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Abstract

In computer graphics and user interface design, selection problems are those that
require the user to select a collection consisting of a small number of items from a
much larger library.�is dissertation explores selection problems in two diverse
domains: large personal multimedia collections, containing items such as personal
photographs or songs, and camera positions for 3D objects, where each item is a
di�erent viewpoint observing an object. Multimedia collections have by discrete
items with strong associated metadata, while camera positions form a continuous
space but are weak in metadata. In either domain, the items to be selected have rich
interconnections and dependencies, making it di�cult to successfully apply simple
techniques (such as ranking) to aid the user. Accordingly, we develop separate
approaches for the two domains.

For personal multimedia collections, we leverage the semantic metadata associ-
ated with each item (such as song title, artist name, etc.) and provide the user with
a simple query language to describe their desired collection. Our system automati-
cally suggests a collection of items that conform to the user’s query. Since any query
language has limited expressive power, and since users o�en create collections via
exploration, we provide various re�nement techniques that allow the user to expand,
re�ne and explore their collection directly through examples.

For camera positioning, we do not have the advantage of having semantic
metadata for each item, unlike in media collections. We instead create a proxy
viewpoint goodness function which can be used to guide the solution of various
selection problems involving camera viewpoints.�is function is constructed from
several di�erent attributes of the viewpoint, such as howmuch surface area is visible,
or how “curvy” the silhouette is. Since there are many possible viewpoint goodness
functions, we conducted a large user study of viewpoint preference and use the
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results to evaluate thousands of di�erent functions and �nd the best ones. While
we suggest several goodness functions to the practitioner, our user study data and
methodology can be used to evaluate any proposed goodness function; we hope it
will be a useful tool for other researchers.
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Introduction

�is dissertation describes approaches to the selection problem, which is the problem
of selecting a collection of items from a much larger library of items.�e original
motivation for exploring the selection problem came from a colleague who, a�er
returning from a vacation in Alaska, found she had well over 1000 photographs
to sort through, no time to do so, and yet still wanted to quickly upload a set of
highlights to friends. Most users tend to solve the selection problem manually
and tediously—see Chapter 1 for evidence of this in the domain of selecting photo
highlights. Our exploration of improved semi-automatic interfaces to such problems
lead to Chapters 2 and 3.

A di�erent domain: when interacting with 3D objects using a 2D interface, most
users have di�culty e�ectively selecting an appropriate camera viewpoint using,
for example, the standard virtual trackball device. In this domain, we consider the
items to be the camera viewpoints, the collection to be the set of useful viewpoints
for a particular task, and the library to be the set of all possible viewpoints. Our
approach to this problem lead to the improved interfaces described in Chapter 4.

What characterizes the selection problem? In this dissertation, items have rich
interrelations. For example, when selecting a set of highlight photographs to share
with family from a recent vacation, a user might want to choose photographs that
show each family member in a pleasing light, that tell a story of the various places
visited, and that include or do not include speci�c family members, etc. Not all of
these qualities are simultaneously achievable; for example, if there are no pictures
of John at the waterfalls, then it’s di�cult to show every family member at each
location visited. Problems in which the items have no interrelations, or that the
relationships are irrelevant, such as “select 30 photos of your vacation with at least
one photo of John,” are less interesting, since a simple �ltering operation would
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Introduction

Table 0.1: Examples of di�erent selection problem domains used in this dissertation.

Domain Item Collection Library

Photo highlights Photograph Photos to be shared Personal photos

Music playlist Song Playlist Personal music

Viewpoint selection 3D camera position Views of an object All possible views

su�ce to solve the problem.
�e selection problem is most interesting when the collection size is large enough

to make manual selection di�cult. In the case of a user seeking a collection with a
single item, the user could either manually scan the entire library, or, if the library
is too large (such as when searching the web), use some form of ranking. However,
when the collection size becomes larger, say, 30–50 items, then the relationships
between objects tend make these approaches tedious and di�cult.

Finally, our selection problems involve a large library of items. If the library of
items is fairly small, then the manual approaches already used by many users (see
Chapter 1) will continue to su�ce.

Each of the following chapters describes an approach to solving the selection
problem in one or more domains, listed in Table 0.1. Chapter 1 describes the user
research that formed the basis for Chapters 2 and 3. Although it was chronologically
interspersed with the design and evaluation of the systems described in Chapters 2
and 3, it is consolidated into a single chapter for clarity. Chapter 2 applies a mixture
of traditional and new user interface elements to aid the user with selecting a set
of photo highlights from a large collection of personal photographs. Chapter 3
continues this work with the introduction of a simple query language to help
create an initial collection, and several new interface techniques for re�ning the
collection.�e domains of Chapter 3 are collections of songs for musical playlists
and a revisitation of collections of photo highlights. Chapter 4 breaks conceptually
with the previous chapters to explore the fundamentally di�erent domain of camera
positions for 3D objects, requiring di�erent techniques than those used in the

2
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previous chapters.
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Chapter 1

User behavior around creating collections

To understand users’ behaviors associated with creating and sharing collections
of items, we �rst surveyed prior research on practices around creating collec-
tions [BMH06, FKP+02, KSRW06, VGD+05, SM09, SKL+08b] and then conducted
three studies: a broad online survey of users of digital photography, a set of in-home
interviews with the same photography users, and a set of interviews with creators
of music playlists. Here we describe the studies and draw some conclusions about
user behaviors.

1%
10%

55%
25%

8%
1%
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18–21

35–49
50–64

Over 64

22–34

Age
18%

46%
23%
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Print
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28%

46%

20%
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0
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Enjoyable

Unenjoyable
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Selection Enjoyment

Figure 1.1: Summary of our respondents’ photo-sharing habits (values rounded).
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Chapter 1: User behavior around creating collections

1.1 SURVEY: DIGITAL PHOTOGRAPHY

We recruited participants for our study of digital photography through
Craigslist [Cra09], a large online forum. �e survey was described as part of
the preliminary screening process for in-person interviews. Our advertisement
stated that we were “looking for casual photographers to learn more about their
experiences with digital photographs.”�e survey asked questions about “occasions,
trips, or events” during which the respondent personally took more than 100
photographs. Of the 913 people who responded, 40% were male, 60% were female
and they had a wide range of occupations. �e respondents were mostly casual
photographers (76%); the rest were either serious or professional photographers.
Figure 1.1 summarizes the data from the respondents. From the survey, we gained
insights into how o�en and by what means respondents shared photos from such
events and by which process they selected the shared collections.

Our survey reinforces �ndings from previous work that sharing photos is a
nearly universal activity. Among the respondents, 94% emailed or instant-messaged
photos to friends or family, and 90% uploaded photos to an online sharing site. In
addition, nearly all the respondents who reported not sharing their photos planned
on doing so but cited a lack of su�cient time. Furthermore, our survey results
indicate that users very much enjoy the process of selecting collections of photos;
74% found the selection task enjoyable or very enjoyable. Previous work and our �eld
studies suggest that users intermingle the task of selecting photos with reminiscing,
exploring their photos, and storytelling.

We were particularly interested in “occasions, trips, or events” during which the
user personally took more than 100 photographs, since we expected that creating
collections from such large sets would be more di�cult. We allowed the users to
determine what constituted an occasion, trip, or event, but we will refer them all as
events in the following. Most users (87%) photographed a large event at least a few
times a year; and a signi�cant portion (35%) did so once a month or more. Typical
large events included: bridal and baby showers, weddings, vacations, parties, cruises,
reunions, new babies/pets, and inaugurations. From the most recent large event,

6



1.2. Interviews: digital photography

55% personally took 100–200 photos and 19% took 200–300 photos.
Many respondents also found the sharing process tedious and sometimes di�cult,

particularly with larger libraries. In terms of di�culty, 41% of respondents were
either neutral or found it di�cult to very di�cult to select a collection to share. As
for the time it took, 58% were either neutral or found the process slow to very slow.

In addition to the expected di�culties with so�ware, slow �le transfers, etc.,
respondents called out the selection task as a di�culty: “�e [so�ware process] is not
the issue. . . it’s more deciding what photo you want to share with friends and family
that capture the moment best and communicates this moment to others.” Further
quotes from our survey respondents:

It takes a long time for me to decide. . . . I enjoy picking them out but it is
neither an easy nor quick process.

Picking photos out require [sic] a decent amount of time. Not all photos
I want to share with family, some just with friends, some to only social
networking.

Its [sic] always enjoyable, very enjoyable to share my work.

I was on a group trip and took 1800+ pictures. . . choosing which to upload
is incredibly daunting, especially when 30 people are counting on your
photos. . . .

. . . I needed to choose the correct selection to show people what my true
experience had been. . .

�ere were so many beautiful pictures, I only shared those that went with
a conversation about the activity we took part of.

1.2 INTERVIEWS: DIGITAL PHOTOGRAPHY

To gain a deeper understanding of how and why people select photos for sharing,
we visited the homes of seven non-professional users who had photos to share
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Chapter 1: User behavior around creating collections

from a recent event or trip. For each home visit, we �rst questioned the users on
their general behaviors regarding digital photography. We then had the users walk
through their photo library to examine their organization, tool usage, etc. Finally,
we asked the users to perform a basic selection task using photos from a recent
event. Based on our observations, we gained several insights into the selection task
that directly informed the design of our interface.

We found that users’ motivations for sharing match those found in [FKP+02,
KSRW06], namely for capturing memories and life events, sharing with friends and
family, and creating keepsakes such as photo books. Users would typically form
a collection to share using the operating system’s �le browser, making two passes
over their library: the general intent of the �rst pass is to identify the good photos
and weed out the bad ones.�e second pass re�nes and culls the collection to the
desired size and ensures that all the goals are met.

Users brought de�nite collection goals to the selection task. Depending on the
intended audience andmedium, users might: select the number and orientation/size
of photos for a particular medium (e.g. for email, web or print); exclude photos that
contain people unknown to a recipient; or include at least one photo from some
group (e.g. at least one photo that contains Rich). “Balance” goals were also common:
balancing the number of photos of each person and place, balancing group and
individual shots, or balancing photos throughout time. All of these goals were loose
and adjustable, but in general users had clear goals for the collection.

In terms of choosing individual photos, users took into account several criteria,
including technical qualities like focus and lighting, whether the photo contained
people or key landmarks, whether the photo would resonate with the intended
recipient, or whether the photo had some underlying story, personal meaning, or
inside joke. Although some of these qualities could be computed automatically using
existing algorithms (e.g., proper focus, good lighting, the presence of people), many
of the criteria are highly subjective and involve a deep semantic understanding
of the people and places depicted in the photographs. It is hard to imagine how
any automatic algorithm would be able to reliably evaluate photos based on such
subjective criteria. In other words, many of the qualities that users look for in a
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photo are not easily computable, which indicates that a purely automatic system for
selecting collections of photos is unlikely to succeed.

Finally, at the level of individual photographs, we observed a few common ways
in which users added and removed photos from their collections. Nearly universal
behaviors include choosing a single best photo from a series of near-duplicates, and
including remarkably good photos or excluding remarkably bad photos irrespective
of their goals for the collection. Users o�en search out and select a photo of a
particular person, place or event that �ts with the rest of the collection. Finally, users
would occasionally look for a photo that was complementary to other particular
photos (say, for a page layout in a photo book). Users certainly showed variation
from individual to individual, but they typically made photo collections using a
relatively small set of strategies.

1.3 INTERVIEWS: MUSIC PLAYLISTS

Although digital photography is possibly the most common domain for creating
collections, many other exist such as creating musical playlists, choosing investment
portfolios, etc. To balance the work on digital photography, we also interviewed
three users who regularly create collections of songs into playlists. We asked the
users 25 questions about the size of their music libraries, how frequently they create
playlists, what they use their playlists for, etc.�e users’ collections ranged from
roughly 5000–10000 songs, and the users spent anywhere between �ve minutes to
1.5 hours making a playlist.�ey made playlists every day, one a week, or once every
couple of weeks.�ey described many motivations for making playlists: for fun, for
sharing with friends, for entertaining at gatherings, for teaching, and for motivation
during exercise. In addition to these general statistics, we asked questions about
how they created their collections, and what their motivations were while doing
so. Many of their responses echoed those of the users who were interviewed about
their photography collections, and we summarize key points for our research next.

We identify �ve key observations that inform the design of digital tools
for creating playlists and photo collections. Although we focus on music and
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photographs here, we believe these observations may also apply to working with
other types of collections.

Users have specific goals when creating collections. Collections are o�en created
with respect to events [BMH06], situations [CJJ04], and people [Vie00]. For example,
playlists are o�en situation-speci�c (e.g. for driving, entertaining, exercising), and
photo sharing can be person-speci�c (e.g. photos for friends, parents, colleagues).
Tools should allow users to achieve their goals by allowing them to describe their
preferences and aiding them in understanding when a collection �ts or does not �t
these goals.

People satisfice when creating collections. Bentley et al. [BMH06] performed an
in-depth analysis of user behavior with photographs and music and found many
similarities in how users work with personal photograph and music libraries.�ey
proposed that when working with photographs andmusic, users are o�en satis�cing,
i.e. they are not looking for a speci�c item and will o�en stop when they �nd a
“good-enough” photo or song instead of continuing to search for the best item.�ey
claimed that the reason people satis�ce is because they have too many items to
evaluate them all.�is satis�cing behavior implies that automation has a place in
helping users create photo and music collections.

Users refine collections iteratively by exploring related items. Users start with
an initial rough collection and then iteratively grow and shrink the collection
as they encounter new items. For example, when creating a playlist, users may
start by adding many potential songs to the playlist and then perform a second
pass winnowing down the collection and replacing speci�c songs to make them
�t better with the overall collection. �ey may look for di�erent songs from the
same album or a related song by the same artist. When working with photos users
o�en look at sequences of photos and choose one from multiple similar shots.�is
iterative process is not merely a consequence of todays manual tools. As users create
collections they stumble upon forgotten items that remind them of past events and
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lead them to explore related songs or photos. To support this iterative process, tools
must support users’ needs for browsing along varied dimensions and inter-item
relationships.

Adding an item to a collection can be just as much about the item’s fit in the collection

as the item’s individual quality [HG09]. For example, parents o�en want all children
to appear in a set of photographs equally and may include a speci�c photograph
to satisfy this requirement even if the photograph is not of high quality. A music
playlist may have a maximum duration, and so a song may be included because it is
just the right length. Tools for creating collections should make it easy for people to
manage these inter-item dependencies and overall collection requirements.

