left and right singular vectors corresponding to the

minimum singular value of A − η̂1eiθρI, we keep incrementing η̂1 by β

Re eiθρu∗v
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until (3.18) is satisfied. Usually it is sufficient to iterate once or twice to obtain

a satisfactory δr.

3.1.6 Accuracy

We analyze the error introduced by a numerical implementation of Algorithm

3 with tol = 0 that generates increasing estimates in floating point arithmetic

and terminates when the circular search fails to return any intersection point.

The pseudospectral radius problem (3.8) may be ill-conditioned. This is the

case when the pseudospectral radius is differentiable and the smallest left and

right singular vectors at the global maximizer are close to being orthogonal (see

Theorem 10). Therefore we focus on the backward error.

We start with an error analysis for the radial search. From Corollary 12 we

know that the exact value ηε(θ) = rε(θ), where rε(θ)i is the imaginary eigenvalue

of K(θ, ε) with the largest imaginary part. On the other hand, assuming that

the eigenvalues are computed by a backward stable algorithm, the counterpart

of rε(θ) in floating point arithmetic, say r̂ε(θ), is the largest imaginary part of

the imaginary eigenvalues of a perturbed matrix

K̃(θ, ε) = K(θ, ε) + E, (3.19)

where ‖E‖ = O(δmach‖K(θ, ε)‖) or, since ‖K(θ, ε)‖ ≤ 2(‖A‖ + ε), ‖E‖ =

O(δmach(‖A‖+ ε)). Additionally, when the algorithm used to solve the Hamilto-

nian eigenvalue problem is structure-preserving, the matrices E and K̃(θ, ε) are

Hamiltonian. The analysis for the radial search is valid only when a structure-

preserving, backward stable Hamiltonian eigenvalue solver (see §A.1 for discus-

sions on structure-preserving, backward stable Hamiltonian eigenvalue solvers)

is used within Algorithm 3.
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We first derive an upper bound on the result returned by the radial search

in terms of the radius of nearby pseudospectra. The following result inspired

by [15] relates the eigenvalues of K̃(θ, ε) and the (ε + β)-pseudospectrum of A,

where β is some real number with |β| at most the norm of the perturbation

matrix ‖E‖.

Theorem 18 (Accuracy of the Radial Search). Suppose that the Hamilto-

nian matrix K̃(θ, ε) has the imaginary eigenvalue ir. Then ir ∈ Λ(K(θ, ε + β))

for some real β such that |β| ≤ ‖E‖.

Proof. Since ir ∈ Λ(K̃(θ, ε)),

det(K̃(θ, ε)− irI) = det(JK̃(θ, ε)− irJ) = 0.

Notice that JK̃(θ, ε)− irJ is Hermitian, meaning that the perturbed Hermitian

matrix JK̃(θ, ε) − irJ − JE = JK(θ, ε) − irJ has a real eigenvalue β which

is at most ‖E‖ in absolute value (from Weyl’s Theorem; see for example [38],

Theorem (4.3.1)). Now by the definition of K(θ, ε) (see (3.10))

0 = det(JK(θ, ε)− irJ−βI) = det(K(θ, ε)+βJ− irI) = det(K(θ, ε+β)− irI).

Hence ir is an eigenvalue of K(θ, ε + β).

An immediate consequence of Theorem 18 is that r̂ε(θ) ≤ ηε+β(θ) for some

β with |β| ≤ ‖E‖; therefore the result of the radial search in floating point

arithmetic, r̂ε(θ), satisfies the inequality

r̂ε(θ) ≤ ρε+‖E‖(A). (3.20)

We now turn our attention to the circular search. In order to find the in-

tersection points of the circle of radius r and the ε-pseudospectrum boundary,
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we compute the eigenvalues of the pencil P (r, ε) − λQ(r, ε). In floating point

arithmetic, assuming a backward stable algorithm is used, we retrieve the eigen-

values of a nearby pencil P̃ (r, ε) − λQ̃(r, ε). Additionally, for any nonnegative

real µ, we make use of the notation

P̃ (r, µ) = P (r, µ) + E1 and Q̃(r, µ) = Q(r, µ) + E2

where E1 = P̃ (r, ε) − P (r, ε) and E2 = Q̃(r, ε) − Q(r, ε). The fact that the

eigenvalue solver is backward stable implies that ‖E1‖ = O(δmach(‖A‖ + ε +

ρε(A))) and ‖E2‖ = O(δmach(‖A‖+ ε + ρε(A))), since ‖E1‖ = O(δmach‖P (r, ε)‖)

and ‖P (r, ε)‖ ≤ (‖A‖ + ε + ρε(A)), and similarly for ‖E2‖. The error analysis

for the circular search involves the unitary matrix D(θ) (see (3.12)). The role

of D(θ) in the analysis below is analogous to the role of J in the error analysis

for the radial search in the sense that D(θ)(P (r, ε) − eiθQ(r, ε)) is Hermitian

for all θ. In addition to the backward stability requirement on the generalized

eigenvalue solver, we also assume that it preserves the structure so that for

all θ, D(θ)(P̃ (r, ε)− eiθQ̃(r, ε)) is Hermitian. Unfortunately, we are not aware,

at the moment, of the existence of a backward stable algorithm preserving this

structure, but the assumption that the eigenvalue solver preserves this structure

is essential for the analysis.

We are interested in bounding the estimate for the pseudospectral radius

from below in terms of a nearby pseudospectral radius when the circular search

does not return any intersection point. In this case the pencil P̃ (r, ε)−λQ̃(r, ε)

does not have any unit eigenvalue.

Theorem 19 (Accuracy when the Circular Search Fails). Suppose that

the pencil P̃ (r, ε)−λQ̃(r, ε) does not have any unit eigenvalue and there exists θ
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such that σmin(A− reiθI) ≥ ε+‖E1‖+‖E2‖. Then the pencil P (r, µ)−λQ(r, µ)

does not have any unit eigenvalue for all positive µ ≤ ε− ‖E1‖ − ‖E2‖.

Proof. Let χj(θ) and ϕj(θ), j = 1 . . . 2n, denote the eigenvalues of N(θ) =

D(θ)(P̃ (r, 0)− eiθQ̃(r, 0)) and R(θ) = D(θ)(P (r, 0)− eiθQ(r, 0)) as functions of

θ in descending order. Notice that χj(θ) and ϕj(θ) are real-valued continuous

functions of θ, since the entries of the matrices N(θ) and R(θ) are continuous

with respect to θ and both of the matrices are Hermitian for all θ. Note also

that

|χj(θ)− ϕj(θ)| ≤ ‖E1‖+ ‖E2‖ (3.21)

holds for all j and θ. This inequality follows from the fact that ‖N(θ)−R(θ)‖ =

‖E1− eiθE2‖ ≤ ‖E1‖+‖E2‖, so the corresponding eigenvalues of the Hermitian

matrices cannot differ by more than ‖E1‖+ ‖E2‖.

Since the pencil P̃ (r, ε)− λQ̃(r, ε) does not have any unit eigenvalue, for all

θ

det(D(θ)(P̃ (r, ε)− eiθQ̃(r, ε))) = det(D(θ)(P̃ (r, 0)− eiθQ̃(r, 0)− εD∗(θ)))

= det(D(θ)(P̃ (r, 0)− eiθQ̃(r, 0))− εI)

= det(N(θ)− εI)

6= 0.

Hence the function χj(θ) 6= ε for all j and θ. But the assumption that σmin(A−

reiθ̂I) ≥ ε + ‖E1‖+ ‖E2‖ for some θ̂ implies that, for all 1 ≤ j ≤ n,

ϕj(θ̂) ≥ ε + ‖E1‖+ ‖E2‖, (3.22)

since for all θ the eigenvalues of R(θ) consist of plus and minus the singular

values of A − reiθI. When we combine (3.21) and (3.22), we see that for all
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1 ≤ j ≤ n,

χj(θ̂) ≥ ε. (3.23)

Now by way of contradiction, suppose that there exists a positive µ ≤ ε −

‖E1‖ − ‖E2‖ such that the pencil P (r, µ)− λQ(r, µ) has a unit eigenvalue, say

eiθ̃. Then

det(D(θ̃)(P (r, µ)− eiθ̃Q(r, µ))) = det(D(θ̃)(P (r, 0)− eiθ̃Q(r, 0))− µI) = 0

meaning that for some j ≤ n, ϕj(θ̃) = µ, since µ is positive. It follows from

(3.21) that χj(θ̃) ≤ µ + ‖E1‖+ ‖E2‖ ≤ ε is satisfied. But for the same j, (3.23)

holds as well. We conclude from the intermediate value theorem that there

exists θ′ satisfying χj(θ
′) = ε. This contradicts the fact that χj(θ) 6= ε for all θ

and j.

In exact arithmetic the circular search fails when the circle of radius r lies

either completely inside or completely outside the pseudospectrum. In the the-

orem above, we need the condition that there exists a point reiθ on the circle

of radius r such that σmin(A− reiθI) ≥ ε + ‖E1‖+ ‖E2‖ in order to distinguish

these two cases. When σmin(A−reiθI) ≥ ε and the derivative of σmin(A−r′eiθ′I)

with respect to θ′ at (r, θ) is not very small, such a point exists on the circle of

radius r in a small neighborhood of θ. In the previous subsection we discussed

how to generate estimates r such that σmin(A− reiθρI) ≥ ε.

Focusing on the implications of Theorem 19, whenever the circular search in

floating point arithmetic fails for some r > ρ(A) and there exists a point (r, θ)

with σmin(A − reiθI) ≥ ε + ‖E1‖ + ‖E2‖, then for all τ ≥ ‖E1‖ + ‖E2‖, the

(ε − τ)-pseudospectrum lies inside the circle of radius r. We accordingly infer

the lower bound

ρε−‖E1‖−‖E2‖(A) ≤ r. (3.24)

78



Now we are ready to find the backward error of the algorithm. First, since the

estimates are increasing in floating point arithmetic, the algorithm is guaranteed

to terminate. At the termination, the estimate value must satisfy the upper

bound (3.20), because it is generated by a radial search at the previous iteration.

Moreover, at the last iteration the circular search fails, meaning that the lower

bound (3.24) on the final estimate holds as well. Combining these bounds and

from the continuity of ρε(A) with respect to ε (see Theorem 7), we see that the

estimate ρ̂ε(A) at the termination satisfies

ρ̂ε(A) = ρε+β(A)

where β = O(δmach(‖A‖ + ε + ρε(A))), i.e. the final estimate is the solution of

a nearby pseudospectral radius problem for the same matrix.

Our analysis above depends on the usage of the proper eigenvalue solvers.

Possible choices for the structured eigenvalue solvers are provided in Appendix

A.

3.1.7 The pseudospectral radius of a matrix polynomial

The ε-pseudospectral radius of P is the largest of the moduli of the points in

the ε-pseudospectrum of P ,

ρε(P, γ) = max{|z| : z ∈ Λε(P, γ)} (3.25)

or, using the characterization (1.15),

ρε(P, γ) = max{|z| : σmin

(
P (z)

pγ(|z|)

)
≤ ε}. (3.26)

The ε-pseudospectral radius of a polynomial can be computed by means of

Algorithm 3, but we need to clarify how to do a circular search and a radial

search on the ε-pseudospectrum of a polynomial.
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An efficient procedure to find the intersection points of the boundary of the

ε-pseudospectrum and a circle of given radius centered at the origin requires

solving a ∗-palindromic eigenvalue problem of double size and double degree

(see §A.4 for the discussions on ∗-palindromic eigenvalue problems).

Theorem 20 (Circular Search on the Polynomial ε-pseudospectrum).

For given positive real numbers r and ε, the matrix P (reiθ)
pγ(r)

has ε as one of its

singular values if and only if the matrix polynomial P(r, ε) =
∑2k

l=0 λlPl(r, ε) has

the eigenvalue eiθ/2 where for l 6= k

Pl(r, ε) =



 0 Kl/2r
l/2

K∗
k−l/2r

k−l/2 0

 if l is even

0 if l is odd,

and

Pk(r, ε) =



 −εpγ(r)I Kk/2r
k/2

K∗
k/2r

k/2 −εpγ(r)I

 if k is even

 −εpγ(r)I 0

0 −εpγ(r)I

 if k is odd.

Proof. The scalar εpγ(r) is a singular value of the matrix P (reiθ) if and only if

the Hermitian matrix  −εpγ(r)I P (reiθ)

(P (reiθ))∗ −εpγ(r)I


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is singular or, by multiplying the leftmost and lower blocks by eikθ/2, −εpγ(r)e
ikθ/2I P (reiθ)

eikθ(P (reiθ))∗ −εpγ(r)e
ikθ/2

 =
2k∑
l=0

eilθ/2Pl(r, ε)

is singular, implying that eiθ/2 is an eigenvalue of P(r, ε).

The unit eigenvalues of P(r, ε) provide us a superset of the intersection points

of the ε-pseudospectrum with the circle of radius r. The point reiθ is an inter-

section point if and only if eiθ/2 ∈ Λ(P(r, ε)) and the equality σmin

(
P (reiθ)
pγ(r)

)
= ε

holds. Remarkably (Pl(r, ε))
∗ = P2k−l(r, ε), meaning the matrix polynomial

P(r, ε) is ∗-palindromic with the unit eigenvalues or the eigenvalues in pairs

(λ, 1/λ̄). We describe how to extract the unit eigenvalues of such matrix poly-

nomials in §A.4.

The radial searches are performed by solving a ∗-even polynomial eigenvalue

problem. Recall that when γk > 0 and σmin

(
Kk

γk

)
≤ ε, the ε-pseudospectrum of

P is unbounded. For the radial searches we require the ε-pseudospectrum to be

bounded.

Theorem 21 (Radial Search on the Polynomial ε-pseudospectrum). Let

θ ∈ [0, 2π) and ε be a positive real scalar such that σmin

(
Kk

γk

)
> ε. Then the

largest r such that σmin

(
P (reiθ)
pγ(r)

)
= ε is the imaginary part of the upper-most

imaginary eigenvalue of the matrix polynomial K(θ, ε) =
∑k

j=0 λjKl(θ, ε) with

K0(θ, ε) =

 −εγ2
0I K∗

0

K0 −εI

 ,

81



for l > 0 when l is odd,

Kl(θ, δ) =

 0 (−1)(l+1)/2iK∗
l e
−ilθ

(−1)(l+1)/2iKle
ilθ 0

 1 ≤ l ≤ k

Kl(θ, δ) =0 k + 1 ≤ l < 2k,

and, when l is even,

Kl(θ, δ) =

 (−1)l/2+1εγ2
l/2I (−1)l/2K∗

l e
−ilθ

(−1)l/2Kle
ilθ 0

 1 ≤ l ≤ k

Kl(θ, δ) =

 (−1)l/2+1εγ2
l/2I 0

0 0

 k + 1 ≤ l ≤ 2k.

Proof. The polynomial P can also be written as

P (reiθ) =
k∑

j=0

(ri)j((−i)jeijθKj).

Therefore by making the substitution x = 0 and replacing Kj by (−i)jeijθKj

in Theorem 5, we deduce that the set of r such that P (reiθ)
pγ(r)

has ε as one of its

singular values is the same as the set of r such that ri is an eigenvalue of K(θ, ε).

Let r∗ be the largest r such that ri is an eigenvalue of K(θ, ε). Since the smallest

singular value of P (reiθ)
pγ(r)

is a continuous function of r and as r goes to infinity in

the limit it approaches σmin

(
Kk

γk

)
> ε, the strict inequality

σmin

(
P (r∗e

iθ)

pγ(r∗)

)
< ε

cannot be satisfied, so the result follows.
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3.2 Numerical radius

For a matrix A the modulus of the point furthest away from the origin in the

field of values

r(A) = max{|w| : w ∈ F (A)} (3.27)

is called the numerical radius. Figure 3.4 shows the point where the numerical

radius of the normally distributed matrix (whose pseudospectrum is displayed

in Figure 3.1) is attained on the field of values. Its benefit in analyzing the

first-order discrete autonomous system is revealed by the upper bound

‖Ak‖ ≤ 2r(A)k. (3.28)

on the norm of the powers of A. This is an immediate consequence of the lower

bound [39]

‖A‖
2
≤ r(A) (3.29)

together with the power inequality r(Ak) ≤ r(A)k [64]. The bound (3.28) en-

sures that if the numerical radius of A is small, the initial growth does not

happen or else it is insignificant. The quantity r(A) captures the norm of A

as well as the asymptotic behavior of the discrete first-order autonomous sys-

tem. Therefore it is a desirable measure for the analysis of the classical iterative

systems for which the error can be represented by first-order recurrences. The

analysis of the classical iterative methods using the field of values and the nu-

merical radius has been studied by Axelsson et.al. [2] and Eiermann [23].

A measure analogous to the numerical radius for continuous-time dynamical

systems is the numerical abscissa, the real component of the rightmost point in

the field of values,

αF (A) = max{Re z : z ∈ F (A)}.
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Figure 3.4: The field of values of the matrix for which the pseudospectra are

illustrated in Figure 3.1. A circle marks the point where the numerical radius

is attained.

Though intuitively computations of the numerical abscissa and the numerical

radius seem equally difficult, the former can be reduced to an eigenvalue problem

[39]:

αF (A) = λmax(H(A)), (3.30)

where H(A) = 1
2
(A + A∗). Multiplying A by eiθ rotates the field of values of

A by θ. Consequently, the numerical radius of A can be viewed as the global

maximum of an optimization problem with a single real variable

r(A) = max
θ∈[0,2π)

αF (Aeiθ). (3.31)

Combining (3.30) and (3.31) yields the following characterization of the numer-

ical radius

r(A) = max
θ∈[0,2π)

λmax(H(Aeiθ)). (3.32)

For the computation of the numerical radius, the most recent method was
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suggested by He and Watson [34]. The method introduced in [34] is based on

finding a local maximum of the eigenvalue optimization problem (3.32) and ver-

ifying whether the local maximum is actually the global maximum by solving

a generalized eigenvalue problem. However, the simple iteration introduced in

[34] to locate a local maximum is not guaranteed to converge. Here we describe

an algorithm that generates estimates converging to the numerical radius in ex-

act arithmetic. The local convergence rate is usually quadratic. The algorithm

is analogous to the Boyd-Balakrishnan algorithm for the H∞ norm [9] and de-

pends on the solution of the generalized eigenvalue problems used for checking

whether a local maximum is the global maximum in [34].

Given the matrix A, let us define f : [0, 2π)→ R by

f(θ) = λmax(H(Aeiθ)). (3.33)

Observe that for each θ ∈ [0, 2π), f(θ) ∈ [−‖A‖, ‖A‖]. Our aim is to find the

global maximum of f .

In our algorithm, we need to determine θ values satisfying f(θ) = r̂, where

r̂ ≥ 0 is a numerical radius estimate. Consider the pencil R(r̂)− λS with

R(r̂) =

 2r̂I −A∗

I 0

 , S =

 A 0

0 I

 .

In [34], it is proved that given a real number r̂ ≥ minθ f(θ), the pencil R(r̂)−λS

has an eigenvalue on the unit circle or is singular if and only if the inequality

r̂ ≤ r(A) holds. Using the theorem in [34], we can decide whether there is a θ

satisfying f(θ) = r̂; however, this theorem does not tell us what those θ values

are. For this purpose we state a slightly modified version.

Theorem 22. The pencil R(r̂)−λS has the eigenvalue eiθ or is singular if and

only if the Hermitian matrix H(Aeiθ) has r̂ as one of its eigenvalues.
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Proof. The equality det(R(r̂)− eiθS) = 0 is satisfied if and only if the matrix 2r̂I − eiθA −A∗

I −eiθI


is singular. Multiplying the bottom block row of this matrix by e−iθ, we see that

this 2n×2n matrix is singular if and only if the n×n matrix eiθA+e−iθA∗−2r̂I is

singular. Therefore, the Hermitian matrix H(Aeiθ) has r̂ as one of its eigenvalues

if and only if the matrix R(r̂)− eiθS is rank-deficient.

From Theorem 22 it follows that, as long as the pencil R(r̂)− λS is regular

for a given r̂, we can solve the generalized eigenvalue problem R(r̂) − λS and

extract the angles of the eigenvalues on the unit circle to obtain a superset of θ

values satisfying f(θ) = r̂. To determine the exact set, for each angle θ′ that is

extracted, the eigenvalues of H(Aeiθ′) need to be computed. Only those angles

for which H(Aeiθ′) has r̂ as the largest eigenvalue should be kept.

