
Informative Features in Vision and
Learning

by

Archisman Rudra

A dissertation submitted in partial ful�llment of the requirements for the degree

of Doctor of Philosophy

Department of Computer Science

Graduate School of Arts and Science

New York University

January 2002

Davi Geiger

(Dissertation Advisor)

c Archisman Rudra

All Rights Reserved 2002

To dadu and dida

iii

Acknowledgments

Many people helped me in completing this thesis. Bas Rokers, then at Rutgers

and now at UCLA, performed the memory experiments. He and Zili Liu helped

us understand the data and form hypotheses. As important as Bas' academic help

was his friendship; and the noontime games of soccer. I am very grateful to him.

I would also like to express my deep gratitude to Davi Geiger and David Jacobs,

for being great advisors and wonderful teachers, as well as for helping me go through

the \third year blues".

I would like to thank Bud Mishra for being supportive while I wrote this thesis,

his careful readings of the draft thesis, as well as detailed technical discussions.

I am also indebted to my fellow students at NYU: Gediminas Adomivicius,

Henning Biermann, Robert Bu�, Raoul-Sam Daruwala, Deepak Goyal, Hiroshi

Ishikawa, Ian Jermyn, Fabian Monrose, Niranjan Nilakantan, Jong Oh, Ken Pao,

Laxmi Parida, Toto Paxia, David Tanzer, Daniela Tulone as well as my current

colleagues: Marco Antoniotti, Will Casey, Vera Cherepenski, Valerio Luccio, Marc

Rejali, Joey Zhou for their friendship and camaraderie.

I would also like to thank my parents for their constant support and encourage-

ment; through undergraduate as well as graduate school.

Most of all I would like to thank my closest friend and wife Mousumi for su�ering

iv

through the writing of the thesis and for keeping up my morale through everything.

v

Abstract

We explore the role of features in solving problems in computer vision and

learning. Features captures important domain-dependent knowledge and are fun-

damental in simplifying problems. Our goal is to consider the universal features

of the problem concerned, and not just particular algorithms used in its solution.

Such an approach reveals only the fundamental diÆculties of any problem. For

most problems we will face a host of other specialized concerns. Therefore, we

consider simpli�ed problems which captures the essence of our approach.

This thesis consists of two parts. First, we explore means of discovering features.

We come up with an information theoretic criterion to identify features which has

deep connections to statistical estimation theory. We consider features to be \nice"

representations of objects. We �nd that, ideally, a feature space representation of

on image is the most concise representation of an image which captures all available

information in it. In practice, however, we are satis�ed with an approximation to

it. Therefore, we explore a few such approximations and explain their connection

to the information-theoretic approach. We look at the algorithms which implement

these approximation and look at their generalizations in the related �eld of stereo

vision.

Using features, whether they come from some feature-discovery algorithm or are

hand crafted, is usually an ad hoc process which depends on the actual problem, and

the exact representation of features. This diversity mostly arises from the multitude

of ways features capture information. In the second part of this thesis, we come up

vi

with an architecture which lets us use features in a very exible way, in the context

of content-addressable memories. We apply this approach to two radically di�erent

domains, face images and English words. We also look at human performance in

reconstructing words from fragments, which give us some information about the

memory subsystem in human beings.

vii

Contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xv

1 Introduction 1

1.1 Introduction . 1

1.2 Related Work . 3

1.3 Overview of the Thesis . 6

1.3.1 Feature Discovery . 6

1.3.2 Uniform and EÆcient Use of Features 7

2 A Quick Tour of Statistics 11

2.1 Parameters and Statistics . 11

2.1.1 Classes of Estimators . 12

viii

2.2 Bayes' Theorem and Bayesian Estimation of Density 15

2.3 Distances Between distributions: Kullback-Leibler Distance and Mu-

tual Information . 16

2.3.1 Signi�cance of the Kullback Leibler Distance 17

2.3.2 Mutual Information . 18

2.4 SuÆcient Statistics . 18

2.4.1 Discussion . 21

2.4.2 Markov Chains and the Data Processing Inequality 23

2.5 Summary . 25

3 Features and SuÆcient Statistics 26

3.1 What are Features . 26

3.1.1 Model Estimation and Generic Features 27

3.1.2 Model Estimation as a Fundamental Task: An Example . . . 28

3.2 Di�erent Kinds of Models . 29

3.2.1 Homogeneous Models . 30

3.2.2 Gluing together Images Generated from Parametric Families 30

3.3 Model Estimation Problem & Its Features 31

3.3.1 The Obvious Approach: MAP 32

3.3.2 A More Detailed Look at MAP Estimation 33

3.3.3 Ergodic Processes . 36

3.3.4 Features for the Model Estimation Problem 37

3.4 Feature Discovery . 40

3.4.1 Minimizing KL-Divergence to Approximate SuÆciency . . . 42

ix

3.5 Drawbacks of the Approach . 43

3.5.1 Guarding Against Over-�tting 44

3.6 Summary . 46

4 Examples of Feature Discovery 47

4.1 One Dimensional Signals . 47

4.2 Prior Probability . 48

4.3 The Generative Process . 49

4.4 Possible Features . 52

4.4.1 s vector . 54

4.5 Feature Discovery Using SuÆciency 56

4.5.1 Reconstructing the Original Image 57

4.6 Calculating Expectations of Quantities Depending on Paths 57

4.7 A Summary of Feature Discovery 60

4.8 A Condition Depending on Local Variances 61

4.9 Results for one dimensional signals (s-values and variances for special

kinds of images) . 69

4.10 Finding Features for the Stereo Correspondence Problem 73

4.11 Geometry of Stereo: Matching on Epipolar Line 75

4.11.1 A Simple Example . 76

4.12 Algorithms for Stereo Correspondence 78

4.13 Feature Selection for Stereo Correspondence 84

4.13.1 Features for Stereo . 85

4.13.2 Feature Selection for Stereo 86

x

4.14 Computations . 88

4.14.1 Neighborhood Structure of l-r Diagrams and Computation of

Path Probabilities . 88

4.14.2 Probability Distribution on the Paths 90

4.15 Formal Calculation of Probabilities 92

4.15.1 Computation of Vertex and Edge Probabilities 97

4.15.2 Edge Probabilities . 98

4.16 Results for stereo: variances . 99

4.17 Discussion and Summary . 106

5 Using Features: Associative Memory Problems 108

5.1 Introduction: The Generic Use of Features 108

5.1.1 Fragment Completion . 109

5.1.2 Without Loss of Generality? 112

5.1.3 Incorporating Ad Hoc Features 113

5.2 An Iterative Framework for Memory 113

5.2.1 Abstract Statement of the Associative Memory Problem . . 116

5.2.2 A Slight Generalization: The Probabilistic Setting 117

5.3 Practical Considerations: Incorporating Domain Speci�c Knowledge 118

5.4 Nearest Neighbor Search in Feature Space 120

5.5 Summary . 124

6 Linear Feature Spaces: Associative Memory of Faces 125

6.1 Prior Work on Face Recognition . 125

xi

6.1.1 Feature-Based Approaches 126

6.1.2 Template Matching Based Approach 126

6.1.3 Linear Approaches to Face Recognition 127

6.1.4 Higher Level Processing . 128

6.2 Linear Features for Image Retrieval 129

6.2.1 Eigenfaces versus Iterative Approach 131

6.2.2 O�ine Computations . 131

6.2.3 Doing Nearest Neighbor Search in Feature Space 132

6.3 Further Algorithmic Improvements 134

6.3.1 Eliminating the Image Space I 134

6.4 A Probabilistic argmin . 138

6.5 Choice of Initial Point for the Iteration 140

6.6 Experimental Results . 142

6.6.1 The Images in Memory . 143

6.6.2 The Input Query . 143

6.6.3 Results . 144

6.7 Discussion . 153

7 Associative Memory forWords: Playing Hangman and Superghost156

7.1 Introduction . 156

7.2 Versions of the Problem: Hangman versus Superghost 157

7.3 Prior Work on Models for Memory (Psycho-physical) 158

7.3.1 Other Memory Models in Psychological Literature 159

7.4 Possibilities for Feature Space . 159

xii

7.5 The Iterative Framework . 162

7.5.1 The Matching Functions . 163

7.5.2 Getting Everything Together 166

7.6 Superghost Queries . 168

7.7 Some Initial Complexity Considerations 169

7.8 From Features to Retrieval . 170

7.8.1 Dynamic Programming Formulation: Viterbi Algorithm . . . 170

7.9 The Iterative Framework: A Local Version 173

7.10 Hidden Markov Models . 175

7.10.1 Three Fundamental Problems Connected with Hidden Markov

Models . 177

7.11 Quick Overview of the Solutions of the Three Fundamental Problems 178

7.11.1 Evaluation Problem . 178

7.11.2 Decoding Problem . 180

7.11.3 Learning Problem . 181

7.12 Using HMM's . 183

7.13 Modi�cations: Adding Observation Noise 184

7.14 Boot-strapping: Can We Eliminate Dictionary Lookups? 185

7.15 The Ground Truth: Human Performance 188

7.15.1 Prior Psychological Studies 189

7.15.2 Factors A�ecting Recall . 191

7.15.3 Experimental Methods and Results 193

7.16 Computational Experiments . 196

xiii

7.16.1 Performance of the Lookup-Free Algorithm 211

7.17 Discussion . 212

8 Conclusion 214

Bibliography 216

xiv

List of Figures

4.1 A Step Edge . 62

4.2 S Vector for the Step Edge . 63

4.3 Variance for the Step Edge . 64

4.4 Step Edge with Noise . 66

4.5 S Vector for the Noisy Step Edge 67

4.6 Filtered Variance for the Noisy Step Edge 68

4.7 A Ramp Signal . 70

4.8 S Vector for the Ramp . 71

4.9 Variance for the Ramp . 72

4.10 Geometry of Epipolar Lines . 74

4.11 Geometry of Stereo . 77

4.12 Two simple images and the l-r diagram showing their match 81

4.13 Neighborhood structure of an l-r diagram 87

4.14 Recursive Computation of �, � and other quantities 95

4.15 Input image: box in front of a cross: (a) left, (b) right. Notice the

displacement of the box . 100

xv

4.16 Intensity values along the epipolar line: left image 100

4.17 Intensity values along the epipolar line: right image 101

4.18 Variance Plots: left image . 102

4.19 Variance Plots: left image . 103

4.20 Plot of occlusion probability: probability that a pixel location on the

left image is invisible from the right 104

4.21 Plot of occlusion probability: probability that a pixel location on the

right image is invisible from the left 105

5.1 The Fragment Completion Task . 114

5.2 Relevant spaces and matching functions between them. 121

6.1 %-age errors against PCA dimension: Noiseless Case 145

6.2 Number of iterations for di�erent dimF : Noiseless Case 146

6.3 %-age errors against PCA dimension: Noisy Case, Gaussian noise,

� = 50 . 147

6.4 Number of iterations for di�erent dimF : Noisy Case, Gaussian noise,
� = 50 . 148

6.5 Sample face used in the experiment: full face with landmarks. . . . 149

6.6 Sample face used in the experiment: registered part face stored in

memory . 150

6.7 Sample face used in the experiment: occluded face 151

6.8 Sample face used in the experiment: occluded face with added Gaus-

sian noise. 152

xvi

7.1 Human Performance: Fragment completion as a function of fragment

length for randomly chosen cues. 197

7.2 Human Performance: Fragment completion as a function of fragment

length for cues of equal frequency. 198

7.3 Human Performance: Fragment completion as a function of fragment

length: the equal frequency cues are divided into �ve groups, from

least redundancy (R0) to most (R4) 199

7.4 Computational performance as a function of cue length, for cues of

frequency between 4 and 22. 200

7.5 Computational performance as a function of cue length, for cues

of frequency between 4 and 22. Here, the cues are divided into

six groups, according to their redundancy. R0 contains the least

redundant cues, R4 contains the most redundant. 202

7.6 Computational performance of the local algorithm: Error Rate per

blank for cues with one blank . 203

7.7 Computational performance of the local algorithm: Error Rate per

blank for cues with two blanks . 204

7.8 Computational performance of the local algorithm: Error Rate per

blank for cues with three blanks . 205

7.9 Computational performance of the local algorithm: Error Rate per

blank for cues with four blanks . 206

7.10 Computational performance of the local algorithm: Fraction of Cor-

rect Solutions for cues with a single blank 207

xvii

7.11 Computational performance of the local algorithm: Fraction of Cor-

rect Solutions for cues with two blanks 208

7.12 Computational performance of the local algorithm: Fraction of Cor-

rect Solutions for cues with three blanks 209

7.13 Computational performance of the local algorithm: Fraction of Cor-

rect Solutions for cues with four blanks 210

xviii

Chapter 1

Introduction

1.1 Introduction

Object representation is a problem that arises in many applications. We frequently

deal with a collection of objects. An exact representation of these objects may be

fairly complex. On the other hand, the way we use them is sometimes approximate

and thus we may not need all the information carried by an exact representation.

Let us consider a concrete example to understand the issues that might arise.

In computer vision and in speech understanding, the raw data is usually an array

or arrays (both one-dimensional and 2-dimensional) of intensities. However, these

numbers are not of primary interest. In the case of vision, our interest is to extract

the scene from the image or set of images. In speech, our goal is to understand the

words. It is useful, for this purpose, to represent the underlying signal in a highly

compressed form: in terms of the so called features.

We have an intuitive understanding of what we mean by a feature. In many

1

cases of practical interest, we can even identify useful features by which we can

represent the signal. For example, if the image is that of a set of polygons, an

important set of features might be the corner points and the edges. We get an

enormous compression by representing images in this way. Furthermore, we get a

representation which is little a�ected by small amounts of noise in the image.

Even if our underlying image is not composed of a set of polygons, the so-called

natural image, edges and corners constitute a good set of features in practice.

Depending on the scale we view the image at, various textures have also been used.

Thus, in our discussion, we will use the word feature very broadly to mean some

quantity computed from the image which

1. lets us get a \good enough" approximation to it.

2. actually compresses the image so that the representation of the image using

features is smaller than the naive representation.

The point of view we take is that features are not speci�c to the image per se,

but rather to the task we use the image in. Thus, if we need the image in any

algorithm, we can get a feature space representation of the image suitable for that

algorithm. This representation depends on what information the image brings into

the algorithm, so that when we cull away the inessential part of the image, we are

left with a compact representation that is adapted to the problem at hand.

In practice, though, features are typically chosen in an ad hoc manner. In the

�rst part of the thesis, we will explore how our point of view leads to a more

systematic approach to feature selection.

2

Our criterion is applicable for a large variety of estimation tasks, particularly

function estimation. However, we �nd that formulating a similar criterion for fea-

ture discovery can be diÆcult for some tasks. Thus, while we can �nd features for

function estimation in a fairly direct way, a similar approach fails for epipolar line

stereo. For stereo, we are left to fall back upon a quick and approximate criterion

which also works for the function estimation problem.

1.2 Related Work

There has been a lot of work on �nding features for speci�c problem domains. Max-

imum entropy approaches had been used earlier in the context of natural language

processing by Berger, della Pietra and della Pietra ([22]) and subsequently been

used extensively in that community. Texture modeling has also been a particularly

rich area. Zhu et al ([125], [126]) have shown how to build a Markov Random

Field(MRF) model for textures. Our work is closest to this in spirit in that both

are based on looking at the behavior of entropy of di�erent distributions on the

objects under question.

To explain this approach, we assume that we are given a bank ofK linear or non-

linear �lters f��g�2f1;::: ;Kg. Zhu et al assumes that the �lter bank is such that all

processing and understanding of images depends only on the response of the �lters

in the bank. Thus, if two images have the same response under this set of �lters,

they will be indistinguishable. Suppose also that f(I) is the unknown probability

distribution of the images I. The goal is to pick a \good" probability distribution

on the set of images such that the expected values of the �lter responses under

3

this estimated probability distribution is the same as the expected values under the

actual probability distribution f . Thus, we consider approximating f from the set

of probability distributions over the set of images I:

 = fp j Ep(�
�(I)) = Ef(�

�(I)) 8� 2 f1; 2; : : : ; Kgg

Among this set
, we consider those probability distributions p which locally

maximize the entropy. These are of the form

p(I) =
1

Z
exp

"X
�

����(I)

#
;

where the Lagrange multipliers � = f��g are chosen so that the ��-s have the

correct expected response.

Zhu et al advocate a \minimax" entropy approach for estimating densities.

For every subset of features

f�� j � 2 Sg; S � f1; 2; : : : ; Kg;

let us de�ne the set of probability distributions that match the corresponding

subset of expectations values:

S = fp j Ep(�
�(I)) = Ef(�

�(I)) 8� 2 Sg; S � f1; 2; : : : ; Kg

and choose the corresponding maximum entropy distribution:

pS(I) = argmax
p2
S

H(p)

=
1

Z
exp

"X
�2S

����(I)

#
;

4

where as before the ��-s are chosen so that the expectations of the �-s match those

obtained from the distribution f .

The minimax approach of Zhu et al chooses the feature set which minimizes this

maximum entropy. Of course, a minimum over all subsets occurs when the chosen

subset is empty. Thus, to correct against this de�ciency; as well as to achieve

capacity control, this work restricts the minimization to subsets of a speci�c size k.

Thus, feature selection is achieved by means of the equation:

S�k = argmin
jSj=k

max
p2
S

H(p)

The maximum entropy principle used in these papers lead to the use of exponen-

tial distributions for the estimated density. For the connection between exponential

distributions and the maximum entropy principle, see e.g. the book by Cover and

Thomas[31].

While conceptually clean, this approach su�ered from a slow speed of learning.

This de�ciency follows from the Gibb's sampling algorithm used in this approach

for learning the expectations of the �lter responses which drive this algorithm.

Furthermore, the problem is formulated in a way that precludes the use of any

knowledge we might have of the process generating the image. Thus, for many

practical cases, we might view the generative process as being composed of items

generated from some prior and then being corrupted by noise. As we will see later,

knowing something about the noise process lets us design very eÆcient algorithms

for feature selection.

As far as texture synthesis is concerned there has been more recent work to

5

synthesize more natural looking texture faster.(DeBonet [34], Efros [39], Levoy

[120])

Sampling techniques to approximate distributions has a long history after Ge-

man and Geman[48] used it in the context of image restoration. Their paper ([48])

also introduced the idea of using a Gibb's distribution to solve problems of opti-

mization. Earlier Kirkpatrick [73] had introduced ideas from statistical physics to

approximately solve combinatorial optimization problems.

Our techniques are also similar to �nding best representation from an overcom-

plete set of basis functions. Indeed this problem is a slight generalization of the

examples we treat here.

1.3 Overview of the Thesis

The thesis can roughly divided into two parts. In the �rst part we look at feature-

discovery from an information theoretic viewpoint. Then, we change tack and look

at how the use of features can actually help in solving problems.

1.3.1 Feature Discovery

We �rst review the relevant concepts from statistical estimation theory in chapter 2.

A reader familiar with basic statistics can skip this material. There are plenty of

textbooks which explain it in greater detail as well. For further references, one is

encouraged to consult one such (e.g. Wilk's \Mathematical Statistics" [121]). An-

other source which explains the role of information theory in statistical estimation

is the book by Kullback ([77]).

6

We view images as being generated from some random process. We use Shan-

non's information theory [108] to quantify the e�ectiveness of any function as a fea-

ture. We then link this to ideas from statistical estimation theory. This naturally

leads to an information-theoretic criterion for feature selection. This is enunciated

and explained in chapter 3.

Our criterion explains features in a way that is mathematically intuitive, and

which matches our natural ideas of what constitutes a feature. In chapter 4 we apply

our ideas to the problem of discovering features for the task of one-dimensional

signal estimation, as well as for stereo. However, in spite of its mathematical

elegance, discovering features in this way is algorithmically ineÆcient. Therefore

we present an alternate criterion which approximates our original approach but

leads to a quick discovery of features.

Later in the chapter we describe the stereo problem and discuss what it means

to have features for this problem. We will �nd that by the very topology of the

problem, it is diÆcult to have a very clean formulation of our information-theoretic

criterion in this domain. However, we �nd that it is quite straightforward to apply

the approximate criterion in this case as well.

1.3.2 Uniform and EÆcient Use of Features

In all of this, our focus had been information-theoretic. We thus assume that we

are able to eÆciently extract all the information which a feature carries. Note that

this is not the same as saying that we can do feature-discovery eÆciently. The

information-theoretic point of view assumes that the feature space representation

7

of an image carries all the information present in the image which is relevant for

the task at hand. However, the algorithm needed to extract this information from

the feature space representation can be arbitrarily complex.

In the second half of the thesis we examine how we can use the information

contained in features in a systematic way. We do not really propose any measure of

complexity for the extraction process. Rather, we look at the very speci�c problem

of associative access from a memory of items. In spite of its seeming speci�city, this

problem lets us capture the essential core of the problem of eÆcient use of features:

how to use the information latent in a feature space representation.

When we actually use any particular class of features, we are faced with the

problem that features can potentially capture any kind of information. The chal-

lenge is to be able to utilize this information in a uniform way. Thus, we are not

really concerned whether the actual features we use came from running some kind

of feature-discovery algorithm, as in the �rst part of the thesis, or were basically

hand-crafted for the particular problem at hand. All we really need is that the

feature space provides a good match between the statistical properties of the items

in memory as well as the properties of the cues that are likely to be presented to

the memory system.

We describe such a high-level architecture in chapter 5. This is an iterative

algorithm which lets us use the information from a vast class of feature space

constructions in an essentially uniform way. The dependence on problem domain

is captured through the choice of the feature space, while the way this space is

used is kept invariant. When we implement such an architecture, we will need to

8

apply various optimizations to the recall process which might depend on the speci�c

spaces involved.

Such an implementation is described in chapter 6 where we describe a memory

system for storing registered images. We choose a linear feature space, so that

the set of features span a low-dimensional linear subspace of the set of all possible

images. Such subspaces are constructed in practice by means of the eigenvalue

decomposition of some correlation matrix, and the technique goes by the name of

Principle Component Analysis or Karhunen-Loeve Analysis. This choice of feature

space leads to interesting implementation of the preceding ideas. By means of suc-

cessive improvements in our basic iterative algorithm, we are led to the development

of an iterative algorithm inside the feature space, thus leading to enormous savings

in eÆciency. We test the algorithm on a database of registered face images.

A radically di�erent class of algorithms is obtained when we choose a discrete

domain. A good example is the memory for storing English words. In this example,

much of the information is stored in the statistical properties of the words and their

substrings: syllables, trigrams etc. we describe such a memory system in chapter 7.

We de�ne several optimized versions of the general algorithm and compare their

performances. We �nd that a simpler version of these algorithms is very similar to

the Baum-Welch learning algorithm from the theory of Hidden Markov Models.

We also study human performance in this domain. While some parts of hu-

man memory performance can be explained by the details of actual structures of

human memory; many of the characteristics can be inferred from statistical and

information-theoretic structures of naturally occurring words. Our goal in this

9

chapter is to �nd out some of those information-theoretic bounds of human mem-

ory performance.

10

Chapter 2

A Quick Tour of Statistics

In the �rst part of our thesis, we look at the information-theoretic underpin-

nings of the feature-discovery process. The connection of feature-discovery with

information-theory lies through the area of statistical parameter estimation. In

this chapter, we recapitulate some of the concepts from this �eld.

2.1 Parameters and Statistics

Our approach is based on the statistical estimation of parameters. The general

problem is as follows: let fx1; x2; : : : ; xng be a set of n independent samples from

some probability distribution P (x; �). The distribution depends on some unknown

parameter � (which might be a vector parameter, i.e. there are several scalar

parameters). Our task is to estimate the actual value of � .

This is one of the central problems of statistics. In this section we will introduce

some notions from statistical estimation theory. This material can be found in any

11

introductory textbook. We mainly concentrate on introducing the terms and ideas

that will be of use subsequently; and give simple examples to illustrate the concepts.

To make the ideas clear, let us start with a simple example. Suppose we are

dealing with the one dimensional normal distribution with known variance � but

unknown mean �. Thus the probability density function (pdf) is of the form

P (x;�) =
1p
2��

exp(�(x� �)2

2�2
) (2.1)

Each of xi; i = 1; 2; : : : ; xn are random variables which follow this pdf. Our goal

is to estimate the mean �. We have the natural estimator

�x =
1

n

nX
i=1

xi

At this point we will not discuss the e�ectiveness of estimators; our purpose

is just to give the de�nitions. Thus, we notice that �x is actually a function of

the n sample values xi and so is a random variable in its own right. Any such

function of the sample values is called a statistic. Thus �x is a statistic. The value

we are trying to estimate, �, actually serves to specify the probability distribution.

Such a quantity is called a parameter. To emphasize, statistics are estimators for

parameters.

2.1.1 Classes of Estimators

We will need a ready vocabulary to identify various classes of estimators. For

simplicity, we will introduce these classes here.

Let x1; x2; : : : ; xn be the n sample points.

12

De�nition 2.1.1 (Unbiased Estimator) An estimator t(x1; x2; : : : ; xn) for a pa-

rameter � is called unbiased if the expectation of t equals � . In symbols

E(t) = �

where the expectation is taken over the joint distribution of the n sample points

xi. If P (x; �) is the dependence of the probability distribution on � , then the above

criterion can be written as an integral:

Z Z
� � �
Z

dxn dxn�1 � � �dx1 t(x1; : : : ; xn)P (x1; x2; : : : ; xn; �) = �

Using the linearity of expectation, we can easily verify that �x is an unbiased

estimator of the mean �. To get an example of a biased estimator, we turn to the

\obvious" estimator for variance:

s =
1

n

nX
i=1

(xi � �x)2

If the samples are independent, we can show that this is a biased estimator.

The corresponding unbiased estimator is given by

sunbiased =
1

n� 1

nX
i=1

(xi � �x)2

Note that as n ! 1, s=sunbiased ! 1. Thus we say that s is an asymptotically

unbiased estimator of variance. Here is the formal de�nition:

De�nition 2.1.2 (Asymptotic Unbiasedness) Let t(x1; x2; : : : ; xn) be an esti-

mator for � for all natural numbers n. t is said to be asymptotically unbiased if,

for all values of � , E(t)! � as n!1.

13

Best Unbiased Estimators: Cramer-Rao Inequality

Unbiasedness of a statistic guarantees that on the average the estimate obtained

from a sample gives the right answer. However, we usually need something stronger

than that. We want the variability in the estimator to be small as well. As is

customary, we use the variance of the statistic to measure its variability.

Thus, let t be an unbiased estimator for � and let us look at the variance,

E[(t��)2]. Clearly, the smaller the variance, the better is the estimator t. However,
for the given parameter � there is an absolute lower bound for the variance of any

unbiased estimator t. This is the celebrated Cramer-Rao Inequality stated below.

Theorem 2.1.1 (Cramer-Rao Inequality) Let t be an unbiased estimator of � .

Then

Var(t) � 1

J(�)
;

where

J(�) = E[(
@f(x; �)

@�
)2] = E[�(@

2f(x; �)

@� 2
)] ;

and f is the pdf.

The proof basically looks at the random variable v = @ ln f(x;�)
@�

whose expectation

is zero; and applies the Cauchy-Schwartz inequality to the pair of random variables

v and t. The equality in the second line is an easy algebraic manipulation.

De�nition 2.1.3 (EÆcient Estimator) EÆciency e of an estimator t is a mea-

sure of how close it approaches the ideal Cramer-Rao bound. Quantitatively,

e =
1

Var[t]J(�)

14

An estimator is said to be eÆcient if its eÆciency is 1. An estimator is asymp-

totically eÆcient if e! 1 as n !1. Here n is the number of sample points.

2.2 Bayes' Theorem and Bayesian Estimation of Density

Parametric statistics works by assuming a certain parametric form for the distri-

bution function (or for the pdf) and estimating the values of the parameters from

statistics computed from sample values. If we have certain ideas about the prob-

ability distribution of the values of the parameters themselves, we can use Bayes'

theorem to obtain what is known as a Bayesian estimator.

Bayes' theorem lets one calculate one conditional probability, knowing another.

It states that

Pr(A = ajB = b) =
Pr(B = b jA = a) Pr(A = a)

Pr(B = b)
(2.2)

=
Pr(B = b jA = a) Pr(A = a)P
a2APr(B = b jA = a) Pr(A = a)

(2.3)

A Bayesian estimator of a parameter � can be obtained when we have a knowl-

edge of the prior distribution of � . We think of the parametric distribution as a

conditional Pr(xj�). We then use Bayes' theorem to calculate Pr(� jx) and use the

computed distribution to somehow estimate the parameter � . A Bayesian estimator

provides an estimate which is good \on average".

15

2.3 Distances Between distributions: Kullback-Leibler Dis-

tance and Mutual Information

Bayes' theorem (equation 2.2 or 2.3) lets one estimate one distribution from sample

data. When we are estimating parameters, we can use some simple distance function

like the absolute value to measure the quality of the estimation. However, when

we are trying to estimate whole probability distributions we need some distance

measures between them.

One such measure is the L2 norm : jP1 � P2j22 =
R
(P1(x)� P2(x))

2 dx.

We will use this measure when convenient. More frequently, however, we will

use an information theoretic distance measure: the Kullback Leibler Distance, also

called the Relative Entropy, de�ned below:

D(P1 jj P2) =

Z
P1(x) log

P1(x)

P2(x)
dx (2.4)

The distance is actually de�ned if P2 is non-zero in the support of P1, except

for some set of measure 0. When the distributions in question are discrete, the

integrals are, of course, replaced by summations. Note, that D is not symmetric in

P1 and P2.

The connections to information theory are many. Let us give just one here. Let

us be working in a �nite domain, so the integrals are all �nite sums. Let P2 be the

uniform distribution, U : U(i) = 1=N , where N is the size of the domain. Then, for

any other distribution P ,

D(P jj U) = logN � H(P)

16

where H is the Shannon entropy.