Collections that are shared with others can be highly personal [VGD+05, SM09] and

specialized. �ey o�en tell stories and include items that may seem unrelated
to the casual observer. For example, music playlists are o�en created as gi�s and
include songs that are meaningful to the person giving or receiving the gi�, such
as the classical “mixed tape.” Similarly, photos o�en tell personal stories of travels
and events. It is hard to imagine that a fully automatic tool for creating collections
could incorporate all of the subjective criteria that may be part of selecting items.
Tools for collections need to be �exible to shi�ing user concerns and preferences.

�e following two chapters examine two di�erent proposed systems for helping
the user semi-automatically create collections given the above observations.
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Chapter 2

A goal-driven selection interface for personal photos

2.1 INTRODUCTION

Photographs have become one of the most popular ways to capture and document
important life-moments. Memory-keeping and sharing with others are the two most
important reasons for taking pictures [Rod99, FKP+02]. Many share photographs
from social events with friends who did not attend, or, a�er a group vacation,
everyone shares pictures from the trip with travel companions. Similarly, parents
o�en send pictures of young children to remote family members.�e availability
of digital cameras has made photography increasingly convenient and cheap;
photographers now take pictures much more readily and frequently. As a result,
today’s photo-sharers are o�en faced with the challenge of choosing a few good
photos from hundreds or even thousands of captured images. One of the key tasks
in the photo sharing process is selecting an appropriate collection of photos to share
based on the relevant criteria.

To address this problem, we present a novel approach for selecting collections
of photographs from a personal photo library: our system provides automatic
suggestions from collection preferences and direct selection tools at the level of
individual photographs. In contrast to typical photo browsing interfaces that require
a user to manually locate and select every photograph for a collection, our system
allows users to create collections semi-automatically. First, the user speci�es rough
preferences for a candidate collection. For example, the user might ask for a
collection of 30 photos, mostly of people, and with roughly the same number of
photos of each person. We encode collection preferences as constraints and employ

13



Chapter 2: A goal-driven selection interface for personal photos

a constraint solver to automatically generate candidate collections of photographs
that match these preferences. Second, we provide a number of direct manipulation
tools that enable users to ask for similar photos, replacement photos, or photos
of a speci�c place or person. Users can alternate between asking the system to
automatically generate new candidate collections and directly selecting photos of
interest. One key di�erence between our work and existing systems is that our
system can be used in a manner that ranges from fully automatic to fully manual,
and that the user has a shareable collection at every stage in the process. He can
stop a�er the initial collection suggestion and share, spend a few minutes selecting
favorite photos, or spend hours creating that perfect shareable collection.�e e�ort
required to select a shareable collection scales with the size of the collection, not
the size of the library.

As discussed in Chapter 1, we found that users typically approach the selection
task with several collection goals that are semantically rich and in�uenced by the
target audience and sharing medium. For example, one might want “equal numbers
of Brian and Aidan photographs” or “some pictures from every place visited.” In
addition, users have photo preferences about particular photos. A photo might be
chosen because it e�ectively captures a person or situation; other photos may be
excluded because they are deemed “un�attering” or “boring.”

We conducted a user study of our system with nine people and their personal
photo libraries and found that they did indeed use the strategies and criteria we
uncovered in our �eld studies. Our evaluation results suggest that the components
of our interface—designed to help users apply both collection and photo selection
criteria—are useful for selection tasks.

To summarize the main contributions of this chapter, we present:

• a novel semi-automatic interaction technique for selecting collections of
personal photographs,

• �eld work that deepens the understanding of personal strategies for sharing
photographs, and,
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• design recommendations for tools that support sharing of personal pho-
tographs.

2.2 RELATED WORK

Research on personal photo libraries has focused on creatingmore e�ective browsing
and searching interfaces through improved display and layout [Bed01, DWR+04,
HDBW05, HBB07], improved annotation [KPC+99, WDS+01, SK00, GAW04], and
automatic clustering [Pla00, HNS+04]. Elements such as zoomable grid layouts,
annotations, and metadata are now part of many commercial photo applications
such asApple’s iPhoto andGoogle’s Picasa. Richmetadatawith semantic information
allows for sorting and �ltering mechanisms that enable users to browse their
collections in a more directed fashion [KS03, GSW+08] and search for speci�c
photographs more easily [FBA00, KPT+08]. However, merely adding metadata to
a photo library is not su�cient. Even with rich metadata, such as tags for people
and places, users must still manually scan all of their photos and select the ones
they want to share. Furthermore, when selecting photos to share, users are o�en
interested in telling a story or applying subjective criteria which can be hard to
encode in a query. In our system the user does not have to formulate a query, but
can rather specify their goals for their collection loosely in terms of attributes of
their photographs.

�e process of selecting photos to share is o�en called triage as it involves culling
a large library of photographs into a much smaller collection. Kirk et al. [KSRW06]
call this the pre-share stage of photowork and �nd that it is one of the most common
and time-consuming parts of working with photos.�e Pixaura system [SKL+08a]
was speci�cally designed for the triage process and introduced support for “tentative”
decisions. However, the selection process in Pixaura remains manual as with all
previous systems.

In our work we create candidate collections automatically and allow the user to
re�ne them—removing the need to look at every photograph in their library, but
still providing local control so users can tell their stories. To automatically create
sharable collections, we rely on metadata (time stamps, people and place tags) for
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Figure 2.1: Overview of our system.

every photo in the library. We expect that this type of metadata will be automatically
available soon with wider availability of face recognition and GPS technology.

Recently, Ritter and Basu [RB09] proposed “smart selection” for the �le system
which allows users to form complex selections by example. In their interface, the
user trains a classi�er by providing positive and negative examples of �les to include
in the selection.�e system then uses the classi�er to suggest other �les to add to
the selection. For our design, we chose to work with a constraint system instead
of a classi�er to allow users to express hard constraints such as such as excluding
certain people or places. In addition, a goal of our system is to provide a sharable
collection immediately; this is di�cult to reconcile with a training phase.

2.3 SYSTEM DESIGN

We present a system that enables the user to specify their collection goals and
choose individual photos based on the strategies seen in our home studies. Our
system (Figure 2.1) is comprised of three parts: an engine that automatically
suggests photos that �t the user’s collection goals, a set of direct selection tools to
add/replace/exclude photos, and statistics that provide feedback on the composition
of the current collection. �e main components of the user interface include a
preferences dialog box for specifying collection goals (le� of Figure 2.1), a view
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a

b

c

Figure 2.2: Our interface with current collection of photos in the center and
people/places at the top.

of the current collection of images that provides access to the direct selection
tools (Figure 2.2b), representative images of all the people and places in the library
(Figure 2.2a), and a new images button that asks the system to suggest more photos
(Figure 2.2c).�e current collection of photos automatically resizes to �t the available
window size, and full-screen views are available by double-clicking on a photo.

2.3.1 A user example

To illustrate how the various components of our system work together, consider
Rich, who just returned from a trip to California with his wife and two young
children. He wants to share the highlights of his trip with his extended family on his
photo blog. First, he speci�es the general parameters of the collection he is looking
for using the preferences dialog box. He chooses to share 30 photos (Figure 2.1a)
and decides to emphasize photos with people over scenery shots (Figure 2.1b). He
enters zeros for non-family members (Figure 2.1c) and emphasizes Legoland and
the beach over the airport and other places (Figure 2.1d). When Rich is satis�ed,
our system computes an initial collection of photos that match his speci�ed criteria

17



Chapter 2: A goal-driven selection interface for personal photos

Figure 2.3: Query-by-example options.

Figure 2.4: �e photo tray for choosing additional photos or replacements.

(Figure 2.2). Rich immediately sees several photos that he likes and several that he
doesn’t. Rich checks photos he wants to keep and removes photos he doesn’t like
by clicking on their exclude buttons. To get new candidate images, Rich clicks on
the new images button (Figure 2.2c), which replaces all unchecked photos with new
photos and restores the collection to the initial size of 30. Rich can also navigate back
and forth between candidate collections using the previous and the next buttons.

A�er iterating on his collection, Rich decides that he would like more pictures
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of his son Brian. He clicks on one of the pictures that include Brian and selects the
add moremenu item, which o�ers him several options, all based on the photo he
clicked (Figure 2.3). He selects Brian at Legoland and a tray of additional photos
appears (Figure 2.4). Rich checks several good pictures of Brian and dismisses the
tray; the system adds the photos to the end of his collection. To set up the whole
story, Rich decides to include one of the pictures of the family at the airport. Since
he initially told the system he didn’t want any photos from the airport, his current
collection contains no such photos. Rich clicks on the places button at the top of
the interface (Figure 2.2a) and sees representatives for each place in his collection.
He clicks on the airport and asks for more photos, analogous to Figure 2.3.�e tray
of additional photos appears and he picks his favorite. Finally, Rich uploads his
�nished collection to his photo blog.

�e rest of this section discusses the various parts of our system in detail.

2.3.2 Automatic suggestions from collection preferences

Our system allows users to express the following collection goals via the preferences
dialog box:

Collection size. �e number of desired photographs in the output collection
(Figure 2.1a).�is preference is typically informed by the sharing method to be used.
For instance, many people share fewer images via email than they do via online
sharing sites.

People/scenery proportions. �e overall proportion of “people” photographs,
containing at least one person, versus “scenery” photographs, containing no people
(Figure 2.1b).

Individual proportions. �e proportion of people photos that a particular individual
will appear in (Figure 2.1c). �e number for each person represents the desired
count of photographs containing that person, but the numbers do not have to add
up to the correct total; they are interpreted by the system as proportions relative
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to the total number of desired photos. By default the system attempts to balance
the number of photos of each individual in proportion to how o�en they appear
in the library.�e user can zero-out an individual to remove them entirely from
generated collections, or change the defaults to change the balance of individuals,
for example, “No pictures of Rich and equal numbers of Brian and Aidan.”

Place proportions. �e proportion of photos associated with a particular place
(Figure 2.1d).�ese preferences operate indentically to those for individuals.

Generating collections

To generate collections of photos that meet the user’s goals, we construct an integer
set constraint problem and use an o�-the-shelf constraint solver [Gec10] to generate
solutions, each of which corresponds to a single suggested collection of photos.
�e constraint solver operates on sets of integers; we �rst randomly map photos to
integers to reduce sequences of neighboring photos in the solutions.�e primary
tool we use to specify the constraint problem is the intersection constraint, in which
the intersection of the solution set and some target set is constrained to have a
certain size. For example, if the user speci�es that there should be 10 photos of Rich,
then we construct the set of all Rich photos and specify that the intersection of
that set and the solution set should have size 10. Intersection constraints handle
the individual people and place proportions and the people/scenery proportion.
Note that if there are many solutions that satisfy the constraints, then we pick one
arbitrarily. See Section 2.5 for a discussion on how we might bias the system towards
better solutions.

Conflicting constraints

It is possible for the user to specify con�icting constraints to the system; we prevent
those that we can predict beforehand (e.g. asking for more photos of Rich than exist
in the library), but many are more di�cult to detect, such as asking for all photos of
Rich but none of Marni when Rich and Marni are always photographed together. If
the user creates a problem with no solutions, we loosen some of the constraints to
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allow the solver to �nd a solution. For example, we can replace the constraint that a
particular person appears in 10 photos with a constraint that the person appears in
10 ± 1 photos, 10 ± 2 photos, etc. Since the original preferences are not exact—the
user generally only has a rough idea of the desired make-up of the collection—this
approach produces reasonable results. �e user can always use one of the direct
selection tools to �ne-tune the collection.We currently allow amaximum range of±3
and loosen all of the people/place constraints simultaneously.We could implement a
more intelligent algorithm that loosens the “tightest” constraint �rst, but we haven’t
found this to be necessary. Another approach is the use of so� constraints, which is
discussed in Section 2.5.

2.3.3 Direct selection tools

Wedesigned several tools that allow the user to add, replace, and exclude photos both
individually and as a batch, using the photo tray as a common interface. Figure 2.4
shows the photo tray for selecting an addition.�e surrounding photos move out
of the way of the tray, which is then inserted as a new row as close as possible
to the target photo to maintain context with the rest of the collection. �e tray
acts as a scrollable list, allowing images to be viewed full-screen or selected for
replacement/addition.

Addition tool

For a given target photo, we suggest possible additions to the collection by exploring
the various known aspects of the target photo. For example, Figure 2.3 shows the
options available for a photo that contains Marni and Brian at Legoland:

1. Temporal neighbors of the target photo,
2. Photos that contain Marni,
3. Photos that contain Brian,
4. Photos of Legoland
5. Photos of Marni at Legoland, and,
6. Photos of Brian at Legoland.
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Of the possible combinations of time, people and places, we chose these because
they were a good match for the kinds of operations users were performing in our
initial studies. If the user selects an option, then they are presented with a selection
mechanism (Figure 2.4) that allows them to add any number of photos of that type
to their collection. In this way we provide a simple version of “query by example”
that allows the user to use any photo in the current collection as an intuitive way to
get suggested additions. Added photos are automatically checked.

Exclude tool

Similar to the addition tool, the user can use any photo in their collection to exclude
entire types of photos from consideration. We generate the same types of photos
as with the addition tool, with the exception of the photos adjacent in time. If the
user selects a particular option from the list, then every matching photo is excluded:
they are removed from the current collection (unless checked), and they will not
show up in any future suggestions.

Replacement tool

For a given target photo, the replacement tool suggests replacements from the
temporal neighborhood of the target photo.�e user can choose one of the suggested
photos, which replaces the target photo in the collection and is automatically
checked. Initially our prototype o�ered the same options for photos as with the
addition tool, but we found in our pilot studies that users generally wanted to use
the replacement tool to choose between alternatives of a speci�c photo, for example,
the best photo from a rapid series of shots. Based on this observation, we simpli�ed
the replacement tool to just use the temporal neighborhood.

2.3.4 People and places browsing

We use a facet-like interface for the individual people and places in the library
(Figure 2.2a). For each person/place, the system provides a representative image,
which the user can click on to access an addition tool identical to that direct selection
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addition tool.�e people/place representatives are always available and provide a
method for returning to images that might have been previously excluded.

