
A Deep Learning Pipeline for Image

Understanding and Acoustic Modeling

by

Pierre Sermanet

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2014

Professor Yann LeCun

Dedication

To my family.

ii

Acknowledgements

I would like to thank my advisor Prof. Yann LeCun for his insightful guidance

and for giving me a chance to work on many wonderful projects before and during

my thesis. Many thanks to Rob Fergus and David Eigen for sharing numerous late

nights of work and intense collaboration. Many thanks to Raia Hadsell and Jan Ben for

sharing countless freezing days of robotics development in the New Jersey outdoors and

Urs Muller for trusting me with this very special project. I would like to thank Brian

Kingsbury for all his support during our collaboration with IBM. Thanks to Matthieu

Devin and Andrew Ng for hosting me at Google, it was a great pleasure to work with

the Brain group. I am grateful for having worked with great people at NYU: Soumith

Chintala, Koray Kavukcuoglu, Clement Farabet, Ylan Boureau, Michael Mathieu, Marco

Scoffier, Ayse Erkan, Matt Grimes, Marc-Aurelio Ranzato, Li Wan and Xiang Zhang.

Special thanks to Nathan Silberman for providing French impressions and Mr Goodbar.

Finally, I would like to thank my family and friends for their support and encouragement

during this long journey.

This effort uses the IARPA Babel Program Cantonese language collection release IARPA-

babel101b-v0.4c and Vietnamese language collection release release babel107b-v0.7 full

language packs.

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via

Department of Defense U.S. Army Research Laboratory (DoD/ARL) contract number

W911NF-12-C-0012. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of IARPA, DoD/ARL, or the U.S. Government.

iii

Abstract

One of the biggest challenges artificial intelligence faces is making sense of the real

world through sensory signals such as audio or video. Noisy inputs, varying object

viewpoints, deformations and lighting conditions turn it into a high-dimensional problem

which cannot be efficiently solved without learning from data. This thesis explores a

general way of learning from high dimensional data (video, images, audio, text, financial

data, etc.) called deep learning. It strives on the increasingly large amounts of data

available to learn robust and invariant internal features in a hierarchical manner directly

from the raw signals. We propose an unified pipeline for feature learning, recognition,

localization and detection using Convolutional Networks (ConvNets) that can obtain

state-of-the-art accuracy on a number of pattern recognition tasks, including acoustic

modeling for speech recognition and object recognition in computer vision. ConvNets are

particularly well suited for learning from continuous signals in terms of both accuracy

and efficiency. Additionally, a novel and general deep learning approach to detection

is proposed and successfully demonstrated on the most challenging vision datasets. We

then generalize it to other modalities such as speech data. This approach allows accurate

localization and detection objects in images or phones in voice signals by learning to

predict boundaries from internal representations. We extend the reach of deep learning

from classification to detection tasks in an integrated fashion by learning multiple tasks

using a single deep model. This work is among the first to outperform human vision

and establishes a new state of the art on some computer vision and speech recognition

benchmarks.

iv

Contents

Dedication . ii

Acknowledgements . iii

Abstract . iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Problems . 2

1.3 Summary of Contributions . 6

2 Literature Survey 8

2.1 Feature Learning . 8

2.2 Object Detection . 10

3 Feature Learning 12

3.1 ConvNet Architectures for Computer Vision 12

3.1.1 Model Design and Training . 12

3.1.2 Feature Extractor . 16

3.1.3 Multi-Scale Classification . 16

v

3.1.4 Results . 19

3.2 ConvNet Architectures for Acoustic Modeling 20

3.2.1 Architecture . 21

3.2.2 Results . 24

3.3 ConvNets Enhancements . 25

3.3.1 Multi-Stage feature learning . 26

3.3.2 Lp Pooling . 27

3.3.3 Preprocessing . 30

3.3.4 Twisted tanh and Rectified Linear 32

3.3.5 Momentum . 32

3.4 Architecture Tuning . 37

3.4.1 Exhaustive Random Model Selection 39

4 Detection 44

4.1 Traditional Object Detection using ConvNets 44

4.1.1 Bootstrapping . 45

4.1.2 Non-Maximum Suppression . 45

4.1.3 Color features . 45

4.1.4 Pedestrian detection . 46

4.1.5 House Numbers Detection . 59

4.2 ConvNets and Sliding Window Efficiency 61

4.3 Object Localization . 61

4.3.1 Generating Predictions . 61

4.3.2 Regressor Training . 63

4.3.3 Combining Predictions . 68

4.3.4 Experiments . 69

4.4 Object Detection . 70

4.5 Speech Localization . 73

vi

5 Conclusions and Discussion 75

Bibliography 77

vii

List of Figures

1.1 ILSVRC13 classification example . 2

1.2 Babel Cantonese samples . 3

1.3 ILSVRC13 localization example . 4

1.4 ILSVRC13 detection example . 5

2.1 Unsupervised convolutional filters . 9

3.1 The StreetView House Numbers dataset (SVHN) 13

3.2 The German Traffic Sign Recognition Benchmark (GTSRB) 14

3.3 ILSVRC Convolutional filters . 14

3.4 Fine stride convolutions . 18

3.5 ILSVRC classification results . 21

3.6 A traditional Convolution Neural Network architecture 25

3.7 A Convolutional Neural Network stage . 25

3.8 A multi-stage ConvNet . 26

3.9 L2-pooling operation . 27

3.10 Lp-pooling accuracy for different values of p 28

3.11 Preprocessed Y channel of SVHN validation samples with highest energy . 30

3.12 Comparison of house numbers classification performance with (YnUV)

and without preprocessing (RGB) . 31

3.13 The benefits of local contrast normalization 31

viii

3.14 Twisted tanh . 33

3.15 The advantages of training with the twisted tanh nonlinearity 34

3.16 The shape of training curves with different momentum values 35

3.17 Summary of architecture improvements 36

3.18 Error rates of random-weights accuracy for color / grayscale and single /

multi-stage architectures . 41

3.19 Convolutional filters for GTSRB network 43

4.1 Multi-stage features and Unsupervised learning gains on pedestrian de-

tection . 54

4.2 Unsupervised second layer filters . 55

4.3 INRIA pedestrians Reasonable AUC measure 56

4.4 INRIA pedesrtians Large AUC measure 57

4.5 SVHN detection results . 59

4.6 Worst detection SVHN answers . 60

4.7 The efficiency of ConvNets for detection 62

4.8 Fine stride sliding window . 63

4.9 Fusing classification and localization predictions 64

4.10 Bounding boxes fusion . 65

4.11 Examples of bounding boxes produced by the regression network 66

4.12 Regression example . 67

4.13 Localization experiments on ILSVRC12 validation set 70

4.14 ILSVRC12 and ILSVRC13 competitions results (test set) 71

4.15 ILSVRC13 test set Detection results . 72

ix

List of Tables

3.1 Classification Architecture A . 15

3.2 Classification Architecture B . 15

3.3 Number of parameters and connections for different architectures 15

3.4 Spatial dimensions of our multi-scale approach 18

3.5 ILSVRC classification experiments . 20

3.6 Speech classification architecture . 22

3.7 Babel Cantonese and Vietnamese speech classification results 24

3.8 Improvement of multi-stage features over single-stage features 27

3.9 SVHN results . 29

3.10 GTSRB phase I competition results . 42

3.11 GTSRB experiments results . 42

4.1 INRIA pedestrians all results . 58

x

Chapter 1

Introduction

1.1 Motivation

Towards the end of the last century, machine intelligence reached high above human

intelligence but only for highly specific and rigid tasks. Computers have beaten the

brightest human chess players while being utterly incapable to converse with them or

recognize objects in the scene. Such tasks seem trivial to humans because they learn

from birth to interpret the highly complex and dynamic world they evolve in. Computer

programs however reside in deterministic and fixed worlds. Making sense of the world

through sensory signals such as audio or visual signals is too high dimensional a task to be

programmed by humans. This work aims to provide machines the ability to understand

and interact with the real world, by learning from data.

In this thesis, we explore a general way of learning from high dimensional data

(video, images, audio, text, financial data, etc.) called deep learning. It strives on the

increasingly large amounts of data available to learn robust and invariant internal features

in a hierarchical manner, directly from raw signals. These representations, invariant to

input changes such as noise, viewpoints, translation, rotations, scaling, deformations or

lighting are the gateway from real-world noisy data to fixed codes that machines can

1

interpret. We explore different ways to learn rich feature representations, and use these

to address several problems for different modalities. In particular, we tackle the following

tasks by increasing order of difficulty: classification, localization and detection, each task

being a sub-task of the next.

Figure 1.1: Classification example for ImageNet LSVRC13. This validation image
contains one main object with groundtruth “pencil sharpener”. Our model returns 5
guesses ordered by decreasing confidence. The classification is considered correct if one
of the 5 guesses matches the groundtruth.

1.2 Problems

Throughout the thesis, we report results on a wide range of renowned datasets. Each

problem is evaluated as follow. For classification tasks (e.g. Figure 1.1 and Figure 1.2),

a model must predict the correct label of an image or phone. In the case of the 2013

ImageNet Large Scale Visual Recognition Challenge (ILSVRC13), up to five guesses are

allowed to predict the correct answer because images can contain multiple unlabeled ob-

jects. The localization task (e.g. Figure 1.3) is similar to classification in that 5 guesses

2

Figure 1.2: Classification example for Babel Cantonese phones. Sample labels
range from 1 to 3000. The vertical axis is the frequency dimension (40 log-mel features)
The horizontal axis the time dimension. Here, the time window is 41, the central column
corresponding to the sample label. These time-frequency representations can be analyzed
the same way as images.

are allowed per image. But additionally, a bounding box of the main object must be

returned and must match with the groundtruth by 50% (using the PASCAL criterion

of union over intersection). Each returned bounding box must be labeled with the cor-

rect class, i.e. bounding boxes and labels are not dissociated. Detection tasks (e.g.

Figure 1.4) differ from localization in that there can be any number of objects in each

image (including zero), and that false positives are penalized by the mean average pre-

cision (mAP) measure. The localization task is a convenient intermediate step between

classification and detection in order to evaluate a localization method independently of

3

Figure 1.3: Localization example for ImageNet LSVRC13. The left image con-
tains our predictions (ordered by decreasing confidence) while the right image shows the
groundtruth labels. The localization is considered correct if one of the 5 guesses matches
one of the groundtruth answer for both its class and its bounding box (at least 50% of
the intersection over the union).

challenges specific to detection (such as learning a background class for instance).

4

Figure 1.4: Detection example for ImageNet LSVRC13. The left image con-
tains our predictions (ordered by decreasing confidence) while the right image shows
the groundtruth labels. This example illustrates the higher difficulty of the detection
dataset compared to the classification and localization data only. The detection image
may contain many small objects while the classification and localization images typically
contain a single large object. Performance is measured using the mean average precision
(mAP). Correct answers must match the groundtruth’s class and bounding box, other
answers count as false positives.

5

1.3 Summary of Contributions

We summarize here the main contributions of this thesis. Related work is reviewed

in Chapter 2 and conclusions and directions for future work are addressed in Chapter 5.

1. We present a novel deep learning approach to object detection which

yields world record accuracy on the 2013 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC13) localization and detection datasets.

Using a shared feature learning pipeline with a classifier, we learn to predict object

bounding boxes. We then accumulate many bounding box predictions and fuse

them into single predictions. This method can handle any bounding box aspect

ratio. It increases localization accuracy and robustness to false positives over tra-

ditional non-maximum suppression. We also suggest that by combining many lo-

calization predictions, detection can be performed without training on background

samples and that it is possible to avoid the time-consuming and complicated boot-

strapping training passes. Not training on background also lets the network focus

solely on positive classes for higher accuracy.

2. We established the first superhuman visual pattern recognition in an

official international competition (test set known only to the organiz-

ers) along with [1]. During phase I of the 2011 German Traffic Sign Recogni-

tion Benchmark challenge, we pushed classification accuracy of traffic sign images

above human performance (98.81%) with 98.98% accuracy, by improving on the

traditional ConvNet architecture. One of the main improvements was the use of

multi-stage features as input to the classifier as opposed to using the last feature

layer only.

3. We show that a single feature pipeline shared across multiple tasks can

yield competitive or state of the art results. On the ILSVRC13 data, features

were initially learned by training on the classification task, and later reused for

6

the localization and detection tasks. Classification results were very competitive

(13.6% error) and localization and detection ranked first against all other teams.

4. We show that a single learning framework can be successfully applied to

different modalities. After obtaining state of the art results on vision datasets,

we applied the same methods to speech recognition data and observed improve-

ments over the baseline results.

5. We demonstrate that unsupervised deep learning can significantly boost

performance and obtained state of the art results for pedestrian detec-

tion.

6. We study and establish a series of best practices for the use of ConvNets

for classification, localization and detection problems and propose a few

important twists which consistently yield state of the art and competi-

tive results on a range of classification and detection benchmarks.

7

Chapter 2

Literature Survey

2.1 Feature Learning

Until recently, many state-of-the-art computer vision methods use a combination of

hand-crafted features such as Integral Channel Features [2], HoG [3] and their varia-

tions [4, 5] and combinations [6], followed by a trainable classifier such as SVM [4, 7],

boosted classifiers [2] or random forests [8]. While low-level features can be designed

by hand with good success, mid-level features that combine low-level features are dif-

ficult to engineer without the help of some sort of learning procedure. Multi-stage

recognizers that learn hierarchies of features tuned to the task at hand can be trained

end-to-end with little prior knowledge (see an example of low-level features trained with

unsupervised learning in Figure 2.1). Convolutional Networks (ConvNets) [9] are exam-

ples of such hierarchical systems with end-to-end feature learning that are trained in a

supervised fashion. Recent works have demonstrated the usefulness of unsupervised pre-

training for end-to-end training of deep multi-stage architectures using a variety of tech-

niques such as stacked restricted Boltzmann machines [10], stacked auto-encoders [11]

and stacked sparse auto-encoders [12], and using new types of non-linear transforms at

each layer [13, 14].

8

Figure 2.1: 128 9× 9 filters trained on grayscale INRIA pedestrian images using ConvPSD [14].
It can be seen that in addition to edge detectors at multiple orientations, our system also learns
more complicated features such as corner and junction detectors.