From the properties of the Kullback-Leibler distance, we know that it is non-

negative. Thus, the maximum value of the entropy of a distribution on N items is

logN .

2.3.1 Signi�cance of the Kullback Leibler Distance

Here we will give a quick sketch of why Kullback-Leibler distance is a signi�cant

measure of distance between probability distributions.

Shannon [108] �rst made the connection between the entropy of a distribution

P and the best possible compression achievable for a source S drawn from P .

Essentially, H(P) is the minimum value of the average number of bits that we need

to encode symbols from S. The Hu�man code [58] treats the case when the symbols

are drawn independently from some alphabet satisfying a probability distribution

P . It generates a coding scheme which asymptotically approaches the Shannon

bound.

However, we need to know the form of the distribution P . If we erroneously

assume that the distribution of the symbols is Q, whereas the true distribution is

P , then the best possible code we can design cannot achieve an average code length

of H(P). Instead, we achieve a bound of H(P) + D(P jj Q).
Thus, we will think of the K-L distance as the error made when we falsely assume

a probability distribution other than the real distribution. This is reected in other

ways as well. For example, suppose we try to estimate the underlying distribution

by drawing independent samples from it. Let the possible empirical distributions

17

be denoted by Pi. Then log probability of Pi is close to the K-L distance between

Pi and Q.

2.3.2 Mutual Information

We get a special case of the preceding discussion when we consider the K-L distance

between the joint probability distribution Pr(X; Y) of two random variables X

and Y and the joint distribution obtained under the assumption of independence

of X and Y : Pr(X)Pr(Y). This particular value is called the mutual information

between X and Y and is denoted by M(X; Y):

M(X; Y) = D(Pr(X; Y) jj Pr(X)Pr(Y)) (2.5)

=

Z
X;Y

Pr(X; Y) log
Pr(X; Y)

Pr(X)Pr(Y)
(2.6)

Indeed M(X; Y) measures the degree of independence between X and Y . It

vanishes when they are independent and is otherwise positive.

2.4 SuÆcient Statistics

We now introduce the idea of a suÆcient statistic. Let us look at the formula for

�x as an estimator of the mean �:

�x =
1

N

NX
i=1

xi

Thus the estimator t of a parameter � is some function t(x1; x2; : : : ; xn) of the

sample points x1; x2; : : : ; xn. Clearly, one desirable property of the function t is

that it should not depend on the order of the variables xi. (This is true for most

18

sampling schemes.) Furthermore, we need to give a separate function whenever n,

the number of sample points, changes.

These considerations hold good even in the more general case of estimating

the probability distribution of X from the sample points xi. In this case the

estimator, �, of the probability distribution, Pr(x), can be written in the form

�(x; x1; x2; : : : ; xn). The comments made above for t hold good for � as well.

It is therefore desirable to be able to express the estimated probability distribu-

tion in terms of a �nite number k, not depending upon the sample size n, of sample

characteristics:

ti = fi(x1; x2; : : : ; xn); i = 1; 2; : : : ; k

such that dependence of the estimated distribution on the sample points factor

through the ti.

The notion we want to capture is that all the statistical information about �

that is contained in the sample x1; x2; : : : ; xn can be described by giving the k

numbers

t1 = f1(x1; x2; : : : ; xn)

t2 = f2(x1; x2; : : : ; xn)

...

tk = fk(x1; x2; : : : ; xn):

This can be ensured by demanding that the conditional distribution

Pr(x1; x2; : : : ; xn j t1; t2; : : : tk) be independent of the parameter � . Writing the

19

conditional probability as a ratio of joint probabilities, our condition is

Pr(x; t(x))

Pr(t(x))
is independent of � , (2.7)

where we have written x for the complete set of samples x1; x2; : : : xn and likewise

for the t's.

We now note that since the t's are functions of the x's, their values are uniquely

known when the values of x's are known as well. Thus, Pr(x; t(x)) = Pr(x). We

write P for the quantity in 2.7. Making the dependence on � explicit, and expanding

out the subscripts in the x's and t's, we get the classical de�nition of a SuÆcient

Statistic:

De�nition 2.4.1 (SuÆcient Statistic) The set of functions (statistics)

ti = fi(x1; x2; : : : ; xn) are said to be suÆcient for the class of densities Pr(x; �),

indexed by the parameter � , if, for all � , the joint density Pr(x1; x2; : : : ; xn; �) of

the sample can be represented in the form

Pr(x1; x2; : : : ; xn; �) = Pr(t1; t2; : : : ; tk; �)P (x1; x2; : : : ; xn) (2.8)

In other words, the joint density Pr(x1; x2; : : : ; xn; �) is decomposed into a

product of two terms. One term does not depend on the parameter(s) � of the

distribution and is the conditional distribution of the sample given the values of

the statistics. The other is simply the distribution of t1; t2; : : : ; tk, and depends on

� , but (naturally) not on the sample values x1; x2; : : : ; xn.

20

2.4.1 Discussion

The parameter(s) � serves to pick the correct probability distribution on the random

variable X. Thus, we can think of � to be parameterizing a family of probability

distributions for X, which we will denote by Pr� . In this notation equation 2.8

states that Pr� (x)=Pr� (t(x)) � Pr� (x j t(x)) is independent of � . Using Jensen's

inequality, we can show that

Theorem 2.4.1 If �1 and �2 are two possible values of the parameter specifying the

probability distribution of X, and t is any function, then

D(Pr�1(x) jj Pr�2(x)) � D(Pr�1(t(x)) jj Pr�2(t(x))) (2.9)

with equality when Pr� (x)=Pr� (t(x)) is independent of � . (See, for example Kull-

back [77].)

We can think of the quantity D(Pr�1 jj Pr�2) as a measure of distinguishability
of �2 from �1. To help us explain this notion further, let us assume that the true

value of the parameter � is �1. Then, the above KL-divergence is the di�erence

in average log-likelihood values computed according to the distributions Pr�1 and

Pr�2 respectively. It thus is a measure of our ability of distinguishing the incorrect

value �2 from the correct value �1 if we estimate parameters using the maximum

likelihood method.

Thus, for most statistics we lose some ability to distinguish di�erent parameter

values when we use the values of some statistic, instead of the original sample

values. Only if we use a suÆcient statistic do we not lose any distinguishing power.

21

This is the sense in which suÆcient statistics capture the entirety of the dependence

of the parameter value of a probability distribution on the sample points.

Algorithmic View of the Information Content

We can also explore a suÆcient statistic's information capturing power in a more

algorithmic way. To understand this, we think of the hypothetical experimenter

C who knows the values of the sample points x1; x2; : : : ; xn versus another experi-

menter T who is shown only the values of the suÆcient statistic t. We show that we

can simulate the computations of S using the operations of T , so that the probabil-
ity distribution of the �nal result is the same, no matter what the actual parameter

values for � are. This shows that a suÆcient statistic does not lose any information.

We will not give a formal proof, but will con�ne ourselves to an illustrative

example. Thus, suppose S computes the numerical function f . Then, if T produces

values from the conditional distribution Pr� (f(x)jt(x)), the probability values stay
the same. For more complicated cases, where the operations of S are described by

some algorithm expressed in some programming language, we replace all function

evaluations with sampling from the above probability distribution. This gives a

probabilistic simulation of the computations of S using computations (and input

data) of T .
If we insist that the estimator for T be deterministic, the above simulation would

not work. However, if we con�ne ourselves to the class of unbiased estimators, we

can still simulate the computation of S using operations from T . Thus we can

start with an unbiased estimator, r for S and get an estimator for T by using r0 =

22

E[r(x)jt(x)]. Using the Radon-Nikodym theorem, it can be shown that Var(r0) �
Var(r). See, for example, the paper by Halmos and Savage ([53]). Thus, suÆcient

statistics are eÆcient for the class of unbiased estimators.

2.4.2 Markov Chains and the Data Processing Inequality

There is another information-theoretic way of viewing suÆcient statistics. This is

using the idea of Markov Chains

De�nition 2.4.2 Let X, Y and Z be three random variables with the property that

Pr(z jy; x) = Pr(zjy)

i.e. Z is conditionally independent of X, given Y . Or, in other words, all the

dependence of Z on X is what comes through Y . Then these 3 random variables is

said to form a Markov Chain; and is denoted as X �! Y �! Z. In general,

if we have a sequence of variables, X1; X2; : : : ; Xi; : : : , such that the distribution of

Xi given all the previous ones is the same as its distribution given only Xi�1; then

that sequence is called a Markov Chain.

The name honors the Russian mathematician Markov who studied the letters

of the alphabet arising in any natural text as a Markov Chain with conditional

probabilities controlling the transition from one letter to another.

Theorem 2.4.2 (Data Processing Inequality) If X, Y and Z form a Markov

Chain then M(X;Y) �M(X;Z)

23

Note that if Z is a function f(Y) of Y , then the corresponding sequence is

always a Markov Chain.

Let � be the relevant population parameter, or parameters; X be the random

variable denoting the sample (the whole sample, as a very big random variable);

and t(X) be the vector of statistics calculated from X. Then, the sequence � , X,

t(X) forms a Markov Chain in the sense that the value of t(X) depends only on

the value of X and not on the actual parameter value � . We would like to apply

the Data Processing Inequality to this \chain". In the Bayesian framework this is

acceptable, as we have a prior distribution on � and the possible Pr� -s are viewed

as conditional distributions of X given � . Otherwise, our de�nitions as well as

deductions will hold for any prior distribution on � . In other words, we will not

change the priors.

The equality case of the Data Processing Inequality:

M(� ;X) = M(� ; t(X))

occurs when t is a suÆcient statistic.

Note, that the Data Processing Inequality is an \average" result. t is speci�ed in

advance, and does not depend on the X we actually see. The result is averaged over

the possible sample and parameter values. In fact, the data processing inequality

tells us that no matter what statistic we use, we cannot get more information about

� than the quantity M(� ;X), which depends on both the process of sampling, as

well as the distribution of � .

24

2.5 Summary

In this chapter we introduced the basic concepts from statistical estimation theory.

In particular, we introduced the notion of a parameter and a statistic to estimate

that parameter. We also de�ned an unbiased estimator; and, using the Cramer-Rao

inequality, de�ned the eÆciency of an estimator.

We also de�ned some of the information-theoretic quantities:

� Entropy

� Kullback-Leibler distance

� Mutual Information

We also explained the connection between the KL distance between two distri-

butions and the error made in confusing one for the other in the setting of maximum

likelihood estimation.

We then introduced the central statistical notion that we will need, that of a

suÆcient statistic. A suÆcient statistic for a class C of distributions carries exactly
the information needed to distinguish a single distribution P 2 C from the other

distributions in C.
None of this is new but this introduction serves as a jumping o� point to the

next chapter where we will explore the connection between features and suÆcient

statistics. This connection is one of the original contributions of this thesis.

25

Chapter 3

Features and SuÆcient Statistics

At this point we are ready to describe the connection between informative features

and suÆcient statistics. To understand this connection better, we �rst discuss in

a very general setting what features are, and what role they play in any image

processing application.

3.1 What are Features

In any vision task, we have one or more images as inputs. In the subsequent

discussion, let us assume, for simplicity, that we have a single image I. The way

this image is used can be summarized by some algorithm A which takes in the

image I as input and produces some output or possibly a�ects the world in some

way.

The essential idea is the following: if we can capture the information present in

the image I that is relevant to the algorithm A then this information represents

26

the complete way the image I can a�ect the running of A and thus is a concise but

complete representation of the image I. Here we take the philosophical position

that if two (possibly completely di�erent) representations a�ect the algorithm A in

the same way, they represent the same object, at least as far as A is concerned. In

our example, we are thinking of A as the algorithm which represents how I is used.

The main idea is that the input image (or images) in a computer vision problem

contains a lot of extraneous (junk) information. The task of most algorithms is to

get rid of the irrelevant information and represent the input, either explicitly or

implicitly, as the collection of only the relevant information. This is the feature-

space representation.

Clearly, which part of the information in I is relevant to our task depends on the

exact details of the algorithm A. Analyzing this dependence is very complicated

and we will not attempt it in this thesis. Rather, we concentrate on features that

are more generic.

3.1.1 Model Estimation and Generic Features

To make progress we assume that the image I is generated from some model by

letting it interact with some noise. We thus assume that the noise does not carry

any useful information, though we do not assume that it is additive.

Thus, let M be the set of possible models. We could assume there is a prior

distribution de�ned on theM, which would then determine the likelihood of each

model. This would place us in a Bayesian setting. However, our subsequent discus-

sion is independent of this decision. What we really assume is that for each model

27

m 2 M, there is a probability distribution for the possible values of the image I. In

the Bayesian case, this distribution is the conditional distribution Pr(Ijm). This

collection of probability distributions essentially determines the properties of the

noise that combined with the model to generate I.

In this setting, let us look at any image processing algorithm A that uses the

image I as input. No matter how we use I, it is clear that the quantity that really

matters is the model m that generated I. This is almost true by de�nition : the

model carries all the information about the world needed to generate I, the noise

carries no useful information. Thus, we can factorize the action of A into two parts:

1. First, from I, estimate the model m 2 M.

2. Then, knowing m, simulate the actions of A, by simply generating the image

I according to the appropriate probability distribution and then running A

on it.

Thus, if we have features which capture all the information about m that is

present in I; these will lead to improvement in performance for all other algorithms

as well. In this sense, we can say that the features for model estimation are generic.

3.1.2 Model Estimation as a Fundamental Task: An Example

We now look at a concrete example where we can apply the preceding framework

of parametric estimation. We show that many fundamental problems in computer

vision can be reformulated as problems of estimating the parameters of a parametric

family of probability distribution.

28

Eigenfaces

Perhaps the best illustration of this point of view is the eigenface representation

of face images. Turk and Pentland [115] applied Principal Component Analysis

(PCA) to a set of face images, suitably registered, and showed that keeping the

face images corresponding to a few eigenvalues leads to good learning performance.

Earlier Kirby and Sirovich ([72]) used the eigenvalue decomposition approach in a

similar domain and named the obtained eigenvectors eigenfaces.

Typically a few tens of eigenfaces can be used. What this showed was that the

space of suitably registered and scaled face images approximately followed some

normal distribution. The PCA analysis lets one estimate the parameters of this

distribution. Thus the task of learning features in the set of face images reduces to

estimating parameters in some (high dimensional) parametric family of probability

distributions.

3.2 Di�erent Kinds of Models

The example of eigenfaces was special, in that a uniform model of moderate com-

plexity was enough to explain the whole image. Thus, we pictured the whole image

to be a random Gaussian vector distributed in a very at ellipse (i.e. only a few

principal components explain most of the variance). This is just one of several kinds

of models that arise in a framework of parametric estimation of model parameters.

29

3.2.1 Homogeneous Models

In this approach, the whole image I is a (high dimensional) random variable gener-

ated from some probability distribution. Thus in the eigenface example we viewed

the registered face image as a normal distribution with some unknown mean and

correlation matrix. In many applications we do have strong grounds for positing

that the probability distribution of images belongs to some (particular) parametric

family.

3.2.2 Gluing together Images Generated from Parametric Families

However, sometimes we do not have strong grounds to posit nice parametric dis-

tributions for the whole image. In these cases it is often preferable to assume

parametric distributions for smaller parts of the image and somehow glue these

distributions together. We need to make some probabilistic assumption to justify

these \gluing" operation. The simplest kind of assumption is to impose some kind

of independence of images on disjoint domains. This leads to very simple algo-

rithms, but fails to capture any dependency between images in disjoint regions. We

have one example of dependency in the case of face images. If we detect an eye in

one location, we have a strong expectation of detecting another eye close to it in

the correct (horizontal) orientation.

We can also use more complicated assumptions. One popular compromise be-

tween complexity of the gluing process and the class of dependencies captured by it

is to assume that the underlying process is Markovian. This means that given any

simply connected domain, the inside of the domain is conditionally independent of

30

the outside, given the pixels on the boundary. In the one dimensional case, this

leads to an optimization problem solvable using a simple dynamic programming

approach. This algorithm is called the Viterbi algorithm in the Hidden Markov

Model literature.

Of course, in the formal sense, the second alternative is merely a special case

of the �rst. We choose to delineate them because the algorithms that result from

the �rst approach are more homogeneous. The second approach leads to more

exible architecture for estimation. However, the number of parameters we need

to estimate increases. This could lead to non-robust estimates.

3.3 Model Estimation Problem & Its Features

After these preliminaries, let us get back to the discussion of what constitutes

a good feature. As explained in subsection 3.1.1 we will concentrate on �nding

functions � of the image which are good features for the model estimation task.

Thus, � is a function (or set of functions) such that the input image I carries as

much information about the particular model that generated it, as does �(I).

To understand what this means we �rst de�ne explicitly what the model es-

timation problem is. In the subsequent discussion, we assume the image I to be

the observed value of some random variable. 1 As in subsection 3.1.1, I is gener-

ated from another random variable, m, the model. The models m come from a set

M, and occur according to a given probability distribution Pr(m). In a Bayesian
1Unless there is some chance of misunderstanding we will refer to the random variable as well

as a particular realization by the same symbol I .

31

framework, Pr(m) is called a prior probability distribution.The prior probability

Pr(m) tells us about the model we assume for the world.

Furthermore, for every m 2 M, we are given a conditional distribution, Pr(Ijm)

over the possible values of the image I.This \generative model" gives the charac-

teristics of the noise that is encountered in measuring the world.

Statement of the Model Estimation Problem: Given I, estimate m 2 M.

3.3.1 The Obvious Approach: MAP

The most obvious way to estimate the model is the Maximum A Posteriori Proba-

bility (MAP) method. We can, in principle, compute the probability of model, m,

given the image, I using the Bayes' formula, equation 2.3:

Pr(mjI) = Pr(Ijm) Pr(m)P
mPr(Ijm) Pr(m)

In the MAP approach we choose m 2 M that maximizes this \posterior" prob-

ability. The denominator in the right hand side of this equation is simply the

probability, Pr(I), of the variable I. For the MAP estimator, we can ignore the

denominator, as it does not depend on m.

We can reformulate the above maximization problem as a cost minimization

problem if we take the negative logarithm of both sides:

� logPr(mjI) = (� logPr(Ijm)) + (� logPr(m)) + F (I); (3.1)

32

where F (I) is a function of I and does not depend on m. Ignoring this term in the

cost function, we get the following cost function for our model selection problem:

CI(m) � (� logPr(Ijm)) + (� logPr(m)) (3.2)

= DI(m) + P(m) (3.3)

where D is the \data" term and P is the \prior" cost.

Thus, the cost function for the MAP estimation procedure consists of two terms,

one (the data) depending on the image I, the other (the prior) independent of I. In

the next subsection we will assume that our models have a little bit more structure

and see what these cost functions look like in practice.

3.3.2 A More Detailed Look at MAP Estimation

In many problems we minimize a cost function which is a sum of parts dependent

on the local value of image with a part which connects neighboring pixel values.

This is the case with MAP estimation of models, if the setM of models has some

structure. Thus, as happens very frequently, we assume that the models m are also

vectors in the same space as the image I; and that the image I is formed by a noise

process which acts independently on each pixel. Thus, if we denote the i-th pixel of

I by Ii and of m by mi; and if we are given the conditional distributions Pr(Iijmi),

then the generative model states that

Pr(Ijm) =
Y
i

Pr(Iijmi)

Under these conditions, the data term in the cost function is a sum of local

costs:

33

DI(m) � � logPr(I jm)

=
X
i

� logPr(Ii jmi)

=
X
i

LIi(mi)

The prior model usually is a kind of continuity condition; stating that pixels

near each other should have values that are close to each other. This is usually

formulated using a neighborhood structure which determines when two pixels i and

j are neighbors and a prior cost function (as in equation 3.3) of the form

P(m) =
X

i;j neighboring

T (mi; mj);

where T is some distance function measuring the distance between mi and mj.

Thus, we try to minimize a cost function of the form:

CI(m) =
X
i

LIi(mi) +
X

i;j neighboring

T (mi; mj)

where C is the total cost, L is the local cost and T is the joint cost of two neighboring

regions; and the subscripts denote which input variable the corresponding cost

depends on. 2

There are several observations we can make at this point. Firstly, cost functions

of this form arise in many problems of computer vision and learning, most notably

in the context of smoothing. In many such cases there is no explicit probabilistic

model. However, we can always build a probabilistic model which corresponds to
2T is supposed to stand for transition cost.

34

these cost functions. In the constructed model, T will be viewed as a prior (cost)

on the set of models, and L as the data cost.

Secondly, the index variables i and j which we use in the expression for the cost

function need not be pixel locations. In many cases Ii (or mi) is the output of some

low pass �lter centered about each point of the image. In fact, we can choose them

to be responses to �lters taken from some �lter bank. This is equivalent to looking

at the image in some transformed space (feature space). This is very helpful in the

context of synthesis of textures (See Zhu et al [125], Efros et al [39], or DeBonet

[34]).

In most of these cases, we still have a notion of the neighborhood structure which

is related to the neighborhood structure in the underlying image, but in principle,

we can have a completely di�erent notion of neighborhood. This neighborhood

structure certainly a�ects the algorithms we use to calculate expectation values

and estimate parameters. Later we will look at these problems in the case of

epipolar line stereo, where we will see a novel neighborhood structure.

Sampling the Image

Actual estimation of densities in this framework usually involves calculating the

expectations of various functions (such as local variances) of the distribution.

There are two approaches to estimating densities using cost functions of this

form, depending on how these expectations are estimated (or calculated):

1. We can try to compute the expectations directly, either numerically or sym-

bolically.

35

2. Or, we can estimate the necessary quantities by sampling from the image

itself. Thus, to estimate the background illumination of a scene, we might

choose, say, a hundred pixels randomly, and use the average intensity at these

points as the value of the background illumination.

The �rst approach depends crucially on our ability to compute the expectations;

or even some good approximation to them. This usually strongly depends on the

underlying topology, as well as the speci�c properties of the cost functions in use

(like convexity etc.)

In the second approach, the problem is that if we view the whole image as

a single random variable, we have just one sample from which to estimate the

quantities. The property that we need is ergodicity :

3.3.3 Ergodic Processes

De�nition 3.3.1 A random �eld (or process) is said to be ergodic if its ensemble

averages equal its space (or time) averages.

This means that to compute the mean values at a particular region of the �eld,

we can use two approaches.

1. We can use many instances of the �eld and compute the mean values using

this set of instances.

2. We can use a single instance of the process and average over di�erent regions.

In an ergodic process these two di�erent methods are guaranteed to give the

same result.

36

Sampling the image to produce estimates for the probability distribution has

been used by many authors. Notably Amit et al ([2]) �rst used it to detect spatial

relation in the context of character recognition.

3.3.4 Features for the Model Estimation Problem

We now look for functions of the image that are good features for the model esti-

mation problem. Following the discussion in subsection 3.1.1, we look for functions

which do not lose any relevant information. There are two ways we can capture

this idea:

1. Firstly, recalling the de�nition in section 2.4, we see that we are seeking a

statistic suÆcient for estimating the model.

2. Alternately, we could think in terms of distances between di�erent conditional

distributions. To formalize this second approach, we de�ne a feature to be

any (possibly probabilistic) function of the image, I. We concern ourselves

with sets of features, ordered by inclusion. The sets of features, S, that are

useful are distinguished by the following property :

\The conditional distribution of the model m given I, Pr(m j I), is close, as
a distribution, to the conditional distribution of m given the feature set, S,

Pr(m jS)".

In other words, though we lose some data in going from I to S, what we

lose does not contribute any useful information. The notion of distance we

use in the above criterion is the KL divergence. Thus, let us denote the

37

conditional probability distribution, Pr(mjI) by Pr1 ; and the conditional

probability distribution function Pr(mjS) by Pr2. Then we want to minimize
the quantity D(Pr1 jj Pr2).

It is remarkable that these two notions of features are actually very intimately

related. To understand this connection, let us assume, for simplicity, that we are

dealing with a single feature, not a set. The consideration that follows generalizes

easily to the more general case. Let the feature be a function, �(I) of the image. As

before, and to keep later notation simple, we assume that the distribution function,

Pr(mjI) is denoted Pr1 ; and the distribution, Pr(mj�(I)) is denoted Pr2. Then
we notice that the triple m ! I ! �(I) forms a Markov chain. Then, we have:

Theorem 3.3.1 (SuÆciency & KL-distance)

EI[D(Pr1 jj Pr2)] = M(m; I)�M(m;�(I)) (3.4)

Proof

Markov property (de�nition 2.4.2) states that

Pr(m; I; �(I)) = Pr(I; �(I))Pr(mjI; �(I)) = Pr(I; �(I))Pr(mjI).
Furthermore, if � is a function, Pr(I; �(I)) = Pr(I). Therefore,

M(m; I)�M(m;�(I)) =
X
I;m

Pr(m; I) log
Pr(m; I)

Pr(m)Pr(I)

�
X
�(I);m

Pr(m;�(I)) log
Pr(m;�(I))

Pr(m)Pr(�(I))
]

38

Simplifying,

M(m; I)�M(m;�(I)) =
X
I;m

Pr(m; I) log
Pr(mjI)
Pr(m)

�
X
�(I);m

Pr(m;�(I)) log
Pr(mj�(I))
Pr(m)

]

=
X

I;�(I);f

Pr(m; I; �(I))[log
Pr(mjI)
Pr(m)

� log
Pr(mj�(I))
Pr(m)

]

=
X
I;�(I)

Pr(I; �(I))
X
m

Pr(mjI; �(I)) log[Pr(mjI)
Pr(m)

Pr(m)

Pr(mj�(I))]

=
X
I

Pr(I)
X
m

Pr(mjI) log Pr(mjI)
Pr(mj�(I))

= EI [D(Pr(mjI)jjPr(mj�(I)))] (3.5)

�

If we consider I to have a family of distributions depending on the parameter

m, then, as we saw earlier, the vanishing of the above quantity is the condition for

� to be suÆcient for this family of probability distributions on I. Thus the notion

of suÆcient statistic exactly captures what it means for a function to be a (useful)

feature.

The left side of equation 3.4 is an expectation of a positive quantity, while its

right hand side is non-negative, by the Data Processing Inequality, Theorem 2.4.2.

Thus the vanishing of the right hand side, implies that D(Pr1 jj Pr2) = 0 for

almost all I. Thus, the di�erent concepts of suÆciency tie together as does the

concept of a feature.

39

3.4 Feature Discovery

We saw in the last section that the set of \nice" features and statistics suÆcient

for the class of models share some intuitively justi�able properties. The criterion

we arrived at was this:

Criterion 3.4.1 (Features and SuÆciency) A feature � is informative (for the

task of estimating the model) if � is a suÆcient statistic. Thus � would satisfy all

of the following (equivalent) conditions:

Conditional Density: The conditional density, Pr(I j �(I); m) is independent of

the model m.

Mutual Information: M(f ; I) = M(f ;�(I))

Kullback-Leibler Divergence: D(Pr1 jj Pr2) = 0 for almost all I, where Pr1

is the conditional Pr(m j I) and Pr2 is the conditional Pr(m j�(I)).

As the third condition illustrates clearly, the connection between features and

suÆcient statistics is one that involves the probability distribution on the set of all

possible images. Thus, we seek a function � whose form does not depend on I, but

which nevertheless satis�es the condition on the KL divergences for almost all I.

This is a very strong condition on � and a distribution does not admit a suÆcient

statistic unless it is of a very special form. In fact we have the following theorem,

which is fairly standard. (See for example Koopman [75], Pitman [95], Wilks [121]

page 393, Linnik [78] page 39.)

40

Theorem 3.4.2 Let x1; x2; : : : ; xn be n (not necessarily independent) samples from

a parametric distribution with parameter � and let t(x1; x2; : : : ; xn) be a suÆ-

cient statistic estimating � . Let the joint distribution of the xi-s be denoted as

fn(x1; x2; : : : ; xn; �). Then fn is necessarily of the form:

fn(x1; x2; : : : ; xn; �) = exp [K1(�)g(t) + K2(�) + hn(x1; x2; : : : ; xn)]; (3.6)

where K1(�) and K2(�) do not depend on xi's, hn does not depend on � and g(t)

depends only on t and not on � .

Thus a suÆcient statistic exists only for an exponential family. In our setting,

where features are suÆcient statistics, this theorem implies that the conditional

probability distribution Pr(I jm) of I given m will be an exponential distribution

where the response of the feature detector enters in the exponent.

This is a strong restriction, but in practice this is a minor problem. We actually

end up maximizing the mutual information M(m;�(I)) between the model and

the feature. Thus, if we do not start with a family of distributions which admit a

suÆcient statistic, we will be led to a feature-set which is as close to a suÆcient

statistic as possible in an information-theoretic sense.

However, there is a more practical problem with a naive implementation of our

approach. As pointed out earlier, suÆciency is a condition involving the proba-

bility distribution on the set of all images I. Therefore a naive calculation of the

expectation needs to iterate over all possible values of I. This is too large a space

to search.

41

If we were intent on building features for smaller patches of the image, we could

sample over these patches and use the sample values to calculate the expectations.

This sampling approach would depend on the ergodicity of the image generation

process.

In this thesis however, we explore ways of using a single image to approximate

the expectation.

3.4.1 Minimizing KL-Divergence to Approximate SuÆciency

Equation 3.4 connects the average value of the KL divergence of the two conditionals

Pr(mjI) and Pr(f j�(I)) with the di�erence between the corresponding mutual

informations: M(f ; I) � M(f ;�(I)).

We use this to motivate our approach. Thus, instead of minimizing the di�erence

on the right hand side of that equation, we will (approximately) minimize the

quantity

D(Pr(mjI) jjPr(mj�(I)))

There is an intuitive justi�cation for this approach as well. As we saw earlier,

the quantity in question, D(Pr(mjI) jPr(mj�(I))), is a measure of how much the

actual conditional Pr(mjI) di�ers from the approximate conditional Pr(mj�(I)).
More precisely, this is the error made in a maximum-likelihood estimation of the

model m if the feature is used instead of the image. Thus, if we do not concern

ourselves with the distribution of the image I but concentrate instead on the speci�c

instance of I that we have, minimizing the KL divergenceD(Pr(mjI) jjPr(mj�(I)))
is the right thing to do.