2.3.5 Displaying statistics

To assist users in making sure that preferences such as “equal number of Brian and
Aidan photos” are satis�ed even a�er the user has forced the system by excluding
and checking photos, we added a display that shows the number of photos of each
person and each place in the current collection. We overlay these statistics on top of
the people and places options (see Figure 2.2a).�e display also includes the total
number of available photos for each person and place.

2.4 EVALUATION

To determine the e�ectiveness of our approach, we conducted an exploratory
evaluation of our selection interface. Our aim was to investigate three main
questions:

1. Do users �nd our automatic selection tools helpful for creating collections of
photos that match their collection preferences?

2. Do users �nd our direct selection tools helpful for �nding speci�c images
that match their photo-level preferences?

3. Are there speci�c situations in which users like our selection tools more/less
than traditional selection tools?

We tested our interface on nine participants (�ve men, four women); all were
employees with a variety of roles at a large so�ware company and between 35–54
years of age.

We asked participants to provide two or more sets of personal photos that they
had taken roughly within the last year. For each participant, we chose two sets with
similar characteristics (i.e., similar number of photos covering a similar number
of di�erent people and places) to use in the study. �e uploaded sets ranged in
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Figure 2.5: �e reference implementation with scrollable events in the center, photo
tray on the bottom and people/places at the top.

size from 83 to 646 photos, and the average size was 343. We conducted a phone
interview with each participant to �nd out the names of the people and places in
their photos, and then we manually tagged their images using this information.
Finally, we conducted in-person interviews during which participants used both
our interface and a reference interface to create selections from their two collections
of provided photos.

We designed the reference interface to include the most common features found
in commercial photo organization applications.�e interface presents users with an
overview of all photos in the library organized into a timeline, clustered into events
using the temporal clustering algorithm of [PCF03] and displayed as a series of grids
ordered by photo capture time (Figure 2.5). Hovering over the representative image
for a person or place at the top of the display highlights the appropriate photos
in the main timeline view. Users check photos in the main timeline view to add
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them to the current selection in the photo tray at the bottom. As with our interface,
double-clicking on an image causes it to be displayed in a full screen view. Note
that in our interface, we intentionally disabled the timeline display to ensure that
participants would use and evaluate the novel components of our system, despite
that previous work has shown overviews to be useful for selection tasks [CMS99].

For each interface, we conducted a brief training session with a test photo library,
and then we asked participants to perform two tasks using their library. First, we
asked them to select a co-worker collection of 15 photos to be shared with their
colleagues in a somewhat public form (e.g., an o�ce calendar). We then asked them
to select a family collection of 30 photos to be shared with family members or close
friends. In choosing these tasks, we wanted participants to consider how they would
create selections that would be shared with two very di�erent types of recipients.
We gave participants 8 minutes to complete each task. At the end of the interview,
we conducted a 15-minute debrie�ng session during which we asked participants
which interface they preferred and what speci�c features of each interface they liked
and disliked. We randomly chose which collection was assigned to which interface,
and we alternated the order in which participants used the two interfaces.

2.4.1 Findings

Apart from video and application logs, we obtained detailed verbal and written
feedback about our system from the nine participants in our study. All of the
participants mentioned speci�c features of our interface that they liked or found
useful. Furthermore, one third of the participants preferred our interface (by itself)
over the reference interface (by itself). Of the remaining six participants, three
wanted a combination of the features in both interfaces, one said that he would
“gravitate towards” our interface given more time to get used to the features, and two
preferred the reference interface. Overall, the results suggest that the components of
our interface—designed to help users apply both collection and photo preferences—
are useful for selection tasks.�e feedback also indicates some limitations with our
current design and suggests directions for improvement. Here, we describe the key
speci�c �ndings in greater detail.
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People and places are important. All of our participants took people and places into
account when selecting collections of photos. For example, the photos they selected
for the co-worker collection typically contained far fewer people than the ones
they selected for the family collection. In several cases, participants selected more
photos from speci�c places that they remembered being particularly interesting
or noteworthy. In addition, a few participants tried to at least roughly balance out
the number of photos of di�erent people when creating the family collection.�is
behavior reinforces some of the �ndings from our �eld study and helps validate our
high-level approach to design an interface that makes it easy to navigate and �lter
photos based on people and places.

Positive reaction to direct selection tools. Six out of the nine participants said
that they liked the direct selection tools in our interface, with the replace and add
more features being the most popular. We observed a variety of usage patterns for
these tools. Many participants used the add more by person feature to �nd more
(or better) photos of an individual who appeared in the selected collection. One
participant used the add more around this time feature extensively to �nd and
compare similar photos of a speci�c action or event. Another participant used the
add more by place feature to look for better representative images of the cities he
visited while on vacation. A few participants who seemed relatively unfamiliar with
their libraries enjoyed using the direct selection tools to explore their photos along
speci�c dimensions. In general, participants liked the ability to see and focus on a set
of candidate photos that were sorted and �ltered based on semantically meaningful
characteristics. One participant said she “liked that you could sort by people/places
and that you had multiple ways to extract/add the preferred data.” Others described
the direct selection tools as “powerful” and “natural.”�e positive reaction to this
component of our interface helps validate the design of our direct selection tools and
suggests that sorting/�ltering can help users apply the kind of photo-level selection
criteria necessary to create satisfying collections of photos.
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Mixed reaction to automatic selection tools. Five of the participants used our
automatic selection tools in the manner that we expected. Namely, they used the
preferences dialog to specify the desired collection preferences of the selection at
the beginning of each task, and then they periodically used the new images button to
ask the system for more candidate photos.�ree of these participants said that they
found the automatic selection to be useful because it helped them �nd a goodmix of
photos that covered the range of people and places that they wanted in the collection.
One participant mentioned that the automatic tools made the selection task seem
“like a game,” and he described the new images feature as “playful.” Furthermore,
participants who were less familiar with their libraries seemed to like the fact that
the system was able to automatically suggest photos for them to consider. Finally,
three participants said that the automatic selection feature would be helpful for
quickly creating a representative selection of images because they would not have
to consider every photo in the library.�is range of positive feedback suggests that
at least some users will appreciate the ability to specify collection preferences and
would likely use our automatic selection tools.

On the other hand, several participants did not like or understand the automatic
selection tools. One participant felt that the photos suggested by the system were
“random,” and another complained that the new images feature was too “unexpected.”
It is possible that users with very strong photo-level preferences will typically not like
the photos that the system automatically suggests. For example, one participant who
did not like the automatic selection tools had very speci�c photo-level preferences
about the framing and composition. In addition, two participants mentioned that
they did not want to specify selection criteria in the preferences dialog before seeing
any photos. One potential approach for addressing this issue would be to allow
users to specify or change preferences at any point during the selection process.

Statistics were useful. Two of our participants said that they found the statistics
about the various people and places represented in the current selection to be a
useful piece of information.�ey liked that they could see the distribution of people
and places at a glance.�is result follows logically from the observation that people
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and places represent important criteria for most selection tasks.

Overview of photos is important. As mentioned above, we intentionally disabled
the timeline display in our interface for testing purposes. Not surprisingly, many
participants mentioned certain situations in which they wanted an overview of all
their photos when using our system. In particular, users wanted an overview for
�nding speci�c photos they remembered and browsing through all their photos in
an unstructured manner.

2.4.2 Summary

�e results of our evaluation provide some answers to the questions we hoped to
address and suggest a few directions for improving our interface.�ere is strong
evidence that our direct selection tools help users �nd satisfying images based
on their photo-level preferences.�e feedback suggests that sorting and �ltering
candidate photos based on semantically meaningful properties is a useful and
intuitive operation for the set selection task. We also found some evidence that
our automatic suggestion tool can be helpful for enforcing collection preferences.
Although the response to this feature was somewhat mixed, the results suggest
that many users would be willing to let their photo so�ware automatically suggest
pictures for them to share. However, some of the feedback suggests that the next
iteration of our design should allow users to adjust collection preferences at any
point during the selection task and not just at the beginning. Finally, regarding
the speci�c set selection situations in which users would prefer our interface, the
feedback indicates that our tools are well suited for exploring relatively unfamiliar
photos and for quickly generating representative sets from large image libraries.
On the other hand, more traditional overview displays make it easier for users to
�nd speci�c images that they remember and to browse through all of their photos.
�us, one area for future work is to determine how best to combine overviews with
the novel components of our interface into a single system that works well in all
situations.
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2.5 CONCLUSION

Considering the studies discussed in Chapter 1, we present several design considera-
tions and a novel semi-automatic interface for selecting collections of photographs.
Our user feedback lead us to the conclusion that the novel components of our system
are useful in selecting photographs, and that adding our interface components to a
traditional photo browser would likely provide a powerful and satisfying user expe-
rience. We are in the process of designing such a hybrid system, and look forward
to evaluating it in future work.

We are considering several improvements to our system that would speed the
selection process. Some of our users asked for a way for the system to identify blurry
or dark photos, or identify photos in which all the subjects’ eyes are open. Although
most of the desirable qualities of a photograph require deep semantic knowledge,
there are a few that are amenable to algorithmic assistance (See Chapter 1 for more
discussion of the various photo qualities we found in our studies). We would like to
explore integrating work from the computer vision community to create a ranking
over the photos which could be then used to bias the system towards more desirable
photos.�is might reduce the time required for selecting a collection by removing
highly-undesirable photos from consideration.

�ere are several other interesting heuristics to explore that could improve
the quality of our automatic suggestions. Users commonly take a rapid series of
photos when something interesting occurs—such a series might well be a “highlight”
and should probably be included, but only once. Similarly, posed group photos
are almost always orchestrated with some e�ort which seems to indicate that they
should be given some preference in the selection. Also, a balance between group
shots and individual shots could be useful, since a selection with only one or the
other tends to lack interest.

Our constraint system uses hard constraints, which means that there is no way
of specifying that some solutions are more desirable than others without excluding
the other solutions entirely. If the user’s constraints are not too tight, then the
system returns a very large space of solution collections that are equivalent with
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respect to the constraint problem, but not necessarily equivalent from the user’s
perspective.�ere may be reasons to prefer some of these collections over others:
a better distribution of photos in time, better individual photo properties (e.g.
focus, lighting), etc. In future work we would like to extend our system to use so�
constraints to handle these types of preferences. �e challenge is to choose the
better solution collections in a reasonable amount of time: the system must remain
interactive.

Currently, users specify collection preferences in our system by entering
parameters directly into a dialog box, but this is a fairly low-level interface to our
constraint system. In future work, we plan on exploring a template system that will
free users from having to specifying each parameter directly. For example, a user
might be able to choose from a “family vacation” template, a “wedding” template,
or a “landscapes” template.�e template would contain not only the prescription
for setting various parameters, but also key people and events. For example, the
“wedding” template would know that a wedding typically contains a bride and groom
and that major events include the bride walking down the aisle, the exchange of
rings, etc. An important aspect of such a system would be an interface for the user to
specify their own templates, as well as learning templates from a given hand-made
collection of photos.

Finally, our evaluation focused primarily on single events; it would be interesting
to evaluate our system on larger, multiple-event collections.
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Chapter 3

Creating collections with automatic suggestions and

example-based refinement

3.1 INTRODUCTION

Personal media libraries are an important part of daily life, as users amass music,
photos, and videos. One common user task is collecting items from such libraries
for a speci�c purpose. For example, people create music playlists for parties, exercise,
and work. And when sharing photos from a recent trip, people o�en select a handful
of good photos from hundreds or in some cases thousands of potential candidates.
If we consider the term collection to refer to a subset of items from a larger set
(the library), then the challenge across the above-mentioned situations is creating a
relatively small collection from a potentially very large personal library.

Today, there are two types of interfaces for creating collections: manual and
automatic. Faceted �ltering interfaces [YSLH03, Hea09] have made it easier to
manually select items from large libraries by allowing users to narrow down
possibilities and focus on a speci�c group of items. For example, if users are
interested in a playlist of Michael Jackson songs from the album �riller, they
can sort or �lter their entire music library along those two facets and create the
playlist. However, users o�en want collections that vary along multiple criteria, such
as playlists that include multiple artists and genres [HG09]. To create more varied
playlists, users must query or �lter by individual selection criteria, such as artist, and
manually select songs, for the collection. Automatic solutions are typically either
fully random, or example-based [App10, FTKW08, RB09]. In the latter case, the user
provides one or more example items and a collection is de�ned automatically based
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on item properties, such as genre, artist, year, etc. Although automatic interfaces
can be e�ective for specifying goals that are hard to describe in words (e.g. give me
more songs with this kind of melody), they give the user much less control over the
�nal collection, as the user can only give examples and can’t express goals, such as
“I only want rock music.”

To better understand user needs for working with collections, we surveyed
previous work and carried out contextual-inquiry interviews, as described in
Chapter 1. We found that when working with photographs and music, users have
concrete goals in mind. For example, a playlist for work should have ambient music
with few words, while a playlist for a party should have energy but include at most
one or two songs from any speci�c artist. But it turns out that users are o�en
satis�cing, i.e., they are not looking for a speci�c item and will o�en stop when they
�nd a “good-enough” photo or song instead of continuing to search for the “best”
item [BMH06]. �ey also frequently get sidetracked by speci�c photos or songs
(o�en those with personal signi�cance) that inspire them to browse and add other
related items. As a result, creating collections is typically an iterative process where
users successively re�ne a set of candidate items until they are satis�ed with the
�nal collection. During this process, users sometimes change their minds and end
up with something totally di�erent than what they initially had in mind.

Learning about user needs brought us to the realization that both automatic
and manual approaches are necessary. On the one hand users are satis�cing and
in many cases are not too concerned about which speci�c items end up in their
collections.�is suggests the need for automatic methods that eliminate the manual
e�ort of selecting individual items. On the other hand, users want to re�ne their
sets based on the relationships between items, which indicates the importance of
more user-directed re�nement tools. Furthermore, since the selection criteria for
some items is o�en highly subjective and deeply personal, it is hard to imagine how
any fully automatic algorithm would be able to reliably create personally useful
collections, even with multiple examples.

