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Abstract

Kernel-based algorithms have been used with great success in a variety of ma-

chine learning applications. These include algorithms such as support vector

machines for classification, kernel ridge regression, ranking algorithms, cluster-

ing algorithms, and virtually all popular dimensionality reduction algorithms.

But, the choice of the kernel, which is crucial to the success of these algo-

rithms, has been traditionally left entirely to the user. Rather than requesting

the user to commit to a specific kernel, multiple kernel algorithms require the

user only to specify a family of kernels. This family of kernels can be used by

a learning algorithm to form a combined kernel and derive an accurate pre-

dictor. This is a problem that has attracted a lot of attention recently, both

from the theoretical point of view and from the algorithmic, optimization, and

application point of view.

This thesis presents a number of novel theoretical and algorithmic results

for learning with multiple kernels.

It gives the first tight margin-based generalization bounds for learning ker-

nels with Lp regularization. In particular, our margin bounds for L1 regular-
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ization are shown to have only a logarithmic dependency on the number of

kernels, which is a significant improvement over all previous analyses. Our

results also include stability-based guarantees for a class of regression algo-

rithms. In all cases, these guarantees indicate the benefits of learning with a

large number of kernels.

We also present a family of new two-stage algorithms for learning kernels

based on a notion of alignment and give an extensive analysis of the properties

of these algorithms. We show the existence of good predictors for the notion

of alignment we define and give efficient algorithms for learning a maximum

alignment kernel by showing that the problem can be reduced to a simple

quadratic program.

Finally, we report the results of extensive experiments with our two-stage

algorithms, which show an improvement both over the uniform combination

of kernels and over other state-of-the-art learning kernel methods for L1 and

L2 regularization. These might constitute the first series of results for learn-

ing with multiple kernels that demonstrate a consistent improvement over a

uniform combination of kernels.
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Chapter 1

Introduction

1.1 Motivation

In machine learning the goal is to learn from labeled examples in order to

predict the labels of other, possibly never before seen, unlabeled examples.

That is, given a training set, we wish to learn a rule, or hypothesis, that will

generalize well. In order to do this, each instance is first represented by a

set of features, which often represents one’s prior knowledge about the task.

The learning algorithm will make use of these features to select a hypothesis.

Correctly selecting this hypothesis to minimize errors on previously unseen

points, is then the main focus of machine learning algorithms. These are the

two steps illustrated in Diagram (1.1).

As is shown in the diagram, the choice of features for an instance x ∈ X ,

denoted by a vector Φ(x), is often made before the traditional “learning” step
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where a hypothesis h is chosen based on labeled training examples. Thus, the

choice of features will have a direct impact on the selection and performance

of the hypothesis h.

x → Φ(x) → h(Φ(x)) (1.1)

instance features prediction

To give a simple albeit extreme example that illustrates the importance of

features, consider two cases: one in which the features in fact contain the

correct prediction label and another in which the features contain random

values. In such scenarios the choice of learning algorithm is rather moot. In

the former case any reasonable algorithm will do well, while in the latter no

algorithm can be expected to perform better than random guessing.

Traditionally, it is the user’s task to define a set of useful features. This

requires the user to have some prior knowledge about which aspects of the

data will be useful for predicting labels. For example, if the task is to dis-

tinguish between apples and oranges, a very useful feature would be the color

of the fruit. In many modern machine learning algorithms features can be

represented either explicitly, such as Φ(x), or implicitly via a kernel function

K : X × X → R. Kernel functions define a similarity measure between in-

stances and will allow for flexibility and efficiency in representing features.

They will be discussed more fully in Section 1.3. In real world scenarios, the

task of correctly choosing a set of features or a kernel is often non-trivial and
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committing to a set of useful features may be a very difficult task.

Can we instead provide algorithms and guarantees that will help us find

useful features? Can we leverage the flexibility and efficiency of kernel func-

tions, with their ability to define diverse and powerful feature spaces, in order

to effectively search and find a “good” set of features? Can the burden of

defining good features be lessened for the user? In this thesis, we will con-

sider algorithms which not only select the hypothesis, but also the kernel from

a given family of kernels. Thus, the requirement on the user is reduced to

selecting a general family of kernels instead of committing to a single kernel.

Such methods, often referred to as “learning kernel” methods, have been

previously proposed and are discussed fully in Section 1.4, however, the prob-

lem is far from solved. In practice, these automated methods are not always

able to improve upon simple baselines or heuristics. Furthermore, existing the-

oretical guarantees do not always closely match what is observed in practice.

Thus, we are dealing with an open problem that is very important to extend

and solve.

The broad goal of the research presented in this thesis can be nicely stated

in terms of Diagram (1.1). That is, we wish to extend learning theory and

algorithms to consider both of the important illustrated stages. We will see

that designing and providing guarantees for algorithms that help automatically

select a kernel function is an important way to address this task.
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1.2 Learning Scenario

In this section, we introduce terminology and notation that will be used

throughout the thesis. To begin with, the goal of supervised learning is to

select a hypothesis h from a set of hypotheses H that, when given an in-

stance x from the set of instances X , can accurately predict an associated

label y from a set of feasible labels Y . For example, if the task at hand is

spam-detection, the set X will represent the set of all email messages and

Y = {spam, non-spam} is the set of feasible labels.

As mentioned in the previous section, a hypothesis h does not operate

directly on an instance, but rather on features derived from the instance. The

explicit features of an instance x, are denoted by the vector Φ(x) ∈ R
n. Thus,

Φ : X → R
n is a feature mapping and defines the choice of features. Returning

to the spam-detection example, a useful feature vector may be the number of

times n distinct keywords appear within an email.

The notion of accuracy will depend on the loss function, which will depend

on the task. In the classification setting we generally have Y = {+1,−1} and

the loss function of interest is the zero-one loss. Given an instance x with

associated label y, the zero-one loss of a hypothesis h : R
n → R is,

L : R× Y → {0, 1} (1.2)

(h(x), y) 7→ 1{sign(h(x))6=y} (1.3)

= 1{h(x)y<0} , (1.4)
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where 1ω is the indicator function of the event ω. Additionally, the margin-loss

is also useful in analyzing an algorithm’s performance,

Lρ : R× Y → {0, 1} (1.5)

(h(x), y) 7→ 1{h(x)y<ρ} . (1.6)

Here, the hypothesis must not only predict the correct sign, but also with a

margin of at least ρ. In the regression setting, we usually have Y ⊆ R and the

goal is not to predict the label exactly, but only to get “close”. One of the

most common losses for this setting is the squared loss,

L2 : R×Y → R (1.7)

(h(x), y) 7→ (h(x)− y)2 . (1.8)

It is assumed that instances arrive according to a fixed and unknown dis-

tribution. Thus, the goal is to minimize the true error (or risk) according to

this distribution,

R(h) = E
x
[L(h(x), y)] . (1.9)

Since we do not know the underlying distribution nor do we know the labels of

all instances, directly measuring R(h) is not possible. Instead, we are given a

labeled training sample S = ((x1, y1), . . . , (xm, ym)) and can use it to measure
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the empirical error,

R̂(h) =
1

m

m∑

i=1

L(h(xi), yi) . (1.10)

A very important point to realize is that fitting perfectly to the training set,

so that R̂(h) = 0, is not enough to guarantee that R(h) will be small. In fact,

in such cases we may be over-fitting to the training data. Thus, in order to

empirically estimate the true performance of a hypothesis, a portion of the

labeled data is left aside and not used during training. The error on this

test set is reported as the test error. A third set of data, called a validation

set, is sometimes also left aside in order to tune the performance of certain

parameters of the learning algorithm, before evaluating its performance of the

final hypothesis on the test set.

Furthermore, we can relate the true and empirical error via theoretical

guarantees known as generalization bounds. A generalization bound takes the

following form,

R(h) ≤ R̂(h) + C(m, H) , (1.11)

where C(m, H) is a complexity term which depends on the richness of the

hypothesis class H and sample size m. Bounds of this type suggest two things:

First, since the complexity term is expected to decrease with m, more data is

desirable and will allow for a better estimate of the true error. Secondly, since

the complexity term is expected to increase with the richness of the hypothesis

class, there is a trade-off between improving the hypothesis class in order to

reduce the empirical error while still not increasing the complexity term too

6



much. That is we wish to avoid the negative effects of over-fitting to the

training data.

Many modern learning algorithms, such as support vector machine and

kernel ridge regression, make use of such bounds when selecting a hypothesis.

That is, they select a hypothesis that makes a trade-off between minimizing

the training error and limiting the complexity of the selected hypothesis:

argmin
h∈H

R̂(h) + C(H) , (1.12)

where here the number of training points m has been fixed. Progressively

more complex hypothesis sets may be considered until the best trade-off be-

tween training error and complexity is found. Such an approach is known as

structural risk minimization (SRM) (Vapnik & Chervonenkis, 1974).

1.3 Kernel Methods

Kernel methods have been successfully used in a variety of learning tasks with

the best known example of support vector machines (SVMs) (Boser et al., 1992;

Cortes & Vapnik, 1995; Vapnik, 1998). In this section we briefly introduce

the concept of kernels as well as some example algorithms. For a much more

thorough treatment of the topic, the reader is directed to Schölkopf and Smola

(2002) or Shawe-Taylor and Cristianini (2004).

As the name would suggest, kernel methods or kernel based algorithms,
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depend on a kernel function. A kernel function is a similarity measure,

K : X ×X → R (1.13)

(x, x′) 7→ K(x, x′) , (1.14)

that returns a real value characterizing the similarity of x and x′ (Schölkopf

& Smola, 2003). For example, if X = R
n, then the standard dot product

provides a reasonable similarity measure. We will focus on functions that

implicitly define a dot-product in a feature space, which may be different than

X , and can be characterized via a simple criteria as explained below.

Definition 1.1 ((Positive Definite) Kernel Function). A positive definite ker-

nel function is a function K : X × X → R that defines a dot product in a

reproducing kernel Hilbert space HK , defined by the mapping Φ : X → HK ,

∀x, x′ ∈ X , K(x, x′) = 〈Φ(x), Φ(x′)〉 . (1.15)

Furthermore, any function that is symmetric, i.e.

K(x, x′) = K(x′, x) , (1.16)

and positive semi-definite, i.e. ∀N ∈ N, ∀c ∈ R
N , ∀x ∈ X n

N∑

i,j=1

cicjK(xi, xj) ≥ 0 , (1.17)
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is necessarily a (positive definite) kernel function.

Throughout this thesis, for brevity, we use the term kernel synonymously

with positive definite kernel. It will also be useful to define the kernel matrix

which corresponds to a kernel function evaluated on a sample.

Definition 1.2 (Kernel Matrix). A kernel matrix or Gram matrix associated

to a kernel K and sample S = (x1, . . . , xm) ∈ Xm, is the matrix K defined as

follows:

Kij = K(xi, xj) . (1.18)

Note that, by the definition of the kernel function, the kernel matrix is

symmetric and positive semi-definite or, equivalently, its eigenvalues are all

non-negative.

The characterization of a kernel function is relatively general, allowing for

a wide variety of kernels. Some examples include:

Polynomial: Given instances x,x′ ∈ X ⊆ R
N , the polynomial kernel is de-

fined as follows,

Kp,c(x,x′) = (x⊤x′ + c)p , (1.19)

where the parameter c allows for a constant offset and p > 0 controls

the degree of the polynomial. In this case, the explicit feature map Φ

can be constructed by mapping each vector x = (x1, . . . , xn) ∈ R
n to a

vector which considers all p tuples. For example, in the case of p = 2

and c = 0, we have Φ(x) = (x1x1,
√

2x1x2, . . . , xnxn) ∈ R
N2

.
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Gaussian: Given instances x,x′ ∈ X ⊆ R
N , the Gaussian kernel is defined

as follows,

Kσ(x,x′) = exp

(
−‖x− x′‖22

σ2

)
, (1.20)

where the bandwidth parameter σ > 0 controls the sensitivity of the

kernel function. It can be shown that the feature map Φ associated to the

Gaussian kernel actually corresponds to a space with infinite dimension

(Schölkopf and Smola (2002), Remark 12.37).

Sequence Based: Kernel functions do not necessarily need to operate only

on vectors in R
N . For example, if we define the set X as all variable

length sequences with a finite alphabet, then kernels can be constructed

from objects such as weighted transducers, which are similar to weighted

automata but with both input and output labels. Such kernels are known

as rational kernels. If we denote a weighted transducer as T , then, for

all x, x′ ∈ X , a valid sequence-based kernel can take the form,

KT (x, x′) = T ◦ T−1 , (1.21)

where ◦ denotes the transducer composition operation and T−1 is the

transducer T with input and output labels interchanged. For a detailed

description of these operations and rational kernel in general, the reader

should reference Cortes et al. (2004).

It may be evident from these examples that the mapping Φ need not be
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linear. Thus, a linear separator in the induced feature space corresponds to a

non-linear separation in the input space. For this reason, one may view kernels

as a way to transform a linear algorithm into a non-linear one.

If the value of dot-products between instances in features space is all that

is required from the data, then kernels have the advantage of computing these

dot-products implicitly. That is, we can compute the dot-product without

having to actually map the instance into the feature space via the function

Φ. This will allow for better efficiency in cases where Φ is a mapping to a

very high dimensional space. Using a kernel function also allows for flexibility,

since the choice of features can be changed simply by changing the definition

of the kernel function. However, is it ever the case that we only need the value

of dot-products between data-points? In fact, this can often be the case as

is exemplified by many “kernelized” algorithms. These are exactly algorithms

which represent the training data only in terms of inner products between the

points, in other words, algorithms which depend only on a kernel matrix in

order to train.

Such algorithms appear within many tasks found in machine learning:

Classification:

Support Vector Machine – Perhaps the most well-known and most

studied kernel-based algorithm is Support Vector Machines (SVM’s),

which finds a maximum margin linear separator in the feature space

induced by Φ (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 1998).

Kernel Logistic Regression – A maximum likelihood method, which
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assumes a logistic distribution over observations and allows non-linear

separation when used with a kernel (Wahba et al., 1993).

Regression:

Kernel Ridge Regression – Used to find a regularized least-squares

solution in kernel feature space (Saunders et al., 1998).

Support Vector Regression – An algorithm similar to the SVM prob-

lem, but with a regression-based loss (Drucker et al., 1997).

Clustering:

Kernel K-Means – An iterative clustering algorithm, which can sepa-

rate clusters non-linearly with the use of a kernel function (Dhillon et al.,

2004).

Maximum Margin Clustering – An algorithm that separates data

into two clusters with maximum margin in the kernel feature space (Xu

et al., 2005).

Dimensionality Reduction:

Kernel Principle Component Analysis – Kernels allow PCA, an

unsupervised dimensionality reduction method, to map data into the de-

sired lower-dimensional space in a non-linear fashion (Schölkopf et al.,

1998).

Kernel Linear Discriminant Analysis – A supervised dimension-
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ality reduction method that also allows for non-linear projections via

kernel functions (Baudat & Anouar, 2000).

This list serves only as a very small sampling of kernel-based algorithms,

but also illustrates the wide impact that kernel-based algorithms have made.

However, in none of these algorithms is the proper choice of kernel taken into

consideration and is left to the user. The proper choice of kernel will depend on

the data and the particular task that is being addressed. In practice, the kernel

is often selected in an ad-hoc fashion, by simply trying several different kernels

and evaluating performance via cross-validation methods. Otherwise, the ker-

nel function may be engineered specifically for the particular dataset, which is

potentially time-consuming and will require domain knowledge (Schölkopf &

Smola, 2002). Instead, in this thesis, we explore alternatives to this entirely

manual selection of a kernel function for use with kernel algorithms. The next

section gives an overview of existing work in this field.

1.4 Automatic Kernel Selection

The choice of the kernel is critical to the success of the algorithm. One way

to see the importance of the kernel is from the fact that choosing a kernel is

equivalent to choosing a feature space. As was shown in the previous section,

using only a few examples, there are very different types of kernels available to

the user. Furthermore, even for each kernel type there are several parameters

to choose that will define the final kernel function.
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A weaker commitment is required from the user when instead the kernel

is learned from data. One can then specify a family of kernels, K, and let a

learning algorithm use the data to select both the kernel out of this family as

well as the prediction hypothesis. For example, one general algorithm is to

minimize a bound of the form,

min
K∈K

min
h∈HK

R̂(h) + C(K,HK) (1.22)

which attempts to minimize the empirical error plus a complexity term that

controls the richness of both choice of the kernel class and the hypothesis class.

In this section, we review the history of such methods, up to the state of the

art theory and algorithms. The separate theoretical and algorithmic contri-

butions of these previous results are explained in further detail in sections 2.1

and 3.1 respectively.

Some of the first work that can be considered automatic kernel selection

focused on selecting from a relatively restricted class of kernels, such as the

family of Gaussian kernels which are parametrized by the bandwidth param-

eter. Cristianini et al. (1999) use an iterative algorithm to minimize a bound

of the type shown in (1.22) or the validation error directly in order to auto-

matically tune the bandwidth parameter, σ, of the Gaussian kernel. Chapelle

et al. (2002) also used bounds on the expected error of SVM as an objective

to minimize in order to select multiple parameters of a multi-scale Gaussian

kernel as well as the SVM trade-off parameter and optimized the function via
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gradient descent. The generalization bounds that were considered include the

radius-margin bound, which considers the ratio of the radius of the data and

the margin of the separating hyperplane, and the related span-bound. Such

methods effectively allow the user to search a much larger set of kernel param-

eters than what is allowed with traditional cross-validation techniques, but is

shown to have comparable performance. Similar types of bounds are optimized

by Weston et al. (2001); Grandvalet and Canu (2003) in order to solve the

different, but related, task of feature selection for SVM. Such a method allows

for significant performance gain when it is known a priori that many features

are non-informative.

Another line of research, initially presented by Cristianini et al. (2001), fo-

cuses on choosing the kernel in order to maximize a criteria that does not have

a direct relationship with the learning algorithm or generalization bound, but

which is rather considered to generally measure the quality of a kernel with

respect to a training sample. That is, they suggest maximizing the alignment

of the kernel with the training labels. The alignment function, which is dis-

cussed in much more detail in Section 3.3, is related to the correlation between

the random variables K(x, x′) and yy′, where y (respectively y′) is the label

corresponding to x (respectively x′). Here the authors consider decomposing

a kernel matrix and then learning a weighting for each eigenvalue, which re-

sults in a new matrix with maximal alignment. Since in this scenario only the

kernel matrix, and not kernel function, is being learned, we are restricted to

the transductive setting, i.e. where the test points are known during training
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time.

Following this, Lanckriet et al. (2002) introduced what are now the most

popular and widely studied family of kernels. That is, the family of kernels

generated by linear combinations of fixed base kernels. The size of the family

of kernels is controlled by restricting the L1-norm of the combination weight

vector. The base kernels are allowed to be general, so that they include, for

example, Gaussian kernels with varying bandwidths or polynomial kernels of

different degrees, but also allow general combinations of entirely different ker-

nels generated from possibly entirely different sets of raw features. The final

kernel is chosen by optimizing the SVM or KRR objective function directly

and simultaneously while optimizing the standard learning parameters. Thus,

this is also the first method to directly optimize the objective of the learning

algorithm for which the kernel is used with. This optimization, over both

sets of variables, is reduced to a semi-definite program, in the general case, or

to a quadratically constrained quadratic program in the case all combination

weights are constrained to be positive. Thus, in both cases the optimiza-

tion task is shown to be convex and solvable in polynomial time. This paper

also presented the first generalization bounds for this richer hypothesis class

that also takes into account the family of linear combinations of base kernels.