42

3.5 Drawbacks of the Approach

The main problem that occurs when we use this approach is that we have too few

data points. Optimizing the KL divergence for the given image I might lead to a �

which is incorrect for most other realizations of I. This phenomenon is called over-

�tting. The process that leads to over-�tting is fairly general and is not peculiar to

the particular cost function (KL divergence) we minimize. To understand it let us

look carefully at the possible sources of error in estimation.

Thus, we have some possible set of modelsM and the possible set of features

P. Thus, m 2 M and � 2 P. We have some notion of complexity of the

classes M and P. Thus, for one-dimensional signals, the class of step functions

is (conceivably) less complex than the class of functions which look like ramps

bounded by horizontal lines.3 Over-�tting occurs when the complexity of the class

P exceeds that of the classM. Thus, given some unlikely value of I, our algorithm

will choose some � which signi�cantly reduces D(Pr(mjI) jj Pr(mj�(I))) for that
particular I but performs badly on the others. This is possible because the greater

complexity of P means we can choose � to explain variation which actually arose

in the \noise" process: Pr(I jm).

Thus, over-�tting reveals itself in an estimate of the model m which is bounded

away from the true model with high probability. As explained in the \risk minimiza-

tion" literature (see Vapnik [117] for example) we can modify the basic optimization
3Note the \conceivably". The formal de�nition of complexity involves some semi-norm de�ned

over the corresponding domains. This might not correspond to our intuitive ideas of what is more

complex.

43

framework to guard against over-�tting. This is the regularization approach and

we will discuss it a little later.

3.5.1 Guarding Against Over-�tting

There are basically two approaches we can take to guard against over-�tting. These

are somewhat related, but there are enough points of di�erence that we describe

them separately.

Choosing a Less Complex Class of Models

In the �rst approach we arti�cially reduce the complexity (capacity) of the class of

features P. Thus, in the case of estimating the model for one-dimensional signals

for example, we can choose to detect only step edges, and ramps. This means for

any given image, we allow slightly higher error probability in �tting to the sample,

while getting better guarantees on the accuracy of the model estimated.

It is possible to iterate this process. Suppose we can decompose the given

class P in an increasing sequence P1 � P2 � � � � � Ps, with Ps = P and of

increasing complexity. Suppose, also, that the choice of the best feature in the

class Pi somehow a�ects the estimate in subsequent classes; for example by serving

as the starting point in the next iteration scheme. Since we start with a class of

lower complexity, our probability of learning a \wrong" model is much reduced.

This is the basis of the Structural Risk Minimization (SRM) approach.(again, see

Vapnik [117]).

The choice of the restricted class of features is somewhat arbitrary. This is

44

mitigated in the second approach for reducing over-�tting.

Regularization Methods

In this approach we modify the cost function.Instead of minimizing the KL diver-

gence, we minimize a cost function of the form

D(Pr(mjI) jjPr(mj�(I))) +
(�); (3.7)

where
(�) is a regularizer for � and is a positive number which we let ap-

proach 0. Under suÆciently general conditions, it is possible to select a sequence

of values for which approach 0 and such that the regularized solutions approach

the correct solution and such that the regularized problem is well-posed (in the

sense of Tikhonov, [113]). This kind of cost function is extremely common in many

optimization tasks mainly because of its good generalization behavior.

The SRM approach sketched in the previous subsection frequently leads to an

optimization problem of this structure. In some sense what is being attempted is

an estimation of the quantity

E[D(Pr(mjI) jjPr(mj�(I)))]

in terms of a single sample value D(Pr(mjI) jjPr(mj�(I))). Thus for each re-

stricted complexity class Pi we �nd an upper bound for the expectation. This

upper bound is a sum of the sampled cost and a term representing the cost penalty

incurred for a inferring an incorrect model. The SRM approach proceeds by min-

imizing this upper bound on \risk" for each class Pi. Each of these modi�ed cost

functions is thus of the form 3.7.

45

In our particular case the regularized cost function mitigates two problems.

Firstly, it penalizes the divergence as well as the complexity of the resulting feature.

Thus, it leads to simpler features and guards against over-�tting. For our particular

problem, there is another problem. We are looking for a function � which will serve

as the feature and for which the conditional distribution Pr(m j�(I)) is as close
to the \real" conditional distribution Pr(m j I) as possible. However, there is no

guarantee that we have a unique solution. Indeed, the identity function which does

not change the image at all (or any invertible transformation) could serve as well.

Using a regularization term lets us put a penalty on these functions as well.

Thus, we are led to the following characterization for features:

A feature is obtained by minimizing a regularized KL-divergence cost function,

the expectation of the unregularized version of which gives a measure of the suÆ-

ciency of the statistic.

3.6 Summary

In this chapter we covered the meat of the �rst part of this thesis. We characterized

features as regularized versions of an approximation to suÆcient statistics. This is

a novel way of looking at features which incorporate within it many ad hoc methods

of feature discovery.

If we had computational power, or if the space of images was small enough, we

could calculate the suÆcient statistics and that would give us features as well. In

the next chapter we investigate how this theory can be applied to discover features

for one-dimensional signals and for stereo.

46

Chapter 4

Examples of Feature Discovery

4.1 One Dimensional Signals

We now try to apply the preceding, rather general, considerations to more concrete

examples. The �rst example we treat is in the domain of one dimensional signals.

Later on in this chapter, we will consider the problem of discovering features for

stereo.

Thus, consider a one dimensional signal, I, that is the result of a stochastic

image-formation process. The value I assumes at a particular location can be

either discrete or continuous. We assume that we have a setup similar to the one

described in chapter 3. Thus, we assume that I depends on the precise state,

f , of an environment (or the model).1 The signal (image), accordingly, contains

information about the environmental state f , possibly corrupted by noise. We
1In chapter 3 we denoted the model by m. In this chapter, we use f to denote the model to

remind us that we are really estimating functions corrupted by noise.

47

wish to choose feature vectors �(I) derived from the image that summarize this

information concerning the environment. We are not otherwise interested in the

contents of I and wish to discard any information concerning the image that does

not depend on the environmental state f . Thus, the generative process has exactly

the same structure as in chapter 3 and all we need to specify are the actual forms

of the prior probability distribution and the generative model.

4.2 Prior Probability

The �rst probability distribution we need is the prior probability. We choose this

prior so as to make continuous functions more likely. Thus we suppose that we are

given a cost function which penalizes against discontinuities. In keeping with the

notation from last chapter, we choose this of the form:

P(f) =
X
i

Fi(fi�1; fi) (4.1)

The functions Fi are functions which penalize for local variation in f at pixel i.

This was denoted T in the last chapter.

From this cost function, and following Blake and Zisserman [24], Geman and

Geman [48] Mumford and Shah [85], we construct the prior probability as a Gibb's

distribution using the cost function as energy:

Pr(f) / exp(�
X
i

Fi(fi�1; fi))

or normalizing, we get for the prior probability of f

Pr(f) = (1=Zp) exp(�
X
i

Fi(fi�1; fi)) (4.2)

48

where Z is the partition function de�ned by

Zp =
X
ff 0g

exp(�
X
i

Fi(f
0
i�1; f

0
i)):

Depending on the situation, this summation could be replaced by a repeated inte-

gration.

To complete the description of the prior probability, we need to specify the local

discontinuity costs Fi. These we choose to be thresholded quadratic functions:

Fi(fi; fi�1) =

8<
: (fi � fi�1)

2 if jfi � fi�1j � �

�2 otherwise
(4.3)

where � is some positive parameter denoting the threshold.

Using a thresholded discontinuity cost function lets us penalize small disconti-

nuities, while ensuring that we do not make step edges etc. completely impossible.

4.3 The Generative Process

We now need to choose the generative process. This will be formulated by specifying

the conditional probability distribution Pr(I j f). In the following discussion, we

will consider a single image, I, which is de�ned on points i = 0 : : : N � 1. As

explained in chapter 3 we start by de�ning the form of a data cost function, and

use the corresponding Gibb's distribution as the required conditional distribution.

Thus to start the ball rolling we de�ne the data cost function between the model

f and the image I as:

D(f; I) �
X
i

C(fi; Ii)

49

where C is some cost (loss) function. We choose the quadratic loss function:

C(fi; Ii) � (fi � Ii)
2

Thus, we get for the data cost, the following expression:

D(f; I) �
X
i

(fi � Ii)
2 (4.4)

Following the recipe given above, we form the conditional probability as the

Gibb's distribution:

Pr(I j f) = (1=ZD(f)) exp(D(f; I))

= (1=ZD(f)) exp(�
X
i

C(fi; Ii)) (4.5)

where ZD is the \data" partition function:

ZD(f) =
X
fIg

exp(�
X
i

C(fi; Ii))

=
Y
i

X
fIig

exp(�C(fi; Ii)) (4.6)

Again, depending on the situation, we might have to replace this summation

by a repeated integration. The expression for the partition function indicates that

there is a possible dependence on f . We have indicated this in the formula above.

Now we note that the various Ii-s are conditionally independent given fi. Thus,

we can express the distribution of I given f as a product of the distributions for

Ii given fi. Tolerating a slight abuse of notation, this enables us to factorize the

50

above conditional as

Pr(Ijf) =
Y
i

exp(�C(fi; Ii))P
fIig

exp(�C(fi; Ii))

=
Y
i

exp(�C(fi; Ii))
ZD(fi)

(4.7)

where the partition function is dependent on fi.

Now we make an assumption which is true for most reasonable situations. We

assume that the Ii-s have in�nite range and the cost function C is symmetric in

that it satis�es

X
Ii

exp(�C(f; Ii)) is independent of f .

Here the summation sign is to be replaced by an integral if Ii is a continuous

variable. This is certainly true of the quadratic loss function we have chosen, or

indeed any loss function of the form C(f; Ii) = g(f�Ii) where g is an even function.
Under this condition, the normalization constant (partition function) Z(fi) for

each i; which is nominally a function of fi, is actually independent of it and is a

constant. We also notice that the denominator of the expression for Pr(f) is a

constant as well.

Then, using Bayes' theorem,

Pr(f jI) =
Pr(f)Pr(Ijf)

Pr(I)

=
Pr(f)Pr(Ijf)P
f(Pr(f)Pr(Ijf))

=
exp(�Pi(C(fi; Ii) + Fi(fi�1; fi)))P
ffg exp(�

P
i(C(fi; Ii) + Fi(fi�1; fi)))

51

For reasons that will become clear later, we denote this a posteriori probability

as P0.

4.4 Possible Features

Now we discuss the choice of features. To motivate this discussion, let us �rst

consider the process of reconstruction of the image given a few isolated points. The

best approach that works, and is consistent with our prior and generative models,

is a dynamic programming algorithm that minimizes a cost function comprising of

two terms:

1. the prior cost

2. the cost C at the points where the value of Ii is known.

Indeed the same algorithm would be used to calculate the MAP estimate of the

model f given the image I. This can be seen immediately from the form of the

posterior distribution calculated above:

Pr(f j I) =
exp(�Pi(C(fi; Ii) + Fi(fi�1; fi)))P
ffg exp(�

P
i(C(fi; Ii) + Fi(fi�1; fi)))

and so calculating the MAP estimate for f is equivalent to the minimization of the

cost function:

X
i

(C(fi; Ii) + Fi(fi�1; fi))

52

In keeping with this idea, we view features as speci�c pixels so that completion

using a dynamic programming algorithm to obtain the underlying model f yields

a solution close to that obtained using the original image I. One might argue that

picking single pixels as features makes one ignore a lot of structure. However, using

suÆciency as a criterion forces the feature selection algorithm to look beyond the

immediate pixel value and consider the values of the image in the neighborhood

as well. Furthermore, this approach can easily be modi�ed to operate on the co-

eÆcients of some expansion of the image in some over-complete basis. Such an

approach would be very close in spirit to algorithms which use basis pursuit to pick

a sparse representation of vectors.

We view the model f as coming from a class F such that the particular element

f 2 F is determined by some (small) set of location parameters. This is not an

absolute guarantee, but rather is implied by the structure of the prior distribution

of the model. Models with many discontinuities incur higher costs, and once the po-

sition of the discontinuities are located, the prior cost implies we can approximately

reconstruct the model f using the dynamic programming approach.

Given the image I our approach will be to keep a small set of locations whose

pixel values serve to specify which element f 2 F generated I. We reject the other

pixels in I. Thus, we want to �nd out the \minimum" set of pixels, such that if we

keep the values of I on these pixels, the prior cost function ensures our ability to

recreate the model f .

53

4.4.1 s vector

Analytically, the best way to achieve our stated goal (of �nding the best subset of

pixels) is to de�ne a 0-1 vector, fsig, where the value si corresponds to the i'th

pixel and indicates whether this pixel is among the feature-set:

si =

8<
: 1 if i-th pixel is omitted from the feature

0 if i-th pixel is included among the feature
(4.8)

After the de�nition of this vector, our model estimation boils down to the solu-

tion of the following minimization problem using dynamic programming:

f � = argmin
f

"X
i

(C(fi; Ii)(1� si) + Fi(fi�1; fi))

#

= argmin
f

"X
i

((fi � Ii)
2(1� si) + Fi(fi�1; fi))

#
(4.9)

The problem of feature selection for the model estimation problem would be solved

when we can estimate the vector s.

To put this within our probabilistic framework, we construct a family of (proba-

bilistic) functions f�sg which depends on the vector parameter s. We will consider

this the set of possible features and the feature selection problem consists in picking

a member from this family, or, equivalently, in picking a s.

�s(I) simply adds independent Gaussian noises at each pixel location. The

variance of the noise added at pixel location i depends on the value si and is given

by:

�2i =
si

2(1� si)

54

Thus, integrating out I, we get for the conditional distribution Pr(�s j f),

Pr(�s j f) = (1=Z) exp[�(fi � �i)
2(1� si)]

The proof of this simply notes that

1. variance of the sum of two independent Gaussian distributions is the sum of

the variances; and

2.

1

2
+

si
2(1� si)

=
1

2(1� si)

Following the same calculation as in the previous section, we calculate the con-

ditional distribution Pr(f j�s) as

Ps(f) � Pr(f j�s) = (1=Zs) exp(�E(f)) (4.10)

where E(f) is the cost (energy) function given by

E(f) =
X
i

(fi � �i)
2(1� si) + Fi(fi; fi�1) (4.11)

For any s, Ps(f) is a probability distribution on functions f . The proportional-

ity constant Zs in the de�nition of Ps is called the partition function in statistical

physics. We also note that for s = 0 (equality of vectors), we get back the condi-

tional Pr(f jI). This is the case where we keep all the data.

55

4.5 Feature Discovery Using SuÆciency

At this point, discovering features is simply a matter of choosing the right s. The

idea is to get an s with as many entries 1 as possible, so as to get as few features

as possible, while still being close to the probability distribution. Therefore, in

accordance with our discussion in the general case, we seek to minimize the following

regularized cost function for s :

C(s) = D(P0jjPs)� �
NX
i=1

si (4.12)

where, D, as before, denotes the Kullback Leibler distance between the two distri-

butions P0 and Ps and � is a non-negative number.

The vector s is a 0-1 vector. But we simplify the problem for ease of solution.

Thus we assume that 0 � si � 1. We will compute the optimal s under this

assumption. Then we will threshold the resulting s to get a 0-1 vector.

We next show that the �nal cost function (on s) C is a concave function of its

argument s. To see this, we calculate the second derivative @2C
@si@sj

@C
@si

= (EPs[(fi � Ii)
2]� EP0[(fi � Ii)

2])� � (4.13)

@2C
@si@sj

= (EPs[(fi � Ii)
2(fj � Ij)

2]� EPs[(fi � Ii)
2]EPs[(fj � Ij)

2]) (4.14)

where EPs denotes expectation taken with respect to the distribution Ps. Thus,

because the Hessian matrix is a correlation matrix, its eigenvalues are non-negative

and it is positive semi-de�nite. Consequently, C is concave in s.

We use the path following method (also known as the homotopy method) of

calculating the optimal s vector. We know that s = 0, for � = 0. Then, taking

56

derivatives with respect to � of the relations for local optimum, we get the following

equation:

X
j

@2C
@si@sj

@sj
@�
� 1 = 0 (4.15)

We use this scheme to follow the change of the optimal s with �.

4.5.1 Reconstructing the Original Image

Now that we know how to calculate the probabilities for fi to take a speci�c value,

we can estimate the actual function (model) from the feature space representation.

This estimation is essentially a dynamic programming problem to calculate the

MAP estimate of the model f .

We can also use the mean value of f as our estimate. First we calculate the

probability distribution of fi, for every i using the algorithm described in the next

section. This lets us calculate E[fi] by a direct summation.

4.6 Calculating Expectations of Quantities Depending on

Paths

To use equation 4.15 to solve for s, we need to calculate the quantities (EPs[(fi �
Ii)

2(fj � Ij)
2] � EPs[(fi � Ii)

2]EPs[(fj � Ij)
2]). Alternatively, we need to be able

to calculate the quantity (EPs[(fi � Ii)
2] � EP0[(fi � Ii)

2]) and approximate the

second derivative in equation 4.15 by �nite di�erencing. Let us see how these can

be computed for the case of one-dimensional signals. This computation is standard

57

and occurs as a sub-computation in Baum-Welch algorithm. However, we present

it here to contrast with the complexity of the algorithm in the case of the stereo

problem, presented later in the chapter.

We �rst note that we can calculate the probability distribution for fi, which is

the i-th component of the approximating vector. The calculation entails computing

two quantities, � and �, which are N � 256 arrays.2. In what follows, it is best

to think of the approximating functions as paths in a N � 256 array. Thus, the

function f corresponds to the path f(i; f(i))j1 � i � Ng. We also call the

quantity exp(�(fi � Ii)
2(i� si)) the exponentiated local cost at point (i; fi) of the

array; and the quantity exp(�Fi(fi� fi�1)) the exponentiated transition cost from

the point (i � 1; fi�1) to the point (i; fi). We denote (exponentiated) local cost

and transition cost by L(p) and T (p1 �! p2) respectively, where p is an arbitrary

point and p1 and p2 are an arbitrary pair of adjacent points. For convenience, we

also de�ne path-products (PP). By a path in this context we include partial paths

as well. Thus a path is a set of the form f(i; f(i))jj � i � kg, where j and k are

arbitrary integers between 1 and N ; and f is an arbitrary (approximating) function.

�(p) is de�ned to be the product of the (exponentiated) local costs and transition

costs that lie on the path. Thus, if the path p consists of the sequence p1p2p3 : : : pk

then

�(p) = L(p1)T (p1 �! p2)L(p2) : : :T (pk�1 �! pk)L(pk) (4.16)

We also extend the de�nition of T between arbitrary points p1 and p2, with
2The names of these variables are pretty standard in Hidden Markov Model literature

58

p1 occurring to the left of p2. It is just the sum of all the path-products of the

(sub)-paths that start at p1 and end at p2. We use the same notation to denote

either.

With this notation, we de�ne � and � as follows:

�(i; j) =

P
k T ((1; k) �! (i; j))P

j

P
k T ((1; k) �! (i; j))

(4.17)

�(i; j) =

P
k T ((i; j) �! (N; k))P

j

P
k T ((i; j) �! (N; k))

(4.18)

Thus, �(i; j) is the probability of f(i) = j, in the restricted probability space of

functions over the (smaller) interval [1 : : : i]. Similarly, �(i; j) is the same probability

but in the space of functions over [i : : : N].

Now, the calculation of the probability of a particular point being on the ap-

proximating function is given by

Pr(fi = j) =

P
(i;j)2 p�(p)P

p�(p)
(4.19)

=

P
(i;j)2 p�(p)P

j

P
(i;j)2 p�(p)

(4.20)

=
�(i; j)�(i; j)=L(i; j)P
j �(i; j)�(i; j)=L(i; j)

(4.21)

The variable p in equations 4.19 and 4.20 iterate over complete paths which pass

through the point (i; j) (i.e. functions f 0 such that f 0(i) = j)

Thus, we can compute the one point marginals with a straightforward loop

once we know the values of � and �. A more complicated equation gives us the

2-point probability distributions, but for their computation we need to compute

the path-product (�) values between every two pixels, not just from the two ends.

59

Calculation of � and � is iterative as well:

�(i; j) =
L(i; j)Pk �(i� 1; k)T (i� 1; k �! i; j)P
j L(i; j)

P
k �(i� 1; k)T (i� 1; k �! i; j)

(4.22)

�(i; j) =
L(i; j)Pk �(i+ 1; k)T (i; j �! i+ 1; k)P
j L(i; j)

P
k �(i� 1; k)T (i; j �! i+ 1; k)

(4.23)

4.7 A Summary of Feature Discovery

Let us briey summarize the various steps of feature discovery.

1. Set up the path following equation 4.15

2. Calculate the Hessian matrix in equation 4.15 as follows. Calculate the �rst

derivatives of the regularized cost using the one-point marginal distributions

using the current s value. Finite di�erence with the previous vector of �rst

derivatives.

3. Calculate the new s values by solving for @s
@�

4. Find the ultimate s vector. The pixels i where si is small are the feature

locations.

The iteration converges quite rapidly. However, to get an intuitive understand-

ing of the solution it generates, we will give an alternative approach.

60

4.8 A Condition Depending on Local Variances

We have already seen that we can consider the features to be the pixels i where

the value of the s vector are low (say, less than a certain threshold). However, the

computation of s is an iterative process. If D is the image depth (number of gray

values) and N is the total number of pixels, a naive calculation of � and � and the

one point probability distribution takes �(D2N) steps. Thus, at each step of the

iteration, we compute a D � D matrix in �(D2N) time and invert it . While we

can do better than this, e.g. by stopping computations of � and � too far away

from the Ii, the process is still expensive.

Furthermore, the above description does not give us a good idea of what the

discovered features are.

To �nd an alternate method of feature discovery, we consider the variances of

the one point distributions fi of f .

Let us �rst examine the case of the step edge to understand what is going on.

From the Figures 4.1 and 4.3 we see that that the image has the step between

pixels 32 and 33. Qualitatively, it is easiest to see why the variance is higher at

these points. At pixel location 32 there are two competing pulls. The local cost

of any particular f favors its making the jump and following the image exactly,

whereas the transition cost tells it to continue at the same value it is at. Thus the

probability distribution of f33 is more spread out. The same thing happens at pixel

location 33.

Thus the variance is higher at locations where there are jumps in the image and

lower at smoother locations. Because of discontinuities introduced by the noisy

61

0 10 20 30 40 50 60
0

50

100

150

200

250

G
ra

y
va

lu
e

Figure 4.1: A Step Edge

62

0 10 20 30 40 50 60
0.85

0.9

0.95

1

S
 V

al
ue

Figure 4.2: S Vector for the Step Edge

63

0 10 20 30 40 50 60
0.3

0.35

0.4

V
ar

ia
nc

e

Figure 4.3: Variance for the Step Edge

64

nature of the generative process, there are other places where this method detects

a transition between two levels. However, these artifacts of noise are easy to detect

as these are isolated locations where the variance is high and we can use some

simple smoothing technique to eliminate this noise.

Explanation in terms of Channel Capacity

There is another explanation of the e�ectiveness of the variance as a quick estimator

for the feature in terms of Shannon's theory of communication channels.

Consider the Markov chain f ! I ! Ii. We have made the case above

that for Ii to be a feature, we want it to be a suÆcient statistic. The condition for

that is that I(f ; I) = I(f ; Ii). Under normal circumstances, we will not be able

to achieve this equality. So, we do the next best possible thing. We try to make

the right hand side as large as possible, keeping in mind, of course, that it cannot

exceed the left hand side because of Markovian property of the chain. Thus, we ask

under which circumstances can we make the mutual information, I(f ; Ii) = I(fi; Ii)

large. But of course this second quantity cannot be larger than its largest possible

value over all probability distributions. This supremum is known as the channel

capacity; and by a standard result it is bounded above by the quantity

1

2
log(1 +

V ar(fi)

V ar(Ni)
)

where Ni is the local noise process at pixel i.

V ar(Ni) is a constant for the particular model chosen. Thus we seek to keep

points with high variance of fi. Note that this criterion makes no mention of the

parameters si.

65

0 10 20 30 40 50 60
0

50

100

150

200

250

G
ra

y
va

lu
e

Figure 4.4: Step Edge with Noise

Thus we see that the variance provides a good computational tool to determine

the suÆciency of a pixel (feature). We will see that the same theme recurs in the

case of two dimensional functions.

66

0 10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
 V

al
ue

Figure 4.5: S Vector for the Noisy Step Edge

67

0 10 20 30 40 50 60
0.25

0.3

0.35

0.4

V
ar

ia
nc

e

Figure 4.6: Filtered Variance for the Noisy Step Edge

68

4.9 Results for one dimensional signals (s-values and vari-

ances for special kinds of images)

We now look at how our procedure applies to some concrete examples. We �rst

consider the case of special one-dimensional signals. For each of these classes we

will calculate the features obtained by solving the path-following equation 4.15

where the Hessian matrix is calculated by calculating the �rst derivative @C
@si

using

the equation 4.13, and using a �nite di�erence method to calculate the second

derivative.

It is also possible to apply equation 4.14 to directly calculate the second deriva-

tive, but calculating the correlation on the right hand side of that equation is

computationally expensive.

We look at successively more complex kinds of signals to see which points are

considered important by our algorithm. First we solve the path-following equation,

equation 4.15 to solve for the vector parameters s. The pixels where these values

are small are the locations that are considered important.

We show the calculated s values for the step edge of �gure 4.1 in �gure 4.2. As

expected, we note that the values of s are lower at the location where the step is.

This indicates that if we start with the pixel values at these locations, and �ll in

the other locations using dynamic programming, we will get a graph very close to

the one we started from. For this input, we also calculate the pixel-wise variances,

as explained in section 4.8. These values are plotted in �gure 4.3. As expected, the

variances are higher in the region around the step.

69

0 10 20 30 40 50 60
0

50

100

150

200

250

G
ra

y
va

lu
e

Figure 4.7: A Ramp Signal

70

0 10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

S
 V

al
ue

Figure 4.8: S Vector for the Ramp

71

0 10 20 30 40 50 60
0.15

0.2

0.25

V
ar

ia
nc

e

Figure 4.9: Variance for the Ramp

72

When we add noise to the step edge, we �nd a qualitative change. In �gure 4.4

we show the input signal. �gures 4.5 and 4.6 show the calculated s values and the

variances respectively. We do �nd lower values of s around the step, but we have

other areas where s is low as well. This makes sense as we need more information to

distinguish between the gray-value changes that are due to noise and those that are

due to actual presence of features. The variance measure, however, turns out to be

more robust. Addition of noise does increase the variance in places, but these tend

to be isolated peaks. Thus, we can remove these by a simple smoothing operation.

The plot of the smoothed variance in �gure 4.6

We treat ramp signals similarly, and plot the input, the s values as well as the

variances in �gures 4.7, 4.8 and 4.9 respectively. We �nd that the starting and the

terminating point of the ramp are selected as features. Furthermore, the points

inside the slope are slightly better as features than points outside.

4.10 Finding Features for the Stereo Correspondence Prob-

lem

We will explore how we can apply similar considerations to the problem of comput-

ing stereo correspondence. Stereo vision is the ability of humans and other animals

to detect depth of �eld (i.e. to detect how far away an object is relative to the other

objects). The position of two eyes creates two slightly images to form on the two

retinas. The apparent displacement of nearby objects is larger than the apparent

displacements of further objects. Thus, detection of distance is reduced to �nding

73

Points P, Q, L, R,

are coplanar.
P’, Q’, P’’ and Q’’

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Q

L
Left Eye Right Eye

Left Retina Right Retina

P

R

Q’ P’ Q’’ P’’

Epipolar Lines

Figure 4.10: Geometry of Epipolar Lines

74

matching fragments in the two images and calculating their displacements.

Before we plunge into a description of how we can �nd features which help us

in stereo reconstruction; let us �rst explain the approaches that has been taken to

solve this problem. The problem involves a fairly heavy use of projective geometry

and we will �rst explain this. Once we understand the geometrical foundations,

we can go on to explain the algorithms for computing stereo correspondence, and

review some of the literature.

4.11 Geometry of Stereo: Matching on Epipolar Line

Let us understand the geometry of stereo reconstruction. In �gure 4.10, L and

R are the left and the right eyes respectively and we also see the corresponding

retinal planes. Given any point P in space, we consider the place formed by the

three points P , L and R. This plane intersects the two retinal planes in two lines

l0 and l00. These lines correspond to each other, in the sense that the two image

points P 0 and P 00 of P lie on them. For any other point Q lying in the same plane

(formed by P , L and R), the images Q0 and Q00 of Q in the two retinal planes, lie

in the same lines l0 and l00.

Thus, the (unknown) geometry of the three-dimensional scene and its location

with respect to the foci and the two retinas, generate partitions of the two retinal

images into corresponding pairs of lines, one in each image. If the straight lines l and

l0 correspond to each other under this correspondence, then the point corresponding

to P 2 l will be a point in l0 (if it exists at all) and conversely. Thus, we can try

independently matching up pairs of corresponding lines and will automatically get

75

the global solution for stereo Such pairs of corresponding lines are called epipolar

lines.

Identifying epipolar lines simpli�es the stereo problem immensely. If we know

that l0 and l00 are corresponding epipolar lines, we know for certain that the point

corresponding to P 2 l0 will be a point in l00 (if it exists at all) and conversely.

Thus, we can try matching up pairs of corresponding epipolar line and will auto-

matically get the global solution for stereo. Thus computing the match can proceed

independently for each such pair.