Recognizing the category of the dominant object in an image is a task to which

Convolutional Networks (ConvNets) [15] have been applied for many years, whether

the objects were handwritten characters [16], house numbers [17], textureless toys [18],

traffic signs [19, 20], objects from the Caltech-101 dataset [13], or objects from the 1000-

category ImageNet dataset [21]. The accuracy of ConvNets on small datasets such as

Caltech-101, while decent, has not been record-breaking. However, the advent of larger

datasets has enabled ConvNets to significantly advance the state of the art on datasets

such as the 1000-category ImageNet [22].

The main advantage of ConvNets for many such tasks is that the entire system

is trained end to end, from raw pixels to ultimate categories, thereby alleviating the

requirement to manually design a suitable feature extractor. The main disadvantage is

their ravenous appetite for labeled training samples.

For these reasons, and because labeled data has become increasingly available, Deep

Neural Networks (DNN) have also yielded large improvements in the domain of speech

9

recognition [23]. In turn, ConvNets have advanced the state of the art over DNNs

[24, 25]. The line between the field of computer vision and speech recognition is becoming

increasingly blurry, techniques that have existed for many years in one field are now

applied to the other field. In this thesis, we attempt to transfer more of the computer

vision techniques and reinforce the bridge to speech recognition.

2.2 Object Detection

Many authors have proposed to use ConvNets for detection and localization with a

sliding window over multiple scales, going back to the early 1990’s for multi-character

strings [26], faces [27], and hands [28]. More recently, ConvNets have been shown to yield

state of the art performance on text detection in natural images [29], face detection [30,

31] and pedestrian detection [32].

Several authors have also proposed to train ConvNets to directly predict the instanti-

ation parameters of the objects to be located, such as the position relative to the viewing

window, or the pose of the object. For example Osadchy et al. [31] describe a ConvNet

for simultaneous face detection and pose estimation. Faces are represented by a 3D

manifold in the nine-dimensional output space. Positions on the manifold indicate the

pose (pitch, yaw, and roll). When the training image is a face, the network is trained

to produce a point on the manifold at the location of the known pose. If the image is

not a face, the output is pushed away from the manifold. At test time, the distance

to the manifold indicates whether the image contains a face, and the position of the

closest point on the manifold indicates pose. Taylor et al. [33, 34] use a ConvNet to

estimate the location of body parts (hands, head, etc) so as to derive the human body

pose. They use a metric learning criterion to train the network to produce points on

a body pose manifold. Hinton et al. have also proposed to train networks to compute

explicit instantiation parameters of features as part of a recognition process [35].

Other authors have proposed to perform object localization via ConvNet-based seg-

10

mentation. The simplest approach consists in training the ConvNet to classify the central

pixel (or voxel for volumetric images) of its viewing window as a boundary between re-

gions or not [36]. But when the regions must be categorized, it is preferable to perform

semantic segmentation. The main idea is to train the ConvNet to classify the central

pixel of the viewing window with the category of the object it belongs to, using the win-

dow as context for the decision. Applications range from biological image analysis [37],

to obstacle tagging for mobile robots [38] to tagging of photos [39]. The advantage of

this approach is that the bounding contours need not be rectangles, and the regions need

not be well-circumscribed objects. The disadvantage is that it requires dense pixel-level

labels for training. This segmentation pre-processing or object proposal step has recently

gained popularity in traditional computer vision to reduce the search space of position,

scale and aspect ratio for detection [40, 41, 42, 43]. Hence an expensive classification

method can be applied at the optimal location in the search space, thus increasing recog-

nition accuracy. Additionally, [43, 44] suggest that these methods improve accuracy by

drastically reducing unlikely object regions, hence reducing potential false positives. Re-

cently, [45] have established a new state of the art on the PASCAL dataset by using a

ConvNet to classify object proposals. Our dense sliding window method however out-

performs object proposal methods on the ILSVRC13 detection dataset.

Krizhevsky et al. [21] demonstrated impressive localization performance using a large

ConvNet during the ImageNet 2012 competition. There has been however no published

work describing their approach. We are thus the first to provide a clear explanation how

ConvNets can be used for localization and detection for ImageNet data.

In this paper we use the terms localization and detection in a way that is consistent

with their use in the ImageNet 2013 competition, namely that the only difference is the

evaluation criterion used and both involve predicting the bounding box for each object

in the image.

11

Chapter 3

Feature Learning

In this chapter, we explore Convolutional Network (ConvNet) architectures for clas-

sification of visual and audio signals. A range of architectural enhancements are suc-

cessfully applied to a number of vision tasks, yielding accuracy records on international

classification datasets and challenges, including the Street-View House Numbers dataset

(SVHN, Figure 3.1), the German Traffic Sign Recognition Benchmark (GTSRB, Fig-

ure 3.2) and the Imagenet Large Scale Visual Recognition Challenge 2013 (ILSVRC13).

3.1 ConvNet Architectures for Computer Vision

In this section, we experiment with the most trendy ConvNet architecture recently

introduced by Krizhevsky et al. [21]. However we improve on the network design and the

inference step. Because of time constraints, some of the training features in Krizhevsky’s

model were not explored, it is thus expected that results can be improved even further.

These are discussed in Chapter 5.

3.1.1 Model Design and Training

We train the network on the ImageNet 2012 training set (1.2 million images and

C = 1000 classes) [22]. Our model uses the same fixed input size approach proposed

12

Figure 3.1: The StreetView House Numbers dataset (SVHN) by [46]. This
classification dataset contains approximately 600,000 colored samples of size 32x32 dis-
tributed among 10 digit classes. The task is to classify the digit at the center of the
patch. Additional digits may be present on either sides.

by Krizhevsky et al. [21] during training but turns to multi-scale for classification as

described in the next section. Each image is downsampled so that the smallest dimension

is 256 pixels. We then extract 5 random crops (and their horizontal flips) of size 221x221

pixels and present these to the network in mini-batches of size 128. The weights in the

network are initialized randomly with (µ, σ) = (0, 1 × 10−2). They are then updated by

stochastic gradient descent, accompanied by momentum term of 0.6 and an ℓ2 weight

decay of 1 × 10−5. The learning rate is initially 5 × 10−2 and is successively decreased

by a factor of 0.5 after (30, 50, 60, 70, 80) epochs. DropOut [48] with a rate of 0.5 is

employed on the fully connected layers (6th and 7th) in the classifier.

We detail the architecture sizes in tables 3.1 and 3.2. Note that during training,

we treat this architecture as non-spatial (output maps of size 1x1) as opposed to the

13

Figure 3.2: The German Traffic Sign Recognition Benchmark (GTSRB) by [47].
This dataset contains 43 classes and 26,640 training samples. These samples are among
the most difficult ones to classify because of challenging real-world variations such as
viewpoints, lighting conditions (saturations, low-contrast), motion-blur, occlusions, sun
glare, physical damage, colors fading, graffiti, stickers and an input resolutions as low as
15x15.

Figure 3.3: Layer 1 (top) and layer 2 filters (bottom).

inference step which produces spatial outputs. Layers 1-5 are similar to Krizhevsky

et al. [21], using rectification (“relu”) non-linearities and max pooling, but with the

14

Output
Layer 1 2 3 4 5 6 7 8

Stage conv conv conv conv conv full full full
+ max + max + max

channels 96 256 512 1024 1024 3072 4096 1000
Filter size 11x11 5x5 3x3 3x3 3x3 - - -
Conv. stride 4x4 1x1 1x1 1x1 1x1 - - -
Pooling size 2x2 2x2 - - 2x2 - - -
Pooling stride 2x2 2x2 - - 2x2 - - -
Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1

Table 3.1: Architecture specifics for model A (or “fast” model). The spatial size
of the feature maps depends on the input image size, which varies during our inference
step – see Table 3.4. Here we show training spatial sizes. Note that layer 5 is the top
convolutional layer, with subsequent layers being fully connected, being used a classifier
which is applied in sliding window fashion to the layer 5 maps. These fully-connected
layers can be seen as 1x1 convolutions in a spatial setting.

Output
Layer 1 2 3 4 5 6 7 8 9

Stage conv conv conv conv conv conv full full full
+ max + max + max

channels 96 256 512 512 1024 1024 4096 4096 1000
Filter size 7x7 7x7 3x3 3x3 3x3 3x3 - - -
Conv. stride 2x2 1x1 1x1 1x1 1x1 1x1 - - -
Pooling size 3x3 2x2 - - - 3x3 - - -
Pooling stride 3x3 2x2 - - - 3x3 - - -
Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 1x1x1x1 - - -
Spatial input size 221x221 36x36 15x15 15x15 15x15 15x15 5x5 1x1 1x1

Table 3.2: Architecture specifics for model B (or “slow” model). It differs from
the model A mainly in the stride of the first convolution, the number of stages and the
number of feature maps.

model # parameters (in millions) # connections (in millions)
Krizhevsky 60 -

A 145 2810
B 144 5369

Table 3.3: Number of parameters and connections for different models.

following differences: (i) no contrast normalization is used; (ii) pooling regions are non-

overlapping and (iii) our model has larger 1st and 2nd layer feature maps, thanks to

a smaller stride (2 instead of 4). A larger stride is beneficial for speed but will hurt

15

accuracy.

In Figure 3.3, we show the filter coefficients from the first two convolutional layers.

The first layer filters capture orientated edges, patterns and blobs. In the second layer,

the filters have a variety of forms, some diffuse, others with strong line structures or

oriented edges.

3.1.2 Feature Extractor

Along with this work, we have releases a feature extractor dubbed “OverFeat” 1

in order to provide powerful features for computer vision research. Two models are

provided, a fast and slow one. Each architecture is described in tables 3.1 and 3.2.

We also compare their sizes in Table 3.3 in terms of parameters and connections. The

slow model is more accurate than the fast one (14.18% classification error as opposed

to 16.39% in Table 3.5), however it requires nearly twice as many connections. Using a

committee of 7 slow models reaches 13.6% classification error as shown in Figure 3.5.

3.1.3 Multi-Scale Classification

In [21], multi-view voting is used to boost performance: a fixed set of 10 views

(4 corners and center, with horizontal flip) is averaged. Not only may this approach

ignore some regions of the image, it may also be computationally redundant if views

overlap. Additionally, it is only applied at a single scale, which may not be the scale at

which the ConvNet will respond with optimal confidence. Instead, we explore the entire

image by densely running the network at each location and at multiple scales. While

the sliding window approach may be computationally prohibitive for certain types of

model, it is inherently efficient in the case of ConvNets (see section 4.2). This approach

yields significantly more views for voting, which increases robustness while remaining

computationally efficient. The result of convolving a ConvNet on an image of arbitrary

1http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

16

http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

size is a spatial map of C-dimensional vectors at each scale.

The total subsampling ratio in the network described above is 2x3x2x3, or 36. Hence

when applied densely, this architecture can only produce a classification vector every

36 pixels in the input dimension along each axis. This coarse distribution of outputs

decreases performance compared to the 10-view scheme because the network windows are

not well aligned with the objects in the images. The better aligned the network window

and the object, the strongest the confidence of the network response. To circumvent

this problem, we take the approach introduced by Giusti et al. [49] by avoiding the last

subsampling operation (x3), yielding a subsampling ratio of x12 instead of x36.

We now explain in details how the resolution augmentation is performed. We use 6

scales of input which result in unpooled layer 5 maps of varying resolution (see Table 3.4

for details). These are then pooled and presented to the classifier using the following

procedure, which is accompanied by Figure 3.4:

(a) For a single image, at a given scale, we start with the unpooled layer 5 feature maps.

(b) Each of unpooled maps undergoes a 3x3 max pooling operation (non-overlapping

regions), repeated 3x3 times for (∆x,∆y) pixel offsets of {0, 1, 2}.

(c) This produces a set of pooled feature maps, replicated (3x3) times for different

(∆x,∆y) combinations.

(d) The classifier (layers 6,7,8) has a fixed input size of 5x5 and produces a C-dimensional

output vector for each location within the pooled maps. The classifier is applied in

sliding-window fashion to the pooled maps, yielding C-dimensional output maps (for

a given (∆x,∆y) combination).

(e) The output maps for different (∆x,∆y) combinations are reshaped into a single 3D

output map (two spatial dimensions x C classes).

17

Figure 3.4: 1D illustration (to scale) of output map computation for classification, using
y-dimension from scale 2 as an example (see Table 3.4). (a): 20 pixel unpooled layer
5 feature map. (b): max pooling over non-overlapping 3 pixel groups, using offsets of
∆ = {0, 1, 2} pixels (red, green, blue respectively). (c): The resulting 6 pixel pooled
maps, for different ∆. (d): 5 pixel classifier (layers 6,7) is applied in sliding window
fashion to pooled maps, yielding 2 pixel by C maps for each ∆. (e): reshaped into 6
pixel by C output maps.

Input Layer 5 Layer 5 Classifier Classifier
Scale size pre-pool post-pool map (pre-reshape) map size

1 245x245 17x17 (5x5)x(3x3) (1x1)x(3x3)xC 3x3xC
2 281x317 20x23 (6x7)x(3x3) (2x3)x(3x3)xC 6x9xC
3 317x389 23x29 (7x9)x(3x3) (3x5)x(3x3)xC 9x15xC
4 389x461 29x35 (9x11)x(3x3) (5x7)x(3x3)xC 15x21xC
5 425x497 32x35 (10x11)x(3x3) (6x7)x(3x3)xC 18x24xC
6 461x569 35x44 (11x14)x(3x3) (7x10)x(3x3)xC 21x30xC

Table 3.4: Spatial dimensions of our multi-scale approach. 6 different sizes of
input images are used, resulting in layer 5 unpooled feature maps of differing spatial
resolution (although not indicated in the table, all have 256 feature channels). The
(3x3) results from our dense pooling operation with (∆x,∆y) = {0, 1, 2}. See text and
Figure 3.4 for details for how these are converted into output maps.

These operations can be viewed as shifting the classifier’s viewing window by 1 pixel

through pooling layers without subsampling and using skip-kernels in the following layer

(where values in the neighborhood are non-adjacent).

The procedure above is repeated for the horizontally flipped version of each image.

We then produce the final classification by (i) taking the spatial max for each class,

18

at each scale and flip; (ii) averaging the resulting C-dimensional vectors from different

scales and flips and (iii) taking the top-1 or top-5 elements (depending on the evaluation

criterion) from the mean class vector.