Now that we know how to compute the intersection points of a horizontal

line with the graph of f efficiently, we suggest an iterative algorithm. At the jth

iteration the algorithm generates an estimate of the numerical radius, rj, and

a set of open intervals, Ij
1 , I

j
2 . . . Ij

mj , where, as earlier, Ij
mj

may wrap around

the circle. The function f is greater than rj in each interval Ij
l , 1 ≤ l ≤

mj (i.e. for all θ ∈ Ij
l , f(θ) > rj) and exactly rj at the end points of the

intervals. At the jth iteration the new estimate rj is set to the maximum value

attained by the function f at the midpoints of the open intervals produced at

the previous iteration. Then the open intervals at the jth iteration are obtained

using Theorem 22 followed by the maximum eigenvalue checks.

A robust way to determine Ij
1 , I

j
2 , . . . , I

j
mj from the set of intersection points

is to sort the intersection points and to compute f at the midpoint of each
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Algorithm 4 Boyd-Balakrishnan type algorithm for the numerical radius

Call: r̂ ← numrad(A,tol).

Input: A ∈ Cn×n, tol ∈ R+ (tolerance for termination).

Output: r̂ ∈ R+, the estimate value for the numerical radius.

Set j = 0, φ0 = [0] and r0 = 0.

repeat

Update the numerical radius estimate: Compute rj+1 using the for-

mula

rj+1 = max{f(θ) : θ ∈ φj}. (3.34)

Update the set of the midpoints: Find θ values for which f(θ) = rj+1

holds. From these infer the open intervals Ij+1
l , for l = 1, . . . ,mj+1 such

that ∀θ ∈ Ij+1
l , f(θ) > rj+1. Calculate the new set of midpoints

φj+1 = {φj+1
1 , φj+1

2 , . . . , φj+1
mj+1}

where φj+1
l is the midpoint of the open interval Ij+1

l = (ιj+1
l , ζj+1

l ) (with

the possible exception of Ij+1
mj+1 = (ιj+1

mj+1 , 2π) ∪ [0, ζj+1
mj+1) in case the last

interval wraps around)

φj+1
l =


ιj+1
l +ζj+1

l

2
if ιj+1

l < ζj+1
l ,

ιj+1
l +ζj+1

l +2π

2
mod 2π otherwise.

Increment j.

until rj − rj−1 < tol.

return rj

87



adjacent pair of points. The pencil R(r̂) − λS is ∗-symplectic, so just as with

circular searches in the previous section, this problem can be reduced to a

Hamiltonian eigenvalue problem and the eigenvalue solver described in [7] can

be applied (see Appendix A for the details). It is easy to avoid singular pencils,

since for all r̂ greater than the initial estimate r1 = f(0), the pencil R(r̂)−λS is

guaranteed to be regular. Note also that we can compute f accurately because

of the fact that the eigenvalues of symmetric matrices are well-conditioned.

Algorithm 4 is an extension of the Boyd-Balakrishnan algorithm [9] to the

numerical radius. Thus a similar convergence proof applies (based on the fact

that the length of the greatest open interval is at least halved at each iteration).

We believe that a proof along the line of the argument in [9] is applicable to

show that the algorithm converges quadratically to the value r(A) and that the

accuracy analysis in the previous section for the pseudospectral radius can be

extended to Algorithm 4.

3.3 Distance to instability

For discrete systems the boundary of the unstable region is the circumference

of the unit circle. The distance to the closest unstable discrete system and the

ε-pseudospectral radius are closely related. In particular,

βd(A) < ε ⇐⇒ ρε(A) < 1

βd(P, γ) < ε ⇐⇒ ρε(P, γ) < 1

where βd denotes the discrete distance to instability. We have observed in Figure

2.2 that perturbations with norm on the order of 10−7 are sufficient to move

the eigenvalues of the upper triangular matrix onto the unit circle and make it
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unstable. Indeed, its discrete distance to instability is 3.06× 10−8.

For a discrete system the distances to instability of the matrix A and the

matrix polynomial P have the equivalent characterizations

βd(A) = inf
θ∈[0,2π)

σmin(A− eiθI), (3.35)

βd(P, γ) = inf
θ∈[0,2π)

σmin

(
P (eiθ)

pγ(1)

)
. (3.36)

Given an estimate β̂ for the discrete distance to instability, the unit eigenvalues

eiθ of the ∗-symplectic pencil P (1, β̂) − λQ(1, β̂) (defined by (3.11)) and the

unit eigenvalues eiθ/2 of the ∗-palindromic matrix polynomial P(1, β̂) (defined

in Theorem 20) provide us supersets of the θ values satisfying the equalities

σmin(A− eiθI) = β̂,

σmin

(
P (eiθ)

pγ(1)

)
= β̂.

Therefore Algorithm 2 can be used to compute βd(A) and βd(P, γ). Notice that

for the discrete distance to instability of the matrix polynomial P , we can simply

ignore the scaling γ as the polynomial pγ(|eiθ|) = pγ(1) = ‖γ‖ is constant. This

in turn implies that it does not matter which coefficients are allowed to vary.

3.4 Numerical examples

The first subsection below focuses on the ratio ρε(A)−1
ε

as a function of ε for

the upper triangular matrix of §1.3.1 and a scaled Grcar matrix. We concluded

from the analysis in §3.1.6 that the algorithm for the ε-pseudospectral radius

under rounding errors returns the (ε + ζ)-pseudospectral radius for some ζ =

O(εmach(‖A‖+ρε(A)+ε)). The same conclusion can be drawn about the accuracy

of the radial search. The example in §3.4.2 illustrates that indeed the radial
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search can fail. §3.4.3 shows the variation in the running times of the algorithms

as the size of the input matrices is increased. In §3.4.4 the extensions of the

algorithms for matrix polynomials are run on sample examples. For all of the

algorithms in this chapter we observe fast convergence in practice similar to the

convergence of the algorithms in the previous chapter.

3.4.1 Bounding the discrete Kreiss constant

We have seen in the previous chapter that for the upper triangular matrix with

the entries alj = −0.3, (l ≤ j) the norm of eAt decays monotonically, which is

consistent with the continuous Kreiss constant being equal to one and attained

at∞. We see the opposite picture when we consider the discrete Kreiss constant

Kd(A) = sup
ε>0

ρε(A)− 1

ε
. (3.37)

In Figure 3.5 on the top we plot the ratio ρε−1
ε

as a function of ε. The ε-

pseudospectral radius for various ε is computed for the upper triangular matrix

by Algorithm 3. Unlike the continuous Kreiss constant, the discrete Kreiss

constant is close to 6 × 105 and attained around ε = 10−7, a value that is

slightly larger than the discrete distance to instability of the upper triangular

matrix. Also for the Grcar matrix with entries equal to 0.4 on the diagonal,

first, second and third superdiagonal and −0.4 on the subdiagonal, the similar

plot in Figure 3.5 at the bottom indicates a transient peak that is not as big in

magnitude as the transient peak of the upper triangular matrix. In both of the

plots when ρε < 1, the ratio is replaced by zero.
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Figure 3.5: The ratio (ρε − 1)/ε is plotted as a function of ε for the upper

triangular matrix on the top and for the Grcar matrix at the bottom.
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3.4.2 Accuracy of the radial search

The analysis in §3.1.6 showed that in finite precision we perform radial searches

on nearby pseudospectra. In particular, Theorem 18 implies that instead

of the quantity ηε(θ) we retrieve ηε+ζ(θ) under rounding errors, where ζ =

O(εmach(‖A‖ + ρε(A) + ε)). The trouble in performing the radial search accu-

rately is that ηε(θ) does not depend continuously on ε.

Consider the example in Figure 3.6, where the curve shown is the boundary

of the ε-pseudospectrum for the 50× 50 Demmel example (available in EigTool

[73]), shifted by 2I, for ε = 10−0.9537. The ε-pseudospectrum contains all of the

points inside the outer closed curve except the points inside the inner closed

curve. For the particular ε value chosen, the inner curve is almost tangent to

the outer curve at (x, y) = (0, 22.9399). However, when we take a closer look

at that region (around (0, 22.9399)) in Figure 3.6 on the right, we see that the

closed curves are actually disjoint.

In exact arithmetic the radial search in the direction θ = 0 must return the

modulus of the point on the outer closed curve. But the radial search in finite

precision produces the modulus of a point on the inner curve as illustrated in

Figure 3.7. The ray in the direction θ = 0 intersects the ε-pseudospectrum

boundary at three distinct points. Unfortunately, the value returned by the

radial search is the smallest among the moduli of these three points which is

equal to 1.6571, while the largest of the moduli is 22.9399. While this might

seem alarming, observe that if we slightly decrease ε, the two closed curves

merge and the ray in the direction θ = 0 intersects the ε-pseudospectrum at

only one point, approximately r = 1.6571, close to what we retrieved in the

presence of rounding errors.

92



Figure 3.6: The ε-pseudospectrum of the 50× 50 Demmel example shifted by

2I and ε = 10−0.9537 consist of the points inside the outer closed curve excluding

the points inside the inner curve. On the right a close-up view of the region

where the inner curve is close to being tangent to the outer curve is shown.
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Figure 3.7: The radial search with θ = 0 on the Demmel example fails to

return an accurate result because of rounding errors. On the right a close-up

view of the leftmost intersection is shown. The result of the radial search in

finite precision is the leftmost intersection point marked with a blue asterisk.
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Notice that the radial search is a generalization of the horizontal search used

in the computation of the ε-pseudospectral abscissa. Indeed the radial search

above is the same as a horizontal search, since the search is performed in the

direction θ = 0. Even though the dependence of ηε(θ) on ε is discontinuous, the

ε-pseudospectral radius is computed accurately as it is a continuous function of

ε and, as we argued in §3.1.6, the algorithm is backward stable.

3.4.3 Running times

We tested the algorithms presented in this chapter for Grcar matrices of various

sizes available through EigTool with ε = 0.1. The running times of Algorithm

3, Algorithm 4 and the Boyd-Balakrishnan algorithm for the discrete distance

to instability are listed in Table 3.1, Table 3.2 and Table 3.3, respectively. The

input Grcar matrices to the algorithm for the discrete distance to instability are

multiplied by 0.4 to ensure that all of their eigenvalues lie inside the unit circle.

In the tables we again include both the total running times and the average

running times per iteration in seconds. The algorithms for the numerical radius

and the discrete distance to instability are slightly faster than the algorithm for

the pseudospectral radius, but the ratio of the running times for the algorithm

for the pseudospectral radius and the algorithm for the numerical radius (or the

algorithm for the discrete distance to instability) can be bounded by a constant

for all sizes. Note also that when we compare the running times of the algorithms

for the pseudospectral radius and abscissa (see §2.3.3), we observe that the

algorithm for the pseudospectral abscissa requires less time on matrices of same

size. This is mainly due to fact that we have to solve generalized eigenvalue

problems in the algorithm for the pseudospectral radius as opposed to standard
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Size Total running time in secs Running time per iteration in secs.

10 0.090 0.018

20 0.190 0.038

40 0.900 0.150

80 6.450 1.075

160 52.440 10.488

320 575.270 115.054

Table 3.1: The total and average running times in seconds per iteration of

Algorithm 3 on Grcar examples of various size and ε = 10−1.

eigenvalue problems for the pseudospectral abscissa.

3.4.4 Extensions to matrix polynomials

We apply the extension of Algorithm 3 to matrix polynomials in order to retrieve

the ε-pseudospectral radius of Q defined by (2.23) with γ = [1 1 1] for ε = 0.1,

0.3, 0.5, 0.7, 0.9 and with γ = [0.1 1 0.1] for ε = 1, 3, 5, 7, 9. For each γ and ε

the point where the ε-pseudospectral radius is attained is marked with a black

circle in Figure 3.8.
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Size Total running time in secs Running time per iteration in secs.

10 0.070 0.012

20 0.120 0.024

40 0.490 0.082

80 3.160 0.527

160 40.660 6.777

320 406.580 81.316

Table 3.2: The total and average running time per iteration of Algorithm 4 on

Grcar examples of various size.

Size Total running time in secs Running time per iteration in secs.

10 0.070 0.009

20 0.180 0.023

40 0.560 0.080

80 3.270 0.467

160 18.430 6.143

320 147.440 73.720

Table 3.3: The total and average running time per iteration of the Boyd-

Balakrishnan algorithm in §3.3 for the discrete distance to instability on Grcar

examples of various size.
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Figure 3.8: The points where the ε-pseudospectral radii are attained for the

quadratic matrix polynomial Q defined by (2.23) are marked with black circles

on the ε-pseudospectra with the scaling γ = [1 1 1] at the top and γ = [0.1 1 0.1]

at the bottom. The asterisks indicate the location of the eigenvalues.
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The quadratic matrix polynomial Q̂(λ) =
∑2

j=0 λjQ̂j with

Q̂2 =


−27 −81 −162 −162

6.75 0 0 0

0 6.75 0 0

0 0 6.75 0


, Q̂1 =


6 4.5 3 1.5

4.5 4.5 3 1.5

0 3 3 1.5

0 0 1.5 1.5


and

Q̂0 =


−i −0.5i −1/3i −0.25i

π −i −1/3i −1/3i

i π −i −0.5i

0.5i i π −i


(3.38)

has all of its eigenvalues inside the unit circle. We compute its discrete dis-

tance instability with the scalings γ = [1 1 1] and γ = [0.1 1 0.1] using the

Boyd-Balakrishnan algorithm which returns us the values 0.368 and 0.631, re-

spectively. The ratio of the computed values 0.631/0.368 is equal to the ratio

of the norms of the scaling vectors ‖[1 1 1]‖/‖[0.1 1 0.1]‖ =
√

3/1.02. (See the

discussion at the end of §3.3.) In Figure 3.9 we also provide the plots of the

function h(θ) = σmin[P (eiθ)]/pγ(1) for both of the scalings. Asterisks are used

to mark the global minimizers of the functions.
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Figure 3.9: Graph of the function h(θ) = σmin(P (eiθ))/pγ(1) for the quadratic

matrix polynomial Q̂ with γ = [1 1 1] (dashed red curve) and γ = [0.1 1 0.1]

(solid blue curve) over the interval [0, 2π).
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Chapter 4

Distance to Uncontrollability for

First-Order Systems

For the first-order system

x′(t) = Ax(t) + Bu(t), (4.1)

the distance to uncontrollability defined by (1.20) has been shown to be equiv-

alent to the singular value minimization problem

τ(A, B) = inf
λ∈C

σmin[A− λI B] (4.2)

by Eising [24, 25]. Above and throughout this thesis for a rectangular matrix

X ∈ Cn×n+m, σmin(X) denotes the nth largest singular value of X. What makes

the problem (4.2) considerably more challenging than (1.13), which is used for

the computation of the distance to instability, is the necessity to optimize over

the whole complex plane instead of over the imaginary axis or unit circle.

In this chapter we present an algorithm for low-precision approximation of

the distance to uncontrollability in §4.2 and another one for high-precision ap-

proximation in §4.3. Both of the algorithms exploit the characterization (4.2).
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The algorithm for low-precision approximation is a progressive algorithm work-

ing on a grid. To compute an interval of length tol containing the distance to

uncontrollability, it requires O(n3

tol
) operations. The algorithm for high-precision

approximation modifies the algorithms by Gu [31] and Burke, Lewis and Over-

ton [13] to reduce the overall complexity to O(n4) on average from O(n6). The

effectiveness and reliability of the new methods are demonstrated by the numer-

ical examples in §4.4. To facilitate the presentation of the algorithms in the next

section, we first review the bisection idea for the distance to uncontrollability

due to Gu and the trisection variant of Burke, Lewis and Overton, which allows

approximation of the distance to uncontrollability for arbitrary precision.

4.1 Bisection and trisection

In [31] Gu introduced a bisection algorithm built upon the capability to verify

one of the inequalities

τ(A, B) ≤ δ1 (4.3)

and

τ(A, B) > δ2 (4.4)

for given δ1 > δ2. Notice that both of the inequalities may be satisfied in which

case Gu’s scheme in [31] returns information about only one of the inequalities.

Gu’s bisection algorithm (Algorithm 5) keeps only an upper bound on the dis-

tance to uncontrollability. It refines the upper bound until condition (4.4) is

satisfied. At termination the distance to uncontrollability lies within a factor of

2 of δ1, with δ1/2 < τ(A, B) ≤ 2δ1.

To obtain the distance to uncontrollability with better accuracy, Burke,
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Algorithm 5 Gu’s bisection algorithm for the distance to uncontrollability

Call: δ1 ← Bisection(A,B).

Input: A ∈ Cn×n and B ∈ Cn×m with m ≤ n.

Output: A scalar δ1 satisfying δ1/2 < τ(A, B) ≤ 2δ1.

Initialize the estimate as δ1 ← σmin([A B])/2.

repeat

δ2 ← δ1
2
.

Check which one of (4.3) and (4.4) holds.

if (4.3) is verified then

δ1 ← δ2.

done ← FALSE.

else

% Otherwise (4.4) is verified.

done ← TRUE.

end if

until done = TRUE

Return δ1.
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Figure 4.1: The trisection algorithm keeps track of an interval [L, U ] containing

τ(A, B). At each iteration either L is updated to δ2 or U is updated to δ1.

Lewis and Overton [13] proposed a trisection variant. The trisection algorithm

(Algorithm 6) bounds τ(A, B) by an interval [L, U ] and reduces the length of

this interval by a factor of 2
3

at each iteration (see Figure 4.1). Thus it can

compute τ(A, B) to any desired accuracy.

What is crucial for both of the algorithms is the verification of (4.3) or (4.4).

Our first strategy for the verification described in §4.2 is based on a grid and

appropriate for low-precision estimation. The second strategy in §4.3 was also

discussed in [32] and improves Gu’s verification scheme used in [31] and [13],

which requires the solution of eigenvalue problems of size O(n2) at each iteration

and hence has complexity O(n6). We replace these eigenvalue problems with

ones that can be efficiently solved by means of the real eigenvalue extraction

technique that we introduce in §4.3.3, reducing the overall complexity to O(n4)

on average and O(n5) in the worst case.

4.2 Low-precision approximation of the distance

to uncontrollability

The idea of manipulating a grid for the computation of the distance to un-

controllability originates with Byers [16]. Using the fact that singular values

are globally Lipschitz with Lipschitz constant one (from Weyl’s Theorem, [38,

104



Algorithm 6 Trisection algorithm of Burke, Lewis and Overton for the distance

to uncontrollability

Call: [L, U ]← Trisection(A,B,ε).

Input: A ∈ Cn×n, B ∈ Cn×m with m ≤ n, and a tolerance

ε > 0.

Output: Interval [L, U ] satisfying L < τ(A, B) ≤ U and U −

L < ε.

Initialize the lower bound as L← 0 and the upper bound as U ← σmin([A B]).

repeat

δ1 ← L + 2
3
(U − L)

δ2 ← U + 1
3
(U − L)

Check which one of (4.3) and (4.4) holds.

if (4.3) is verified then

U ← δ1.

else

% otherwise (4.4) is verified.

L← δ2.

end if

until U − L < ε

Return [L, U ].
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Theorem 4.3.1]), it is straightforward to deduce

|σmin[A− λ1I B]− σmin[A− λ2I B]| ≤ |λ1 − λ2| (4.5)

for any complex pair λ1, λ2, that is the change in the minimum singular value

is less than the norm of the perturbation (λ1 − λ2)I. This brings the idea of

computing σmin[A− λI B] at various λ on a 2-D grid in the complex plane. If

the distance between two adjacent grid points is h, the point in the complex

plane where τ(A, B) is attained is at most h√
2

away from one of the grid points.

Therefore τ(A, B) cannot differ from the minimum of the minimum singular

values over the grid points by more than h√
2
.

Indeed as the one-variable optimization problem

s(α) = inf
β∈R

σmin[A− (α + βi)I B],

can be solved efficiently using a variant of the Boyd-Balakrishnan algorithm [9]

for the distance to instability, we may work on a 1-D grid instead of a 2-D grid.

Let α∗ denote the real part of a point in the complex plane where τ(A, B) is

attained, i.e.,

τ(A, B) = σmin[A− (α∗ + β∗i)I B] (4.6)

for some β∗ ∈ R and let us assume a priori knowledge of a ν satisfying

ν ≥ |α∗|. (4.7)

A well known bound is ν = 2(‖A‖ + ‖B‖), but it may be possible to come up

with tighter bounds for special cases. For any positive real h it follows from

(4.5) that

|τ(A, B)− inf
ν≥|jh|,j∈Z

s(hj)| ≤ h/2,
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where the optimization of s is performed over a 1-D grid with two consecutive

points differing by h. The inequality above must hold because the point where

τ(A, B) is attained is at a distance less than or equal to h/2 from one of the

vertical lines α = jh, ν ≥ |jh|. These ideas are further elaborated in [16, 26, 33].