4.11.1 A Simple Example

In �gure 4.11 we show a schematic of stereo vision. The scene consists of a back-

ground object and a foreground object. We show a pair of corresponding epipolar

lines on the two retinal planes. These correspond to the line PQ on the foreground,

and the dotted line ABCD on the background object. From the �gure it is clear

that the left eye cannot see anything between B and D, while the right eye cannot

see anything between A and C. Thus, the part of the background between B and

C is completely covered by the foreground object. We also see a point T on the

background which is completely visible from both the eyes.

76

Background
Object

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

A B

Left Eye Right Eye

Foreground Object

Left Retina Right Retina

Epipolar Lines

C D

T

QP

T’ Q’ P’ T’’ Q’’ P’’

Figure 4.11: Geometry of Stereo

77

4.12 Algorithms for Stereo Correspondence

Prior Work

A number of researchers have come up with a dynamic programming approach

to calculate stereo correspondence, and compute the disparity function. Some of

the early theories were motivated by theories of the human visual system, which,

in their turn were inspired by experiments with Julesz random dot stereo-grams.

Some of these are described in book by Sperling ([111]) and Julesz ([67]).

Many researchers have proposed using dynamic programming to calculate the

disparity map. Ohta and Kanade ([88]) proposed using dynamic programming

to detect epipolar lines as well as to perform matching within the epipolar lines.

Kanade and Okutomi ([69]) proposed using adaptive windows for the local disparity

values. Other work in this direction includes Pollard's use of disparity gradients

(See [96]).

A lot of work has gone into choosing the correct cost function for dynamic

programming as well. While the exact form of this cost function does not change our

description of the feature selection algorithm, its analytical properties (particularly

convexity properties) a�ect the quality of the features we derive. Thus, Geiger et.

al. ([46]) described a cost function that is concave for small values of its arguments,

and this is the one we use for our experiments. Other cost functions have been

described by Yuille et. al. ([124]). Other cost functions have been suggested

which can be optimized using graphical algorithms (e.g. minimum cut algorithms).

Ishikawa et.al. ([59]) as well as Boykov et. al. ([26]) proposed cost functions and

78

minimized them by reducing the problem to a graph algorithm. Earlier, Roy and

Cox ([103]) proposed a maximum ow formulation for the stereo correspondence

problem. Marr and Poggio ([82, 83]), gave a bayesian formulation to the stereo

correspondence problem. The role of features like junctions and edges in stereo has

been pointed out by many researchers. See, for example, Anderson ([4]) and Malik

([80]).

A Minimalistic Dynamic Programming Algorithm for Computing Stereo Cor-

respondence

We will not concern ourselves with how epipolar lines can be detected, but rather

assume from the outset that we are given a pair of epipolar lines which correspond

to each other. Let us consider a point suÆciently toward the edge of the retinal

plane, so that we can be sure that there are no occlusions in that area and so that

we can determine two points, one on each line which correspond to each other via

the stereo correspondence. For example, in �gure 4.11 we have the points T 0 and

T 00.

We travel along the two epipolar lines l1 and l2, matching points as we go. Let

the variable s1 measure the arc length along l1 and s2 along l2.

We will assume that the objects are suÆciently far away from the eye so that

di�erences in arc length accurately reect di�erences in distance from the eyes.

To understand the topology of the collection of possible matchings, we draw a

graph with two axes, the horizontal axis being the distance along the right image,

and the vertical axis plotting the distance along the left image. Any possible match

79

between these two images appears as a path in this graph.

We look at a simple example in �gure 4.12. The left image has a red patch 4

pixels from the left; while the right image has the same patch two pixels from the

left. We draw the two images on the corresponding axes. Any match corresponds

to a line drawn in this graph. We have to allow for jumps, either horizontal, or

vertical. These are the places where the disparity changes; i.e. where there is a

partial occlusion. Since partial occlusions are caused by di�erences in depth of the

objects in the three dimensional scene, the points of disparity change are the ones

that we concentrate on.

In �gure 4.12 we have drawn a particular match in green. It is clear from

the �gure that at any point of the match, one of three things can happen to the

succeeding point:

1. The next point has both the left coordinate as well as the right coordinate,

the immediate successor of those of the current point. This happens when the

disparity does not change. Thus (in this particular match) the constructed

depth in the three dimensional scene does not change.

2. The next point shows a vertical jump. Thus, on the right image the corre-

sponding points are immediate neighbors, but there is a gap between them

in the left image. Thus, the disparity changes. There is some pixels on the

left image that the right eye cannot see, which means that the reconstructed

surface comes closer to the viewer.

3. This case is the exact opposite of the previous one. The disparity changes in

80

Left Image

Right Image

Right

Left

Match

Disparity = 0

Disparity = 2

Figure 4.12: Two simple images and the l-r diagram showing their match

81

the opposite direction.

To make the ideas concrete let us give some formal de�nitions.

De�nition 4.12.1 A match is a sequence of pairs of points, one in each image,

such that at least one component of consecutive pairs consists of consecutive points

in the corresponding image.

In this de�nition, we consider only epipolar lines, and so images are one dimen-

sional. Let the (images of) the two epipolar lines be I1 and I2 respectively. Say,

I1 is the left image and I2 is the right image. For points on the same image, we

denote the relation of adjacency by �. Then, a match is a sequence

f (pi; qi) j pi 2 I1; qi 2 I2; ((pi � pi�1) _ (qi � qi�1))g (4.24)

De�nition 4.12.2 Disparity at any point P = (p1; p2) is de�ned as disp(P) =

p2 � p1.

We will associate a cost function with every match. In keeping with cost func-

tions proposed for stereo correspondence problem by earlier literature, we want this

cost to be small in two cases

1. If the corresponding pixels in the two images are similar. This is the data

term.

2. If the match does not \stretch" too much. In other words, if the disparity

does not vary too much from point to point. This is the prior.

Thus, the cost of a match, M , is

E(M) = EDATA(M) + EPRIOR(M) (4.25)

82

In what follows, the speci�c forms of the two terms do not matter too much. We

only assume that they are of the following forms, where the match M is f(pi; qi) j i =
1; 2; : : : ; n g.

EDATA(M) =
nX
i=1

F1(I1(pi); I2(qi)) (4.26)

EPRIOR(M) =
nX
i=2

F2(disp(pi; qi)� disp(pi�1; qi�1)) (4.27)

where F1 and F2 are functions and F2 is symmetric about the origin. The function

F1 is a similarity measure which tells us how alike points pi 2 I1 and qi 2 I2 are as
pixels.3 Thus, instead of being a simple function of the pixel values, it can look at

a window around the two points and determine how alike the parts of the images in

the window are. F1 is small (positive, ideally zero) when the two points are identical.

Similarly, F2 is a function, which is really a function of the absolute value of its

argument. The value of F2 increases as the absolute value of its argument increases.

For simplicity, we restrict the possible values the disparity can take to be between

�Wfd and Wfd, where Wfd is a positive (integral) parameter.

The dynamic programming algorithmwhich minimizes this cost function is fairly

straightforward, and resembles the viterbi algorithm from HMM literature.
3To be more realistic, we should include the neighboring pixels (even ones o� the epipolar

lines) in the EDATA. This is one way we can enforce (for example) continuity conditions stating

that the computed disparity values are continuous functions of position.

83

4.13 Feature Selection for Stereo Correspondence

Now we note that this basic approach to stereo correspondence can be much im-

proved if we incorporate information from features in our dynamic programming

search. Many approaches to such feature-based stereo has been described in the

literature. However, these approaches all use features which are chosen in an ad hoc

manner. We now look at how our information theoretic approach towards feature

selection can be used in this setting.

Thus, as in the case of one-dimensional functions before, we de�ne a probability

distribution on the set of allowed matches:

P (M) / exp(�E(M))

and as above, we normalize the probability to sum to 1 :

P (M) =
exp(�E(M))

Z
(4.28)

where Z, the partition function is de�ned as

Z =
X

M is a match

exp(�E(M))

In the case of one-dimensional signals, we de�ned the variables si which denoted

the presence or absence of a feature at location i, and used this to modify the pos-

terior cost function, as well as the posterior probability distribution. Furthermore,

we could interpret this modi�ed probability distribution as the posterior distribu-

tion of the model given the image. Such an encoding is problematic in the case of

stereo.

84

First of all, we would like to select subsets of both the left as well as the right

epipolar lines as features. One possible course of action would be to set up pairs

of variables si and tj to encode the fact that the i'th pixel of the left image and

the j'th pixel of the right image belong to the feature. We could then use these

variables to modify the cost function in a similar manner. However, interpreting

this modi�ed cost function as the posterior probability of the model given the value

of the feature is problematic.

4.13.1 Features for Stereo

The prime probabilistic structure in this formulation of epipolar line stereo is the

probabilistic structure of the matches. Though there are particular pairs of points

(one in the left image, the other in the right) which are more likely to be matched

to one another, these probability values are never high enough that we can say with

certainty that that particular match is (almost) certain. Many of these \points of

concentration" are simply the locations of edges where the tendency of the matches

to concentrate is driven by the local structure in each image. While these features

might be important as generic features, we will argue that not all of these can be

considered as good features for the stereo correspondence problem.

The primary task of the stereo correspondence algorithm is the computation of

the disparity map. an image feature helps in this algorithm if it helps resolve any

ambiguity in the disparity map at that point. Thus, in regions of the image which

can be unambiguously placed in either the foreground or the background, features

of the individual images will not occur as features for the stereo correspondence

85

problem. The ability to judge the pertinence of image features for the task of stereo

correspondence calculation thus cuts down the number of unnecessary features and

leads to a more compact input to the dynamic programming problem.

4.13.2 Feature Selection for Stereo

Now that we know what a good feature selection algorithm should generate, let us

look at how we can approach feature selection. As we indicated earlier, it is diÆcult

to even formulate a (regularized) KL-distance measure that will help us in this task.

However, we can fall back upon the approximate approach we discovered for the

case of one-dimensional signal. There we discovered (empirically) that regions of

high variance indicate the presence of features.

We can apply that criterion in this case. Thus we are led to a feature selection

algorithm that starts with a probability distribution on the set of matches given by

equation 4.28 and calculates the probabilities of matches for every possible pair of

pixels, one on the left image and the other on the right image. From this marginal

distribution, we compute, for every pixel on the left image, the variance of the

distribution of matching right pixel, attaching a �xed cost to the case where there

is no match. The locations on the left image where this variance is high is considered

a feature for stereo. Similarly, we compute these distributions for the right image

and get corresponding features.

86

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

���
���
���
���

Right

Left

Current Vertex

Next Vertices

with occlusion

no occlusion

Figure 4.13: Neighborhood structure of an l-r diagram

87

4.14 Computations

Now that we have an idea of what we want to achieve, we describe our algorithm

in greater detail. The most diÆcult step of the algorithm is the computation of the

marginal described above. We now describe the computation of this marginal. We

will achieve somewhat more, as we will end up computing not only the probabilities

of particular matches, but also the transition probabilities between them.

4.14.1 Neighborhood Structure of l-r Diagrams and Computation of

Path Probabilities

As before, we work in the space of pairs of points, the �rst from the left image,

I1, the second from the right image, I2. We can think of this space as an N � N

square, where N is the number of pixels in each epipolar line. We call this square

variously l-r square, l-r space, or l-r diagram. The two components will be called

the l-component and the r-component respectively. In this picture, a match is a

sequence of points of the l-r space, such that for any two consecutive points of the

sequence, either the l-components or the r-components are consecutive (or both).

We will refer to a match as a path.

The structure of neighborhood of a point is determined by the de�nition of a

match. Equation 4.24 speci�es what a match can look like in the stereo problem

and we use this to de�ne our neighborhood structure. We show this in �gure 4.13

where the green and the blue cells are the neighbors (in one direction) of the red

cell. The blue cell corresponds to the case where there is no further change in

disparity. If the match goes from the red cell to any of the green cells the disparity

88

changes.

The particular neighborhood topology forces us to change our algorithms for

calculating the path probabilities. Since we can compute the costs fairly easily,

we can compute the path-products (�) quite simply by exponentiation. However,

computation of the probabilities involves our being able to normalize these products

in a consistent way.

We now show how a generalization of the earlier approach lets us do this compu-

tation. The �rst part of the computation is similar to one described in [92]. There

the computation of � and � is called belief propagation. In our work, we use these

values in a novel way to compute vertex and edge probabilities for an arbitrary

acyclic graph.

For every point in the l-r space, we want to calculate the probability that a path

goes through that point. As in the case of one-dimensional signals, here too do we

have a concept of path-product, denoted by �.

Notation

To simplify notation, we denote the the sum of the path-products of all paths

between two points p and q in the l-r square by p �! q. We also consider paths

that are of a �xed length t. Thus p
t�! q denotes the sum of path-products of all

length-t sub-paths between p and q; and p
t�! q �! r denotes the same sum over

all sub-paths from p to r that go through q and which takes t steps between p and

q. We also have notation for denoting that a path takes at most t steps between p

and q: p
�t�! q. In the above, we have to make a consistent decision as to whether

89

we include the local costs at the end points in the sum of path-products. Also, by

sub-path, we mean that we take just the costs that lie between the relevant points.

4.14.2 Probability Distribution on the Paths

The probability distributions on paths we consider here are similar to Gibbs Dis-

tributions that arise in Markov Random Fields (MRF) . However, the di�erence is

that, unlike in the case of MRF-s, we do not have a well de�ned boundary structure

such that all the inuence of the \rest" of the universe can be factored through the

boundary.

To de�ne the probability distribution, assume there is a multiplicative factor

�(v) associated with each vertex v, and a multiplicative factor �(e) associated

with each edge e. If e connects vertices v1 and v2, we will denote this last factor by

�(v1; v2). In our example of stereo,

�(v) = exp[�F1(p; q)]

�(v1; v2) = exp[�F2(disp(p2; q2)� disp(p1; q1))]

where F1 and F2 are as in equations 4.26 and 4.27 and the vertices v v1 and v2

correspond to matching p, p1 and p2 respectively with q, q1 and q2.

Now we can de�ne the probability distribution on the set of paths from the

source vertex s to the destination vertex d.

In our case of stereo, the source and destination vertices correspond to �nding

corresponding points on the epipolar line which are on opposite ends of the retinal

planes and which are suÆciently far away from center of the three dimensional

scene that we know their correspondence exactly.

90

Let p be the path consisting of the vertices s = v0; v1; v2; : : : ; vr = d. Let ei be

the edge joining vi to vi+1. Then the probability Pr(p) of the path p satis�es

Pr(p) / �(v0)�(e0)�(v1) � � ��(er�1)�(vr)

To get actual probabilities, we have to normalize the right hand side so that

they sum to 1 when summed over all the allowed paths. To simplify the notation,

we will call the quantity on the right hand side the path product for the path p. We

will denote the path product of p by �(p).

�(p) = �(v0)�(e0)�(v1) � � ��(er�1)�(vr)

Pr(p) =
�(p)P
p�(p)

where the summation in the denominator is over all the paths of the graph which

start at s, the source, and end in d, the destination; i.e. the legal paths. We

note that this is the same expression (in a di�erent notation) as that given in

equation 4.28.

We can do this computation explicitly, but it su�ers from the twin problems

of speed and accuracy. Generation of each path is expensive; and often there are

overows or underows in intermediate results, and we end up with 0=0 or 1=1
forms.

Notice that when we express the multiplicative factors (the �'s) as negative

exponentials of costs (or energies), we get the standard form used in Gibbs distri-

butions. The situation is much more complicated because of the topology of the

91

underlying graph is not that of a lattice.

1. Paths between any two vertices might have varying lengths.

2. Given any vertex, there might not be a (small) set of vertices such that any

path which includes the given vertex must include a vertex of the set. i.e. we

might not be able to de�ne boundaries. (Loss of Markov property)

Below we present an algorithm which is applicable to any �nite acyclic graph.

4.15 Formal Calculation of Probabilities

For every vertex of the graph, we want to calculate the probability that a path

goes through that vertex. To simplify notation, we denote the the sum of the path-

products of all paths between two vertices v1 and v2 of the graph by v1 �! v2.

(v1 �! v2) =
X

p goes from v1 to v2

�(p) (4.29)

We also consider paths that are of a �xed length t. Thus v1
t�! v2 denotes the

sum of path-products of all t � length sub-paths between v1 and v2; and v1
t�!

v2 �! v3 denotes the same sum over all sub-paths from v1 to v3 that go through

v2 and which takes t steps between v1 and v2. We also have notation for denoting

that a path takes at most t steps between v1 and v2: v1
�t�! v2. In the above,

we have to make a consistent decision as to whether we include the factors at the

terminating vertices in the sum of path-products.

92

The naive calculation of the marginals at the vertices create intermediate sums

that are too large. To prevent this from happening, we de�ne our �nal probability

in terms of intermediate quantities which are themselves other (conditional) prob-

abilities. Thus, we avoid the problem of handling too large numbers. Intuitively,

this is similar to carrying various scale of quantities along the computation, and

changing the current scale whenever the value of a path-probability becomes too

large or too small.

With this notation, we can de�ne � and �. These are functions of two variables,

v, which varies over the set of vertices, and t, which varies over the set of positive

integers. This generalizes the � and � variables of one dimensional models (and

HMM-s) in that for those there was no dependence on t.

The variable t counts the path-lengths of various paths from the source s to the

variable vertex v. Thus, we should work with graphs which has an upper bound on

the maximum value of t. We are also �ne if the edge factors and vertex factors are

small enough that too many cycles become improbable and so we can �x a cut-o�

for t.

93

Then, we de�ne eight quantities:

�[t][v] =
(s

t�! v)P
v(s

t�! v)

�0[t][v] =
(s

�t�! v)P
v(s

�t�! v)

�[t][v] =
(v

t�! d)P
v(v

t�! d)

� 0[t][v] =
(v

�t�! d)P
v(v

�t�! d)

We have encountered (special cases of) � and � before. The primed quantities

�0 and � 0 are normalized value which measure path-products of partial paths of

length bounded by t. Not all of these quantities are algebraically necessary, but we

use one or the other depending on which particular value leads to a 0=0 form.

[t] =

P
p(s

t�! p)P
p(s

t�1�! p)

0[t] =

P
p(s

�t�! p)P
p(s

�t�1�! p)

Æ[t] =

P
p(p

t�! d)P
p(p

t�1�! d)

Æ0[t] =

P
p(p

�t�! d)P
p(p

�t�1�! d)

The quantities , Æ and their primed counterparts are the ratios of the normal-

ization constants involved in the computation of � and � for successive values of t

(and similarly for the primed versions).

94

�[t][v]
X
v0

�[t� 1][v0] (v0 �! v)

[t� 1]
X
v

�[t][v]

�[t][v] �[t][v] = [t� 1]

�0[t][v]

8>>>><
>>>>:

P
v0 �

0[t� 1][v0] (v0 �! v) if v 6= s

�0[t� 1][v] else

0[t� 1]
X
v

�0[t][v]

�0[t][v] �0[t][v] = 0[t� 1]

�[t][v]
X
v0

�[t� 1][v0] (v �! v0)

Æ[t � 1]
X
v

�[t][v]

�[t][v] �[t][v] = Æ[t� 1]

�0[t][v]

8>>>><
>>>>:

P
v0 �

0[t� 1][v0] (v �! v0) if v 6= d

�0[t� 1][v] else

Æ0[t� 1]
X
v

�0[t][v]

�0[t][v] �0[t][v] = Æ0[t� 1]

Figure 4.14: Recursive Computation of �, � and other quantities

95

Probabilistic Interpretation and Recursive Computation

Let us discuss the probabilistic interpretation of these quantities. We will just

discuss the meaning of � and . To do that, �rst assume that in the original

de�nition of the probability of a path, instead of constraining the paths to begin

at s and end at d, we put the weaker constraint: begin at s, as before, but end at

any vertex. Thus the probability space is changed. (Similarly � is de�ned in yet

another probability space in which d is kept �xed, but the restriction on the source

is lifted.) Then, in this new probability space, �[t][v] is the probability that a path

ends at v, conditioned on the fact that it is of length t. [t] is the normalization

constant that occurs when we try to calculate the �[t]s from the �[t� 1]s.

The recursive calculation is shown in �gure 4.14. Note that, in the �gure, the

 sign actually means assignment. Thus the quantity on the left hand side denotes

the new value of that quantity, while if it occurs on the right hand side of the same

assignment, it denotes the old value.

By an accident, we end up calculating the values for t, from the values for t� 1,
thus t denotes both path lengths as well as \time".

First we calculate �s and s recursively as also �s and Æs as well as their primed

counterparts. Notice how �ts in as the normalization constant for �.

Connection to Pearl's Belief Propagation Algorithm

The variables � and � we de�ned above are related to the belief values as de�ned

in Pearl's belief propagation algorithm (see [92]). We could interpret our �[t][v] as

the (forward) belief value at the vertex v at time step t. Pearl was interested in the

96

�nal values of the beliefs. However, we use the time dependence to calculate the

actual probabilities of vertices and edges.

4.15.1 Computation of Vertex and Edge Probabilities

We compute the vertex and probabilities according to the following strategy. For

every t0 we calculate the conditional probability of a vertex conditioned on the

(complete) path lengths being t0. Then if we can compute the probabilities of the

path lengths, we have completed our task. Now the conditional probability itself is

expressed as a sum of conditionals, one for each distance the vertex v can be away

from s, the starting vertex.

We use the and Æ values for calculating the probability distribution of \time",

i.e. the probabilities that a path is of a particular length. We �rst calculate the

cumulative probability function, Pr(path has length � t). When t is the maximum

value for number of steps, this probability is 1. We calculate the ratios of successive

probabilities:

Pr(path has length � t)

Pr(path has length � t + 1)
=

(s
�t�! d)

(s
�t+1�! d)

=
�0[t][d]

�0[t + 1][d]

1

0[t]

Once the cumulative probabilities are calculated, the actual probability distri-

bution for time can be calculated by di�erencing.

We can thus implement our strategy. We denote by Pr(t) the probability that

a path is of length exactly t. Then, to calculate the probability that a point, p, is

on a path, we �rst calculate, for all values of t, the probability that p is at t steps

97

from s, given that the paths are of length t0. Call this last probability Pr[v][t][t0].

Then

Pr[v][t][t0] =
�[t][v] �[t0 � t][v]P
p �[t][v] �[t

0 � t][v]

gives the conditionals mentioned above.

Then, we can calculate the probability the probability that a point v belongs to

a path by a simple summation:

Pr(v) =
X
t0

X
t

Pr[v][t][t0] Pr(t0)

In this way, we can compute the various point probabilities involved.

4.15.2 Edge Probabilities

We can also calculate the edge (or transition) probabilities using a similar strategy.

The formulas are more complicated, but the idea is the same one of breaking up the

probability as a conditional probabilities over the total path length, and calculating

each conditional by a sum of separate conditionals. Each term in this sum depends

on the position of our edge of interest in terms of the number of steps from the

start vertex.

Thus, the relevant quantity to calculate in terms of � and � is

Pr0[v][v0][t][t0] =
�[t][v](v �! v0)�[t0 � t� 1][v0]P

fv;v0g �[t][v](v �! v0)�[t0 � t� 1][v0]

98

This gives the probability of an edge at t steps from s and going from v to v0,

given that the total path-length is t0.

Thus, we get the probability of the edge by summing these quantities weighted

by Pr(t0), the probability of a path being of length t0.

Pr(v; v0) =
X
t0

(
X
t

Pr0[v][v0][t][t0])Pr(t0)

4.16 Results for stereo: variances

We now look at how our feature selection algorithm performs. The test set we run

our algorithm on must have certain characteristics.

1. First of all, we should have relatively large areas of disparity discontinuities,

indicating the presence of half-occluded regions.

2. There should be irrelevant features in the unoccluded part of the image which

our algorithm should reject.

3. Clearly the parts of the image that are interesting lie near the occlusion bound-

aries. If there are features in this region, which decrease the uncertainty of

locating the occlusion boundary, then the problem is simpli�ed.

The input we use is chosen so as to create an adversarial situation, where the

above criteria are satis�ed. Figure 4.15 shows the left and the right image. This

is a fairly complicated image with illusory contours. The three dimensional scene

which generated this image consisted of a white cross in a black box. Floating in

99

(a) (b)

Figure 4.15: Input image: box in front of a cross: (a) left, (b) right. Notice the displace-

ment of the box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

40

60

80

100

120

140

160

180

200

220

240

Left pixel location

In
te

ns
ity

 v
al

ue

Figure 4.16: Intensity values along the epipolar line: left image

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

40

60

80

100

120

140

160

180

200

220

240

Right pixel location

In
te

ns
ity

 v
al

ue

Figure 4.17: Intensity values along the epipolar line: right image

101

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

2

3

4

5

6

7

Left pixel location

V
ar

ia
nc

e

Figure 4.18: Variance Plots: left image

102

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

2

3

4

5

6

7

Right pixel location

V
ar

ia
nc

e

Figure 4.19: Variance Plots: left image

103

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Left pixel location

O
cc

lu
si

on
 P

ro
ba

bi
lit

y

Figure 4.20: Plot of occlusion probability: probability that a pixel location on the left

image is invisible from the right

104

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Right pixel location

O
cc

lu
si

on
 P

ro
ba

bi
lit

y

Figure 4.21: Plot of occlusion probability: probability that a pixel location on the right

image is invisible from the left

105

front of the cross is the image of a white box. There is an illusory contour because

the intensity of the box and that of the cross coincide.

We concentrate on the part of the image that does not have the illusory contour,

but still has non-zero disparity gradient. This would be the narrow horizontal strip

near the top and bottom of the picture which consists of a light region followed

by a dark region followed, in that order by a light, a dark and a light region. We

indicate the intensity pro�les along the epipolar lines in �gures 4.16 and 4.17. The

5th and 6th pixels on the left image are invisible from the right. Similarly, the

11th and 12th pixels on the right image are invisible from the left. Clearly, for this

pair of input images the leftmost edge (between the 2nd and 3rd pixels) and the

rightmost edge (between the 14th and 15th pixels) are non-essential.

We show the computed variance values in �gures 4.18 and 4.19. The local

maxima in the variance plots coincide with pixels which are invisible from the

other side. Furthermore, the irrelevant edges are not picked up. Thus, the variance

approach for feature discovery yields features which satisfy the criteria we delineated

above.

We also plot the occlusion probability in �gures 4.20 and 4.21. We see from

these plots that the occluded regions are correctly identi�ed as such.

4.17 Discussion and Summary

At the end of this chapter, we come to the end of the �rst part of our thesis. In

this part we looked at a principled method of selecting features. This criterion was

the same as the notion of suÆcient statistics. This connection between suÆcient

106

statistics and informative features is new and is the central idea behind feature

discovery.

In this chapter we looked at two concrete problems to see how the abstract

formulation could be applied. In the �rst example, that of estimating the model

for one-dimensional signals, we had a feature space which could be parameterized

very simply using a single vector. The feature selection task is therefore easy to

formulate and solve.

However, this approach leads to slow algorithms for feature selection due to

slow convergence and the existence of local optima. We found that an approximate

concept using variances led to very fast algorithms which performed well.

The set of features for the problem of stereo correspondence calculation does not

have a nicely parameterization. For this reason, it is diÆcult to directly apply the

general technique in this case. However, we can apply the variance method fairly

simply, and this leads to an algorithm which avoids unnecessary features which

might be otherwise present in the input, but which are not relevant for the task of

computing the stereo correspondence.

While the speci�c cost functions involved in one-dimensional signal estimation

are hardly new, the speci�c form of the cost function used for feature selection (as

opposed to signal estimation) which results from our general approach is new. The

approximate approach using variances is new as well. The same is true about our

variance based approach to discovery of features for stereo.

In the succeeding chapters we investigate systematic ways in which features

(whether optimal or not) can be used to yield information contained in them.

107

Chapter 5

Using Features: Associative

Memory Problems

5.1 Introduction: The Generic Use of Features

In the previous chapters we have looked at an ab initio approach to feature-selection.

We posited di�erent tasks had di�erent features, depending on how much task-

relevant information a particular feature carries. Naively, this approach leads to

completely di�erent features for di�erent tasks. However, we suggested that fea-

tures for problems such as the model-selection problem are generic, in the sense

that a feature for any other task is a function of a feature of the model-selection

problem. Of course, not all features for model-selection need be relevant for every

task. We saw an example of this phenomenon when we considered feature-selection

for the stereo correspondence problem. In this problem, edges in the input in re-

gions of no great change in disparity can be considered irrelevant because we can

108

infer the general shape of the disparity map (locally) even if we did not know of

the presence of the edge.

In this and succeeding chapters, we stop looking at feature selection and, in-

stead, look at how features can be used eÆciently. The features we consider in this

discussion could be discovered using any method. We even allow ad hoc features

which are known to be useful in any particular problem domain. Thus, this is really

an analysis of how features code the information they carry. However, even though

we do not formalize the conditions we impose on our features, we deal with a fairly

restricted class of features. To get an informal idea of what these limits are, we will

consider problems of a speci�c form. As our discussion will indicate, however, we

do not really lose any generality by doing this.

5.1.1 Fragment Completion

The class of task we consider can be described as fragment completion. Simply

stated, it is the following:

Given a set M of items (the memory), how can we eÆciently �nd a speci�c

member of M from partial information about it.

The kind of information we will be given are fragments. Thus, if our memory

is a dictionary of English words, we will be given a cue where some positions are

blank and some are �lled in, and our goal would be to �ll in the blanks to get a

valid English word, viz. one in the dictionary. For example, we could start with

the cue \s a e" and complete it to get the word \sesame". In fact, in chapter 7

we consider such a memory of words.

109

Fragment completion for memories of words are special, in that the parts that

are known are known exactly. This is not the case for memories which store images.

Thus, given a fragment of an image, we can only demand that the completed item

be approximately equal to the input cue over the region the fragment covers. In

chapter 6 we look at an example of such a situation.