We propose a semi-automatic interface for creating collections that combines
freeform text input with example-based iterative re�nement. With our approach,
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Figure 3.1: Our approach to creating collections of items such as music playlists and
photograph albums is to specify the general parameters of the collection with a keyword
query interface (a), and to provide tools for adding, replacing, and browsing items by
example (b–d).

users can create collections, such as music playlists, automatically by specifying
high-level preferences about their collection with keywords, such as “lots of rock,
some U2, noMadonna, 2 hours” (Figure 3.1a). User preferences are transformed into
constraints and plausible collections are generated with an o�-the-shelf constraint
solver [Gec10]. We chose text input over traditional graphical user interfaces with
checkboxes and sliders because media libraries o�en include an overwhelming
number of facet values. For example, a typical music collection may have over 500
di�erent artists. With text, users can describe the criteria they care about without
being overwhelmed by all the possibilities.�e disadvantage of text input is that the
user may not know what to type. To remedy this challenge, we o�er autocomplete
feedback, similar to Inky [MCB+08].

Since users want to iteratively re�ne their collections based on examples, we
propose three di�erent collection editing techniques. First, we introduce an in-place
suggestion widget for adding new items to the collection (Figure 3.1b) based on item
metadata. Second, we allow users to explore replacement alternatives for one ormore
items in a collection by automatically suggesting replacement items (Figure 3.1c).
Finally, we link the user’s library to the collection and enable users to dynamically
sort and scroll the library relative to any item in the collection (Figure 3.1d).�is
linked view interface allows users to pivot into their library and easily add new
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related items.
Our contributions are as follows:

• A framework for iterating between automatic suggestions and example-based
re�nement,

• A simple textual query language for constructing collections of items,

• Example-based user interface elements for

– Replacing items with equivalent alternatives,

– Adding related items, and,

– Browsing the library relative to one or more selected items,

• A constraint-based implementation expressed as integer constraint solver.

We present two applications, SongSelect, which we use to explain our approach and
perform user testing with, and PhotoSelect, which we employ to demonstrate the
adaption of our approach to a di�erent domain. Early user feedback on SongSelect
is positive. Users like the text interface and suggestion widget and are happy to see
automated playlist creation with more user control. We conclude the chapter with a
discussion of the design considerations for collection-oriented tools.

3.2 RELATED WORK

Hansen and Goldbeck [HG09] pose creating collections as a recommendation prob-
lem, namely how can we build recommender systems that can suggest collections,
not just single items.�ey propose three key aspects that must be considered when
building systems for recommending collections: the value of the individual items,
co-occurrence interaction a�ects, and order e�ects including placement and arrange-
ment of items. In this work we focus on the interface for working with collections
and propose a set of interaction techniques that together present the user with a
semi-automated approach to building collections. Our text query interface allows
users to specify co-occurance preferences, and the constraint solver resolves item
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interaction e�ects and satis�es collection-level goals. Our current design does not
consider order e�ects.

Unlike today’s faceted- and keyword-search interfaces, which require the user to
specify selection criteria item-by-item in order to build a collection that varies across
facets, early information retrieval systems returned sets, or collections, of items
using boolean logic queries [Tun09] expressed in languages, such as Structured
Query Language (SQL). Some modern applications still support boolean logic
queries via form-based interfaces (e.g., iTunes Smart Playlists). Boolean logic o�ers
richer control over constructing a collection than simple keyword queries and can
enable selecting sets of items that vary along multiple axes. However, aside from the
di�culty in learning database languages, databases are optimized for generating
collections by applying �lters on an item-by-item basis.�is focus on items makes
it di�cult to implement constraints that apply to the collection as a whole. A more
natural approach is to treat the problem as a constraint-satisfaction problem on
integer sets, where items are mapped to integers and constraints of all types can
be speci�ed directly [Kum92]. �is is the approach we take, as described in the
Implementation section.

Our text interface is inspired by sloppy command interfaces like Inky [MCB+08],
CoScripter [LLC+07], and Chickenfoot [BWR+05], but our keyword commands are
simpler than those required to be transformed into executable code [LM06]. With
SongSelect users type commands like “mostly rock, some U2, no Billy Idol, less than
3 hours” and since most terms in the command contain facet values, the parsing
becomes a matching task.�ere remain ambiguities, however, and we use a scoring
scheme very similar to that of Inky to choose a single, unambiguous interpretation
of the user’s input [MCB+08].

Automatic example-based algorithms for creating collections continue to
be improved [RB09, dEW06] and there are a number of domain-speci�c ap-
proaches [CA09, KPSW06, PVV08, PW05, RBH05, Pla00]. However, as we discuss
in the next section, users want to iteratively re�ne collections and certain items can
have deep personal meaning, which makes it challenging to completely automate
the process.
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Quantifiers all, lots of, some, a couple
Prepositions by, from, at

Durations < 30 min, about two hours
Counts 20 songs,more than �ve songs

Sizes less than 250 Mb, 2 gigs
Time before, prior to, a�er

Table 3.1: Examples of modi�ers accepted by SongSelect in addition to titles, artists,
albums and genres, with selected examples (not an exhaustive list).

Figure 3.2: �e interface for SongSelect include the text box for specifying queries (c),
the browsing pane for browsing the library (a) and query results (d), and the user’s
current playlist (b).

3.3 USER INTERFACE

We propose that tools for working with collections need to support both automatic
suggestions and interactive re�nement. We �rst describe our interface design in
the context of the music playlist application, SongSelect, and then discuss how this
design applies to photo collections.
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3.3.1 SongSelect

SongSelect has three areas, a text box at the top for specifying queries and two
tabbed panes (Figure 3.2). �e pane on the le� displays the user’s music library
and query history as tabs (Figure 3.2a), while the pane on the right displays
playlists (Figure 3.2b). �e user can start making playlists in the traditional way,
by selecting songs from the library and dragging them over to the playlist. Or the
user may ask SongSelect for suggestions. To get suggestions, the user speci�es his
preferences with keyword queries, such as “lots of rock, some U2, no Madonna.”
Given a user query (Figure 3.2c), SongSelect creates a playlist and stores it as a
tab next to the user library in the le� pane (Figure 3.2d). Note that these keyword
queries are closer in �avor to the early set retrieval interfaces than today’s keyword
search interfaces, which retrieve lists of ranked documents. Also, a SongSelect
playlist is analogous to a database view, although some user preferences can have
relationships making them more complex to satisfy with traditional database query
languages, such as “only one song per artist.” We chose a freeform text interface
over a traditional form-based GUI interface in order to allow users to specify only
the things that are relevant without being overwhelmed by all the available options.
However, other interfaces are possible, for example, a visual layout interface such as
Musicovery [Mus10] would be an interesting alternative to the table-views in our
interface.

To support interactive re�nement, we designed with examples in mind. SongS-
elect supports three example-based interaction re�nement techniques. First, the
user can select one or more items in a playlist and look for alternatives by simply
pressing the keyboard arrow keys.�e selected songs are replaced in-place with
alternatives derived from the user queries (Figure 3.3). Second, to better access the
user’s intent behind an example, we present a new widget, the suggestion widget,
which allows users to �exibly add new songs to the playlist using song metadata,
such as artist, album or genre. For example, if the user wants to add �ve more pop
songs to his playlist, he can drag on “Pop” in the genre column (Figure 3.4). Finally,
to support library browsing as part of collection re�nement, we link the library view
to the playlist view and allow users to use any song as a pivot for �nding related
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songs in the library (Figure 3.5).

Keyword queries. Since users are familiar with keyword search interfaces, which
can take any string as input, we designed the playlist query text input interface to
be as �exible as possible. Users can type as much or as little as they like. SongSelect
will do its best to infer user intent and return a reasonable playlist. We de�ne a user
query as a list of criteria, such as “some rock, a lot of U2, no Alternative,” that is
speci�ed as comma-separated phrases. Each phrase corresponds to a user criteria.
Phrases can be as simple as the name of an artist, album, genre, or song. For more
precision users can add modi�ers, such as “mostly,” “some,” “a lot,” “no.” When a
modi�er is not speci�ed, we assume the most general “some” modi�er. Complex
phrases include two ormore facet values, such as “rock by U2” and “Michael Jackson
before 1990.” Phrases can also describe criteria about the playlist length, such as
“max 2 hours, no more than 40 songs.” Table 3.1 shows examples of the types of the
modi�ers SongSelect supports. If a phrase fails to parse properly, SongSelect alerts
the user and asks him to correct or remove the phrase.

To aid the user in making queries, we designed an autocomplete widget that
recognizes phrases and provides information about items in the library (see
Figure 3.1a).�e autocomplete widget includes genres, artists, albums, and songs.
It lists the number of available items next to each autocomplete item. We found
this critical for setting user expectations. If they only have one hip hop song, they
should not expect to get a whole playlist of hip hop songs. Additionally songs and
album entries include the artist name.

Users can also add phrases to the query by browsing their library and double-
clicking on songs. �e generated phrase depends on the column where the user
double-clicks. To generate a song phrase, users can double-click on the song name.
To generate an artist phrase, such as “some U2”, users can double-click on the artist.

Finally, user queries are stored as tabs in the le� pane (Figure 3.2d) so that
user may go back to previous queries.�is is useful as a history mechanism, but it
also enables users to merge multiple playlists together or add new songs through
keyword queries.
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Figure 3.3: Successive alternatives for songs generated from the phrase “Some rock.”

Exploring alternatives. �e user can browse through alternatives for the music
playlist by selecting all or parts of the playlist and cycling through suggestions with
the le� and right arrow keys, as shown in Figure 3.3. Alternatives are generated
through the phrases speci�ed by the user. So if the user selects a few songs that were
suggested because he asked for “some rock,” he will see other rock songs that are
not already in the playlist. If the user selects a song that was added to the playlist
manually, through drag and drop, then SongSelect defaults to using the artist name
and gives alternative songs by that artist. Songs that are added to the playlist through
the suggestion widget are given a virtual phrase that corresponds to the basis for
the suggestion. For example, if the user dragged the “rock” suggestion widget, the
songs that are added are assigned the “rock” phrase.

Suggestion widget. �e suggestion widget allows users to grow a collection in-
place, removing the need to move back and forth between the library and the
collection.�e suggestion widget is visible to the user as a thumb and is available for
all cells that are associated with more than one item. Since song names are typically
unique, cells with song names do not include a suggestion widget, while an artist,
album, and genre are not unique and can therefore be used to add more items.
�e user clicks on the thumb and drags down to add songs. SongSelect limits the
size of the expansion with the number of available songs. Users can cycle through
alternatives in the suggestion widget in the same manner they explore alternatives
in the playlist.�is can be useful when the user wants to add only one or two songs
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Figure 3.4: �e suggestion widget invoked on the facet “Genre” with value “Alternative,”
the progressive suggestions as the user expands the widget.

(Figure 3.4).
�e suggestion widget presents a novel way to add items to collections and may

be used independently from the keyword interface. It allows users to create playlists
by example, but constrains how that example is used.

In SongSelect we implemented the suggestion widget as a tray that appears on
top of the playlist. One limitation of this approach is that as the user expands the
tray and adds new songs, he hides some of the songs already in the playlist. In
PhotoSelect the suggestion widget expands in place and moves the items following
the selected item.�is approach does not hide any elements but can cause extra
shu�ing, which may be distracting to the user.

Browsing libraries with linked views. Our interviews and prior research show that
users want to be able to browse their library when they are creating a collection.
To enhance this back and forth behavior, we designed a two-panel interface with a
panel for the library on the le� and a panel for playlist on the right.�e two panels
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Figure 3.5: Selecting a song by�e Postal Service in the playlist sorts the library by
artist and scrolls to show other related songs.

are linked and the library is sorted and scrolled dynamically with respect to the
playlist. When the user clicks on any song in the playlist, the library panel is sorted
and scrolled to the song the user selected (Figure 3.5).�e sorting is based on the
column the user clicked. If the user clicked on the name of the song, the library
is sorted by song name. For better orientation, we support secondary and tertiary
sorting. If the user clicked on the genre of a song, the library is sorted �rst by genre,
then by artist, and then by song. We specify default sorting rules for any metadata
dimensions. Since not all song metadata is always visible, SongSelect includes a
context menu that allows users to pivot on any of the metadata associated with a
song, such as rating, number of times played, year released, etc.

Rich feedback. Providing e�ective feedback was a key design goal, since users can
be confused by automatic suggestions. SongSelect o�ers a number of rich feedback
features. First, the autocomplete widget sets user expectations, so that if a library
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has only one rock song, the user should not expect to create a playlist of only rock
songs. Second, the playlist includes a column, the “source” column, that describes
why a song is in the playlist (see Figure 3.2). It lists the phrase that is responsible, the
facet value that was used with the suggestion widget, “drag-and-drop” for manually
added items, and “auto �ll” for items that were added to satisfy a length or duration
criteria.�e playlist grid also shows statistics about the playlist.�e tab displays
the number of songs, duration, and size of the playlist.�e columns also list the
number of unique items in that column, so that the user can quickly see how varied
or uniform the playlist is.

Since users are o�en concerned about how the items in a collection relate to one
another, we added brushing to the playlist view. As the user moves the mouse over
the playlist related items are highlighted. When the user puts the mouse over an
artist name, such as “Cake,” all “Cake” songs are highlighted. When the user moves
the mouse over a genre, such as “rock,” all rock songs are highlighted.�is type of
feedback allows users to assess the playlist and decide whether they need to add
new songs for balance.

3.3.2 PhotoSelect

PhotoSelect demonstrates the adoption of our general approach to a new domain
and thus repurposes some of the UI features of SongSelect (see Figure 3.6a).�e
interface has a search box at the top with two panes. �e library appears on the
le� and the collection to share appears on the right. To gather up photos to share,
users can type queries such as, “mostly landscapes, none from the hotel, a few
group shots,” or they can scroll through their library and drag and drop photos into
the collection.�e three collection re�nement techniques are also available. Users
can scroll through alternatives, use the suggestion widget to add new photos, and
dynamically sort and scroll their photo library. Since photos have an inherent time-
based ordering, which is also preferred by users [GGMPW02], we select time as the
default sorting criteria. PhotoSelect uses people and placemetadata, and timestamps.
Although not all of this metadata is part of all personal photo collections today,
with advances in GPS technology and face recognition, we expect this metadata to
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Figure 3.6: (a)�e interface for PhotoSelect includes a text box for specifying queries
(top), a browsing pane for browsing the library (le�), and the user’s current collection
(right). Suggestion widget tabs and tooltips for people (b), places (c), and time (d),
respectively.

become a ubiquitous part of personal photo collections.