Similar bounds are given by Bousquet and Herrmann (2002) as well as a gradi-

ent descent style algorithm to solve similar optimization problems. Here too,

the algorithms presented were for the transductive setting and again were for

learning a kernel matrix. However, it should be noted that if the underlying

16



kernel functions that generate the base kernels are known, the results are easily

extended to learning the kernel function as well.

It was not until later that Srebro and Ben-David (2006) proved several of

the previous generalization bounds, which depend on spectral properties of the

base kernel matrices (Lanckriet et al., 2004a; Bousquet & Herrmann, 2002),

were in fact vacuous. They then went on to give the first informative margin-

based classification bounds that contained an additive term that measures the

complexity of the linear kernel family. The only non-vacuous generalization

bound up to that point contained a multiplicative factor (Lanckriet et al.,

2004a). Finally, Cortes et al. (2009a) also gave additive generalization bounds

that hold specifically for the kernel ridge regression algorithm. These bounds,

as well as new state of the art bounds are introduced in Chapter 2.

In related theoretical work, Argyriou et al. (2005) consider the scenario

of infinite convex combinations of kernels via a continuously parameterized

kernel class. They show that when using such a family to optimize particular

types of regularized loss functions, at most m + 1 kernels will have non-zero

weights at the optimal solution, where m is the number of training points.

More complex families of kernels have also been proposed, such as those

generated by hyperkernels (Ong et al., 2005). A hyperkernel is defined as a

kernel function that operates on a Hilbert space, which itself contains kernel

functions. An optimization problem can then be defined by choosing a

function from this class of kernel functions which maximizes a certain quality

functional, while regularizing by the norm of the function as measured by the
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hyperkernel. Non-linear combinations of base kernels have also been considered

(Varma & Babu, 2009; Bach, 2008; Cortes et al., 2009b) in recent literature.

Automatically selecting useful features is a main motivation in the subfield

of feature selection (Guyon & Elisseeff, 2003; Blum & Langley, 1997; Kohavi

& John, 1997; Liu & Yu, 2005). The work presented in this thesis and the

general subfield of learning with multiple kernels, however, differs from feature

selection in several important aspects. As has been explained previously, with

the use of kernels, explicit features are not needed and in fact may not be

known. Also, in this work, the goal will not be to necessarily select an optimal

subset of features, but rather learn the best set of weighted features. This

allows for a strictly more general setting.

The focus of this thesis will be on learning with linear families of kernels,

which are at the center of the wide majority of the automatic kernel selection

theory as well as practical algorithms. The specific setting, problems and

results are reviewed in the introduction to each chapter.

1.5 Contributions

We investigate several aspects of learning with multiple kernels, extending

both theoretical foundations and algorithmic results.

When learning with multiple kernels, standard bounds on the complexity

of the hypothesis class no longer hold and further analysis is needed in or-

der to guide algorithmic development. Current state-of-the-art margin based
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generalization bounds have an additive dependence on the number of base

kernels.

In our main theoretical result, we give a novel analysis of the Rademacher

complexity of a hypotheses set generated using multiple kernels. This results

in tight margin-based bounds for several families of linearly combined kernels.

When considering convex combinations of kernels, there is in fact only a loga-

rithmic dependence on the number of base kernels. This encourages the use of

a very large number of base kernels, as long as it helps minimize an empirical

margin-based loss. We also show the first generalization bounds for the re-

gression setting, using a specialized stability analysis unlike in any previously

shown bounds.

On the algorithmic side, we observe that it has been difficult in the past

to always outperform a simple baseline uniform combination of base kernels.

We show a modified kernel ridge regression algorithm (LKRR), which uses a

non-sparse combination of base kernels, that in fact improves upon the perfor-

mance of the uniform baseline and illustrates that previously suggested sparse

combinations of kernels are not always beneficial.

We also give a modified definition of the alignment measure introduced by

Cristianini et al. (2001). This measure is useful in assessing the quality of

a kernel independent of any specific learning algorithm. This new definition

addresses an important problem that is exhibited both with artificial and real-

world data. We show simpler and novel concentration bounds that directly

measure the difference between the true alignment and the empirical estimate,
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and which shows that the alignment can be measured from samples.

Then, using this newly introduced alignment measure, we introduce two-

stage algorithms where the kernel is selected separately from the learned hy-

pothesis. In experiments with these algorithms, we use general base kernels

that, to the best of our knowledge, had not been investigated empirically be-

fore. In several settings, this method shows improvement over the uniform

baseline, as well as more complicated one-stage methods.

The algorithms presented in this thesis have also been implemented in the

open-source library OpenKernel (Allauzen et al., 2010).
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Chapter 2

Theoretical Foundations

2.1 Previous Results

This section presents several novel generalization bounds for the problem of

learning kernels for the family of non-negative combinations of base kernels

with an L1 or L2 constraint. That is, for the problem of selecting a kernel

from the family

K =
{ p∑

k=1

µkKk : µ � 0, ‖µ‖qq ≤ Λ
}

, (2.1)

usually for q ∈ {1, 2}, but also more generally for some q ≥ 1.

Recall from Section 1.2, a standard generalization bound emphasizes a

trade-off between the empirical error and the complexity of the hypothesis

class. By enriching our hypothesis class to consider not only a fixed kernel,

but a family of kernels, we expect the empirical error to improve. Our con-

cern, however, should be whether the complexity of the hypothesis class has
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increased too much, and if we are now susceptible to over-fitting. As can be

expected, the complexity of the kernel family will grow with p, the number of

base kernels. The degree to which the complexity depends on p will be the

focus of the bounds that are discussed.

One of the first learning bounds given by Lanckriet et al. (2004a) for the

family of convex combinations of p base kernels with an L1 constraint is similar

to that of Bousquet and Herrmann (2002) and has the following form:

R(h) ≤ R̂ρ(h) + O

(
1√
m

√
p

max
k=1

Tr(Kk)
p

max
i=1

(‖Kk‖/ Tr(Kk))/ρ2

)
. (2.2)

where R(h) = Pr[yh(x) < 0] is the generalization error of a hypothesis h,

R̂ρ(h) = 1
m

∑m
i=1 1yih(xi)<ρ is the fraction of training points with margin less

than ρ, and Kk is the kernel matrix associated to the kth base kernel. This

bound was later shown by Srebro and Ben-David (2006) to be always larger

than one. Another bound by Lanckriet et al. (2004a) for the family of linear

(not necessarily convex) combinations of kernels was also shown, by the same

authors, to be always larger than one.

However, by considering a sum over Kk instead of a maxk, Lanckriet et al.

(2004a) also presented a multiplicative bound for convex combinations of base

kernels with an L1 constraint that is of the form

R(h) ≤ R̂ρ(h) + O

(√
pR2/ρ2

m

)
, (2.3)
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where R is a bound on the kernel function, supx∈X K(x, x) ≤ R2. This bound

converges and can perhaps be viewed as the first informative generalization

bound for this family of kernels. However, the dependence of the bound on

the number of kernels p is multiplicative and therefore does not encourage the

use of too many base kernels. However, this does not seem to capture the

behavior of algorithms that use multiple kernels in practice. This is evident

in experiments where p ≈ m and there is no apparent effect of overfitting (for

example in Section 3.2 and 3.3). Srebro and Ben-David (2006) presented a

generalization bound based on the pseudo-dimension of the family of kernels

that significantly improved on this bound. Their bound has the form

R(h) ≤ R̂ρ(h) + Õ
(√p + R2/ρ2

m

)
, (2.4)

where the notation Õ(·) hides logarithmic terms and where R2 is an upper

bound on Kk(x, x) for all points x and base kernels Kk, k ∈ [1, p]. Thus, dis-

regarding logarithmic terms, their bound is only additive in p. Their analysis

also applies to other families of kernels. Ying and Campbell (2009) also gave

generalization bounds for learning kernels based on the notion of Rademacher

chaos complexity and the pseudo-dimension of the family of kernels used. For

a pseudo-dimension of p as in the case of a convex combination of p base ker-

nels, their bound is in O(
√

p (R2/ρ2)(log(m)/m)) and is thus multiplicative in

p. It seems to be weaker than the bound of Lanckriet et al. (2004a) and that

of Srebro and Ben-David (2006) for such kernel families.
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2.2 Novel Generalization Bounds

In Section 2.3 we prove the first known stability-based bound for the problem

of learning the kernel. This bound holds for a kernel ridge regression type al-

gorithm that considers non-negative linear combinations of kernels with an L2

type constraint on combination the weights. Thus, to the best of our knowl-

edge, it is also the first regression bound for learning with multiple kernels.

Since the bound is specifically for regression, it is not directly comparable to

the previous margin based bounds. However, when compared to the standard

stability bound with a fixed kernel, this more general bound has only an addi-

tional additive term of the form O(
√

p/m). The proof of this bound provides

novel techniques for providing stability bounds and can be used to give even

tighter bounds in the standard fixed kernel setting.

In Section 2.4 we prove tight margin bounds for both L1 and L2, as well

as more general Lq regularized non-negative combinations of kernels. These

bounds demonstrate that generalization is still possible even with relatively

large numbers of kernels (even if p > m). In particular, Corollary 2.1 gives

margin-based bound of the following form for hypotheses based on convex

combination of kernels,

R(h) ≤ R̂ρ(h) + O
(√ log(p)R2/ρ2

m

)
. (2.5)

If we consider the constants as well, the corollary gives a complexity term for
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learning convex combinations of kernels that is

2

√
η0e⌈log p⌉R2/ρ2

m
,

where η0 = 23
22

. In comparison, the best previous complexity bound for learn-

ing kernels with convex combinations given by Srebro and Ben-David (2006)

derived using the pseudo-dimension has a stronger dependency with respect

to p and is more complex:

√

8
2 + p log 128em3R2

ρ2p
+ 256R2

ρ2 log ρem
8R

log 128mR2

ρ2

m
.

Note, this bound is also not informative for p > m.

Figure 2.1 compares the bound on R(h) − R̂ρ(h) obtained using this ex-

pression by Srebro and Ben-David with the new bound shown in Equation

(2.5), as a function of the sample size m. The comparison is made for differ-

ent values of the number of kernels p, a normalized margin of ρ/R = .2 and

the confidence parameter set to δ = .01 (see Corollary 2.1 for the minor log 1
δ

dependence). Plots for different values of the normalized margin are quite

similar. As shown by the figure, larger values of p can significantly affect the

bound of Srebro and Ben-David leading to quasi-flat plots for p > m4/5. In

comparison, the plots for our new bound show only a mild variation with p

even for relatively large values such as p ∼ m. Note also that, while the bound

of Srebro and Ben-David does converge and becomes informative, its values,
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Figure 2.1: Plots of the bound of Srebro & Ben-David (dashed lines) and our
new bounds (solid lines) as a function of the sample size m for δ = .01 and
ρ/R = .2. For these values and m ≤ 15× 106, the bound of Srebro and Ben-
David is always above 1, it is of course converging for sufficiently large m. The
plots for p = 10 and p = m1/3 roughly coincide in the case of the bound of
Srebro & Ben-David, which makes the first one not visible.

even for p = 10, are still above 1 for fairly large values of m. The new bound,

in contrast, strongly encourages considering large numbers of base kernels in

learning kernels.

The
√

log p dependency of our generalization bound with respect to p can-

not be improved upon. This can be seen by arguments in connection with

the VC dimension lower bounds. Consider the case where the input space

is X = {-1, +1}p and where the feature mapping of each base kernel Kk,

k ∈ [1, p], is simply the canonical projection x 7→ +xk or x 7→ −xk, where xk

is the kth component of x ∈ X . Thus, Hp
1 then contains the hypothesis set

Jp = {x 7→ sxk : k ∈ [1, p], s ∈ {-1, +1}} whose VC dimension is in Ω(log p).

For ρ = 1 and h ∈ Jp, for any xi ∈ X , yih(xi) < ρ is equivalent to yih(xi) < 0.
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Figure 2.2: Comparison of the behavior of the experimentally determined test
error as a function of the number of kernels, versus that of the bound on
R(h) given by (a) Corollary 2.1 for experiments with L1 regularization, and
by (b) Corollary 2.2 for L2 regularization. In these examples m = 36,000, the
normalized margin is ρ/R = .2, and the confidence parameter δ is set to .01.

Thus, the empirical margin loss R̂ρ(h) coincides with the standard empirical

error R̂(h) for h ∈ Jp and a margin bound with ρ = 1 implies a standard

generalization bound with the same complexity term. By the classical VC di-

mension lower bounds (Devroye et al., 1996; Anthony & Bartlett, 1999), that

complexity term must be at least in Ω
(√

VCDim(Jp)/m
)

= Ω(
√

log p/m).

We have also tested experimentally the behavior of the test error as a func-

tion of p and compared it to that of the theoretical bound given by Equation

(2.5) by learning with a large number of kernels p ∈ [200, 800], a sample size

of m = 36,000, and a normalized margin of ρ/R = .2. These results are for

rank-1 base kernels generated from individual features of the MNIST dataset

(Lecun & Cortes, 1998). The magnitude of each kernel weight is chosen pro-
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portionally to the correlation of the corresponding feature with the training

labels. The results show that the behavior of the test error as a function of p

matches the one predicted by our bound, see Figure 2.2(a).

We note that Koltchinskii and Yuan (2008) also presented a bound with

logarithmic dependence on p in the context of the study of large ensembles

of kernel machines. However, their analysis is specific to the family of kernel-

based regularization algorithms and requires the loss function to be strongly

convex, which rules out for example the binary classification loss function.

Also, both the statement of the result and the proof seem to be considerably

more complicated than ours.

We are also able to provide bounds for Lq regularized combinations. These

bounds hold for any q, such that 1
q
+ 1

r
= 1 and r > 1 is an integer. Corollary 2.2

gives a bound of the form

R(h) ≤ R̂ρ(h) + O

(√
rp1/rR2/ρ2

m

)
. (2.6)

In particular, for q = 2, the bound has a multiplicative dependence of p1/4.

Figure 2.3 shows a comparison of the L2 regularization bound of Equation

(2.6) with the L1 regularization bound of Equation (2.5). As can be seen

from the plots, the two bounds are very close for smaller values of p. For

larger values (p ∼ m), the difference becomes significant. The bound for L2

regularization is converging for these values but at a slower rate of O
( R/ρ

m1/4

)
.

As with the L1 bound we also tested experimentally the behavior of the
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Figure 2.3: Comparison of the L1 regularization bound of Corollary 2.1 and
the L2 regularization bound of Corollary 2.2 (dotted lines) as a function of the
sample size m for δ = .01 and ρ/R = .2. For p = 20, the L1 and L2 bounds
roughly coincide.

test error as a function of p and compared it to that of the theoretical bound

given by Equation (2.6) by learning with a large number of kernels. Again,

our results show that the behavior of the test error as a function of p matches

the one predicted by our bound, see Figure 2.2(b). The p1/(2r) dependency

of the generalization bound of Equation (2.6) also cannot be improved. This

holds, for example, when the base kernels are all equal and is shown explicitly

in Section 2.4.

The analysis for these bounds provides a novel analysis for bounding the

Rademacher complexity of kernel based hypothesis classes. This analysis also

leads to improvements in the standard fixed kernel setting.

In the following sections, we prove the results that were discussed in this

section, showing both stability-based as well as Rademacher-based proofs. Fi-
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nally, in Section 2.5 we analyze theoretical properties of an alignment measure

which can be used to evaluate the usefulness of a kernel independent of any

particular learning algorithm. This quality measure will form the basis of the

two-stage algorithms which are explored in Section 3.3.

2.3 Stability-Based Proofs

In this section, we derive generalization bounds for the LKRR algorithm, de-

fined in Section 2.3.1, using the notion of algorithmic stability (Bousquet &

Elisseeff, 2002). Our analysis focuses on the regression setting also examined

by Micchelli and Pontil (2005) and Argyriou et al. (2005). More specifically, we

will consider the problem of learning kernels in kernel ridge regression, KRR,

(Saunders et al., 1998). The bounds we derive here can be considered the first

regression bounds for this setting with only an additive dependence on the

number of base kernels used, p. This is similar to what is presented by Srebro

and Ben-David (2006) in the classification setting, however here we have no

additional logarithmic terms. It is also the first algorithm specific analysis of a

kernel selection algorithm, which is required when using algorithmic stability.

Definition 2.1 (Uniform β-Stable). A learning algorithm is said to be (uni-

formly) β-stable if the hypotheses h′ and h it returns for any two training

samples, S and S ′, that differ by a single point satisfy

∣∣[h′(x)− y]2 − [h(x)− y]2
∣∣ ≤ β (2.7)
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for any point x ∈ X labeled with y ∈ R.

The stability coefficient β is a function of the sample size m. Intuitively,

if a function is stable, then the more training points that are used, the less

the function h and h′ should differ. That is, β is a decreasing function of m.

Stability in conjunction with McDiarmid’s inequality can lead to tight gen-

eralization bounds specific for the algorithm analyzed (Bousquet & Elisseeff,

2002).

In what follows we first introduce the optimization problem that is solved

by LKRR, as well as the form of the solution. Using specific properties of this

solution, we then analyze the stability of LKRR.

2.3.1 LKRR Optimization Problem

Let S = ((x1, y1), . . . , (xm, ym)) denote the training sample and y = [y1, . . . , ym]⊤

the vector of training set labels, where (xi, yi) ∈ X × R for i ∈ [1, m], and let

Φ(x) denote the feature vector associated to x ∈ X . Then, in the primal, the

KRR optimization problem has the following form

min
w

‖w‖2 +
C

m

m∑

i=1

(w⊤Φ(xi)− yi)
2, (2.8)

where C ≥ 0 is a trade-off parameter. For a fixed positive definite kernel

(PDS) function K : X × X → R, the dual of the KRR optimization problem
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(Saunders et al., 1998) is given by:

max
α
−λα⊤α−α⊤Kα + 2α⊤y, (2.9)

where λ = m/C. In the following, we will denote by λ0 the inverse of C, thus,

λ = λ0m.

Here, we limit the search to kernels K that are non-negative combinations

of p fixed PDS kernels Kk, k ∈ [1, p], and that are thereby guaranteed to be

PDS, with an L2 regularization:

K = {
p∑

k=1

µkKk : µ ∈M} , (2.10)

where,

M = {µ : µ ≥ 0 ∧ ‖µ− µ0‖2 ≤ Λ2} , (2.11)

with µ = [µ1, . . . , µp]
⊤, µ0 � 0 a fixed combination vector, and Λ ≥ 0 a

regularization parameter. The parameter µ0 can be used to encode any prior

knowledge of a “good” weighting. Alternatively it can be set to 0, in which

case we have the standard L2 regularization.

Based on the dual form of the optimization problem for KRR, the kernel

learning optimization problem can be formulated as follows:

min
µ∈M

max
α
−λα⊤α−

p∑

k=1

µkα
⊤Kkα

︸ ︷︷ ︸
µ⊤v

+2α⊤y, (2.12)
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where Kk is the Gram matrix associated to the base kernel Kk. It is convenient

to introduce the vector v = [v1, . . . , vp]
⊤ where vk = α⊤Kkα. Note that this

defines a convex optimization problem in µ, since the objective function is

linear in µ and the pointwise maximum over α preserves convexity, and since

M is a convex set. We refer to this learning kernel KRR procedure as LKRR

and denote by h the hypothesis it returns defined by h(x) =
∑m

i=1 αiK(xi, x)

for all x ∈ X , when trained on the sample S, where K denotes the PDS kernel

K =
∑p

k=1 µkKk.