The trisection algorithm we present next benefits from a 1-D grid to verify

either the upper bound (4.3) or the lower bound (4.4) at each iteration. The

grid becomes finer as the algorithm focuses on the δ-level set of the function (δ

changes from iteration to iteration)

g(λ) = σmin[A− λI B]

and checks for points in this set whose real parts differ by smaller quantities at

the later iterations.

We define the vertical cross section at α of the δ-level sets of g(λ) as

Sδ(α) = {β : g(α + βi) = δ}. (4.8)

The next theorem states that for all α ∈ [α∗− (δ− τ(A, B)), α∗+(δ− τ(A, B))]

the set Sδ(α) is nonempty.

Theorem 23. Define α∗ by (4.6) and assume δ > τ(A, B) is given. For any

α ∈ [α∗ − (δ − τ(A, B)), α∗ + (δ − τ(A, B))] there exists a real number βα such

that the equality

σmin[A− (α + βαi)I] = δ

holds.

Proof. The function σmin[A− (α′ + β∗i)I B] approaches ∞ as α′ →∞, where

β∗ is defined by (4.6). By the continuity of σmin as a function of α′, there exists

a positive µ′ such that

σmin[A− (α∗ + µ′ + β∗i)I B] = δ.
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Let µ1 be the smallest positive µ′ satisfying the equation above. Similarly, let

µ2 be the smallest positive µ′ satisfying σmin[A− (α∗−µ′ +β∗i)I B] = δ. Note

that for all α′ ∈ [α∗ − µ2, α
∗ + µ1], the inequality

σmin[A− (α′ + β∗i)I B] ≤ δ (4.9)

holds. Furthermore from (4.5) we deduce µ1 ≥ δ−τ(A, B) and µ2 ≥ δ−τ(A, B).

Now choose any α such that α∗ − (δ − τ(A, B)) ≤ α ≤ α∗ + (δ − τ(A, B)).

Since α lies in the interval [α∗ − µ2, α
∗ + µ1] it follows from (4.9) that

σmin[A− (α + β∗i)I B] ≤ δ. (4.10)

As limβ→∞ σmin[A− (α+βi)I B] =∞, the continuity of the minimum singular

value as a function of β together with (4.10) imply that for some βα ≥ β∗

σmin[A− (α + βαi)I B] = δ,

as desired.

Whether the set Sδ(α) is empty or not can be verified by solving the Hamil-

tonian eigenvalue problem

D(α, δ) =

 −(A∗ − αI) δI

BB∗

δ
− δI A− αI

 . (4.11)

We call this verification the vertical search at α. The next theorem, first proved

in [16], relates the eigenvalues of D(α, δ) and the points in the set Sδ(α).

Theorem 24. Given a real α and a real δ 6= 0, one of the singular values of

[A− (α + βi)I B] is equal to δ if and only if βi is an eigenvalue of D(α, δ).
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Proof. The nonnegative scalar δ is a singular value of [A− (α + βi)I B] if and

only if the equations

[A− (α + βi)I B]

 v1

v2

 = δu

 A∗ − (α− βi)I

B∗

u = δ

 v1

v2



are satisfied simultaneously by some unit u ∈ Cn and

 v1

v2

 ∈ Cn+m. From

the bottom block of the second equation we have v2 = B∗

δ
u. By plugging B∗

δ
u

into v2 in the first equation and combining it with the upper block of the second

equation, we obtain −A∗ + (α− βi)I δI

BB∗/δ − δI A− (α + βi)I

 u

v1

 = 0,

which means that iβ is an eigenvalue of D(α, δ) as desired.

If βi ∈ Λ(D(α, δ)), then the theorem above implies g(α + βi) ≤ δ and we

deduce from the intermediate value theorem that for some β′ ≥ β the equality

g(α + β′i) = δ holds, so the vertical search at α succeeds. Otherwise, if the

matrix D(α, δ) does not have any imaginary eigenvalues, g(α + βi) > δ for all

β, meaning that the vertical search fails.

Putting together all the tools presented, we come up with a verification

scheme to deduce one of the inequalities (4.3) and (4.4). Let δ = δ1 and η =

2(δ1− δ2). We apply the vertical search at −ν,−ν + η, . . . ,−ν + d2ν
η
eη. (Recall

that ν is an upper bound on α∗ in absolute value.) If any of the vertical searches

returns an intersection point, then using definition (4.2) we can deduce the upper

109



bound

δ1 = δ ≥ τ(A, B).

If none of the vertical searches returns an intersection point, then suppose that

the closest vertical line among α = −ν + jη, j = 0, . . . , d2ν
η
e to α∗ is α = α′.

Clearly

|α′ − α∗| > δ − τ(A, B) (4.12)

because otherwise according to Theorem 23 the set Sδ(α
′) would not be empty

as verified. Furthermore, since α′ is the closest vertical line to α∗, we have

|α′ − α∗| ≤ η/2. (4.13)

Combining the inequalities (4.12) and (4.13) gives us

δ − τ(A, B) < η/2

or equivalently

δ2 < τ(A, B).

Therefore Algorithm 6 is applicable. Given an interval [L, U ] containing the

distance to uncontrollability, we set δ1 = 2(U − L)/3 and δ2 = (U − L)/3 and

apply the verification scheme described. If any of the vertical searches succeeds

we can update the upper bound U to δ1. Otherwise, we refine the lower bound

L to δ2. So in either case, the interval length U − L is reduced by a factor of

two-thirds.

Clearly each iteration costs O(ν
η
n3), since we perform the vertical search at

d2ν
η
e + 1 different positions. For higher precision we need to set η smaller, and

therefore the later iterations are more expensive.
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4.3 High-precision approximation of the dis-

tance to uncontrollability

Unlike the methods in the previous section, Gu’s bisection method [31] and its

trisection variant by Burke, Lewis and Overton [13] are not based on a grid. The

computational cost of each iteration is fixed and only depends on the size of the

input matrix for both of the algorithms. At each iteration for the verification

of one of (4.3) and (4.4) they require the extraction of the real eigenvalues of a

pencil of size 2n2×2n2 and the imaginary eigenvalues of matrices of size 2n×2n.

Computationally the verification scheme is dominated by the extraction of the

real eigenvalues of the pencil of size 2n2× 2n2, which requires O(n6) operations

if the standard QZ algorithm is used [30, Section 7.7].

In this section we present an alternative verification scheme for comparisons

(4.3) and (4.4). In this new verification scheme we still need to find real eigen-

values of 2n2×2n2 matrices, so there is no asymptotic gain over Gu’s verification

scheme when we use the QR algorithm. Nevertheless, we show that the inverse

of these 2n2 × 2n2 matrices shifted by a real number times the identity can be

multiplied onto a vector efficiently by solving a Sylvester equation of size 2n

with a cost of O(n3). Therefore, given a real number as the shift, by applying

shifted inverse iteration or a shift-and-invert preconditioned Arnoldi method the

closest eigenvalue to the real number can be obtained by performing O(n3) op-

erations. Motivated by the fact that we only need real eigenvalues, we provide

a divide-and-conquer type algorithm that scans the real axis to find the desired

eigenvalues. The approach requires an upper bound on the norm of the input

matrix (of size 2n2 × 2n2) as a parameter. Choosing this parameter arbitrarily
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large does not affect the efficiency of the algorithm much, though it may cause

accuracy problems. We prove that extracting all of the real eigenvalues with the

divide-and-conquer approach requires O(n4) operations on average and O(n5)

operations in the worst case.

In §4.3.1 we review Gu’s scheme for verifying which one of (4.3) and (4.4)

holds. In §4.3.2 we present our modified eigenvalue problem for the same pur-

pose and show how the closest eigenvalue to a given point for the modified prob-

lem can be computed efficiently. We introduce the divide-and-conquer approach

for real eigenvalue extraction based on the closest eigenvalue computations to

various points on the real axis in §4.3.3. In §4.3.4 we discuss some details

related to the computation of the distance to uncontrollability using the real

eigenvalue extraction technique, including methods to solve Sylvester equations

and accuracy issues.

4.3.1 Gu’s verification scheme

In [31] and [13] the determination of which one of the inequalities (4.3) and (4.4)

holds is based on the following theorem [31], which is a consequence of (4.5).

Theorem 25 (Gu [31]). Assume that δ > τ(A, B) is given. Given an η ∈

[0, 2(δ − τ(A, B))], there exist at least two pairs of real numbers α and β such

that

δ ∈ σ ([A− (α + βi)I, B]) and δ ∈ σ ([A− (α + η + βi)I, B]) , (4.14)

where σ(·) denotes the set of singular values of its argument.

Theorem 23, on which the verification scheme of the previous section is

based, is inspired by Theorem 25, but neither of the theorems is a generalization
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of the other. In Theorem 23 we proved the existence of an interval of length

2(δ−τ(A, B)) containing α∗ (the real part of the point where τ(A, B) is attained)

exactly in the middle, such that for all α′ in the interval, the set of intersection

points of the δ-level set of g(λ) = σmin[A− λI B] and the vertical line α = α′,

Sδ(α
′) is nonempty. On the other hand Theorem 25 states that for all η ≤

2(δ− τ(A, B)) there exist two distinct horizontal lines whose intersections with

the δ-sublevel set of g(λ) contain line segments of length η.

Suppose we set δ1 = δ and δ2 = δ − η/2. The theorem above implies

that, when no pair satisfying (4.14) exists, the inequality η > 2(δ − τ(A, B))

is satisfied, so condition (4.4) holds. On the other hand, when a pair exists,

then by definition (4.2) we can conclude (4.3). Therefore if we have a procedure

to verify the existence of a pair α and β satisfying (4.14) for a given δ and

η, Algorithm 6 can be used to retrieve the distance to uncontrollability to an

arbitrary precision.

By means of Gu’s test which we describe next we can numerically verify

whether a real pair of solutions to (4.14) exists. Equation (4.14) in Theorem 25

implies that there exist non-zero vectors

 x

y

, z,

 x̂

ŷ

, and ẑ such that

[A− (α + βi)I B]

 x

y

 = δz,

 A∗ − (α− βi)I

B∗

 z = δ

 x

y

 , (4.15a)

[A− (α + η + βi)I B]

 x̂

ŷ

 = δẑ,

 A∗ − (α + η − βi)I

B∗

 ẑ = δ

 x̂

ŷ

 .

(4.15b)

113



These equations can be rewritten as
−δI A− αI B

A∗ − αI −δI 0

B∗ 0 −δI




z

x

y

 = βi


0 I 0

−I 0 0

0 0 0




z

x

y

 (4.16a)

and
−δI A− (α + η)I B

A∗ − (α + η)I −δI 0

B∗ 0 −δI




ẑ

x̂

ŷ

 = βi


0 I 0

−I 0 0

0 0 0




ẑ

x̂

ŷ

 .

(4.16b)

Furthermore using the QR factorization B

−δI

 =

 Q11 Q12

Q21 Q22

 R

0

 (4.17)

these problems can be reduced to standard eigenvalue problems of size 2n× 2n,

i.e. the eigenvalues of the pencils in (4.16a) and in (4.16b) are the same as the

eigenvalues of the matrices A− αI BQ22 − δQ12

δQ−1
12 −Q−1

12 (A∗ − αI)Q12

 (4.18a)

and  A− (α + η)I BQ22 − δQ12

δQ−1
12 −Q−1

12 (A∗ − (α + η)I)Q12

 (4.18b)

respectively. In order for (4.14) to have at least one real solution (α, β), these

two matrices must share a common imaginary eigenvalue βi. This requires a

2n2× 2n2 generalized eigenvalue problem to have a real eigenvalue α (see [31]).

For a given δ and η, we check whether the latter generalized eigenvalue problem

has any real eigenvalue α. If it does, then we check the existence of a real
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eigenvalue α for which the matrices (4.18a) and (4.18b) share a common pure

imaginary eigenvalue βi. There exists a pair of α and β satisfying (4.14) if and

only if this process succeeds.

4.3.2 Modified fast verification scheme

It turns out that Gu’s verification scheme can be simplified. In this modified

scheme the 2n2×2n2 generalized eigenvalue problems whose real eigenvalues are

sought in Gu’s scheme are replaced by 2n2× 2n2 standard eigenvalue problems,

and the 2n× 2n matrices (4.18a) and (4.18b) whose imaginary eigenvalues are

sought are replaced by the matrices D(α, δ) and D(α + η, δ) defined by (4.11)

of size 2n× 2n.

The simplification of the problem of size 2n2×2n2 is significant, as the inverse

of the new matrix of size 2n2 × 2n2 (whose real eigenvalues are sought) times a

vector can be computed in a cheap manner by solving a Sylvester equation of

size 2n × 2n with a cost of O(n3). As a consequence the closest eigenvalue to

a given complex point can be computed efficiently by applying shifted inverse

iteration or shift-and-invert Arnoldi. We discuss how this idea can be extended

to extract all of the real eigenvalues with an average cost of O(n4) and a worst-

case cost of O(n5), reducing the running time of each iteration of the bisection

or the trisection algorithm asymptotically.

New generalized eigenvalue problem

If there exists a pair (α, β) satisfying (4.14), the Hamiltonian matrices D(α, δ)

and D(α+η, δ) must share the eigenvalue iβ. The Hamiltonian property implies

that the matrices D(α+η, δ) and −D(α+η, δ)∗ have the same set of eigenvalues.
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For D(α, δ) and D(α + η, δ) or equivalently D(α, δ) and −D(α + η, δ)∗ to share

a common eigenvalue βi, the matrix equation

D(α, δ)X + X(D(α + η, δ))∗ = 0 (4.19)

D(0, δ)X + X(D(η, δ))∗ = α

 −I 0

0 I

X + X

 −I 0

0 I

(4.20)

must have a nonzero solution X [39, Theorem 4.4.6]. Let

X =

 X11 X12

X21 X22

 .

Notice that in (4.20) all the terms depending on α are collected on the right-

hand side. Therefore writing the matrix equation (4.20) in a vector form yields

the generalized eigenvalue problem

(F(δ, η)− αG)


vec(X11)

vec(X12)

vec(X21)

vec(X22)


= 0, (4.21)

where

F(δ, η) =


−A∗

1 − AT
2 δI δI 0

BT
2 −A∗

1 + Ā2 0 δI

B1 0 A1 − AT
2 δI

0 B1 BT
2 A1 + Ā2


, G =


−2I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2I


,

vec(X) denotes the vector formed by stacking the column vectors of X, A1 =

I ⊗A, A2 = (A− ηI)⊗ I, B1 = I ⊗ B̂, B2 = B̂ ⊗ I and Ā2 denotes the matrix

obtained by taking the complex conjugate of A2 entrywise. The block rows

of (4.21) are obtained by equating the left-hand sides and right-hand sides in
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(4.20) block by block in vector form. The first, second, third and final block

rows in (4.21) correspond to the upper left block, upper right block, lower left

block and lower right block in (4.20) in vector form. For this derivation we used

the property vec(AXB) = (BT ⊗ A)vec(X).

Half of the eigenvalues of the pencil F(δ, η) − G are at infinity. Deflating

the infinite eigenvalues, or equivalently eliminating the variables vec(X12) and

vec(X21) in (4.21), leads us to the standard eigenvalue problem

Av = αv, (4.22)

where

A =
1

2

[ A∗
1 + AT

2 0

0 A1 + Ā2

]
−

[
−δI −δI

B1 BT
2

][
−A∗

1 + Ā2 0

0 A1 −AT
2

]−1 [
BT

2 δI

B1 δI

] .

(4.23)

It should be noted that the deflation of infinite eigenvalues and the con-

version of the generalized eigenvalue problem F(δ, η) − λG into the standard

eigenvalue problem (4.22) are possible under the assumption that A1 − AT
2 is

nonsingular, or equivalently, A does not have two eigenvalues that differ by η.

If A has two eigenvalues whose difference is close to η, the Kronecker product

matrixA is ill-conditioned. We discuss accuracy issues at the end of this section.

For the verification of a pair α and β satisfying (4.14), we first solve the

eigenvalue problem (4.22). If there exists a real eigenvalue α, the matrices

D(α, δ) and D(α + η, δ) share an eigenvalue but not necessarily an imaginary

one. Therefore at a second step for each real α ∈ Λ(A) we must check whether

the common eigenvalue of D(α, δ) and D(α+η, δ) is imaginary. A pair satisfying

(4.14) exists if and only if both of the steps succeed.
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Inverse iteration

The eigenvalue problem in (4.22) is a simplified version of the generalized eigen-

value problem in [31]. This is a problem of finding the real eigenvalues of a

nonsymmetric matrix. The implementation [14] of the trisection algorithm in-

troduced in [13] uses the Matlab function eig to compute the eigenvalues of

that generalized eigenvalue problem with a cost of O(n6) and therefore does

not exploit the fact that we only need the real eigenvalues of the generalized

problem. In §4.3.3 we discuss a divide-and-conquer approach to extract the

real eigenvalues of a given matrix X that is preferable to eig when the closest

eigenvalue of X to a given point can be obtained efficiently.

In this section we show how one can compute the closest eigenvalue of A

to a given point in the complex plane in O(n3) time. This is due to the fact

that given a shift ν and a vector u ∈ C2n2
, the multiplication (A− νI)−1u can

be performed by solving a Sylvester equation of size 2n × 2n which is derived

next. Therefore, shifted inverse iteration or shift-and-invert Arnoldi can locate

the closest eigenvalue efficiently.

We start with the simplified case v = A−1u, where u =

 u1

u2

, v =

 v1

v2


and u1, u2, v1, v2 ∈ Cn2

. We essentially reverse the derivation of the eigenvalue

problem (4.22). We need to solve the linear system

A

 v1

v2

 =

 u1

u2

 . (4.24)

Making the substitution

w =

 w1

w2

 =

 −A∗
1 + Ā2 0

0 A1 − AT
2

−1  BT
2 δI

B1 δI

 v1

v2

 (4.25)
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in (4.24) yields A∗
1 + AT

2 0

0 A1 + Ā2

 v1

v2

−
 −δI −δI

B1 BT
2

 w1

w2

 = 2

 u1

u2

 . (4.26)

By combining (4.25) and (4.26) we obtain a linear system of double size,
A∗

1 + AT
2 δI δI 0

BT
2 A∗

1 − Ā2 0 δI

B1 0 −A1 + AT
2 δI

0 −B1 −BT
2 A1 + Ā2




v1

w1

w2

v2


= 2


u1

0

0

u2


. (4.27)

Notice that the matrix on the left-hand side of the equation above when the

signs of A1 and A2 are negated and the sign of the bottom block row is negated

is same as F(δ, η). The matrix F(δ, η) is the left-hand side of (4.20) in vectoral

form. Therefore if we reverse the procedure by introducing

u =

 vec(U1)

vec(U2)

 , v =

 vec(V1)

vec(V2)

 , w =

 vec(W1)

vec(W2)

 ,

the resulting matrix equation must be A∗ δI

B̂ −A

Z + Z

 A− ηI B̂

δI −A∗ + ηI

 = 2

 U1 0

0 −U2

 , (4.28)

that is the signs of A and A− ηI as well as the sign of the lower right block of

the matrix on the left-hand side in (4.20) are negated, where

Z =

 V1 W1

W2 V2

 . (4.29)

The derivation easily extends to the multiplication (A− νI)−1u for a given

shift ν. Starting from the linear system

(A− νI)

 v1

v2

 =

 u1

u2

 , (4.30)
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and applying the same steps, we end up with
A∗

1 + AT
2 − 2νI δI δI 0

BT
2 A∗

1 − Ā2 0 δI

B1 0 −A1 + AT
2 δI

0 −B1 −BT
2 A1 + Ā2 − 2νI




v1

w1

w2

v2


= 2


u1

0

0

u2


.

(4.31)

In terms of a matrix equation, we obtain A∗ − νI δI

B̂ −A + νI

Z+Z

 A− (η + ν)I B̂

δI −A∗ + (η + ν)I

 = 2

 U1 0

0 −U2


(4.32)

where Z is as defined in (4.29). Equation (4.32) is identical to (4.28) except

that A is replaced by A−νI in (4.28). It is a Sylvester equation of size 2n×2n.

Therefore Z from which we can retrieve v = (A− νI)−1u can be computed by

using a Sylvester equation solver (such as the lapack routine dtrsyl [1]).