�ere are some key di�erences between PhotoSelect and SongSelect. First,
photographs are displayed in a grid instead of a list, which means that metadata
incorporated with an image is not readily visible. Since the suggestion widget in
SongSelect uses visible metadata, we redesigned it for PhotoSelect (Figure 3.6b–d).
When the user selects a photograph, three thumbs appear.�e thumbs correspond
to people, places, and time. �e user can add more photos based on the people,
place, or time of any photo in the collection.

We added additional keywords to our parser in order to support domain-speci�c
keywords. For example, users may want to say “mostly landscapes” or “a few group
shots.” We expect that every new domain will have some number of specialized
keywords.
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3.4 IMPLEMENTATION

In order to support di�erent domains, we separate the implementation into a client-
server model, where the client contains domain knowledge and the server is a
generic domain-independent constraint solver. �e client transforms user input
into a set of constraints using its domain knowledge, passes those constraints to the
server, which then returns solutions to the constraint problem.�e advantage of
translating domain-speci�c user constraints into a domain-independent form is
that we can use powerful o�-the-shelf solvers for a variety of applications.�e server
is implemented in C++ as a web server and solves constraint problems using the
Gecode constraint-solving toolkit [Gec10]. For rapid prototyping and iteration, the
user interfaces are written inActionScript usingAdobe Flex 3 [Ado10b] user interface
elements and the Adobe Integrated Runtime (AIR) application framework [Ado10a].

Many simple queries can either be fully satis�ed without querying the server,
such as single-phrase queries (“some rock”), or partially satis�ed, such as phrases
that include or exclude items (“no Madonna”). However, most non-trivial queries
do require the services of the server, such as queries whose phrases’ domains overlap
(“some Madonna, a few pop”), or phrases that specify a constraint on the set as a
whole (“less than 30 minutes”).

3.4.1 Translating queries into constraints

As described in the user interface section, queries are comprised of a series of
comma-delimited phrases, each of which produce a constraint on the items in the
solution set.

Item constraints

�e most common type of constraint speci�es a class of items in the library and the
size or proportion of that class in the solution set. For example, “lots of Madonna”
speci�es that the class of songs by Madonna should be 50% of the solution set. And
“no rock by U2 less than 3 minutes” translates into zero songs that that contain “U2”
as artist and “rock” as genre and are less than 3 minutes long. Table 3.2 lists how we
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Quanti�er Proportion
all, everything, every, 100%
most,mostly,most 75%
lots, lots of/from/at, 50%
some, some of/from/at, 25%
few, a few, a little 10%
couple, a couple, 2 items
one, one of/from/at, 1 item
none, nothing of/from/at, 0 items

Table 3.2: We transform quanti�ers into proportions in order to issue constraints.

translate di�erent types of quanti�ers. Users could also directly specify proportions
or number of items. In our pilot study we found that users didn’t o�en know exactly
how many items they wanted in their collection and preferred using more vague
query words.

Before passing the constraints to the server, the client goes through all constraints
to normalize the proportions and check to see if each constraint can be trivially
rejected. So, for example if the user asked for “some U2” but he only has two U2
songs, the constraint is modi�ed to specify two U2 songs, instead of 25% of what
could be a 2 hour collection. All proportions are normalized to add up to 100%.�is
ensures that the constraint solver does not return items the user did not request. For
example, the query “mostly rock, some U2, some Madonna, no Michael Jackson, a
few Billy Idol” becomes 55% rock, 19% U2, 19% Madonna, and 7% Billy Idol for our
sample library.

Set constraints

Apart from constraints on classes of items, the user can set constraints on the
solution set as a whole, such as “some rock, < 90 min”. If a duration, song count or
size is speci�ed by itself in a phrase, it is understood to apply to the entire set.�e
constraint is constructed by summing the values from individual items, for example,
the phrase “< 90 min” is translated to be “the sum of song lengths < 90 min”. If
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no size or length constraints are speci�ed, SongSelect and PhotoSelect default to a
length of 20 songs or photos.

Parsing

�e user queries are parsed a�er every keystroke and the results are used to populate
the auto-complete widget. When the user is �nished entering a query, the parsing
results are the �rst step in transforming the query into the constraints that are sent
to the server.

�e language for describing collection preferences is inherently ambiguous.Does
the word “all” refer to the quanti�er from Table 3.1, or does it refer to a (possibly-
partial) title, album, artist or genre?What if the library contains both an artist and an
album named “all?” We use a non-deterministic parser which generates all possible
interpretations of the user’s query and applies a simple scoring function to rank
the interpretations.�e autocomplete widget uses this ranking in its display. For
each parser token like title or duration, the scoring function assigns a numeric score
based on the semantics of the domain.�e score of the entire phrase is simply the
sum of scores for each token. In the music domain, we score tokens in the following
decreasing order: genre, artist, album, title, anything else.�e interpretationwith the
highest summed score wins.1 We choose this ordering (general to speci�c) because
we expect the user to use the queries to summarize the general properties of the
solution set, not to pick out individual items. In the case where “all” matches both
an album and an artist, the parser favors the artist, which results in more songs in
the �nal solution set. In the photo domain, there is much less metadata, so ties are
not very common.�e parser scores people higher than places and places higher
than arbitrary tags.

3.4.2 Implicit constraints

When users create collections, they have some implicit criteria that apply to most if
not all collections. One such criterion is that they want their collections to be diverse

1In the case of a tie between two interpretations, the most speci�c interpretation wins.
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(e.g. playlists should include multiple artists and photos collections should include
photos from the entire library, not just a small subset). To create diverse collections,
we con�gured the server to explore the subspaces of constraint-matching sets at
random, ensuring that a query of “some rock” would not return a playlist with only
songs from the �rst rock artist in the library, for example.While this simple heuristic
works fairly well, it does not ensure diversity. In the future, we plan on exploring
di�erent strategies for ensuring diversity. Photo collections, for example, o�en
include bursts of photos taken at approximately the same time when users captured
several images in an e�ort to get “the best” one. It seems likely that users would
only want one photo from such events and this could be encoded as an implicit
constraint. Photo and music quality could also be part of the implicit criteria used
to generate a collection.

3.4.3 Limitations

Perhaps the biggest limitation of our approach is that the constraint solver sometimes
fails to �nd a solution and gives no feedback for the reasons for this failure.�e
SongSelect and PhotoSelect applications do a fair amount of processing in order to
pass along constraints that are satis�able but sometimes slight changes to the query
could yield a better result. To improve our approach, we plan to explore techniques
that allow for so� and hard constraints, and fail more gracefully. Since users are
satis�cing, returning a “good enough” collection is generally better than returning
no result at all.

Our approach also does not consider ordering e�ects within a collection, but
such preferences could be expressed as constraints in our current implementation.
An interesting future direction is to explore adding weights to constraints so that
users can express queries such as, “prefer rock over pop music” or “pick outdoor
scenes over indoor shots.”
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3.5 USER FEEDBACK

We report on user feedback from a pilot study of SongSelect with four participants.
We plan a comparative evaluation with manual and automated approaches in
the future. Each session lasted an hour and included an introduction into the
participant’s existing music collection and playlists, a training task with SongSelect,
and a playlist-creation task of their choice.�e participants were between 24 and 40
years of age, two male and two female. All of them use Apple’s iTunes so�ware and
have over 5000 songs in their libraries (one participant has over 70,000 songs). All of
them reported making playlists, but their playlists had very di�erent characteristics,
and they varied in the amount of time they spent making them. Somemade playlists
as a way to put songs on their mobile devices, while others made themed playlists
for fun or as part of an exercise class. Two of the participants were very concerned
with the order of songs in their playlist, while the other two didn’t care about the
order at all (to the extent of deliberately shu�ing the order of their playlist). All of
them reported listening to music every day. All of the participants were aware of
iTunes’ Genius playlist creation tool, but perceived it to be biased towards popular
music and not applicable to their personal libraries. Two participants mentioned
using Pandora, an online streaming music service that creates streams of music
similar to examples provided by the user. Two participants explicitly said that they
enjoyed making playlists and enjoyed the results, but found the process tedious and
wished that there were faster ways of generating quality playlists.

Overall, the participants reacted positively to SongSelect. �ree commented
that they liked the automated-but-malleable nature of SongSelect playlists. All four
commented that they would like more automated tools for creating playlists but that
they were concerned with the lack of control with existing systems for automatically
creating playlists.

When asked about their favorite part of SongSelect, all participants agreed that
the in-place suggestion widget was a great way to add new items and that being able
to look at the library side-by-side with the playlist was useful. Two of the participants
requested that a modal suggestion widget so that they could add just the songs they
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wanted and not all suggestions.�ree participants liked the ability to look through
alternative item suggestions with the arrow keys but requested more control. Two
participants wanted to be able to change the way SongSelect generated alternatives.
One wanted to constrain the suggestions to a speci�c artist, while another wanted
to change the genre of the songs.

All our participants were able to use the text-based interface to generate an
initial playlist. One participant said he preferred SongSelect’s interface to iTunes’
SmartAlbums interface because he didn’t have to move the mouse, he could just
type. All of the participants wanted to be able to use more metadata dimensions
in the text box, in particular the album year, the dates the songs were added, and
other, more subjective dimensions such as the “energy” of a song.�ree participants
remarked on the inaccuracy of the genre metadata in their libraries, and noted that
the quality of the query results depended on the accuracy of the metadata.

�e participants who struggled with the text interface had two main challenges.
One was confused by the results returned by the constraint server and felt that
SongSelect was hiding things from her.�is was likely due to a so�ware bug and
could be improved. �e other participant thought of SongSelect’s interface as a
search interface not as a playlist creation interface and as a result was confused
when SongSelect produced only 20 songs and not every matching song.�is may be
a more serious issue and one that requires careful design. By converting the search
box into a query command interface SongSelect takes away the ability to search the
library.�is could be remedied, by explicitly including a Find feature that could be
triggered with common key commands (Ctrl-F). However this confusion may speak
to a larger problem: that users have expectations of what appear to be search text
boxes.�at is, queries in text boxes are for searching for speci�c items, not entire
collections of items with interdependencies.�is type of interface may require more
training and a longer term �eld study to evaluate its e�ectiveness.

3.6 DISCUSSION OF DESIGN CONSIDERATIONS

Creating playlists and sharing photos are just two situations among many in which
users work with collections. For example, when planning a weekend trip, users
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Collection
permanence permanent ephemeral

Collection
order ordered unordered

Familiarity
with library personal public 

User time
investment minutes days

Figure 3.7: Design space for tasks with collections. SongSelect and PhotoSelect are
designed for quickly creating ephemeral collections from personal libraries (shown in
grey). SongSelect does allow users to manually order songs in the playlist but order is
not used in generating playlists.

are o�en faced with putting together an itinerary with many di�erent activities
such as meeting friends, visiting museums, and attending events. When selecting
investments, users are o�en trying to pick a good mix of stocks while satisfying
some high-level objectives and risk tolerance. When remodeling a house there are
many decisions that must be done in concert. For example, the choice of cabinets
a�ects the counters and appliances.

Although in all of these situations, users iteratively create collections while
managing multiple constraints, it is important to consider their di�erences. We
propose a design space for discussing the di�erences and similarities between these
problems, illustrated in Figure 3.7.

User time investment

Selecting stocks is a very di�erent kind of activity than creating a music playlist.
Although users are trying to make collections in both situations, the high cost
of making a bad investment decision means that users are willing to spend days
working on their collection. In contrast, creating a music playlist usually takes an
hour or two, and some users are only willing to spendminutes on it.With SongSelect
and PhotoSelect we designed for shorter tasks, although some of our participants
mentioned that they would use SongSelect to edit playlists over time. Automated
tools can shorten the time it takes to complete a task, thereby lowering the barrier
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to entry. In our interviews many users expressed wanting to create more playlists
but being held back by the time investment.

Familiarity

Users approach personal libraries di�erently than less familiar public libraries,
because they know what is available. Similarly, in the two domains that we
considered, users can be expected to be familiar with the kinds of metadata available,
such as artist names, genres, places, etc. Both SongSelect and PhotoSelect were
designed for use with personal libraries, but we found that some participants
acquired music at such a high rate (10 new albums per month) that their libraries
were a mix between very familiar and unfamiliar songs. Although we believe that
the interaction techniques we present in this chapter could apply to unfamiliar
content, further investigation is necessary.

Collection permanence

Users create collections for di�erent reasons. Music playlists created for parties are
o�en transient and get dated quickly. Investment and remodeling decisions, on
the other hand, tend to be more permanent. SongSelect and PhotoSelect’s designs
focused on the collection creation aspects rather than longer-term maintenance
aspects. We suspect that long-lived collections may require additional tools that
help users track how a collection has changed over time.

Item order

For many collections the order of items is important. Although SongSelect lets
users manually order items, it does not consider ordering e�ects when it generates
collections. We expected this to be a common complaint among our participants,
however we found that many listen to playlists in shu�e mode.
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3.7 CONCLUSIONS AND FUTURE WORK

Wepresent a semi-automatic interface for creating collections of items frompersonal
media libraries. Our interface combines free-form text input with example-based
re�nement. We present a keyword query interface that lets users create collections
by specifying collection characteristics and propose three di�erent example-based
re�nement techniques. First, we introduce the suggestionwidget for in-place addition
of new collection items that allows the user to �exibly add content using example
metadata. Second, we allow users to automatically scan through alternatives for one
or more collection items while retaining any user speci�ed collection characteristics.
Finally, we use a two-pane linked interface to let users dynamically sort and scroll
their libraries relative to a collection item. We demonstrate our approach in two
applications—a music playlist creation application, SongSelect, and a photo set
selection application, PhotoSelect—but we believe these interaction techniques
are applicable to other domains. Initial user feedback con�rms the need for semi-
automated tools that let users direct automatic collection creation.

In future work, we plan to explore working with multiple collections. For
example, when users create photo books or calendars, they look at previous photo
collections they may have created and shared. Today’s interfaces do not let users
compare collections and easily see which items are included in multiple collections.
More generally, today’s folder-based interfaces assume and enforce that items are
only present in one location.�ere are many situations in which this is not optimal,
and users make many copies that are hard to keep up-to-date.