The scheme described above has several notable properties. First, the two halves of

the network, i.e. the feature extraction layers (1-5) and classifier layers (6-output), are

used in opposite ways. In the feature extraction portion, the filters are convolved across

the entire image in one pass. For a computational perspective, this is far more efficient

than sliding a fixed-size feature extractor over the image and then aggregating the results

from different locations2. However, these principles are reversed for the classifier portion

of the network. Here, we want to hunt for a fixed-size representation in the layer 5 feature

maps across different positions and scales. Thus the classifier has a fixed-size 5x5 input

and is exhaustively applied to the layer 5 maps. Second, the overlapping pooling scheme

(with single pixel shifts (∆x,∆y)) ensures that we can obtain fine alignment between

the classifier and the representation of the object in the feature map input. Third, our

pooling scheme is similar to Giusti et al. [49] who shift the classifier’s viewing window by

1 pixel through pooling layers without subsampling and use skip-kernels in the following

layer (where values in the neighborhood are non-adjacent). Finally, the dense manner

in which the classifier is applied also helps to improve performance. We explore this

in Section 3.1.4, where we enable/disable the pixel shifts to reveal their performance

contribution.

3.1.4 Results

In Table 3.5, we experiment with different approaches and for reference compare

them to the single network model of Krizhevsky et al. [21]. The approach described

above, with 6 scales, achieves a top-5 error rate of 13.6%. As might be expected, using

fewer scales hurts performance, the single-scale model is worse with 16.97% top-5 error.

2Our network with 6 scales takes around 2 secs on a K20x GPU to process one image

19

The fine stride technique illustrated in Figure 3.4 brings a relatively small improvement

in the single scale regime, but is also of importance for the multi-scale gains shown here.

Top-1 Top-5
Approach error % error %

Krizhevsky et al. [21] 40.7 18.2

OverFeat - 1 fast model, 10 views 39.38 17.16
OverFeat - 1 fast model, scale 1, coarse stride 39.28 17.12
OverFeat - 1 fast model, scale 1, fine stride 39.01 16.97
OverFeat - 1 fast model, 4 scales (1,2,4,6), fine stride 38.57 16.39
OverFeat - 1 fast model, 6 scales (1-6), fine stride 38.12 16.27
OverFeat - 1 big model, 10 views 35.60 14.71
OverFeat - 1 big model, 4 scales, fine stride 35.74 14.18
OverFeat - 7 fast models, 4 scales, fine stride 35.10 13.86
OverFeat - 7 big models, 4 scales, fine stride 33.96 13.24

Table 3.5: Classification experiments on validation set. Fine/coarse stride refers
to the number of ∆ values used when applying the classifier. Fine: ∆ = 0, 1, 2; coarse:
∆ = 0. 10 views refers to the multi-view scheme employed by [21], i.e. for each flip,
average the 4 corners and center views.

We report the test set results of the 2013 competition in Figure 3.5 where our model

(OverFeat) obtained 14.2% accuracy by voting of 7 ConvNets (each trained with different

initializations) and ranked 5th out of 18 teams. The best accuracy using ILSVRC13 data

only was 11.7%. Pre-training with extra data from the ImageNet Fall11 dataset improved

this number to 11.2%. In post-competition work, we improve the OverFeat results down

to 13.6% error by using bigger models (more features and more layers). Due to time

constraints, these bigger models are not fully trained, more improvements are expected

to appear in time.

3.2 ConvNet Architectures for Acoustic Modeling

This section illustrates how ConvNets can yield state of the art results not only on

computer vision tasks but also on other modalities that exhibit local coherence such as

audio power spectra.

20

Figure 3.5: Test set classification results. During the competition, OverFeat yielded
14.2% top 5 error rate using an average of 7 fast models. In post-competition work,
OverFeat ranks fourth with 13.6% error using bigger models (more features and more
layers).

3.2.1 Architecture

We reuse the OverFeat framework that we applied to vision datasets and adapt the

architecture for the IARPA Babel competition data. In this case, the network is not

trained directly from the raw data but instead requires some pre-processing. Audio

signals are first turned into a 2-dimensional signal, composed of a frequency dimension

(log Mel features [50] in this case) and a temporal dimension. This 2D signal can be

viewed as an image (see Figure 1.2) and treated as such by the learning pipeline from

that point on. In future work, we think that a constant number of bands per octave

(e.g. Constant Q) will be more suitable than the Mel scale for weight sharing across

frequency. While using hand-designed features for pre-processing is currently the norm

in speech recognition, [51] have recently obtained good results by learning a phoneme

21

sequence recognizer directly from the raw signal using ConvNets.

The architecture is very similar to the one we use for images, in that it uses a number

of convolutional stages followed by fully connected layers with dropout regularization.

It also does not use any layer normalization such as Local Contrast Normalization. It is

however not as deep because the complexity of the problem and the input resolution are

lower than that of ImageNet. The architecture is inspired by the best architecture found

by Sainath et al. [24] which uses 2 convolutional stages and 4 fully connected layers. In

this architecture (see Table 3.6), Max-Pooling is applied at the first stage only and solely

along the frequency dimension. Experimentation by [24] suggests that temporal pooling

does not improve results.

Output
Model Layer deltas 1 2 3 4 5 6

Stage conv + max conv full full full full
pooling

Kernel size 9x9 4x4 - - - -
Conv. stride 1x1 1x1 - - - -
Pool. size 4x1 - - - - -
Pool. stride 4x1 - - - - -
Spatial input 40x41 8x33 5x30 1x1 1x1 1x1

A # features X 64 64 1024 1024 1024 3000
Dropout - - - X

B # features ✗ 64 64 1024 1024 1024 3000
Dropout - - - X X X

C # features ✗ 64 64 4096 4096 4096 3000
Dropout - - X X X X

Table 3.6: Architecture specifics for our speech classification model. Dropout
has traditionally been used on the last 2 layers only, we found however that more dropout
enforced a stronger regularization and improved results (see Table 3.7).

The main differences of our model compared to [24]’s model are:

1. Class-balanced training. The class-distributions in some datasets can be very

unbalanced. Some classes have many samples while the rare ones will only have

a few. Training can be performed in a class-equalized way, training on the same

22

number of sample for each class regardless of their true distribution, or in an un-

balanced way using the natural sample distribution. Similarly, the inference step

can be designed to perform in a balanced or unbalanced regime depending on the

application. For example, in image segmentation, an unbalanced error measure

will favor classes that occur frequently in natural images (sky, buildings, roads,

etc.) but won’t penalize mistakes on rare and small objects (pedestrians, traffic

signs, etc.). For some applications, it might be more interesting to perform a little

bit worse on frequent classes in order to correctly detect rare classes. Speech recog-

nition favors an unbalanced inference regime. However, we argue that regardless

what the desired inference regime is, one should initially train in a class-balanced

fashion in order to learn the most general features possible. The rationale is that

the more data, the more ConvNets can generalize. Training in an unbalanced fash-

ion is equivalent to reducing the dataset to its most common classes because the

network will mostly be looking at homogeneous samples. Once generic features

have been learned, one can perform an unbalanced training fine-tuning phase. We

argue this partly explains the improvements seen over the baseline model in Ta-

ble 3.7.

2. No use of delta input channels: 1x40x41. Traditionally, speech models are

fed first and second temporal derivatives (called delta and delta-delta) of the input

map in addition to the input map itself. This aims to provide richer features to

the learning model. By visually inspecting these delta channels, we hypothesize

that the extra information they provide is not significant and that the correspond-

ing operations can be learned by the network. Hence, for simplicity and speed

in our early experiment, we use only the input map itself. Therefore the input

size is 1x40x41 rather than 3x40x41, where the dimensions are ordered as follow:

input channels, frequency and time. Future experiments should determine if delta

channels can be beneficial in our model.

23

3. Dropout. [24] does not mention the use of Dropout for regularization. In our

early experiments, we used a single layer of Dropout but that proved to be insuffi-

cient to reduce overfitting on the training set. Later, we experimented with more

Dropout and found that applying it to the last 3 fully connected layers yielded the

best results, which were significantly stronger than with just 1 Dropout layer (see

Table 3.7).

model architecture training language data cross- sub- phone
distri- entropy phone phone
bution loss error % error %

IBM DNN U Vietnamese held. 1.86 - -
IBM DNN U Vietnamese val. 2.26 47.30 -
OverFeat model A B + U Vietnamese val. 2.35 48.54 30.94

IBM DNN U Cantonese held. 1.73 37.78 -
OverFeat model A B Cantonese val. 3.80 75.20
OverFeat model B + longer training B Cantonese val. 3.42 71.30
OverFeat model C + longer training B Cantonese val. 3.05 67.74 -
OverFeat model A B + U Cantonese val. 1.79 36.91 23.63
OverFeat model B + longer training B + U Cantonese val. 1.51 35.85 22.54
OverFeat model C + longer training B + U Cantonese val. 1.38 33.97 -

Table 3.7: Classification results on Babel Cantonese and Vietnamese speech
data. The reported rates are not class-balanced during inference, i.e. normalized per-
class by the number of samples in each class. However we report the class distribution
used during training, unbalanced (U), balanced (B) or a combination of both. Results are
reported on two different datasets, the validation and held-out sets. In early experiments,
we used Dropout on only 1 layer. We later found that applying Dropout to 3 layers was
effective at preventing overfitting and yielded significantly stronger results.

3.2.2 Results

In Table 3.7, we report improvements brought by our architecture over the existing

baseline by IBM. The OverFeat framework yields a cross-entropy loss of 1.51 and a sub-

phone error rate of 35.85%, while the baseline obtained a 1.73 loss and 37.78% error.

At the time of writing, the baseline validation results are not available, hence no direct

comparison can be made between the OverFeat validation results and the IBM held-out

results. However, the held-out results tend to be more optimistic than the validation

24

input 1st stage 2nd stage classifier

Figure 3.6: A traditional Convolution Neural Network architecture, composed
of repeatable stages (two here) followed by a classifier. Each stage is mainly composed
of a convolution and a subsampling layer, for more details see Figure 3.7. Classifiers can
have one or multiple layers, the one depicted here has 2 fully-connected layers.

Figure 3.7: A Convolutional Neural Network stage starts with a convolution layer
followed by a non-linearity such as a sigmoid function (e.g. tanh()). The pooling and
subsampling then follows, e.g. a 2x2 L2 pooling and a 2x2 subsampling. Finally, normal-
ization can optionally be used, either as a subtractive normalization only or subtractive
and divisive normalizations (also called local constrast normalization). Stages can be
repeated multiple times in a sequence, typically with more and more depth in feature
space.

results, as shown by IBM’s results on the Vietnamese data. OverFeat’s comparative

improvement is therefore expected to be greater than the current improvements.

3.3 ConvNets Enhancements

Convolutional Neural Networks (ConvNets) are traditionally composed of a sequence

of repeatable stages followed by a classifier (Figure 3.6). Each stage is itself a sequence

of layers, typically a convolutional layer, followed by a non-linearity layer, itself followed

by a pooling and subsampling layer and sometimes ended by a normalization layer (See

Figure 3.7). This stage architecture is repeated multiple times, twice for typical problems

25

input 1st stage 2nd stage classifier

Figure 3.8: A multi-stage ConvNet is a network where features coming from mul-
tiple stages are concatenated together as input to the final classifier. This architecture
can bring substantial accuracy improvements to complex vision tasks.

such as handwritten character classification [15] or more for larger problems [52].

3.3.1 Multi-Stage feature learning

The multi-stage (MS) features architecture differs from the traditional ConvNet in

that the output of each stage is connected to the input of the classifier. Usual ConvNets

are organized in strict feed-forward layered architectures in which the output of one layer

is fed only to the layer above. Instead, the output of the first stage is branched out and

fed to the classifier, in addition to the output of the second stage (Figure 3.8). Contrary

to [53], we use the output of the first stage after pooling/subsampling rather than before.

Additionally, applying a second subsampling stage on the branched output yields higher

accuracies than without on a traffic sign classification task. Therefore the branched 1st-

stage outputs are more subsampled than in traditional ConvNets but overall undergoes

the same amount of subsampling (4x4 here) than the 2nd-stage outputs. The motivation

for combining representation from multiple stages in the classifier is to provide different

scales of receptive fields to the classifier. In the case of 2 stages of features, the second

stage extracts “global” and invariant shapes and structures, while the first stage extracts

“local” motifs with more precise details. This richer representation consistently improve

26

performance in a range of tasks [53, 20, 54, 17], from traffic sign and house numbers

classification to pedestrian detection as reported in Table 3.8. While substantial gains

are reported for pedestrian and traffic signs tasks, we only observe minimal gains on the

house numbers dataset. Similarly, [25] applied this technique to speech recognition but

observed very little gains while having to double the number of parameters. The likely

explanation for this observation is that gains are correlated to the amount of texture and

multi-scale characteristics of the objects of interest. Thus this method is not appropriate

for all problems.

Task Single-Stage Multi-Stage Improvement %
features features

Pedestrians detection 14.26% 9.85% 31%
(INRIA) [54]

Traffic Signs classification 1.80% 0.83% 54%
(GTSRB) [20]

House Numbers classification 5.54% 5.36% 3.2%
(SVHN) [17]

Table 3.8: Error rates improvements of multi-stage features over single-stage features for
different types of objects detection and classification. Improvements are significant for
multi-scale and textured objects such as traffic signs and pedestrians but minimal for
house numbers.

3.3.2 Lp Pooling

Figure 3.9: L2-pooling applied to a 9x9 feature map with a 3x3 Gaussian kernel and 2x2
stride

Lp pooling is a biologically inspired pooling layer modelled on complex cells [55, 56]

27

who’s operation can be summarized in equation (1), where G is a Gaussian kernel, I is

the input feature map and O is the output feature map. It can be imagined as giving

an increased weight to stronger features and suppressing weaker features. Two special

cases of Lp pooling are notable. P = 1 corresponds to a simple Gaussian averaging,

whereas P = ∞ corresponds to max-pooling (i.e only the strongest signal is activated).

Lp-pooling has been used previously in [57, 58] and a theoretical analysis of this method

is described in [59].