4.3.3 Divide-and-conquer algorithm for real eigenvalue

extraction

In this section we seek the real eigenvalues of a given matrix X ∈ Cq×q. The

divide-and-conquer approach here is preferable to the standard ways of com-

puting eigenvalues, such as the QR algorithm, when (X − νI)−1u is efficiently

computable for a given shift ν ∈ R and a given vector u ∈ Cq. In particular, as

discussed in the previous section, this is the case for A. In [32] a more brute

force approach called adaptive progress was also suggested for real eigenvalue

extraction as an alternative to the divide-and-conquer approach.

Throughout this section we will assume the existence of a reliable imple-
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mentation of the shifted inverse iteration or a shift-and-invert Arnoldi method

that returns the closest eigenvalue to a given shift accurately. In practice we

make use of the Matlab function eigs (based on ARPACK [48, 49]). Addi-

tionally, we assume that an upper bound, D, on the norm of X is available and

therefore we know that all of the real eigenvalues lie in the interval [−D, D]. A

straightforward approach would be to partition the interval [−D, D] into equal

subintervals and find the closest eigenvalue to the midpoint of each interval.

This approach must work as long as the subintervals are chosen small enough.

Nevertheless, partitioning [−D, D] into very fine subintervals is not desirable,

since this will require an excessive number of closest eigenvalue computations.

In the divide-and-conquer approach, given an interval [L, U ] we compute the

eigenvalue of X closest to the midpoint of the interval ν = U+L
2

. If the modulus

of the difference between the computed eigenvalue λ and the midpoint ν is

greater than half of the length of the interval, then we terminate. Otherwise we

apply the same procedure to the subintervals [L, ν−|λ−ν|] and [ν + |λ−ν|, U ].

Initially we apply the algorithm to the whole interval [−D, D].

Figure 4.2 and 4.3 illustrates the first four iterations of the divide-and-

conquer algorithm on an example. The divide-and-conquer algorithm completes

the investigation of the real interval where the real eigenvalues reside after iter-

ating 7 times.

For reliability the parameter D must be chosen large. Suppose that all the

eigenvalues are contained in the disk of radius D′ with D′ � D. To discover

that there is no real eigenvalue in the interval [D′, D] at most two extra clos-

est eigenvalue computations are required. If the first shift tried in the interval

[D′, D] is closer to D′ rather than D, then the distance from the closest eigen-

value to this shift may be less than half of the length of the interval [D′, D], so
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Algorithm 7 Divide-and-conquer real eigenvalue search algorithm

Call: Λ← Divide And Conquer(X ,L,U).

Input: X ∈ Cq×q, a lower bound L for the smallest real eigen-

value desired and an upper bound U for the largest

real eigenvalue desired.

Output: Λ ∈ Rl with l ≤ q containing all of the real eigenval-

ues of X in the interval [L, U ].

Set the shift ν ← (U+L)
2

.

Compute the eigenvalue λ closest to the shift ν.

if U − L < 2|λ− ν| then

% Base case: there is no real eigenvalue in the interval [L, U ].

Return [ ].

else

% Recursive case: Search the left and right intervals.

ΛL ← Divide And Conquer(X ,L,ν − |λ− ν|)

ΛR ← Divide And Conquer(X ,ν + |λ− ν|,U)

% Combine all of the real eigenvalues.

if λ is real then

Return λ ∪ ΛL ∪ ΛR.

else

Return ΛL ∪ ΛR.

end if

end if
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a second closest eigenvalue computation may be needed. Otherwise the inter-

val [D′, D] will be investigated in one iteration. Similar remarks hold for the

interval [−D,−D′]. However, the larger choices of D may slightly increase or

decrease the number of shifts required to investigate [−D′, D′]. The important

point is that regardless of how large D is compared to the radius of the smallest

disk containing the eigenvalues, the cost is limited to approximately four extra

iterations.

Next we show that the number of closest eigenvalue computations cannot

exceed 2q + 1 (recall that X ∈ Cq×q).

Theorem 26 (Worst Case for Algorithm 7). The number of closest eigen-

value computations made by Algorithm 7 is no more than 2q + 1.

Proof. We can represent the progress of the algorithm by a full binary tree, i.e.

a tree with each node having either two children or no children. Each node of

the tree corresponds to an interval. The root of the tree corresponds to the

whole interval [−D, D]. At each iteration of the algorithm the interval under

consideration is either completely investigated or replaced by two disjoint subin-

tervals that need to be investigated. In the first case, the node corresponding

to the current interval is a leaf. In the second case, the node has two children,

one for each of the subintervals.

We claim that the number of leaves in this tree cannot exceed q + 1. The

intervals corresponding to the leaves are disjoint. Each such interval has a closest

left interval (except the leftmost interval) and a closest right interval (except the

rightmost interval) represented by two of the leaves in the tree. Each interval is

separated from the closest one on the left by the part of a disk on the real axis

in which an eigenvalue lies and similarly for the closest interval on the right.
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Figure 4.2: The first two iterations (the top one is the first iteration) of the divide-and-

conquer algorithm on an example. Black dots denote the eigenvalues. Squares mark the

location of the shift ν. The closest eigenvalue to ν is denoted by λ. The part of the real axis

already investigated is marked by a thicker line.
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Figure 4.3: The third and fourth iterations of the divide-and-conquer algorithm

on the example in Figure 4.2.
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Since the matrix X has q eigenvalues, there can be at most q separating disks

and therefore there can be at most q + 1 disjoint intervals represented by the

leaves of the tree. A full binary tree with q + 1 leaves has q internal nodes.

Therefore, the total number of the nodes in the tree, which is the same as the

number of closest eigenvalue computations, cannot exceed 2q + 1.

The upper bound 2q + 1 on the worst-case performance of the algorithm

is tight, as illustrated by the following example. Consider a matrix with the

real eigenvalues 2j−1−1
2j−1 , j = 1 . . . q, and suppose that we search over the interval

[−1, 1]. Clearly, the algorithm discovers each eigenvalue twice except the largest

one, which it discovers three times (this is assuming that when there are two

eigenvalues equally close to a midpoint, the algorithm locates the eigenvalue on

the right). Therefore, the total number of closest eigenvalue computations is

2q + 1.

Next we aim to show that the average-case performance of the algorithm is

much better than the worst case. First we note the following elementary result

that is an immediate consequence of the fact that the square-root function is

strictly concave.

Lemma 27. Given l positive distinct integers k1, k2, . . . , kl and l real numbers

p1, p2, . . . , pl ∈ (0, 1) such that
∑l

j=1 pj = 1, the inequality√√√√ l∑
j=1

pjkj >

l∑
j=1

pj

√
kj (4.33)

holds.

In the average-case analysis we let the eigenvalues of X , say ξ1, ξ2, . . . ξq,

vary. We assume that the eigenvalues are independently selected from a uni-

form distribution inside the circle centered at the origin with radius µ. We use

126



Algorithm 7 to compute the real eigenvalues lying inside the circle of radius

D = 1 ≤ µ (the value of the radius D is irrelevant for the average-case analysis

as discussed below; we choose D = 1 for simplicity). In Table 4.1 the random

variables and the probability density functions referenced by the proof of the

next theorem are summarized.

The quantity we are interested in is E(X|N = j), the expected number of

iterations required by Algorithm 7 given that there are j eigenvalues inside the

unit circle. We list a few observations.

• The eigenvalues ω1, ω2, . . . , ωj contained in the circle of radius D = 1 are

uniformly distributed and mutually independent: This is a simple conse-

quence of the assumption that the eigenvalues are selected from uniform

distributions and mutually independently. Let the eigenvalues inside the

unit circle be ξi1 , ξi2 , . . . ξij with i1 < i2 < · · · < ij. We associate ωk with

the location of the kth smallest indexed eigenvalue inside the unit circle,

i.e. ωk = ξik . Let C1 denote the unit circle. The variable ωk is uniformly

distributed because

p(ωk|j of ξ1, . . . ξq ∈ C1) =
∑

i1,...ij
(p(ξi1 , . . . ξij ∈ C1|j of ξ1, . . . ξq ∈ C1)

p(ωk|ξi1 , . . . ξij ∈ C1))

=
∑

i1,...ij

 q

j

−1

p(ωk|ξik ∈ C1)

=
∑

i1,...ij

 q

j

−1

1

π
=

1

π
.

Above the summation is over the subsets of ξ1, ξ2, . . . ξq consisting of j
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elements. Similarly we can show that for k 6= l,

p(ωk, ωl|j of ξ1, . . . ξq ∈ C1) =
1

π2
.

Therefore the variables ω1, ω2, . . . , ωj are mutually independent.

• The eigenvalues φ1, φ2, . . . , φj−1 inside the unit circle but outside the circle

of radius H are uniformly distributed and mutually independent: Suppose

ωi1 , ωi2 , . . . ωij−1
with i1 < i2 < · · · < ij−1 are the eigenvalues inside the

desired area. When we map ωik to φk, the argument above applies to prove

the uniformity and mutual independence of the variables φ1, φ2, . . . , φj−1.

• Given c eigenvalues ϑ1, ϑ2, . . . ϑc inside the left circle with radius 1−H
2

cen-

tered at (−(1+H)
2

, 0), each eigenvalue is uniformly distributed and mutually

independent: This again follows from the arguments above by mapping

φik to ϑk where φi1 , φi2 , . . . φic are the eigenvalues inside the desired region

with i1 < i2 < · · · < ic.

• Assuming that the number of eigenvalues contained in the circle of radius

D is fixed, the expected number of iterations by the algorithm does not

depend on the radius D: Consider the variables ω̂1 denoting the locations

of the j eigenvalues all inside the circle of radius D1 and ω̂2 = D2ω̂1

D1

denoting the locations of the j eigenvalues inside the circle of radius D2.

Let us denote the number of iterations by Algorithm 7 with input ω̂1 over

the interval [−D1, D1] by X1(ω̂1) and the number of iterations with input

ω̂2 over the interval [−D2, D2] by X2(ω̂2). It immediately follows that

X1(ω̂1) = X1(
D1ω̂2

D2
) = X2(ω̂2). By exploiting this equality we can deduce
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E(X1|N1 = j) = E(X2|N2 = j),

E(X1|N1 = j) =

∫
CD1

X1(ω̂1)p(ω̂1) dω̂1

=

(
1

πD2
1

)j ∫
CD1

X1(ω̂1) dω̂1

=

(
1

πD2
1

)j ∫
CD2

X1

(
D1ω̂2

D2

)
D2j

1

D2j
2

dω̂2

=

∫
CD2

X2(ω̂2)p(ω̂2) dω̂2

= E(X2|N2 = j),

where N1 and N2 are the number of eigenvalues inside the circle of radius

CD1 of radius D1 and the circle of radius CD2 of radius D2, respectively.

Note that the eigenvalues inside both the circle CD1 and the circle CD2

are uniformly distributed and independent as we discussed above.

By combining these remarks we obtain the equality E(X|N = j) = E(Xl|Nl =

j), since the eigenvalues are uniformly distributed and independent inside the

circles and the sizes of the circles do not affect the expected number of iterations

given that there are j eigenvalues inside the circles.

The next theorem establishes a recurrence equation for E(X|N = j) in terms

of E(X|N = k), k = 0 . . . j−1. Using the recurrence equation we will show that

E(X|N = j) = O(
√

j) by induction. For convenience let us use the shorthand

notation Ej(X) for E(X|N = j).

Theorem 28. Suppose that the eigenvalues of the input matrices of size q are

chosen from a uniform distribution independently inside the circle of radius µ

and Algorithm 7 is run over the interval [−1, 1]. The quantity Ej(X) can be

characterized by the recurrence equation

E0(X) = 1 (4.34)
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X : Number of iterations performed by Algorithm

7.

N : Number of eigenvalues lying inside the unit

circle.

H : Modulus of the eigenvalue closest to the ori-

gin.

Xl : Number of iterations performed by Algorithm

7 on the left interval [−1,−H].

Xr : Number of iterations performed by Algorithm

7 on the right interval [H, 1].

Nl : Number of eigenvalues lying inside the left

circle centered at −(1 + H)/2 with radius

(1−H)/2.

h(H|N = j) : The probability density function of the vari-

able H given there are j eigenvalues inside the

unit circle.

gl(Nl|N = j, H = β) : The probability density function of the vari-

able Nl given there are j eigenvalues inside the

unit circle and the smallest of the moduli of

the eigenvalues is β.

Table 4.1: Notation for Theorem 28
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and for all 0 < j < q

Ej(X) = 2Fj−1(X) + 1, (4.35)

where Fj−1(X) is a linear combination of the expectations E0(X), . . . Ej−1(X),

Fj−1(X) =

∫ 1

0

(
j−1∑
k=0

Ek(X)gl(Nl = k|N = j, H = β)

)
h(H = β|N = j) dβ.

(4.36)

Proof. Equation (4.34) is trivial; when there is no eigenvalue inside the unit

circle, the algorithm will converge to an eigenvalue on or outside the unit circle

and terminate.

For j > 0 at the first iteration of the algorithm, we compute the closest

eigenvalue to the midpoint and repeat the same procedure with the left interval

and with the right interval, so the equality

X = Xl + Xr + 1

and therefore the equality

Ej(X) = E(Xl|N = j) + E(Xr|N = j) + 1 (4.37)

follows. Clearly the number of iterations on the left interval and on the right

interval depend on the modulus of the computed eigenvalue. By the definition

of conditional expectations, we deduce

E(Xl|N = j) =

∫ 1

0

E(Xl|N = j, H = β)h(H = β|N = j) dβ (4.38)

and similarly

E(Xr|N = j) =

∫ 1

0

E(Xr|N = j, H = β)h(H = β|N = j) dβ. (4.39)
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Now we focus on the procedures applied on the left and right intervals. Let

the modulus of the eigenvalue computed at the first iteration be β. There may

be up to j − 1 eigenvalues inside the circle centered at the midpoint of the left

interval [−1, β] and with radius 1−β
2

. The expected number of iterations on the

left interval is independent of the radius 1−β
2

and the number of eigenvalues

lying outside this circle. Therefore given the number of eigenvalues inside this

circle, by the definition of conditional expectations, the equality

E(Xl|N = j, H = β) =

j−1∑
k=0

E(Xl|Nl = k,N = j, H = β)gl(Nl = k|N = j, H = β)

=

j−1∑
k=0

E(Xl|Nl = k)gl(Nl = k|N = j, H = β)

=

j−1∑
k=0

Ek(X)gl(Nl = k|N = j, H = β)

(4.40)

is satisfied. A similar argument applies to the right interval to show the analo-

gous equality

E(Xr|N = j, H = β) =

j−1∑
k=0

Ek(X)gl(Nl = k|N = j, H = β). (4.41)

By substituting (4.40) into (4.38), (4.41) into (4.39) and combining these with

(4.37), we deduce the result.

Corollary 29 (Average case for Algorithm 7). Suppose that the eigenvalues

of the matrices input to Algorithm 7 are selected uniformly and independently

inside the circle of radius µ. The expectation Ej(X) is bounded above by

c
√

j + f − 1 for all c ≥
√

12 and f ∈ [4/c2, 1/3].
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Proof. The proof is by induction. In the base case, when there is no eigenvalue

inside the unit circle, the algorithm iterates only once, i.e. E0(X) = 1 ≤

c
√

f − 1.

Assume that for all k < j, the claim Ek(X) ≤ c
√

k + f − 1 holds. We

need to show that the inequality Ej(X) ≤ c
√

j + f − 1 is satisfied under this

assumption. By definition (4.36) in Theorem 28 we have

Fj−1(X) ≤
∫ 1

0

(
j−1∑
k=0

(c
√

k + f − 1)gl(Nl = k|N = j, H = β)

)
h(H = β|N = j)dβ.

(4.42)

As we argued before, the uniformity and independence of each of the j − 1

eigenvalues inside the unit circle but outside the circle of radius H = β are

preserved. In other words gl(Nl|N = j, H = β) is a binomial density function

and we can explicitly write gl(Nl = k|N = j, H = β), the probability that there

are k eigenvalues inside the left circle given that there are j − 1 eigenvalues

contained in the unit circle and outside the circle of radius β, as

gl(Nl = k|N = j, H = β) =

 j − 1

k

( 1− β

4(1 + β)

)k (
1− 1− β

4(1 + β)

)j−1−k

.

Now the expected value of the binomial distribution above is (j−1) 1−β
4(1+β)

. From

Lemma 27, we deduce
√

j + f

2
≥
√

j − 1 + 4f

2

≥

√
(1− β)(j − 1)

4(1 + β)
+ f

=

√√√√ j−1∑
k=0

(k + f)gl(Nl = k|N = j, H = β)

>

j−1∑
k=0

√
k + f gl(Nl = k|N = j, H = β).
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Substituting the upper bound
√

j+f
2

for
∑j−1

k=0

√
k + f gl(Nl = k|N = j, H = β)

in (4.42) yields

Fj−1(X) ≤
∫ 1

0

(
c
√

j + f

2
− 1)h(H = β|N = j) dβ =

c
√

j + f

2
− 1. (4.43)

Now it follows from (4.35) that

Ej(X) ≤ c
√

j + f − 1 (4.44)

as desired.

Recall that we intend to apply the divide-and-conquer approach to A which

has size 2n2 × 2n2. Assume that the conditions of Corollary 29 hold for the

eigenvalues of A and the circle of radius D contains all of the eigenvalues.

Suppose also that for any shift ν, convergence of the shifted inverse iteration

or shift-and-invert Arnoldi method to the closest eigenvalue requires the matrix

vector multiplication (A−νI)−1u for various u only a constant number of times.

Then the average running time of each trisection step is O(n4), since finding

the closest eigenvalue takes O(n3) time (which is the cost of solving a Sylvester

equation of size 2n a constant number of times) and we compute the closest

eigenvalue O(n) times at each trisection step on average. Because of the special

structure of the Kronecker product matrix A, even if the input matrices have

eigenvalues uniformly distributed and mutually independent, the eigenvalues

of A may not have this property. However, the numerical examples in the

next subsection suggest that the number of closest eigenvalue computations as

a function of the size of the Kronecker product matrices is still bounded by

O(
√

q). According to Theorem 26 in the worst-case scenario, each trisection
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step requires O(n5) operations, which is an improvement over computing all of

the eigenvalues of A.

4.3.4 Further remarks

The divide-and-conquer approach requires an upper bound on the norm of A.

In practice this parameter may be set arbitrarily large and the efficiency of the

algorithm is affected insignificantly. Alternatively, the upper bound on ‖A‖ in

(4.53) derived below can be used.

Improvements to the divide-and-conquer approach seem possible. As the

upper and lower bounds become closer, the Kronecker product matrices A in

two successive iterations differ only slightly. Therefore it is desirable to benefit

from the eigenvalues computed in the previous iteration in the selection of the

shifts. We address further details of the new algorithm below.

Sylvester equation solvers

The Sylvester equations needed to perform the multiplication (A− νI)−1u are

not sparse in general. We solve them by first reducing the coefficient matrices

on the left-hand side of (4.32) to upper quasi-triangular forms (block upper

triangular matrices with 1 × 1 and 2 × 2 blocks on the diagonal). Then the

algorithm of Bartels and Stewart can be applied [3]. In our implementation we

used the lapack routine dtrsyl [1] which is similar to the method of Bartels

and Stewart, but rather than computing the solution column by column it

generates the solution row by row, bottom to top. A more efficient alternative

may be the recursive algorithm of Jonsson and K̊agström [41].
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Incorporating BFGS

By combining the new verification scheme and BFGS, it is possible to come up

with a more efficient and accurate algorithm. A local minimum of the function

σmin([A − λI B]) can be found in a cheap manner by means of the BFGS

optimization algorithm. Notice that the cost of this local optimization step

is O(1), since we are searching over two unknowns, namely, the real and the

imaginary parts of λ. Using the new verification scheme we can check whether

the local minimum is indeed a global minimum as described in [13, Algorithm

5.3]. If the local minimum is not a global minimum, the new verification scheme

also provides us with a point λ′ where the value of the function σmin([A−λI B])

is less than the local minimum. Therefore we can repeat the application of BFGS

followed by the new scheme until we verify that the local minimum is a global

minimum.