Form of the Solution

Theorem 2.1. The solution µ of the optimization problem (2.12) is given by

µ = µ0 + Λ
v

‖v‖ (2.13)

with α the unique vector verifying α = (
∑p

k=1 µkKk + λI)−1y.

Proof. By von Neumann’s (1937) generalized minimax theorem, (2.12) is equiv-

alent to its max-min analogue:

max
α
−λα⊤α + 2α⊤y + min

µ∈M
−µ⊤v, (2.14)

where v = (α⊤K1α, . . . , α⊤Kpα)⊤. The Lagrangian of the minimization

problem is

L = −µ⊤(v + β) + γ(‖µ− µ0‖2 − Λ2) (2.15)

33



with β ≥ 0 and γ ≥ 0 and the KKT conditions are

∇µL = −(v + β) + 2γ(µ− µ0) = 0 (2.16)

∇βL = µ⊤β = 0⇒ (
v + β

2γ
+ µ0)

⊤β = 0 (2.17)

γ(‖µ− µ0‖2 − Λ2) = 0. (2.18)

Note that if γ = 0 then the L2 constraint is not met as an equality, which

cannot hold at the optimum. By inspecting (2.12), it is clear that the µks would

be chosen as large as possible. Thus, the first equality implies µ− µ0 = v+β

2γ
,

in view of which the second gives −‖β‖2 = ( v

2γ
+ µ0)

⊤β. Since v ≥ 0, µ0 ≥

0, γ ≥ 0 and β ≥ 0, ( v

2γ
+ µ0)

⊤β is non-negative, which implies −‖β‖2 ≥ 0

and β = 0. The third equality gives µ − µ0 = Λ v

‖v‖ . Problem 2.14 can thus

be rewritten as

max
α
−λα⊤α + 2α⊤y − µ⊤

0 v︸ ︷︷ ︸
standard KRR with µ0-kernel K0.

−Λ‖v‖. (2.19)

For v 6= 0, ∇α‖v‖ = 2
∑p

k=1
vk

‖v‖Kkα. Thus, differentiating and setting to zero

the objective function of this optimization problem gives α = (K + λI)−1y,

with K =
∑p

k=1

(
µ0k + Λ vk

‖v‖µk

)
Kk =

∑p
k=1 µkKk.

2.3.2 Stability of LKRR

To analyze the stability of LKRR we consider two samples of size m, S =

(x1, . . . , xm) and S ′ = (x′
1, . . . , x

′
m), and without loss of generality we assume
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that the two samples differ only in the final point, xm and x′
m. The task is

then to bound the difference |h′(x) − h(x)|. The analysis is quite complex in

this context and the standard convexity-based proofs of Bousquet and Elisseeff

(2002) do not readily apply. This is because here, a change in a sample point

also changes the PDS kernel K, which in the standard case is fixed.

Our proofs make use of the expression of α and µ supplied by Theorem 2.1.

It is interesting to note, this analysis gives us a novel and tighter bound on

the stability of standard KRR than the one obtained via convexity arguments

(Bousquet & Elisseeff, 2002).

Fix x ∈ X . We shall denote by ∆h(x) the difference h′(x)−h(x) and more

generally use the symbol ∆ to abbreviate the difference between an expression

depending on S ′ and one depending on S. We denote by y′ the vector of

labels, by K ′ the kernel learned by LKRR, and by µ′
k and µ′ the basis kernel

coefficients and vector associated to the sample S ′.

We will assume that the hypothesis set considered is bounded, that is

|h(x)−y(x)| ≤M for all x ∈ X , for some M ≥ 0. This bound and the Lipschitz

property of the loss function implies a bound on ∆(h(x) − y)2 ≤ 2M∆h(x).

We will also assume that the base kernels are bounded: there exists R0 ≥ 0

such that (
∑p

k=1 Kk(x, x)2)1/2 ≤ R0 for all x ∈ X . Thus, in conjunction with

the regularization imposed on µ in Equation (2.11), this implies that for all

x ∈ X , K(x, x) =
∑p

k=1 µkKk(x, x) ≤ R0‖µ‖ ≤ R0(‖µ0‖ + Λ). Thus, we can

assume that there exists R ≥ 0 such that K(x, x) ≤ R2 for all x ∈ X .

Now, ∆h(x) can be written as ∆h(x) = ∆Sh(x) + ∆Kh(x) to distinguish
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changes due to different samples (x′
is vs xis) for a fixed kernel and those due

to a different kernels K for a fixed sample:

∆Sh(x) =

m∑

i=1

[
(

p∑

k=1

µ′
kKk(S

′) + λI)−1y′
]

i

p∑

k=1

µ′
kKk(x

′
i, x)

−
m∑

i=1

[
(

p∑

k=1

µ′
kKk(S) + λI)−1y

]
i

p∑

k=1

µ′
kKk(xi, x),

∆Kh(x) =
m∑

i=1

[
(

p∑

k=1

µ′
kKk(S) + λI)−1y

]
i

p∑

k=1

µ′
kKk(xi, x)

−
m∑

i=1

[
(

p∑

k=1

µkKk(S) + λI)−1y
]

i

p∑

k=1

µkKk(xi, x).

Where Kk(S) (resp. Kk(S
′)) is the kernel matrix generated from S (resp. S ′).

We bound these two terms separately. The main reason for this is that the

term ∆Sh(x) leads to sparse expressions since the points xis in S and S ′ differ

only by xm and x′
m. However, to bound ∆Kh(x) a different approach is needed.

We will appropriately denote the stability coefficient of each term as βS and

βK , and thus |∆h(x)| ≤ βS + βK .

In what follows, we denote by Φ a feature mapping associated to kernel

K and by Φ the matrix whose columns are Φ(xi), i = 1, . . . , m. Similarly,

for k = 1, . . . , p, we denote by Φk a feature mapping associated with the base

kernel Kk and by Φk the matrix whose columns are Φk(xi), i = 1, . . . , m.
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Bound on βS

For the analysis of ∆Sh(x), the kernel coefficients µ′
k are fixed. Here, we denote

by K the kernel matrix of
∑p

k=1 µ′
kKk over the sample S, and by K′ the one

over S ′. Now, h(x) can be expressed in terms of Φ as follows:

h(x) = [Φα]⊤Φ(x) (2.20)

= y⊤(K + λI)−1Φ⊤Φ(x) (2.21)

= y⊤(Φ⊤Φ + λI)−1Φ⊤Φ(x). (2.22)

Theorem 2.2. Let λmin(K
′) denote the smallest eigenvalue of K′. Then, the

following bound holds for all x ∈ X :

|∆Sh(x)| ≤ 2MR2

λmin(K′) + λ0m
≤ βS . (2.23)

Proof. Using the general identity (Φ⊤Φ + λI)−1Φ⊤ = Φ⊤(ΦΦ⊤ + λI)−1, we

can write equation (2.22) as

h(x) = (Φy)⊤(ΦΦ⊤ + λI)−1Φ(x). (2.24)

Let U = (ΦΦ⊤ + λI) and denote by w⊤ the row vector (Φy)⊤U−1. Now, we

can write ∆Sh(x) = (∆Sw)⊤Φ′(x). Using the identity ∆S(U−1) = −U−1(∆SU)U′−1,
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valid for all invertible matrices U and U′, ∆Sw
⊤ can be expressed as follows:

∆Sw
⊤ = (∆SΦy)⊤U′−1 + (Φy)⊤∆S(U−1)

= (∆SΦy)⊤U′−1 − (Φy)⊤U−1(∆SU)U′−1.

We observe that

(∆SΦy) = ∆S(

m∑

i=1

yiΦ(xi)) =

m∑

i=1

(∆SyiΦ(xi)) = ∆S(ymΦ(xm))

and

(∆SU) = ∆S(

m∑

i=1

Φ(xi)Φ(xi)
⊤) = ∆S(Φ(xm)Φ(xm)⊤).

Thus, we can write

∆Sw
⊤ =

[
∆S(ymΦ(xm))⊤ − (Φy)⊤U−1∆S(Φ(xm)Φ(xm)⊤)

]
U′−1

=
[
y′

mΦ(x′
m)⊤ − ymΦ(xm)⊤ + (Φy)⊤U−1Φ(x′

m)Φ(x′
m)⊤

− (Φy)⊤U−1Φ(xm)Φ(xm)⊤
]
U′−1

=
[
(y′

m − h(x′
m))Φ(x′

m)− (ym − h(xm))Φ(xm)
]⊤

U′−1.

Since for all x ∈ X , K(x, x) ≤ R2 and |h(x)−y(x)| ≤M , we have ‖Φ(x)‖ ≤ R

and ‖(y′
m − h(x′

m))Φ(x′
m)− (ym − h(xm))Φ(xm)‖ ≤ 2RM , thus

‖∆Sw
⊤‖ ≤ 2RM‖U′−1‖. (2.25)
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The smallest eigenvalue of (ΦΦ⊤ + λI) is λmin(ΦΦ⊤) + λ. ΦΦ⊤ and Φ⊤Φ

have the same eigenvalues (the squares of the singular values of Φ). Thus,

λmin(ΦΦ⊤) = λmin(Φ
⊤Φ) = λmin(K) and ‖∆Sw

⊤‖ ≤ 2RM
λmin(K′)+λ0m

. Since

‖Φ′(x)‖ = K ′(x, x) ≤ R, |∆Sh(x)| ≤ 2R2M
λmin(K′)+λ0m

.

Recall, ∆Sh(x) represents the variation due to sample changes for a fixed

kernel, thus, the bound given by the theorem is precisely a bound on the sta-

bility coefficient of standard KRR. This bound is tighter than the one obtained

using the techniques of Bousquet and Elisseeff (2002): |∆Sh(x)| ≤ 2R2M
λ0m

.

Bound on βK

Since h(x) =
∑m

i=1 αiK(xi, x), the variation in K can be decomposed into the

following sum:

∆Kh(x) =
m∑

i=1

(∆Kαi)K
′(x′

i, x)

︸ ︷︷ ︸
W

+
m∑

i=1

αi∆KK(x′
i, x)

︸ ︷︷ ︸
T

.

By the Cauchy-Schwarz inequality, for any x′
i, x ∈ X ,

|K(x′
i, x)| ≤

√
K(x′

i, x
′
i)K(x, x) ≤ R2 ,

thus the norm of the vector kx′ = [K(x′
1, x), . . . , K(x′

m, x)] is bounded by

R2
√

m and the first term W can be bounded straightforwardly in terms of

∆Kα: |W | ≤ R2
√

m‖∆Kα‖.
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The second term can be written as follows

T =
m∑

i=1

αi

p∑

k=1

(∆µk)Kk(x
′
i, x) =

p∑

k=1

(∆µk)(Φkα)⊤Φk(x). (2.26)

By Lemma A.1 (see Appendix), ∆µk can be expressed in terms of the ∆vks

and thus T can be rewritten as

T = Λ

p∑

k=1

[
∆vk

‖v′‖ −
vk

∑p
i=1(vi + v′

i)∆vi

‖v‖‖v′‖(‖v‖+ ‖v′‖)

]
(Φkα)⊤

︸ ︷︷ ︸
V

Φk(x). (2.27)

In this expression, each ∆vk can be written as a sum ∆vk = ∆Kvk + ∆Svk,

where

∆Kvk = y′⊤(K′ + λI)−1Kk(S
′)(K′ + λI)−1y′

− y′⊤(K + λI)−1Kk(S
′)(K + λI)−1y′ (2.28)

∆Svk = y′⊤(K + λI)−1Kk(S
′)(K + λI)−1y′

− y⊤(K + λI)−1Kk(S)(K + λI)−1y. (2.29)

Let V = V1 + V2 where V1 (resp. V2) is the expression corresponding to ∆K

(resp. ∆S).

The proof of the propositions giving bounds on ‖V1‖ and ‖V2‖ are left to the

appendix. Our bound on V2 holds for orthogonal base kernels. This assumption

is not needed for the bound on ‖V1‖, but simplifies the presentation.

Definition 2.2. Kernels K1, . . . , Kk are said to be orthogonal if they admit
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feature mappings Φk : X 7→ F mapping to the same Hilbert space F such that

for all x ∈ X , and i 6= j,

Φi(x)⊤Φj(x) = 0. (2.30)

This assumption is satisfied in particular by the n-gram based kernels used

in our experiments and more generally by kernels Kk whose feature mapping

can be obtained by projecting the feature vector Φ(x) of some kernel K on

orthogonal spaces. The concatenation type kernels suggested by Bach (2008),

are a special case of orthogonal kernels.

Proposition 2.1. For any samples S and S ′ differing by one point, the fol-

lowing inequality holds:

‖V1‖ ≤ 4ΛR
√

pm ‖∆Kα‖. (2.31)

Proposition 2.2. Assume that the base kernels Kk, k ∈ [1, p] are orthogonal.

Then, for any samples S and S ′ differing by one point, the following inequality

holds:

‖V2‖ ≤
4ΛM

λmin + λ0m
, (2.32)

where we denote by λmin the smaller of λmin(K) and λmin(K
′). In order

to make the bound on ‖V1‖ useful, we further bound ‖∆Kα‖ in terms of ‖V2‖

in the following proposition. The proof can be found in the Appendix.

Proposition 2.3. For any samples S and S ′ differing by one point, the fol-
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lowing inequality holds:

‖∆Kα‖ ≤ R
√

m‖V2‖
λmin + λ0m

. (2.33)

Combining the three propositions leads to

‖V ‖ ≤ 4ΛM(4ΛR2p1/2/λ0 + 1)

λmin + λ0m
. (2.34)

Finally, using the bounds on |W | and |T |, which results from the above bound

on ‖V ‖ and ‖Φk(x)‖ ≤ R, gives the following bound on βK .

Theorem 2.3. Assume that the base kernels Kk, k ∈ [1, p] are orthogonal.

Then, for any samples S and S ′ differing by one point, the following inequality

holds:

|∆Kh(x)| ≤ 4ΛMR((4ΛR2p1/2 + R2)/λ0) + 1)

λmin + λ0m
≤ βK ,

where λmin denotes the smaller of λmin(K) and λmin(K
′).

Thus, we have βK ∈ O(
√

p/m), which is what gives the final bound an

additive dependence on the number of base kernels p.

Bound on β

Combining the separate bounds βS and βK , gives the final uniform stability

bound on β.
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Proposition 2.4. The uniform stability of LKRR, can be bounded as follows:

|∆(h(x)− y)2| ≤ 2M |∆h(x)| ≤ 2M(βS + βK) ≤ 2M
C0 + C1

√
p

λmin + λ0m
,

with C0 = 2R2M + 4ΛRM(R2/λ0 + 1) and C1 = 16Λ2MR3/λ0.

A direct application of the general stability bound (Bousquet & Elisseeff,

2002) or the application of McDiarmid’s inequality (McDiarmid, 1989) yields

the following generalization bound for LKRR.

Theorem 2.4. Let h denote the hypothesis returned by LKRR and assume that

for for all x ∈ X , |h(x)− y(x)| ≤M . Then, for any δ > 0, with probability at

least 1− δ,

R(h) ≤ R̂(h) + 2β +
(
4mβ + M

)
√

log 1
δ

2m
,

where β = 2M(βS + βK), with βS = O(1/m) and βK = O(
√

p/m), is the

stability bound given by Proposition 2.4.

Thus, in view of this theorem, our generalization bound has only an addi-

tional additive term that depends on the number of kernels, which is of the

form O(
√

p/m). Note that in the case of a fixed kernel, all ∆K terms are

zero and thus βK = 0. In such a case β = 2MβS = O(1/m) and results in

a generalization bound of the form R(h) ≤ R̂(h) + O(1/
√

m), which matches

exactly the fixed kernel bound given by Bousquet and Elisseeff (2002) and is

in fact tighter in terms of constants.
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Most importantly, this bound ensures that is it reasonable to use a rela-

tively large number of kernels in this regression setting without over-fitting.

The results of Section 3.2 will corroborate these theoretical findings with em-

pirical results.

2.4 Rademacher-Based Proofs

In this section, we present new generalization bounds for the family of convex

combinations of base kernels and an L1 constraint that have only a logarithmic

dependency on p. Our learning bounds are based on a careful analysis of the

Rademacher complexity of the hypothesis set considered and has the form:

R(h) ≤ R̂ρ(h)+O
(√

(log p)R2/ρ2

m

)
. Our bound is simpler and contains no other

extra logarithmic term. Thus, this represents a substantial improvement over

the previous best bounds for this problem. Our bound is also valid for a very

large number of kernels, in particular for p ≫ m, while the previous bounds

were not informative in that case.

We also present new generalization bounds for the family of non-negative

combinations of base kernels with an L2 regularization and Lq regularization

with other values of q > 1. An algorithm specific stability bound was given in

Section 3.2 that had only an additive dependency with respect to p, assuming

a technical condition of orthogonality on the base kernels. The learning bound

for L2 regularization presented in this section does not require any assumption

on the family of base kernels. It admits only a mild multiplicative dependency
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of p1/4 on the number of base kernels.

Most learning kernel algorithms are based on a hypothesis set derived from

convex combinations of a fixed set of p ≥ 1 kernels K1, . . . , Kp:

H1
p =

{
x 7→ w · ΦK(x) : K =

p∑

k=1

µkKk, µk ≥ 0,

p∑

k=1

µk = 1, ‖w‖ ≤ 1
}
.

We consider more generally the hypothesis sets Hq
p , q ≥ 1, based on a Lq

constraint on the vector µ and defined as follows:

Hq
p =

{
x 7→ w · ΦK(x) : K =

p∑

k=1

µkKk, µk ≥ 0,

p∑

k=1

µq
k = 1, ‖w‖ ≤ 1

}
.

We bound, for different values of q, including q = 1 and q = 2, the empirical

Rademacher complexity R̂S(Hq
p) of these families for an arbitrary sample S of

size m, which immediately yields a generalization bound for learning kernels

based on these families of hypotheses. For a fixed sample S = (x1, . . . , xm),

the empirical Rademacher complexity of a hypothesis set H is defined as

R̂S(H) =
1

m
E
σ

[
sup
h∈H

m∑

i=1

σih(xi)
]
,

where the expectation is taken over σ = (σ1, . . . , σm)⊤ where σi ∈ {−1, +1},

i ∈ [1, m], are independent uniform random variables.

Let wS =
∑m

i=1 αiΦK(xi) be the orthogonal projection of w on HS =

span(ΦK(x1), . . . ,ΦK(xm)). Then, w can be written as w = wS + w⊥, with

wS · w⊥ = 0. Thus, ‖w‖2 = ‖wS‖2 + ‖w⊥‖2, which, in view of ‖w‖ ≤ 1
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implies ‖wS‖2 ≤ 1. Since ‖wS‖2 = α⊤Kα, this implies

α⊤Kα ≤ 1. (2.35)

Observe also that for all x ∈ S,

h(x) = w ·ΦK(x) = wS ·ΦK(x) =

m∑

i=1

αiK(xi, x). (2.36)

Conversely, any function
∑m

i=1 αiK(xi, ·) with α⊤Kα ≤ 1 is clearly an element

of H1
p .