SongSelect and PhotoSelect allow users to create collections from their personal
libraries, but users are o�en looking to make collections of non-personal content,
like when they build travel itineraries, select stocks, or select furniture for their house
remodel. Non-personal content is o�en scattered throughout multiple websites and
part of the user’s task is to �nd all necessary information. A tool for helping users
build non-personal collections will have to be able tomanage and integratemetadata
from multiple locations.
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Chapter 4

Perceptual models of viewpoint preference

4.1 INTRODUCTION

What makes for a good view of a 3D object? Di�erent views are not equally
e�ective at revealing shape, and people express clear preferences for some views
over others [BVBT99]. Object recognition and understanding depends on both view-
independent properties [Bie87] and view-dependent features [KD79]. Researchers
have proposed a variety of measures for view point preference, for example
viewpoint entropy [VFSH01], silhouette stability [GRMS01], mesh saliency [LVJ05],
and symmetry [PSG+06]. We combine attributes like these into an overall measure
that we call the goodness of views, based on human preference data. While similar
approaches based on machine learning algorithms have been previously described,
in one case the method only incorporates a single measure [LN08], and in another
case the system is designed to produce a very specialized measure trained on a small
data set generated by one or few people [VBP+09].

Our goodness measure relies on weights determined via a large user study, in
which, given two views of the same object, hundreds of subjects were asked to
select a preferred view.�e resulting dataset covers each of 16 models with 120 pairs
of views, and each pair was evaluated by 30 to 40 people. From this data we can
combine attributes together in various predictive models and reliably predict new
view selections not used in the training.

Moreover, our methodology o�ers several bene�ts beyond the speci�c goodness
measures recommended herein. First, we gain insight by examining the relative
e�ectiveness of various components of our goodness measure, as well as other
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methods proposed in the literature. For example, we �nd that the mesh saliency
approach described by Lee et al. [LVJ05] is not as e�ective at describing our data as
projected area, a much simpler model.�e optimization procedure can incorporate
any attribute or combination of attributes a posteriori and also evaluate any proposed
model for viewpoint preference using only the data acquired in our user study.

�is work also considers several straightforward applications for the goodness
measure for views. Supposedly simple tasks such as orbiting around a 3D shape
(with the implied goal of understanding it) are o�en reduced to a “turntable” with the
camera rotating above the equator [Goo10], even where another path might reveal
the shape more e�ectively. We o�er several tools motivated by this observation.
�e �rst kind of tool automatically selects either good individual viewpoints or an
orbit around an object designed to pass through good views as much as possible.
Likewise, a second class of tool helps the user navigate in camera space by gently
nudging the camera towards good views and away from bad views.

�e main contributions of this chapter are:

• an evaluation of 14 attributes from the literature that encode a range of
desirable properties w.r.t. understanding and exploring a 3D shape,

• a user study and methodology by which we evaluate and optimize combina-
tions of these attributes,

• a set of simple recommended measures for practical applications,

• a large dataset resulting from the study, publicly available for download by
other researchers,

• an optimization tool that �nds good individual views of an object or a smooth
orbit around an object that passes through good views, and

• an interface that allows users of various skill levels to navigate around 3D
shapes using a commodity 2D input device such as a mouse or touch screen,
or even 1D input widget such as a scroll-bar.
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4.2 RELATED WORK

Our work concentrates on �nding good views of a single object. Full 3D camera
control is therefore outside of our scope, and we refer to the excellent taxonomy of
general methods for camera control in 3D by Christie and Olivier [CON08].

Several researchers have investigated ways of evaluating the goodness of a
view. For example, Kamada and Kawai [KK88] attempt to minimize the number
of degenerate faces in orthographic projection. Plemenos and Benayada [PB96]
describe a measure for goodness of views based on projected area of the model,
while Roberts and Marshall [RM98] compute multiple views that, combined, cover
the entire surface of the model as well as possible, using an approximation of
the aspect graph [KD79]. Scene visibility is also used for camera placement in
the work of Fleishman et al. [FCoL99]. Blanz et al. [BVBT99] perform studies that
show what attributes are important for determining canonical views for humans,
following the seminal work by Palmer et al. [PRC81] that �rst introduces the
notion of canonical views as well as the �rst such study. In the work of Gooch et
al. [GRMS01], an optimization process adjusts camera parameters to produce more
“artistic” compositions by causing silhouette features to match known compositional
heuristics such as “the rule of ��hs.” Vazquez et al. [VFSH01] coin the term viewpoint
entropy, inspired by Shannon’s information theory [Sha48] and based on relative area
of the projected faces over the sphere of directions centered in the viewpoint. Sokolov
and Plemenos [SP05] use dihedral angles between faces and discrete gaussian
curvature. Also inspired by information theory, Lee et al. [LVJ05] describe mesh
saliency and show how it can be used to optimize viewpoint selection. Yamauchi et
al. [YSY+06] partition the view sphere based on silhouette stability [WW97], and then
use mesh saliency to determine the best view in each partition. Finally, Podolak et
al. [PSG+06] describe a goodness measure based on object symmetries.

In principle, the tools we present in this chapter could make use of any of
these goodness measures, and indeed we investigate and combine several of them.
To the best of our knowledge, Polonsky et al. [PPB+05] were the �rst to explore a
number of di�erent attributes, which they call view descriptors.�ey suggest the
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possibility of a combined measure, but leave this as future work. Most closely related
to our own is the work of Vieira et al. [VBP+09].�ey train a support vector machine
classi�er using a small set of tuples, one for each view, where each consists of a vector
containing concatenated goodness values, and a user-provided binary preference
for this speci�c view.�ey compare to individual goodness measures, and show
that using a combination better �ts to a wider range of models—an inspiration for
our work.�eir approach is designed for user interaction on a small set of models
with similar objectives, and they leave a validating user study for future work. In
contrast, our motivation is to �nd a goodness measure designed for a broad range
of models and applications, and is based on a large user study.

�e tools presented in this chapter are designed to work for both static and
moving cameras, either under guided user control or as a path designed to o�er a
good overall view of the object. Barral et al. [BDP00] optimize paths for a moving
camera so as to provide good coverage of an overall scene, but the resulting paths
appear to be unpleasantly jerky. In follow-upwork to [YSY+06], Saleem et al. [SSBS07]
show how to compute smooth animation paths that connect the best viewpoints, and
adjust zoom and speed according to the goodness along the path. In comparison, the
paths computed by our method are smooth, but additionally optimize the integral
of goodness along the path. Recent work by Kwon and Lee [KL08] shows how to
optimize a camera path given animated character motion as input, where the goal
is to optimally cover the space swept out by the motion.

4.3 MEASURING VIEW GOODNESS

In this section we describe our process for obtaining a measure for the goodness
of views. First, we describe a set of view-dependent attributes that we will later
combine to form various overall goodness metrics. Next, we present the results of a
large user study in which we gather information about subjects’ preferences among
pairs of nearby views. Finally, we use the data from the study to optimize the weights
of our combined goodness measures, and also evaluate the relative contributions of
the di�erent attributes.
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Area attributes Silhouette attributes

Semantic attributesSurface curvature attributes

Depth attributes

Figure 4.1: Five groups of attributes, visualized over the sphere of viewing directions,
for the armadillo model shown in the lower right. Color values range from blue (low)
to red (high).

4.3.1 Attributes of Views

As reviewed in Section 4.2, the literature o�ers many attributes of views that
may contribute to the overall goodness. However, previous e�orts have typically
considered just one attribute in forming a goodness measure. Obviously no single
measure taken alone fully characterizes what people consider good, and one would
expect di�erent measures to combine with di�ering relative impact overall. In this
section we present a group of attributes with the hope that they may combine to
form a more accurate measure than any one or a few measures taken alone.�ese
measures are visualized over the sphere of viewing directions for one model in
Figure 4.1. Each of the attributes we selected is taken directly from the literature or
inspired by previously described attributes. In the presentation below, the attributes
are organized into �ve categories relating to di�erent aspects of a view, for example,
surface area or silhouettes.

Area attributes

Area attributes are related to the area of the shape as seen from a particular viewpoint.

a1: Projected area. �is attribute is the projected area of the model in the
image plane as a fraction of the overall image area. Introduced by Plemenos and
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Benayada [PB96], this measure is generally maximized by non-degenerate views.

a2: Surface visibility. Plemenos et al. [PB96] de�ne the surface visibility as the ratio
of visible surface area in a particular view to the total surface area of an object.
Maximizing surface visibility should reduce the amount of hidden surface of an
object.

a3: Viewpoint entropy. Introduced by Vázquez et al. [VFSH01], this attribute
converts projected areas of mesh faces into a probability distribution and measures
the entropy of the result. Since the original viewpoint entropy method employed
a spherical camera, we use the extension to perspective frustum cameras due to
Vázquez and Sbert [VS02].

Silhouette attributes

Silhouette features are believed to be the �rst index into the human memory of
shapes [HS97], and, as a direct result of Shannon’s information theory, it was known
as early as the 1950s that edges and contours contain a wealth of information about
a 3D shape [Att54, KD79].

a4: Silhouette length. �e overall length a4 of the object’s silhouettes in the image
plane, expressed in units of the average dimension of the image plane.�is attribute
is correlated with the appearance of holes and protrusions such as arms or legs.

a5: Silhouette curvature. Vieira et al. [VBP+09] introduce silhouette curvature as
an attribute, de�ned as

a5 = ∫ ∣κ(ℓ)∣dℓ
where the curvature κ is parameterized by arc length ℓ.

a6: Silhouette curvature extrema. While silhouette curvatures will capture general
complexities in the silhouette of an object, we are o�en interested in sharp features
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such as creases or the tips of �ngers. To that end, we introduce a simple measure
that emphasizes high curvatures on the silhouette:

a5 = ∫ κ(ℓ)2dℓ.

However, through experimentation we found it best to drop the curvatures found
at depth discontinuities (i.e. T-junctions) as these areas sometimes contribute high
curvatures without obvious connection to visual interest or features.

Depth attributes

Depth attributes are related to the depth of the shape as seen from a particular
viewpoint; similar to area attributes, depth attributes can help avoid degenerate
viewpoints.

a7: Max depth. �e maximum depth value of any visible point of the shape is used
to avoid degeneracies in [SS02].

a8: Depth distribution. Since the maximum used in a7 is noisy, we also introduce
an attribute that is designed to encourage a broad, even distribution of depths in
the scene:

a8 = 1 − ∫ H(z)2dz

where H is the normalized histogram of the depth z of the object, sampled per pixel.
�is measure becomes small when H is “peaky” (most of the object is at a single
depth) and is maximized when H is “equalized” (a range of depths are visible).�us,
a8 encourages objects with largely planar areas to take oblique rather than head-on
views, conforming to a human preference observed by Blanz et al. [BVBT99].

Surface curvature attributes

Geometric surface curvatures of the shape are assumed to be related to the shape’s
semantic features and are easily computed.
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a9: Mean curvature. We compute the mean curvature on the surface of the object
using [MDSB02]. We consider curvature magnitudes to be relevant (not generated
by noise) if they could be generated by a feature larger than 1% of the object’s size.
We then linearly map the curvature values into [0, 1] and compute the mean value
visible at a particular viewpoint:

a9 =
1
Ap

∫x∈Ap
[ ∣h(x)∣
hmax

]
01
dA.

Here, Ap is the projected screen area occupied by the object, hmax is the absolute
value of largest relevant curvature, and the operator [ ∗ ]01 clamps its argument to
the range [0, 1]. We use the absolute value of the curvature to avoid cancellations in
the integration.

a10: Gaussian curvature. Gaussian curvature is also used in previous work
([PKS+03, PPB+05]); we compute Gaussian curvature on the surface of the object
usingMeyer et al.’s angle defect formula [MDSB02].We treat the computed Gaussian
curvatures analogously to the mean curvatures:

a10 =
1
Ap

∫x∈Ap
[ ∣k(x)∣
kmax

]
01
dA.

a11: Mesh saliency. �e �nal surface curvature attribute ismesh saliency, introduced
by Lee et al. [LVJ05]. Mesh saliency is constructed from the mean curvature of the
surface at multiple levels of detail; Lee et al. apply this attribute for both mesh
simpli�cation and viewpoint selection. As de�ned by Lee et al., the attribute a11 is
the total sum of mesh saliency visible from a viewpoint. We note that this confounds
two factors—average mesh saliency and the projected area measure a1 described
above. While it would probably be wise to decorrelate these two factors, we use a11
as described in the literature for easier comparison.

Semantic attributes

Much of the previous work in automatic viewpoint selection has avoided the use of
semantic features preferring that view goodness can be fully computed from the
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geometry of the object. We include semantic features because we believe that they
are important in human preference, and we will be able to measure this importance
in Section 4.3.3.

a12: Above preference. Blanz et al. [BVBT99] observe that people tend to prefer
views from slightly above the horizon. Based on their observation, Gooch et
al. [GRMS01] initialize their optimization for “artistic” compositions from such
a view.�us attribute a12 favors these views with a smooth fallo� towards the poles:

a12 = G (ϕ; 3π8 ,
π
4
) ,

where ϕ is the latitude with 0 at the north pole and π
2 at the equator, and G(x , µ, σ)

is the non-normalized Gaussian function exp(−(x−µ)2/σ 2).�e a12 attribute peaks
at π

8 above the equator and is minimal at the south pole. For objects with no inherent
orientation, such as the heptoroid and rocker arm models (Figure 4.6), we simply
set this term to zero. Nevertheless, typical computer graphics models generated
by CAD or acquisition processes do indeed have a stored up-direction, and it is
also possible to use techniques like those of Fu et al. [FCODS08] to determine the
orientation of man-made objects with unknown up directions.

a13: Eyes. When the object of interest is a creature with eyes or a face, we observe
that people strongly prefer views where the eyes can be seen [Zus70].�us, attribute
a13 measures how well the eyes of a model can be seen, when appropriate. In our
system we mark the eyes by hand, by annotating a central vertex on the surface
with a tiny radius. We note that just as technology for automatic face detection in
images and video has matured, we expect that analogous algorithms for 3Dmodels
will become robust in the future and will obviate this manual task. To measure a13,
we simply sum this “eyes” surface value for all visible pixels. Most pixels do not
contribute, so the behavior of this attribute is roughly that of a delta function for
visibility attenuated by a cosine term for oblique views. For objects without eyes,
this attribute is set to zero.
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a14: Base. Just as people tend to prefer seeing eyes, they tend to avoid views from
directly below for objects that have an obvious base on which they sit.�e attribute
a14, measures the amount that the hand-marked base is visible, using the same
strategy as for eyes. While we mark these features by hand, for many models they
could be found using the automatic method of Fu et al. [FCODS08]. Note that we
distinguish the base from the eyes because we expect their behaviors to be anti-
correlated, and because some models will have eyes, some will have base, some will
have both, and some neither.