O = (
∑∑

I(i, j)P ×G(i, j))1/P (3.1)

Figure 3.9 demonstrates a simple example of L2-pooling.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 1 10 100

V
al

id
at

io
n

 E
rr

o
r

(%
)

p in Lp pooling

Lp Pooling validation error

Figure 3.10: Error rate of Lp-pooling on 3 cross-validation sets for p =
1, 2, 4, 8, 12, 16, 32,∞ (p =∞) is represented as p = 100 for convenience). These valida-
tion errors are reported after 1000 training epochs.

For the pooling layers, we compare Lp-pooling for the value p = 1, 2, 4, 8, 12, 16, 32,∞

on the validation set and use the best performing pooling on the final testing. The

performance of different pooling methods on the validation set can be seen in Figure 3.10.

Insights from [59] tell us that the optimal value of p varies for different input spaces and

28

there is no single globally optimal value for p. With validation data, we observe that

p = 2, 4, 12 give the best performance (5.62%, 5.64% and 5.61% respectively). Max-

pooling (p =∞) yielded a validation error rate of 7.57%.

Algorithm SVHN-Test Accuracy

Binary Features (WDCH) 63.3%
HOG 85.0%
Stacked Sparse Auto-Encoders 89.7 %
K-Means 90.6%
ConvNet / MS / Average Pooling 90.94%
ConvNet / MS / L2 / Smaller training 91.55%
ConvNet / SS / L2 94.46%
ConvNet / MS / L2 94.64%
ConvNet / MS / L12 94.89%
ConvNet / MS / L4 94.97%
ConvNet / MS / L4 / Padded 95.10%
ConvNet / MS / L4 / RGB / Linear tanh 95.72%

Human Performance 98.0%

Table 3.9: Performance reported by [46] with the additional Supervised ConvNet models
with state-of-the-art accuracy of 95.72%.

Our experiments demonstrate a clear advantage of Lp pooling with 1 < p < ∞ on

the house numbers dataset [46], in validation (Figure 3.10) and test (L2 pooling is 3.58

points superior to average pooling in Table 2). With L4 pooling, we obtain a state-of-

the-art performance on the test set with an accuracy of 95.72% compared to the previous

best accuracy of 90.6% (Table 3.9). Padding around inputs improves accuracy by 0.13%

points from the 94.97% non-padded accuracy. This is likely explained by digit edges

being very close to the image borders as seen in Figure 3.11. Padding allows centered

edge filters to fire correctly at the borders.

Improvements to [17] bring the state of the art up to 95.72% accuracy by removing

local contrast normalization on the input, a rather common procedure, and changing

the nonlinearity to a linear tanh, as described in following sections. Minor architecture

improvements are also reported and summarized in Figure 3.17.

29

Figure 3.11: Preprocessed Y channel of SVHN validation samples with high-
est energy (i.e. highest error) with the 94.64% accuracy L2-pool based multi-stage
ConvNet.

3.3.3 Preprocessing

Inputs are commonly preprocessed using local contrast normalization [13, 14, 20].

While preprocessing is usually beneficial in the presence for example of shadows in an

image, we show that it significantly reduces performance on the house numbers classi-

fication task. In Figure 3.12, using RGB rather than preprocessed YUV consistently

yielded around 1 point improvement in accuracy on validation data, regardless of the

connection scheme on the input channels. This experiment suggests that the local con-

trast normalization can have a negative impact on some datasets. However, on others

where lighting conditions greatly vary, normalization can be critical. An example of

extreme lighting condition is demonstrated in Figure 3.13 where a sample taken from

the GTSRB traffic sign dataset is uniformly black to the human eye. Normalization

later clearly reveals a traffic sign. Although a ConvNet can detect small gradients while

the human eye cannot, the resulting activations will be minimal and will not fall into

the usual range of activations induced by most samples. Hence normalization facilitates

learning of these extreme examples by shifting the activation ranges to normal ones.

This particular sample is cropped out of an entire street scene with brighter pixels, in

which a global normalization over the image would not be sufficient. The local contrast

normalization however operates locally and allows proper normalization even if the rest

of the image is within normal pixel ranges. This normalization was successfully applied

30

by [60, 61] to further improve their results on the GTSRB dataset.

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250

E
rr

o
r

ra
te

 (
%

)

Training epochs

RGB and YnUV

RGB -> 16 (48 connections)
RGB -> 16 (32 connections)

YnUV -> 16 (48 connections)
YnUV -> 16 (32 connections)

RGBYn -> 16 (64 connections)
RGBYn -> 16 (48 connections)

Separate RGB / Yn 256-features extractors
Separate RGB / Yn 512-features extractors

Dataset: SVHN, Model:
+ RGB global norm vs Y local norm + UV global norm
+ Conv16 / L2 pool / Snorm
+ Conv512 / L2 pool / Snorm
+ LogReg 10

Figure 3.12: Comparison of house numbers classification performance with
(YnUV) and without preprocessing (RGB). Regardless of the connection scheme
to the input channels, the non-preprocessed data (RGB) improves by 1 point over the
preprocessed data.

Figure 3.13: The benefits of local contrast normalization: on the left, a sample
taken from the GTSRB traffic sign dataset appears uniformly black to the human eye.
Structure is actually revealed by local contrast normalization (bottom). Channels are
displayed as follow: YnUV, Yn, U and V. The right side shows a normal sample’s
preprocessing.

31

3.3.4 Twisted tanh and Rectified Linear

A popular nonlinearity in neural networks is the tanh() function. This sigmoid

function however may be problematic when large inputs get stuck in the flat spots, where

gradients of the function are very small. Hence moving along the sigmoid function to

its opposite part while training may take a very long time. Adding a small linear term

or twisting term as suggested by [9] may help avoiding this situation by making the flat

spots steeper. In addition, similarly to the rectified linear units by [62], essentially a

linear function for the positive inputs and zero for the negative inputs, the linear term

can preserve a sense of relative intensity between units. The twisted tanh function is

defined by:

f(x) = tanh(x) + αx

where α is a small linear coefficient. We experiment with a range of values for α in Fig-

ure 3.15 and plot their corresponding shapes in Figure 3.14. In the context of the house

numbers classification task, a twisted tanh function with α = 0.16 consistently brought

a non-negligible improvement over the regular tanh sigmoid as shown in Figure 3.15.

We also compare with using rectified linear non-linearity and find that it yields better

results than the regular tanh function, while giving similar results to the best twisted

tanh configurations. Our experiment has a slight bias in that it also used momentum

and multi-stage features for the rectified linear run only. Further work should establish

a strict comparison on multiple datasets.

3.3.5 Momentum

Here we study the impact of momentum while training on the SVHN dataset. Fig-

ure 3.16 shows that high momentum is beneficial at the beginning of training but eventu-

ally has a negative impact while lower momentum values reach higher accuracies on the

long term. While a carefully tuned momentum gradual decrease should be optimal, an

intermediate momentum tuning such as 0.6 is a safe bet in the absence of tuned decrease.

32

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

Linear tanh

tanh(x)
tanh(x) + .01 * x
tanh(x) + .16 * x
tanh(x) + .32 * x
tanh(x) + .64 * x

Figure 3.14: Twisted tanh shapes for different twisting term coefficients. A twisting
coefficient of 0.16 is optimal on the SVHN dataset.

33

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000 1200

E
rr

o
r

ra
te

 (
%

)

Training epochs

Non Linearities

tanh(x)
tanh(x) + .01x
tanh(x) + .16x
tanh(x) + .32x
tanh(x) + .64x

Rectified Linear (+ Momentum + Multi-Stage features)

Dataset: SVHN, Model:
+ RGB global norm vs Y local norm + UV global norm
+ Conv16 / L2 pool / Snorm
+ Conv512 / L2 pool / Snorm
+ LogReg 10

Figure 3.15: The advantages of training with the twisted tanh nonlinearity
on the SVHN dataset over the regular tanh() function. Twisted tanh with a linear
coefficient of 0.16 brings a non-negligible improvement on validation accuracy.

34

 4

 4.5

 5

 5.5

 6

 0 200 400 600 800 1000

E
rr

o
r

ra
te

 (
%

)

Training epochs

Momentum

Momentum 0
Momentum .2
Momentum .4
Momentum .6
Momentum .8
Momentum .9

Momentum .95

Dataset: SVHN, Model:
+ RGB global norm vs Y local norm + UV global norm
+ Conv16 / L2 pool / Snorm
+ Conv512 / L2 pool / Snorm
+ LogReg 10

Figure 3.16: The shape of training curves with different momentum values
reveals the early benefits of high momentum while lower momentum takes over as training
continues.

35

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000 1200

E
rr

o
r

ra
te

 (
%

)

Training epochs

All improvements

YnUV / Conv 16-512 / L2 pool / Snorm
+ RGB

+ linear tanhlinear (tanh(x) + .16x
+ .4 momentum + L4 pooling

+ multi-stage features
+ 2-layer classifier (100 hidden units)

Dataset: SVHN, Model:
+ RGB global norm vs Y local norm + UV global norm
+ Conv16 / L2 pool / Snorm
+ Conv512 / L2 pool / Snorm
+ LogReg 10

Figure 3.17: A summary of architecture improvements over [17]. From top
to bottom we incrementally add architectural changes to the baseline model published
in [17]. The biggest error rate decrease is induced by changing the normalized YUV input
to an un-normalized RGB input, followed by the use of a twisted tanh over a regular
tanh sigmoid nonlinearity. Minor improvements are then added with an intermediate
momentum, L4 pooling instead of L2, multi-stage features and a 2-layer classifier.

36

3.4 Architecture Tuning

Different architectures can be optimal for different problems. Mainly, the more com-

plex the problem, the more capacity and depth is necessary. However, too much capacity

will lead to overfitting and the right balance must be found through experimentation.

The main set of architectural hyper-parameters to explore usually comprises the number

of stages, the number of features at each stage, the overall number of parameters or the

shape of a network (e.g. increasing number of features or narrowing with a bottleneck).

Eigen et al. [63] recently started to shed light on architecture tuning by using recursive

neural networks to decouple the hyper-parameters, which we review below. These pa-

rameters have complex relationships, one can design models with the same total number

of parameters by increasing the number of stages or the number of features at each stage,

or use most of the parameters at the bottom or at the top of the hierarchy. We review

here some important hyper-parameters:

1. Number of stages and features. In ConvNets, we call a stage a set of layers

typically composed of a convolution layer, a non-linearity layer, an optional pooling

layer and an optional normalization layer. These are followed by a classifier stage or

a regression stage (multiple fully connected layers) for classification and regression

problems. Traditionally, datasets with complexity similar to MNIST, GTSRB,

SVHN or INRIA pedestrians (i.e. input sizes under 100 pixels in each dimension,

limited number of viewpoints and less than 50 classes) were addressed with 2

feature extraction stages. However, [63, 64, 65] recently demonstrated accuracy

gains by using deeper models. These gains can be partly explained by the rise of

parallel processors, rendering the exploration of the hyper-parameters space less of

a tedious exercise.

Bigger problems such as ILSVRC13 (1000 classes, wide variety of viewpoints and

backgrounds, much larger number of samples) have seen great successes using much

37

bigger and deeper models. For example, the model described in Table 3.1 uses 5

feature extraction stages and a total of approximately 50 million parameters, while

the biggest model trained before the Krizhevsky model [21] used up to 10 million

parameters at most [66, 20]. To address the 22,000 classes ImageNet dataset, [67]

trained a 1 billion parameters network using a cluster of 16,000 cores. It should be

noted that contrary to ConvNets, the filters were not shared across locations (i.e.

not convolutional), hence inflating the number of parameters.

This recent model scaling was made possible by the advent of more powerful hard-

ware (GPUs or large CPU clusters), bigger datasets (e.g. ImageNet) and better

regularization techniques (e.g. DropOut [48] or MaxOut [64]). The ability to

train models much faster has allowed a more systematic exploration of the hyper-

parameters space and training of models with much bigger capacity than before.

Additionally, large datasets and good regularization are crucial to prevent these

large capacity models from overfitting. In the following section, we use an exhaus-

tive search technique using a cpu cluster and subsequently improved results on the

traffic sign dataset.

2. Depth of classifier. Multi-layer classifiers have historically used 1 or 2 layers in

computer vision. This number has increased up to 3 or 4 layers in recent models for

vision (Section 3.1) or speech (Section 3.2). Increasing the depth of the classifier

allows natural formation of committees of independent sub-models when using

Dropout ([48]). We show in Table 3.7 that Dropout can be employed on up to 4

layers and that it improves classification results.

3. Network Shapes. We call the shape of a ConvNet the outline drawn by its

number of features by going up the hierarchy, but also refer to the filter sizes.

[66] obtained very competitive results on MNIST with a pyramid-shaped Multi-

Layer Perceptron (MLP), starting with a large base (2,500 units) and progressively

38

reducing to a small output (10 units). In speech recognition, [68] improve results

by using a bottleneck shape with a Deep Neural Network (DNN), i.e. where the

middle layer of a 5-layers network has a smaller number of features relative to the

other layers. The bottleneck shape forces the network to learn useful information

for classification in a low-dimensional space. This technique was initially devised

in auto-encoders [69] for dimensionality reduction. In our experiments, we adopt

the expanding shape with the intuition that low level filters only need to encode

a small set of edges and colors, while features become more and more complex by

representing larger and larger windows (from edges, to object parts, to parts, to

scenes), thus requiring increasingly more features.

3.4.1 Exhaustive Random Model Selection

A number of important choices must be made regarding the architecture hyper-

parameters as shown previously. A different approach to intuition from experts, is to

search the hyper-parameters space exhaustively. However, since training end-to-end net-

works is expensive, this can only be achieved with inexpensive evaluations. [70] showed

architecture choice is crucial in a number of state-of-the-art methods including ConvNets.

They also demonstrate that the performance of randomly initialized architectures cor-

relates with trained architecture performance when cross-validated. Using this idea, we

can empirically search for an optimal architecture very quickly, by bypassing the time-

consuming feature extractor training. We first extract features from a set of randomly

initialized architectures with different capacities. We then train the top classifier us-

ing these features as inputs, again with a range of different capacities. In Figure 3.18,

we train on the original (non jittered) GTSRB training set and evaluate against the

validation set the following architecture parameters:

• Number of features at each stage: 108-108, 108-200, 38-64, 50-100, 72-128, 22-38

(the left and right numbers are the number of features at the first and second stages

39

respectively). Each convolution connection table has a density of approximately

70-80%, i.e. 108-8640, 108-16000, 38-1664, 50-4000, 72-7680, 22-684 in number of

convolution kernels per stage respectively.