Now that we have an inkling of the kinds of problems at which we are looking,

let us discuss the role features play in this kind of task. Most current approaches

to detection of objects consist in calculating a feature vector for the input cue, and

comparing this with the (pre-computed) feature vectors of the items in memory.

For many simple situations, where not too many features are occluded, this

algorithm performs quite well. However, the drawback of this kind of approach

is that if the input fragment covers too many features, our algorithm can be led

astray.

We explicitly address the problem of retrieving items in memory from partial

information. In particular, we focus on associative (or content-addressable) memory

tasks. This is in contrast to the techniques described above, which try to match

whole images without signi�cant occlusion. In contrast, we actually look at the

case where there is signi�cant occlusion in the input image.

Furthermore, when we deal with more general kinds of features, for example,

the features discovered using some approach as in the �rst part of the thesis, it is

not clear that an approach of this kind is fruitful. For one thing, there might not

be a clear notion of a position of the feature; or we might not be able to calculate

the features for subdomains of the original image.

110

Much more importantly, our goal is to discover algorithms that man-

age to accomplish this task, without looking at all the items. Thus, per-

force, we are restricted to looking at local characteristics of the set of items and

use this knowledge, somehow, to aid in fragment completion. Sometimes this will

prove impossible. In these cases we try to minimize the number of lookup steps we

perform (though not explicitly).

The reason why we do not want to look at all the memory items, at least at

the time we answer the queries, will become clear in the next subsection where we

discuss the genericity of the class of problems we are considering. From a more

practical point of view, such an algorithm will let us handle huge memories, which

might be otherwise impossible to store in compute memory.

We allow ourselves the luxury of pre-treating the memory elements during which

we try to learn the local characteristics of the items in memory. Our ability to

do such a learning step is closely related to the question of a \local / global"

decomposition of problems.

The (meta-)algorithm we come up with can be applied to this more general

classes of features,1 while still retaining a similarity to the above \minimum dis-

tance" algorithm which works in simple situations.

Our approach does not involve looking at the items (images). Rather, we learn

statistical properties of the items in memory and use this knowledge to design an

eÆcient look-up algorithm which makes very few mistakes.
1provided we can de�ne certain \matching" functions

111

5.1.2 Without Loss of Generality?

However, the question that remains to be answered is whether the kind of fragment

completion tasks we look at is general enough to shed light on other problems

involving the use of features. We do not o�er a de�nitive answer to this question.

There are, however, some hints that we might not lose too much generality in

considering this speci�c a problem.

Let us �rst look (again) at the way we argued that features for the model

estimation problem are generic. The gist of that argument was that in a situation

where the input is generated from a model, the conditional distribution Pr(I jm)

of the input given the model contributes no useful information. In other words, it

is pure noise. Thus, any useful information contained in the input (image) is also

contained in the model, and thus if we can reliably estimate the model m , we can

use m instead.

This line of argument suggests that model estimation is the whole reason features

exist. While this is not entirely true (as we saw for stereo), it is a useful picture. At

this point, we can construct an arti�cial scenario, where the models are the items in

memory and the generative process consists of taking a fragment of an item. This

process, at least in many situations, does not add any extra information; and thus

the condition on Pr(I jm) is satis�ed for it.2

2We ignore cases like stereo, where occlusion actually yields information about the three-

dimensional position of objects. The argument we outline is, in any case, intended to be an

indication that our problem has a good deal of applicability, even when the underlying problem

is not one of content-addressable memories.

112

5.1.3 Incorporating Ad Hoc Features

The other issue we have to treat is what kind of features can we use for associative-

memory problems of this kind? Our (meta-) algorithm is actually fairly general in

this respect. We describe an architecture, which itself is pretty invariant, but which

lets us incorporate diverse kinds of features; provided we de�ne certain \matching

functions". The e�ectiveness of the algorithm of course depends on the suitability

of the given features for the given memory.

At this point, we do not consider addition and deletion of items to and from

the memory. Thus, the speci�c set of items in the memory is static. Our algorithm

will still work, however, so long we do not add or delete too many items, or if the

new items are not too di�erent statistically.

5.2 An Iterative Framework for Memory

Thus, as we explained in the introduction, we look at the problem of retrieving a

particular item from a memory, given a fragment of it. In this chapter, we describe

high-level algorithms for this problem. In later chapters, we look at speci�c problem

domains, and see how we can instantiate our algorithm for these domains.

In chapter 6 we do this in the context of face recognition. Thus, we are given a

library of face images. Given an image of a fragment of a face, possibly with slight

changes in viewpoint and other noise, our task is to determine which face image

in the library is the best completion of the input image. For faces, at least, there

is a naive algorithm to do this: we look at each library image and compute some

113

Fragment

Completion

Algorithm Output

Completed image

from memory

Preprocessing

 or

Learning

step

Input Cue

Memory
Input to Algorithm

Figure 5.1: The Fragment Completion Task

distance function from the input image, choosing the library image closest according

to this distance. For most problem domains, there are analogous methods which

involve looking up the library of items.

Although these tasks are very challenging computationally, people perform them

quite well, and in di�erent problem domains. Frequently, partial information trig-

gers a complete memory. At the same time this process is not perfect, as we will see

from human performance on completion of word cues, described in a later chapter.

An Example

To explain our computational model, consider the example in which one stores a

set of face images in some database. The query (or cue) is a partial image, say

a horizontal band. The position of this band can change, but for each query it is

known, i.e. we do not have to estimate this position. Our goal is to �nd the image

114

in the database of which the query is a sub-image. Figure 5.1 shows a schematic

diagram.

Let us �rst assume that all the images in memory are normalized so that the

image sizes are the same for all the images in memory. Thus we deal with m � n

dimensional images. The set of all possible m� n images constitute a mn dimen-

sional vector space. Let us consider the subset of this space which consists of the

images actually stored in the database. We denote this subset byM. Our input is

a partially occluded image. It de�nes an (axially aligned) aÆne subspace ofM on

which all completions of the input image lie. We will denote this coordinate sub-

space by I. Of course, in the presence of noise, the completions will not lie exactly

on the subspace I but, rather, will be close to it. Our goal is to �nd the nearest

match between M and I, i.e., the completion of the query that best matches an

item in memory.

Another Example

In a later chapter we will consider the example of a memory system storing English

words. In that example one wishes to �nd a word to match the input query, say

\ e o i t ". Here a \ " indicates an unknown character. Thus, we consider

cases where the positions of the unknown characters are known. We can think of

the input space, I, as the space of all possible strings that are consistent with this

query. M denotes the set of all strings in memory.

115

5.2.1 Abstract Statement of the Associative Memory Problem

We now state the problem of associative memory in terms of the two spaces M
and I. In the most general case,M denotes the set of items in the memory. This

set might have some other additional structure which we might exploit in speci�c

cases. I denotes the set of possible completions of the given input. Thus I depends
on the speci�c input given to the associative memory.

Our task is to �nd the element inM which is closest to I in the set theoretic

sense. Thus, we considerM and I as subsets of some metric space with distance

function d and de�ne distances between a point p and a point-set S as

d(p; S) = inf
q2S

d(p; q) (5.1)

Thus, in the associative memory problem, we seek the element m 2 M such

that d(m; I) is minimized:

m = argmin
m2M

d(m; I) (5.2)

= argmin
m2M

inf
i2I

d(m; i) (5.3)

Clearly, we need to exploit whatever additional structure is available to us. In

the case of face recognition, we use the fact that the elements in the memory as well

as the input cue lie in a linear Euclidean space, and we can use all the machinery

of such spaces. Thus we can do, in particular, principle component analysis.

In the case of word memories, which we consider in the next chapter, our addi-

tional structure consists of the monoid structure of word concatenation.

116

5.2.2 A Slight Generalization: The Probabilistic Setting

Under certain situations, the above setup is inadequate. In many cases, where the

memory elements do not have too much internal structure, it is sometimes advisable

to add more structure to the space M in order to obtain better algorithms. One

such desirable extra structure is convexity. Let us explain how we can implement

this.

Let us suppose that the set of items we wish to store is

M1 = fm1; m2; : : : ; mng

We choose the spaceM to be the space of probability distributions over the set

M1, whose elements m̂ are assignments of probability values for each mi :

M = f(p1; p2; : : : ; pn) j p1 + p2 + � � �+ pn = 1, and pi � 0 for all i.g

We still have to make some kind of choice for a distance function between ele-

ments of I and elements ofM, i.e. probability distributions overM1. This can be

accomplished in many cases. At the very least we can consider the distance func-

tion d̂(m̂; I) =
P

j pjd(mj; I). This has the advantage that the result of the above

minimization using this distance function actually leads to an element mk 2 M1

which minimizes the original distance function, but an approximate minimization

can sometimes make sense. We will use such a probabilistic memory when we

consider the example of face memories.

117

Convexity of the Input Space I

We can use a similar trick to make the input space convex as well. Thus we de�ne

I to be the set of probability distributions on some set M depending on the input

cue. One possible choice for M would be the items in memory which complete

the input cue. However, under certain situations, computing this set is diÆcult.

Fortunately however, we usually have some property P on a larger set that we can

verify very easily. Thus, for the memory of English words, we can easily verify

that a certain string of letters has the correct length and matches the input cue;

however, verifying it is a valid word is more diÆcult. Under these circumstances,

we can choose M to be the set of structures satisfying the property P .

5.3 Practical Considerations: Incorporating Domain Spe-

ci�c Knowledge

As equations 5.2 and 5.3 show, we can consider the problem of associative memory

to be an instance of the problem of �nding nearest neighbors. If the sets I andM
associated in this procedure are convex then there is an iterative algorithm that is

guaranteed to �nd the nearest neighbors. This algorithm proceeds by repeatedly

minimizing the distance function. This leads to an algorithm for �nding the distance

between the two setsM and I.
In this formulation, the memory spaceM is the one de�ned by the elements in

the memory, whereas the space I is de�ned by the speci�c input cue presented. In

our setup, we always treat theM as a constant space. This is because, we will run

118

our learning algorithm after the memory elements are given. The output of this

process is a machine (or algorithm) which takes in cues and generates some m 2 M
which is a \good" completion of the cue.

However, iterative algorithm for computing distances cannot be used if the

spaces involved are not convex. We can remedy this drawback by choosing convex

sets forM and I, as indicated in the previous section. However, there is still no

guarantee about the speed of convergence. Indeed, the iterative method of �nding

the nearest neighbors is usually very slow, unless it is speeded up by means of

domain dependent tricks. As we would like our memory look-up task to be quick,

this is a big problem.

Furthermore, we cannot improve our lookup speeds unless we consider domain

dependent characteristics. The spaces involved in this formulation always have

fairly large dimensions, at least for applications in computer vision. Thus we look

for fast algorithms for the nearest neighbor problem in high dimensional spaces.

Among the best performing algorithms is an �-approximate (probabilistic) algo-

rithm due to Kleinberg ([74]) which provides a query time of O(n+ d log3 n) where

n is the number of items and d is the dimension of the space. This algorithm

needs a pre-processing time of approximately O(d2n) and storage requirements of

approximately O(dn). Even these fairly reasonable complexity bounds could be

very slow when both n and d are large. Below, we describe an architecture which

lets us capture the domain dependent information in a uniform way.

Many of the speed improvements are obtained by precomputing whatever we

can. However, the space I is itself determined by the input. For this reason, we

119

cannot precompute it. This makes our algorithm slow in situations where there is

a lot of heterogeneity in the set of memory elements as well as in the set of possible

input queries.

5.4 Nearest Neighbor Search in Feature Space

In order to obtain a fast and accurate lookup algorithm without too expensive a

pre-processing step, we incorporate features in our model. So far, our model had

used the two sets M and I, and so, was similar in spirit to a two level (neural)

network. We now imagine there is a third hidden layer between these two. This is

the set F which denote the set of features peculiar to the elements in the memory.

We will present a framework for performing memory tasks in which these fea-

tures are used to mediate the matching process between items in memory and an

input query. Features therefore allow approximate matching while requiring much

less processing, and much less communication between potentially complex inputs

and potentially huge memories.

To do this eÆciently, we demand that the feature space description of any

particular element in the database be simple enough; and, as in chapter 3, capture

suÆcient information about the possible values of the database elements from an

input query. Furthermore, the features should be close enough to the input space

so as to be able to distinguish the possible inputs.

We �rst present our generic algorithm to do associative memory recall using

features. This will make clear what requirements we demand of our feature space

F . The algorithm itself is novel, but combines ideas from many known algorithms

120

Feature Space (F)

Memory (M)

Input (I)

match I,F

match F,M
match M,F

match F,I

Figure 5.2: Relevant spaces and matching functions between them.

121

in an integrated fashion.

We use the matching functions: matchI;F ; matchF ;I; matchF ;M; matchM;F .

matchA;B takes an element in B and generates the element in A that \best matches"

it. The notion of a \best match" will depend on which pair of spaces we are talking

about.

After some domain-speci�c initialization, we apply the iteration:

f 0 matchF ;I(c); c 2 I (5.4)

m matchM;F (f
0) (5.5)

f 00 matchF ;M(m) (5.6)

c matchI;F(f
00) (5.7)

This algorithm can be seen as an approximation to a standard iterative approach

to �nding the nearest neighbors between two sets. Its success depends on the feature

space, F .

Explanation

Figure 5.2 shows a schematic diagram of one iterative step. Let us discuss what

happens in various situations to get a feeling for why this iterative scheme might

be useful.

In the �rst place, if the feature space F (denoted by the rectangle in the �gure)

is identical with the memoryM, we obtain the algorithm for distance computation

by repeated minimization. We note that this algorithm can get trapped in local

minima if the setsM and I are not convex. Now let us imagine that the space is

122

slowly changed from the initial value I. Thus, the elements ofM are not too far

from F . Further, assume that the projection ofM into F is contained in a convex

region. Under this situation, we can picture the role of F in the following way:

1. The matching function from I to F produces an element which is almost a

member ofM.

2. At this point the matching function to go to M and back to F produces

a perturbation, that acts as a noise to prevent the iteration from getting

captured in a local minimum.

3. Thus, this iterative scheme generates nice results without too many iterations.

Choice of the Feature Space F

The choice of the feature space is driven by two (sometimes conicting) considera-

tions:

1. For eÆciency it must be much simpler to compare F to I andM than it is

to compare I andM directly.

2. For accuracy, the feature space must be able to approximateM and I rea-

sonably well.

Notice that the feature space F does not depend on the input. 3 Thus, we can

precompute the matching functions between F andM. This will lead to enormous

eÆciencies in the case of face image databases, as we will see.
3Though the particular features in an input will of course be dependent on the exact input

query.

123

5.5 Summary

At this point, we have a novel and simple high level algorithm which we claim lets

us easily incorporate features in a nearest neighbor algorithm to solve the problem

of associative memory. In this thesis we do not give a formal proof of this claim.

However, we back up this claim by using this architecture to design associative

memories in various problem domains. In chapter 6 we use linear features to obtain

an associative memory for faces. In chapter 7 we look at word memories. We

instantiate our algorithm and create a generalization of the well known BaumWelch

iterative algorithm. We also look at human performance in this area, and explore

various theories in the light of these experiments.

In all these constructions of associative memory, we will start with the skeletal

algorithm formed by blindly instantiating the parameters. After that we will apply

domain-speci�c optimizations to this basic algorithm.

124

Chapter 6

Linear Feature Spaces:

Associative Memory of Faces

We now apply the approach (described in chapter 5) to recognize partially occluded

images of faces. Human beings learn to recognize faces over a year in early child-

hood. This, together with an ability to recognize facial expressions, play a vital

role in our social (and political) life. The success of our approach depends critically

on the proper choice of the feature space (and the matching functions). Thus, we

�rst review the kind sof approaches people have used in this problem, and what

this reveals about the statistical structure of the problem.

6.1 Prior Work on Face Recognition

There are a few distinct notions that reappear in in various guises in most works

involving face recognition.

125

Early approaches to automatic recognition of faces in images involved searching

for various specialized geometrical shapes, such as eyes, nose, mouth etc. These

approaches di�er in the way this information are used.

6.1.1 Feature-Based Approaches

A face may be recognized1 even when the internal details of the individual features

are unknown. This usually leads to a decrease in the dimension of the input data.

The hope is that the remaining information is information about local geometry at

a very coarse level. The success of this approach depends on accurate extraction

of the features. See Goldstein ([49]), Kaya ([71]), Bledsoe ([25]) and Kanade ([68])

for examples of this approach.

6.1.2 Template Matching Based Approach

In its original form, template matching proceeds by matching the image (repre-

sented as a 2-dimensional matrix) to a single template for the whole face using

some metric. More sophisticated techniques are usually needed. We can do tem-

plate matching after preprocessing the images. We can also use multiple templates

to take into account multiple viewpoints etc. We can even use multiple templates

for each viewpoint each covering a smaller area of the face. See for example Baron

([11]) and Bischel ([23])
1i.e., the presence of a face may be detected

126

Deformable Templates

A more complex approach is to use a deformable template, where we allow the tem-

plate to be deformed before matching; but penalizing the deformation by putting

a cost to it. This is equivalent to having a prior model on the possible deforma-

tions that can occur. Burr ([29]), Buhmann ([28]), and Yuille ([123]) all describe

algorithms which can be called deformable template matching.

For a comparative study of these approaches see Brunelli and Poggio ([27]).

6.1.3 Linear Approaches to Face Recognition

Given a quadratic cost function, the optimal linear method for reducing redundancy

of di�erent factors is the Principal Component Analysis(PCA). In computer vision

literature, this is also known as the Karhunen-Lo�eve transform. In practice, the

method involves computing the eigenvectors of the correlation matrix. For this

reason we group such \best linear" approaches together as eigenvector approaches.

This class of approaches actually constitute a subclass of template matching, since

here we end up matching templates in a transformed space.

We can use a intensity-based approach to obtain data for an eigenvector ap-

proach. Thus we compute quantities from the actual intensity values and use these

in recognition. One approach is to seek representations of images in terms of some

smaller basis set. Image bases obtained using PCA have been used in face recogni-

tion tasks. Turk and Pentland ([115]) as well as Kirby and Sirovich ([72]) indepen-

dently advocated this approach.

There have been correlation based approaches to image recognition as well. Most

127

of these need some kind of dimension reduction to work in a realistic situation, and

the PCA decomposition can be seen as one such technique.

Low Level Representations not Depending on Intensity

Intensity values represent only one way of representing images. Other representa-

tions have been considered in the literature as well. These representations tend to

extract as much local information as possible, leaving the higher level algorithms

the task of extracting longer range dependences.

Edelman et al ([38]) considered zeroth-order Gaussian kernels; whereas Buh-

mann ([28]) used a representation where the images were captured using the re-

sponses of various Gabor �lters at every point (the so called \jets").

6.1.4 Higher Level Processing

The original approach used in Turk and Pentland's paper ([115]) uses a PCA de-

composition of the set of images in memory, and thus this space changes when new

items are added to the memory or when old items are removed. Some other rep-

resentations work for large classes of natural as well as arti�cial images. Rao and

Ballard ([100]) for example, used derivatives of Gaussian �lters at various scales

as their basis elements . Other approaches involve computing the PCA locally at

various scales or views and then combining the di�erent results to get the �nal

answer; instead of forming an omnibus \face space". Pentland, Mohaddam and

Starner gave such an approach in [93].

A slightly di�erent approach advocates using a Linear Discriminant Analysis

128

approach to form what are known as �sherfaces (instead of eigenfaces) in our face

recognition task. Linear discriminant analysis leads to optimal linear classi�ers to

separate two sets. Belhumeur et al ([18]) uses this approach to distinguish between

di�erent face images.

In an example illustrating how these di�erent approaches �t together, Buhmann

([28]) represented images using the aforementioned \Gabor jets" and used graph

matching as a higher level algorithm to merge the local information.

6.2 Linear Features for Image Retrieval

Following the approach of using linear algorithms for face recognition, we now

describe a memory for images in which the feature space, F , is a linear subspace

of the space of all possible images. We assume that a set of n images has been

stored in memory, so that each m 2 M is an image, thought of as a vector in

a d-dimensional space. The query, c is a partly occluded image. We assume we

know the locus of the occlusion, so c is a d-dimensional vector in which some of the

coordinates are unknown.

We assume that the memory elements come from some multivariate Gaussian

distribution concentrated near a small subspace in the space of all possible images.

This is the case, for example, for faces. See, for example Turk and Pentland ([115])

and Sanger ([104]).

The parameters de�ning this subspace can be either known from prior work, or

can be found by sampling from the distribution. In any case, we assume that this

is known in advance before the recall task is attempted.

129

Under this assumption, it makes sense to use this smaller subspace as the feature

space F . As explained above, we can either use precomputed parameter values for F
or compute it by performing Principal Component Analysis (PCA) onM, choosing

only the �rst p principal components. PCA has been widely used to select features

spaces in the past . Here, however, we use the space produced by PCA as part of

our iterative scheme for associative memory.

We use the iterative algorithm of Section 5.4. Since the cue, c has some �xed

coordinates and some coordinates that can take on any values, the images consistent

with c form an aÆne subspace2of the space of all possible images. This is the space

I.
If c matches an item in memory exactly, then I and M intersect. If not, the

element ofM closest to I is the image in memory that best matches c.

We choose matchF ;I ; matchF ;M and matchI;F to be the orthogonal projection

to the respective spaces, F and I. matchM;F takes an element f 2 F and outputs

the element m 2 M nearest f . This leads to the following iterative loop:

fInput: C 2 Ig
fDenote the Orthogonal Projection to an aÆne subspace S by �Sg
loop

F1 �F C

M argminM 02M d(F1;M
0)

F2 �F M

C �I F2

2An aÆne subspace is a regular subspace of a vector space, only translated by some vector.

130

end loop

6.2.1 Eigenfaces versus Iterative Approach

Before we discuss in detail the various optimizations we can perform on this skeletal

algorithm, let us explain what our iterative scheme buys us over a regular eigenface-

like approach. Essentially, the iterative schemes scores in terms of robustness to

occlusion. In other words, the eigenface approaches start losing accuracy when

more and more of the face is occluded and, thus more features are hidden. This

can be corrected for to a certain extent, but these are very ad hoc methods which

depends on innate knowledge of relative position of features. Our iterative approach

performs well even when a large fraction of the features are occluded.

6.2.2 O�ine Computations

In actual computation, we exploit the fact that many of the relevant spaces are in

fact known before we know the input. In particular, we can compute the feature

space F and the matrix for the orthogonal projection operator �F .

If we choose to calculate the space F using PCA on the possible memory ele-

ments, then we have at our disposal one parameter to control the capacity of the

intermediate feature space: the dimension of F , or, equivalently, the number of

principal components we keep. Let us call this number p.

Let d be the dimension of the space of the images. If our images are r � s in

dimension, then d = rs. We choose p to be signi�cantly less than d. For speci�c

classes of images we can actually do this without sacri�cing performance.

131

The only other projection involved in our algorithm is the projection �I onto

the image space I. We can also calculate this projection once we know the input

query. It can, in fact, be described very simply. Let us suppose that we are trying

to calculate the projection of the image M . Let us also suppose that the original

input query was the partial image C, which was de�ned at pixels p1; p2; : : : ; ps.

Let the value of C at pixel pi be Cpi. Then, we can compute the image of M by

assigning the value Cpi to the pixel location pi. We show this in algorithmic terms:

fComputation of the Orthogonal Projection �Ig
fInput: Image M , not necessarily one of the memory elementsg
fInput: Input query C, which is a partial imageg
fLet p1; p2; : : : ; ps be the pixel locations which are present in Cg
fOutput: I 2 I which is the image of M under the orthogonal projection �Ig
I M

I(p1; p2; : : : ; ps) C

Thus, we can easily implement this projection using a vector assignment.

6.2.3 Doing Nearest Neighbor Search in Feature Space

We can vastly improve our iterative search if we concentrate on the matching process

we have not considered so far: matchM;F .

This matching function is actually a nearest neighbor search. Thus, for F 2 F ,

matchM;F(F) = argmin
M 02M

d(F;M 0) (6.1)

132

A naive calculation of this step would proceed by calculating the distance of

each memory element M from F , and then picking the minimum.

Calculation of each distance takes a time proportional to the dimension d. Thus

the naive computation of the projection matchM;F takes �(nd) time.

We can do better than this. Notice that F is a point on the feature space F .
Thus the square of the distance between it and any memory element M is the sum

of two parts:

1. the square of the distance between F and �F(M), the foot of the perpendicular

from M to the subspace F ; and

2. the square of the distance between M and �F(M).

Since the second part is a constant independent of F , we can precompute these

n numbers, one for each memory element inM. Similarly, we can also precompute

the respective feet of perpendiculars: �F (M).

Then, for each F , we just need to compute the �rst part, which takes �(p) time;

and thus the complete matching function can be computed in �(np) time. Since p

can be hundreds of times smaller than d, this is a sizable saving in time.

We thus precompute the distances of each memory element from the feature

space F and record the coordinates of the corresponding feet of the perpendicular

in the coordinate system of that space.

Let us compute the complexity of each iteration. The projection operations:

matchI;F and matchF ;I (steps 5.7 and 5.4 in the generic iteration scheme), con-

sisting of projections onto known spaces, can be done in �(dp) steps per iteration.

133

The argmin operation matchM;F can be done �(np) time. The last step matchF ;M

is another projection and takes �(dp) time.

Thus, our total time per iteration is �((n + d)p).

6.3 Further Algorithmic Improvements

We can get further improvements in the complexity, if we work completely in the

feature space. Thus, much of the complexity derives from having matrices which

has d rows or columns, or, equivalently, the high dimension of the space of images.

If our feature space is of suÆciently small dimension, we can speed up each

iteration by a large factor.

6.3.1 Eliminating the Image Space I

We can combine the projection to and from the input space I to computematchF ;IÆ
matchI;F . This is easily seen to be a transformation of the feature space F . We will

see below that it is a �xed aÆne transformation Ta of F ; depending on the input

query. Thus, we can calculate it in the Principal Component coordinate system, to

generate a small matrix, and reduce the time complexity of this part of the iteration

to �(p2) down from �(dp).

Overall, if the algorithm performs k iterations it requires O(dp2 + kp(n + p))

time, which can be much less than the O(nd) time required for brute-force matching

when the number of images and number of their pixels is large. Ordinarily, p is in

the order of 10's and p is usually less than 5.

Let us now calculate the composition of the two projections matchI;F (�I) and

134

matchF ;I (�F). We will �rst state the result as a theorem, and the proof of the

theorem will give the explicit form of the composition.

Theorem 6.3.1 The composition matchF ;I ÆmatchI;F is an aÆne transformation

of the feature space F ; i.e. it is of the form Ta� = A� + b for � 2 F and A is a

p� p matrix and b is a p dimensional vector, where dimF = p.

Proof

Let F1; F2; : : : ; Fp be the principal components generating the feature space F .
They form an orthonormal basis for F . Let Fi;j be the i-th component of Fj.

From the dimensions of the spaces involved, we see that F forms a d � p matrix.

Since the F -s form a basis for F , any vector of F can be written as a linear

combination
P

j �jFj. Thus, we can represent any vector of F by a p dimensional

column vector of the �-s. We will calculate the e�ect of applying the composition

matchF ;I ÆmatchI;F on such a column vector.

Let C be the partial query image which is used to form the image space I.
We can assume without the loss of generality that the �rst r components of C are

known. Then a projection into I simply overwrites these r components with the

corresponding coordinate value from C.

Thus, a vector

� =

0
BBBBBBB@

�1

�2

...

�p

1
CCCCCCCA

2 F

135

corresponds to the vector
P

j �jFj and therefore its projection to I is the vector

I =

0
BBBBBBBBBBBBBBBBBBBB@

C1

C2

...

CrP
j �jF(r+1);jP
j �jF(r+2);j

...P
j �jFd;j

1
CCCCCCCCCCCCCCCCCCCCA

2 I

We just need to �nd the projection of I into F to �nd the image of � under the

composition of the two projections. This is easy. Since the F -s form an orthonormal

basis, to �nd the coeÆcients of the projection, we just need to calculate the inner

products of I with the various F -s. Thus, if �0 is the projection expressed in the

coordinate system formed by the F -s,

�0i = C1F1;i + C2F2;i + � � �+ CrFr;i

+

 X
j

�jF(r+1);j

!
F(r+1);i +

 X
j

�jF(r+2);j

!
F(r+2);i � � �

 X
j

�jFd;j

!
Fd;i

.

Rewriting this more compactly, we have

136

�0i =
rX

j=1

CjFj;i +
dX

k=r+1

pX

j=1

�jFk;j

!
Fk;i

=
rX

j=1

CjFj;i +

pX
j=i

�j

dX

k=r+1

Fk;jFk;i

!

Thus, if we choose

(A)i;j =
dX

k=r+1

Fk;jFk;i

and

(b)i =
rX

j=1

CjFj;i

then

�0 = A� + b

where the last is a matrix equation.

�

We note that the matrix A depends only on the positions of the unknown pixels

in the cue but not on the known values, whereas b depends on the actual values.

Both the expressions for A and b look like truncated inner products. Looking at

the expression for A, we can see that its computation takes time O(dp2), because

the summation takes time O(d) and there are p2 elements.

137

6.4 A Probabilistic argmin

At this point, we have eliminated the image space completely; except from the

initialization steps. This let us cut down our time complexity by a factor of d=p.

If we can compose the other two matching functions: One taking us from F toM
and the other fromM to F then we can do the entire iteration in the feature space

with a concomitant speed-up.

This is actually easy. From what has been already described, we can calculate

the distance of any memory element from a point on F using the feature space

coordinate system with an additional number equal to the distance of the memory

element from the feature space. If, further, we store the projections �FM of ele-

ments M 2 M in the feature space coordinate system; then we can use this vector

for the minimum distance memory element to get the image of F 2 F under the

composition matchM;F ÆmatchF ;M.