Alternative eigenvalue problem

To see whether there exists an α such that D(α, δ) and D(α + η, δ) share an

eigenvalue, we extract the real eigenvalues of A. Alternatively we can solve

the generalized eigenvalue problem (F(δ, η)− λG)x = 0 defined in (4.21). The

real eigenvalue extraction techniques are applicable to this problem as well,

since the scalar λ is an eigenvalue of the pencil F(δ, η) − λG if and only if

1
λ−ν

is an eigenvalue of the matrix (F(δ, η) − νG)−1G. The multiplication x =

(F(δ, η) − νG)−1Gy can be performed efficiently by solving the linear system

(F(δ, η) − νG)x = Gy. When we write this linear system in matrix form, we

obtain the Sylvester equation (4.19) but with α replaced by ν and with the
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matrix  −2Y11 0

0 2Y22


replacing 0 on the righthand side, where y = [vec(Y11) y12 y21 vec(Y22)]

T with

equal-sized block components. Notice that the fact that the eigenvalue problem

(F(δ, η)−λG)x = 0 is of double size compared to the eigenvalue problem Ax =

λx is not an efficiency concern, since we still solve Sylvester equations of the

same size. The real issue is that these two eigenvalue problems have different

conditioning. Theoretically either of them can be better conditioned than the

other in certain situations. In practice we retrieved more accurate results with

the eigenvalue problem Ax = λx most of the time, even though there are also

examples on which the algorithm using (F(δ, η)−λG)x = 0 yields more accurate

results.

Accuracy issues

In general neither the old method based on Gu’s verification scheme nor the new

method is stable as both of them require the computation of the eigenvalues of

matrices with large norm. Gu’s method in [31] suffers from the fact that the

matrix Q12 in (4.17) becomes highly ill-conditioned as δ → 0 and is not invertible

at the limit. Therefore the method is not appropriate for accurate computation

for uncontrollable or nearly uncontrollable pairs.

For the new method based on the real eigenvalue extraction technique, the

accuracy trouble is caused by the fact that the norm of A blows up as η goes

to 0. There are two potential problems with computing eigenvalues of matrices

with large norm. The first one is that for any backward stable eigenvalue solver

used, a computed eigenvalue of A differs from the exact one typically by a
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quantity with modulus on the order of

‖A‖εmach

|w∗z|

where w and z are the corresponding unit left and right eigenvectors. The second

problem is related to the fact that we compute the eigenvalues of A iteratively

and therefore it is necessary to solve the linear system (A−νI)x = u for various

ν and u. Unfortunately, the absolute error for the solution of the linear system

depends on the condition number κ(A− νI) = ‖(A− νI)‖‖(A− νI)−1‖. It is

known that if ν is close to an eigenvalue of A, then the fact that the matrix

(A−νI) is close to singularity does not cause numerical trouble [63, Chapter 4].

However, in our case the norm of (A− νI) is also large. In practice we observe

that this affects the convergence of Arnoldi’s method; there are cases, especially

when the norm of A is large, where the QR algorithm computes eigenvalues

accurately while eigs fails to converge. In our experience eigs has convergence

problems typically when the norm of A reaches the order of 1010.

In what follows we gain insight into the variation in the norm of A as η

decreases to zero. What makes A ill-conditioned is the inverted matrix in (4.23)

whose norm is equal to 1/σmin(I ⊗ A− (A− ηI)T ⊗ I). Let us define

K(η) = (I ⊗ A− (A− ηI)T ⊗ I).

In the limit as η → 0, K(0) is singular. Suppose that the eigenvalues of A are

nondefective (each eigenvalue has its algebraic multiplicity equal to its geometric

multiplicity) and are ordered as λ1 < λ2 < · · · < λs in strictly ascending order.

For each eigenvalue λj, j = 1, . . . , s, with the multiplicity mj, suppose that an

orthonormal basis for the associated right eigenspace is

Xj = [xj,1 xj,2 . . . xj,mj
]
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and an orthonormal basis for the associated left eigenspace is

Yj = [yj,1 yj,2 . . . yj,mj
].

Note that X ′ is a solution of the Sylvester equation AX −XA = 0 if and only

if the equalities

K(0)vec(X ′) = 0 and rvec(X ′)K(0) = 0

hold where rvec(X) denotes the row vector obtained by concatenating the rows

of the matrix X. It immediately follows that for all j = 1, . . . , s, right eigen-

vectors xj,l, l = 1, . . . ,mj and left eigenvectors yj,r, r = 1, . . . ,mj, the vector

vec(xj,ly
∗
j,r) = ȳj,r ⊗ xj,l lies in the right null space of K(0), while the vector

(rvec(xj,ly
∗
j,r))

∗ = x̄j,l ⊗ yj,r lies in the left null space of K(0). Indeed a unitary

matrix whose columns form an orthonormal basis for the right null-space of K0

is

V = [V1 V2 . . . Vs] (4.45)

where for j = 1, . . . , s the columns of the matrix Vj ∈ Cn2×m2
j are the Kronecker

products of the left and right eigenvectors of A associated with λj,

Vj = [ȳj,1 ⊗ xj,1 . . . ȳj,mj
⊗ xj,1 ȳj,1 ⊗ xj,2 . . . ȳj,mj

⊗ xj,mj
]. (4.46)

Using the property that the right eigenvectors xj,l and xr,d and the left eigen-

vectors yj,l and yr,d are orthogonal to each other unless j = r and l = d, it is

straightforward to deduce that V ∗
j Vj = I and V ∗

j Vl = 0 for j 6= l and therefore

V is unitary. Similarly, a unitary matrix whose columns form an orthonormal

basis for the left null space of K(0) is

U = [U1 U2 . . . Us] (4.47)
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with the unitary blocks

Uj = [x̄j,1 ⊗ yj,1 . . . x̄j,mj
⊗ yj,1 x̄j,1 ⊗ yj,2 . . . x̄j,mj

⊗ yj,mj
] (4.48)

for j = 1, . . . , s. Notice also that the property U∗
j Ul = 0 holds for j 6= l. Having

identified the left and right null space of K(0), we derive the first order variation

in the minimum singular value of K(η) as a function of η around zero.

Theorem 30. Suppose that the eigenvalues of A are nondefective and Vj and

Uj for j = 1, . . . , n are defined by (4.46) and (4.48), respectively. The minimum

singular value of K(η) satisfies

σmin(K(η)) = ηδσ + o(η), (4.49)

where

δσ = min
1≤j≤s

σmin(U
∗
j Vj). (4.50)

Proof. The set of eigenvalues of the Hermitian matrix

D(η) =

 0 (K(η))∗

K(η) 0


is the set of singular values of K(η) with positive and negative signs. In partic-

ular for D(0) we have the eigenvalue decomposition

D(0) =

 1√
2

 Vc Vc V V

Uc −Uc U −U




Σ 0 0 0

0 −Σ 0 0

0 0 0 0

0 0 0 0




1√
2


V ∗

c U∗
c

V ∗
c −U∗

c

V ∗ U∗

V ∗ −U∗




,

where Vc and Uc are matrices with orthonormal columns spanning the null

spaces of V (defined by (4.45)) and U (defined by (4.47)), respectively. We are
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interested in the change in the smallest eigenvalue (which is equal to zero) of the

Hermitian matrixD(0) with multiplicity ds = 2
∑s

j=1 m2
j under the perturbation

δD =
D(η)−D(0)

η
=

 0 I

I 0

 .

For sufficiently small η each of the smallest ds eigenvalues of D(η) in magnitude

can be expressed in the form

µl(η) = λmin(D(0)) + alη + o(η) = alη + o(η) (4.51)

for l = 1, . . . , ds where each al correspond to a distinct eigenvalue of the matrix1

2

 V V

U −U

 V ∗ U∗

V ∗ −U∗

 δD

1

2

 V V

U −U

 V ∗ U∗

V ∗ −U∗

 =

 0 V V ∗UU∗

UU∗V V ∗ 0


(see [47, Theorem 7.9.1] and [60]). Therefore |al| is a singular value of the matrix

UU∗V V ∗. Furthermore for l 6= j, since the vectors xj,r and yl,d are orthogonal

to each other for all r and d, it immediately follows that U∗
l Vj = 0 and we obtain

UU∗V V ∗ =
s∑

j=0

UjU
∗
j VjV

∗
j =


U1

. . .

Us




U∗
1 V1

. . .

U∗
s Vs




V ∗
1

. . .

V ∗
s

 .

Because of the properties that U∗
j Ul = 0 and V ∗

j Vl = 0 for l 6= j, the leftmost

and rightmost matrices in the rightmost product are unitary. Therefore each al

in absolute value is a singular value of one of the matrices U∗
j Vj, j = 1, . . . , s.

We deduce that

min
1≤l≤ds

|al| = min
1≤j≤s

σmin(U
∗
j Vj).
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By combining the above inequality with (4.51) and noting that

σmin(K(η)) = min
l=1,...,s

|µl(η)| = η min
l=1,...,ds

|al|+ o(η),

we complete the proof.

Now the first-order change δσ in the equality (4.50) depends on the alignment

of the left and right eigenspaces with respect to each other. If there exists an

eigenvalue λj of A for which the left eigenspace and the right eigenspace are

orthogonal or close to orthogonal, δσ is small, meaning that the smallest singular

value of K(0) is very insensitive to perturbations. At the other extreme, if all

of the left and right eigenspaces are perfectly aligned, that is Vj = Uj for all j,

then δσ = 1, that is the variation in the minimum singular value is maximized.

When the multiplicities of all of the eigenvalues of A are one, the equality (4.50)

simplifies considerably.

Corollary 31. Suppose that for all j = 1, . . . , s the multiplicity of λj is one.

Then the equality (4.49) holds for

δσ = min
1≤j≤s

|y∗j xj|2. (4.52)

Proof. For the special case when all of the multiplicities are one, Vj = ȳj ⊗ xj

and Uj = x̄j ⊗ yj for j = 1, . . . , s, so (4.50) becomes

δσ = min
1≤j≤s

σmin((x
T
j ⊗ y∗j )(ȳj ⊗ xj)) = min

1≤j≤s
|y∗j xj|2.

According to Corollary 31 the absolute condition number of the worst con-

ditioned eigenvalue of A determines the change in the minimum singular value,

assuming that A has simple eigenvalues.

142



The norm of the inverted matrix in (4.23) is 1
ηδσ

up to first-order terms

where δσ is given by (4.50) in general or specifically, when the eigenvalues of

A are simple, by (4.52). Using the triangle inequality and the Cauchy-Schwarz

inequality, an approximate upper bound on A is given by

‖A‖+
(‖BB∗/δ − δI‖+ δI)2

ηδσ

which reduces to

‖A‖+
(‖BB∗/δ − δI‖+ δI)2

η min1≤j≤s |y∗j xj|2
(4.53)

when the eigenvalues of A are simple.

Notice that the upper bound given by (4.53) can be efficiently computed

in O(n3) time and therefore in an implementation it can be used to estimate

the length of the smallest interval containing the distance to uncontrollability

that can possibly be computed accurately. Surprisingly, the norm of A heavily

depends on the worst conditioned eigenvalue of A, but it has little to do with

the norm of A. For instance, when A is normal and ‖B‖ is not very large,

we expect that ‖A‖ exceeds 1010 only when η is smaller than 10−10 unless the

pair (A, B) is nearly uncontrollable. This in turn means that we can reliably

compute an interval of length 10−10 containing the distance to uncontrollability.

On the other hand, when A is far from being normal or the pair (A, B) is close to

being uncontrollable and a small interval is required, the new method performs

poorly.

4.4 Numerical examples

We first compare the accuracy of the three trisection algorithms, namely the

new trisection algorithm for low precision (§4.2), the original high-precision
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algorithm of [13] based on Gu’s verification condition in [31] and the new high-

precision algorithm based on divide-and-conquer (§4.3) on a variety of examples.

Secondly, we aim to show the asymptotic running time difference between the

new method with the divide-and-conquer approach and Gu’s method. Finally

we illustrate that our theoretical result in §4.3.4 to estimate the norm of the

Kronecker product matrices holds in practice.

4.4.1 Accuracy of the new algorithm and the old algo-

rithm

We present results comparing the accuracy of the new methods for low precision

and for high precision using the divide-and-conquer approach with the original

trisection method in [13] based on Gu’s verification condition in [31]. In exact

arithmetic both the method in [13] and the new method using the divide-and-

conquer approach must return the same interval, since they perform the same

verification by means of different but equivalent eigenvalue problems. On the

other hand, in the algorithm for low precision we verify which one of the in-

equalities (4.3) and (4.4) holds by means of a different method. In particular,

when the inequalities δ1 ≥ τ(A, B) > δ2 hold simultaneously, the method for

low precision may update the lower bound, while the methods for high precision

update the upper bound, or vice versa. Therefore the intervals computed by

the low-precision algorithm and the high-precision algorithms are not necessar-

ily the same, but must overlap. Our data set consists of pairs (A, B) where

A is provided by the software package EigTool [73] and B has entries selected

independently from the normal distribution with zero mean and variance one.

The data set is available on the web site [58]. In all of the tests the initial
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interval is set to [0, σmin([A B])]. For the low-precision algorithm the trisec-

tion step is repeated until an interval [l, u] with u − l ≤ 10−2 is obtained. For

the high-precision algorithms the trisection step is repeated until an interval of

length at most 10−4 is obtained.

When the second and third columns in Table 4.2 and 4.3 are considered, on

most of the examples the methods return the same interval with the exception of

the companion, Demmel, Godunov and gallery5 examples. The common prop-

erty of these matrices is that they have extremely ill-conditioned eigenvalues.

As we discussed in §4.3.4, when the matrix A has an ill-conditioned eigenvalue,

the new method for high precision with the divide and conquer approach is not

expected to produce accurate small intervals containing the distance to uncon-

trollability. One false conclusion that one may draw from Table 4.2 and 4.3

is that the original trisection method is always more accurate than the new

method with the divide-and-conquer approach. Indeed for the Basor-Morrison,

Grcar or Landau examples with n = 5 (for which the eigenvalues are fairly

well-conditioned) the new method with the divide and conquer approach gener-

ates more accurate results than Gu’s method when one seeks intervals of length

around 10−6. In terms of accuracy these two methods have different weaknesses.

The algorithm for low precision is the most accurate one among all three. Un-

fortunately, it is well-suited only to retrieve a rough estimate of the distance to

uncontrollability.
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Example New Method

(High Prec.)

Original Trisec-

tion Method

New Method

(Low Prec.)

Airy(5,2) (0.03759,0.03767] (0.03759,0.03767] (0.030,0.038]

Basor-Morrison(5,2) (0.68923,0.68929] (0.68923,0.68929] (0.681,0.689]

Chebyshev(5,2) (0.75026,0.75034] (0.75026,0.75034] (0.743,0.750]

Companion(5,2) (0.42431,0.42438] (0.42431,0.42438] (0.416,0.425]

Convection Diffusion(5,2) (0.69829,0.69836] (0.69829,0.69836] (0.690,0.699]

Davies(5,2) (0.23170,0.23176] (0.23170,0.23176] (0.224,0.233]

Demmel(5,2) (0.09090,0.09097] (0.09049,0.09056] (0.083,0.092]

Frank(5,2) (0.45907,0.45916] (0.45907,0.45916] (0.452,0.459]

Gallery5(5,2) (0.17468,0.17474] (0.02585,0.02592] (0.021,0.030]

Gauss-Seidel(5,2) (0.06279,0.06288] (0.06279,0.06288] (0.056,0.064]

Grcar(5,2) (0.49571,0.49579] (0.49571,0.49579] (0.491,0.498]

Hatano(5,2) (0.39570,0.39578] (0.39570,0.39578] (0.391,0.398]

Kahan(5,2) (0.18594,0.18601] (0.18594,0.18601] (0.178,0.187]

Landau(5,2) (0.41766,0.41773] (0.41766,0.41773] (0.410,0.419]

Orr-Sommerfield(5,2) (0.04789,0.04796] (0.04789,0.04796] (0.041,0.050]

Supg(4,2) (0.06546,0.06554] (0.06546,0.06554] (0.059,0.066]

Transient(5,2) (0.11027,0.11036] (0.11027,0.11036] (0.104,0.112]

Twisted(5,2) (0.14929,0.14936] (0.14929,0.14936] (0.143,0.153]

Table 4.2: For pairs (A,B) with A chosen from EigTool as listed above in the leftmost

column and B normally distributed, intervals (l, u] that are supposed to contain the distance

to uncontrollability for the system (A,B) are computed by three different trisection algorithms

with u − l ≤ 10−4 for the high precision algorithms and u − l ≤ 10−2 for the low precision

algorithm. The size of the system (n, m) is provided in parentheses in the leftmost column.
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Example New Method

(High Prec.)

Original Trisec-

tion Method

New Method

(Low Prec.)

Airy(10,4) (0.16337,0.16345] (0.16337,0.16345] (0.158,0.168]

Basor-Morrison(10,4) (0.60974,0.60980] (0.60974,0.60980] (0.604,0.613]

Chebyshev(10,4) (0.82703,0.82711] (0.82703,0.82711] (0.819,0.829]

Companion(10,4) (0.46630,0.46637] (0.46610,0.46616] (0.459,0.468]

Convection Diffusion(10,4) (1.48577,1.48586] (1.48577,1.48586] (0.479,0.487]

Davies(10,4) (0.70003,0.70012] (0.70003,0.70012] (0.695,0.703]

Demmel(10,4) (0.12049,0.12057] (0.11998,0.12006] (0.113,0.121]

Frank(10,4) (0.67405,0.67414] (0.67405,0.67414] (0.666,0.674]

Gauss-Seidel(10,4) (0.05060,0.05067] (0.05060,0.05067] (0.046,0.055]

Godunov(7,3) (1.23802,1.23810] (1.23764,1.23773] (1.233,1.240]

Grcar(10,4) (0.44178,0.44185] (0.44178,0.44185] (0.434,0.444]

Hatano(10,4) (0.23297,0.23304] (0.23297,0.23304] (0.227,0.236]

Kahan(10,4) (0.05587,0.05594] (0.05587,0.05594] (0.049,0.058]

Landau(10,4) (0.28166,0.28174] (0.28166,0.28174] (0.275,0.285]

Markov Chain(6,2) (0.04348,0.04358] (0.04348,0.04358] (0.035,0.044]

Markov Chain(10,4) (0.07684,0.07693] (0.07684,0.07693] (0.070,0.078]

Orr-Sommerfield(10,4) (0.07836,0.07843] (0.07836,0.07843] (0.071,0.080]

Skew-Laplacian(8,3) (0.01001,0.01011] (0.01001,0.01011] (0.004,0.013]

Supg(9,4) (0.03627,0.03634] (0.03627,0.03634] (0.029,0.037]

Transient(10,4) (0.13724,0.13731] (0.13724,0.13731] (0.131,0.140]

Twisted(10,4) (0.77178,0.77185] (0.77178,0.77185] (0.764,0.774]

Table 4.3: Comparison of trisection methods on larger pairs.
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4.4.2 Running times of the new algorithm with the divide-

and-conquer approach on large matrices

To observe the running time differences between the original trisection algo-

rithm based on Gu’s verification scheme and the new trisection method with the

divide-and-conquer approach, we run the algorithms on pairs (A, B) of various

size, where A is a Kahan matrix available through EigTool and B is a normally

distributed matrix. We normalize the pairs (by dividing them by σmin([A B]))

so that the same number of trisection steps are required. For (n,m) = (40, 24)

we did not run the trisection algorithm with Gu’s verification scheme, since it

takes an excessive amount of time. Instead, we extrapolated its running time.

For all other sizes, both of the methods return the same interval of length ap-

proximately 10−4. In Table 4.4 the running times of both of the algorithms and

the average number of calls to eigs made by the divide-and-conquer approach

are provided for various sizes. For small pairs Gu’s old verification scheme is

faster. However, for matrices of size 20 and larger the new method with the

divide-and-conquer approach is more efficient and the difference in the running

times increases drastically as a function of n. In the third column the average

number of calls to eigs is shown and apparently varies linearly with n. Figure

4.4 displays plots of the running times as functions of n using a log scale. The

asymptotic difference in the running times agrees with the plots.
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Size (n,m) tcpu (Gu’s Method) tcpu (New Method) no. of calls to eigs

(10,6) 47 171 34

(20,12) 3207 881 63

(30,18) 46875 3003 78

(40,24) 263370 7891 92

Table 4.4: Running times of Gu’s method and the new method with the divide

and conquer approach in seconds and the average number of calls to eigs by

the new method for Kahan-random matrix pairs of various size.

Figure 4.4: Running times of the methods on Kahan-random matrix pairs are

displayed as functions of the size of the matrix in logarithmic scale.
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size δ̂σ δ̃σ

5 0.5195 0.6527

10 0.0285 0.0426

15 0.0009 0.0016

20 2.172× 10−5 4.870× 10−5

Table 4.5: Comparison of the quantities δ̂σ and δ̃σ defined by (4.54) for the

Grcar matrices of various size.