Proposition 2.5. Let q, r ≥ 1 with 1
q

+ 1
r

= 1. For any sample S of size m,

the empirical Rademacher complexity of the hypothesis set Hq
p can be expressed

as

R̂S(Hq
p) =

1

m
E
σ

[√
‖uσ‖r

]

with uσ = (σ⊤K1σ, . . . , σ⊤Kpσ)⊤.

Proof. Fix a sample S = (x1, . . . , xm), and denote by Mq = {µ ≥ 0: ‖µ‖q =

1} and by A = {α : α⊤Kα ≤ 1}. Then, in view of (2.35) and (2.36), the
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Rademacher complexity R̂S(Hq
p) can be expressed as follows:

R̂S(Hq
p) =

1

m
E
σ

[
sup
h∈Hq

p

m∑

i=1

σih(xi)
]

=
1

m
E
σ

[
sup

µ∈Mq,α∈A

m∑

i,j=1

σiαjK(xi, xj)
]

=
1

m
E
σ

[
sup

µ∈Mq,α∈A
σ⊤Kα

]
.

Now, by the Cauchy-Schwarz inequality, the supremum supα∈A σ⊤Kα is reached

for α collinear with σ, which gives supα∈A σ⊤Kα =
√

σ⊤Kσ. Thus,

R̂S(Hq
p) =

1

m
E
σ

[
sup

µ∈Mq

√
σ⊤Kσ

]
=

1

m
E
σ

[
sup

µ∈Mq

√
µ · uσ

]
.

By the definition of the dual norm, supµ∈Mq
µ · uσ = ‖uσ‖r, which gives

R̂S(Hq
p) = 1

m
Eσ

[√
‖uσ‖r

]
.

2.4.1 Rademacher Complexity Bound for H1
p

Our bounds on the empirical Rademacher complexity of the families H1
p or Hq

p

for q = 2 or other values of q relies on the following result.

Lemma 2.1. Let K be the kernel matrix of a kernel function K associated to

a sample S. Then, for any integer r, the following inequality holds:

E
σ

[
(σ⊤Kσ)r

]
≤
(
η0r Tr[K]

)r

,
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where η0 = 23
22

.

Proof. We use a combinatorial argument to bound the expectation. Since r is

an integer, we can write:

E
σ

[
(σ⊤Kσ)r

]
= E

σ

[( m∑

i,j=1

σiσjK(xi, xj)
)r]

=
∑

1≤i1,...,ir≤m
1≤j1,...,jr≤m

E
σ

[
r∏

s=1

σisσjs

]
r∏

s=1

K(xis , xjs)

≤
∑

1≤i1,...,ir≤m
1≤j1,...,jr≤m

∣∣∣∣∣Eσ

[
r∏

s=1

σisσjs

]∣∣∣∣∣

r∏

s=1

|K(xis , xjs)|

≤
∑

1≤i1,...,ir≤m
1≤j1,...,jr≤m

∣∣∣∣∣Eσ

[
r∏

s=1

σisσjs

]∣∣∣∣∣

r∏

s=1

√
K(xis , xis)K(xjs, xjs) (Cauchy-Schwarz)

=
∑

s1+...+sm=2r

(
2r

s1,...,sm

)∣∣∣E
σ
[σs1

1 · · ·σsm
m ]
∣∣∣

√
K(x1, x1)s1 · · ·K(xm, xm)sm.

Since E[σi] = 0 for all i and since the Rademacher variables are independent,

we can write E[σi1 . . . σil ] = E[σi1 ] · · ·E[σil] = 0 for any l distinct variables

σi1 , . . . , σil . Thus, Eσ

[
σs1

1 · · ·σsm
1

]
= 0 unless all sis are even, in which case

Eσ

[
σs1

1 · · ·σsm
m

]
= 1. It follows that:

E
σ

[
(σ⊤Kσ)r

]
≤

∑

2t1+...+2tm=2r

(
2r

2t1,...,2tm

) m∏

i=1

K(xi, xi)
ti .
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By Lemma A.2 (see Appendix, Section A.2), each multinomial coefficient
(

2r
2t1,...,2tm

)
can be bounded by (η0r)

r
(

r
t1,...,tm

)
, where η0 = 1 + 1

22
. This gives

E
σ

[
(σ⊤Kσ)r

]
≤ (η0r)

r
∑

t1+...+tm=r

(
r

t1,...,tm

) m∏

i=1

K(xi, xi)
ti

= (η0r)
r(Tr[K])r =

(
η0r Tr[K]

)r

,

which coincides with the statement of the lemma.

Theorem 2.5. For any sample S of size m, the empirical Rademacher com-

plexity of the hypothesis set H1
p can be bounded as follows:

∀r ∈ N, r ≥ 1, R̂S(H1
p ) ≤

√
η0r‖u‖r

m
,

where u = (Tr[K1], . . . , Tr[Kp])
⊤ and η0 = 23

22
.

Proof. By Proposition 2.5, R̂S(H1
p ) = 1

m
Eσ

[√
‖uσ‖∞

]
. Since for any r ≥ 1,

‖uσ‖∞ ≤ ‖uσ‖r, we can upper bound the Rademacher complexity as follows:

R̂S(H1
p ) ≤ 1

m
E
σ

[√
‖uσ‖r

]

=
1

m
E
σ

[[ p∑

k=1

(σ⊤Kkσ)r
] 1

2r
]

≤ 1

m

[
E
σ

[ p∑

k=1

(σ⊤Kkσ)r
]] 1

2r
(Jensen’s inequality)

=
1

m

[ p∑

k=1

E
σ

[
(σ⊤Kkσ)r

]] 1

2r

.
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Assume that r ≥ 1 is an integer, then, by Lemma 2.1, for any k ∈ [1, p], we

have

E
σ

[
(σ⊤Kkσ)r

]
≤
(
η0r Tr[Kk]

)r

.

Using these inequalities gives

R̂S(H1
p ) ≤ 1

m

[ p∑

k=1

(
η0r Tr[Kk]

)r] 1

2r
=

√
η0r‖u‖r

m
,

and concludes the proof.

Theorem 2.6. Let p > 1 and assume that Kk(x, x) ≤ R2 for all x ∈ X and

k ∈ [1, p]. Then, for any sample S of size m, the Rademacher complexity of

the hypothesis set H1
p can be bounded as follows:

R̂S(H1
p ) ≤

√
η0e⌈log p⌉R2

m
.

Proof. Since Kk(x, x) ≤ R2 for all x ∈ X and k ∈ [1, p], Tr[Kk] ≤ mR2 for

all k ∈ [1, p]. Thus, by Theorem 2.5, for any integer r > 1, the Rademacher

complexity can be bounded as follows

R̂S(H1
p ) ≤ 1

m

[
p

(
η0rmR2

)r] 1

2r

=

√
η0rp

1

r R2

m
.

For p > 1, the function r 7→ p1/rr reaches its minimum at r0 = log p, which

gives R̂S(H1
p ) ≤

√
η0e⌈log p⌉R2

m
.

Note that more generally, without assuming Kk(x, x) ≤ R2 for all k and
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all x, the same proof yields the following result:

R̂S(H1
p ) ≤

√
η0e⌈log p⌉‖u‖∞

m
.

Remarkably, the bound of the theorem has a very mild dependence on

p. The theorem can be used to derive generalization bounds for learning

kernels in classification, regression, and other tasks. We briefly illustrate its

application to binary classification where the labels y are in {−1, +1}. Let

R(h) denote the generalization error of h ∈ H1
p , that is R(h) = Pr[yh(x) < 0].

For a training sample S = ((x1, y1), . . . , (xm, ym)) and any ρ > 0, define the

ρ-empirical margin loss R̂ρ(h) as follows:

R̂ρ(h) =
1

m

m∑

i=1

min
(
1, [1− yih(xi)/ρ]+

)
.

Note that R̂ρ(h) is always upper bounded by the fraction of the training points

with margin less than ρ:

R̂ρ(h) ≤ 1

m

m∑

i=1

1yih(xi)<ρ.

The following gives a margin-based generalization bound for the hypothesis

set H1
p .

Corollary 2.1. Fix ρ > 0. Then, for any integer r > 1, for any δ > 0, with
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probability at least 1− δ, for any h ∈ H1
p ,

R(h) ≤ R̂ρ(h) +
2
√

η0r‖u‖r
mρ

+ 3

√
log 2

δ

2m
.

with u = (Tr[K1], . . . , Tr[Kp])
⊤ and η0 = 23

22
.

If additionally, Kk(x, x) ≤ R2 for all x ∈ X and k ∈ [1, p], then, for p > 1,

R(h) ≤ R̂ρ(h) + 2

√
η0e⌈log p⌉R2/ρ2

m
+ 3

√
log 2

δ

2m
.

Proof. With our definition of the Rademacher complexity, for any δ > 0,

with probability at least 1 − δ, the following bound holds for any h ∈ H1
p

(Koltchinskii & Panchenko, 2002; Bartlett & Mendelson, 2002):

R(h) ≤ R̂ρ(h) +
2

ρ
R̂S(H1

p ) + 3

√
log 2

δ

2m
.

Plugging in the bound on the empirical Rademacher complexity given by The-

orem 2.5 and Theorem 2.6 yields the statement of the corollary.

The bound of the Corollary can be straightforwardly extended to hold uni-

formly over all choices of ρ, using standard techniques introduced by Koltchin-

skii and Panchenko (2002), at the price of the additional term log log2(4R/ρ)
m

on

the right-hand side.
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2.4.2 Rademacher Complexity Bound for Hq
p

This section presents bounds on the Rademacher complexity of the hypothesis

sets Hq
p for various values of q > 1, including q = 2.

Theorem 2.7. Let q, r ≥ 1 with 1
q

+ 1
r

= 1 and assume that r is an integer.

Then, for any sample S of size m, the empirical Rademacher complexity of

the hypothesis set Hq
p can be bounded as follows:

R̂S(Hq
p) ≤

√
η0r‖u‖r

m
,

where u = (Tr[K1], . . . , Tr[Kp])
⊤ and η0 = 23

22
.

Proof. By Proposition 2.5, R̂S(Hq
p) = 1

m
Eσ

[√
‖uσ‖r

]
, with

uσ = (σ⊤K1σ, . . . , σ⊤Kpσ)⊤. The rest of the proof is identical to that of

Theorem 2.5: using Jensen’s inequality and Lemma 2.1, which applies because

r is an integer, we obtain similarly

R̂S(Hq
p) ≤

1

m

[ p∑

k=1

(
η0r Tr[Kk]

)r] 1

2r
.

In particular, for q = r = 2, the theorem implies

R̂S(H2
p ) ≤

√
2η0‖u‖2

m
.

Theorem 2.8. Let q, r ≥ 1 with 1
q

+ 1
r

= 1 and assume that r is an integer.

Let p > 1 and assume that Kk(x, x) ≤ R2 for all x ∈ X and k ∈ [1, p]. Then,
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for any sample S of size m, the Rademacher complexity of the hypothesis set

Hq
p can be bounded as follows:

R̂S(Hq
p) ≤

√
η0rp

1

r R2

m
.

Proof. Since Kk(x, x) ≤ R2 for all x ∈ X and k ∈ [1, p], Tr[Kk] ≤ mR2 for all

k ∈ [1, p]. Thus, by Theorem 2.7, the Rademacher complexity can be bounded

as follows

R̂S(Hq
p) ≤

1

m

[
p

(
η0rmR2

)r] 1

2r

=

√
η0rp

1

r R2

m
.

The bound of the theorem has only a mild dependence ( 2r
√·) on the number

of kernels p. In particular, for q = r = 2, under the assumptions of the

theorem,

R̂S(H2
p) ≤

√
2η0
√

pR2

m
,

and the dependence is in O(p1/4).

Proceeding as in the L1 case leads to the following margin bound in binary

classification.

Corollary 2.2. Let q, r ≥ 1 with 1
q

+ 1
r

= 1 and assume that r is an integer.

Fix ρ > 0. Then, for any δ > 0, with probability at least 1−δ, for any h ∈ Hq
p ,

R(h) ≤ R̂ρ(h) +
2
√

η0r‖u‖r
mρ

+ 3

√
log 2

δ

2m
.

with u = (Tr[K1], . . . , Tr[Kp])
⊤ and η0 = 23

22
.
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If additionally, Kk(x, x) ≤ R2 for all x ∈ X and k ∈ [1, p], then, for p > 1,

R(h) ≤ R̂ρ(h) + 2

√
η0rp

1

r R2/ρ2

m
+ 3

√
log 2

δ

2m
.

In particular, for q = r = 2, the generalization bound of the corollary

becomes

R(h) ≤ R̂ρ(h) + 2

√
η0r
√

pR2/ρ2

m
+ 3

√
log 2

δ

2m
.

The p1/(2r) dependency of the generalization bound of Corollary 2.2 cannot

be improved. In particular, the p1/4 dependency is tight for the the hypothesis

set H2
p . Indeed, as shown by Koltchinskii and Panchenko (2002) using the

family of canonical projections Φ: x 7→ xk, in general, the term Rm(H)/ρ

cannot be improved upon for such margin-based generalization bounds for a

hypothesis set H . By Proposition 2.5, R̂m(Hq
p) = p1/(2r) 1

m
E
[√

σ⊤K1σ
]

when

all kernels Kk are equal. Thus, this shows that in general the dependency on

p1/(2r) is necessary.

2.4.3 Proof Techniques

Our proof techniques are somewhat general and apply similarly to other prob-

lems. In particular, they can be used as alternative methods to derive bounds

on the Rademacher complexity of linear functions classes, such as those given

by Kakade et al. (2009), using strong convexity. In fact, in some cases, they

can lead to similar bounds but with tighter constants. The following theorem
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illustrates that in the case of linear functions constrained by the norm ‖ · ‖q.

Theorem 2.9. Let q, r ≥ 1 with 1
q

+ 1
r

= 1, r an even integer such that

r ≥ 2. Let X = {x : ‖x‖r ≤ X}, and let F be the class of linear functions

over X defined by F = {x 7→ w · x : ‖w‖q ≤ W}, then, for any sample

S = (x1, . . . , xm), the following bound holds for the empirical Rademacher

complexity of this class:

R̂S(F) ≤ XW

√
η0r

2m
.

Clearly, this immediately yields the same bound on the Rademacher com-

plexity Rm(F) = ES[R̂S(F)]. The bound given by Kakade et al. (2009)[Sec-

tion 3.1] in this case is Rm(F) ≤ XW
√

r−1
m

. Since η0r/2 ≤ r− 1, for an even

integer r > 2, our bound is always tighter.

Proof. The proof is similar to and uses that of Theorem 2.5. By the definition

of the dual norms, the following holds:

R̂S(F) =
1

m
E
σ

[
sup

‖w‖q≤W

m∑

i=1

σiw · xi

]
=

W

m
E
σ

[∥∥∥
m∑

i=1

σixi

∥∥∥
r

]
.

By Jensen’s inequality,

E
σ

∥∥∥
m∑

i=1

σixi

∥∥∥
r
≤
[
E
σ

∥∥∥
m∑

i=1

σixi

∥∥∥
r

r

] 1

r

=
[
E
σ

N∑

j=1

[ m∑

i=1

σixij

]r] 1

r

,

where we denote by N the dimension of the space and by xij the jth coordinate
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of xi. Now, we can bound the term Eσ

[[∑m
i=1 σixij

]r]
using Lemma 2.1 and

obtain:

E
σ

[[ m∑

i=1

σixij

]r]
= E

σ

[[ m∑

i,l=1

σiσlxijxlj

]r/2
]

≤
(η0r

2

m∑

i=1

x2
ij

)r/2

.

Thus,

R̂S(F) ≤ W

m

(η0r

2

)1/2
[ N∑

j=1

( m∑

i=1

x2
ij

)r/2
] 1

r

= W

√
η0r

2m

[ N∑

j=1

( 1

m

m∑

i=1

x2
ij

)r/2
] 1

r

.

Since r ≥ 2, by Jensen’s inequality,
(

1
m

∑m
i=1 x2

ij

)r/2

≤ 1
m

∑m
i=1 xr

ij . Thus,

R̂S(F) ≤W

√
η0r

2m

[ N∑

j=1

1

m

m∑

i=1

xr
ij

] 1

r

= W

√
η0r

2m

[
1

m

m∑

i=1

‖xi‖rr
] 1

r

≤W

√
η0r

2m
X.

In this section we have presented several new generalization bounds for the

problem of learning kernels with non-negative combinations of base kernels and

outlined the relevance of our proof techniques to the analysis of the complexity

of the class of linear functions. The bounds are simpler and significantly

improve over previous bounds. Their behavior matches empirical observations
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with a large number of base kernels. Their very mild dependency on the

number of kernels suggests the use of a very large number of kernels is possible

for this problem. Recent experiments by Bach (2008) in regression, as well as

experiments shown in Chapter 3, using a large number of kernels seem to

corroborate this idea.

2.5 Theoretical Results for Alignment

In Section 3.3 we explore the empirical performance of a two-stage technique

and algorithm for learning kernels. The first stage of this technique consists

of learning a kernel K that is a convex combination of p kernels. The second

stage consists of using K with a standard kernel-based learning algorithm such

as support vector machines (SVMs) (Cortes & Vapnik, 1995) for classification,

or KRR (Saunders et al., 1998) for regression, to select a prediction hypothesis.

The main motivation for using a two-stage method, is that there are fewer

parameters to learn simultaneously and better performance may be observed

when data is scarce. Here, we first learn a kernel with p parameters and

then using the selected kernel learn a hypothesis with m parameters. In the

previously suggested one-stage methods both set of parameters are learned

jointly, resulting in a more complicated model that requires possibly more

data in order to generalize.

Different methods can be used to learn, from the training sample, the

convex combination of parameters that define K. A measure of similarity
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between the base kernels Kk, k ∈ [1, p], and the target kernel KY derived from

the labels can be used to determine these parameters. This can be done by

using either the individual similarity of each kernel Kk with KY , or globally,

from the similarity between convex combinations of the base kernels and KY .

The similarities we consider are based on the natural notion of kernel alignment

introduced by Cristianini et al. (2001), though our definition differs from the

original one. We note that other measures of similarity could be used in this

context. In particular, the notion of similarity suggested by Balcan and Blum

(2006) could be used if it was computable from finite samples.

In this section we present a number of novel theoretical results for the

alignment-based two-stage techniques. Our results build on previous work by

Cristianini et al. (2001); Cristianini et al. (2002); Kandola et al. (2002a), but

we significantly extend that work in several directions. We discuss the origi-

nal definitions of kernel alignment by these authors and adopt a related but

different definition. We give a novel concentration bound showing that the dif-

ference between the alignment of two kernel matrices and the alignment of the

corresponding kernel functions can be bounded by a term in O(1/
√

m). Our

result is simpler and directly bounds the difference between the relevant quan-

tities, unlike previous work. We also show the existence of good predictors for

kernels with high alignment, both for classification and for regression. These

results correct a technical problem in classification and extend to regression

the bounds of Cristianini et al. (2001).
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2.5.1 Alignment Definitions

The notion of kernel alignment was first introduced by Cristianini et al. (2001).

Our definition of kernel alignment is different and is based on the notion of

centering in the feature space. Thus, we start with the definition of centering

and the analysis of its relevant properties.