• Single or multi-scale features. The single-scale architecture (SS) uses only 2nd

stage features as input to the classifier while the multi-stage architecture feed both

the first and second stage outputs to the classifier (MS).

• Classifier architecture: single layer (fully connected) classifier or 2-layer (fully con-

nected) classifier with the following number of hidden units: 10, 20, 50, 100, 200,

400.

• Color: we either use YUV channels or Y only.

• Different learning rates and regularization values.

The validation error curves in Figure 3.18 indicate that the most effective architec-

ture is the multi-stage one without color information at a capacity around 1.5 million

trainable parameters. A few of the best performing models with random weights are then

fully trained and yielded an improvement over the first phase of the competition (which

results are reported in Table 3.10, from 98.97% accuracy to 99.17% (see Table 3.11).

This new record is established by increasing the classifier’s capacity and depth (2-layer

classifier with 100 hidden units instead of the single-layer classifier) and by ignoring color

information (see corresponding convolutional filters in Fig 3.19).

We also evaluate the best ConvNet with random features in Table 3.11 (108-200

random features by training the 2-layer classifier with 100 hidden units only) and obtain

97.33% accuracy on the test set (see convolutional filters in Figure 3.19). Recall that

this network was trained on the non-jittered dataset and could thus perform even better.

The exact same architecture with trained features reaches 98.85% accuracy only while

a network with a smaller second stage (108 instead of 200) reached 99.17%. Comparing

40

random and trained convolutional filters (Fig 3.19), we observe that 2nd stage trained

filters mostly contain flat surfaces with sparse positive or negative responses. While these

filters are quite different from random filters, the 1st stage trained filters are not. The

specificity of the learned 2nd stage filters may explain why more of them are required

with random features, thus increasing the chances of containing appropriates features.

A smaller 2nd stage however may be easier to train with less diluted gradients and more

optimal in terms of capacity. We therefore infer that after finding an optimal architecture

with random features, one should try smaller stages (beyond the 1st stage) with respect

to the best random architecture, during full supervision.

 1

 10

 100

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

V
al

id
at

io
n

E
rr

or
 (

in
 %

)

Network Capacity (# of trainable parameters)

MS Architecture
Color + MS Architecture

SS Architecture
Color + SS Architecture

Figure 3.18: Validation error rate of random-weights architectures trained on
the non-jittered dataset. The horizontal axis is the number of trainable parameters in
the network. For readability, we group all architectures described in the text according
to 2 variables: color and architecture (single or multi-stage).

41

Phase I # Team Method Accuracy

197 IDSIA cnn hog3 98.98%
196 IDSIA cnn cnn hog3 98.98%
178 sermanet EBLearn 2LConvNet ms 108 feats 98.97%
195 IDSIA cnn cnn hog3 haar 98.97%
187 sermanet EBLearn 2LConvNet ms 108 + val 98.89%

199 INI-RTCV Human performance 98.81%

170 IDSIA ConvNet(IMG) MLP(HOG3) 98.79%
177 IDSIA ConvNet(IMG) MLP(HOG3) MLP(HAAR) 98.72%
26 sermanet EBLearn 2-layer ConvNet ms 98.59%
193 IDSIA ConvNet 7HL norm 98.46%
198 sermanet EBLearn 2-layer ConvNet ms reg 98.41%
185 sermanet EBLearn 2L ConvNet ms + validation 98.41%
27 sermanet EBLearn 2-layer ConvNet ss 98.20%
191 IDSIA ConvNet 7HL 98.10%
183 Radu.Ti-

mofte@VISICS IKSVM+LDA+HOGs 97.88%
166 IDSIA ConvNet 6HL 97.56%
184 Radu.Ti-

mofte@VISICS CS+I+HOGs 97.35%

Table 3.10: Top 17 test set accuracy results during phase I of the GTSRB compe-
tition.

Phase I # Team Method Accuracy

sermanet EBLearn 2LConvNet ms 108-108 99.17%

+ 100-feats CF classifier + No color

197 IDSIA cnn hog3 98.98%

196 IDSIA cnn cnn hog3 98.98%

178 sermanet EBLearn 2LConvNet ms 108-108 98.97%

sermanet EBLearn 2LConvNet ms 108-200 98.85%

+ 100-feats CF classifier + No color

sermanet EBLearn 2LConvNet ms 108-200 97.33%

+ 100-feats CF classifier + No color

+ Ramdom features + No jitter

Table 3.11: Post phase I networks evaluated against the official test set break the
previous 98.98% accuracy record with 99.17%.

42

As a side note, it is interesting that among a number of diverse vision systems, the

top 13 ones during phase I of the GTSRB challenge all use ConvNets with at least

98.10% accuracy and that human performance (98.81%) is outperformed by 5 of these

(Table 3.10).

Figure 3.19: 5x5 convolution filters for the first stage (top) and second stage (bottom).
Left: Random-features ConvNet reaching 97.33% accuracy (see Table 3.11), with 108
and 16000 filters for stages 1 and 2 respectively. Right: Fully trained ConvNet reaching
99.17% accuracy, with 108 and 8640 filters for stages 1 and 2.

43

Chapter 4

Detection

4.1 Traditional Object Detection using ConvNets

In this section, we demonstrate a traditional approach to object detection using

ConvNets. Traditional here refers to the bootstrapping passes and non-maximum sup-

pression historically employed by many detection systems. In the following sections, we

will depart slightly from these and devise a more effective approach.

Convolutional networks are efficient for detection because of their shared parameters,

avoiding recomputation of features multiple times for different outputs. We demonstrate

state of the art results on pedestrian detection datasets (INRIA [3] and Caltech [71]) and

preliminary results on house numbers detection (SVHN [46]). Note that the pedestrian

detection system described in subsequent sections was solely trained on INRIA data but

also tested on the Caltech dataset, similarly to most other published systems. We also

show the importance of multi-stage features and the combination of unsupervised and

supervised techniques to obtain good performance.

44

4.1.1 Bootstrapping

Bootstrapping is typically used in detection settings by extracting the most offending

negative answers and adding these samples multiple times to the existing dataset during

training. For this purpose, we extract 3000 negative samples per bootstrapping pass on

the INRIA dataset and limit the number of most offending answers to 5 for each image.

We perform 3 bootstrapping passes in addition to the original training phase (i.e. totally

4 training passes).

4.1.2 Non-Maximum Suppression

Non-maximum suppression (NMS) is used to resolve conflicts when several bounding

boxes overlap. For both INRIA and Caltech experiments we use the widely accepted

PASCAL overlap criteria to determine a matching score between two bounding boxes

(intersectionunion) and if two boxes overlap by more than 60%, only the one with the highest

score is kept. In [71]’s addendum, the matching criteria are modified by replacing the

union of the two boxes with the minimum of the two. Therefore, if a box is fully

contained in another one the small box is selected. The goal for this modification is

to avoid false positives that are due to pedestrian body parts. However, a drawback

to this approach is that it always disregards one of the overlapping pedestrians from

detection. Instead of changing the criteria, we actively modify our training set before each

bootstrapping phase. We include body part images that cause false positive detection

into our bootstrapping image set. Our model can then learn to suppress such responses

within a positive window and still detect pedestrians within bigger windows more reliably.

4.1.3 Color features

In the case of the Krizhevsky model, no special processing is used for color. However

in previous work, we used a separate ConvNet channel in order to process the color chan-

nels more efficiently. Because color information in JPEG images (format used by most

45

pedestrian datasets) is coded at lower resolutions, we feed the color channels separately

from the intensity channel. We convert all images into YUV image space and subsample

the UV features. Then at the first stage, we keep feature extraction systems for Y and

UV channels separate. On the Y channel, we use 32 7× 7 features followed by absolute

value rectification, contrast normalization and 3×3 subsampling. On the subsampled UV

channels, we extract 6 5×5 features followed by absolute value rectification and contrast

normalization, skipping the usual subsampling step since it was performed beforehand.

These features are then concatenated to produce 38 feature maps that are input to the

first layer. The second layer feature extraction takes 38 feature maps and produces 68

output features using 2040 9× 9 features. A randomly selected 20% of the connections

in mapping from input features to output features is removed to limit the computational

requirements and break the symmetry [9]. The output of the second layer features are

then transformed using absolute value rectification and contrast normalization followed

by 2×2 subsampling. This results in a 17824 dimensional feature vector for each sample

which is then fed into a linear classifier.

4.1.4 Pedestrian detection

The architecture used here is similar to the ones previously used for traffic sign and

house numbers datasets, i.e. 2-stage ConvNets with multi-stage features. Additionally,

we used unsupervised learning to initialize each stage, as described in the following sec-

tion. We evaluate our system on all the major pedestrian detection benchmark datasets.

We also show experiments that demonstrate the improvements coming from unsuper-

vised training and multi-stage features. The ConvNet is trained on the INRIA pedes-

trian dataset [3]. Pedestrians are extracted into windows of 126 pixels in height and 78

pixels in width. The context ratio is 1.4, i.e. pedestrians are 90 pixels high and the

remaining 36 pixels correspond to the background. Each pedestrian image is mirrored

along the horizontal axis to expand the dataset. Similarly, we add 5 variations of each

46

original sample using 5 random deformations such as translations and scale. Translations

range from -2 to 2 pixels and scale ratios from 0.95 to 1.05. These deformations enforce

invariance to small deformations in the input. The range of each deformation determines

the trade-off between recognition and localization accuracy during detection. An equal

amount of background samples are extracted at random from the negative images and

taking approximately 10% of the extracted samples for validation yields a validation set

with 2000 samples and training set with 21845 samples.

4.1.4.1 Unsupervised Learning using Convolutional Sparse Coding

Recently sparse coding has seen much interest in many fields due to its ability to

extract useful feature representations from data, The general formulation of sparse coding

is a linear reconstruction model using an over-complete dictionary D ∈ Rm×n where

m > n and a regularization penalty on the mixing coefficients z ∈ Rn.

z∗ = argmin
z
‖x−Dz‖22 + λs(z) (4.1)

The aim is to minimize equation 4.1 with respect to z to obtain the optimal sparse

representation z∗ that correspond to input x ∈ Rm. The exact form of s(z) depends on

the particular sparse coding algorithm that is used, here, we use the ‖.‖1 norm penalty,

which is the sum of the absolute values of all elements of z. It is immediately clear that

the solution of this system requires an optimization process. Many efficient algorithms

for solving the above convex system has been proposed in recent years [72, 73, 74, 75].

However, our aim is to also learn generic feature extractors. For that reason we minimize

equation 4.1 wrt D too.

z∗,D∗ = argmin
z,D
‖x−Dz‖22 + λ‖z‖1 (4.2)

47

This resulting equation is non-convex in D and z at the same time, however keeping

one fixed, the problem is still convex wrt to the other variable. All sparse modeling

algorithms that adopt the dictionary matrix D exploit this property and perform a

coordinate descent like minimization process where each variable is updated in succession.

Following [76] many authors have used sparse dictionary learning to represent images [77,

72, 78]. However, most of the sparse coding models use small image patches as input x

to learn the dictionary D and then apply the resulting model to every overlapping patch

location on the full image. This approach assumes that the sparse representation for two

neighboring patches with a single pixel shift is completely independent, thus produces

very redundant representations. [14, 79] have introduced convolutional sparse modeling

formulations for feature learning and object recognition and we use the Convolutional

Predictive Sparse Decomposition (CPSD) model proposed in [14] since it is the only

convolutional sparse coding model providing a fast predictor function that is suitable for

building multi-stage feature representations. The particular predictor function we use is

similar to a single layer ConvNet of the following form:

f(x; g, k, b) = z̃ = {z̃j}j=1..n (4.3)

z̃j = gj × tanh(x⊗ kj + bj) (4.4)

where ⊗ operator represents convolution operator that applies on a single input and

single filter. In this formulation x is a p × p grayscale input image, k ∈ Rn×m×m is a

set of 2D filters where each filter is kj ∈ R
m×m, g ∈ Rn and b ∈ Rn are vectors with

n elements, the predictor output z̃ ∈ Rn×p−m+1×p−m+1 is a set of feature maps where

each of z̃j is of size p−m+ 1× p−m+ 1. Considering this general predictor function,

the final form of the convolutional unsupervised energy for grayscale inputs is as follows:

48

ECPSD = EConvSC + βEPred (4.5)

EConvSC =
∥

∥

∥
x−

∑

j
Dj ⊗ zj

∥

∥

∥

2

2
+ λ‖z‖1 (4.6)

EPred = ‖z
∗ − f(x; g, k, b)‖22 (4.7)

where D is a dictionary of filters the same size as k and β is a hyper-parameter. The

unsupervised learning procedure is a two step coordinate descent process. At each iter-

ation, (1) Inference: The parameters W = {D, g, k, b} are kept fixed and equation 4.6

is minimized to obtain the optimal sparse representation z∗, (2) Update: Keeping z∗

fixed, the parameters W updated using a stochastic gradient step: W ← W − η ∂ECPSD

∂W

where η is the learning rate parameter. The inference procedure requires us to carry out

the sparse coding problem solution. For this step we use the FISTA method proposed

in [74]. This method is an extension of the original iterative shrinkage and thresholding

algorithm [73] using an improved step size calculation with a momentum-like term. We

apply the FISTA algorithm in the image domain adopting the convolutional formulation.