4.4.3 Estimating the minimum singular values of the

Kronecker product matrices

In §4.3.4 we derived the first-order change that reduces to the formula

σmin(K(η)) = σmin(A⊗ I − (A− ηI)T ⊗ I) = min
1≤j≤s

|y∗j xj|2η + o(η)

under the assumption that all of the eigenvalues of A are simple, where yj and

xj are the unit left and right eigenvectors corresponding to the jth eigenvalue.

To illustrate the accuracy of the first order change we derived in practice, we

compare the quantities

δ̂σ =
σmin(K(10−6))

10−6
, δ̃σ = min

1≤j≤s
|y∗j xj|2. (4.54)

for the Grcar and Kahan matrices of various size available through EigTool.

Table 4.5 and 4.6 show that these quantities for the Grcar matrices and Kahan

matrices are within a factor of three of each other. We performed tests on

various other examples and have not found an example for which one of the two

quantities above is more than three times the other.
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size δ̂σ δ̃σ

5 0.0023 0.0038

10 1.355× 10−6 2.162× 10−6

15 2.430× 10−9 4.708× 10−9

20 2.803× 10−11 1.816× 10−11

Table 4.6: Comparison of the quantities δ̂σ and δ̃σ for the Kahan matrices of

various size.
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Chapter 5

Distance to Uncontrollability for

Higher-Order Systems

In this chapter we focus on the problem of computing the distance to the closest

uncontrollable system for the higher-order system

Kkx
(k)(t) + · · ·+ K1x

′(t) + K0x(t) = Bu(t) (5.1)

defined by (1.19). For the special case of the descriptor system (for which the

characterization of the controllability was given by Chu [19, 20])

Ex′(t) = Ax(t) + Bu(t),

Byers has studied the distance to uncontrollability and provided a generalization

of the characterization (4.2) in [17]. We are not aware of the existence of any

other work on the distance to uncontrollability for higher-order systems. We

have also discussed the work presented in this chapter in [57].

In the next section we provide a singular-value minimization characterization

for the definition (1.19). We will see that the definitions (1.19) in the spectral
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norm and the Frobenius norm are equivalent, just as in the first-order case, and

the characterization we derive reduces to the Eising characterization (4.2) for the

first-order system. In §5.2 we describe a trisection algorithm locating the global

minimum of the associated optimization problem. The generalizations of the

bisection algorithm of [31], the trisection algorithm of [13] or the trisection algo-

rithm based on the real eigenvalue extraction technique in the previous chapter

are too expensive to be practical. We present an algorithm that has similarities

with the low-precision approximation technique that is suggested in the previ-

ous chapter for the first-order system. The first few steps of the new algorithm

are comparatively cheap, but as we require more accuracy the algorithm be-

comes computationally intensive. With a complexity of O
(

1
arccos(1−( tol

k
)2)

n3k4
)

with tol denoting the accuracy we require, it is devised for a few digits of preci-

sion. The algorithm depends on the extraction of the imaginary eigenvalues of

∗-even matrix polynomials of size 2n and degree 2k. (See §A.3 in the appendix

for how to solve ∗-even polynomial eigenvalue problems while preserving the

symmetry of the spectrum.) §5.3 is devoted to numerical examples illustrating

the efficiency of the algorithm. Note that throughout this chapter we usually

use ‖ · ‖ for either the spectral or the Frobenius norm interchangeably when the

results hold for both of the norms or when the type of the norm is clear from

the context. At other times we clarify the choice of norm using the notation

‖ · ‖2, ‖ · ‖F for the spectral and the Frobenius norm, respectively.
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5.1 Properties of the higher-order distance to

uncontrollability and a singular value char-

acterization

The set of controllable tuples is clearly a dense subset of the whole space of

matrix tuples. But this does not mean that the uncontrollable tuples are iso-

lated points. On the contrary, there are uncontrollable subspaces. For in-

stance, the system (5.1) with K0 = 0 and rank B < n is uncontrollable for all

Kk, . . . , K1. Therefore we shall first see that τ(P, B, γ) is indeed attained at

some (∆Kk, . . . , ∆K0, ∆B).

Lemma 32. There exists an uncontrollable tuple (Kk + γk∆Kk, . . . , K0 +

γ0∆K0, B + ∆B) such that τ(P, B, γ) = ‖∆Kk . . . ∆K0 ∆B‖ and

‖∆Kj‖ ≤ γj‖B‖ for all j, ‖∆B‖ ≤ ‖B‖.

Proof. The matrix [P (λ) 0] is rank deficient at the eigenvalues of P . Therefore

τ(P, B, γ) ≤ ‖B‖, meaning that we can restrict the perturbations to the ones

satisfying ‖∆Kj‖ ≤ γj‖B‖ and ‖∆B‖ ≤ ‖B‖.

Furthermore the set of uncontrollable tuples is closed. To see this, consider

any sequence {(K ′
k, . . . , K

′
0, B

′)} of uncontrollable tuples. Now for any tuple

in the sequence define the associated polynomial as P ′(λ) =
∑k

j=0 λjK ′
j. The

matrix [P ′(λ) B] is rank-deficient for some λ, so all combinations of n columns

of this matrix are linearly dependent. Let us denote the l =

 m + n

n

 poly-

nomials associated with the determinants of the combinations of n columns by

p1(λ), p2(λ), . . . , pl(λ) in any order. These polynomials must share a common

root; otherwise [P ′(λ) B] would not be rank-deficient for some λ. The com-
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mon roots r1, r2, . . . , rl are continuous functions of the tuple {(K ′
k, . . . , K

′
0, B

′)},

which means that at any cluster point of the sequence, r1 = r2 = r3 = · · · = rl.

This shows that the set is closed.

Since we are minimizing the spectral or the Frobenius norm over a compact

set, τ(P, B, γ) must be attained at some ‖∆Kk . . . ∆K0 ∆B‖.

The main result of this section establishes the equivalence of τ(P, B, γ) to

the solution of the singular value minimization problem

ξ(P, B, γ) = inf
λ∈C

σmin

[
P (λ)

pγ(|λ|)
} B

]
, (5.2)

where pγ(x) is as defined by (1.11). The next lemma eliminates the possibility

that ξ(P, B, γ) is attained at ∞.

Lemma 33. Under the assumption that the leading coefficient of (5.1) is non-

singular and remains nonsingular under perturbations with norm less than or

equal to γkξ(P, B, γ), the inequality

ξ(P, B, γ) < lim
λ→∞

σmin

[
P (λ)

pγ(|λ|)
B

]
.

holds.

Proof. When γk = 0, the result immediately follows. When γk > 0, we have

σmin

[
Kk

γk

B

]
= lim

λ→∞
σmin

[
P (λ)

pγ(|λ|)
B

]
.

Suppose that ξ(P, B, γ) is attained at ∞ and therefore there exist u1, v ∈ Cn

and u2 ∈ Cm such that (Kk

γk

)∗
B∗

 v = ξ(P, B, γ)

 u1

u2

 ,
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where [uT
1 uT

2 ]T and v have unit length. Multiplying the upper blocks by γk, the

right-hand side by v∗v and collecting all terms on the left yield K∗
k − γkξ(P, B, γ)u1v

∗

B∗ − ξ(P, B, γ)u2v
∗

 v = 0.

Consequently a perturbation to the leading coefficient with norm at most

γkξ(P, B, γ) yields the singular matrix Kk − γkξ(P, B, γ)vu∗1, which contradicts

the non-singularity assumption.

Theorem 34. With the assumptions of Lemma 33 for the system (5.1), the

equality τ(P, B, γ) = ξ(P, B, γ) holds for τ defined in (1.19) both in the spectral

norm and in the Frobenius norm.

Proof. First we assume that τ(P, B, γ) in (1.19) is defined in the spectral norm

and show that ξ(P, B, γ) ≤ τ(P, B, γ). From Lemma 32, there exists ∆P (λ) =∑k
j=0 γjλ

j∆Kj such that

τ(P, B, γ) = ‖∆Kk . . . ∆K0 ∆B‖

and for some λ̃ the matrix [(P + ∆P )(λ̃) B + ∆B] is rank-deficient, that is ((P + ∆P )(λ̃))∗

B∗ + ∆B∗

 v = 0

for some unit v ∈ Cn. We collect the perturbations on the right and divide the

upper blocks by pγ(|λ̃|) to obtain ( P (λ̃)

pγ(|λ̃|)

)∗
B∗

 v =

 (−∆P (λ̃)

pγ(|λ̃|)

)∗
−∆B∗

 v.
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Therefore

ξ(P, B, γ) ≤ σmin

[
P (λ̃)

pγ(|λ̃)|) B
]

= σmin

 ( P (λ̃)

pγ(|λ̃|

)∗
B∗

 ≤
∥∥∥∥∥∥
 ( P (λ̃)

pγ(|λ̃|)

)∗
B∗

 v

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 (∆P (λ̃)

pγ(|λ̃|)

)∗
∆B∗

 v

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
 (∆P (λ̃)

pγ(|λ̃|)

)∗
∆B∗

∥∥∥∥∥∥ =
∥∥∥[ ∆P (λ̃)

pγ(|λ̃)|) ∆B
]∥∥∥ .

Moreover,

[
∆P (λ̃)

pγ(|λ̃)|)
∆B

]
= [∆Kk . . . ∆K0 ∆B]



γkλ̃kI

pγ(|λ̃|) 0

...
...

γ1λ̃I

pγ(|λ̃|) 0

γ0I

pγ(|λ̃|) 0

0 I


where the spectral norm of the rightmost matrix is one. It follows from the

Cauchy-Schwarz inequality that

ξ(P, B, γ) ≤

∥∥∥∥∥
[

∆P (λ̃)

pγ(|λ̃)|)
∆B

]∥∥∥∥∥ ≤ ‖[∆Kk . . . ∆K0 ∆B]‖ = τ(P, B, γ).

For the reverse inequality, still using the spectral norm, we have from Lemma

33 that for some ϕ,

ξ(P, B, γ) = σmin

[
P (ϕ)

pγ(|ϕ|)
B

]
= σmin

 ( P (ϕ)
pγ(|ϕ|)

)∗
B∗


or equivalently  (P (ϕ))∗

pγ(|ϕ|)

B∗

 v = ξ(P, B, γ)

 u1

u2

 ,

where v, u1 ∈ Cn, u2 ∈ Cm and the vectors v and [uT
1 uT

2 ]T have unit length.

We multiply the right-hand side by v∗v, the upper blocks by pγ(|ϕ|) and collect
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all terms on the left to obtain (P (ϕ))∗ − pγ(|ϕ|)ξ(P, B, γ)u1v
∗

B∗ − ξ(P, B, γ)u2v
∗

 v = 0.

In other words, the matrix

[P (ϕ)− pγ(|ϕ|)ξ(P, B, γ)vu∗1 B − ξ(P, B, γ)vu∗2]

is rank-deficient. If we set ∆Kj =
−γj ϕ̄jξ(P,B,γ)vu∗1

pγ(|ϕ|) and ∆B = −ξ(P, B, γ)vu∗2

and define ∆P (λ) =
∑m

j=0 γjλ
j∆Kj, then noting that

∆P (ϕ) =
m∑

j=0

γjϕ
j∆Kj = −pγ(|ϕ|)ξ(P, B, γ)vu∗1

we see that

[(P + ∆P )(λ) B + ∆B]

is rank deficient at λ = ϕ. The norm of the perturbations satisfies

‖∆Kk . . . ∆K0 ∆B‖ = ξ(P,B, γ)
∥∥∥∥γkϕ̄k vu∗1

pγ(|ϕ|)
. . . γ0

vu∗1
pγ(|ϕ|)

vu∗2

∥∥∥∥ ≤ ξ(P,B, γ).

Therefore τ(P, B, γ) ≤ ‖∆Kk . . . ∆K0 ∆B‖ ≤ ξ(P, B, γ) as desired.

For the claim about the equality when τ(P, B, γ) is defined in the Frobenius

norm, to show that ξ(P, B, γ) ≤ τ(P, B, γ) the proof in the first part applies

noting that

ξ(P, B, γ) ≤ ‖∆Kk . . . ∆K0 ∆B‖2 ≤ ‖∆Kk . . . ∆K0 ∆B‖F = τ(P, B, γ).

The second part, to show that τ(P, B, γ) ≤ ξ(P, B, γ), applies without modifi-

cation.

The second part of Theorem 34 explicitly constructed the closest uncontrol-

lable system, which we state in the next corollary.
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Corollary 35. Let ξ(P, B, γ) be attained at λ∗ and the vectors [uT
1 uT

2 ]T and v

be the unit right and left singular vectors corresponding to

σmin

[
P (λ∗)

pγ(|λ∗|)
B

]
,

respectively, where u1, v ∈ Cn and u2 ∈ Cm. A closest uncontrollable tuple is

(Kk + γk∆Kk, . . . , K0 + γ0∆K0, B + ∆B), where

∆Kj =
−γjλ̄

j
∗ξ(P, B, γ)vu∗1
pγ(|λ∗|)

, j = 0, . . . , k

and

∆B = −ξ(P, B, γ)vu∗2.

5.2 A practical algorithm exploiting the singu-

lar value characterization

In Theorem 34 we established the equality

τ(P, B, γ) = ξ(P, B, γ) = inf
r≥0,θ∈[0,2π)

f(r, θ)

where

f(r, θ) = σmin

[
P (reiθ)

pγ(r)
B

]
.

In this section we present a trisection algorithm to minimize the function

f(r, θ) in polar coordinates. Let δ1 and δ2 trisect the interval [L, U ] containing

the distance to uncontrollability (see Figure 4.1). Set

δ = δ1, η =
2

k
arccos

(
1− 1

2

(
δ1 − δ2

ckKmax

)2
)

.

We say the angle η subtends all of the components of the δ-level set of f when

none of the components has a pair of points whose angles differ by more than
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η. At each iteration our aim is to ensure that either the δ-level set of f is not

empty or the angle η subtends all of the components of the δ-level set of f . By

the definition of ξ(P, B, γ), when the δ-level set is not empty

δ = δ1 ≥ ξ(P, B, γ), (5.3)

and when η subtends all of the components of the δ-level set we will see below

that

ξ(P, B, γ) > δ2 (5.4)

because of the choice of η and δ. The trisection algorithm starts with the

trivial upper bound U = σmin[Kk/γk B] (or when γk = 0, for some r̃ and θ̃,

U = f(r̃, θ̃)) and the lower bound L = 0. At each iteration we either update

the upper bound to δ1 if the inequality (5.3) is verified or the lower bound to δ2

if the inequality (5.4) is verified.

First we need to be equipped with a technique that checks for a given δ and

θ whether there exists an r satisfying

f(r, θ) = δ, (5.5)

that is whether the line with slope θ passing through the origin, say L(θ),

intersects the δ-level set of f . Our first result in this section shows how this can

be achieved by solving a ∗-even polynomial eigenvalue problem of double size

and of double degree.

Theorem 36. Given θ ∈ [0, 2π) and a positive real number δ, the matrix[
P (reiθ)
pγ(r)

B
]

has δ as a singular value if and only if the matrix polynomial of

double size Q(λ, θ, δ) =
∑2k

j=0 λjQj(θ, δ) has the imaginary eigenvalue ri where

Q0(θ, δ) =

 −δγ2
0I K∗

0

K0 BB∗/δ − δI

 ,
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and, when l is odd,

Ql(θ, δ) =

 0 (−1)(l+1)/2iK∗
l e
−ilθ

(−1)(l+1)/2iKle
ilθ 0

 1 ≤ l ≤ k,

Ql(θ, δ) =0 k + 1 ≤ l < 2k,

and, when l is even,

Ql(θ, δ) =

 (−1)l/2+1δγ2
l/2I (−1)l/2K∗

l e
−ilθ

(−1)l/2Kle
ilθ 0

 1 ≤ l ≤ k,

Ql(θ, δ) =

 (−1)l/2+1δγ2
l/2I 0

0 0

 k + 1 ≤ l ≤ 2k.

Proof. The matrix
[

P (reiθ)
pγ(r)

B
]

has δ as a singular value if and only if both of

the equations [
P (reiθ)

pγ(r)
B

] v1

v2

 = δu

and  (P (reiθ)
pγ(r)

)∗
B∗

u = δ

 v1

v2


are satisfied. From the bottom block of the second equation we have v2 = B∗u/δ.

By eliminating v2 from the other equations, we obtain −δI
(

P (reiθ)
pγ(r)

)∗
P (reiθ)
pγ(r)

BB∗/δ − δI

 v1

u

 =

 −δpγ(r)I
(
P (reiθ)

)∗
P (reiθ) BB∗/δ − δI

 v1/pγ(r)

u

 =
∑2k

j=0(ri)
jQj(θ, δ)

 v1/pγ(r)

u

 = 0.

Therefore ri is an eigenvalue of Q(λ, θ, δ).
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Figure 5.1: To verify which one of (5.3) and (5.4) holds we check the intersection

points of the δ-level set of f and the set of lines with slopes multiples of η ranging

from 0 to π. The closed curves are the δ-level curves.

Suppose δ ≤ limλ→∞ σmin

[
P (λ)

pγ(|λ|) B
]
. To establish the existence of an r

satisfying (5.5), it is sufficient that the polynomial Q(λ, θ, δ) has an imaginary

eigenvalue. When Q(λ, θ, δ) has an imaginary eigenvalue r′i, f(r′, θ) ≤ δ. Since

δ ≤ f(r, θ) in the limit as r →∞, by the continuity of f we deduce f(r̂, θ) = δ

for some r̂ ≥ r′.

For our trisection algorithm it suffices to check whether any of the lines

L(0), L(η), L(2η), . . . , L(bπ
η
cη) intersects the δ-level set of f . When there is an

intersection point the δ-level set is not empty; otherwise the angle η subtends
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all of the components. The only part of the algorithm that is not clarified so

far is how we deduce a lower bound on ξ(P, B, γ) when η subtends all of the

components, in particular the relation between δ2 in (5.4) and the pair δ and

η. For the next theorem addressing these issues, let (r∗, θ∗) be a point where

ξ(P, B, γ) is attained. We assume the existence of a constant c known a priori

satisfying

c ≥ max
0≤j≤k

|r∗|j

pγ(r∗)
= max

(
1

pγ(r∗)
,
|r∗|k

pγ(r∗)

)
. (5.6)

Finding a constant c may be tedious in some special cases. However, when both

γk and γ0 are nonzero we can set c = 1
min(γ0,γk)

. We furthermore use the notation

Kmax = max1≤j≤k ‖Kj‖.

Theorem 37. Let

lim
λ→∞

σmin

[
P (λ)

pγ(|λ|)
B

]
≥ δ > τ(P, B, γ).

Given any η ∈
[
0, 1

k
arccos

(
1− 1

2

(
δ−τ

ckKmax

)2
)]

, there exist r1 and r2 (depending

on η) such that

σmin

[
P (r1e

i(θ∗+η))

pγ(r1)
B

]
= δ and σmin

[
P (r2e

i(θ∗−η))

pγ(r2)
B

]
= δ.

Proof. We prove only the first equality, since the proof of the second equality

is similar. Assume that

σmin

[
P (rei(θ∗+η))

pγ(r)
B

]
> δ (5.7)

holds for all r for an η in the interval specified. Since the singular values of a

matrix X are the eigenvalues of the symmetric matrix 0 X

X∗ 0

 ,
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they are globally Lipschitz with constant 1 meaning that

δ − τ < σmin

[
P (r∗e

i(θ∗+η))

pγ(r∗)
B

]
− σmin

[
P (r∗e

iθ∗)

pγ(r∗)
B

]
≤∥∥∥∥[P (r∗e

i(θ∗+η))

pγ(r∗)
B

]
−
[
P (r∗e

iθ∗)

pγ(r∗)
B

]∥∥∥∥ =

∥∥∥∥∥
∑k

j=1 rj
∗e

ijθ∗Kj(e
ijη − 1)

pγ(r∗)

∥∥∥∥∥ .

Notice that η ≤ π/k, implying that cos kη ≤ cos jη for j = 0, . . . , k. Therefore

kcKmax

√
2− 2 cos kη ≥

k∑
j=1

c‖Kj

√
2− 2 cos jη‖ ≥

∥∥∥∥∥
∑k

j=1 rj
∗e

ijθ∗Kj(e
ijη − 1)

pγ(r∗)

∥∥∥∥∥ > δ−τ

or

1− 1

2

(
δ − τ

kcKmax

)2

> cos kη.

Since the cos function is strictly decreasing in the interval [0, π], we obtain the

contradiction that

η >
1

k
arccos

(
1− 1

2

(
δ − τ

kcKmax

)2
)

.