Centering Kernels

Let D be the distribution according to which training and test points are

drawn. Centering a feature mapping Φ: X → H consists of replacing it by

Φ−Ex[Φ], where Ex denotes the expected value of Φ when x is drawn according

to the distribution D. Centering a positive semi-definite, PSD, kernel function

K : X ×X → R consists of centering any feature mapping Φ associated to K.

Thus, the centered kernel Kc associated to K is defined for all x, x′ ∈ X by

Kc(x, x′) = (Φ(x)− E
x
[Φ])⊤(Φ(x′)− E

x′
[Φ]) (2.37)

= K(x, x′)− E
x
[K(x, x′)]− E

x′
[K(x, x′)] + E

x,x′
[K(x, x′)]. (2.38)

This also shows that the definition does not depend on the choice of the feature

mapping associated to K. Since Kc(x, x′) is defined as an inner product, Kc is

also a PSD kernel. Note also that for a centered kernel Kc, Ex,x′[Kc(x, x′)] = 0.

That is, centering the feature mapping implies centering the kernel function.

Similar definitions can be given for a finite sample S = (x1, . . . , xm) drawn

according to D: a feature vector Φ(xi) with i ∈ [1, m] is then centered by
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replacing it with Φ(xi)−Φ, with Φ = 1
m

∑m
i=1 Φ(xi), and the kernel matrix K

associated to K and the sample S is centered by replacing it with Kc defined

for all i, j ∈ [1, m] by

[Kc]ij = Kij −
1

m

m∑

i=1

Kij −
1

m

m∑

j=1

Kij +
1

m2

m∑

i,j=1

Kij. (2.39)

Let Φ = [Φ(x1), . . . , Φ(xm)]⊤ and Φ = [Φ, . . . , Φ]⊤. Then, it is not hard to

verify that Kc = (Φ −Φ)(Φ −Φ)⊤, which shows that Kc is a positive semi-

definite matrix. Also, as with the kernel function, 1
m2

∑m
i,j=1[Kc]ij = 0.

Kernel Alignment

We define the alignment of two kernel functions as follows.

Definition 2.3. Let K and K ′ be two kernel functions defined over X × X

such that 0 < E[K2
c ] < +∞ and 0 < E[K ′

c
2] < +∞. Then, the alignment

between K and K ′ is defined by

ρ(K, K ′) =
E[KcK

′
c]√

E[K2
c ] E[K ′

c
2]

.

In the absence of ambiguity, to abbreviate the notation, we often omit the

variables over which an expectation is taken. Since |E[KcK
′
c]| ≤

√
E[K2

c ] E[K ′
c
2]

by the Cauchy-Shwarz inequality, we have ρ(K, K ′) ∈ [−1, 1]. The following

lemma shows more precisely that ρ(K, K ′) ∈ [0, 1] when Kc and K ′
c are PSD

kernels. We denote by 〈·, ·〉F the Frobenius product and by ‖·‖F the Frobenius

61



norm.

Lemma 2.2. For any two PSD kernels Q and Q′, E[QQ′] ≥ 0.

Proof. Let Ψ be a feature mapping associated to Q and Ψ′ a feature mapping

associated to Q′. By definition of Ψ and Ψ′, and using the properties of the

trace, we can write:

E
x,x′

[Q(x, x′)Q′(x, x′)] = E
x,x′

[Ψ(x)⊤Ψ(x′)Ψ′(x′)⊤Ψ′(x)]

= E
x,x′

[
Tr[Ψ(x)⊤Ψ(x′)Ψ′(x′)⊤Ψ′(x)]

]

= 〈E
x
[Ψ(x)Ψ′(x)⊤], E

x′
[Ψ(x′)Ψ′(x′)⊤]〉F = ‖U‖2F ,

where U = Ex[Ψ(x)Ψ′(x)⊤].

The following similarly defines the alignment between two kernel matrices

K and K′ based on a finite sample S = (x1, . . . , xm) drawn according to D.

Definition 2.4. Let K ∈ R
m×m and K′ ∈ R

m×m be two kernel matrices such

that ‖Kc‖F 6= 0 and ‖K′
c‖F 6= 0. Then, the alignment between K and K′ is

defined by

ρ̂(K,K′) =
〈Kc,K

′
c〉F

‖Kc‖F‖K′
c‖F

.

Here too, by the Cauchy-Schwarz inequality, ρ̂(K,K′) ∈ [−1, 1] and in fact

ρ̂(K,K′) ≥ 0 since the Frobenius product of any two positive semi-definite

matrices K and K′ is non-negative. Indeed, for such matrices, there exist

matrices U and V such that K = UU⊤ and K′ = VV⊤. The statement
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follows from

〈K,K′〉F = Tr(UU⊤VV⊤) = Tr
(
(U⊤V)⊤(U⊤V)

)
≥ 0. (2.40)

Our definitions of alignment between kernel functions or between kernel ma-

trices differ from those originally given by Cristianini et al. (2001); Cristianini

et al. (2002):

A =
E[KK ′]√

E[K2] E[K ′2]
Â =

〈K,K′〉F
‖K‖F‖K′‖F

, (2.41)

which are thus in terms of K and K ′ instead of Kc and K ′
c and similarly for

matrices. This may appear to be a technicality, but it is in fact a critical dif-

ference. Without that centering, the definition of alignment does not correlate

well with performance.

To see this, consider the standard case where K ′ is the target label kernel,

that is K ′(x, x′) = yy′, with y the label of x and y′ the label of y′, and

examine the following simple example in dimension two (X = R
2), where

K(x, x′) = x · x′ + 1 and where the distribution, D, is defined by a fraction

α ∈ [0, 1] of all points being at (−1, 0) and labeled with −1, and the remaining

points at (1, 0) with label +1.

Clearly, for any value of α ∈ [0, 1], the problem is separable for example

with the simple vertical line going through the origin and one would expect

the alignment to be 1. However, the alignment A is never equal to one except

for α = 0 or α = 1 and in fact, for the balanced case where α = 1/2, its value

is A = 1/
√

2 ≈ .707. In contrast, with our definition, ρ(K, K ′) = 1 for all
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Figure 2.4: Alignment values computed for two different definitions of align-

ment: A = [1+(1−2α)2

2
]
1

2 in black, ρ = 1 in blue. In this simple two-dimensional
example, a fraction α of the points are at (−1, 0) and have the label −1. The
remaining points are at (1, 0) and have the label +1.

α ∈ [0, 1], see Figure 2.4.

This mismatch between A (or Â) and the performance values can also be

seen in real world datasets. Instances of this problem have been noticed by

Meila (2003) and Pothin and Richard (2008) who have suggested various (in-

put) data translation methods, and by Cristianini et al. (2002) who observed

an issue for unbalanced data sets. Table 2.1 also gives a series of empirical

results in several tasks illustrating the fact that the quantity Â measured with

respect to several different kernels does not always correlate well with the

performance achieved by each kernel. In fact for the splice dataset, the non-

centered alignment is positively correlated with the error-rate, while a large

negative correlation is expected of a good quality measure. The centered no-

tion of alignment, ρ̂, however, shows good correlation along all datasets and is

always better correlated that Â. The definitions we are adopting are general
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kinematics ionosphere german spambase splice

ρ̂ -0.9624 -0.9979 -0.9439 -0.9918 -0.9515

Â -0.8627 -0.9841 -0.9390 -0.9889 0.4484

Table 2.1: The correlations of the alignment values and error-rates of various
kernels. The top row displays the correlation of errors of the base kernels used
in Section 3.3.2 with centered alignments (ρ̂) and the bottom row displays the

correlation with non-centered alignment (Â).

and require centering for both kernels K and K ′.

The notion of alignment seeks to capture the correlation between the ran-

dom variables K(x, x′) and K ′(x, x′) and one could think it natural, as for the

standard correlation coefficients, to consider the following definition:

ρ′(K, K ′) =
E[(K − E[K])(K ′ − E[K ′])]√

E[(K − E[K])2] E[(K ′ − E[K ′])2]
. (2.42)

However, centering the kernel values is not directly relevant to linear pre-

dictions in feature space, while our definition of alignment, ρ, is precisely

related to that. Also, as already shown in Section 2.5.1, centering in the fea-

ture space implies the centering of the kernel values, since E[Kc] = 0 and

1
m2

∑m
i,j=1[Kc]ij = 0 for any kernel K and kernel matrix K. Conversely, how-

ever, centering of the kernel does not imply centering in feature space.

This section establishes several important properties of the alignments ρ

and its empirical estimate ρ̂: we give a concentration bound of the form |ρ−

ρ̂| ≤ O(1/
√

m), and show the existence of good prediction hypotheses both

for classification and regression, in the presence of high alignment.
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2.5.2 Concentration Bound

Our concentration bound differs from that of Cristianini et al. (2001) both

because our definition of alignment is different and because we give a bound

directly on the quantity of interest |ρ − ρ̂|. Instead, Cristianini et al. give a

bound on |A′ − Â|, where

A′ =
ES[
∑m

i,j=1 K(xi, xj)K
′(xi, xj)]√

ES[
∑m

i,j=1 K(xi, xj)2] ES[
∑m

i,j=1 K ′(xi, xj)2]
. (2.43)

Thus, A′ 6= A can be related to A by replacing each Frobenius product with

its expectation over samples of size m. When compared to A, which takes

an expectation over independent pairs of points, A′ has a strong diagonal

bias. That is, at least m of the terms in the expectation will be of the form

K(xi, xi)K
′(xi, xi). It can be shown that A′ will converge to the correct value

of A as m increases, but to best of our knowledge this had not been carefully

studied previously. In the appendix, lemma A.5 bounds exactly the differ-

ence between an expectation based on independent pairs of points and the

expectation based on a sample of size m.

Using this we can give a bound on the essential quantities appearing in the

definition of the alignments. The proof and relative supporting lemmas are

found in the appendix.

Proposition 2.6. Let K and K′ denote kernel matrices associated to the

kernel functions K and K ′ for a sample of size m drawn according to D.
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Assume that for any x ∈ X , K(x, x) ≤ R2 and K ′(x, x) ≤ R2. Then, for any

δ > 0, with probability at least 1− δ, the following inequality holds:

∣∣∣∣
〈Kc,K

′
c〉F

m2
− E[KcK

′
c]

∣∣∣∣ ≤
18R4

m
+ 24R4

√
log 2

δ

2m
.

Theorem 2.10. Under the assumptions of Proposition 2.6, and further as-

suming that the conditions of the Definitions 2.3-2.4 are satisfied for ρ(K, K ′)

and ρ̂(K,K′), for any δ > 0, with probability at least 1 − δ, the following

inequality holds:

|ρ(K, K ′)− ρ̂(K,K′)| ≤ 18β

[
3

m
+ 4

√
log 6

δ

2m

]
,

with β = max(R4/ E[K2
c ], R4/ E[K ′

c
2]).

Proof. To shorten the presentation, we first simplify the notation for the align-

ments as follows:

ρ(K, K ′) =
b√
aa′

ρ̂(K,K′) =
b̂√
ââ′

,

with b = E[KcK
′
c], a = E[K2

c ], a′ = E[K ′
c
2] and similarly, b̂ = (1/m2)〈Kc,K

′
c〉F ,

â = (1/m2)‖Kc‖2, and â′ = (1/m2)‖K′
c‖2. By Proposition 2.6 and the union

bound, for any δ > 0, with probability at least 1−δ, all three differences a− â,

a′− â′, and b− b̂ are bounded by α = 18R4

m
+24R4

√
log 6

δ

2m
. Using the definitions
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of ρ and ρ̂, we can write:

|ρ(K, K ′)− ρ̂(K,K′)| =
∣∣∣

b√
aa′
− b̂√

ââ′

∣∣∣ =
∣∣∣
b
√

ââ′ − b̂
√

aa′
√

aa′ââ′

∣∣∣

=
∣∣∣
(b− b̂)

√
ââ′ − b̂(

√
aa′ −

√
ââ′)√

aa′ââ′

∣∣∣

=
∣∣∣
(b− b̂)√

aa′
− ρ̂(K,K′)

aa′ − ââ′
√

aa′(
√

aa′ +
√

ââ′)

∣∣∣.

Since ρ̂(K,K′) ∈ [0, 1], it follows that

|ρ(K, K ′)− ρ̂(K,K′)| ≤ |b− b̂|√
aa′

+
|aa′ − ââ′|√

aa′(
√

aa′ +
√

ââ′)
.

Assume first that â ≤ â′. Rewriting the right-hand side to make the differences

a− â and a′ − â′ appear, we obtain:

|ρ(K, K ′)− ρ̂(K,K′)| ≤ |b− b̂|√
aa′

+
|(a− â)a′ + â(a′ − â′)|√

aa′(
√

aa′ +
√

ââ′)

≤ α√
aa′

[
1 +

a′ + â√
aa′ +

√
ââ′

]

≤ α√
aa′

[
1 +

a′
√

aa′
+

â√
ââ′

]

≤ α√
aa′

[
2 +

√
a′

a

]
=

[
2√
aa′

+
1

a

]
α.

We can similarly obtain
[

2√
aa′

+ 1
a′

]
α when â′ ≤ â. Both bounds are less than

or equal to 3max(α
a
, α

a′ ).
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2.5.3 Existence of Good Predictors

For classification and regression tasks, the target kernel is based on the labels

and defined by KY (x, x′) = yy′, where we denote by y the label of point x and

y′ that of x′. This section shows the existence of predictors with high accuracy

both for classification and regression when the alignment ρ(K, KY ) between

the kernel K and KY is high.

In the regression setting, we shall assume that the labels have been first

normalized by dividing by the standard deviation (assumed finite), E[y2] = 1.

In the classification setting we have y = ±1 and thus we also have E[y2] = 1.

Let h∗ denote the hypothesis defined for all x ∈ X by

h∗(x) =
Ex′[y′Kc(x, x′)]√

E[K2
c ]

. (2.44)

Observe that by definition of h∗, Ex[yh∗(x)] = ρ(K, KY ). For any x ∈ X ,

define γ(x) =
√

Ex′ [K
2
c (x,x′)]

Ex,x′ [K
2
c (x,x′)]

and Γ = maxx γ(x). The following result shows

that the hypothesis h∗ has high accuracy when the kernel alignment is high

and Γ not too large.1

Theorem 2.11 (classification). Let R(h∗) = Pr[yh∗(x) < 0] denote the error

of h∗ in binary classification. For any kernel K such that 0 < E[K2
c ] < +∞,

the following holds:

R(h∗) ≤ 1− ρ(K, KY )/Γ.

1A version of this result was presented by Cristianini et al. (2001); Cristianini et al.
(2002) for the so-called Parzen window solution and non-centered kernels, but their proof

implicitly relies on the fact that maxx

[ E
x′ [K2(x,x′)]

E
x,x′ [K2(x,x′)]

] 1

2 = 1 which holds only if K is constant.
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Proof. Note that for all x ∈ X ,

|yh∗(x)| = |y Ex′[y′Kc(x, x′)]|√
E[K2

c ]

≤
√

Ex′[y′2] Ex′[K2
c (x, x′)]√

E[K2
c ]

=

√
Ex′[K2

c (x, x′)]√
E[K2

c ]
≤ Γ.

In view of this inequality, and the fact that Ex[yh∗(x)] = ρ(K, KY ), we can

write:

1− R(h∗) = Pr[yh∗(x) ≥ 0] = E[1{yh∗(x)≥0}]

≥ E[
yh∗(x)

Γ
1{yh∗(x)≥0}]

≥ E[
yh∗(x)

Γ
] = ρ(K, KY )/Γ,

where 1ω is the indicator variable of an event ω.

A probabilistic version of the theorem can be straightforwardly derived by

noting that by Markov’s inequality, for any δ > 0, with probability at least

1− δ, |γ(x)| ≤ 1/
√

δ.

Theorem 2.12 (regression). Let R(h∗) = Ex[(y−h∗(x))2] denote the error of

h∗ in regression. For any kernel K such that 0 < E[K2
c ] < +∞, the following

holds:

R(h∗) ≤ 2(1− ρ(K, KY )).
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Proof. By the Cauchy-Schwarz inequality, it follows that:

E
x
[h∗2(x)] = E

x

[
Ex′ [y′Kc(x, x′)]2

E[K2
c ]

]

≤ E
x

[
Ex′[y′2] Ex′[K2

c (x, x′)]

E[K2
c ]

]

=
Ex′[y′2] Ex,x′[K2

c (x, x′)]

E[K2
c ]

= E
x′

[y′2] = 1.

Using again the fact that Ex[yh∗(x)] = ρ(K, KY ), the error of h∗ can be

bounded as follows:

E[(y − h∗(x))2] = E
x
[h∗(x)2] + E

x
[y2]− 2 E

x
[yh∗(x)]

≤ 1 + 1− 2ρ(K, KY ).

2.5.4 Unnormalized Alignment

Note, a simpler notion of alignment, as well as accompanying bounds, is pos-

sible if we consider the unnormalized alignment, denoted by η.

Definition 2.5. Let K and K ′ be two kernel functions defined over X × X .

Then, the unnormalized alignment between K and K ′ is defined by,

η(K, K ′) = E
x,x′

[Kc(x, x′)K ′
c(x, x′)] .

Similarly, the empirical unnormalized alignment is denoted η̂ and is defined

as the Frobenius product between two kernel matrices.
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Definition 2.6. Let K ∈ R
m×m and K′ ∈ R

m×m be two kernel matrices.

Then, the unnormalized alignment between K and K′ is defined by,

η̂(K,K′) = 〈Kc,K
′
c〉F =

1

m2

m∑

i,j=1

Kc(xi, xj)K
′
c(xi, xj) .

Clearly, since the functions η and η̂ are unnormalized, their output is no

longer guaranteed to be in the interval [0, 1]. However, assuming the kernel

function K and labels are bounded, the unnormalized alignment between K

and KY can be bounded as well.

Lemma 2.3. Let K be a kernel function and assume for all x ∈ X , Kc(x, x) ≤

R2 and for all y we have y ≤M . Then the following bounds hold,

0 ≤ η(K, KY ) ≤ R2M , 0 ≤ η̂(K,KY ) ≤ R2M .

Proof. The lower bounds can be shown as in the case of the normalized align-

ment ρ, assuming K is PSD. Both bounds are shown via the application of

Cauchy-Schwarz and using the fact supy,y′(yy′)2 ≤M2 and supx,x′ K2(x, x′) ≤

supx K2(x, x) ≤ R4. For the first inequality we have,

η2(K, KY ) = E
(x,y),(x′,y′)

[Kc(x, x′)yy′]2

≤ E
x,x′

[K2
c (x, x′)] E

y,y′
[yy′]2

≤ R4M2 .
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Similarly, for the second inequality,

η̂(K,K′) =
1

m2

m∑

i,j=1

Kc(xi, xj)yiyj

≤ 1

m2

√√√√
m∑

i,j=1

K2
c (xi, xj)

√√√√
m∑

i,j=1

(yiyj)2

≤ 1

m2

√
m2R4

√
m2M2 ≤ R2M .

Note in the case of classification we simply have M = 1. Straight-forward

bounds can be given for a “good” hypothesis, without the dependence on a

term such as Γ. Here we define a good hypothesis as follows,

g∗(x) = E
x′
[y′Kc(x, x′)] . (2.45)

Below we show a classification bound that depends on the unnormalized align-

ment.