Our implementation uses an image-based pipeline to avoid dependencies on
mesh representation. To compute the attributes described above we render the
object into an ID, a depth and several color images, and then use image processing
to compute projected area, silhouettes, and so forth. For mesh saliency, we use the
implementation of Lee et al. to assign a value at every vertex as a preprocess. Similarly,
we compute the mean and Gaussian curvatures of the surface using the method of
Meyer et al. [MDSB02]. For any particular view we render a “color” bu�er containing
these values interpolated across faces and compute the appropriate quantities on the
resulting rendered images.�e eyes and base attributes are computed in a similar
way.

4.3.2 Collecting human preferences

Here we describe a study we performed in order to collect data about the relative
goodness of views according to human preferences. In the next section we will use
this data to train a model for view goodness that combines the attributes described
above. It will also allow us to remark on the relative importance of the individual
attributes in forming a combined measure of goodness. In order to design a study
to meet these goals, a number of issues need to be addressed.

�e �rst concern is what models to use for the study. Researchers performing
perceptual studies o�en resort to models of abstract shapes like “blobbies” or geons.
However, for several reasons we prefer to use models that are more recognizable.
First, the resulting data will better characterize the kinds of models that we work
with in computer graphics. Second, it is easier for people to express view preferences
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Figure 4.2: Distribution of the pairs of selected views for three objects used in our
study (120 pairs per object). In the middle the pairs are plotted in the θ × ϕ domain,
and colored by the attribute in which they vary most. To illustrate typical image pairs,
we highlight pairs that were particularly dominant in a speci�c attribute—top-le�:
projected area, bottom-le�: silhouette length, top-middle: silhouette curvature, bottom-
middle: above preference, top-right: eyes, bottom-right: max. depth. In each plot, the
highlighted pair on the le� side of the plot corresponds to the image pair at the top,
and the pair on the right corresponds to the image pair on the bottom.

when they understand what they are seeing, so we believe the data will be both more
meaningful and less noisy. Nevertheless, we would like the models to represent a
broad range of shapes and objects. We selected 16 models, some scanned from real
objects and somemodeled via so�ware, and theymay be seen in the upper four rows
of Figure 4.6. Eight of the models will be familiar to graphics researchers (armadillo,
dragon, etc.) and the other eight are selected from separate categories in the
Princeton Shape Benchmark [SMKF04]. All but one of the objects are recognizable
shapes even for people who have never seen them before.�e heptoroid model is
more abstract but still easy to understand from most or all views.

Our goal is to learn by asking people which views they prefer and by how
much. Unfortunately there is no absolute scale for this kind of preference, since
one person’s “pretty nice” is another person’s “okay.” Moreover such judgements
are not quantitative. A standard strategy in such scenarios is to use the method of
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Chapter 4: Perceptual models of viewpoint preference

paired comparisons [Dav63], which asks people a simpler question: “Which of these
two views do you prefer?”—a two-alternative forced choice experiment (2AFC). In
principle, by asking many people this question for many pairs of views it will be
possible to establish an overall ranking for all views. Standard practice would be to
ask this question for either all pairs or many random pairs. However, in designing
our study we found it to be more e�ective to ask the question only for pairs of nearby
views. In particular we found that an angular separation of π

8 radians provides a
nice balance in that the views are su�ciently far apart that the di�erence between
the images is obvious, and yet similar enough that it does not feel like an “apples-to-
oranges” comparison. We additionally �x the orientation of any rendered view such
that the up vector of the model is aligned with the up vector in the image plane, so
nearby views typically have similar orientations.

Regardless of how similar or di�erent the views are, the instructions given to
the subjects are critical. We want people to consider the shape of the object when
choosing a view, but “shape” means di�erent things to di�erent people, especially
graphics non-experts. �erefore, inspired by language in the study of Blanz et
al. [BVBT99], we provide the following instructions to our subjects:

Which of the two views of the object shown below reveals its shape better?
For example, suppose that you had to choose one of these two pictures to
appear in a magazine or product advertisement. Do not worry if neither
of them is ideal. Just click on the one that you think is better.

�e next issue to address is how to choose the particular pairs of views to
be used in the study. �e natural goal is to choose pairs randomly but roughly
uniformly distributed over the sphere. We use rejection sampling with a probability
distribution that includes a term that discourages choosing views that are close to
previously selected views. In addition, we include two more criteria for rejection.
First, in order to avoid pairs where the model appears to have rotated substantially
in image space, we include a term that discourages pairs from varying much in the
longitudinal direction near the poles.�is term falls o� with latitude so that at the
horizon pairs vary equally in θ and ϕ, as can be seen for the sets of pairs shown
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in Figure 4.2. Second, if we sample the sphere uniformly, it is possible that many
pairs will not exhibit strong di�erences in the attributes and that for a particular
attribute a j we may not get a range of variation among the pairs.�erefore, we also
include a rejection policy that favors pairs of views in which attributes are varying.
Speci�cally we use the sum of absolute di�erences in each attribute between the
pairs, where each attribute is scaled in terms of standard deviations (because they
have di�erent ranges of values). Using this strategy we selected 120 pairs of views for
each of the 16 models (3,840 images in total). Figure 4.2 shows the pair distributions
for three models, colored by the attribute by which each pair varies the most. Of
course all attributes vary somewhat for every pair, but it is easy to see that across all
pairs every attribute has substantial variation. (See Figure 4.3 for the color coding.)

We ran our study on the Amazon Mechanical Turk (AMT), a service that
allows researchers (and others) to provide small jobs for anonymous workers
over the Internet for a small amount of money. �e use of AMT is increasing
in computer graphics and human-computer interaction research, see, for example,
[HB10], [DHSC10] and [CSD+09]. In our study, each job (“HIT” in Mechanical Turk
terminology) was to make a choice for each of 30 images. For each person, the pairs
were presented in random order, and for each pair the two images were randomly
shu�ed le�-right. To �lter out careless subjects, we resort to the strategy of Cole et
al. [CSD+09] in which every pair is shown to the worker twice (show 30 pairs, shu�e,
then repeat) and we only retain the data from HITs where the two answers were
reasonably consistent. Speci�cally, we require that 22 or more of the 30 answers
were answered the same way the second time.�is a�ords us reasonable con�dence
(p > 0.99) that the worker was not picking randomly, and also keeps data where the
user could not make up their mind a substantial fraction of the time.

A�er discarding the inconsistent data we have between 30 and 40 people
expressing a choice in each pair, for a total of 2,119 HIT assignments and 127,140
choices overall.�is data was collected from 524 unique workers. Many subjects
did multiple HITs, but they were never presented the same pair in more than one
HIT.�e most active subject worked on 51 HITs, and the histogram falls o� roughly
with a power law shape where most workers did just one HIT.
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4.3.3 Modeling viewpoint preferences

�e study produces a set of data that we can now use to evaluate predictive models of
viewpoint preference, and to �t models of viewpoint goodness.�e data is as follows:
each pair i was shown twice to ni/2 people, meaning there were ni opportunities
to pick one image or the other. Let’s say that view v0i was picked ki times, and v1i
was chosen ni − ki times. If we have a probabilistic model that predicts how o�en
a user would choose v0 over v1, call it P(v0, v1) ≡ P(v), then we can compute the
likelihood that such a model explains our observed data.

Likelihood of observing our data

Out of the ni people who see pair i, the probability that exactly ki will choose view
v0i is given by the binomial distribution:

(ni

ki
)P(v)k i(1 − P(v))n i−k i

�us, the likelihood L of seeing these observations, over all M pairs is:

L [P(v)] =
M

∏
i
(ni

ki
)P(v)k i(1 − P(v))n i−k i .

As usual when dealing with probabilities, the log-likelihood form is more conve-
nient:

L∗ [P(v)] =
M

∑
i
ln(ni

ki
) + ln(P(v)k i) + ln((1 − P(v))n i−k i)

= c +
M

∑
i
ki lnP(v) + (ni − ki) ln(1 − P(v))

Interpreting likelihood values

To gain some intuition about the range of likelihood values, we can compute the
likelihood of two basic predictive models: a naı̈vemodel that randomly guesses and
an oracle that has perfect knowledge. Consider �rst the naı̈ve model that predicts
either image with equal likelihood; Pnaı̈ve = 1/2 and its value of L∗naı̈ve is −33203. On

66



4.3. Measuring View Goodness

the other end of the spectrum, we can consider an oracle with complete knowledge
of the users’ selections. When the subjects select view v0 over v1 k out of n times,
the oracle predicts a probability of k/n for that selection; Poracle = k/n and L∗oracle
is −3688 on our data. �e naı̈ve predictor and the oracle provide a convenient
frame of reference for any model’s performance: we express the model �tness as
F[P] = (L∗ [P] −L∗naı̈ve)/(L∗oracle −L∗naı̈ve).�e closer a model’s �tness approaches
unity, the better it predicts the response of our users.

Goodness functions for single viewpoints

�e preceding discussion focussed on models that operate on pairs of viewpoints;
while this matches our collected data, for practical applications we would prefer a
model that predicts the goodness of a single viewpoint. Given goodness values for
single viewpoints G0

≡ G(v0) and G1
≡ G(v1), we need a prediction of how o�en a

user would choose v0 over v1.�ere are many possible models for this response and,
generally, this method of paired comparison has been an active area of research
since the 1920’s [Dav63].�e well-studied Bradley-Terry model [BT52] characterizes
the probability P that a person will choose v0 over v1 as the sigmoid-shaped logistic
function of the di�erence in their inherent goodnesses: 1

P(G0,G1) = 1
1 + e−σ(G0

−G1)

Examining Figure 4.3, note that many of the attributes already have sigmoid-like
shapes, indicating some weak explanatory power, even individually.

Given a particular model of viewpoint goodness G such as a single attribute,
or a weighted combination of various attributes, we can compute the probability
P(G0,G1) that a user would select the �rst view, then evaluate the likelihood
L∗ [P(G0,G1)] that this model explains our data, and �nally assign a �tness value
F[G] relative to the performance of the oracular and naı̈ve models. Schematically,
we have:

G B-T model
ÐÐÐÐ→ P user data

ÐÐÐÐ→ L∗ oracle & naı̈ve
ÐÐÐÐÐÐ→ F

1�ough we refer the reader to [BT52] for the details, the Bradley-Terry model follows from
the intuitive idea that if view 0 has goodness G0 and view 1 has goodness G1, then the probability
that v0 is picked over v1 is G0/(G0

+G1).
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Figure 4.3: Plots of the di�erence in each attribute value in a viewpoint pair versus
the user’s preference for the �rst image in the pair.�e horizontal axes are in units
of standard deviations of the di�erences in attribute value across all pairs of images.
�e matrix in the lower-right shows the linear correlation coe�cients between pairs of
attributes, with the values of highly-signi�cant correlations marked. Note the three
strong clusters: area attributes (projected area, surface visibility, viewpoint entropy
andmesh saliency), silhouette curvature attributes (silhouette curvature and silhouette
curvature extrema), and surface curvature attributes (Gaussian curvature and mean
curvature).

We now explore various models of viewpoint goodness, with the intent of discover-
ing important attributes and providing the practitioner with practical models.

Single-attribute models of goodness

As described in Section 4.3, each viewpoint is associated with N = 14 attributes.
Figure 4.3 shows raw �tnesses of the individual attributes. We �rst explore the
simplest models of viewpoint goodness: goodness is given by a single weighted
attribute: Gi = ai . We can �t the value of σ in the Bradley-Terry model to the data
by any convenient 1D optimization procedure. To avoid over-�tting the data we
use 100 trials of random sub-sampling validation: in each trial the weights were
trained on a random subset of half of the objects and tested against the other half.
�e �nal weights are the means of the 100 trials, and are shown in Table 4.1. We
can see that surface visibility plays the single strongest predictive role; on the other
hand, silhouette curvature does not appear to do as well on its own. However, when
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Table 4.1: Fits of individual attributes to our study data. Fitnesses that are listed
as exactly zero are statistically indistinguishable from zero at a signi�cance level of
p = 0.05, the rest are all signi�cant.

Model F σ(F)
Oracle 1 0

Surface visibility 0.38 0.072
Viewpoint entropy 0.37 0.092
Projected area 0.28 0.110
Mesh saliency 0.26 0.100
Sil length 0.20 0.120
Above 0.16 0.064
Base 0.13 0.087
Eyes 0.09 0.033
Sil curvature 0.01 0.040
Sil curvature extrema 0 0.032
Depth distribution 0 0.020
Max depth -0.02 0.021
Abs mean curvature -0.15 0.260
Abs Gaussian curvature -0.15 0.180

Naı̈ve 0 0

combined with other attributes, it may perform quite di�erently: see Section 4.3.3.

Linear models of goodness

�e natural extension to the single-attribute models are the linear-K models that
combine K attributes to form a goodness value:

G(v) =∑
j∈S

w ja j

where v is a viewpoint and S is the set of indices of attributes used in the particular
model (∣S∣ = K). Since σ in the Bradley-Terry model is made redundant by w1, we
�x it to be one. We can then optimize the values of the weights by maximizing
the value of F[Gi], which is nonlinear in the unknown weights wi and the known
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attributes ai of the views. However, the function is quite smooth and the downhill
simplex method of Nelder and Mead [NM65] �nd the optimal weights consistently
and quickly for our data. �ere are (142) = 91 linear-2 models, (143 ) = 364 linear-3
models, etc., for a total of 16383 possible linear models. We separately trained and
tested all 16383 models using, as before, 100 trials of repeated random sub-sampling.
�e result is a distribution of �tnesses for each potential linear model, sampled
100 times. Given the statistical nature of the sampling, it is inappropriate to, say,
simply select themodel with the highest mean energy for some particular K: another
run of 100 trials of training and testing might result in a slightly di�erent ranking.