However, there is a problem with the quality of the solution generated by this

algorithm under certain conditions.When the images inM form a sparse set it is

possible for local minima to emerge in the iterative algorithm that are far from the

global minima. To deal with this problem, we heuristically modify the matching

function matchM;F .

Thus, instead of �nding the nearest memory element, we �nd a weighted average

of the memory elements, where closer elements have bigger weights. In practice,

we use a weight proportional to exp(�d2i =2�2), where di is the distance to the i'th
memory element. The limit � ! 0 corresponds to choosing the nearest neighbor.

We actually decrease � as the iteration proceeds. The intuitive justi�cation for this

138

is that as the iteration proceeds, we are likely to be at the domain of attraction of

the global minimum, and having a small � speeds up the iteration.

Similar ideas motivate simulated annealing procedures in heuristic search. ([73,

33, 48])Thus, higher values of � correspond to higher temperatures and the position

of the current approximation in F can change very easily. As the iteration proceeds

we decrease the temperature (�) to 0 and the ease of change decreases as well.

Thus we have the algorithm for associative recall for images.

fInput: C 2 Ig
fDenote the Orthogonal Projection to an aÆne subspace S by �Sg
fLet A and b be matrices de�ned in the proof of Theorem 6.3.1g
fLet M1;M2; : : : ;Mn be the elements in the memoryMg
F Some initial point in F depending on C

loop

fProject to I and backg
F AF + b

fProbabilistic argmin and project back to Fg
fWeightedMean denotes the weighted mean with changing parameters de-

scribed above.g
F �F (WeightedMean(F ; M1;M2; : : : ;Mn))

end loop

139

6.5 Choice of Initial Point for the Iteration

At this point, we still need to �gure out how to start the iteration. The most

obvious way would be to zero out the unknown pixels in the input query and use

its projection on F as the starting point of the iteration. However, this does not

lead to very good solutions, because it does not capture any information at all about

the position in I where the projections of the memory elements lie. Alternately, we
can start with a random position in I. This su�ers from the same defect as before.

We can try to capture more information about the memory elements by starting

from the projection of the mean of the memory images. There are several alterna-

tives here. We can just project the mean image onto F and use that as the starting

point. Alternately, we can �rst project the mean image to I and then to F .
However, we will describe a much better starting point which captures a lot of

information about the �nal result. To understand the choice of the initial point,

let us go back to the aÆne transformation Ta on F which is the composition of the

two projections matchI;F and matchF ;I according to Theorem 6.3.1.

We get a starting point for iteration which captures information about the rough

position that the typical image occupies in F . Our estimate does not capture

information about the particular set of images in memory. Also, we try to capture

some dependence on the initial cue.

The algorithm described in Section 6.4 does two operations on the current esti-

mate in feature space F :

1. AÆne transformation Ta

140

2. Probabilistic argmin

If we discard the probabilistic part of this iteration, we are left with the repeated

iteration

F AF + b (6.2)

This terminates when the vector F stabilizes. We choose this �nal value of F

as our initial point. Thus we solve the equation

F = AF + b (6.3)

Simplifying, we get

Finitial = (I � A)�1b (6.4)

If (I � A) is not invertible, we use some pseudo-inverse.

Notice that if our query had been a complete image, we would have got the

projection of it as our starting point. More generally, we can state the following:

Finitial is the projection to F of the completion of C that is closest to F .
This follows easily if we consider that ignoring the memoryM in the iterative

algorithm leads to an iterative computation of the distance between I and F .
Thus, if one considers F to cantain \face-like" images, then one is computing

the most \face-like" completion of the query C, and computing this in the feature

space co-ordinate system. This choice of initial point gives a good �nal image, and

cuts down on the number of iterations needed for the iteration to converge.

We also make one �nal modi�cation. Instead of successively applying the aÆne

transformation (from Theorem 6.3.1) and the probabilistic argmin in each step of

141

the iteration, we take a convex combination of them; with the proportions of each

changing as the iteration proceeds as in any simulated annealing algorithm.

Thus, our complete algorithm is:

fInput: C 2 Ig
fDenote the Orthogonal Projection to an aÆne subspace S by �Sg
fLet A and b be matrices de�ned in the proof of Theorem 6.3.1g
fLet M1;M2; : : : ;Mn be the elements in the memoryMg
F (I � A)�1b

loop

fProject to I and backg
F 0 AF + b

fProbabilistic argmin and project back to Fg
fWeightedMean denotes the weighted mean with changing parameters de-

scribed above.g
F �F (WeightedMean(F; F 0; M1;M2; : : : ;Mn))

end loop

6.6 Experimental Results

To test our iterative algorithm for identifying an item in the memory from partial

information, we applied it to a small memory of 79 face images. These were frontal

pictures with no change in viewpoint. and lighting. The input cue was obtained

from a random memory element by taking a horizontal strip of it and corrupting it

by noise.

142

6.6.1 The Images in Memory

To obviate issues regarding registration of images, we marked out some hand-picked

positions on each image. These are points on the image on easily identi�able land-

marks like the tops and sides of eye-brows, various positions around the nose and

mouth etc.

Figure 6.5 shows a typical face with the landmarks. We store the registered

faces in memory. The corresponding registered and normalized face is shown in

�gure 6.6. The registration and normalization is designed to make the dimensions

of the images the same, and at the same geometric location.

The locations of the landmarks are such as to exclude the forehead and the head,

and our registration and normalization process excludes the hairline and most of

the forehead. Our algorithm is thus insensitive to hair-style changes.

6.6.2 The Input Query

We use an occluded image of the face as an input query. We use a strip with

about 50% of the area as our input. We test our algorithm for erroneous recall,

and also for the average number of iterations needed for convergence. We look at

these results as the dimension of the feature space increase. The dimension of the

feature space is a good measure of the complexity of the intermediate features.

We test for robustness by adding Gaussian noise to the input query. The noise

is of standard deviation � = 50, which is 20% of the full range of gray values.

Figure 6.7 shows a sample query, without the added noise, and Figure 6.8 shows

one with the added noise.

143

We tested our iterative algorithm on a set of 79 registered face images. We

covered each face by half to get the initial queries, C. We checked that the face

that was matched to C was correct. We did this for each choice of the dimension

of F , the feature space. We also measured the average number of iterations needed

to converge.

6.6.3 Results

We essentially get error free recall starting from about a 15 dimensional feature

space. The number of iterations are usually between 4 and 5, and the average over

the all the images is less than 6 for all useful values of the parameter (dimF). We

do have some tradeo�s regarding the allowable error rate, the dimension dimF ,
and the number of iterations. We can trade o� the number of iterations against

the error rate as well as against the dimension. We can also �ne tune the error

rate by using a di�erent annealing schedule for the probabilistic argmin described

in section 6.5.

The graphs in Figures 6.1 and 6.3 show the variation of the %-age errors with the

dimension of F , dimF ; in the noiseless and the noisy case respectively. Similarly,

the graphs in Figures 6.2 and 6.4 plot the number of iterations to convergence.

144

0 5 10 15
0

10

20

30

40

50

60

70

80

90

Dimension of feature (PCA) space

%
−

ag
e

E
rr

or

Figure 6.1: %-age errors against PCA dimension: Noiseless Case

145

0 5 10 15
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Dimension of feature (PCA) space

N
um

be
r

of
 It

er
at

io
ns

Figure 6.2: Number of iterations for di�erent dimF : Noiseless Case

146

0 5 10 15
0

10

20

30

40

50

60

70

80

90

Dimension of feature (PCA) space

%
−

ag
e

E
rr

or

Figure 6.3: %-age errors against PCA dimension: Noisy Case, Gaussian noise, � = 50

147

0 5 10 15
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Dimension of feature (PCA) space

N
um

be
r

of
 it

er
at

io
ns

Figure 6.4: Number of iterations for di�erent dimF : Noisy Case, Gaussian noise, � = 50

148

Figure 6.5: Sample face used in the experiment: full face with landmarks.

149

Figure 6.6: Sample face used in the experiment: registered part face stored in memory

150

Figure 6.7: Sample face used in the experiment: occluded face

151

Figure 6.8: Sample face used in the experiment: occluded face with added Gaussian noise.

152

6.7 Discussion

A Simple Case

To get some intuitions about this algorithm, we analyze a simple case. Suppose

the images in memory densely �ll a convex subset of a low-dimensional space. In

this case, M � F , and so the projection going fromM to the feature space F of

the iteration has no e�ect. The projection going from F to I and back projects a

point fromM �rst to the nearest point in I, and then back to the nearest point in

M (sinceM densely covers part of F).
The algorithm, then, amounts to projecting between two convex sets, I andM,

at each step mapping a point in one set to the nearest point in the other set. This

is a standard algorithm that converges to the points in I andM that are closest

to each other.

More Generally

A bit more generally, if the images inM do not lie perfectly on a low-dimensional

space but lie near one, and if the cue has a small amount of noise in addition to

occlusion, we can show that the algorithm will converge to an image that is either

the correct one, or very similar to it. Thus, intuitively, our approach approximates

a standard algorithm for �nding the nearest points between two convex sets by

using an intermediate, lower-dimensional space to speed up the process of �nding

nearest neighbors.

This ties in with the idea that consideringM to be a probability distribution

153

helps eliminate spurious local minima.

Other Approaches

The algorithm is also straight-forward to encode in a neural net. Although it is

beyond our present scope to discuss the best way of doing that, we note that such an

implementation seems to require far less than O(nd) connections. Baum, Moody

and Wilczek[17], for example, describe a neural net for associative memory that

performs perfectly, but requires O(nd) connections.

We can briey contrast our algorithm with current approaches to performing

image matching in the presence of occlusion. These typically rely on computing

descriptions of local pieces of the image, perhaps using the output of multi-scale

�lters (e.g., Rao and Ballard[98]). Then some robust voting or matching scheme

is used so that if some local features are occluded, the correct match can still be

found.

We view this type of approach as complementary to our own. It is a feed-

forward approach in which the image is projected onto a feature set, then projected

into the space of previously stored images; this is similar to performing two steps

of our iterative approach. This prior work primarily focuses on the question of

what can be an e�ective feature set for image matching; we focus on demonstrating

some advantages of an iterative projection algorithm that can work with a range of

possible feature sets. These approaches can be combined in the future by applying

our algorithm to di�erent sorts of features, such as the output of multi-scale �lters

or some steerable �lter. Rao and Ballard[99] presents a di�erent way of doing this.

154

Conclusion

Thus, to tie up, we can say the following. Referring back to the skeletal iteration

scheme in section 5.4, we see that combining the two steps 5.7 and 5.4; as well as

the steps 5.5 and 5.6; result in an iteration scheme that stays entirely in the feature

space F ; and thus can be done eÆciently.

These considerations also let us select a starting point of the iteration which

leads to a quick convergence to a good solution. We have thus achieved our goal of

eÆciently doing associative recall from a memory of images.

Other approaches handle occlusion by relying on local features, such as the

output of multi-scale �lters (e.g., Rao and Ballard[98]). Our approach is com-

plementary to these; our iterative matching method that can be used with any

appropriate feature set.

155

Chapter 7

Associative Memory for Words:

Playing Hangman and Superghost

7.1 Introduction

In chapter 5 we described a three level iterative architecture for associative memory,

where the set of features mediated the matching between the input and the item

in memory. This architecture was captured in the very high level description of

the algorithm for associative recall described in section 5.4. In this chapter, we use

this iterative architecture to create an associative memory for words. This is an

expanded version of the paper [60].

156

7.2 Versions of the Problem: Hangman versus Superghost

To help ground our discussion, let us describe the kinds of problems we are trying

to solve. Thus, we are given a memoryM which consists of English words, say all

words in a dictionary. As in the previous chapter, we will assume this memory to

be static: we do not add new words to the dictionary, nor do we remove any word.

Our task is to search for a matching item in the dictionary given a fragment of

it. Thus, in a hypothetical experiment, our memory would be presented with some

input cue, say ` t r l o ', and it would be expected to �ll in the blanks to get a

valid word.1 This is very similar to the computer game hangman. This particular

task is directly analogous to the face recognition architecture we considered in the

last chapter, in that the position and number of the unknown letters is known when

the cue is presented.

A slightly more diÆcult version of the task occurs in the game superghost, where

the lengths of the blanks are unknown. Thus, our cue would be a string like '*p*l*c*'

and 'palace', 'place', 'simplicity' and 'application' are all valid answers. We could

also consider cues like '*pl*c*', for which 'palace' would be invalid, but for which

the others remain valid.

We thus seek a good feature space which make it possible to solve this learning

task in an eÆcient manner. We also describe psychological experiments which

attempt to understand how humans solve similar problems.
1In our example, one valid completion is \astrology".

157

7.3 Prior Work on Models for Memory (Psycho-physical)

There has been a great deal of prior work on associative memory. Many recurrent

neural networks have been proposed as models (Anderson[3] contains a review). Of

these, perhaps most similar in spirit to our approach is the bidirectional models of

Kosko ([76]) and Sommer and Palm ([110]). Our approach di�ers quite a bit from

these, though, in that we maintain a complete memory of items, and use features

as an eÆcient intermediate step in matching. Our use of features is perhaps more

related to feed-forward neural nets, and especially the \information bottleneck"

approach of Tishby, Pereira and Bialek[114]. Our work di�ers from feed-forward

methods in many ways, especially in that our method is iterative, and uses features

symmetrically to relate the memory to input in both directions. Many other models

iteratively combine top-down and bottom-up information (e.g., Hinton et al[54],

Rao and Ballard[99]). The structure of our algorithm is particularly related to

methods like the Wake-Sleep algorithm of Hinton et al, although we di�er from

these in many ways, especially our use of this for associative memory with complete

memory of stored items.

In spirit our approach is also similar to that of Ullman's[116] approach in visual

object recognition, which combines a bottom-up perceptual organization with top-

down knowledge, although the way in which we relate top-down and bottom-up

information is quite di�erent. Also, related are Markov models for illusory contours

as explored by Mumford ([84]) and Williams and Jacobs([122]).

158

7.3.1 Other Memory Models in Psychological Literature

Other models for content-addressable memory has been proposed in the psycholog-

ical literature. Many of these can be described as a form of convolutional memory.

(See, for example Murdoch [86] and Eich [40]) In these memories, the current state

of the memory is stored as a vector in some space and the information correspond-

ing to an input is retrieved by computing the convolution between the input vector

and the state vector.

A competing model, the matrix memories, was put forward by Pike ([94]), where

the state was represented as a matrix, and the retrieval operation consisted of

multiplying this matrix with the input vector. Because of the larger size of the state,

matrix memories can have more complicated e�ects. Thus, matrix memories tend

to model order e�ects found in human memory much better than the convolutional

memories.

7.4 Possibilities for Feature Space

For simplicity, we will treat the case of hangman. Let us recall the iterative algo-

rithm from section 5.4:

fInput: C 2 Ig
loop

F1 matchF ;I (C)

M matchM;F (F1)

F2 matchF ;M (M)

159

C matchI;F (F2)

end loop

In this algorithm,M denotes the memory. I is the representation of all possible
completions of the input cue. We include all possible completions of the input in

I, even the ones that are not valid words. Thus for the cue `p l c ', we include

obviously nonsense words like `pdlbce' in I. Our goal is to construct some feature
space F and corresponding matching functions, so that the above scheme lets us

quickly obtain a completion which is incorrect with a low probability.

To motivate our choice of the feature space let us look at a toy model for a matrix

memory for associative recall of words. Thus, given a dictionary of words fwigi2D,
all of the same length l,we form the state matrix with jDj rows and l columns.

Suppose, further, that we are in a binary world where the alphabet consists of just

two symbols: +1 and �1. Thus, each wi is a l length row vector of +1 and �1's.
The inner product of any wi with itself is l; for any other vector w (whether in the

memory or not) the inner product of wi and w is less than l. Thus given a partial

cue v 2, its product with the state matrix will result in a vector whose largest

entries are those corresponding to words in the dictionary which are closest to v in

the Hamming distance sense.

This is a memory which performs perfectly according to a reasonable metric,

but uses too much space (�(ljDj)). Our goal would be to cut down on the space

usage. We note that if our memory elements are completely heterogeneous, i.e.

there is no statistical regularity among the possible memory elements, then this is
2We assume that its unknown positions are �lled with 0's.

160

the absolute best we can do. The only way we can achieve further compression is

by utilizing its statistical features.

Since we are looking at memories for English words, it is natural to see what

are their natural statistical characteristics. There has been a lot of study on this

subject. Shannon ([108]) described various order Markov models for formation of

English words. The book by Cover and Thomas ([31]) gives the results of generating

English words according to Markov models of various orders.

It is clear that we need to work in a probabilistic setting. We explained in

section 5.2.2 how we can formulate this generalization. Thus, we considerM to be

the set of probability distributions over the memory items, and I to be the set of

probability distributions over the set of completions of the input cue.

This slight generalization can be recast in the old language where all these

spaces, M, F and I, are probabilistic in the above sense, i.e., their elements are

probability distributions over the whole set. We can think of the elements in the

old (non-probabilistic) sense as distributions which are delta functions.

This generalization gives us an added exibility to handle algorithms dealing

with probability distributions. We will see that this leads to algorithms for asso-

ciative recall which are quick and which work correctly most of the time.

It is clear that n-grams for various values of n encode quite a lot of informa-

tion. For this reason, we choose our feature space F to be the set of probability

distributions on the set of n-grams for some speci�c n. In practice, we will stick to

trigrams and bigrams. In a later section we will see that the case for general n can

be useful as well.

161

7.5 The Iterative Framework

To derive the algorithm for associative recall with (probability distributions on)

n-grams as intermediate features, we will follow the toy matrix model which we

considered in the last section.

This particular matrix multiplication model is just a formal way of counting the

number of matching letters between the input cue and each element in memory.

The obvious generalization of this approach, is to count the number of matching

n-grams. The problem, of course, is that the n-grams also depend on (unknown)

letters appearing in the blank positions. Thus, we need a method to estimate the

likely n-grams that might appear in a completion of the input query.

It is here, that we can utilize known facts about statistics of n-grams in natural

languages. We can use a probabilistic approach to estimate the unknown letters

in the cue. More precisely, we use some probabilistic assumptions (which may not

actually be true, but simpli�es the estimation) to estimate distributions on the

n-grams.

The approach is a reformulation of Pearl's ([92]) belief propagation algorithm

and has been itself rediscovered a number of times in various areas. In the hidden

Markov model literature, it is known as the forward-backward algorithm, because of

the order in which the quantities are computed. We used a more general version of

the algorithm in the chapter on features (chapter 3) when we treated the problem

of �nding features for the stereo matching problem.

The distribution on trigrams (or n-grams) represent our knowledge of the sta-

tistical regularities of the problem and provide the handle by which we can reduce

162

the complexity of the associative recall problem.

To formulate our iterative scheme, we need to de�ne the four matching functions

between the three spaces de�ned so far. We look at our iterative algorithm which

successively re�nes its estimate of which word is a possible completion of the input

cue.

Thus, we start with a probability distribution on the dictionary (memory) ele-

ments which does not depend at all on the input cue. This initial distribution could

be the uniform distribution on the words. If we want to be a little more informa-

tive, we could even start with the probability distribution on words occurring in a

suÆciently representative corpus.

As the iteration proceeds we have more and more re�ned distributions on the

memory elements, which ultimately converge to a single element with overwhelming

certainty.

7.5.1 The Matching Functions

To complete our iterative scheme, we need to de�ne the matching functions: matchI;F ,

matchF ;M, matchM;F and matchF ;I which are illustrated in �gure 5.2 of chapter 5.

The Matching Function: matchF ;M

Let us assume, for concreteness, that we use the set of distributions on trigrams

as our feature space. We �rst notice that there is a natural function fromM, the

set of probability distributions on the memory elements, to F , the set of proba-

bility distributions on the trigrams. This projection function merely constructs a

163

distribution on the set of trigrams from a given distribution on the set of words.

The constructed distribution assigns a probability to any particular trigram which

is proportional to the sum of probabilities of the words that trigram occurs in, the

sum being weighted by the number of times the trigram occurs in that word. This

is the naive algorithm to construct a Markov model from a given distribution on

the set of words.

We choose our matching function matchF ;M to be the projection function de-

scribed above.

More formally, let fwigi2D be the set of words in memory. For any word w, let

�(w) be the set of trigrams occurring in the word w and let Count(t; w) be the

number of times the trigram t occurs in the word w.

Then, given any probability distribution PrM 2 M, matchF ;M creates the

probability distribution matchF ;M(PrM) � PrF de�ned by

PrF(t) = Normalize

 X
w2D

Count(t; w)PrM(w)

!
for all trigrams t (7.1)

where the notation Normalize (�) denotes that its argument is normalized so

that its sum over all trigrams t is 1.

The Matching Function: matchM;F

To go the other way, from F to M, the toy matrix memory model gives some

help. Thus, following that model, we assume that we have the information about

which trigrams occur in every word; though not their positions. Thus, for the word

164

`testing', we record connections from the trigrams `tes', `est', `sti', `tin' and `ing' to

the word `testing', without recording the positions in any way.

Then, given a distribution on the trigrams, we compute a distribution on the set

of words, by a breaking the word up into its constituent trigrams, and assuming each

trigram to be independent of the others. Thus, if a word w has the set of trigrams

�(w), and we are given a probability distribution PrF on the set of trigrams, then

matchM;F constructs a probability distribution matchM;F(PrF) � PrM on the set

of words in the memory de�ned by

PrM(w) = Normalize

0
@ Y

t2�(w)

(PrF(t))
Count(t;w)

1
A 8w 2 D (7.2)

where D denotes the set of words in the memory (D stands for dictionary).

The Matching Function: matchF ;I

We now describe the matching functions between the feature space F and the input

space I. We recall that the input space I consists of all probability distributions

on the set of possible completions of the input cue c.

Thus, an element of I is basically a probability distribution over the set of

(syntactic) words which complete the input cue. For every position in the hangman

cue this probability distribution generates a probability distribution on the set of

trigrams. We will abuse our notation and denote by I such a a set of probability

distributions on the set of trigrams, one for each blank position of the cue, which

arise from a distribution on the set of completions of the input cue in this way.

165

With this understood, we can immediately de�ne matchF ;I to be the function

which marginalizes the distribution on trigrams by forgetting the position where

the trigram occurs.

The Matching Function: matchI;F

We can also de�ne last remaining matching function very easily. We consider

the input to be formed from an array of trigrams. matchI;F operates by starting

with the probability distribution on trigram speci�ed by some element PrF of F
and using Pearl's ([92]) belief propagation algorithm on the input cue using the

trigram probabilities according to PrF as the transition probabilities (and initial

probabilities).

The result is a structure which codes the trigram probability distributions at

every (unknown) position of the input cue. This is the element of the input space

(I) that is the image of PrF under matchI;F .

7.5.2 Getting Everything Together

With all the matching functions in place we can state the full iterative algorithm

from section 5.4 after we substitute these matching functions.

fInput: C is a cue.g

166

I \natural" trigram probabilities for every blank trigram position in C

loop

fF1 is assigned the trigram distribution corresponding to Ig
F1 Marginalize(I)

fM is assigned the distribution on the memory elements that assume all tri-

grams occur independently.g
M PrM; where PrM(w) = Normalize

�Q
t2�(w)(I(t))

Count(t;w)
�

fF2 computes the trigram distribution corresponding to Mg
F2 PrF ; where PrF(t) = Normalize

�P
w2DCount(t; w)M(w)

�

fUse belief propagation on F2 to �ll in Ig
I Belief Propagation (F2)

end loop

In the next few sections we will investigate the relation of this iterative algorithm

with other natural approaches one can pursue in this problem. We will �nd that

this algorithm generalizes these approaches in a very natural way.

167

7.6 Superghost Queries

At this point, our iterative algorithm can handle hangman queries. The fundamen-

tal step of this approach was a use of the belief propagation algorithm to estimate

the trigram probability at locations where the letters were not known. This be-

lief propagation algorithm needs the number and positions of the blanks to known

beforehand. This knowledge is lost in superghost.

We take the ad hoc approach that for every `*' in a superghost cue, there can

only be a small number of possible blank positions that `*' can represent. We put a

prior model on this distribution of number of blanks and solve the hangman problem

for each such expansion. Our prior model is a very simple truncated exponential

distribution on the number of blanks.

Experimental evidence suggests that among many factors which a�ect human

memory performance is the e�ect of the starting letter. Thus given a cue, people

tend to start searching for words which has the same word stem as the given cue.

We will explore the existing psychological literature in a later section. We remark

at this point, that our computations have a similar characteristic as well. If we have

a sequence of successive blanks, the distributions near the edges of this sequence are

more peaked than those near the middle. Of course, in the computational setting

this does not lead to an increase in the running time of the estimation algorithm.

168

7.7 Some Initial Complexity Considerations

At this stage we try to see how well our iterative scheme behaves in terms of space

and time complexity and which operations are bottlenecks to performance in this

memory architecture.

The main storage needed is to record which trigrams occur in which word in

memory. We need �(D) space to store this information. Asymptotically this is

better than the �(lD) space requirement for a naive storage of D words, each

length l. For realistic dictionaries for English, however, the space requirement for

storing this information is about the same as needed to store the dictionary naively.

The architecture is still useful for storing strings of discrete symbols where there

is not much topological structure on the symbols to aid in recognition, but where

there are strong local correlations between nearby symbols.

Let us also look at the time taken for the recall algorithm to run. The estimation

step using the belief propagation algorithm takes time independent of the size of

the dictionary. The operations which contribute most to the time complexity are

those that need an iteration over the dictionary elements.

For an implementation of our iteration scheme on a serial computer, the time-

consuming steps are the two matching steps: matchM;F and matchF ;M. Both of

these need an iteration over all the dictionary elements and are thus expensive.

On a neural network architecture, however, the matching function from F toM
can be implemented very quickly, if we have an appropriate network architecture.

169

7.8 From Features to Retrieval

At this point, our iterative algorithm generates very good completions when our

features are trigrams (almost always perfect); and makes a few errors when we use

bigrams as features. So performance-wise it matches the naive algorithm which

goes through each element of the memory and checks if it matches the input cue.

As we indicated in the last section, however, it still needs to iterate over all

the dictionary elements at some point. To understand how much extra power this

look-up gives, we need to see how a completely local algorithm performs. Thus, in

this section we explore how well we perform when we do not have access to any

global information.

7.8.1 Dynamic Programming Formulation: Viterbi Algorithm

Then, let ftig be the set of 263 = 17576 possible trigrams. Most of these occur

very infrequently (and thus can be ignored, as we shall see). In practice, if we keep

about 3000 most frequent fragments, we get practically the same performance.

In any case, let us denote the proportion of times the trigram ti occurs in natural

language as pi. With these notations in place, let us describe the cost function we

put on the set of all possible completions of a given cue.

For a particular input cue c, let �(c) denote the set of possible completions of c.

Each such completion is an element of the set I de�ned in a previous chapter and

does not contain any unknown positions. Let t be any such completion and let �(t)

be the set of trigrams in the \word" t. Then the cost associated to a particular

170

completion is

C(t) =
X

tj2�(t)

(� log pj) for all t 2 �(c) (7.3)

The idea in the trigram estimation process is to �nd the completion which

minimizes this cost function. Thus, our goal is to solve the optimization problem:

t�(c) = argmin
t2�(c)

C(t)

= argmin
t2�(c)

X
tj2�(t)

(� log pj) (7.4)

The 1 dimensional structure of the words lets us solve this optimization very

easily by means of the viterbi algorithm, �rst described by Viterbi ([119]) which is

essentially the dynamic programming approach to solving a minimum path problem

with non-negative costs. A more general description was earlier given by Bellman

([20]). Shortest path algorithms has been described by Dijkstra ([37])and by Bell-

man and Ford.([42, 21]).

The viterbi algorithm is a mainstay of estimation in Markov Chains and the

related Hidden Markov Models.

The reason viterbi algorithm can be used in this minimization is the following.

Suppose we have a sequence of blanks following some known letters: `t e '.

The dynamic programming minimization process works by �lling in the blanks by

all possible letters starting from the leftmost blank. Filling in a new letter generates

a new trigram. The trigrams are arranged in successive positions depending on the

position of their last letter. The algorithm proceeds by considering the possible

trigrams in successive positions. For any position, for all possible trigrams, we keep

171

track of the minimum cost completion which ends in that trigram. Knowing this

information, it is possible to build up the same information for the next layer of

trigrams. The linear order of the trigrams, which follow from the linear order of

the blanks in the word, lets us use the eÆcient dynamic programming approach.

Viterbi algorithm can actually solve the minimum cost completion problem for a

more general class of cost functions where the cost of adding a new trigram depends

on the trigram occurring before it. Thus this is a Markov model in the trigram

representation. This generalization will become important when we consider HMM

models for memory.

In this more general setting, our cost function gets modi�ed as follows. First

we are given some transition probability between di�erent trigrams at adjacent

positions. Let us denote the trigram occurring at location i of some word (or

fragment of word) w by �w(i). Then, if, as before, ftig is the set of possible

trigrams, with the associated proportions pi = Pr(ti), we de�ne the additional

quantities ai;j denoting the conditional probability Pr(�w(n+1) = tj j �w(n) = ti)

which we assume independent of w and n. Thus we are assuming that the successive

trigrams in any word are generated from some �rst order Markov model. The

de�nition of ai;j as a conditional probability imposes the normalization condition:

X
j

ai;j = 1 (7.5)

We can estimate the quantities pi and ai;j by sampling from the dictionary itself.