For color images or other multi-modal feature representations, the input x is a set

of feature maps indexed by i and the representation z is a set of feature maps indexed

by j for each input map i. We define a map of connections P from input x to features

z. A jth output feature map is connected to a set Pj of input feature maps. Thus, the

predictor function in Algorithm 1 is defined as:

z̃j = gj × tanh

∑

i∈Pj

(xi ⊗ kj,i) + bj

 (4.8)

and the reconstruction is computed using the inverse map P̄ :

EConvSC =
∑

i

‖xi −
∑

j∈P̄i

Di,j ⊗ zj‖
2
2 + λ‖z‖1 (4.9)

49

For a fully connected layer, all the input features are connected to all the output features,

however it is also common to use sparse connection maps to reduce the number of

parameters. The online training algorithm for unsupervised training of a single layer is:

Algorithm 1 Single layer unsupervised training.

function Unsup(x,D, P, {λ, β}, {g, k, b}, η)
Set: f(x; g, k, b) from eqn 4.8, W p = {g, k, b}.
Initialize: z = ∅, D and W p randomly.
repeat

Perform inference, minimize equation 4.9 wrt z using FISTA [74]
Do a stochastic update on D and W p. D ← D − η ∂EConvSC

∂D and W p ← W p −

η ∂EPred

∂W p

until convergence
Return: {D, g, k, b}

end function

4.1.4.2 Non-Linear Transformations

Once the unsupervised learning for a single stage is completed, the next stage is

trained on the feature representation from the previous one. In order to obtain the

feature representation for the next stage, we use the predictor function f(x) followed

by non-linear transformations and pooling. Following the multi-stage framework used

in [14], we apply absolute value rectification, local contrast normalization and average

down-sampling operations.

Absolute Value Rectification is applied component-wise to the whole feature output

from f(x) in order to avoid cancellation problems in contrast normalization and pooling

steps.

Local Contrast Normalization is a non-linear process that enhances the most active

50

feature and suppresses the other ones. The exact form of the operation is as follows:

vi = xi − xi ⊗ w , σ =

√

∑

i

w ⊗ v2i (4.10)

yi =
vi

max(c, σ)
(4.11)

where i is the feature map index and w is a 9 × 9 Gaussian weighting function with

normalized weights so that
∑

ipq wpq = 1. For each sample, the constant c is set to

mean(σ) in the experiments.

Average Down-Sampling operation is performed using a fixed size boxcar kernel with

a certain step size. The size of the kernel and the stride are given for each experiment

in the following sections.

Once a single layer of the network is trained, the features for training a successive

layer is extracted using the predictor function followed by non-linear transformations.

Detailed procedure of training an N layer hierarchical model is explained in Algorithm 2.

Algorithm 2 Multi-layer unsupervised training.

function HierarUnsup(x, ni,mi, Pi, {λi, βi}, {wi, si},
i = {1..N}, ηi)

Set: i = 1, X1 = x, lcn(x) using equations 4.10-4.11, ds(X,w, s) as the down-
sampling operator using boxcar kernel of size w × w and stride of size s in both
directions.
repeat

Set: Di, ki ∈ R
ni×mi×mi , gi, bi ∈ R

ni .
{Di, ki, gi, ki, bi} =

Unsup(Xi,Di, Pi, {λi, βi}, {gi, ki, bi}, ηi)
z̃ = f(Xi; gi, ki, bi) using equation 4.8.
z̃ = |z̃|
z̃ = lcn(z̃)
Xi+1 = ds(z̃, wi, si)
i = i+ 1

until i = N

end function

The first layer features can be easily displayed in the parameter space since the

51

parameter space and the input space is same, however visualizing the second and higher

level features in the input space can only be possible when only invertible operations

are used in between layers. However, since we use absolute value rectification and local

contrast normalization operations mapping the second layer features onto input space

is not possible. In Figure 4.2 we show a subset of 1664 second layer features in the

parameter space.

4.1.4.3 Evaluation Protocol

During testing and bootstrapping phases using the INRIA dataset, the images are

both up-sampled and sub-sampled. The up-sampling ratio is 1.3 while the sub-sampling

ratio is limited by 0.75 times the network’s minimum input (126 × 78). We use a

scale stride of 1.10 between each scale, while other methods typically use either 1.05

or 1.20 [71]. A higher scale stride is desirable as it implies less computations.

For evaluation we use the bounding boxes files published on the Caltech Pedestrian

website 1 and the evaluation software provided by Piotr Dollar (version 3.0.1). In an

effort to provide a more accurate evaluation, we improved on both the evaluation formula

and the INRIA annotations as follows. The evaluation software was slightly modified to

compute the full area under curve (AUC) in the entire [0, 1] range rather than from 9

discrete points only (0.01, 0.0178, 0.0316, 0.0562, 0.1, 0.1778, 0.3162, 0.5623 and 1.0 in

version 3.0.1). Instead, we compute the entire area under the curve by summing the areas

under the piece-wise linear interpolation of the curve, between each pair of points. In

addition, we also report a ’fixed’ version of the annotations for INRIA dataset, which has

missing positive labels. The added labels are only used to avoid counting false errors and

wrongly penalizing algorithms. The modified code and extra INRIA labels are available

at 2 [A. Table 4.1 reports results for both original and fixed INRIA datasets. Notice

that the full AUC and fixed INRIA annotations both yield a reordering of the results.

1http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians
2http://cs.nyu.edu/∼sermanet/data.html#inria

52

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
http://cs.nyu.edu/~sermanet/data.html#inria

To ensure a fair comparison, we separated systems trained on INRIA (the majority)

from systems trained on TUD-MotionPairs and the only system trained on Caltech in

table 4.1. For clarity, only systems trained on INRIA were represented in Figure 4.3 and

Figure 4.4, however all results for all systems are still reported in table 4.1.

4.1.4.4 Results

In Figure 4.1, we plot DET curves, i.e. miss rate versus false positives per image

(FPPI), on the fixed INRIA dataset and rank algorithms along two measures: the error

rate at 1 FPPI and the area under curve (AUC) rate in the [0, 1] FPPI range. For

both measures, lower is better. This graph shows the individual contributions of unsu-

pervised learning (ConvNet-U) and multi-stage features learning (ConvNet-F-MS) and

their combination (ConvNet-U-MS) compared to the fully-supervised system without

multi-stage features (ConvNet-F). Considering the AUC measure, unsupervised learning

exhibits the most improvements with 17.81% error compared to the baseline ConvNet

(26.05%). Multi-stage features without unsupervised learning reach 20.43% error while

their combination yields the state of the art error rate of 11.05%.

An extensive comparison of results for all major pedestrian datasets and published

systems is provided in Table 4.1. Multiple types of measures proposed by [71] are re-

ported. For clarity, we also plot in Figure 4.3 and Figure 4.4 two of these measures,

’reasonable’ and ’large’, for INRIA-trained systems. The ’large’ plot shows that the

ConvNet results in state-of-the-art performance with some margin on the ETH, Caltech

and TudBrussels datasets and is closely behind LatSvm-V2 and VeryFast for INRIA and

Daimler datasets. In the ’reasonable’ plot, the ConvNet yields competitive results for

INRIA, Daimler and ETH datasets but performs poorly on the Caltech dataset. We sus-

pect the ConvNet with multi-stage features trained at high-resolution is more sensitive

to resolution loss than other methods. In future work, a ConvNet trained at multiple

resolutions will likely learn to use appropriate cues for each resolution regime.

53

10
−2

10
−1

10
0

10
1

10
2

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

66.39% PoseInv

66.10% Shapelet

58.99% VJ

42.81% FtrMine

31.77% HOG

28.47% HikSvm

27.80% Pls

27.18% LatSvm−V1

24.79% HogLbp

23.39% ConvNet−F

22.62% MultiFtr

17.32% FeatSynth

17.29% ConvNet−F−MS

17.10% ConvNet−U

16.57% MLS

14.79% MultiFtr+CSS

11.68% FPDW

11.58% ChnFtrs

10.69% CrossTalk

10.55% ConvNet−U−MS

9.90% LatSvm−V2

9.13% VeryFast

10
−2

10
−1

10
0

10
1

10
2

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

23.39% ConvNet−F

17.29% ConvNet−F−MS

17.10% ConvNet−U

10.55% ConvNet−U−MS

Figure 4.1: DET curves on the fixed-INRIA dataset for large pedestrians measure
report false positives per image (FPPI) against miss rate. Algorithms are sorted from top to
bottom using the proposed continuous area under curve measure between 0 and 1 FPPI. Below,
only the ConvNet variants are displayed to highlight the individual contributions
of unsupervised learning (ConvNet-U) and multi-stage features learning (ConvNet-
F-MS) and their combination (ConvNet-U-MS) compared to the fully-supervised
system without multi-stage features (ConvNet-F).

54

Figure 4.2: A subset of 7× 7 second layer filters trained on grayscale INRIA images using
Algorithm 2. Each row in the figure shows filters that connect to a common output feature map.
It can be seen that they extract features at similar locations and shapes, e.g. the bottom row
tends to aggregate horizontal features towards the bottom of the filters.

55

 0

 20

 40

 60

 80

 100

INRIA-fixed INRIA Daimler ETH Caltech-UsaTestTudBrussels

A
re

a
U

n
d
er

 C
u
rv

e
b
et

w
ee

n
 0

 a
n
d
 1

 F
P

P
I

(%
)

Datasets

Pedestrian Detection AUC, Reasonable (> 50 pixels no/partial occlusion)

ConvNet
ChnFtrs

CrossTalk
FPDW

FeatSynth
FtrMine

HOG
HikSvm
HogLbp

LatSvm-V1
LatSvm-V2

MLS
MultiFtr

Pls
PoseInv
Shapelet

VJ
VeryFast

Figure 4.3: AUC percentage of all INRIA-trained systems on all major datasets (INRIA-fixed,
INRIA, Daimler, ETH, Caltech-UsaTest and TudBrussels) using the reasonable measure. The
AUC is computed from DET curves (smaller AUC means more accuracy and less false positives).
For clarity, each ConvNet performance is connected by dotted lines. Only the ’reasonable’ mea-
sure is plotted here, however all measures are reported in table 4.1. For this measure, the
ConvNet system yields state-of-the-art or competitive results on most datasets, except for the
Caltech dataset which contains many low-resolution images. We hypothesize that our ConvNet
relies more on high-resolution cues than other methods. This is hinted in Figure 4.4 by the
state of the art result obtained on the same Caltech datasets using the large measure only (i.e.
high-resolution pedestrians).

56

 0

 20

 40

 60

 80

 100

INRIA-fixed INRIA Daimler ETH Caltech-UsaTestTudBrussels

A
re

a
U

n
d
er

 C
u
rv

e
b
et

w
ee

n
 0

 a
n
d
 1

 F
P

P
I

(%
)

Datasets

Pedestrian Detection AUC, Large (> 100 pixels)

ConvNet
ChnFtrs

CrossTalk
FPDW

FeatSynth
FtrMine

HOG
HikSvm
HogLbp

LatSvm-V1
LatSvm-V2

MLS
MultiFtr

Pls
PoseInv
Shapelet

VJ
VeryFast

Figure 4.4: AUC percentage of all INRIA-trained systems on all major datasets using the large
measure. Contrary to Figure 4.3, our ConvNet performs very competitively on all datasets. This
suggests that this ConvNet is particularly good in the high-resolution regime.

57

Trained on INRIA TUD-MotionPairs Caltech
Conv Chn Cross FPDW Feat Ftr HOG Hik Hog LatSvm LatSvm MLS Multi Pls Pose Shapelet VJ Very MultiFtr MultiFtr Multi

Net Ftrs Talk Synth Mine Svm Lbp -V1 -V2 Ftr Inv Fast +CSS +Motion ResC

All - AUC %
INRIA-fixed 12.0 13.3 12.7 13.6 19.0 43.8 32.9 29.9 26.2 28.8 12.9 17.8 24.2 29.0 66.7 66.8 59.4 10.3 16.1 - -

INRIA 12.7 13.9 12.9 14.0 19.6 44.8 34.3 31.4 28.0 29.8 13.3 18.2 25.3 30.1 70.1 68.7 60.7 10.5 16.9 - -
Daimler 58.6 - - - - - 67.9 62.4 69.8 64.2 62.3 51.8 68.8 - - 94.9 94.8 - 48.6 40.5 -
ETH 47.1 48.7 43.8 51.5 - - 54.9 61.6 51.1 69.1 49.3 42.8 51.7 47.4 86.5 85.6 84.5 46.9 59.5 58.2 -

Caltech-UsaTest 90.9 77.1 77.8 78.1 78.1 86.7 85.5 86.8 87.9 91.7 84.2 83.4 83.4 81.2 92.6 95.4 99.1 - 81.2 77.9 74.2
TudBrussels 66.8 57.6 55.0 59.0 - - 73.6 76.4 77.2 85.7 67.2 59.2 70.5 66.1 83.8 93.8 92.7 - 57.8 51.4 -

Reasonable - AUC % - >50 pixels & no/partial occlusion
INRIA-fixed 12.0 13.3 12.7 13.6 19.0 43.8 32.9 29.9 26.2 28.8 12.9 17.8 24.2 29.0 66.7 66.8 59.4 10.3 16.1 - -

INRIA 12.7 13.9 12.9 14.0 19.6 44.8 34.3 31.4 28.0 29.8 13.3 18.2 25.3 30.1 70.1 68.7 60.7 10.5 16.9 - -
Daimler 24.9 - - - - - 46.2 38.9 40.3 47.2 29.2 18.3 45.5 - - 90.2 91.3 - 29.0 23.3 -
ETH 38.9 44.2 39.1 46.8 - - 51.1 59.2 43.7 66.6 41.1 37.1 47.5 42.2 85.2 83.9 83.6 42.5 49.4 47.9 -

Caltech-UsaTest 71.5 46.4 46.0 46.9 49.2 66.3 57.8 62.0 62.2 73.4 56.0 51.9 59.3 52.9 78.2 87.0 91.8 - 52.1 42.3 38.1
TudBrussels 59.1 48.8 47.0 50.4 - - 68.1 72.4 71.8 84.0 59.6 52.0 64.8 59.1 80.8 92.5 91.1 - 50.2 43.8 -

Large - AUC % - >100 pixels
INRIA-fixed 10.5 11.6 10.7 11.7 17.3 42.8 31.8 28.5 24.8 27.2 9.9 16.6 22.6 27.8 66.4 66.1 59.0 9.1 14.8 - -

INRIA 11.2 12.2 11.0 12.1 18.0 43.9 33.2 30.0 26.6 28.2 10.3 17.0 23.7 28.8 69.9 68.1 60.3 9.4 15.6 - -
Daimler 7.8 - - - - - 31.7 25.2 11.8 22.9 6.9 13.9 30.9 - - 72.3 83.9 - 18.7 18.6 -
ETH 24.4 30.2 28.2 33.4 - - 33.1 36.4 29.5 47.6 26.8 24.8 35.1 26.6 63.9 75.8 76.7 24.4 36.7 31.6 -