Theorem 2.13 (classification). Let R(g∗) = Pr[yg∗(x) < 0] denote the error

of g∗ in binary classification. For any kernel K such that supx∈X Kc(x, x) ≤

R2, we have:

R(g∗) ≤ 1− η(K, KY )/R2.
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Proof. Note that for all x ∈ X ,

|yg∗(x)| = |g∗(x)| = |E
x′
[y′Kc(x, x′)]| ≤ R2.

Using this inequality, and the fact that Ex[yg∗(x)] = η(K, KY ), we can write:

1− R(g∗) = Pr[yg∗(x) ≥ 0] = E[1{yg∗(x)≥0}]

≥ E[
yg∗(x)

R2
1{yh∗(x)≥0}] ≥ E[

yg∗(x)

R2
]

= η(K, KY )/R2,

where 1ω is the indicator variable of an event ω.

Although the unnormalized alignment, η, allows for a simpler analysis (in

the classification setting) it may also suffer from an unfair bias when comparing

two kernels with very different norms. For this reason, in practice, it would

be best to first initially normalize each kernel that is being compared. This is

exactly what is done in Section 3.3.1 when deriving the independent alignment-

based weighting, which maximizes the unnormalized alignment.

The theoretical results which have been shown in this section help motivate

the algorithms of Section 3.3. It will be confirmed empirically that simpler two-

stage methods can, in fact, outperform global one-stage methods in several

tasks.
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Chapter 3

Algorithms and Empirical

Results

3.1 Previous Results

In this section we focus on algorithms used in learning linear combinations of

base kernels. This family of kernels was first popularized in Lanckriet et al.

(2002); Lanckriet et al. (2004b), and has become one of the most studied

and most principled families of kernels used for the automatic kernel selection

problem. In their seminal work, the choice of kernel is based on the SVM
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objective,

min
K∈K

max
α

m∑

i=1

αi −
m∑

i,j=1

αiαjyiyjK(xi, xj) (3.1)

subject to

m∑

i=1

αiyi = 0 ∧ ∀i, 0 ≤ αi ≤ C

In this sense, both the kernel and hypothesis are selected in a single global

optimization problem. Two families of linear combinations were considered,

one with a PDS constraint and another with a positivity constraint, which is

sufficient to ensure that the resulting kernel is PDS, but also more restrictive,

K+ = {Kµ =

p∑

k=1

µkKk : Kµ � 0, ‖µ‖1 ≤ Λ} , (3.2)

K++ = {Kµ =

p∑

k=1

µkKk : µ � 0, ‖µ‖1 ≤ Λ} . (3.3)

Both families of kernels enforce a restriction on the L1-norm of the weight vec-

tor, µ, which acts as regularization, and that also encourages a sparse weight

vector solution. In order to solve the optimization problem using the more

general family of kernels, K+, the authors solve a semi-definite programming

(SDP) problem. If the more restrictive class, K++, is used, then the problem

can be reduced to a quadratically constrained quadratic program (QCQP),

which is much more efficiently solved in practice. It is shown experimentally,

that using the class K++ instead of K+ does not result any notable difference

in performance. In addition to solving the problem using for the SVM objec-
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tive, the authors also present similar algorithms for solving the kernel ridge

regression (KRR) algorithm.

Several other methods have been suggested to solve the same problem,

using various different optimization formulations. The problem can also be

solved in an sequential minimization optimization (SMO) type approach (Bach

et al., 2004), semi-infinite linear program (SILP) optimization (Sonnenburg

et al., 2006), subgradient optimization (Rakotomamonjy et al., 2008) or bundle

method (Xu et al., 2009). The goal of all these methods are to provide a more

efficient algorithm, while the solution of this convex problem is of course meant

to be same the in all cases.

To study the effectiveness of these algorithms, Lanckriet et al. (2004a)

present experiments using several publicly available datasets that primarily

use families of Gaussian kernels with varying bandwidth or polynomial kernels

of varying degrees as base kernels. It is demonstrated that is such cases, solv-

ing the problem in (3.1) provides performance that is very comparable to the

performance that is achieved by doing a more costly cross-validation to find

a single best kernel. Furthermore, results are also shown for datasets which

combine kernels based on heterogeneous sources of data. In this case, the

learned combination often performs even better than any single base kernel.

Despite these successes, this initial paper contained no comparisons to a very

simple yet effective baseline: a uniform combination of base kernels. In sev-

eral settings, as described in this thesis, as well as observed in other settings

(Cortes, 2009; Cortes et al., 2008a), this very simple baseline often performs
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comparably to the much more computationally complex methods used to learn

combination weights.

Finally, we note that there has also been some very recent developments in

learning non-linear combinations (Varma & Babu, 2009; Bach, 2008; Cortes

et al., 2009b), although the problem has been less studied. Furthermore, in

the most general case, the associated optimization problem for maximizing the

SVM or KRR objective becomes non-convex and the global optimum solution

cannot be guaranteed.

It will be the focus of this chapter to show different algorithms and ap-

proaches for improving the performance of linear combinations of kernels,

compared to both the algorithm suggested in (3.1) as well as the surprisingly

effective baseline of uniform combinations.

Section 3.2 will present algorithms and results for L2 regularized families of

kernels that encourage non-sparse optimal combinations of base kernels. Not

only does the proposed method improve over the baseline uniform combination

in certain scenarios, but also demonstrates a sparse L1 type regularization may

not always be helpful.

Then in Section 3.3, we explore two-stage kernel selection algorithms, where

the selection of the kernel and hypothesis are separate. Here, we show that

solving two simpler problems with fewer parameters can lead to improvements

over the single-stage algorithms that have been investigated previously and

also lead to improvements over the uniform baseline in several tasks.
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3.2 Non-Sparse Regularization

As mentioned in the previous section, a common family of kernels considered

is that of non-negative combinations of some fixed kernels constrained by an

L1 regularization. This section studies the problem of learning kernels using

a linear family of kernels but with an L2 regularization instead. Note that an

L2 regularization, unlike the L1 regularization, provides a non-sparse weight

vector. This type of solution may be desirable in cases where the number

of base kernels is large and each one is generated from a different set of fea-

tures. In such a setting it may be undesirable to “throw away” any kernels

(or equivalently features) by setting its corresponding weight to zero. Similar

observations are made in work by Kloft et al. (2009). Experiments carried out

with a number of datasets, including those used by previous authors (Lanckriet

et al., 2004a; Cortes et al., 2008b), in some of which using an L2 regularization

turned out to be significantly beneficial and otherwise never worse than using

L1 regularization. We report these results in the experimental section.

3.2.1 Solving the LKRR Problem

In this section we examine the performance of L2-regularized kernel-learning

on a number of datasets.

Problem (2.19) is a convex optimization problem and can thus be solved

using standard gradient descent-type algorithms. However, the form of the

solution provided by Theorem 2.1, α = (K + λI)−1, motivates an iterative al-
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gorithm that proved to be significantly faster in our experiments. The following

gives the pseudo-code of the algorithm, where η ∈ (0, 1) is an interpolation

parameter and ǫ > 0 a convergence error. In our experiments, the number

Algorithm 1 Interpolated Iterative Algorithm

Input: Kk, k ∈ [1, p]
α′ ← (K0 + λI)−1y
repeat

α← α′

v← (α⊤K1α, . . . , α⊤Kpα)⊤

µ← µ0 + Λ v

‖v‖
α′ ← ηα + (1− η)(K(α) + λI)−1y

until ‖α′ −α‖ < ǫ

of iterations needed on average for convergence was about 10 to 15. When

using a small number of kernels with few data points, each iteration took a

fraction of a second, while when using thousands of kernels and data-points

each iteration took about a second.

3.2.2 Experimental Results

We did two series of experiments. First, we validated our experimental set-

up and our implementation for Algorithm 1 and previous algorithms for L1

regularization by comparing our results against those previously presented by

Lanckriet et al. (2004a), which use a small number of base kernels and rela-

tively small data sets. We then focused on a larger task consisting of learning

sequence kernels using thousands of base kernels as described by Cortes et

al. (2008b).
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Figure 3.1: RMSE error reported for the Reuters and various sentiment analy-
sis datasets (kitchen, dvds and electronics). The upper plots show the absolute
error, while the bottom plots show the error after normalizing by the baseline
error (error bars are ±1 standard deviation).
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UCI datasets

To verify our implementation, we first evaluated Algorithm 1 on the breast,

ionosphere, sonar and heart datasets from the UCI ML Repository which were

previously used for experimentation by Lanckriet et al. (2004a). In order to use

KRR for the classification datasets, we train with ±1 labels and examined both

root mean squared error (RMSE) with respect to these target values and the

misclassification rate when using the sign of the learned function to classify the

test set. We found that both measures of error give similar comparative results.

We use exactly the same experimental setup as (Lanckriet et al., 2004a), with

three kernels: a Gaussian, a linear, and a second degree polynomial kernel.

For comparison, we consider the best performing single kernel of these

three kernels, the performance of an evenly-weighted sum of the kernels, and

the performance of an L1-regularized algorithm (similar to that of Lanckriet

et al. (2004a), however using the KRR objective).

Our results on these datasets validate our implementations by reaffirming

the results from Lanckriet et al. (2004a). Using kernel-learning algorithms

(whether L1 or L2 regularized) never does worse than selecting the best sin-

gle kernel via costly cross-validation. However, our experiments also confirm

the findings by Lanckriet et al. (2004a) that kernel-learning algorithms for

this setting never do significantly better. All differences are easily within one

standard deviation, with absolute misclassification rate of: 0.03 (breast), 0.08

(ionosphere), 0.16 (sonar) and 0.17 (heart). As our next set of experiments

will show, when the number of base kernels is substantially increased, this

82



picture changes completely. The performance of the L2 regularized kernel is

significantly better than the baseline of evenly-weighted sum of kernels, that

in turn performs significantly better than the L1 regularized kernel.

Sequence-based datasets

In our next experiments, we also make use of one of the datasets from (Lanck-

riet et al., 2004a), the ACQ task of the Reuters-21578 dataset, though we

learn with different base kernels. Using the ModApte split we produce 3,299

test examples and 9,603 training examples from which we randomly subsample

2,000 points to train with over 20 trials.

For features we use the N most frequently occurring bigrams, where N is

indicated in Figure 3.1. As suggested in Cortes et al. (2008b), we use N rank-1

base kernels, with each kernel corresponding to a particular n-gram. Thus, if

vi ∈ R
m is the vector of the occurrences of the ith n-gram across the training

data, then the ith base kernel matrix is defined as Ki = viv
⊤
i . Note that

these base kernels are orthogonal, since each Φi is the projection onto a single

distinct component of Φ. The parameters λ and Λ are chosen via 10-fold cross

validation on the training data and the µ0 is set the uniform value Λ√
p
.

We compare the presented L2-regularized algorithm to both a baseline of

the evenly-weighted sum of all the base kernels, as well as to the L1-regularized

method of Cortes et al. (2008b) (Figure 3.1). The results illustrate that for

large-scale kernel-learning, kernel selection with L2 regularization improves

performance, and that L1 regularization can in fact be harmful. Note, that all
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base kernels here represent orthogonal features, thus, a sparse solution that

eliminates a subset of the base kernels may negatively impact performance.

Since Lanckriet et al. (2004a) do not perform learning for a large number of

base kernels, we cannot directly compare results for this task. However, the

best error rate we obtain by classifying the test set by the sign of the L1-

regularized learner is comparable to that reported by Lanckriet et al. (2004a).

For our last experiments we consider the task of sentiment analysis of re-

views within several domains: books, dvds, and kitchen appliances (Blitzer

et al., 2007). Each domain consists of 2,000 product reviews, each with a

rating between 1 and 5. We create 10 random 50/50 splits of the data into a

training and test set. For features we again use the N most frequently occur-

ring bigrams and for basis kernels again use N rank-1 kernels, see Figure 3.1.

The results on these dataset amplify the result from the Reuters ACQ dataset:

L1 regularization can negatively impact the performance for large number of

kernels, while L2-regularization improve the performance significantly over the

baseline over the evenly-weighted sum of kernels.

3.3 Two-Stage Algorithms

This section explores two-stage algorithms for learning kernels, where the first

stage consists of learning a kernel K that is a convex combination of p kernels

and the second stage consists of using K with a standard kernel-based learning

algorithm such as support vector machines (SVMs) (Cortes & Vapnik, 1995)
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for classification, or KRR for regression, to select a prediction hypothesis. We

show that with this two-stage method it is possible to obtain better perfor-

mance than with the one-stage methods on several datasets, as well as the

baseline uniform combination of kernels.

The criteria used for selecting a kernel is based on the natural notion of

kernel alignment introduced by Cristianini et al. (2001), though our definition

differs from the original one. We note that other measures of similarity could

be used in this context. In particular, the notion of similarity suggested by

Balcan and Blum (2006) could be used if it could be computed from finite

samples.

We present a number of novel algorithmic, and empirical results for the

alignment-based two-stage techniques. We give an algorithm for learning a

maximum alignment kernel and prove that the mixture coefficients can be ob-

tained efficiently by solving a simple quadratic program (QP) in the case of

a convex combination, and even give a closed-form solution in the case of an

arbitrary linear combination. We finally report the results of extensive experi-

ments with this alignment-based method both in classification and regression,

and compare our results with L1 and L2 regularized learning kernel algorithms

(Lanckriet et al., 2004a; Cortes et al., 2009a), as well as with the uniform ker-

nel combination method. The results show an improvement both over the

uniform combination and over the one-stage kernel learning algorithms in all

datasets. We also observe a correlation between the alignment achieved and

performance.
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3.3.1 Algorithms

This section discusses two-stage algorithms for learning kernels in the form

of linear combinations of p base kernels Kk, k ∈ [1, p]. In all cases, the final

hypothesis learned belongs to the reproducing kernel Hilbert space associated

to a kernel Kµ =
∑p

k=1 µkKk, where the mixture weights are selected subject to

the condition µ � 0, which guarantees that K is a PSD kernel, and a condition

on the norm of µ, ‖µ‖ = Λ > 0, where Λ is a regularization parameter.

In the first stage, these algorithms determine the mixture weights µ. In

the second stage, they train a kernel-based algorithm, e.g., SVMs for classifi-

cation, or KRR for regression, in combination with the kernel Kµ, to learn a

hypothesis h. Thus, the algorithms differ only by the first stage, where Kµ is

determined, which we briefly describe.

Uniform combination (unif): this is the most straightforward method, which

consists of choosing equal mixture weights, thus the kernel matrix used

is,

Kµ =
Λ

p

p∑

k=1

Kk . (3.4)

Nevertheless, improving upon the performance of this method has been

surprisingly difficult for standard (one-stage) learning kernel algorithms

(Cortes, 2009).

Independent alignment-based method (align): this is a simple but ef-

ficient method which consists of using the training sample to indepen-

dently compute the alignment between each kernel matrix Kk and the
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target kernel matrix KY = yy⊤, based on the labels y, and to choose

each mixture weight µk proportional to that alignment. Thus, the re-

sulting kernel matrix is:

Kµ ∝
p∑

k=1

ρ̂(Kk,KY )Kk . (3.5)

Alignment maximization algorithms (alignf): the independent alignment-

based method ignores the correlation between the base kernel matri-

ces. The alignment maximization method takes these correlations into

account. It determines the mixture weights µk jointly by seeking to

maximize the alignment between the convex combination kernel Kµ =
∑p

k=1 µkKk and the target kernel KY = yy⊤, as suggested by Cristian-

ini et al. (2001); Kandola et al. (2002a) and later studied by Lanckriet

et al. (2004a) who showed that the problem can be solved as a QCQP.

In what follows, we present even more efficient algorithms for computing

the weights µk by showing that the problem can be reduced to a sim-

ple QP. We also examine the case of a non-convex linear combination,

where components of µ can be negative, and show that the problem

then admits a closed-form solution. We start with this linear combina-

tion case and partially use that solution to obtain the solution of the

convex combination.
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Relationship to Ensemble Methods

An alternative two-stage technique consists of first learning a prediction hy-

pothesis hk using each kernel Kk, and then learning the best linear combination

of these hypotheses,

h(x) =

p∑

i=1

µihi(x) . (3.6)

But, such ensemble-based techniques make use of a richer hypothesis space

than the one used by learning kernel algorithms such as (Lanckriet et al.,

2004a). To see this, note that the final hypothesis is of the form,

h(x) =

p∑

i=1

µihi(x) =

p∑

i=1

µi

m∑

j=1

αi
jKi(xj , x) =

m∑

j=1

p∑

i=1

αi
jµiKi(xj , x) ,

for some choice of αi ∈ R
m for all i ∈ {1, . . . , p}. This is not necessarily equal

to a hypothesis of the form

m∑

j=1

αj

p∑

i=1

µiKi(xj , x) =
m∑

j=1

αjKµ(xj , x) , (3.7)

for any choice of α ∈ R
m. Furthermore, the combination weights µi are not

required to be positive in this case. Theoretical and empirical comparisons

between these different classes of hypotheses may be interesting future work.

Independent alignment-based derivation

One way to understand the suggested independent alignment-based algorithm,

is to see it as optimizing the unnormalized, η, alignment with respect to an L2-
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constraint on the combination weights and with base kernels that have been

normalized with respect to the Frobenius norm.

For completeness, we will analyze the following optimization problem for

any q > 1,

max
µ

η̂(

p∑

k=1

µkKk,KY ) = 〈
p∑

k=1

µkKk,KY 〉F (3.8)

subject to:

p∑

i=1

µq
k ≤ Λ .

Note that there is no explicit constraint forcing µ � 0, but the optimal solution

found below will in fact satisfy this as long as ∀k ∈ {1, . . . , p},Kk � 0.

Proposition 3.1. The optimal solution µ∗ to the optimization presented in

Equation (3.8) takes the following form for any q > 1,

µk ∝ 〈Kk,KY 〉
1

q−1

F .

Proof. The Lagrangian corresponding the optimization (3.8) is defined as fol-

lows,

L(µ, β) = −
p∑

k=1

µk〈Kk,KY 〉F + β(

p∑

i=1

µq
k − Λ) ,

where the dual variable β is non-negative. Taking the derivative with respect to
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µk and setting the derivative to zero, reveals the form of the optimal solution,

∂L

∂µk

= −〈Kk,KY 〉F + qβµq−1
k = 0

=⇒ µk ∝ 〈Kk,KY 〉
1

q−1

F .

Thus, for q = 2, we have µk ∝ 〈Kk,KY 〉F which is exactly the solution

suggested in Equation (3.5) modulo normalization by the Frobenius norm of

the base matrix.

Note that for q = 1, the optimization becomes trivial and can be solved

by simply placing all weight on the µk with largest coefficient. That is the µk

that has corresponding Kk with the largest alignment.

Alignment maximization algorithm - linear combination

We can assume without loss of generality that the centered base kernel matrices

Kkc are independent since otherwise we can select an independent subset. This

condition ensures that ‖Kµc‖F > 0 for arbitrary µ and that ρ̂(Kµ,yy⊤) is

well defined (Definition 2.4). By Lemma A.3, 〈Kµc,KY c〉F = 〈Kµc,KY 〉F .