As before, we denote by �(c) the set of possible completions of c. The di�erence

is, we look at arrays of trigrams of any particular completion instead of just the set

172

of trigrams. Thus, for any completion t 2 �(c), let us denote the array of trigrams

generated from t by the symbol �t. The i-th element of this array would be the

trigram �t(i). Let this trigram be denoted by t�i , and therefore, the associated

proportion is p�i . Then the modi�ed cost function of any completion t 2 �(c) of c

is

Cgeneralized(t) = (� log p�1) +
l�2X
n=2

(� log (a�n�1;�n)) (7.6)

and the corresponding minimization problem is

t�(c) = argmin
t2�(c)

Cgeneralized(t)

= argmin
t2�(c)

[(� log p�1) +
l�2X
n=2

(� log (a�n�1;�n))] (7.7)

Thus, the viterbi algorithm lets us estimate a completion of the cue, and hence

the set of trigrams (more generally, n-grams) in it. Thus, it constitutes one choice

for the matching function matchF ;I .

7.9 The Iterative Framework: A Local Version

The viterbi algorithm of the last section lets one start with a probability distribution

on the trigrams (and a consistent set of conditional probabilities), and lets one

complete a partial cue to a completed form. This completed cue will possibly not

be a valid English word, but this is the best possible completion of the cue given

only the local information inherent in the probability values of the trigrams.

173

In this section, we will explore how far we can go when we con�ne ourselves

entirely to local computations, without any look-up of the dictionary at all. One

approach would be to use the viterbi algorithm to estimate the \best" possible

completion of the input cue.

However, if we start with the pi's and ai;j's initialized to the corresponding

relative frequency values found in English text, the quality of reconstruction is poor.

This fact is a reection of why need the look-up of the dictionary in the iterative

algorithm. However, in a sense, the viterbi algorithm does provide an alternative

to the look-up step. Given a probability distribution on the set of trigrams, it lets

us form an estimate of a memory element. We can thus use it as a kind of local

matching function from F toM.

However, since we do not have a local equivalent of matchF ;M, we can only use

the viterbi algorithm in the last iteration.

To see what this algorithm looks like without the look-ups of dictionary, let us

write down the iterative scheme in this case.

We actually start the iteration with the generic distribution on the trigrams

consisting of their relative frequencies of occurrence.

fI stores the position-wise probability distributions on trigrams.g
fT stores probability distributions on trigrams.g
loop

I Belief Propagation (T)

T Marginalize (I)

end loop

174

This is exactly the Baum Welch learning algorithm for estimating transition

probabilities in hidden Markov models (HMM). In the next section we give a quick

introduction of HMM's and cover the Baum-Welch algorithm.

7.10 Hidden Markov Models

In this section we give a brief introduction to HMM's. We will see that the state

estimation problem for an HMM with known parameters can be solved using the

viterbi algorithm of subsection 7.8.1. We will formulate the viterbi algorithm for-

mally in this section, as well as explain the Baum-Welch re-estimation procedure

for parameter learning.

The theory of hidden Markov model has been around for many years. The basic

theory was expounded by Baum and others in a series of papers ([12, 13, 14, 15, 16]).

This was implemented in a speech understanding setting by Baker ([8]) and Jelinek

et al ([61, 6, 63, 62, 10, 64, 7]) See Rabiner([97]) for an introduction. Hidden Markov

models have connections to lots of similar models which treat linear systems with

Gaussian noise: Kalman �lters, PCA etc. For a uni�ed treatment, see Roweis and

Ghahramani([102]). The connection between HMM's and Kalman �lters was earlier

elucidated by Digalakis et al ([36]).

Let us �rst consider a system which is described at any (discrete) time as being

in one of a set of N distinct states: fS1; S2; : : : ; SNg and which undergoes state

transitions at regularly spaces discrete time points. We denote the time instances

when the state change occurs by t = 1; 2; : : : , and we denote the state at time t by

qt.

175

We suppose that the state transition process is a stochastic process. To describe

such a process in full detail would normally require the speci�cation of the full con-

ditional probabilities: Pr(qt = Sjjqt�1 = Si; qt�2 = Sk; : : :). However, we assume

that the state changes follow a �rst order Markov model, and so this particular con-

ditional is actually equal to the same probability conditioned on the immediately

preceding time step:

ai;j = Pr(qt = Sjjqt�1 = Si)

We assume that the chain is stationary, i.e. the above quantity is independent

of time t.

The quantities ai;j are non-negative and satisfy the normalization condition

given in equation 7.5:

ai;j � 0; (7.8)X
j

ai;j = 1; 8i 2 f1; 2; : : : ; Ng (7.9)

The above process could be called observable since the sequence of states in any

realization of it become known. In a realization of a hidden Markov model, the

actual state sequence remains unknown. Instead, there is a probabilistic function

de�ned on the states, whose value is observed.

More formally, an HMM is characterized by

1. N , the number of states, and the set of states S = fS1; S2; : : : ; SNg. As for
Markov models, we denote the state at time t by qt.

2. M , the number of observation symbols. We denote the individual symbols by

V = fv1; v2; : : : ; vMg and the observed symbol at time t by ot.

176

3. The N �N state transition matrix A = fai;jg de�ned, as above, by

ai;j = Pr(qt = Sjjqt�1 = Si); 1 � i; j � N

4. The observable symbol probability distribution, speci�ed by the N�M matrix

B = fbj(k)g :

bj(k) = Pr(ot = vkjqt = Sj) 1 � j � N; 1 � k �M: (7.10)

5. The initial state distribution � = f�jg with

�j = Pr(q1 = Sj) 1 � j � N: (7.11)

N , andM are usually omitted. The matrix and vector parameters are combined

together to form the parameters of the hidden Markov model. This will be denoted

by

� = (A;B; �)

7.10.1 Three Fundamental Problems Connected with Hidden Markov

Models

Before the HMM approach can become useful,we need to be able to solve three

basic problems:

1. The evaluation problem: Given an HMM � and a sequence of observations

O = o1; o2; : : : ; oT representing a realization of the HMM, how can we we (eÆ-

ciently) compute the observation probabilityPr(O j�) = Pr(o1; o2; : : : ; oT j�).

177

2. The decoding problem: Given an HMM with model parameters � and

a sequence of observations O = o1; o2; : : : ; oT representing a realization of

the HMM, how do we calculate a corresponding sequence of states: Q =

q1; q2; : : : ; qT which is the most likely sequence to have produced the observed

sequence.

3. The learning problem: Given an HMM, and a sequence of observations

O = o1; o2; : : : ; oT , how do we adjust the model parameters � = (A;B; �) so

as to maximize Pr(O j�).

7.11 Quick Overview of the Solutions of the Three Funda-

mental Problems

We will give a quick overview of the standard solutions of these problems and their

complexities.

7.11.1 Evaluation Problem

The naive solution of the evaluation problem would be to write the required prob-

ability as a integral over all possible state sequences. Given, any such, Q =

q1; q2; : : : ; qT , the probability of the observation sequence is:

Pr(O jQ; �) =
TY
t=1

Pr(ot j qt; �) =
TY
t=1

bqt (ot)

Since the probability of any such state sequence is

�q1aq1;q2aq2;q3 � � �aqT�1;qT

178

we can calculate the probability of the observations as

Pr(O j�) =
X
Q

Pr(O jQ; �)Pr(Q j�) (7.12)

=
X

q1;q2;::: ;qT

�q1bq1(o1)aq1;q2bq2(o2)aq2;q3 � � �aqT�1;qT bqT (oT) (7.13)

However, the complexity of this algorithm is prohibitive: �(TNT).

The standard way to eÆciently solve the evaluation problem is through the

forward algorithm:

We de�ne the forward variables �t(i) to be the probabilities of partial observa-

tion sequences when the terminating state is known to be Si:

�t(i) = Pr(o1; o2; : : : ; ot; qt = Si j�) (7.14)

A little thought convinces one that these variables satisfy the recurrence

�t+1(j) = bj(ot+1)
NX
i=1

�t(i)ai;j (7.15)

with the initial condition

�1(j) = �jbj(o1) (7.16)

Thus, the whole � array can be computed in �(TN2) time, and we can get the

probability values Pr(O j�) by forming the marginal distribution on �T :

Pr(O j�) =
NX
i=1

�T (i)

179

Similarly, we can form the backward probabilities

�t(i) = Pr(ot+1; ot+2; : : : ; oT j qt = Si; �)

and calculate these quantities using the recursion:

�T (i) = 1 (7.17)

�t(i) =
NX
j=1

�t+1(j) ai;j bj(ot+1) (7.18)

We will use these quantities in solving the decoding and learning problems as

well.

7.11.2 Decoding Problem

Here we want to �nd the most likely state sequence for a given model � and an ob-

servation sequence O = o1; o2; : : : ; oT . The naive approach of calculating the most

probable state at every time instance t and concatenating these values together may

lead to state sequences which are impossible. Thus, for the model � = (A;B; �),

and for i and j such that ai;j = 0, but there might be successive time instances t

and t + 1 such that Si is the most probable state at t and Sj is the most probable

state at t + 1. However, such a sequence cannot actually occur because ai;j = 0.

To get a reasonable sequence of states, we estimate the state sequence by

maximizing Pr(Q jO�). By Bayes' theorem, this is equivalent to maximizing

Pr(Q;O j�). After we write down the algebraic expressions of the quantities in-

volved, it will be clear that we are dealing with a generalization of equation 7.7:

180

Q� = argmax
q1;q2;::: ;qT

Pr(q1; q2; : : : ; qT ; o1; o2; : : : ; oT j�) (7.19)

= argmax
qT

argmax
q1;q2;::: ;qT�1

Pr(q1; q2; : : : ; qT�1; qT ; o1; o2; : : : ; oT�1; oT j�)

The second line suggests we use the following quantities to do the actual maxi-

mization:

Æt(i) = max
q1;q2;::: ;qt�1

Pr [q1; q2; : : : ; qt�1; qt = Si; o1; o2; : : : ; ot�1; ot j�] (7.20)

This satis�es recurrence relations similar to �:

Æ1(i) = �ibi(o1) 1 � i � N (7.21)

Æt+1(j) = bj(ot+1

�
max
1�i�N

Æt(i)ai;j

�
(7.22)

This is the celebrated viterbi algorithm (See Viterbi [119] and Forney[43]). To

get the actual state sequence, we need to keep back pointers at every state. We

solve

j� = argmax
j

ÆT (j)

and follow the back pointers to get the sequence of states.

7.11.3 Learning Problem

The learning problem is by far the most complicated of the three basic problems

and there is no known way to analytically solve it. However, an iterative procedure

181

based on the EM family of algorithms was given by Baum and his colleagues ([12,

13, 14, 15, 16], see also Dempster et al [35]). This is the Baum Welch procedure,

also called the forward backward iteration.

To derive the Baum-Welch re-estimation, we �rst de�ne the auxiliary variables

�t(i; j):

�t(i; j) = Pr(qt = Si; qt+1 = Sj jO; �)

and the variables t(i) representing probabilities of a particular state at a par-

ticular time:

t(i) = Pr(qt = Si jO; �)

Of course
P

j �t(i; j) = t(i).

We can compute both these variables in terms of the �'s and the �'s as follows:

�t(i; j) =
�t(i) ai;j bj(ot+1) �t+1(j)P
i;j [�t(i) ai;j bj(ot+1) �t+1(j)]

(7.23)

t(i) =
�t(i) �t(i)P
i [�t(i) �t(i)]

(7.24)

Baum Welch iteration works by starting from some particular parameter values

� = (A;B; �) and computing new values �0 = (A0; B0; �0) which improve the match

with the known observation sequence. The iteration actually chooses �0 to maximize

the following quantity considered as a function of �0:

Q(�; �0) =
X
Q

Pr(Q jO; �) log [Pr(Q;O j�0)]

182

It has been shown (Baker [8] and Baum and Sell [14]) that choosing this values

of �0 ensures that the posterior probability improves:

Pr(O j�0) � Pr(O j�)

The actual formulas for re-estimation follow if we try to estimate the various

probabilities using counting arguments. Thus, �0(i) would be the expected pro-

portion of the state Si at time t = 1. This turns out to exactly equal to 1(i).

Similarly, writing down fairly intuitive expressions for a0i;j and b0j(k), we get

�0(i) = 1(i) (7.25)

a0i;j =

PT�1
t=1 �t(i; j)PT�1
t=1 t(i)

(7.26)

b0j(k) =

P
t;ot=vk

t(j)P
t t(j)

(7.27)

Note that the normalization conditions are automatically satis�ed.

7.12 Using HMM's

We now explore how we can use HMM's in a trigram (more generally n-gram)

setting to iteratively re�ne our distribution over the set of trigrams. We had claimed

in section 7.9 that eliminating global lookups from our iterative algorithm leads to a

local lookup which is the same as the Baum-Welch re-estimation over the trigrams.

To see that this is really the case, we need to specify our HMM in greater detail.

We will describe the state space and the observation symbols but leave the actual

183

numerical parameters (�, A and B) unspeci�ed.

The �rst model we consider is a normal Markov model: the matrix B is the

identity matrix. Thus, the set of states is the set of trigrams. The only constraint

we put is that trigrams between which there is a non-zero transition probability

must be consistent. Thus if t1 = \tes" and t2 = \rsl", then we demand that

at1;t2 = 0, since no word can have these two trigrams at adjacent positions. A look

at the re-estimation formulas convinces one that this condition remains valid for

all subsequent estimates of at1;t2 .

Thus, given an input cue, say `t e c s t', we determine the number of trigrams

(6 in this example). The �rst trigram clearly has to start with `t e'. We start

with some consistent transition probability distribution over the trigrams (say one

estimated from some corpus) and use equations 7.23 and 7.24 to calculate the

quantities � and for the cue. After these are computed we use the re-estimation

equations 7.25, 7.26 and 7.27 to get the next set of values for the parameters. This

exactly follows the steps of the iterative algorithm in section 7.9.

7.13 Modi�cations: Adding Observation Noise

The diÆculty with this approach is that for many cues, the Markov model on

trigrams is not a very good estimate of the word formation process. The concrete

way this manifests itself is in insuÆcient number of instances of any particular

trigram. Thus, we need to somehow include more trigrams than we can see in any

one run.

This is a well-known problem for HMM's in a discrete domain. Jelinek and

184

Mercer[65], for example, describe a modi�ed architecture where one can automat-

ically interpolate between the desired model (for which there is insuÆcient data)

and a smaller model for which there is suÆcient data. The smaller model serves

as a regularizer. The interpolated model e�ectively uses an extra state to proba-

bilistically determine whether to follow the larger model or the smaller model. The

probability of the transition is learnt using the Baum-Welch iteration. See also

Rabiner ([97]).

In our case, we chose a domain speci�c modi�cation of our model, so that the

evaluation of the state probabilities yield non-zero values for more states. Our

approach is to model the word formation process as a hidden Markov model. We

keep the state space to be the set of trigrams, as before. The observation symbols

are trigrams as well. The noise model, given by the matrix B is such that there is

a small probability for the vowels to change to another vowel, and consonants to

change to another consonant. At any trigram, we allow only a single letter change.

This ensures that over the whole word, the changes are well separated. We assume

that the completion of the input cue is the observation sequence of the model thus

obtained.

7.14 Boot-strapping: CanWe Eliminate Dictionary Lookups?

In section 7.9 we described a completely local version of the iterative algorithm

which eliminates dictionary lookups entirely. We found there that this algorithm

is essentially a Baum-Welch re-estimation algorithm for the n-gram frequencies.

As we shall see, the performance of this algorithm is weaker than the algorithm

185

with dictionary lookups. We now investigate whether there could be ways we can

eliminate global lookups, but still incorporate some measure of global information

in our search.

In a Markov, or a hidden Markov model, which was the basis of our local search

algorithm, one correlates the letters at various locations by extending the \inu-

ence" of each letter on its immediate neighbors. However, there is a stronger depen-

dence between far away letters than can be \explained" by the Markov model. This

is the reason why the lookup step improves performance of the iterative algorithm

by a large amount.

Thus, a lookup enables one to capture long range dependences that are too

complicated to be captured by the simpler HMM. This also indicates that as we

increase the size of our neighborhood, we will be able to capture more and more

of this \extra" dependence. This is indeed true: at least for smaller neighborhood

sizes. Thus, the complete algorithm (with lookups) performs almost perfectly when

we work with trigrams, but start showing errors when we use bigrams instead.

However, the increase in modeling power is counterbalanced by fewer examples

to learn the distribution from. Thus, if most of the words in our dictionary is

between 6 and 9 letters long , having a HMM with neighborhood size of 7 defeats

the whole purpose of using a local model to save us the cost of a lookup. Our local

models start to become as large as the dictionary.We thus need a way to use a

larger model, but inferring its parameters from progressively smaller models, and

not directly from the dictionary.

Below, we describe a simple scheme which lets us estimate the transition prob-

186

abilities of a HMM on (n+ 1)-grams, given the probability values for an HMM on

n-grams.

Of course, one course would be to start with a uniform distribution over the

(n + 1)-grams, but this would neglect the gains made by using the simpler model.

We thus look for a di�erent technique.

Thus, we start with a the quantities �(ti) and ati;tj where ti and tj are n-grams.

Our noise model is described in algorithmic terms: a product of models of error on

individual letters with a forced cuto� of at most one change over the whole n-gram.

We thus just need the noise model on the letters; and this we keep the same as we

go from n-grams to (n+ 1)-grams.

The ti and tj in ati;tj are compatible if this quantity is non-zero. From now on we

will focus exclusively on such pairs. Thus, ti and tj are sequences of n letters such

that the last (n�1) letters of ti are identical (as a sequence) to the �rst (n�1) letters
of tj. Let us assume we are trying to estimate the transition matrix A for a (n+1)

order HMM from this data. Thus, in this higher order HMM, we will have transition

between two (n+ 1)-grams tk and tl only if tk and tl are consistent. Thus let tk be

the (n + 1)-gram a1a2 � � �anan+1 and tl be the transition matrix a2a3 � � �an+1an+2.
Then the entry Atk;tl captures the conditional probability of an+2 given the letters

a1; a2; : : : ; an+1. Since we are trying to estimate this probability using the values

for the n-th order model, the obvious step would be to calculate this probability

under the assumptions of the smaller order model. In this smaller model, atk;tl does

not depend on the letter a1 at all, and is the transition probability between the two

n-grams formed from tl : tfirst = a2a3 � � �an+1 and tsecond = a3a4 � � �an+2. Thus we

187

put

atk;tl = atfirst; tsecond

We can also form an estimate for the (n+1)-gram probabilities �: We note that

this probability is essentially the probability of two consistent n-grams occurring

in adjacent positions and we can use �t(ti; tj) computed earlier to estimate these:

�(t) =
X
t

�t(tfirst; tsecond)

where the notations tfirst and tsecond have the same meaning as before. We call

this procedure of estimating larger HMM models from smaller models bootstrapping.

7.15 The Ground Truth: Human Performance

We now leave aside our computational architectures of memory and look at hu-

man memory organization. Human memory is strongly domain dependent. To see

how closely our computational models match human memory, we compare human

performance in recalling words from partial cues with our algorithm. These exper-

iments described were performed by Bas Rokers, now at Psychology department of

University of California at Los Angeles. Bas also contributed a lot to clarify the

roles of the various factors we discuss here: frequency, adjacency and redundancy.

188

7.15.1 Prior Psychological Studies

In the psychological literature a distinction is being made between word-stem com-

pletion and word-fragment completion. In the former a number of letters are given

beginning with the �rst letter(s) of the word. In the latter, the string of letters

giving may begin at any other point in the word. Thus a word stem could be the

cue \f l o ", because it can be completed to the word \ower" where the cue oc-

curs at the beginning of the completed word. Word fragment describes a situation

where the cue could occur anywhere in the completed word. It could describe either

a hangman cue, where the subject knows the length of the completed word and the

positions where the letters of the cue occur, as well as superghost cue, where neither

is known.

Much of the hypotheses and experimental results in this �eld come from re-

searchers interested in memory. Psychologists di�erentiate between two types of

memory: explicit memory and implicit memory. Roughly, an explicit memory

system helps in retrieval of information about some experience, while an implicit

memory system facilitates a (memory) task in the absence of conscious recollection.

There is a general consensus that these di�erent types of memory arise from di�er-

ent systems or mechanisms in the human brain.The book by Shacter and Tulving

([107]) looks at these issues in a greater detail.

189

Priming

Partly because of this focus, a lot of studies in literature look at priming e�ects

in recollection tasks.3 Priming is an e�ect where recognition of items is facilitated

when a particular item has been encountered before, even when there is not enough

time for conscious recognition. It is best explained in a situation of word recognition

studies. Thus, the basic task might be to identify a word when shown a fragment

very fast. Performance increases on words which have been encountered before.

A lot of psychological literature is concerned with the e�ects of priming on word

completion (for example Graf and Shacter, [50]). However, studies by Hintzman

and Hartry ([56]) and by Olofsson and Nyberg ([91]) indicate that priming is usually

able to account for only about 5% of the variance in a typical word completion task.

Characteristics of Human Performance

Performance for word-fragment completion has been found lower than word-stem

completion (Olofsson & Nyberg, [90]). Additionally words, for which the ending of

a word is given, show performance closer to word-stem completion than to word-

fragment completion (Olofsson & Nyberg, [91]).

A lot of studies of performance are driven by theories about mental organization

for words. It had been suggested earlier that words can be encoded as combinations

of syllables, or orthographically, i.e. as likely combinations of letters. Seidenberg

([105]) studies trigrams as sub-lexical structures. This paper indicates that assum-

ing orthographic encoding is in most cases suÆcient to describe word completion
3Priming e�ects are the archetypal implicit memory situation.

190

performance. Srinivas, Roediger and Rajaram ([112]) also come to a similar con-

clusion.

Speci�cally, because of orthographic redundancy, low probability trigrams facil-

itate word completion compared to high probability trigrams. They also found that

trigrams where letters are adjacent facilitate word completion more than dispersed

ones. And �nally they con�rmed the e�ect that speci�cation of word beginning

or ending, facilitates word �nding over speci�cation of the middle part (see also

Olofsson & Nyberg, [90, 91]).

7.15.2 Factors A�ecting Recall

Word Length

We also look at how various factors a�ect human performance. The most obvious,

and the primary factor is the length of the cue. Naively, one would expect that

the longer the cue, the more information there is about the completed word, and

thus the easier the task is. This is certainly true for other fragment completion

tasks such as face recognition. The more information is available about the face,

the better is the recognition.

However, we �nd a U-shaped performance pro�le for word recognition tasks.

As in face recognition, recognition is pretty straightforward when most letters are

given, or little occlusion is present. However, when only a small amount of letters

is given it is easy to generate a word that matches.

However, the evidence is contradictory. Olofsson and Nyberg([90]) failed to �nd

a di�erence between the performance between two letter and three letter cues. In

191

this work, the completed words were of length between �ve and eight letters. How-

ever, since the cues were chosen to have a unique completion, these were necessarily

cues that were very unfamiliar. Thus the low frequency of completion might have

led to this result (11 out of 25 were completed).

It might be that face recognition and word completion are fundamentally di�er-

ent tasks. There are many correct words to generate when only few letters are given.

Conversely, there are very few ways to reconstruct a face, to match recollection.

Experiment Design can Skew Results

Other factors can a�ect the experimental results as well. In particular, we need to

be careful that the e�ect we measure comes about because of innate mechanisms

of human memory and not due to some experimental artifact.

Most researchers use a criterion for word completion which corresponds closely

to the one used for face recognition. In case of priming experiments, the only correct

completion of a fragment is considered to be the one that has been primed before.

Even if by itself the word is an allowable completion of the fragment, it is scored as

an error (Srinivas et al, [112]). Other researchers eliminate this problem by having a

computer generate unique fragments from a large corpus of words (e.g. Olofsson &

Nyberg, [90]). That is, the fragment is a unique identi�er of a single word within the

corpus. This way one is guaranteed not to mix correct, but undesired completions,

with genuine errors. However, this leads to fragments with very low probabilities

of completion.

192

Familiarity

One obvious factor a�ecting performance is the familiarity of the fragment given as

the input cue. The more familiar the fragment, the more easily one would expect

the subject to be able to complete it. In fact we do observe this phenomenon, most

clearly in short cues. Two letter cues, for example, are relatively easy to solve.

Indeed, subjects get most of these nearly instantaneously. Olofsson ([89]) found

some weak evidence that word familiarity a�ects persistence of priming over long

intervals of time.

We can measure familiarity of a cue by the frequency of its occurrence. The

actual algorithm is described below.

7.15.3 Experimental Methods and Results

Methods

In our �rst experiment frequencies of fragments of lengths ranging from two to eight

characters was determined by checking them against a large corpus of words and

their frequencies in a large number of texts. This resulted in a large list of fragments,

starting at aa and ending at zzzzzzzz and their respective frequencies in the corpus.

Any fragment with an occurrence frequency less than 1000 was discarded from the

corpus. The occurrence frequency was calculated by summing the frequencies in

the corpus of all words that were a valid completion of the fragment.

Presentation of a cue was determined by random selection of the remaining

fragments. In the control condition no e�ort was being made to ensure a uniform

distribution based on fragment frequency. In the experimental condition, fragments

193

were drawn from the list in a way that ensured uniform distribution over frequencies.

Fragments of length two usually have a much larger frequency of occurrence in a

given corpus than fragments of length eight. This means that the fragments the

subject sees on screen are either infrequent short fragments or relatively frequent

long fragments (in comparison the other fragments of the same length).

A fragment was presented on a computer screen with spaces interspersed, indi-

cating the possibility of insertion. The subject was required to enter a word that

would �t the fragment. A subject was given 60 seconds to produce a completion,

but had the possibility to give up. For each session �fty fragments were presented,

with an equal amount of fragments from each length.

Reaction time was recorded by measuring the di�erence from the fragment �rst

appearing on screen until the subject typed the �rst character of a matching word.

Words provided by the subject were checked for internal consistency, e.g. if they

were a valid completion of the fragment. Next they were checked for external

consistency, e.g. whether the completion was a valid word. To this end words

were checked against The American Heritage Dictionary of the English Language

([1]). If there were obvious spelling errors that did not a�ect a valid completion

of the fragment, the spelling was manually corrected before checking against the

dictionary.

31 subjects completed the control condition and 31 completed the experimental

condition. The subjects were undergraduate students at Rutgers University, par-

ticipating in the experiment for partial credit. Total time spent on the task varied

from 15 minutes to close to one hour.

194

Results and Discussions

For each graph we plot the number of fragments completed divided by the number

of fragments presented. Error bars are calculated as
p
(p� p2)=n, where p is the

percent correct in the sample, and n is the number of trials. This assumes a

Bernoulli distribution for correctness of cues with a probability p of being correct.

More precise results can be obtained by accounting for between-subject variance,

but roughly the same results hold.

Figure 7.1 shows the unadorned data. Note the U-shaped curve. One possible

explanation for this shape is that familiarity of the cue, as measured by its oc-

currence frequency is very high for smaller cues, simply because much more words

complete these. As the cue size gets larger, the task again gets simpler, probably

due to some other factor.

If this model is correct, when we correct for the frequency, we will get a mono-

tonically increasing graph. In �gure 7.2 we plot the results when we picked cues

ensuring that their occurrence frequency stayed within a band. As expected, the

overall performance is poorer. The graph is atter as well, which we expected from

the above argument. However, there is still a U-shape visible. There is however,

not enough data to be sure if this U-shape is signi�cant. i.e. we cannot tell if the

di�erence in performance between the middle and the left end is signi�cant.

To explain the rise in performance as the fragment length increases, we follow

two threads. The main idea is to calculate some quantity which approximates the

level of diÆculty of solving a cue.

In �gure 7.3 we plot the results grouped according to redundancy. This is a rough

195

measure of how important each letter is in �nding a correct answer to the overall

question. More accurately, redundancy of a cue is the average of the redundancy

of every position of the cue. Redundancy of a cue at a certain position is the

conditional probability that a word satis�es the cue at that position, conditioned

on the event that it satis�es the rest of the cue.

Thus, for the superghost cue \p*l*e", the redundancy at the location \l" is the

conditional probability that a word satis�es \p*l*e" conditioned on the event that

it satis�es \p*e". Thus, it is the ratio of the total frequency of the words satisfying

\p*l*e" and the total frequency of the words satisfying \p*e". To compute the

redundancy of the cue \p*l*e", we compute the redundancies at \p", \l" and \e"

and take the average.

In all cases where there is a signi�cant di�erence, greater redundancy leads to

better performance. In almost all cases, when we control for redundancy perfor-

mance decreases with length. We will discuss the implications of these experiments

after describing corresponding experiments with our model.

7.16 Computational Experiments

Let us now look at how our algorithms perform in practice and compare it to human

performance we noted in the previous section.

We have run experiments to compare the performance of this model to that

of human subjects. For simplicity, we used a memory of 6,040 words, each with

eight characters. In the �rst experiment we selected cues of varying length that

match between four and twenty-two words in the dictionary. Figure 7.4 shows

196

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Fragment Length

F
ra

ct
io

n
C

om
pl

et
ed

Figure 7.1: Human Performance: Fragment completion as a function of fragment length

for randomly chosen cues.

197

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Fragment Length

F
ra

ct
io

n
C

om
pl

et
ed

Figure 7.2: Human Performance: Fragment completion as a function of fragment length

for cues of equal frequency.

198

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Fragment Length

F
ra

ct
io

n
C

om
pl

et
ed

R0

R1

R2
R3

R4

Figure 7.3: Human Performance: Fragment completion as a function of fragment length:

the equal frequency cues are divided into �ve groups, from least redundancy (R0) to most

(R4) .

199

1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

0.8

0.9

1

Fragment Length

F
ra

ct
io

n
C

om
pl

et
ed

Figure 7.4: Computational performance as a function of cue length, for cues of frequency

between 4 and 22.

200

the percentage of queries the algorithm correctly answered, for cues of lengths two

to seven. Error bars show the standard deviation of these numbers, estimated

assuming that the correctness of each query is a Bernoulli distribution, assuming

the true probability is approximately the percentage of the sample. This �gure

shows a U-shaped performance curve qualitatively similar to that displayed by

human subjects.

We also ran these experiments using cues that matched one to three words.