Caltech-UsaTest 14.8 24.1 25.8 26.4 28.6 47.8 28.0 26.5 18.4 40.7 22.5 22.7 34.3 30.4 54.5 69.6 80.9 - 28.8 12.0 12.5
TudBrussels 33.5 36.2 37.3 35.0 - - 56.2 52.2 46.3 64.5 43.1 41.8 55.5 43.3 70.0 80.3 86.0 - 45.3 38.1 -

Near - AUC % - >80 pixels
INRIA-fixed 11.3 11.6 11.0 11.9 17.3 42.6 31.5 28.5 24.7 27.5 11.1 16.5 22.7 27.7 66.0 66.1 58.7 9.7 14.7 - -

INRIA 11.9 12.2 11.2 12.3 17.9 43.7 32.9 30.0 26.5 28.5 11.5 16.8 23.8 28.8 69.4 68.1 60.0 9.9 15.5 - -
Daimler 10.0 - - - - - 36.8 30.4 10.9 27.6 10.8 14.7 33.7 - - 78.3 86.3 - 18.4 19.5 -
ETH 28.9 35.2 30.9 37.5 - - 40.5 45.6 31.7 52.2 31.4 29.5 39.4 34.1 80.6 79.9 80.0 29.8 40.0 36.3 -

Caltech-UsaTest 27.3 27.4 28.9 28.4 29.5 48.9 33.1 34.3 24.7 47.2 26.7 29.1 40.8 31.2 66.8 75.7 85.3 - 30.4 16.4 15.0
TudBrussels 40.4 39.5 40.3 38.8 - - 61.1 58.7 50.5 70.9 47.1 45.3 57.2 49.6 80.0 85.6 89.0 - 46.5 39.8 -

Medium - AUC % - 30-80 pixels
INRIA-fixed 33.1 100.0 99.7 100.0 100.0 100.0 100.0 100.0 85.3 85.3 99.7 100.0 86.1 100.0 99.7 99.7 91.5 27.9 91.3 - -

INRIA 33.1 100.0 99.7 100.0 100.0 100.0 100.0 100.0 85.3 85.3 99.7 100.0 86.1 100.0 99.7 99.7 91.5 27.9 91.3 - -
Daimler 54.2 - - - - - 62.1 54.4 70.7 58.5 60.0 44.7 63.2 - - 95.2 93.7 - 43.4 34.0 -
ETH 55.4 42.9 42.1 45.4 - - 49.9 54.7 61.2 71.5 57.3 43.9 47.3 45.0 73.9 74.5 71.2 48.3 55.2 54.7 -

Caltech-UsaTest 92.2 69.5 70.6 70.6 70.2 82.1 81.4 82.6 91.5 91.1 80.8 80.6 77.8 75.8 88.8 94.7 98.7 - 76.0 73.4 65.4
TudBrussels 67.8 57.4 55.5 59.7 - - 71.4 74.9 82.9 85.5 68.2 59.1 68.7 65.0 79.4 94.1 91.7 - 55.0 48.6 -

Far - AUC % - 20-30 pixels
Caltech-UsaTest 100.0 93.4 95.4 94.2 94.7 95.0 96.2 98.2 100.0 97.8 97.4 100.0 95.9 98.7 100.0 99.9 99.3 - 95.3 94.6 100.0

Partial occlusion - AUC % - >50 pixels
Caltech-UsaTest 81.9 61.3 69.2 66.9 67.0 81.6 77.1 80.3 75.0 84.1 76.7 71.3 78.6 68.1 85.7 90.5 96.9 - 76.6 64.4 61.3

Heavy occlusion - AUC % - >50 pixels
Caltech-UsaTest 96.3 91.3 90.7 91.8 87.8 95.5 93.7 93.2 95.6 94.4 93.3 92.1 95.0 92.3 97.2 97.3 98.2 - 91.1 87.8 84.0

Atypical aspect ratio - AUC % - >50 pixels, no occlusion
Caltech-UsaTest 74.5 57.3 55.4 61.9 60.3 76.8 75.3 77.4 77.2 85.8 70.8 71.5 73.3 69.1 86.0 92.1 93.6 - 64.3 48.9 50.6

Table 4.1: This table reports the performance of all systems on all datasets using the full AUC percentage over the considered range [0,1]
from DET curves. DET curves plot false positives per image (FPPI) against miss rate. Hence a smaller AUC% means a more accurate
system with greater reduction of false positives. Top performing results (INRIA-trained only) are highlighted in bold. We report the
multiple measures introduced by [71] for all major pedestrian datasets. The far, occlusion and aspect-ratio measures are only available for
the Caltech dataset.

58

Figure 4.5: Detection results on a patchwork of worst answers from SVHN
classification. Spurious detections of “1” are present but these can be explained (Fig-
ure 4.6). However many digits are correctly detected while these were the most offending
answers by the same system run in classification mode. These correct classifications when
alleviating the scaling issue via detection can probably explain most of the remaining
errors of the system.

4.1.5 House Numbers Detection

This preliminary work reuses successful techniques on pedestrian detection and house

numbers classification to perform house numbers detection, the eventual practical appli-

cation targeted by the SVHN dataset.

The pure classification model trained earlier on SVHN was reused in a detection set-

ting even though it was not trained with a background class nor underwent bootstrapping

passes and yet demonstrates promising results. Figure 4.5 is a patchwork of the worst

errors (errors with highest confidence) from this classification model. This patchwork is

a single image passed through our detector and hence is not a realistic image, rather a

simple experiment. The artificial grid structure resulting from this patchwork confuses

the network into detecting many instances of class “1” because of its vertical structure.

This explains the extraneous “1” detections and can be verified by the spurious acti-

vations in the detection outputs maps in Figure 4.6 (second column of output maps

from the left). However, an important number of digits are correctly detected which is

59

promising for a model fully trained for a detection setting. It also indicates that the

remaining errors in the classification setting and slightly lower performance compared

to humans are not due to shortcomings of the model but rather to large scale variations

that humans naturally cope with by performing detection. Thus our detection system

run on the classification task or directly on the detection task will likely exceed human

performance as it did before for traffic sign classification (Table 3.10).

Figure 4.6: Detection outputs maps on a patchwork of worst answers from
SVHN classifications. These outputs maps represent the activation maps for each
class, black meaning no activation and white meaning full activation. The maps are
organized by class, the first column standing for class “0”, the second for class “1”, etc.
The rows result from different input scales, the top row being the high resolution scale.
The artificial grid structure of the patchwork image can be seen here for class “1” where
lots of white activations are present and can be explained by the resemblance between
the vertical grid and the shape of digit “1”. These spurious activations would not be
present on natural images and differentiation between class “1” and vertical edges would
be trained for during bootstrapping.

60

4.2 ConvNets and Sliding Window Efficiency

ConvNets are efficient in terms of learning because sharing the weights at multiple

locations regularizes the filters to be more general and speeds up learning by accumu-

lating more gradients. But by nature, ConvNets are also computationally efficient when

applied densely, i.e. no redundant computations are performed, as opposed to other

architectures that have to recompute the entire pipeline for each output unit. For Con-

vNets, neighboring output units share common inputs in lower layers. For example,

applying a ConvNet to its minimum window size will produce a spatial output size of

1x1, as in Figure 4.7. Extending to outputs of size 2x2 requires recomputation of only a

minimal part of the features (yellow region in Figure 4.7).

Note that while the last layers of our architecture are fully connected linear layers,

during detection these layers are effectively replaced by convolution operations with

kernels of 1x1. Then the entire ConvNet is simply a sequence of convolutions, max-

pooling and thresholding operations only.

4.3 Object Localization

Starting from our classification-trained network, we replace the classifier layers by a

regression network and train it to predict object bounding boxes at each spatial location

and scale. We then combine the regression predictions together into objects and in turn

combine these with the classification results of each location, as we now describe.

4.3.1 Generating Predictions

To generate object bounding box predictions, we simultaneously run the classifier

and regressor networks across all locations and scales. Since these share the same feature

extraction layers, only the final regression layers need to be recomputed after computing

the classification network. The output of the final softmax layer for a class c at each

61

input 1st stage outputclassifier

convolution pooling conv conv conv

input 1st stage outputclassifier

convolution pooling conv conv conv

input 1st stage outputclassifier

convolution pooling conv conv conv

Figure 4.7: The efficiency of ConvNets for detection. During training, a ConvNet
produces only 1 spatial output (top). But when applied densely over a bigger input
image, it produces a spatial output map, e.g. 2x2 (middle). Since all layers of a Con-
vNet are applied convolutionally, only the yellow region needs to be recomputed when
comparing to the top diagram. The feature dimension was removed for simplicity in the
top and middle diagrams and added to the bottom diagram.

location provides a score of confidence that an object of class c is present (though not

necessarily fully contained) in the corresponding field of view. Thus we can assign to

each bounding box a confidence.

62

Localization within a view is performed by training a regressor on top of the classi-

fication network features, described in Section 3.1, to predict the bounding box of the

object.

Figure 4.8: Localization/Detection pipeline: fine stride sliding window. The
raw classifier/detector outputs a class and a confidence for each location (top). The res-
olution of these predictions can be increased using the method described in section 3.1.3
(bottom).

4.3.2 Regressor Training

The regression network takes as input the pooled feature maps from layer 5. It has

2 fully-connected hidden layers of size 4096 and 1024 channels, respectively. The output

63

Figure 4.9: Localization/Detection pipeline: fusing classification and localiza-
tion predictions. Top: the raw classifier/detector outputs a class and a confidence for
each location using the fine striding approach (Figure 4.8). The regression then predicts
the location scale of the object with respect to each window and assigns the predicted
classes to each predicted bounding box (bottom).

layer is different for each class, and has 4 units which specify the coordinates for the

bounding box edges. As with classification, there are (3x3) copies throughout, resulting

from the ∆x,∆y shifts. The architecture is shown in Figure 4.12.

We fix the feature extraction layers (1-5) from the classification network and train

the regression network using an ℓ2 loss between the predicted and true bounding box for

64

Figure 4.10: Localization/Detection pipeline: fusing bounding boxes. Once
labels have been assigned to predicted bounding boxes (Figure 4.9), the boxes with
high match are fused and their confidence is increased, reducing the set of bounding
boxes to only a few (bottom). The ones with confidence lower than a certain threshold
are dropped. Here, we obtain a single high confidence (74.9) bounding box (the initial
individual bounding boxes have a confidence range of [0, 1]).

each example. The final regressor layer is class-specific, having 1000 different versions,

one for each class. We train this network using the same set of scales as described in

65

Figure 4.11: Examples of bounding boxes produced by the regression network,
before being combined into final predictions. The examples shown here are at a single
scale. Predictions may be more optimal at other scales depending on the objects. Here,
most of the bounding boxes which are initially organized as a grid, converge to a single
location and scale. This indicates that the network is very confident in the location of
the object, as opposed to being spread out randomly. The top left image shows that it
can also correctly identify multiple location if several objects are present. The various
aspect ratios of the predicted bounding boxes shows that the network is able to cope
with various object poses.

Section 3.1. We compare the prediction of the regressor net at each spatial location with

the ground-truth bounding box, shifted into the frame of reference of the regressor’s

translation offset within the convolution (see Figure 4.12). However, we do not train the

regressor on bounding boxes with less than 50% overlap with the input field of view: since

the object is mostly outside of these locations, it will be better handled by regression

windows that do contain the object.

Training the regressors in a multi-scale manner is important for the across-scale

prediction combination. Training on a single scale will perform well on that scale and still

66

Figure 4.12: Application of the regression network to layer 5 features, at scale 2, for
example. (a) The input to the regressor at this scale are 6x7 pixels spatially by 256
channels for each of the (3x3) ∆x,∆y shifts. (b) Each unit in the 1st layer of the
regression net is connected to a 5x5 spatial neighborhood in the layer 5 maps, as well as
all 256 channels. Shifting the 5x5 neighborhood around results in a map of 2x3 spatial
extent, for each of the 4096 channels in the layer, and for each of the (3x3) ∆x,∆y shifts.
(c) The 2nd regression layer has 1024 units and is fully connected (i.e. the purple element
only connects to the purple element in (b), across all 4096 channels). (d) The output of
the regression network is a 4-vector (specifying the edges of the bounding box) for each
location in the 2x3 map, and for each of the (3x3) ∆x,∆y shifts.

perform reasonably on other scales. However training multi-scale will make predictions

match correctly across scale and exponentially increase the confidence of the merged

predictions. In turn, this allows the network to perform well with a few scales only

rather than many scales as is typically the case in detection. The typical ratio from one

scale to another in pedestrian detection [32] is about 1.05 to 1.1, here however we use

a large ratio of approximately 1.4 (this number differs for each scale since dimensions

are adjusted to fit exactly the stride of our network) which allows us to run our system

faster.

67

4.3.3 Combining Predictions

We combine the individual predictions (see Figure 4.11) via a greedy merge strategy

applied to the regressor bounding boxes, using the following algorithm.

(a) Assign to Cs the set of classes in the top k for each scale s ∈ 1 . . . 6, found by taking

the maximum detection class outputs across spatial locations for that scale.

(b) Assign to Bs the set of bounding boxes predicted by the regressor network for each

class in Cs, across all spatial locations at scale s.

(c) Assign B ←
⋃

sBs

(d) Repeat merging until done:

(e) (b∗1, b
∗
2) = argminb1 6=b2∈Bmatch score(b1, b2)

(f) If match score(b∗1, b
∗
2) > t , stop.

(g) Otherwise, set B ← B\{b∗1, b
∗
2} ∪ box merge(b∗1, b

∗
2)

In the above, we compute match score using the sum of the distances between centers

of the two bounding boxes and the intersection area of the boxes. box merge computes

the average of the bounding boxes’ coordinates.

The final prediction is given by taking the merged bounding boxes with maximum

class scores. This is computed by cumulatively adding the detection class outputs asso-

ciated with the input windows from which each bounding box was predicted. See Fig-

ure 4.10 for an example of bounding boxes merged into a single high-confidence bounding

box. In that example, some turtle and whale bounding boxes appear in the intermediate

multi-scale steps, but disappear in the final detection image. Not only do these bounding

boxes have low classification confidence (at most 0.11 and 0.12 respectively), their collec-

tion is not as coherent as the bear bounding boxes to get a significant confidence boost.