Thus, since ‖KY c‖F does not depend on µ, the alignment maximization can

be written as the following optimization problem:

max
µ∈M

ρ̂(Kµ,yy⊤) = max
µ∈M

〈Kµc,yy⊤〉F
‖Kµc‖F

, (3.9)
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where M = {µ : ‖µ‖2 = 1}. Note, we do not need to explicitly constrain

µ � 0, since this is guaranteed at the optimum, as is shown in Proposi-

tion 3.2. A similar set can be defined via norm-1 instead of norm-2. As

we shall see, however, the problem can be solved in the same way in both

cases. Note that, by Lemma A.3, Kµc = UmKµUm with Um = I − 11⊤/m,

thus, Kµc =
∑p

k=1 µkUmKkUm =
∑p

k=1 µkKkc. Let a denote the vector

(〈K1c,yy⊤〉F , . . . , 〈Kpc,yy⊤〉F )⊤ and M the matrix defined by Mkl = 〈Kkc,Klc〉F ,

for k, l ∈ [1, p]. Note that since the base kernels are assumed independent, the

matrix M is invertible. Also, in view of non-negativity of the Frobenius prod-

uct of symmetric PSD matrices shown in Section 2.5.1, the entries of a and M

are all non-negative. Observe also that M is a symmetric PSD matrix since

for any vector X = (x1, . . . , xm)⊤ ∈ R
m,

X⊤MX =

m∑

k,l=1

xkxl Tr[KkcKlc]

= Tr
[ m∑

k,l=1

xkxlKkcKlc

]

= Tr
[
(

m∑

k=1

xkKkc)(
m∑

l=1

xlKlc)
]

= ‖
m∑

k=1

xkKkc‖2F ≥ 0.

Proposition 3.2. The solution µ⋆ of the optimization problem (3.9) is given

by µ⋆ = M
−1

a

‖M−1a‖ .

Proof. The optimal solution µ⋆ is the solution of the following more explicit
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problem:

µ⋆ = argmax
‖µ‖2=1

∑p
k=1 µk〈Kkc,yy⊤〉F
‖
∑p

k=1 µkKkc‖F

= argmax
‖µ‖2=1

(
∑p

k=1 µk〈Kkc,yy⊤〉F )2

‖∑p
k=1 µkKkc‖2F

= argmax
‖µ‖2=1

(µ⊤a)2

µ⊤Mµ

= argmax
‖µ‖2=1

µ⊤aa⊤µ

µ⊤Mµ
.

We recognize the general Rayleigh quotient. Let ν = M1/2µ and ν⋆ = M1/2µ⋆,

then, the problem can be rewritten as

ν⋆ = argmax
‖M−1/2ν‖2=1

ν⊤[M−1/2aa⊤M−1/2
]
ν

ν⊤ν
.

Therefore, the solution is

ν⋆ = argmax
‖M−1/2ν‖2=1

[
ν⊤(M−1/2a)

]2

‖ν‖22

= argmax
‖M−1/2ν‖2=1

[(
ν

‖ν‖

)⊤
(M−1/2a)

]2

.

Thus, ν⋆ ∈ Vec(M−1/2a) with ‖M−1/2ν⋆‖2 = 1. This yields immediately

µ⋆ = M−1a

‖M−1a‖ .
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Alignment maximization algorithm - convex combination

In view of the proof of Proposition 3.2, the alignment maximization problem

with the set M′ = {‖µ‖2 = 1 ∧ µ ≥ 0} can be written as

µ∗ = argmax
µ∈M′

µ⊤aa⊤µ

µ⊤Mµ
. (3.10)

The following proposition shows that the problem can be reduced to solving

a simple QP.

Proposition 3.3. Let v⋆ be the solution of the following QP:

min
v≥0

v⊤Mv − 2v⊤a. (3.11)

Then, the solution µ∗ of the alignment maximization problem (3.10) is given

by µ⋆ = v⋆/‖v⋆‖.

Proof. Note that the objective function of problem (3.10) is invariant to scal-

ing. The constraint ‖µ‖ = 1 only serves to enforce 0 < ‖µ‖ < +∞. Thus,

using the same change of variable as in the proof of Proposition 3.2, we can

instead solve the following problem from which we can retrieve the solution

via normalization:

ν⋆ = argmax
0<‖M−1/2ν‖2<+∞

M
−1/2ν≥0

[
ν

‖ν‖ · (M
−1/2a)

]2

.
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Equivalently, we can solve the following problem for any finite λ > 0:

max
M

−1/2
u≥0

‖u‖=λ

[
u ·M−1/2a

]2
.

Observe that for M−1/2u ≥ 0 the inner product is non-negative: u ·M−1/2a =

M−1/2u · a ≥ 0, since the entries of a are non-negative. The dot product can

be decomposed as follows:

u ·M−1/2a = −1

2
‖u−M−1/2a‖2 +

1

2
‖u‖2 +

1

2
‖M−1/2a‖2

= −1

2
‖u−M−1/2a‖2 +

λ2

2
+

1

2
‖M−1/2a‖2.

Thus, the problem becomes equivalent to the minimization:

min
M

−1/2
u≥0

‖u‖=λ

∥∥u−M−1/2a
∥∥2

. (3.12)

Now, we can omit the condition on the norm of u since (3.12) holds for arbi-

trary finite λ > 0 and since neither u = 0 or any infinite norm u can be the

solution even without this condition. Thus, we can now consider instead:

min
M−1/2u≥0

∥∥u−M−1/2a
∥∥2

.

The change of variable u = M1/2v leads to: minv≥0

∥∥M1/2v−M−1/2a
∥∥2

. This

is a standard least-square regression problem with non-negativity constraints,
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a simple and widely studied QP for which several families of algorithms have

been designed. Expanding the terms, we obtain the equivalent problem:

min
v≥0

v⊤Mv − 2v⊤a .

Note that this QP problem does not require a matrix inversion of M. Also,

it is not hard to see that this problem is equivalent to solving a hard margin

SVM problem, thus, any SVM solver can also be used to solve it. A similar

problem with the non-centered definition of alignment is treated by Kandola

et al. (2002b), but their optimization solution differs from ours by adding an

additional regularization term on µ and requires cross-validation.

3.3.2 Experimental Results

This section compares the performance of several learning kernel algorithms

for classification and regression. We compare the algorithms unif, align, and

alignf, from Section 3.3.1, as well as the one-stage algorithms of Lanckriet

et al. (2004a) (denoted l1-svm), which solves the SVM problem with an L1

regularized combination of kernels, and the LKRR algorithm (denoted l2-krr)

as described in Section 3.2, which sovles the KRR problem with an L2 regu-

larized combination of kernels.

In all experiments, the error measures reported are for 5-fold cross vali-

dation, where, in each trial, three folds are used for training, one used for

validation, and one for testing. For the two-stage methods, the same training
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kinematics ionosphere german spambase splice

m 351 1000 1000 1000 1000

γ -3, 3 -3, 3 -4, 3 -12, -7 -9, -3

a
.138(.005) .467(.085) 25.9(1.8) 18.7(2.8) 15.2(2.2)
.158(.013) .242(.021) .089(.008) .138(.031) .122(.011)

b
.137(.005) .457(.085) 26.0(2.6) 20.9(2.80) 15.3(2.5)
.155(.012) .248(.022) .082(.003) .099(.024) .105(.006)

c
.125(.004) .445(.086) 25.5(1.5) 18.6(2.6) 15.1(2.4)
.173(.016) .257(.024) .089(.008) .140(.031) .123(.011)

d
.115(.004) .442(.087) 24.2(1.5) 18.0(2.4) 13.9(1.3)
.176(.017) .273(.030) .093(.009) .146(.028) .124(.011)

Regression Classification

Table 3.1: Error measures (top) and alignment values (bottom) for (A) unif,
(B) one-stage l2-krr or l1-svm, (C) align and (D) alignf with kernels built
from linear combinations of Gaussian base kernels. The choice of γ0, γ1 is
listed in row labeled γ, and m is the size of the dataset used. Shown with ±1
standard deviation (in parentheses) measured by 5-fold cross-validation.

and validation data is used for both stages of the learning. The regulariza-

tion parameter Λ is chosen via a grid search based on the performance on

the validation set, while the regularization parameter λ is fixed since only

the ratio λ/Λ matters. The µ0 parameter is set to zero for the general kernel

combinations, and is chosen to be uniform for the rank-1 kernel combinations.

General kernel combinations

In the first set of experiments, we consider combinations of Gaussian kernels of

the form Kγ(xi,xj) = exp(−γ‖xi− xj‖2), with varying bandwidth parameter

γ ∈ {2γ0 , 2γ0+1, . . . , 21−γ1, 2γ1}. The values γ0 and γ1 are chosen such that the

base kernels are sufficiently different in alignment and performance. Each base
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books dvd elec kitchen

unif
1.442± .015 1.438± .033 1.342± .030 1.356± .016
.029± .005 .029± .005 .038± .002 .039± .006

l2-krr
1.414± .020 1.420± .034 1.318± .031 1.332± .016
.031± .004 .031± .005 .042± .003 .044± .007

align
1.401± .035 1.414± .017 1.308± .033 1.312± .012
.046± .006 .047± .005 .065± .004 .076± .008

Regression

books dvd elec kitchen

unif
25.8± 1.7 24.3± 1.5 18.8± 1.4 20.1± 2.0
.030± .004 .030± .005 .040± .002 .039± .007

l1-svm
28.6± 1.6 29.0± 2.2 23.8± 1.9 23.8± 2.2
.029± .012 .038± .011 .051± .004 .060± .006

align
24.3± 2.0 21.4± 2.0 16.6± 1.6 17.2± 2.2
.043± .003 .045± .005 .063± .004 .070± .010

Classification

Table 3.2: The error measures (top) and alignment values (bottom) for kernels
built with rank-1 feature based kernels on four domain sentiment analysis
domains. Shown with ±1 standard deviation as measured by 5-fold cross-
validation.

kernel is centered and normalized to have trace equal to one. We test the algo-

rithms on several datasets taken from the UCI Machine Learning Repository

(Asuncion & Newman, 2007) and Delve datasets (Rasmussen, 1996).

Table 3.1 summarizes our results. For classification, we compare against

the l1-svm method and report the misclassification percentage. For regression,

we compare against the l2-krr method and report RMSE. In general, we see

that performance and alignment are well correlated. In all datasets, we see

improvement over the uniform combination as well as the one-stage kernel

learning algorithms. Note that although the align method often increases
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the alignment of the final kernel, as compared to the uniform combination,

the alignf method gives the best alignment since it directly maximizes this

quantity. Nonetheless, align provides an inexpensive heuristic that increases

the alignment and performance of the final combination kernel.

To the best of our knowledge, these are the first kernel combination exper-

iments for alignment with general base kernels. Previous experiments seem to

have dealt exclusively with rank-1 base kernels built from the eigenvectors of

a single kernel matrix (Cristianini et al., 2001). In the next section, we also

examine rank-1 kernels, although not generated from a spectral decomposition.

Rank-1 kernel combinations

In this set of experiments we use the sentiment analysis dataset from Blitzer

et al. (2007): books, dvd, electronics and kitchen. Each domain has 2,000

examples. In the regression setting, the goal is to predict a rating between

1 and 5, while for classification the goal is to discriminate positive (ratings

≥ 4) from negative reviews (ratings ≤ 2). We use rank-1 kernels based on

the 4,000 most frequent bigrams. The kth base kernel, Kk, corresponds to the

k-th bigram count vk, Kk = vkv
⊤
k . Each base kernel is normalized to have

trace 1 and the labels are centered.

The alignf method returns a sparse weight vector due to the constraint

µ ≥ 0. As is demonstrated by the performance of the l1-svm method, Ta-

ble 3.2, and also previously observed by Cortes et al. (2009a), a sparse weight

vector µ does not generally offer an improvement over the uniform combina-
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tion in the rank-1 setting. Thus, we focus on the performance of align and

compare it to unif and one-stage learning methods. Table 3.2 shows that

align significantly improves both the alignment and the error percentage over

unif and also improves somewhat over the one-stage l2-krr algorithm. Al-

though the sparse weighting provided by l1-svm improves the alignment in

certain cases, it does not improve performance.
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Chapter 4

Conclusion

In this thesis, we have given tight margin-based bounds for several families of

linearly combined kernels. We have shown bounds for convex combinations of

kernels that exhibit only a logarithmic dependence on the number of base ker-

nels. This encourages the use of a very large number of base kernels. Also, we

have shown the first learning kernel type generalization bounds for the regres-

sion setting, using a specialized stability-based analysis unlike in previously

shown bounds, and thereby extending previously studied scenarios.

On the algorithmic side, we designed a modified kernel ridge regression

algorithm, LKRR, which uses a non-sparse combination of base kernels. This

algorithm outperforms the uniform baseline and illustrates that previously

suggested sparse combinations of kernels are not always beneficial. Finally,

using a new alignment measure, we performed a series of experiments with

two-stage algorithms where the kernel is selected separately from the learned

100



hypothesis. The new alignment definition addresses an important problem

that is illustrated with both artificial and real-world data. The two-stage

experiments use general families of base kernels which, to the best of our

knowledge, had not been investigated empirically before. In several settings,

this method has shown improvement over the uniform baseline, as well as

more complicated one-stage methods. We also presented a simpler and novel

concentration bound that directly bounds the difference between the empir-

ical and true measure of alignment. This shows that the alignment can be

effectively estimated from samples. The algorithms presented in this thesis

are made easily accessibly via the open-source OpenKernel library (Allauzen

et al., 2010).

By using the presented algorithms, the burden on the user is lessened. In-

stead of being required to commit to a single kernel, the user is given the flex-

ibility to define a general family of kernels by using a combination of multiple

base kernels. Using a kernel that is automatically selected from such a family

has shown better performance than a naive non-learned uniform combination

kernel. These algorithmic results along with their theoretical foundations, have

made it possible to include the problem of feature space selection within the

data-driven framework of machine learning.

Although this thesis has made progress on several theoretical and algorith-

mic problems, there are also many remaining open problems. More complex

families of non-linear combinations have been proposed (Varma & Babu, 2009;

Cortes et al., 2009b), however, in several cases they will lead to non-convex
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optimization problems. In what ways can we restrict such problems in order

to guarantee that we can efficiently find a reliable solution? What is the com-

plexity of richer classes of kernels, such as polynomial, hierarchical or those

induced by hyper-kernels, and what methods can be used to bound their com-

plexities? In what situations do we expect such families to perform better

than linear combinations?

Empirical results have shown improvements over the uniform combination

of base kernels, but can even better performance be expected? Can multiple

kernel algorithms compete with more complex baselines, such as kernels that

are engineered by humans with the use of domain knowledge, e.g. sequence

kernels used in biology domains (Ben-Hur & Noble, 2005; Allauzen et al.,

2008)? How close are we to choosing the best kernel in hindsight from a given

class of kernels?

In the future, it will also be interesting to make connections to the general

scenario of automatic feature-space selection and more throughly understand

what benefits and shortcomings multiple kernel learning algorithms exhibit in

this broader setting. These are both important theoretical and practical ques-

tions, which will help drive the progress of automatic feature-space selection

methods.
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Appendix A

Supplementary Proofs

A.1 Lemmas for Stability-Based Bound

A.1.1 Expression of ∆µk

Lemma A.1. For any samples S and S ′, ∆µk can be expressed in terms of

∆vk as follows:

∆µk = Λ

[
∆vk

‖v′‖ −
vk

∑p
i=1(vi + v′

i)∆vi

‖v‖‖v′‖(‖v‖+ ‖v′‖)

]
. (A.1)

Proof. By definition of µk, we can write
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∆µk = Λ

[
v′

k

‖v′‖ −
vk

‖v‖

]

= Λ

[
v′

k − vk

‖v′‖ −
vk‖v′‖ − vk‖v‖
‖v‖‖v′‖

]
= Λ

[
v′

k − vk

‖v′‖ −
vk∆(‖v‖)
‖v‖‖v′‖

]
.

Observe that:

∆(‖v‖) =
∆(‖v‖2)
‖v‖+ ‖v′‖ =

∆(
∑p

i=1 v2
i )

‖v‖+ ‖v′‖ =

∑p
i=1 ∆(vi)(vi + v′

i)

‖v‖+ ‖v′‖ .

Plugging in this identity in the previous one yields the statement of the lemma.

A.1.2 Proof of Proposition 2.1

Proof. The terms ∆Kvk appearing in V1 have the following more explicit ex-

pression:

∆Kvk = ∆K(α⊤Kk(S
′)α)

= ∆K(α⊤)Kk(S
′)α′ + α⊤Kk(S

′)∆K(α).

Thus, V1 can be written as a sum V1 = V11 + V12 according to this decompo-

sition. We shall show how V12 is bounded, V11 is bounded in a very similar

way. In view of the expression for V1 (2.27), and using Kk = Φ⊤
k Φk, V12 can
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be written as

V12 = Λ

p∑

k=1

(∆Kα)⊤Z[Φkα]⊤ , (A.2)

with

Z =
Φ⊤

k Φkα

‖v‖ − vk

∑p
i=1

∑
i(vi + v′

i)Φ
⊤
i Φiα

‖v‖‖v′‖(‖v‖+ ‖v′‖) . (A.3)

Using the fact that ‖Φkα‖2 = α⊤Φ⊤
k Φkα = α⊤Kkα = vk and similarly

‖Φiα‖ = v
1/2
i and assuming without loss of generality that ‖v′‖ ≥ ‖v‖, V12

can be bounded as follows,

V12 ≤ Λ

p∑

k=1

‖∆Kα‖
(

vk

‖v‖‖Φk‖+
vk

‖v‖

∑
i(vi + v′

i)v
1/2
k v

1/2
i ‖Φi‖

‖v′‖(‖v‖+ ‖v′‖)

)
. (A.4)

By the Cauchy-Schwarz inequality, the first sum
∑p

k=1
vk

‖v‖‖Φk‖ can be bounded

as follows
p∑

k=1

vk

‖v‖‖Φk‖ ≤
‖v‖
‖v‖

( p∑

k=1

‖Φk‖2
)1/2 ≤ R

√
pm, (A.5)

since ‖Φk‖ ≤ R
√

m. The second sum is similarly simplified and bounded as

follows

p∑

k=1

vk

‖v‖

∑p
i=1(vi + v′

i)v
1/2
k v

1/2
i ‖Φi‖

‖v′‖(‖v‖+ ‖v′‖)

≤
( p∑

k=1

v
3/2
k

‖v‖

)( p∑

i=1

(v
3/2
i + v′

iv
1/2
i )

‖v′‖(‖v‖+ ‖v′‖)

)
max

i
‖Φi‖.

In view of ‖Φi‖ ≤ R
√

m for all i, and using multiple applications of the

Cauchy-Schwarz inequality, e.g.,
∑p

k=1 v
3/2
k =

∑p
k=1 vkv

1/2
k ≤ ‖v‖‖v‖1/2

1 and
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∑p
i=1 v′

iv
1/2
i ≤ ‖v′‖‖v‖1/2

1 , the second sum is also bounded by R
√

pm and

‖V12‖ ≤ 2ΛR
√

pm‖∆Kα‖. Proceeding in the same way for V11 leads to

‖V11‖ ≤ 2ΛR
√

pm‖∆Kα‖ and ‖V1‖ ≤ 4ΛR
√

pm‖∆Kα‖.

A.1.3 Proof of Proposition 2.2

Proof. The main idea of the proof is to bound V2 in terms of ∆Sw, the

difference of the weight vectors h and h′ already bounded in the proof of

Theorem 2.2.

By definition, vk = α⊤Kkα. Since Kk = Φ⊤
k Φk, then vk = ‖wk‖2, where

wk = Φk(S)α. Thus, in view of (2.27), V2 can be written as follows

V2 = Λ

p∑

k=1

(
∆S‖wk‖2
‖v′‖ − vk

∑
i(vi + v′

i)∆S‖wi‖2
‖v‖‖v′‖(‖v‖+ ‖v′‖)

)
w⊤

k .