These very low frequency cues did not display this U-shaped behavior. We have

not yet been able to examine the question of whether human subjects display similar

performance on very low frequency cues.

Next, we divided the cues into �ve groups of equal size, according to their

redundancy. In Figure 7.5 we plot performance for each of these groups. We can

see that performance drops monotonically with cue length, when we control for

redundancy in this way.

In a �nal experiment, we simulated the conditions described in Olofsson and

Nyberg[90] comparing word stem and word fragment completion. We used a mod-

i�ed algorithm that handled cues in which the number of missing letters can be

speci�ed. We found that like the subjects in these experiments, our algorithm

performed better at word stem completion. For example, the algorithm correctly

answered 87% of cues when the �rst three letters were given as a cue, but only 69%

of cues in which three disconnected letters were provided as a cue.

201

1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

0.8

0.9

1

Fragment Length

F
ra

ct
io

n
C

om
pl

et
ed

R0

R1

R2 R3

R4

Figure 7.5: Computational performance as a function of cue length, for cues of frequency

between 4 and 22. Here, the cues are divided into six groups, according to their redun-

dancy. R0 contains the least redundant cues, R4 contains the most redundant.

202

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Probability per Blank
(#blanks = 1)

of Baum−Welch Iterates

E
rr

or
 P

ro
ba

bi
lit

y

Figure 7.6: Computational performance of the local algorithm: Error Rate per blank for

cues with one blank

203

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Probability per Blank
(# blanks = 2)

of Baum−Welch Iterates

E
rr

or
 P

ro
ba

bi
lit

y

Figure 7.7: Computational performance of the local algorithm: Error Rate per blank for

cues with two blanks

204

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Probability per Blank
(# blanks = 3)

of Baum−Welch Iterates

E
rr

or
 P

ro
ba

bi
lit

y

Figure 7.8: Computational performance of the local algorithm: Error Rate per blank for

cues with three blanks

205

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Probability per Blank
(# blanks = 4)

of Baum−Welch Iterates

E
rr

or
 P

ro
ba

bi
lit

y

Figure 7.9: Computational performance of the local algorithm: Error Rate per blank for

cues with four blanks

206

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated Success Probability
(# blanks = 1)

of Baum−Welch Iterates

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Figure 7.10: Computational performance of the local algorithm: Fraction of Correct

Solutions for cues with a single blank

207

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated Success Probability
(# blanks = 2)

of Baum−Welch Iterates

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Figure 7.11: Computational performance of the local algorithm: Fraction of Correct

Solutions for cues with two blanks

208

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated Success Probability
(# blanks = 3)

of Baum−Welch Iterates

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Figure 7.12: Computational performance of the local algorithm: Fraction of Correct

Solutions for cues with three blanks

209

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated Success Probability
(# blanks = 4)

of Baum−Welch Iterates

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Figure 7.13: Computational performance of the local algorithm: Fraction of Correct

Solutions for cues with four blanks

210

7.16.1 Performance of the Lookup-Free Algorithm

We also look at how much information we glean from the lookup stage of the

iterative algorithm. We con�ne ourselves to hangman clues for simplicity, especially,

as we �nd that elimination of lookups degrade performance by a large amount.

To get a measure of how well the HMM algorithm �lls in the blanks, we calculate

fraction of errors in �lling in blanks. These are shown in �gures 7.6 through 7.9 as

the number of blanks increases from one to four. The size of the cue is a constant

eight. For each value of the number of blanks, we test the performace of the

algorithm after various iterations of the Baum-Welch re-estimation scheme. For all

practical purposes, we achieve convergence after just one Baum-Welch iteration.

The cues are obtained by starting with a dictionary with all words occurring

with a frequency at least 500, and picking all words of length eight. For each word

of this list, we generate a random cue with the appropriate number of blanks. For

ease of comparison, we present the same cues no matter how many Baum-Welch

iteration steps we perform.

To test correctness of the response, we compare the response of the algorithm

with the original word and see if they match and, if they do not, compute the

mismatch.

To compare these results with the earlier experiments, we assume that errors

are made independently in each blank position of the word. Thus, to estimate the

probability of a correct response, from the probability p of an erroneous blank, for

a cue with n blanks, we use the formula

211

(1� p)n

We plot these values in �gures 7.10 through 7.13. Comparison with �gure 7.4

shows that there is a large degradation in performance. Thus, we conclude that

some sort of global lookup step is essential for this sort of memory task.

We have also investigated whether bootstrapping approaches, such as the one

described in section 7.14, enable us to eliminate this global operation. Unfortu-

nately, we found that adding bootstrapping does not change the performance of an

HMM which has already converged. This could be a characteristic of the problem

domain of words in a large English dictionary. It is possible, that in other problem

domains with more information at intermediate scales, a bootstrapping approach

will lead to some improvements.

7.17 Discussion

Our experiments indicate two main e�ects in word memory. First, that perfor-

mance improves with the redundancy of cues. Second, when we control for this,

performance drops with cue length. Since redundancy tends to increase with cue

length, this creates two conicting tendencies that result in a U-shaped memory

curve. We conjecture that these factors may be present in many memory tasks,

leading to U-shaped memory curves in a number of domains.

In our model, the fact that performance drops with cue length is a result of

our use of a simple feature set to mediate matching the cue to words in memory.

212

This means that not all the information present in the cue is conveyed to items

in memory. When the length of a cue increases, but its redundancy remains low,

all the information in the cue remains important in getting a correct answer, but

the amount of information in the cue increases, making it harder to capture it all

with a limited feature set. This can account for the performance of our model;

similar mechanisms may account for human performance as well. On the other

hand, the extent to which redundancy grows with cue length is really a product of

the speci�c words in memory and the cues chosen. Therefore, the exact shape of

the performance curve will also depend on these factors.

Finally, we also point out that our measure of redundancy is rather crude. In

particular, it tends to saturate. So if we add a letter to a cue that is already highly

redundant, the new letter may not be needed to �nd a correct answer, but that is

not reected in the new cue having still higher redundancy. This may account for

the fact that there is some increase in human performance when length increases

for highly redundant cues.

213

Chapter 8

Conclusion

In this thesis, we investigated the role of features in solving complex tasks. In the

�rst part of the thesis we looked at the feature discovery problem. There, we came

up with a novel description of features and illustrated this approach in the context of

estimation of one-dimensional signals as well as the case of estimating the disparity

map for epipolar line stereo. Our general approach lets us come up with feature

selection algorithms for these problems which yield good features. Furthermore,

we discovered an approximate method for accomplishing the same task which is

extremely quick and which can be easily applied.

In the second part of the thesis we investigated the use of features in di�erent

situations. For this purpose we investigated the problem of designing an eÆcient

memory system for retrieving items from partial descriptions of them. We described

a new high-level algorithm which lets one capture domain speci�c information in a

uniform way. We applied this algorithm to create memories for faces as well as for

words. In both these applications, we showed that it is best to start from a blind

214

implementation of our high-level algorithm and optimize this algorithm to obtain

a more eÆcient algorithm. The actual optimizations applied might depend on the

problem domain, and the complexities of the various matching functions, but the

optimized algorithm behaves identically as the high-level algorithm we started out

with.

215

Bibliography

[1] The American Heritage Dictionary of the English Language, Third Edition,

Houghton Mi�in Company, 1996.

[2] Y. Amit, D. Geman and K. Wilder, \Recognizing Shapes from Simple Queries

about Geometry" Tech Report, Univ. of Massachusetts, 1995.

[3] J. Anderson, An Introduction to Neural Networks, MIT Press, Cambridge MA,

1995.

[4] B. Anderson, \The Role of Partial Occlusion in Stereopsis", Nature, vol. 367,

pp. 365{368, 1994.

[5] N. Ayache, Arti�cial Vision for Mobile Robots, MIT Press, Cambridge, MA,

1991.

[6] L.R. Bahl and F. Jelinek, \Decoding for Channels with Insertions, Deletions and

Substitutions with Application to Speech Recognition", IEEE Trans. Informat.

Theory, vol. IT-21, pp. 404{411, 1975.

[7] L.R. Bahl, F. Jelinek and R.L. Mercer, \A Maximum Likelihood Approach to

216

Continuous Speech Recognition", IEEE Trans. on PAMI, vol. PAMI-5, pp. 179{

190, 1983.

[8] J.K. Baker, \The Dragon System: an Overview", IEEE Trans. Acoust. Speech

Signal Processing, vol. ASSP-23. no. 1, pp. 24{29, Feb. 1975.

[9] H. H. Baker and T. O. Binford, \Depth from Edge and Intensity Based Stereo"

in Proc. of 7th IJCAI, vol. 2, pp. 631{636, 1981.

[10] R. Bakis, \Continuous Speech Word Recognition via centisecond Acoustic

States", Proc. ASA Meeting, (Washington, DC), Apr. 1976.

[11] R.J. Baron, \Mechanisms of Human Facial Recognition" International Journal

of Man Machine Studies vol 15, p. 137{178, 1981

[12] L.E. Baum and T. Petrie, \Statistical Inference for Probabilistic Functions of

Finite State Markov Chains", Ann. Math. Stat., vol. 37, pp. 1554{1563, 1966.

[13] L.E. Baum and J.A. Egon, \An Inequality with Applications to Statistical

Estimation for Probabilistic Functions of a Markov Process and to a Model for

Ecology", Bull. of Amer. Meteorological Soc., vol. 73, pp. 360{363, 1967.

[14] L.E. Baum and G.R. Sell, \Growth Functions for Transformations on Mani-

folds", Paci�c Jour. Math., vol. 27, no. 2, pp. 211{227, 1968.

[15] L.E. Baum, T. Petrie, G. Soules and N. Weiss, \A Maximization Technique Oc-

curring in the Statistical Analysis of Probabilistic Functions of Markov Chains",

Ann. Math. Stat., vol. 41, no. 1, pp. 164{171, 1970.

217

[16] L.E. Baum, \An Inequality and Associated Maximization Technique in Statis-

tical Estimation for Probabilistic Functions of Markov Processes", Inequalities,

vol. 3, pp. 1{8, 1972.

[17] L. E. Baum, J. Moody and F. Wilczek, \Internal Representations for Asso-

ciative Memory", Biological Cybernetics, 59, pp. 217{228, 1988.

[18] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, \Eigenfaces vs. Fish-

erfaces: Recognition Using Class Speci�c Linear Projection", Proc. ECCV, pp.

45{58, 1996.

[19] P. N. Belhumeur and D. Mumford, \A Bayesian Treatment of the Stereo

Correspondence Problem using Half-occluded Regions", Proceedings of IEEE

conference on CVPR, pp. 506{512, 1992.

[20] R. Bellman, Dynamic Programming, Princeton University Press, 1957

[21] R. Bellman, \On a Routing Problem", Quaterly of Applied Mathematics, vol.

16, pp. 87{90, 1958.

[22] A.L. Berger, S.A. della Pietra and V.J. della Pietra, \A Maximum Entropy

Approach to Natural Language Processing", Computational Linguistics, vol. 22

no. 1, pp. 39{71, March 1996.

[23] M. Bischel, \Strategies of Robust object Recognition for the Identi�cation of

Human Faces" Ph.D. thesis, Eidgenossischen Technischen Hoschule, Zurich,

1991

218

[24] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge,

Mass, 1987.

[25] W. W. Bledsoe, \Man-machine Facial Recognition", Tech Report PRI:22,

Panoramic Research Inc., Palo Alto, CA 1966

[26] Y. Boykov, O. Veksler and R. Zabih, \Fast Approximate Energy Minimization

via Graph Cuts", in International Conference on Computer Vision, pp. 377{384,

1999.

[27] R. Brunelli and T. Poggio, \Face Recognition: Features versus Templates",

IEEE Trans on PAMI vol. 15, no. 10, pp. 1042{1052, 1993.

[28] J. Buhmann, J. Lange and C. von der Malsburg, \Distortion Invariant Object

Recognition by Matching Hierarchically Labelled Graphs" in Proc. IJCNN, 1989,

pp. 151{159.

[29] D.J. Burr, \Elastic Matching of Line Drawings", IEEE Trans on PAMI, vol

3, no. 6, pp. 708{713, 1981.

[30] J.F Canny. \A computational approach to edge detection", IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679{698, 1986.

[31] T. Cover and J. Thomas. Elements of Information Theory. Wiley Interscience,

New York, 1991.

[32] B. Cernushi-Frias, D. B. Cooper, Y. P. Huang and P. Belhumeur, \Towards

a Model-based Bayesian Theory for Estimating and Recognizing Parameterized

219

3D Objects using Two or More Images Taken from Di�erent Positions", IEEE

Trans. on Pattern Analysis and Machine Intelligence, PAMI, vol. 11, pp. 1028{

1052, 1989.

[33] V. Cerny \A Thermodynamical Approach to the Travelling Salesman Prob-

lem: an EÆcient Simulation Algorithm" in Preprint Inst. Phys. & Biophys.,

Comenius Univ., Bratislava, 1982

[34] J.S. DeBonet \Multiresolution Sampling Procedure for Analysis and Synthesis

of Texture Images", in ACM SIGGRAPH, pages 361{368, Aug 1997

[35] A.P. Dempster, N.M. Laird and D.B. Rubin, \Maximum Likelihood from In-

complete Data via the EM Algorithm", Journ. Royal Statistical Society, vol. 39,

no. 1, pp. 1{38, 1977.

[36] V. Digalakis, J.R. Rohlicek and M. Ostendorf, \ML Estimation of a Stochastic

Linear System with the EM Algorithm and its Application to Speech Recogni-

tion", IEEE Trans. on Speech and Audio Processing, vol. 1, no. 4, pp. 431{442,

1993.

[37] E. Dijkstra, \A Note on Two Problems in Connexion with Graphs", Nu-

merischeMathematik vol, 1, pp. 269{271, 1959.

[38] S. Edelman, D. Reisfeld and Y. Yeshurun, \Learning to Recognize Faces from

Examples", in Proc. of ECCV, pp. 787{791, 1992

[39] A.A. Efros and T.K. Leung Texture Synthesis by Non-parametric Sampling

220

in International Conference on Computer Vision, vol 2, pages 1033{1038, Sep

1999

[40] J. M. Eich, \A Composite Holographic Associative Recall Memory", Psycho-

logical Review, vol. 89, no. 6, pp. 627{661, Nov. 1982.

[41] D. Field, A. Hayes and R. Hess Contour Integration by Human Visual System:

evidence for a local \Association Field" in Vision Res. Vol 33, No 2, pp 173 {

193, 1993.

[42] L. R. Ford Jr., \Network Flow Theory", Paper P-923, RAND Corporation,

Santa Monica, California, 1956.

[43] G.D. Forney, \The Viterbi Algorithm", Proc. IEEE, vol. 61, pp. 268{278, 1973.

[44] D. Geiger and F. Girosi. \parallel and deterministic algorithms for mrfs: sur-

face reconstruction", IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 13, no. 5, pp. 401{412, May 1991.

[45] D. Geiger and J. E. Kogler. \Scaling Images and Image Feature via the Renor-

malization Group", in Proc. IEEE Conf. on Computer Vision & Pattern Recog-

nition , New York, NY, 1993.

[46] D. Geiger and B. Ladendorf and A. Yuille, \Binocular stereo with occlusion",

in 2nd ECCV-Lecture Notes on Computer Science, Springer-Verlag, May 1992.

[47] D. Geiger, A. Rudra and L. Maloney, \Features as SuÆcient Statistics", in

Advances in Neural Information Systems, 10, M.I. Jordan, M.J.Kearns and S.A.

Solla eds., MIT Press, 1998.

221

[48] S. Geman and D. Geman \Stochastic Relaxation, Gibbs distributions, and

the Bayesian Restoration of Images" in IEEE Trans. on PAMI, PAMI-6, pp.

721{741, 1984.

[49] A.J. Goldstein, L.D. Harmon and A.B. Lesk, \Identi�cation of Human Faces",

Proc. IEEE, vol 59, p. 748, 1971

[50] P. Graf and D. L. Shacter, \Implicit and Explicit Memory for New Associa-

tions in Normal and Amnesic Subjects", Journal of Experimental Psychology:

Learning, Memory and Cognition, vol. 11, n0. 3, pp. 501-518, 1985.

[51] W. E. L. Grimson. From Images to Surfaces. MIT Press, Cambridge, Mass.,

1981.

[52] S. Grossberg and E. Mingola \Neural Dynamics of Prceptual Grouping:

Textures, boundaries and emergent segmentations" in Perception and Psy-

chophysics, 38(2) 141 { 171, 1985.

[53] P.R. Halmos and L.J. Savage, \Application of the Radon-Nikodym Theorem to

the Theory of SuÆcient Statistics", Annals of Mathematical Statistics, vol. 20,

no. 2, pp. 225{241, June 1949.

[54] G. Hinton, P. Dayan, B. Frey and R. Neal, \The `Wake-Sleep' Algorithm for

Unsupervised Neural Networks", Science, vol. 268, pp. 1158{1161, 1995.

[55] G. Hinton and Z. Ghahramani. \Generative Models for Discovering Sparse

Distributed Representations", in Phil. Trans. of the Royal Society B, 1997.

222

[56] D.L. Hintzman and A.L. Hartry, \Item E�ects in Recognition and Fragment

Completion: Contingency Relations Vary for Di�erent Sets of Words", Journal

of Experimental Psychology: Learning, Memory and Cognition, vol. 17, pp.

341{345, 1990.

[57] J. Hop�eld, \Neural networks and Physical Systems with Emergent Collective

Computational Abilities", Proc. of the Nat. Acad. of Science, vol. 79, pp. 2554{

2558, 1982.

[58] D. A. Hu�man, \A method for the construction of minimum-redundancy

codes", Proceedings of the IRE, vol. 40 no. 9, pp. 1098{1101, 1952.

[59] H. Ishikawa and D. Geiger, \Occlusions, Discontinuities, and Epipolar Lines

in Stereo", in Fifth European Conference on Computer Vision, pp. 232{248,

1998.

[60] D. Jacobs, B. Rokers, A. Rudra and Z. Liu, \Fragment Completion in Humans

and Machines", inAdvances in Neural Information Processing Systems, 14, MIT

Press, Cambridge, MA, to appear (2003).

[61] F. Jelinek, \A Fast Sequential Decoding Algorithm using a Stack", IBM J.

Res. Develop., vol. 13, pp. 675{685, 1969.

[62] F. Jelinek, \Continuous Speech Recognition by Statistical Methods", Proc.

IEEE, vol. 64, pp. 532{536, 1976.

[63] F. Jelinek, L.R. Bahl and R.L. Mercer, \Design of a Linguistic Statistical

223

Decoder for the Recognition of Continuous Speech", IEEE Trans. Informat.

Theory, vol. IT-21, pp. 250{265, 1975.

[64] F. Jelinek, L.R. Bahl and R.L. Mercer, \Continuous Speech Recognition: Sta-

tistical Methods", in Handbook of Statistics, P.R. Krishnaiad, Ed. Amsterdam,

the Netherlands: North-Holland, 1982.

[65] F. Jelinek and R.L. Mercer, \Interpolated Estimation of Markov Source Param-

eters from Sparse Data", in Pattern Recognition in Practice, E.S Gelesma and

L.N. Kanal, Eds., Amsterdam, The Netherlands: North-Holland, pp. 381{397,

1980.

[66] G.V. Jones, \Fragment and Schema Models for Recall", Memory and Cogni-

tion, vol. 12, no. 3, pp. 250{263, 1984.

[67] B. Julesz, Foundations of Cyclopean Perception, University of Chicago Press,

Chicago, 1971.

[68] T. Kanade, \Picture Processing by Computer Complex and Recognition of

Human Faces", Tech Report, Kyoto University, Dept. of Information Science,

1973.

[69] T. Kanade and M. Okutomi, \A Stereo Matching Algorithm with an Adaptive

Window: Theory and Experiments", in Proc. Image Understanding Workshop,

DARPA, Pennsylvania, Sept. 1990.

[70] M. Kass, A. Witkin and D. Terzopoulos, \Snakes: Active Contour Models",

Proc. First Intl. Conf. on Comp. Vision, pp. 259{268, England, 1987

224

[71] Y. Kaya and K. Kobayashi, \A Basic Study on Human Face Recognition", in

Frontiers of Pattern Recognition (S. Watanabe ed.), p. 265, 1972

[72] M. Kirby and L. Sirovich, \Application of the Karhunen-Loeve Procedure for

the Characterization of Human Faces" IEEE Trans. on PAMI, vol. 12, no. 1,

Jan 1990.

[73] S. Kirkpatrick, C.D. Gellatt, Jr. and M.P. Vecchi, \Optimization by Simulated

Annealing", IBM T.J. Watson Research Center, Yorktown Heights, NY, 1982

[74] J. M. Kleinberg, \Two Algorithms for Nearest Neighbor Search in High Di-

mensions", in ACM Symposium on Theory of Computing, pp. 599{608, 1997.

[75] B.O. Koopman, \On Distributions Admitting a SuÆcient Statistic", Trans. of

Amer. Math. Soc., vol. 39, pp. 399{409, 1936.

[76] B. Kosko, \Adaptive Bidirectional Associative Memory", Applied Optics, vol.

26, no.23, pp. 4947{4960, 1987.

[77] S. Kullback, \Information Theory and Statistics" Wiley, New York, 1959.

[78] J.V. Linnik, \Statistical Problems with Nuisance Parameters", Translations of

Mathematical Monographs, vol. 20, American Mathematical Society, 1966.

[79] R. Linsker, \Self-Organization in a Perceptual Network", Computer, pp. 105{

117, March 1988,

[80] J. Malik, \On Binocularly Viewed Occlusion Junctions", in Fourth European

225

Conference on Computer Vision, vol. 1, pp. 167{174, Springer Verlag, Cam-

bridge, UK, 1996.

[81] D. Marr, Vision: A Computational Investigation into the Human Representa-

tion and Processing of Visual Information, W.H. Freeman and Company, San

Francisco, 1982.

[82] D. Marr and T. Poggio, \Cooperative computation of stereo disparity", Science,

vol. 194 pp. 283{287, 1976.

[83] D. Marr and T. Poggio, \A computational theory of human stereo vision",

Proceedings of the Royal Society of London B, vol. 204, pp. 301{328, 1979.

[84] D. Mumford \Elastica and Computer Vision", in Algebraic Geometry and

Applicaltions, ed. Chandrajit Bajaj, New York, Springer-Verlag, 1994.

[85] D. Mumford and J. Shah, \Boundary detection by minimizing functionals, i.",

in Proc. IEEE Conf. on Computer Vision & Pattern Recognition, San Francisco,

CA, 1985.

[86] B. B. Murdoch Jr., \ A Theory for the Storage and Retrieval of Item and

Associated Information", Psychological Review, vol. 89, no. 6, pp. 609{626,

Nov. 1982.

[87] K. Nakayama and S. Shimojo, \Da Vinci Stereopsis: Depth and Subjective

Occluding Contours from Unpaired Image Points", Vision Research, vol. 30,

pp. 1811{1825, 1990.

226

[88] Y. Ohta and T. Kanade, \Stereo by Intra- and Inter-scanline Search using

Dynamic Programming", IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, vol. 7, no. 2, pp. 139{154, 1985.

[89] U. Olofsson, \Retention Interval, Response Competition and Word Familiar-

ity E�ects in Primed Fragment Completion", European Journal of Cognitive

Psychology, vol. 7, no. 2, pp. 131{143, 1995.

[90] U.Olofsson and L. Nyberg, \Swedish Norms for Completion of Word Stems

and Unique Word Fragments", Scandinavian Journal of Psychology, vol. 33, no.

2, pp. 108{116, 1992.

[91] U.Olofsson and L. Nyberg, \Determinants of Word Fragment Completion",

Scandinavian Journal of Psychology, vol. 36, no. 1, pp. 59{64, 1995.

[92] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufman,

1988.

[93] A. Pentland, B. Moghaddam and T. Starner, \View-based and Modular

Eigenspaces for Face Recognition", in Proc. Computer Vision and Pattern Recog-

nition, pp.84{91, 1994.

[94] R. Pike, \Comparison of Convolutional and Matrix Distributed Memory Sys-

tems for Associative Recall and Recognition", Psychological Review, vol. 91, no.

3, pp. 281{294, July 1984.

[95] E.J.G. Pitman, \SuÆcient Statistics and Intrinsic Accuracy", Proc. Camb.

Phil. Soc., vol. 32, pp. 567{579, 1936.

227

[96] S. B. Pollard, J. E. W. Mayhew and J. P. Frisby, \Disparity Gradients and

Stereo Correspondences", Perception, 1987.

[97] L.R. Rabiner, \A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition", Proc. IEEE, vol. 77, no. 2, pp. 257{286, 1989.

[98] R. Rao and D. Ballard, 1995. \Object Indexing Using an Iconic Sparse Dis-

tributed Memory", IEEE Int. Conf. on Comp. Vis. , pp. 24{31.

[99] R. Rao and D. Ballard, \Dynamic Model of Visual Recognition Predicts Neural

Response Properties in the Visual Cortex", Neural Computation, vol. 9, no. 4,

pp. 721{763, 1997.

[100] R. Rao and D. Ballard, \Natural Basis Functions and Topographic Memory

for Face Recognition", in Proc. Int. Joint Conf. on Arti�cial Intelligence (IJ-

CAI), pp. 10{17, 1995.

[101] R.H. Ross and G.H. Bower, \Comparisons of Models of Associative Recall",

Memory and Cognition, vol. 9, no. 1, pp. 1{16, 1981.

[102] S. Roweis and Z. Ghahramani, \A Unifying Review of Linear Gaussian Mod-

els", Neural Computation, vol. 11, pp. 305{345, 1999.

[103] S. Roy and I. Cox, \A Maximum Flow Formulation of the N-camera Stereo

Correspondence Problem", in Proc. Intl. Conf. on Computer Vision, ICCV '98,

Bombay, India, 1998.

[104] T. Sanger, \Optimal Unsupervised Learning in a Single-Layer Linear Feed-

forward Neural Network", Neural Networks, vol. 2, pp. 459{473, 1989.

228

[105] M.S. Seidenberg, \Sublexical Structures in Visual Word Recognition: Access

Units or Orthographic Redundancy?", in Attention and Performance XII, M.

Coltheart, Ed., Hillsdale, NJ, Erlbaum, pp. 245{263, 1987.

[106] T. Sejnowski, \Computational Models and the Development of Topographic

Projections", Trends Neuroscience, vol.10, pp. 304{305, 1987.

[107] D.L. Shacter and E. Tulving, Memory Systems, MIT Press, Cambridge, MA,

1994.

[108] C. E. Shannon A Mathematical Theory of Communication in Bell Sys. Tech.

Journal, 27: 379{423, 623{656, 1948

[109] J. Shi and J. Malik \Normalized Cuts and Image Segmentation", in Conf. in

Comp. Vision and Pattern Recog, pp 731{737, San Juan, 1997

[110] F. T. Sommer, and G. Palm, \Bidirectional Retrieval from Associative Mem-

ory", in Neural Information Processing Systems, 1997, pp. 675 { 681.

[111] G. Sperling, \Binocular Vision: A Physical and Neural Theory", American

Journal of Psychology, vol. 83, pp. 461{534, 1967.

[112] K. Srinivas, H.L. Roediger (3rd) and S. Rajaram, \The Role of Syllablic and

Orthographic Properties of Letter Cues in Solving Word Fragments", Memory

and Cognition, vol. 20, no. 3, pp. 219{230, 1992.

[113] A. N. Tikhonov, \Solution of Incorrectly Formulated Problems and the Reg-

ularization Method", Soviet Math., vol. 4, pp. 1035{1038, 1963.

229

[114] N. Tishby, F. Pereira and W. Bialek, \The Information Bottleneck Method",

37th Allerton Conference on Communication, Control, and Computing, 1999.

[115] M. Turk, and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive

Neuroscience, vol. 3, pp. 71{86, 1991.

[116] S. Ullman, High-level Vision, MIT Press, Cambridge, MA. 1996.

[117] V. Vapnik, Estimation of Dependences Based on Empirical Data, Translated

by Samuel Kotz, Springer Series in Statistics, Springer-Verlag, 1982

[118] P. A. Viola, \Alignment by Maximization of Muutal Information", MIT

Arti�cial Intelligence Laboratory, Ph.D. thesis, Cambridge, MA, March 1995.

[119] A. J. Viterbi, \Error Bounds for Convolutional Codes and an Asymptotically

Optimal Decoding Algorithm", IEEE Trans. on Information Theory, vol. 13, pp.

260{269, 1967.

[120] L. Wei and M. Levoy \Fast Texture Synthesis using Tree-structured Vector

Quantization", in ACM SIGGRAPH, pages 479{488, Jul 2000.

[121] S. S. Wilks, Mathematical Statistics, Princeton Univ. Press, 1943.

[122] L. Williams and D. Jacobs \Stochastic Completion Fields: A Neural Model

of Illusory Contour Shape and Salience", in Neural Computation, vol. 9, no. 4,

pp. 837{858.

[123] A.L. Yuille, \Deformable Templates for Face Recognition" J. Cognitive Neu-

roscience, vol. 3, no. 1, pp. 59{70, 1991.

230

[124] A. Yuille, D. Geiger and H. Bultho�, \Stereo, Mean Field Theory and Psy-

chophysics", in 1st ECCV, pp. 73{82, Antibes, France, Apr. 1990, Springer-

Verlag.

[125] S.C. Zhu, Y. N. Wu and D. Mumford \FRAME: Filters, Random Fields, and

Minimax Entropy, Towards a Uni�ed Theory of Texture Modeling", in Proc.

CVPR, San Francisco, 1996.

[126] S.C. Zhu, Y. N. Wu and D. Mumford \Filters, Random Fields, and Maxi-

mum Entropy (FRAME): Towards a Uni�ed Theory for Texture Modeling", in

International Journal of Computer Vision, vol. 27, no. 2, pp. 107{126, 1998.

231