Thus, (5.7) cannot hold, so there exists r′1 satisfying

σmin

[
P (r′1e

i(θ∗+η))

pγ(r′1)
B

]
≤ δ.

The first equality of the theorem must therefore hold for some r1 ≥ r′1 because of

the continuity of f(r, θ∗+η) with respect to r and the fact that limr→∞ f(r, θ∗+

η) ≥ δ.

As we have already indicated in (5.3), we first set δ = δ1. The assignment

η =
2

k
arccos

(
1− 1

2

(
δ1 − δ2

ckKmax

)2
)

(5.8)

leads us to the lower bound (5.4) in the case that none of the lines L(0), L(η),

L(2η), . . . , L(bπ
η
cη) intersects the δ-level set of f , which we can see as follows.
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According to Theorem 37 for all θ in the interval[
θ∗ −

1

k
arccos

(
1− 1

2

(
δ − τ

ckKmax

)2
)

, θ∗ +
1

k
arccos

(
1− 1

2

(
δ − τ

ckKmax

)2
)]

,

(5.9)

the line L(θ) intersects the δ-level set of f . When none of the lines L(0),L(η),L(2η),

. . .L(bπ
η
cη) intersects the δ-level set of f , it follows that η must be greater than

the length of the interval in (5.9), that is

η =
2

k
arccos

(
1− 1

2

(
δ1 − δ2

ckKmax

)2
)

>
2

k
arccos

(
1− 1

2

(
δ − τ

ckKmax

)2
)

.

From this inequality it is straightforward to deduce the lower bound (5.4).

We summarize the algorithm below (Algorithm 8). The standard way

to solve a polynomial eigenvalue problem of size 2n and degree 2k is to re-

duce it to an equivalent generalized eigenvalue problem H + λN of size 4nk

and use a generalized eigenvalue solver with cubic complexity. At each it-

eration the algorithm below requires the solution of the eigenvalue problems

Q(λ, 0, δ), Q(λ, η, δ), . . . , Q(λ, bπ
η
cη, δ) each typically at a cost of O(n3k3). The

overall complexity of an iteration is

O

 n3k4

arccos

(
1− 1

2

(
δ1−δ2

ckKmax

)2
)
 . (5.10)

It is apparent that the initial iterations for which δ1 − δ2 is relatively large are

cheaper, while the last iteration for which δ1− δ2 ≈ tol/2 is the most expensive.

Note also that the choice of c affects the number of lines and therefore the

running time. It is not desirable to set it very large.

For reliability the method for solving the ∗-even polynomial eigenvalue prob-

lem Q(λ, θ, δ) is especially important. To avoid using tolerances to decide
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whether a computed eigenvalue can be accepted as imaginary, a ∗-even polyno-

mial eigenvalue solver respecting the symmetry of the spectrum (as discussed

in §A.3) must be used.

5.3 Numerical examples

5.3.1 The special case of first-order systems

Even though it is much slower than the methods in [31, 13] and the method based

on real eigenvalue extraction techniques in the previous chapter, Algorithm 8

can be applied to estimate the first-order distance to uncontrollability with

k = 1, K1 = I and γ = [0 1] so that perturbations to K1 = I are not allowed.

It is well known that in this case the distance to uncontrollability is attained at

a point λ∗ with |λ∗| = c ≤ 2(‖K0‖ + ‖B‖) [16]. We choose K0 as the Toeplitz

matrix 
1 3 0 0

−2 1 3 0

0 −2 1 3

0 0 −2 1


and B = [2 2 2 2]T . When we require an interval of length 10−2 or less,

Algorithm 8 returns [0.473, 0.481] in 12 iterations which contains the distance

to uncontrollability 0.477. Table 5.1 lists the cumulative running time after

each iteration in seconds. Overall we observe that reaching one-digit accuracy

is considerably cheaper than two-digit accuracy. When we allow perturbations

to the leading coefficient by setting γ = [1 1], there is a closer uncontrollable

system at a distance of τ(P, B, γ) ≤ 0.145 which is the upper bound returned
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Algorithm 8 Trisection algorithm for the higher-order distance to uncontrol-

lability

Call: [L,U ]← HODU(P ,B,γ,tol,c).

Input: P ∈ Ck×n×n (the matrix polynomial), B ∈ Cn×m, γ ∈ Rk

(non-negative scaling factors, not all zero), tol (desired toler-

ance), c (a positive real number satisfying (5.6)).

Output: L,U with L < U , U − L ≤ tol. The interval [L,U ] contains

the higher-order distance to uncontrollability.

Initially for some λ̃ set

U ← σmin

[
Kk

γk
B
]

if γk > 0

U ← σmin

[
P (λ̃)

pγ(|λ̃|) B
]

if γk = 0

and L← 0.

while U − L > tol do

Set δ1 ← L + 2(U − L)/3 and δ2 ← L + (U − L)/3.

Set δ ← δ1 and η as defined in (5.8)

Set Intersection← FALSE.

for θ = 0 to π in increments of η do

Compute the eigenvalues of Q(λ, θ, δ).

if Q(λ, θ, δ) has an imaginary eigenvalue then

% An intersection point is detected

Update the upper bound, U ← δ1.

Intersection← TRUE.

Break. (Leave the for loop.)

end if

end for

if ¬Intersection then

% No intersection point is detected

Update the lower bound, L← δ2.

end if

end while

Return [L,U ].

167



iteration total running time Interval [L, U ]

1 0.400 [0.000,0.667]

2 1.680 [0.222,0.667]

3 2.510 [0.222,0.519]

4 5.369 [0.321,0.519]

5 9.670 [0.387,0.519]

6 16.110 [0.431,0.519]

7 20.140 [0.431,0.489]

8 34.580 [0.450,0.489]

9 56.770 [0.463,0.489]

10 70.470 [0.463,0.481]

11 118.40 [0.469,0.481]

12 190.93 [0.473,0.481]

Table 5.1: Total running time of the trisection algorithm after each iteration on

a Toeplitz matrix and vector pair.
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by Algorithm 8.

5.3.2 A quadratic brake model

In [27] the vibrations of a drum brake system are modeled by the quadratic

equation

Mx(2)(t) + K(µ)x(t) = f(t) (5.11)

with the mass and stiffness matrices

M =

 m 0

0 m

 , K(µ) = g

 (sin γ + µ cos γ) sin γ −µ− (sin γ + µ cos γ) cos γ

(µ sin γ − cos γ) sin γ 1 + (−µ sin γ + cos γ) cos γ

 .

Suppose that the force on the brake system has just the vertical component

determined by the input

f(t) =

 fx(t)

fy(t)

 =

 0

1

u(t).

For the parameters m = 5, g = 1 and γ = π
100

, we consider two cases. First

by setting γ = [1 0 1], we impose equal importance on the perturbations to

the mass and stiffness matrices. Notice that for small µ and γ, the system is

close to being uncontrollable. In the second column in Table 5.2 the intervals

of length 10−2 or less containing the distance to uncontrollability returned by

Algorithm 8 are provided for various values of µ. The algorithm iterates 16

times to reach two-digit accuracy. Secondly we assign scaling to the pertur-

bations proportional to the norms of the mass and stiffness matrices, that is

γ = [‖M‖ 0 ‖K‖]. The intervals returned by Algorithm 8 for this second case

are given in the rightmost column in Table 5.2. As expected, the distance to

uncontrollability again increases with respect to µ. The system (5.11) is closer

to being uncontrollable in a relative sense than in an absolute sense.
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µ Interval [L, U ] (Absolute) Interval [L, U ] (Relative)

0.05 [0.051,0.059] [0.038,0.046]

0.10 [0.097,0.105] [0.071,0.079]

0.15 [0.140,0.148] [0.104,0.112]

0.20 [0.184,0.191] [0.137,0.145]

0.50 [0.418,0.426] [0.325,0.333]

1 [0.676,0.684] [0.574,0.581]

10 [0.990,0.997] [0.984,0.991]

100 [0.993,1.000] [0.987,0.994]

1000 [0.993,1.000] [0.987,0.994]

Table 5.2: The intervals computed by the trisection algorithm for the brake

system for various µ values in an absolute sense in the second column and in a

relative sense in the third column.
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If we allow perturbations to all coefficients with equal scaling (i.e. γ =

[1 1 1]), usually the first-order distance to uncontrollability of the linearized

system is considerably smaller than the higher-order distance to uncontrollabil-

ity τ(P, B, γ). This is because the perturbations in the definition of the first-

order distance to uncontrollability are not constrained, so they don’t respect

the structure of the linearization. For instance, for the drum brake system with

γ = [1 1 1] and µ = 0.1, τ(P, B, γ) ∈ [0.097, 0.105] (note that this is same as the

entry for µ = 0.1 in the second column in Table 5.2; up to two-digit accuracy it

does not make any difference whether we allow perturbations to the coefficient

K1 or not) whereas the standard unstructured distance to uncontrollability of

the embedding lies in the interval [0.012, 0.020].

5.3.3 Running time with respect to the size and the or-

der of the system

We run the trisection algorithm on systems with random coefficients of vari-

ous size and order. To be precise, the entries of all of the coefficient matrices

were chosen from a normal distribution with zero mean and variance one in-

dependently. Table 5.3 illustrates how the running time in seconds varies with

respect to the size and the order of the system. In all of the examples intervals

of length at most 10−2 containing the absolute distance to uncontrollability (γ

is the vector of ones) were returned. The numbers in parentheses correspond

to the number of trisection iterations needed. The variation in the running

time with respect to the size and the order is consistent with the complexity

suggested by (5.10).
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size / order first-order quadratic cubic

5 10.260 (10) 192.760 (12) 1237.540 (13)

10 83.550 (12) 1392.070 (11) 12485.740 (12)

15 271.560 (13) 6390.000 (14) 37324.310 (12)

Table 5.3: Running time of the trisection algorithm in seconds with respect

to the size and the order of the systems with normally distributed coefficient

matrices.
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Chapter 6

Software and Open Problems

We conclude this thesis by listing all the available software implemented to

compute the robust stability and controllability measures. We also describe

some related open problems.

6.1 Software

All of the algorithms in this thesis are implemented and tested in Matlab.

For these particular algorithms, programming in a traditional high-level lan-

guage such as C or Fortran does not provide a significant improvement in

the running time, as the computations are usually dominated by the solutions

of eigenvalue problems that are performed in Matlab by calling LAPACK or

ARPACK routines.

The Matlab routines for robust stability and controllability are available

on the web site [58] as a tar and a zip file. When the tar or zip file is extracted,

the directory software rob sc is created. In this directory the routines are

collected in six subdirectories.

173



• The subdirectory auxiliary contains common routines that are called by

the main routines frequently for purposes such as error handling and the

solution of polynomial eigenvalue problems. The user does not need to

know the details of the routines in this subdirectory.

• The subdirectory visualization contains routines to view the functions

(or their level sets) that are optimized in this thesis; these are listed in

Table 6.1. The subdirectory auxiliary must be added to the Matlab

path before running the visualization routines. Additionally for the rou-

tines plot kreiss constant cont and plot kreiss constant disc, the

subdirectories

fo robust stability/pseudo abscissa

and

fo robust stability /pseudo radius

must be added to the Matlab path. To draw the level sets, the functions

poly ps and rect poly ps perform radial searches in various directions

defined in Theorem 21 and Theorem 36.

• The routines for the measures for the robust stability of first-order sys-

tems can be found in the subdirectory fo robust stability. This sub-

directory contains five subdirectories, one for each of the pseudospectral

abscissa, pseudospectral radius, numerical radius, continuous distance to

instability and discrete distance to instability. The main routines to com-

pute these measures are listed in Table 6.2.
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plot cdi Plots the function g(ω) = σmin[A− ωiI] in a

given real interval.

plot ddi Plots the function g(θ) = σmin[A− eiθI] in a

given subinterval of [0, 2π).

plot kreiss constant cont Plots the ratio αε/ε for ε in a given real in-

terval on a log 10 scale.

plot kreiss constant disc Plots the ratio (ρε− 1)/ε for ε in a given real

interval on a log 10 scale.

plot num rad Plots the function f(θ) = λmax(H(Aeiθ)) in

a given subinterval of [0, 2π).

plot poly cdi Plots the function h(ω) =

σmin[P (ωi)]/pγ(|ω|) in a given real interval

and for a given scaling γ.

plot poly ddi Plots the function h(θ) = σmin[P (eiθ)]/‖γ‖ in

a given subinterval of [0, 2π) and for a given

scaling.

poly ps Draws the ε-pseudospectra of a given matrix

polynomial for a given scaling γ and various

ε.

rect poly ps Draws the δ-level sets of the function

σmin[P (z)/pγ(|z|) B] in the complex plane

for a given matrix polynomial P , a matrix

B, the scaling γ and various δ.

Table 6.1: Visualization routines
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pspa Computes the ε-pseudospectral abscissa of a

matrix. This routine is included in the sub-

directory pseudo abscissa.

pspr Computes the ε-pseudospectral radius of a

matrix. The routine is in the subdirectory

pseudo radius.

cdi Computes the continuous distance to insta-

bility of a matrix. The routine is in the sub-

directory distance inst cont.

ddi Computes the discrete distance to instability

of a matrix. The routine is in the subdirec-

tory distance inst disc.

numr Computes the numerical radius of a ma-

trix. The routine is in the subdirectory

numerical radius.

Table 6.2: Routines for the computation of the first-order robust stability mea-

sures.

176



poly pspa Computes the ε-pseudospectral abscissa of a

matrix polynomial. The routine is in the sub-

directory pseudo abscissa.

poly pspr Computes the ε-pseudospectral radius of a

matrix polynomial. The routine is in the sub-

directory pseudo radius.

poly cdi Computes the continuous distance to insta-

bility of a matrix polynomial. The routine is

in the subdirectory distance inst cont.

poly ddi Computes the discrete distance to instability

of a matrix polynomial. The routine is in the

subdirectory distance inst disc.

Table 6.3: Routines for the computation of the higher-order robust stability

measures.

• The routines for robust stability of higher-order systems are in the subdi-

rectory ho robust stability. This subdirectory contains subdirectories

for the computation of the pseudospectral abscissa, pseudospectral radius,

continuous distance to instability and discrete distance to instability of a

matrix polynomial. The main routines are listed in Table 6.3.

• The routines for the first-order distance to uncontrollability are included

in the subdirectory fo robust controllability. The main routine

that should be called for the first-order distance to uncontrollability is

dist uncont hybrid. By setting the input parameters options.method

and options.eigmethod appropriately, various algorithms described in
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this thesis can be run. The parameter options.method is used to deter-

mine whether the trisection algorithm for high precision or low precision

or the BFGS algorithm will be used. Based on the value of parame-

ter options.eigmethod, either the real eigenvalue extraction technique is

used or otherwise eig of Matlab will be called. All of the possible com-

bination of parameter values and the corresponding algorithms that will

be executed are given in Table 6.4. For the algorithm for low precision,

regardless of the value of options.eigmethod, eig of Matlab will be

called as the real eigenvalue extraction technique is not applicable to this

case. The default values for these parameters are options.method= 1 and

options.eigmethod= 1 which means that the BFGS algorithm with the

real eigenvalue extraction technique will be invoked if these parameters

are not supplied.

• The routines for the higher-order distance to uncontrollability are in the

subdirectory ho robust controllability. The main routine that imple-

ments Algorithm 8 is poly dist uncont.

Note that the current release of the codes does not use structure-preserving

eigenvalue solvers and they can be run on any platform where Matlab is in-

stalled except that the routine to compute the first-order distance to uncontrol-

lability with the real eigenvalue extraction can only be run under Linux.1 We

hope to provide the routines using the structure-preserving eigenvalue solvers

1When the routine dist uncont hybrid is called by setting options.eigmethod=1, the

algorithms for the first-order distance to uncontrollability with the real eigenvalue extraction

technique will be invoked, requiring a Sylvester equation solver. In the current release a mex

file to solve Sylvester equations is included only for Linux. The Sylvester equation solvers for

other platforms will be made available in the next release.
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method= 0 method= 1 method= 2

eigmethod= 0 The trisection algorithm for high

precision (with the new veri-

fication scheme) in §4.3 with-

out the divide-and-conquer real

eigenvalue extraction

The BFGS algorithm described

in §4.3.4 (using the new verifica-

tion scheme) without the divide-

and-conquer real eigenvalue ex-

traction technique

The trisection algorithm for low

precision in §4.2

eigmethod= 1 The trisection algorithm for high

precision in §4.3 with the divide-

and-conquer real eigenvalue ex-

traction

The BFGS algorithm described

in §4.3.4 with the divide-and-

conquer real eigenvalue extrac-

tion technique

The trisection algorithm for low

precision in §4.2

Table 6.4: The first-order distance to uncontrollability algorithms that are im-

plemented.

in the future.

6.2 Open problems

6.2.1 Large scale computation of robust stability mea-

sures

The numerical examples at the end of Chapter 2 and Chapter 3 show that the

algorithms for the robust stability measures are feasible only for small to medium

scale problems. All of the algorithms require extraction of the imaginary or unit

eigenvalues of structured problems. We do not take advantage of the fact that we

need only the eigenvalues on the imaginary axis or on the unit circle by using the

QR algorithm or the structure-preserving methods in Appendix A. The distance
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of a given matrix A to the closest singular matrix is equal to σmin(A) and would

ideally be computed by an iterative method such as Arnoldi especially when A is

large. On the other hand, in Chapter 4 we presented a real eigenvalue extraction

technique based on iterative eigenvalue solvers which reduced the overall cost

of the algorithm for the distance to uncontrollability from O(n6) to O(n4) on

average. The real eigenvalue extraction can be modified for imaginary or unit

eigenvalue extraction for efficient computation as long as the matrices whose

imaginary or unit eigenvalues we seek can be inverted, shifted and multiplied

onto a vector efficiently. The applicability of the real eigenvalue extraction for

the computation of the robust stability measures of large scale matrices is still

under investigation.

6.2.2 Kreiss constants

We presented efficient procedures for the computation of the ε-pseudospectral

abscissa and the ε-pseudospectral radius of a medium size matrix. One of the

major reasons why we are interested in the computation of the either one of

these measures is to obtain the corresponding Kreiss constant defined by (2.22)

for continuous systems and (3.37) for discrete systems. In the specific examples

that we focused on, we usually observed that the Kreiss constants are attained

at ε values slightly larger than the distance to instability. But in general it is

difficult to guess a priori which ε value is most relevant for the transient peak.

Therefore it is desirable to design an algorithm for the efficient computation of

the Kreiss constants. Indeed the alternative characterizations

Kc(A) = sup
Re z>0

Re z

σmin(A− zI)
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and

Kd(A) = sup
|z|>1

|z| − 1

σmin(A− zI)

indicate the similarity of these problems to the distance to uncontrollability. It

may be possible to extend the algorithms for the distance to uncontrollability

to compute Kreiss constants. But as the algorithms for the distance to uncon-

trollability are expensive, we ideally would hope for more efficient techniques.

6.2.3 Computation of pseudospectra

At the moment the tool that is widely used for the computation of pseudospec-

tra is the Matlab toolbox EigTool [73], which benefits from the ideas in [69].

The most important observation that facilitates the computation is that the

pseudospectra of similar matrices are identical. If A = QTQ∗ is a Schur de-

compositon for the matrix A, we can compute σmin(T − zI) for various z on

a 2-D grid. Using an iterative solver, the minimum singular value of T − zI

can typically be retrieved in O(n2) time, so the overall cost is O(n3 + s2n
2)

where s2 is the number of grid points. If we are specifically interested in the

ε-pseudospectra for a few ε values, an alternative way is to perform the radial

searches in various directions (see (3.9) for the definition of the radial search and

Corollary 12 for how to perform it efficiently) on a 1-D grid. A straightforward

implementation using direct eigenvalue solvers would have computational com-

plexity O(s1n
3) with s1 denoting the number of points on the 1-D grid. Since

we are only interested in the imaginary eigenvalues of the Hamiltonian matrices

used for the radial searches, it may be possible to take advantage of the real

eigenvalue extraction techniques as discussed in §6.2.1. Especially when we need

to retrieve the ε-pseudospectrum for a particular ε on a fine grid, the method
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based on radial searches may have advantages over the methods working on a

2-D grid.
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Appendix A

Structured Eigenvalue Problems

The algorithms that are presented in this thesis require the extraction of the

imaginary eigenvalues of Hamiltonian matrices and even-odd matrix polyno-

mials and the unit eigenvalues of symplectic pencils and palindromic matrix

polynomials. Below we review these structured eigenvalue problems briefly.