1 5 14
0

0.5

1
Instead, we use Tukey’s “honestly signi�cant dif-
ference” (HSD) method, a multiple-comparison
procedure [Hsu96], to identify the pool of models
that perform statistically indistinguishably from
the top-performing model. Shown on the right is
themean and standard deviations of the �tnesses of
the pool of top-performing models for K = 1 . . . 14.
Note that using more than �ve attributes does not
improve the performance of the linear models.

Given that there are several top-performing linear models with K attributes, we
recommend the following single-attribute, linear-3 and linear-5 models, spanning
the useful range of K (Table 4.2). In each class K, these recommended models are
in the pool of highest-performing models, and are chosen with an eye towards
computational simplicity of the component attributes. �e simplest model is simply
a2, surface visibility, and if more computational resources are possible, then we
add a12 and a4, the above preference and silhouette length, respectively. Still better
performance is possible by adding a1 and a7, projected area and max. depth. If
it is possible to include marked features such as eyes or base, we also suggest an
alternative model, linear-5b, which swaps a7 for a13, the eyes attribute. Table 4.3 lists
the performance of our recommended models. We use the linear-5b model for the
rest of the discussion that follows and in Figures 4.4, 4.6, 4.7, 4.8 and 4.9.

Figure 4.4 shows how the optimized weights of the linear-5b model �t the
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4.3. Measuring View Goodness

Table 4.2: Weights of viewpoint attributes for our recommended models of viewpoint
goodness. Note that, since each attribute is scaled di�erently, the absolute values of
weights are meaningless and comparing weights across attributes is not possible.

a2 a12 a4 a1 a7 a13
Single 23
Linear-3 18 2.8 0.51
Linear-5 14 2.7 0.46 14 2.5
Linear-5b 15 2.6 0.42 13 670
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Figure 4.4: Fit of di�erences in goodness values in the linear-5b model to observed user
selections for 1920 pairs of viewpoints across 16 models.G(v) is a linear combination of
viewpoint measures �t to the probability model of Section 4.3.3.�e points highlighted
in green are particularly well-predicted by the model, while the points in red are not;
the labels correspond to viewpoints in Figure 4.5.
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user’s preference data. Overall, the sigmoid shape of the logistic curve appears to
�t the shape of the data well. While the “slope” of the curve appears to be slightly
shallower than that of the data, this can be explained by the nature of the probabilities
associated with the binomial distribution—that “errors” near ∆ = 0 are more easily
explained, in a probabilistic sense, than those out in the tails of the curve. Examples
of successes and failures of themodel aremarked in Figure 4.4 and the corresponding
images are shown in Figure 4.5.

Quadratic models of goodness

Wenote that there is an obvious gap between the performance of our linear-5bmodel
and that of the oracle. It is natural to wonder whether some other model might
perform better. Perhaps the oracle is unapproachable—a�er all, it is unrealistic
because by de�nition the oracle knows the answer for any user preference! One
strategy would be to consider attributes other than the 14 that we have evaluated
for the views used in our dataset, which we leave for future work. However, we can
ask if there are other models that would use our attributes to better �t the data.

Table 4.3: Performance of predictive models. All models were tested using 100 trials of
random sub-sampling validation: in each trial the models were trained on a random
subset of half of the objects and tested against the other half.�e resulting mean and
standard deviation of test �tnesses are reported.

Model ⟨F⟩ σ(F)
Oracle 1 0

10-NN 0.77 0.020

Quadratic 0.63 0.090

Linear-5b 0.58 0.060
Linear-5 0.58 0.060
Linear-3 0.55 0.062
Single 0.38 0.072

Naı̈ve 0 0
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a) b)

d) e) f)

c)

Figure 4.5: Selected viewpoint pairs corresponding to the labelled points in Figure 4.4.
In cases a) and f), the users expressed no clear preference, while in the other cases
they preferred the right image.�e upper row (a, b, c) shows example pairs of images
that are well-predicted by our model, ordered by increasing values of predicted and
actual goodness.�e lower row shows pairs of images that are not well-predicted by
our model. Our model predicts that users will select the le�-most image of pair d)
less than 20% of the time, but it was actually selected in over 80% of the trials; an
anti-correlation. Our model predicts no preference for either view of pair e), yet users
nearly always selected the le� view. Finally, pair f) is overwhelming predicted to choose
the le�-most image, but users chose both images equally.�e right-most image allows
the second child’s head to be more clearly seen, a quality that our attributes do not
capture.

A potential concern of a linear model is that it cannot characterize correlations
between the attributes (see Figure 4.3 for evidence of their correlations).�erefore
we consider a quadratic model as follows:

G(vmi ) =
N

∑
j
w jami j +

N

∑
jk
w jkami jamik

�is model has 14 + 105 = 119 weights, and, when �t using the same procedure as
before, has a mean �tness of F = 0.63 (Table 4.3), a moderate improvement over the
various linear models.

Non-parametric models of preference

We also experimented with non-parametric �tting of the viewpoint preference
data. In particular, we applied the K-nearest-neighbors model for various values
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of K [FH51]. We again randomly split the data into a training set and a test set by
partitioning the data associated with a random subset of half the models. To �nd the
likelihood of each viewpoint in the testing set, we �rst computed the attribute deltas
for all 14 attributes, converted to units of standard deviations, then found the K-
nearest neighbors in the training set using Euclidean distance. Once the K-nearest
neighbors are found, the likelihood is computed in the same way as with the oracle,
but averaged over the K-nearest neighbors.�e performance of this model is shown
for K = 10 in Table 4.3, averaged over 100 trials (similarly to the linear-K models,
values of K greater than 10 did not improve performance). While the performance
of this model is better than the linear or quadratic models, it is onerous to compute:
to predict the preference for one view in a viewpoint pair, all 14 attributes must be
computed for the two viewpoints and the minimum distance must be computed to
the training set of 960 viewpoint pairs. In addition, the K-nearest-neighbors model
does not directly provide the goodness for a single viewpoint, only the preference
in a viewpoint pair.

Of course, any number of other models from machine learning might perform
even better, but at the expense of both computational complexity and loss of intuition.
�us, for applications and results described in the remainder of the chapter, we
employ the linear-5b model. For example, based on this goodness model we show
in Figure 4.6 the best view for each of the 16 shapes used in our study, and for 4
shapes not used in our study.

4.4 APPLICATIONS

In lieu of virtual hands and clay, most complex tasks in three dimensions, such as
shape modeling or camera navigation, are generally performed in two dimensions
when using contemporary computer hardware. True 3D input devices [Zha98] are
not widely deployed, perhaps because of the simplicity and commercial success
of commodity 2D input devices such as the mouse or, more recently, multi-touch
panels. At the same time, the complexity of 3Dmodeling packages [Aut10b, Aut10a]
has grown to a point where one requires signi�cant training and practice to carry
out even the most mundane tasks.
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Figure 4.6: �e best view according to the six attribute model for each of the 16 training
models (rows 1–4) and four additional model (last row).
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Figure 4.7: �e seven best views of the Lucy model, selected using the mean shi�
algorithm on the linear-5b model. Using the mean shi� algorithm on the viewing
sphere, the number of views do not need to be pre-selected.�e goodness value of each
view is displayed on the le�: note the clear distinction between the various types of
views.

In the following, we propose several applications that use our goodness measure
(or any other) to assist a user in �nding good views and navigating around a 3D
model.

4.4.1 Finding the N-best views

A straightforward application that uses our goodness measure is �nding the N-
best views of a model, as proposed and demonstrated in [PPB+05, YSY+06, VBP+09].
Instead of picking a �xed number of best views, we have decided to �nd those views
that are most representative, and therefore employ mean-shi� clustering [CM02]
to �nd the dominant peaks in our goodness function. As a result, depending on
the model chosen, we obtain varying numbers of best views. As can be seen in
the distribution of good views over the viewing sphere, low frequency goodness
functions result in only few representative views (Figure 4.7), whereas high frequency
functions require a larger number of views to reveal all important features of the
shape.

4.4.2 Periodic orbits and scrubbing

Closed-loop viewpaths provide a convenient 1D user interface to viewing the salient
features of a 3Dmodel, removing the complexities of the standard trackball interface.
�e user can scrub the viewpoint along the viewpath by means of a standard scroll
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Figure 4.8: A closed, periodic camera orbit passing through the best views of the rocker
arm object.

bar widget or by linear mouse drags.�is simpli�ed 1D interface is appropriate for
applications where the user might want to quickly preview the features of a model,
for example, when browsing a large database of 3Dmodels. In this scenario, models
are o�en explored simply by rotating around the equator [Goo10].

�e method presented by Barral et al. [BDP00] computes a greedy path that
su�ers from visibly jaggy motion. Saleem et al. [SSBS07] correct this by smoothly
connecting stable and salient viewpoints. We go a step further, and compute a path
such that the integral of goodness along the path is maximized. Similar to [SSBS07],
we initialize a closed loop such that it passes through regions of high goodness using
our N-best views algorithm described above.�e path optimization then proceeds
by optimizing a snake [KWT88] on the view sphere, guided by the gradient of our
goodness measure. To ensure that the path is of controllable length and smoothness,
we use the common energy terms for stretch and bending.�e result is a closed,
periodic loop that passes through all good views, and can either be animated, or
explored with a 1D scrub bar (Figure 4.8).
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4.4.3 Trackball extensions

Finally, we can further enhance the traditional trackball interface with a goodness-
based force model that gently guides the user towards good viewpoints and tries to
keep them away from bad viewpoints. We term the two modes of the trackball grab,
which is the mode of holding the mouse button down and moving the model, and
throw, which is the animation path the model camera describes a�er the mouse has
been released.�ese two modes of interaction are treated separately: while strong
guidance can be perceived as a signi�cant disturbance during the grab operation,
the throw path can be adjusted with a larger force.

Grab. As the user rotates the trackball, we apply a nudge force in the direction
of and proportional to the gradient of the goodness function, but only use the
component which is orthogonal to the current direction of motion.�e summed
force is scaled down to ensure that the nudged camera travels the same distance
than the original camera would without the nudge. �is adds a small resistance
to motions that would travel to bad viewpoints and eases motions towards good
viewpoints.�e nudge force is small in all cases, but increases with the speed of the
user’s input, similar to how mouse acceleration depends on input speed in current
desktop systems. �e expectation is that when a user applies large, fast, coarse
motions, they will end up at a good viewpoint more o�en than not.�e results of
this guidance force can be seen in Figure 4.9 (top). Note that the adjustments are
locally subtle, but add up to large displacements in the direction of good viewpoints.

Throw. In the standard trackball interface, once the mouse button is released, the
animation around the model proceeds linearly, with the last rotation speed applied
during grabbing. By adding our nudge force described previously, we can guide the
animations towards better views. We furthermore add in some friction force that is
inversely proportional to the goodness of the current viewpoint, so as to slow down
near good viewpoints. To avoid overshooting good viewpoints, we pre-compute
the entire animation path directly a�er switching from grab to throw, and search
for the �rst point along that path where the camera would turn π away from the
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Figure 4.9: Top: the trackball gentle nudges the viewpoint towards better views while
the user is dragging with the mouse. Bottom: if the user “throws” the trackball, the path
is attracted by nearby high-quality viewpoints.�e black line shows the original path
without nudging, while the pink path shows the nudged viewpoint path experienced
by the user.
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initial throw direction (the turn-around point). From there we perform gradient
descent to �nd the nearest o�-path local maximum of our goodness function, and
warp the path, from the turn-around point to the end, such that it ends in the best
view.�e adjustment to the animation path is more pronounced when compared to
the modi�cation during grabbing (Figure 4.9, bottom), but we can guarantee that
the animation comes to a stop in good views. We expect that this will especially
bene�cial for model exploration on devices with constrained touch input, such as
Apple’s iPhone or iPad devices.

4.5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Wehave presented a perceptual model of viewpoint preference, and while ourmodel
performs well for the task carried out in our user study, we see this as the starting
point for a much larger research e�ort.�e method as proposed does have some
limitations, and these generally identify interesting areas for future work.

We can only make quantitative claims about the 16 models for which we have
collected data. While we picked models that have a range of visual features and
qualities, there are certainly more classes of models to be explored. Furthermore,
we are only searching over two camera parameters, which surely bene�ts the
optimization procedure of Section 4.3.3. So, in addition to evaluating over a larger
set of models, we also hope to search over more camera parameters, such as �eld-
of-view, up vector, velocity, and the camera position in complex scenes [CON08].

�ere are many potential attributes of viewpoint goodness described in the
literature, and we did not include every such attribute. In ongoing work, we hope to
include broader classes of attributes. For example, Podolak et al. [PSG+06] observe
object symmetries can play an important role in selecting viewpoints. But also
attributes such as lighting variation, occluding contours, texture and others could
be included. It is important to note though, that the fact that silhouette curvature is
surprisingly unimportant a�er model �tting, and that surface visibility is by far the
most in�uential metric, points to some signi�cant redundancies in any combined
measure of viewpoint goodness. As a result, we eventually discarded some measures
that initially appeared promising, such as “number of disconnected silhouette loops”
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which are heavily correlated with measures such as silhouette length.�us, a more
robust methodology for investigating of the correlations between various attributes
is merited.

And �nally, while our �ttedmodel appears to be reasonable, it is error-prone and
we have identi�ed some of the most egregious error modes in Figures 4.4 and 4.5.
�is does point to the possibility that special-case combinations of measures will
create better combined goodness measures for classes of models.
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Conclusion

We have presented the selection problem in user interfaces and described several
useful techniques and interfaces for easing the burden posed to users. Chapter 2 lays
out our ethnographic research into the selection of photo highlights with home users
and suggests a semi-automated system for assisting the user. Chapter 3 expands on
Chapter 2 by examining a second domain, the creation of musical playlists, and
extends our recommendation system with a simple query language for creating
collections. Finally, Chapter 4 considers a di�erent, rather more general, domain:
selecting camera viewpoints for 3D objects. In addition to the future work discussed
in the conclusion sections of Chapters 2–4, we believe that exploring other domains
(such as selecting a stock portfolio or generating vacation plans) will be fruitful.
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