We can bound |∆S‖wk‖2| in terms of ‖∆Swk‖:

|∆S‖wk‖2| = |(∆Swk)
⊤w′

k + w⊤
k (∆Swk)|

= |(∆Swk)
⊤(w′

k + wk)| ≤ ‖w′
k + wk‖‖∆Swk‖.

Thus, since ‖wk‖ = (α⊤Φ⊤
k Φkα)1/2 ≤ v

1/2
k and ‖w′

k‖ ≤ v′1/2
k , ‖V2‖ can be
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bounded by

‖V2‖ ≤ Λ

( p∑

k=1

v
1/2
k (v

1/2
k + v′1/2

k )

‖v′‖ ‖∆Swk‖

+

p∑

i=1

(vi + v′
i)(v

1/2
i + v′1/2

i )

‖v‖‖v′‖(‖v‖+ ‖v′‖)‖∆Swi‖
p∑

k=1

‖vkw
⊤
k ‖
)

.

The first sum can be bounded as follows

p∑

k=1

v
1/2
k (v

1/2
k + v′1/2

k )‖∆Swk‖
‖v′‖

=

p∑

k=1

vk + (vkv
′
k)

1/2

µk‖v′‖ ‖∆S(µkwk)‖

≤
(( p∑

k=1

(vk + (vkv
′
k)

1/2)2

µ2
k‖v′‖2

)

︸ ︷︷ ︸
F1

( p∑

k=1

‖∆S(µkwk)‖2
))1/2

.

The first factor is bounded by a constant using multiple applications of the

Cauchy-Schwarz inequality and assuming without loss of generality that ‖v‖ ≤

‖v′‖:

F1 =

p∑

k=1

v2
k + (vkv

′
k) + 2v

3/2
k v′1/2

k

µ2
k‖v′‖2 ≤ 4 . (A.6)
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The second sum can be bounded as follows

∑
i(vi + v′

i)(v
1/2
i + v′1/2

i )‖∆Swi‖
‖v‖‖v′‖(‖v‖+ ‖v′‖)

p∑

k=1

‖vkw
⊤
k ‖

≤
p∑

i=1

(vi + v′
i)(v

1/2
i + v′1/2

i )

µi‖v‖‖v′‖(‖v‖+ ‖v′‖)‖∆S(µiwi)‖
p∑

k=1

‖vkw
⊤
k ‖

≤ F2

[ p∑

i=1

‖∆S(µiwi)‖2
]1/2 p∑

k=1

‖vkw
⊤
k ‖,

where

F2 =

[ p∑

i=1

(vi + v′
i)

2(v
1/2
i + v′1/2

i )2

‖v‖2‖v′‖2(‖v‖+ ‖v′‖)2

]1/2

. (A.7)

The numerator of F2, can be bounded using
∑p

i=1 v3
i ≤ ‖v‖3,

∑p
i=1 v

5/2
i v′1/2

i ≤

‖v‖5/2‖v′‖1/2 and applications of the Cauchy-Schwarz inequality such as

p∑

i=1

(vi + v′
i)

2(v
1/2
i + v′1/2

i )2 ≤ (‖v‖+ ‖v′‖)2(‖v‖1/2 + ‖v′‖1/2)2 .

This leads to

F2 ≤
‖v‖1/2 + ‖v′‖1/2

‖v‖‖v′‖

and

‖V2‖ ≤ 2Λ

(
1 +
‖v‖1/2 + ‖v′‖1/2

2‖v‖‖v′‖

p∑

k=1

‖vkwk‖
)

F3, (A.8)

with F3 =
(∑p

k=1 ‖∆Sµkwk‖2
)1/2

. If the feature vectors wk are orthogonal,

that is w⊤
k wk′ = 0 for k 6= k′ (which holds in particular if Φk(xi)

⊤Φk′(xi) = 0
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for k 6= k′ and i ∈ {1, . . . , m}), then F3 = ‖∆Sw‖ and

(

p∑

k=1

‖vkwk‖)2 = ‖
p∑

k=1

v2
kw

⊤
k wk‖2 =

p∑

k=1

v3
k ≤ ‖v‖3 .

Thus, using the bound on ‖∆Sw‖ from the proof of Theorem 2.2 yields

‖V2‖ ≤ 2Λ

(
1 +
‖v‖1/2 + ‖v′‖1/2

2‖v‖‖v′‖ ‖v‖3/2

)
‖∆Sw‖

≤ 4Λ‖∆Sw‖ ≤
4ΛM

λmin + λ0m
.

A.1.4 Proof of Proposition 2.3

Proof. Let V = V1 + V2 where V1 (resp. V2) is the expression corresponding

to ∆K (resp. ∆S), where V and the terms corresponding to ∆K and ∆S are

defined in equations (2.27), (2.28) and (2.29). We will denote by Vk, V1k and

V2k each of the terms depending on k appearing in their sum.

The difference ∆Kα = −(K′ + λI)−1(∆KK)α can be expressed in terms

of the Vks as follows:

∆Kα = −(K′ + λI)−1

p∑

k=1

(VkΦk)
⊤.

Decomposing Vk as in Vk = V1k + V2k, using the expression of V1k from (A.2),

and collecting all ∆Kα terms to the left hand side, leads to the following
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expression relating ∆Kα to the V2ks:

∆Kα = −Y−1
( p∑

k=1

(V2kΦk)
⊤), (A.9)

with Y = K′ + λI + Λ
∑p

k=1
Kk

‖v′‖αα⊤Qk, and Qk =
[
Kk − vk

‖v‖

Pp
i=1

(vi+v′i)Ki

‖v‖+‖v′‖
]
.

αα⊤Qk has rank one since αα⊤ is a projection on the line spanned by α and

its trace Tr[αα⊤Qk] = α⊤Qkα is non-negative:

α⊤Qkα = vk−
vk

‖v‖

∑p
i=1(v

2
i + v′

ivi)

‖v‖+ ‖v′‖

≥ vk−
vk

‖v‖
‖v‖2 + ‖v′‖‖v‖
‖v‖+ ‖v′‖ = vk−vk =0,

using the Cauchy-Schwarz inequality. Thus, the eigenvalues of αα⊤Qk are

non-negative and since it has rank one and Kk is positive-semidefinite, the

eigenvalues of Kkαα⊤Qk are also non-negative. This implies that the smallest

eigenvalue of Y is at least λ and that ‖Y−1‖ ≤ 1/(λmin +λ0m). Finally, using

the inequality ‖∑p
k=1 V2kΦk‖ ≤ ‖V2‖R

√
m completes the proof.

A.2 Lemmas for Rademacher-Based Bounds

In the proof of Theorem 2.5, we need to upper bound the ratio
(

2r′

2t1,...,2tm

)
/
(

r′

t1,...,tm

)
.

The following rough but straightforward inequality is sufficient to derive a

bound on the Rademacher complexity in Theorem 2.5 with somewhat less
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favorable constants:

(
2r′

2t1,...,2tm

)
=

(2r′)!

(2t1)! · · · (2tm)!
≤ (2r′)!

(t1)! · · · (tm)!

=
(2r′) · · · (r′ + 1) · r′!

(t1)! · · · (tm)!

≤ (2r′)r′ · r′!
(t1)! · · · (tm)!

= (2r′)r′
(

r′

t1,...,tm

)
.

To further improve this result, the next lemma uses Stirling’s approximation

valid for all n ≥ 1: n! =
√

2πn
(

n
e

)n

eλn , with 1
12n+1

< λn < 1
12n

.

Lemma A.2. For all r′ > 0 and t1, . . . , tm, it holds that:

(
2r′

2t1,...,2tm

)
≤
(
(1 + 1

22
)r′
)r′( r′

t1,...,tm

)
.

Proof. By Stirling’s formula,

(2r′)!

r′!
=
√

2
(2r′

e

)2r′(r′

e

)−r′

eλ
2r′−λr′ (A.10)

=
√

2 22r′
(r′

e

)r′

eλ
2r′−λr′ =

√
2
(4r′

e

)r′

eλ
2r′−λr′ .

Similarly, for any ti ≥ 1, we can write

ti!

(2ti)!
=

1√
2

( e

4ti

)ti
eλti−λ2ti ≤ 1√

2

(e

4

)ti
eλti−λ2ti .
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Using
∑m

i=1 ti =
∑

ti≥1 ti = r′, we obtain:

∏

ti≥1

ti!

(2ti)!
≤ 1√

2

(e

4

)r′

e
P

ti≥1
(λti−λ2ti

). (A.11)

In view of Eqn A.10 and A.11, the following inequality holds:

(
2r′

2t1,...,2tm

)
(

r′

t1,...,tm

) ≤ (r′)r′eλ
2r′−λr′+

P

ti≥1
(λti

−λ2ti
).

We now derive an upper bound on the terms appearing in the exponent. Using

the inequalities imposed on λti and λ2ti and the fact that the sum of tis is r′

leads to:

∑

ti≥1

λti − λ2ti ≤
∑

ti≥1

1

12ti
− 1

24ti + 1
=
∑

ti≥1

12ti + 1

12ti(24ti + 1)

≤
∑

ti≥1

1 + 1
12

24ti + 1
≤
∑

ti≥1

13
12

25
≤ 13r′

300
,

and λ2r′−λr′ ≤ 1
24r′
− 1

12r′+1
≤ 0. The inequality e13/300 < 1+1/22 then yields

the statement of the lemma.

A.3 Proof of Proposition 2.6

Proposition 2.6 Let K and K′ denote kernel matrices associated to the kernel

functions K and K ′ for a sample of size m drawn according to D. Assume

that for any x ∈ X , K(x, x) ≤ R2 and K ′(x, x) ≤ R2. Then, for any δ > 0,
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with probability at least 1− δ, the following inequality holds:

∣∣∣∣
〈Kc,K

′
c〉F

m2
− E[KcK

′
c]

∣∣∣∣ ≤
18R4

m
+ 24R4

√
log 2

δ

2m
.

The proof relies on a series of lemmas shown below.

Proof. By the triangle inequality and in view of Lemma A.5, the following

holds:

∣∣∣∣
〈Kc,K

′
c〉F

m2
− E[KcK

′
c]

∣∣∣∣ ≤
∣∣∣∣
〈Kc,K

′
c〉F

m2
− E

[〈Kc,K
′
c〉F

m2

]∣∣∣∣+
18R4

m
.

Now, in view of Lemma A.4, the application of McDiarmid’s inequality (Mc-

Diarmid, 1989) to 〈Kc,K′
c〉F

m2 gives for any ǫ > 0:

Pr

[∣∣∣∣
〈Kc,K

′
c〉F

m2
− E

[〈Kc,K
′
c〉F

m2

]∣∣∣∣ > ǫ

]
≤ 2 exp[−2mǫ2/(24R4)2].

Setting δ to be equal to the right-hand side yields the statement of the propo-

sition.

We denote by 1 ∈ R
m×1 the vector with all entries equal to one, and by I

the identity matrix.

Lemma A.3. The following properties hold for centering kernel matrices:

1. For any kernel matrix K ∈ R
m×m, the centered kernel matrix Kc can be

given by

Kc =

[
I− 11⊤

m

]
K

[
I− 11⊤

m

]
. (A.12)
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2. For any two kernel matrices K and K′,

〈Kc,K
′
c〉F = 〈K,K′

c〉F = 〈Kc,K
′〉F . (A.13)

Proof. The first statement can be shown straightforwardly from the definition

of Kc given by (2.39). The second statement follows from

〈Kc,K
′
c〉F = Tr

[[
I − 11⊤

m

]
K

[
I − 11⊤

m

][
I − 11⊤

m

]
K′
[
I − 11⊤

m

]]
,

the fact that [I− 1
m
11⊤]2 = Ic = [I− 1

m
11⊤], and the trace property Tr[AB] =

Tr[BA], valid for all matrices A,B ∈ R
m×m.

For a function f of the sample S, we denote by ∆(f) the difference f(S ′)−

f(S), where S ′ is a sample differing from S by just one point, say the m-th

point is xm in S and x′
m in S ′. The following perturbation bound will be

needed in order to apply McDiarmid’s inequality.

Lemma A.4. Let K and K′ denote kernel matrices associated to the kernel

functions K and K ′ for a sample of size m according to the distribution D.

Assume that for any x ∈ X , K(x, x) ≤ R2 and K ′(x, x) ≤ R2. Then, the

following perturbation inequality holds when changing one point of the sample:

1

m2
|∆(〈Kc,K

′
c〉F )| ≤ 24R4

m
.
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Proof. By Lemma A.3, we can write:

〈Kc,K
′
c〉F = 〈Kc,K

′〉F

= Tr

[[
I− 11⊤

m

]
K

[
I− 11⊤

m

]
K′
]

= Tr

[
KK′ − 11⊤

m
KK′ −K

11⊤

m
K′ +

11⊤

m
K

11⊤

m
K′
]

= 〈K,K′〉F −
1⊤(KK′ + K′K)1

m
+

(1⊤K1)(1⊤K′1)

m2
.

The perturbation of the first term is given by

∆(〈K,K′〉F ) =
m∑

i=1

∆(KimK′
im) + ∆(

∑

i6=m

KmiK
′
mi).

By the Cauchy-Schwarz inequality, for any i, j ∈ [1, m], |Kij| = |K(xi, xj)| ≤
√

K(xi, xi)K(xj , xj)≤R2. Thus,

1

m2
|∆(〈K,K′〉F )| ≤ 2m− 1

m2
(2R4) ≤ 4R4

m
.
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Similarly, for the first part of the second term, we obtain

1

m2

∣∣∣∣∆
(

1⊤KK′1

m

)∣∣∣∣ =

∣∣∣∣∆
( m∑

i,j,k=1

KikK
′
kj

m3

)∣∣∣∣

=

∣∣∣∣∆
(∑m

i,k=1 KikK
′
km +

∑
i,j 6=m KimK′

mj

m3

+

∑
k 6=m,j 6=m KmkK

′
kj

m3

)∣∣∣∣

≤ m2 + m(m− 1) + (m− 1)2

m3
(2R4)

≤ 3m2 − 3m + 1

m3
(2R4) ≤ 6R4

m
.

Similarly, we have:

1

m2

∣∣∣∣∆
(

1⊤K′K1

m

)∣∣∣∣ ≤
6R4

m
. (A.14)

The final term is bounded as follows,

1

m2

∣∣∣∣∆
(

(1⊤K1)(1⊤K′1)

m2

)∣∣∣∣ ≤
∣∣∣∣∆
(∑

i,j,k KijK
′
km +

∑
i,j,k 6=m KijK

′
mk

m4
+

∑
i,j 6=m,k 6=m KimK′

jk +
∑

i6=m,j 6=m,k 6=m KmiK
′
jk

m4

)∣∣∣∣

≤ m3 + m2(m− 1) + m(m− 1)2 + (m− 1)3

m4
(2R4)

≤ 8R4

m
.

Combining these last four inequalities leads directly to the statement of the

lemma.

Because of the diagonal terms of the matrices, 1
m2 〈Kc,K

′
c〉F is not an un-
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biased estimate of E[KcK
′
c]. However, as shown by the following lemma, the

estimation bias decreases at the rate O(1/m).

Lemma A.5. Under the same assumptions as Lemma A.4, the following

bound on the difference of expectations holds:

∣∣∣∣ E
x,x′

[Kc(x, x′)K ′
c(x, x′)]− E

S

[〈Kc,K
′
c〉F

m2

]∣∣∣∣ ≤
18R4

m
.

Proof. To simplify the notation, unless otherwise specified, the expectation is

taken over x, x′ drawn according to the distribution D.

The key observation used in this proof is that

E
S
[KijK

′
ij] = E

S
[K(xi, xj)K

′(xi, xj)] = E[KK ′], (A.15)

for i, j distinct. For expressions such as ES[KikK
′
kj] with i, j, k distinct, we

obtain the following:

E
S
[KikK

′
kj] = E

S
[K(xi, xk)K

′(xk, xj)] = E
x′

[E
x
[K] E

x
[K ′]]. (A.16)

Let us start with the expression of E[KcK
′
c]:

E[KcK
′
c] = E

[(
K − E

x′
[K]− E

x
[K] + E[K]

)

(
K ′ − E

x′
[K ′]− E

x
[K ′] + E[K ′]

)]
. (A.17)

After expanding this expression, applying the expectation to each of the terms,
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and simplifying, we obtain:

E[KcK
′
c] = E[KK ′]− 2 E

x

[
E
x′
[K] E

x′
[K ′]

]
+ E[K] E[K ′].

〈Kc,K
′
c〉F can be expanded and written more explicitly as follows:

〈Kc,K
′
c〉F

= 〈K,K′〉F −
1⊤KK′1

m
− 1⊤K′K1

m
+

1⊤K′11⊤K1

m2

=

m∑

i,j=1

KijK
′
ij −

1

m

m∑

i,j,k=1

(KikK
′
kj + K′

ikKkj)+

1

m2
(

m∑

i,j=1

Kij)(

m∑

i,j=1

K′
ij).

To take the expectation of this expression, we shall use the observations (A.15)

and (A.16) and similar identities. Counting terms of each kind, leads to the
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following expression of the expectation:

E
S

[〈Kc,K
′
c〉F

m2

]
=

[
m(m− 1)

m2
− 2m(m− 1)

m3
+

2m(m− 1)

m4

]
E[KK ′]

+

[−2m(m− 1)(m− 2)

m3
+

2m(m− 1)(m− 2)

m4

]

E
x

[
E
x′
[K] E

x′
[K ′]

]

+

[
m(m− 1)(m− 2)(m− 3)

m4

]
E[K] E[K ′]

+

[
m

m2
− 2m

m3
+

m

m4

]
E
x
[K(x, x)K ′(x, x)]

+

[−m(m − 1)

m3
+

2m(m− 1)

m4

]
E[K(x, x)K ′(x, x′)]

+

[−m(m − 1)

m3
+

2m(m− 1)

m4

]
E[K(x, x′)K ′(x, x)]

+

[
m(m− 1)

m4

]
E
x
[K(x, x)] E

x
[K ′(x, x)]

+

[
m(m− 1)(m− 2)

m4

]
E
x
[K(x, x)] E[K ′]

+

[
m(m− 1)(m− 2)

m4

]
E[K] E

x
[K ′(x, x)].

Taking the difference with the expression of E[KcK
′
c] (Equation A.17), using

the fact that terms of form Ex[K(x, x)K ′(x, x)] and other similar ones are all
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bounded by R4 and collecting the terms gives

∣∣∣∣E[KcK
′
c]− E

S

[〈Kc,K
′
c〉F

m2

]∣∣∣∣ ≤
3m2 − 4m + 2

m3
E[KK ′]

− 2
4m2 − 5m + 2

m3
E
x

[
E
x′

[K] E
x′
[K ′]

]

+
6m2 − 11m + 6

m3
E[K] E[K ′] + γ,

with |γ| ≤ m−1
m2 R4. Using again the fact that the expectations are bounded by

R4 yields

∣∣∣∣E[KcK
′
c]− E

S

[〈Kc,K
′
c〉F

m2

]∣∣∣∣ ≤
[

3

m
+

8

m
+

6

m
+

1

m

]
R4

≤ 18

m
R4,

and concludes the proof.
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