A.1 Hamiltonian eigenvalue problems

A complex matrix M of size 2n is called Hamiltonian if the product JM is

Hermitian where

J =

 0 I

−I 0

 . (A.1)

A complex pencil M1 − λM2 of size 2n is called Hamiltonian if M1JM∗
2 is

Hermitian. It is easy to verify that both the Hamiltonian matrices and the

Hamiltonian pencils have the eigenvalue symmetry (λ,−λ̄) unless λ is imaginary.

Suppose that λ′ is an eigenvalue of the Hamiltonian matrix M with the right
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eigenvector x, then

Mx = λ′x ⇐⇒ JMx = λ′Jx ⇐⇒ x∗JM = −λ̄′x∗J

that is −λ̄′ is an eigenvalue of M . Similarly, if λ′ is an eigenvalue of the pencil

M1 − λM2 with the left eigenvector y, then

y∗M1 = λ′y∗M2 ⇐⇒ y∗M1JM∗
2 = λ′y∗M2JM∗

2 ⇐⇒ M1(JM∗
2 y) = −λ̄′M2(JM∗

2 y)

implying that −λ̄′ is an eigenvalue as well. See [6] for a recent survey on Hamil-

tonian matrices and pencils. For the algorithms in this thesis it is essential that

the eigenvalue solver used for Hamiltonian problems preserve the symmetry in

the spectrum. An eigenvalue solver that is not designed to respect the eigenvalue

symmetry introduces real parts for imaginary eigenvalues in exact arithmetic

because of rounding errors. Therefore tolerances would be needed to deter-

mine whether the real part computed is small enough so that the eigenvalue

can be accepted as imaginary. Needless to say, determining the appropriate

tolerance is a difficult task that depends on the conditioning of the real part

of the eigenvalue as discussed in [45]. On the other hand, when an eigenvalue

solver respecting the Hamiltonian symmetry of the eigenvalues is used, simple

imaginary eigenvalues will remain on the imaginary axis under rounding errors

avoiding the need for tolerances.

In [7] Hamiltonian eigenvalue solvers respecting the symmetry of the spec-

trum are given for real matrices and pencils. The key observation for the al-

gorithms is that the eigenvalues of a Hamiltonian matrix M are minus and

plus the square root of the eigenvalues of the matrix M2 and the eigenvalues

of a Hamiltonian pencil M1 − λM2 are minus and plus the square root of the

eigenvalues of the pencil M1J
T MT

1 − λM2JMT
2 . The algorithm applies unitary
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transformations to M and M1 − λM2 from left and right. Benner et.al. gave

a procedure to construct a unitary matrix Q1 and unitary symplectic matrices

Q2, Q3, Q4, Q5 (a matrix Q is called unitary symplectic if QJQ∗ = I) such that

QT
1 M2Q2 =

 M̂11 M̂12

0 M̂22

 , QT
1 M1Q3 =

 M̃11 M̃12

0 M̃22

 ,

and

QT
4 MQ5 =

 M11 M12

0 M22

 ,

where M̂11, M̂
T
22, M̃11, M11 are upper triangular matrices and M̃T

22, M
T
22 are upper

Hessenberg matrices. Notice that these transformations do not preserve the

eigenvalues of M or M1 − λM2; however, it can be easily derived that

QT
1 M2JMT

2 Q1J =

 M̂11 M̂12

0 M̂22

 −M̂T
22 M̂T

12

0 −M̂T
11

 ,

QT
1 M1J

T MT
1 Q1J =

 M̃11 M̃12

0 M̃22

 M̃T
22 −M̃T

12

0 M̃T
11


and

QT
4 M2Q4 =

 −M11M
T
22 M11M

T
12 −M12M

T
11

0 −M22M
T
11

 .

Therefore the eigenvalues of M2 are same as the eigenvalues of −M11M
T
22

with algebraic multiplicity doubled. On the other hand, the eigenvalues of

the pencil M1J
T MT

1 − λM2JMT
2 are same as the generalized eigenvalues of

M̃11M̃
T
22 +λM̂11M̂

T
22. The eigenvalues of −M11M

T
22 and M̃11M̃

T
22 +λM̂11M̂

T
22 can

be computed via periodic QR and periodic QZ algorithms without forming the

products. The eigenvalues of M are plus and minus square roots of the eigen-

values of −M11M
T
22 and the eigenvalues of M1−λM2 are plus and minus square
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roots of the eigenvalues of M̃11M̃
T
22 +λM̂11M̂

T
22. The algorithm can be extended

to complex matrices or pencils by replacing the matrix and the pencil with the

real ones of double the size of the original problems.

A more desirable property of a Hamiltonian eigenvalue solver is to preserve

not only the eigenvalue symmetry but also the Hamiltonian structure of the in-

put matrix or pencil. Formally, a structure-preserving backward stable method

for the matrix M would return the eigenvalues of

M̃ = M + E (A.2)

where E, M̃ are Hamiltonian and ‖E‖ = O(δmach‖M‖). A structure-preserving

backward stable generalized Hamiltonian eigenvalue solver computing the eigen-

values of M1 − λM2 returns the eigenvalues of the nearby Hamiltonian pencil

M̃1 − λM̃2

M̃1 = M1 + E1 (A.3)

M̃2 = M2 + E2 (A.4)

with ‖E1‖ = O(δmach‖M1‖) and ‖E2‖ = O(δmach‖M2‖). In this thesis our

analysis to determine the backward error of the algorithms always assumes the

usage of the eigenvalue solvers preserving the Hamiltonian structure.

Van Loan suggested a structure-preserving algorithm in [53]. However, this

method suffers from the fact that half of the precision may be lost and is not

backward stable in general. Recently Chu et.al. presented structure-preserving

algorithms that are backward stable for nonimaginary eigenvalues of Hamilto-

nian matrices or pencils [18]. Since our algorithms are specifically based on

the extraction of the imaginary eigenvalues, at the moment the most suitable

Hamiltonian eigenvalue solvers for our purpose are the implementations of the
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algorithms in [7] included in the HAPACK library for structured eigenvalue

problems [5].

A.2 Symplectic eigenvalue problems

A complex matrix M of size 2n is called symplectic if it satisfies the property

MJM∗ = J,

while a pencil M1 − λM2 is called symplectic if the equality

M1JM∗
1 = M2JM∗

2

holds. Additionally we call a pencil M1 − λM2 ∗-symplectic if the pencil M∗
1 −

λM∗
2 is symplectic. The eigenvalues of symplectic matrices and pencils are

symmetric with respect to the unit circle. For a symplectic matrix M with the

eigenvalue λ and the left eigenvector y associated with λ,

y∗M = λy∗ ⇐⇒ y∗MJM∗ = λy∗JM∗ ⇐⇒ y∗J = λy∗JM∗ ⇐⇒ 1/λ̄(Jy) = M(Jy),

so 1/λ̄ is an eigenvalue as well (note that the symplectic property implies that

M is nonsingular). For a symplectic pencil M1 − λM2 with the eigenvalue λ

and the associated left eigenvector y,

y∗M1 = λy∗M2 ⇐⇒ y∗M1JM∗
1 = λy∗M2JM∗

1 ⇐⇒ 1/λ̄M2(JM∗
2 y) = M1(JM∗

2 y)

which means that 1/λ̄ is an eigenvalue as well. (A zero eigenvalue is paired with

an infinite eigenvalue and vice versa.)

Some of our algorithms are based on the extraction of the unit eigenvalues of

symplectic or ∗-symplectic pencils. To solve symplectic generalized eigenvalue
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problems we can reduce the pencil M1 − λM2 to a generalized Hamitonian

eigenvalue problem via a Cayley transformation, i.e. the pencil M1 − λM2 is

symplectic if and only if the pencil

M1H − λM2H = (M1 + M2)− λ(M1 −M2) (A.5)

is Hamiltonian. We can then benefit from a Hamiltonian eigenvalue solver

applied to the pencil M1H −λM2H and transform back the eigenvalues. Clearly

if λ is an eigenvalue of the pencil M1H − λM2H , then −(1+λ)
1−λ

is an eigenvalue of

the symplectic pencil M1 − λM2. (Corresponding to each eigenvalue equal to

one of the Hamiltonian pencil, the sympletic pencil has an eigenvalue at∞ and

vice versa.) The imaginary eigenvalues of the Hamiltonian pencil correspond

to unit eigenvalues of the symplectic pencil. Thus using the algorithm in [7]

described in the previous section and Cayley transformation, we can obtain

eigenvalues of unit modulus reliably. In practice we use the implementation

in HAPACK for Hamiltonian pencils followed by the transformation of the

Hamiltonian eigenvalues into symplectic ones.

A.3 Even-odd polynomial eigenvalue problems

The matrix polynomial P (λ) defined as

P (λ) =
k∑

j=0

λjKj

with the complex adjoint

P ∗(λ) =
k∑

j=0

λjK∗
j

is called even, odd, ∗-even or ∗-odd if it satisfies the property P (λ) = P (−λ),

P (λ) = −P (−λ), P ∗(λ) = P (−λ) or P ∗(λ) = −P (−λ), respectively. The
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algorithms for higher-order dynamical systems in this thesis are based on the

capability of extracting the imaginary eigenvalues of ∗-even matrix polynomials.

Suppose that λ is an eigenvalue of the ∗-even or the ∗-odd matrix polynomial

P and x is an associated right eigenvector; then

P (λ)x = x∗(P (λ))∗ = x∗P ∗(λ̄) = x∗P (−λ̄) = 0.

Therefore the eigenvalues of P (λ) are either imaginary or in pairs (λ,−λ̄). Sim-

ilarly the eigenvalues of an even and a odd matrix polynomial are either imagi-

nary or in pairs (λ,−λ).

In general it is convenient to solve a polynomial eigenvalue problem via

linearization, which is a procedure to replace the polynomial eigenvalue problem

of size n with a generalized eigenvalue problem H + λN of size kn × kn with

the same set of eigenvalues. Then the polynomial eigenvalues can be retrieved

by a generalized eigenvalue solver applied to H+λN . The most popular way of

reducing a polynomial eigenvalue problem to a generalized eigenvalue problem

is via the companion forms [46]

Hc1 + λNc1 =


Kk−1 . . . K1 K0

−I 0 0

. . .

0 −I 0


+ λ


Kk 0 0

0 I

. . .

0 0 I


and

Hc2 + λNc2 =


Kk−1 −I 0

...
. . .

K1 −I

K0 0


+ λ


Kk 0 0

0 I 0

. . .

0 0 I


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But in theory any transformation satisfying

F (H + λN )G =


P (λ)

I

. . .

I


with nonsingular F, G ∈ C4nk×4nk achieves the linearization task. For a detailed

discussion on the solution of the polynomial eigenvalue problems, we refer to

the book [46]. For the special case of quadratic eigenvalue problems the survey

paper [67] is a comprehensive reference.

Here we focus on structured well-conditioned linearizations. In [56] vector

spaces of linearizations that are generalizations of the companion forms are

introduced. Let Λ = [λk−1 . . . λ1 λ0]
T . It is straightforward to verify that the

companion forms satisfy the equalities

(Hc1 + λNc1)(Λ⊗ I) = e1 ⊗ P (λ)

(Λ⊗ I)(Hc2 + λNc2) = eT
1 ⊗ P (λ),

where e1 ∈ Ck is the column vector of zeros except for the first entry, which is

equal to one. By replacing the vectors e1 appearing on the right-hand sides in

the equations above with arbitrary vectors, the vector spaces

L1(P ) = {Y + λX : ∃v ∈ Ck (Y + λX)(Λ⊗ I) = v ⊗ P (λ)}

L2(P ) = {Y + λX : ∃w ∈ Ck (Y + λX)(Λ⊗ I) = wT ⊗ P (λ)}

are obtained [56]. For a pencil Y + λX in L1(P ) such that the equality (Y +

λX)(Λ⊗I) = v⊗P (λ) holds, the vector v is called a right ansatz vector, while for

a pencil Y +λX in L2(P ) such that the equality (Λ⊗I)T (Y +λX) = wT ⊗P (λ)

190



holds, the vector w is called a left ansatz vector. In [56] it has been shown that

any pencil in L1(P ) or L2(P ) is a linearization for a regular P if and only if the

pencil is regular. This condition, though easy to state, is hard to interpret in

terms of the input polynomials. The intersection of these two vector spaces

DL(P ) = L1(P ) ∩ L2(P )

has nicer properties. It turns out that any pencil in DL(P ) has the left ansatz

vector and the right ansatz vector equal to each other (see Theorem 5.3 in [56]).

Indeed there is a unique pencil in DL(P ) with a given ansatz vector. A pencil

Y + λX ∈ DL(P ) with the ansatz vector v is a linearization for a regular P if

and only if the set of roots of the scalar polynomial

pv(x) = v1x
k−1 + v2x

k−2 + · · ·+ vk (A.6)

and the set of eigenvalues of the matrix polynomial P are disjoint. Furthermore,

the eigenvalues of the polynomial P and the eigenvalues of a linearization have

different condition numbers and according to [35] the smaller the distance from

a given root of pv(x) to the closest eigenvalue of P (λ), the more ill-conditioned

the corresponding eigenvalue of the linearization. Another desirable property

of a linearization Y +λX in DL(P ) is that any of its left and right eigenvectors

corresponding to finite eigenvalues are in the form Λ̄⊗y and Λ⊗x, respectively,

where y and x are left and right eigenvectors of P . Therefore the eigenvectors

of P can be constructed easily from those of the linearization Y + λX.

As far as the algorithms in this thesis are concerned, the accurate computa-

tion of the exact imaginary eigenvalues of a ∗-even matrix polynomial without

introducing real parts is the key property we seek. For this purpose the lin-

earization must ideally have the ∗-even structure as well, that is we aim for
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a linearization H + λN where H is Hermitian and N is skew-Hermitian. In

DL(P ) there is no Hermitian/skew-Hermitian pencil. However, such pencils ex-

ist in L1(P ). Indeed in [55] it was shown that any pencil Y + λX ∈ L1(P ) such

that (Σ⊗ I)(Y + λX) ∈ DL(P ) with the ansatz vector v satisfying Σv = v̄ for

Σ =


(−1)k−1I 0

0 (−1)k−2I

. . .

I


is a Hermitian/skew-Hermitian pencil.

Assuming that we approximately know the regions that contain the eigen-

values of P a priori, we can choose k roots away from these regions. The co-

efficients of the polynomial pv(x) with these roots provide us the ansatz vector

v, which must also be forced to satisfy Σv = v̄. Then the unique linearization

Y + λX ∈ DL(P ) with the ansatz vector v can be constructed and the pencil

(Σ⊗I)(Y +λX) = H+λN with the right ansatz vector v̄ is a Hermitian/skew-

Hermitian linearization that approximately preserves the conditioning of the

eigenvalues of P . Now the pencil H + λN i is a Hermitian/Hermitian pencil

with the eigenvalue λ corresponding to each eigenvalue iλ of P . The QZ al-

gorithm with special care will typically return the eigenvalues of H + λN i in

conjugate pairs (λ, λ̄) which correspond to the pair of eigenvalues (λP ,−λ̄P )

of the polynomial P , where λP = iλ. When P is real and the linearization

H + λN is real, after deflating the infinite eigenvalues of N , denote the result-

ing Hermitian/skew-Hermitian pencil by H1 + λN1. Now the skew-symmetric

matrix N1 can be factorized as L1JLT
1 [4]. Therefore the Hermitian/skew-

Hermitian generalized eigenvalue problem can be converted into the standard
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Hamiltonian eigenvalue problem JL−1
1 H1L−T

1 − λI which can be solved using

algorithm [7] in HAPACK.

A.4 Palindromic polynomial eigenvalue prob-

lems

Let us define the reverse and ∗-reverse of a matrix polynomial as rev(P (λ)) =∑k
j=0 λjKk−j and rev(P ∗(λ)) =

∑k
j=0 λjK∗

k−j. We call a matrix polyno-

mial P palindromic or ∗-palindromic if the properties P (λ) = rev(P (λ)) or

P (λ) = rev(P ∗(λ)) hold, respectively. Some of the algorithms for higher-order

systems depend on the extraction of the unit eigenvalues of ∗-palindromic ma-

trix polynomials. A ∗-palindromic matrix polynomial has eigenvalue symmetry

with respect to the unit circle as for each finite non-zero eigenvalue λ with the

right eigenvector x,

P (λ)x = 0⇐⇒ revP (1/λ)x = 0⇐⇒ x∗revP ∗(1/λ̄) = 0⇐⇒ x∗P (1/λ̄) = 0,

so the scalar 1/λ̄ is an eigenvalue as well. (An infinite eigenvalue pairs with

zero.) Similarly, the eigenvalues of a palindromic matrix polynomial are in

pairs (λ, 1/λ).

To solve a ∗-palindromic polynomial eigenvalue problem by preserving the

symmetry of the spectrum, the palindromic matrix polynomial P can be trans-

formed into the ∗-even matrix polynomial Pe via the Cayley transformation

Pe(λ) = (λ + 1)kP

(
1− λ

1 + λ

)
. (A.7)

Notice that the Cayley transformation above maps the eigenvalues −1 and ∞

to each other. Any finite eigenvalue λ 6= −1 of Pe corresponds to the eigenvalue
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1−λ
1+λ

of P . In particular, an imaginary eigenvalue of Pe matches with a unit

eigenvalue of P and vice versa.

To summarize, to retrieve the unit eigenvalues of a ∗-palindromic polynomial,

we can simply perform the Cayley transformation (A.7). Then we compute the

eigenvalues of the ∗-even polynomial Pe as discussed in the previous section

and transform back the ∗-even polynomial eigenvalues into the ∗-palindromic

eigenvalues.
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Basic Notation

R : real numbers

C : complex numbers

Z : integers

R+ : nonnegative real numbers

C+ : complex numbers with nonnegative real parts

Cn : vectors of complex numbers of size n

Rn : vectors of real numbers of size n

Rn
+ : vectors of nonnegative real numbers of size n

Cn×m : complex n×m matrices

Rn×m : real n×m matrices

H(A) : Hermitian part A+A∗

2
of the matrix A

N(A) : skew-Hermitian part A−A∗

2
of the matrix A

det(A) : determinant of the matrix A

‖A‖ : 2-norm of the matrix A

‖A‖F : Frobenius norm of the matrix A

Λ(A) : spectrum of the matrix A

Λ(P ) : spectrum of the matrix polynomial P

Λε(A) : ε-pseudospectrum of the matrix A

195



Λε(P, γ) : ε-pseudospectrum of the matrix polynomial P with

the scaling vector γ

F (A) : field of values of the matrix A

F (P ) : field of values of the matrix polynomial P

σ(A) : set of singular values of the matrix A

λmax(A) : largest eigenvalue of the Hermitian matrix A

λmin(A) : smallest eigenvalue of the Hermitian matrix A

λj(A) : jth smallest eigenvalue of the Hermitian matrix A

σmin(A) : min(n, m)th largest singular value of the n×m matrix

A

α(A) : spectral abscissa of the matrix A

α(P ) : spectral abscissa of the matrix polynomial P

ρ(A) : spectral radius of the matrix A

ρ(P ) : spectral radius of the matrix polynomial P

αF (A) : numerical abscissa of the matrix A

r(A) : numerical radius of the matrix A

αε(A) : ε-pseudospectral abscissa of the matrix A

αε(P, γ) : ε-pseudospectral abscissa of the matrix polynomial P

with the scaling vector γ

ρε(A) : ε-pseudospectral radius of the matrix A

ρε(P, γ) : ε-pseudospectral radius of the matrix polynomial P

with the scaling vector γ

βc(A) : continuous distance to instability of the matrix A

βc(P, γ) : continuous distance to instability of the matrix poly-

nomial P with the scaling vector γ
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βd(A) : discrete distance to instability of the matrix A

βd(P, γ) : discrete distance to instability of the matrix polyno-

mial P with the scaling vector γ

τ(A, B) : distance to uncontrollability of the matrix pair (A, B)

τ(P, B, γ) : distance to uncontrollability of the matrix polynomial

P and matrix B with the scaling vector γ

Re z : real part of the complex number z

Im z : imaginary part of the complex number z

|z| : modulus of the complex number z

A⊗B : Kronecker product of the matrices A and B

vec(A) : column vector obtained by stacking up the columns

of the matrix A

rvec(A) : row vector obtained by concatenating the rows of the

matrix A

δmach : machine precision which is equal to 2−53 in IEEE dou-

ble precision floating point arithmetic

Cg : open set representing the stable region

Cb : closed set representing the unstable region

∂Cb : boundary of the unstable region
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