The bear boxes however have a strong confidence (approximately 0.5 average confidence

68

per scale) and high matching scores. Hence after merging, many bear bounding boxes

fused into a single very high confidence box, while false positives disappear below the

detection threshold due their lack of bounding box coherence and confidence. This anal-

ysis suggests that our approach is naturally more robust to false positives coming from

the pure-classification model than traditional non-maximum suppression, by rewarding

bounding box coherence.

4.3.4 Experiments

We apply our network to the Imagenet 2012 validation set, using the localization

criterion specified for the competition. The results are shown in Figure 4.13. Training

and testing data are the same for 2012 and 2013 competitions ; results are reported for

both in Figure 4.14. Our method is the winner of the 2013 competition with 29.9% error.

Our multiscale and multi-view approach was critical to obtaining good performance,

as can be seen in Figure 4.13: using only a single centered crop, our regressor network

achieves an error rate of 40%. By combining regressor predictions from all spatial loca-

tions at two scales, we achieve a vastly better error rate of 31.5%. Adding a third and

fourth scale further improves performance to 30.0% error.

Using a different top layer for each class in the regressor network for each class (Per-

Class Regressor (PCR) in Figure 4.13) surprisingly did not outperform using only a single

network shared among all classes (44.1% vs. 31.3%). This may be because there are

relatively few examples per class annotated with bounding boxes in the training set, while

the network has 1000 times more top-layer parameters, resulting in insufficient training.

It is possible this approach may be improved by sharing parameters only among similar

classes (e.g. training one network for all classes of dogs, another for vehicles, etc.).

69

Figure 4.13: Localization experiments on ILSVRC12 validation set. We exper-
iment with different number of scales and with the use of single-class regression (SCR)
or per-class regression (PCR).

4.4 Object Detection

Detection training is similar to classification training but in a spatial manner. Mul-

tiple locations of an image may be trained simultaneously. Since the model is convolu-

tional, all weights are shared among all locations. The main difference with the local-

ization task, is the necessity to predict a background class when no object is present.

Traditionally, negative examples are initially taken at random for training. Then the

most offending negative errors are added to the training set in bootstrapping passes.

Independent bootstrapping passes render training complicated by requiring manual in-

tervention or convoluted programming. Moreover, by decoupling the negative samples

extraction from the training there is a risk of mistakenly inducing subtle differences

between the bootstrapping and training times. Additionally, the size of bootstrapping

passes needs to be tuned to make sure training does not overfit on a small set. To cir-

cumvent all these problems, we perform negative training on the fly, by selecting a few

70

Figure 4.14: ILSVRC12 and ILSVRC13 competitions results (test set). Our
entry is the winner of the ILSVRC13 localization competition with 29.9% error (top 5).
Note that training and testing data is the same for both years. The OverFeat entry uses
4 scales and a single-class regression approach.

interesting negative examples per image such as random ones or most offending ones.

This approach is more computationally expensive, but renders the procedure much sim-

pler. And since the feature extraction is initially trained with the classification task, the

detection fine-tuning is not as long anyway.

In Figure 4.15, we report the results of the ILSVRC 2013 competition where our

detection system ranked 3rd with 19.4% mean average precision (mAP). We later estab-

lished a new detection state of the art with 24.3% mAP. Note that there is a large gap

between the top 3 methods and other teams (the 4th method yields 11.5% mAP). Addi-

tionally, our approach is considerably different from the top 2 other systems which use

an initial segmentation step to reduce candidate windows from approximately 200,000

to 2,000. This technique speeds up inference and substantially reduces the number of

potential false positives. [43, 44] suggest that detection accuracy drops when using dense

71

Figure 4.15: ILSVRC13 test set Detection results. During the competition, UvA
ranked first with 22.6% mAP. In post competition work, we establish a new state of
the art with 24.3% mAP. Systems marked with * were pre-trained with the ILSVRC12
classification data.

sliding window as opposed to selective search which discards unlikely object locations

hence reducing false positives. Combined with our method, we may observe similar

improvements as seen here between traditional dense methods and segmentation based

methods. It should also be noted that we did not fine tune on the detection validation

set as NEC and UvA did. The validation and test set distributions differ significantly

enough from the training set that this alone improves results by approximately 1 point.

The improvement between the two OverFeat results in Figure 4.15 are due to longer

training times and the use of context, i.e. each scale also uses lower resolution scales as

input.

72

4.5 Speech Localization

We hypothesize that our localization approach described earlier can generalize to

other modalities. In particular in speech, sub-phone classification can benefit from de-

coupling the classification and localization steps. Currently, a speech signal is sliced into

10 milliseconds frames and the acoustic model must classify each of these frames into

one of many sub-phone classes (3,000 for Cantonese and 4,500 for Vietnamese in the

Babel datasets). Many of these sub-phones have the same class as their neighbors over

some period of time. However some classes appear in single sub-phones with neighbors

of different classes. Over a context window of 40 frames, this turns this problem into a

difficult localization problem because the answers must be very precise along the tem-

poral dimension. An analogy to the vision localization problem would be trying to train

a network to fire precisely at the exact location of an object and predict a different class

when moving the network window by one pixel away. To achieve this, one would have

to give up the invariance power brought by the pooling layers. We hypothesize that this

explains why temporal subsampling was not effective in the case of [24].

Instead of approaching the speech problem from a very precise localization problem,

we propose to relax the localization contraint and assign that task to a separate branch

of the network trained specifically for that. This would allow recovery of the invariance

of temporal pooling, thus increasing the pure classification results. Just like the localiza-

tion network described in Section 4.3, the existing ConvNet pipeline can be branched out

before the classifier and fed to a regression network that predicts the temporal location

of the sub-phone. It is an even easier problem than object detection (which must predict

a 4-dimensional output), because it only requires prediction a 1-dimensional output. In

addition to this decoupling to relax the problem, the accumulation aspect of our ob-

ject localization system will boost performance by voting of many different views of the

same sub-phone. Indeed, the network is also applied in a sliding window fashion, hence

providing many translated views of the same locations. The accumulation of both classi-

73

fication and localization evidence will provide robustness to the sub-phone classification

problem. Due to time contraints however, this approach was not experimented with on

speech data at the time of writing.

74

Chapter 5

Conclusions and Discussion

This thesis advances the research on object detection significantly by breaking the

record on one of the most challenging detection datasets to date using a novel approach

to localization. After improving acoustic feature learning, we hypothesize that significant

improvements can also be gained by applying the same localization method to speech

recognition.

First, we explored how to learn good features using Convolutional Networks for com-

puter vision and speech recognition. Second, we applied traditional and novel approaches

to object detection using ConvNets. We showed how ConvNets can be used effectively

not only for classification tasks, but also for more challenging ones such as localization

and detection in an unified manner and for different modalities. This was demonstrated

on a number of popular benchmarks on which we established several records, including

one of the first super-human vision classification records.

Our approach could be improved in numerous ways: (i) for localization, we are

not currently back-propping through the whole network; doing so is likely to improve

performance. (ii) we are using ℓ2 loss, rather than directly optimizing the intersection-

over-union (IOU) criterion on which performance is measured. Swapping the loss to this

should be possible since IOU is still differentiable, provided there is some overlap. (iii)

75

alternate parameterizations of the bounding box may help to decorrelate the outputs,

which will aid network training. Additionally, some of the results presented were not

all based on fully trained ConvNets because of time constraints. The classification,

localization and detection results are expected to improve over time. Because of time

constraints as well, we could not conduct experiments to analyze the individual benefits

of all components proposed in this thesis. A thorough analysis will help determine the

most beneficial pieces. Finally, it remains to apply our approach to object localization

to improve phone classification for speech recognition.

76

Bibliography

[1] Ciresan, D. C, Meier, U, Masci, J, and Schmidhuber, J. A committee of neural

networks for traffic sign classification. In International Joint Conference on Neural

Networks, pages 1918–1921, 2011. 6

[2] Dollár, P, Tu, Z, Perona, P, and Belongie, S. Integral channel features. In BMVC

2009, London, England. 8

[3] Dalal, N and Triggs, B. Histograms of oriented gradients for human detection. In

Schmid, C, Soatto, S, and Tomasi, C, editors, International Conference on Com-

puter Vision & Pattern Recognition, volume 2, pages 886–893, INRIA Rhône-Alpes,

ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005. 8, 44, 46

[4] Felzenszwalb, P, Girshick, R, McAllester, D, and Ramanan, D. Object detection

with discriminatively trained part based models. In PAMI 2010. 8

[5] Schwartz, W. R, Kembhavi, A, Harwood, D, and Davis, L. S. Human detection using

partial least squares analysis. In Computer Vision, 2009 IEEE 12th International

Conference on, 29 2009. 8

[6] Walk, S, Majer, N, Schindler, K, and Schiele, B. New features and insights for

pedestrian detection. In CVPR 2010, San Francisco, California. 8

77

[7] Maji, S, Berg, A. C, and Malik, J. Classification using intersection kernel support

vector machines is efficient. volume 0, pages 1–8, Los Alamitos, CA, USA, 2008.

IEEE Computer Society. 8

[8] Dollár, P, Appel, R, and Kienzle, W. Crosstalk cascades for frame-rate pedestrian

detection. 8

[9] LeCun, Y, Bottou, L, Orr, G, and Muller, K. Efficient backprop. In Orr, G and K.,

M, editors, Neural Networks: Tricks of the trade. Springer, 1998. 8, 32, 46

[10] Hinton, G. E and Salakhutdinov, R. R. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006. 8

[11] Bengio, Y, Lamblin, P, Popovici, D, and Larochelle, H. Greedy layer-wise training

of deep networks. In Schölkopf, B, Platt, J, and Hoffman, T, editors, Advances in

Neural Information Processing Systems 19, pages 153–160. MIT Press, 2007. 8

[12] Ranzato, M, Boureau, Y, and LeCun, Y. Sparse feature learning for deep belief

networks. In Advances in Neural Information Processing Systems (NIPS 2007),

volume 20, 2007. 8

[13] Jarrett, K, Kavukcuoglu, K, Ranzato, M, and LeCun, Y. What is the best multi-

stage architecture for object recognition? In Proc. International Conference on

Computer Vision (ICCV’09). IEEE, 2009. 8, 9, 30

[14] Kavukcuoglu, K, Sermanet, P, Boureau, Y, Gregor, K, Mathieu, M, and LeCun,

Y. Learning convolutional feature hierachies for visual recognition. In Advances in

Neural Information Processing Systems (NIPS 2010), 2010. 8, 9, 30, 48, 50

[15] LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

9, 26

78

[16] LeCun, Y, Boser, B, Denker, J. S, Henderson, D, Howard, R. E, Hubbard, W, and

Jackel, L. D. Handwritten digit recognition with a back-propagation network. In

Touretzky, D, editor, Advances in Neural Information Processing Systems (NIPS

1989), volume 2, Denver, CO, 1990. Morgan Kaufman. 9

[17] Sermanet, P, Chintala, S, and LeCun, Y. Convolutional neural networks applied to

house numbers digit classification. In International Conference on Pattern Recog-

nition (ICPR 2012), 2012. 9, 27, 29, 36

[18] LeCun, Y, Huang, F.-J, and Bottou, L. Learning methods for generic object recog-

nition with invariance to pose and lighting. In Proceedings of CVPR’04. IEEE Press,

2004. 9

[19] Ciresan, D. C, Meier, J, and Schmidhuber, J. Multi-column deep neural networks

for image classification. In CVPR, 2012. 9

[20] Sermanet, P and LeCun, Y. Traffic sign recognition with multi-scale convolutional

networks. In Proceedings of International Joint Conference on Neural Networks

(IJCNN’11), 2011. 9, 27, 30, 38

[21] Krizhevsky, A, Sutskever, I, and Hinton, G. Imagenet classification with deep con-

volutional neural networks. In NIPS, 2012. 9, 11, 12, 13, 14, 16, 19, 20, 38

[22] Deng, J, Dong, W, Socher, R, Li, L.-J, Li, K, and Fei-Fei, L. ImageNet: A Large-

Scale Hierarchical Image Database. In CVPR09, 2009. 9, 12

[23] Hinton, G, Deng, L, Yu, D, Dahl, G. E, Mohamed, A.-r, Jaitly, N, Senior, A,

Vanhoucke, V, Nguyen, P, Sainath, T. N, et al. Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. Signal

Processing Magazine, IEEE, 29(6):82–97, 2012. 9

[24] Sainath, T. N, Mohamed, A.-r, Kingsbury, B, and Ramabhadran, B. Deep con-

volutional neural networks for lvcsr. In Acoustics, Speech and Signal Processing

79

(ICASSP), 2013 IEEE International Conference on, pages 8614–8618. IEEE, 2013.

10, 22, 24, 73

[25] Sainath, T. N, Kingsbury, B, Mohamed, A.-r, Dahl, G. E, Saon, G, Soltau, H, Beran,

T, Aravkin, A. Y, and Ramabhadran, B. Improvements to deep convolutional neural

networks for lvcsr. arXiv preprint arXiv:1309.1501, 2013. 10, 27

[26] Matan, O, Bromley, J, Burges, C, Denker, J, Jackel, L, LeCun, Y, Pednault, E,

Satterfield, W, Stenard, C, and Thompson, T. Reading handwritten digits: A zip

code recognition system. IEEE Computer, 25(7):59–63, July 1992. 10

[27] Vaillant, R, Monrocq, C, and LeCun, Y. Original approach for the localisation of

objects in images. IEE Proc on Vision, Image, and Signal Processing, 141(4):245–

250, August 1994. 10

[28] Nowlan, S and Platt, J. A convolutional neural network hand tracker. pages 901–

908, San Mateo, CA, 1995. Morgan Kaufmann. 10

[29] Delakis, M and Garcia, C. Text detection with convolutional neural networks. In

International Conference on Computer Vision Theory and Applications (VISAPP

2008), 2008. 10

[30] Garcia, C and Delakis, M. Convolutional face finder: A neural architecture for fast

and robust face detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2004. 10

[31] Osadchy, M, LeCun, Y, and Miller, M. Synergistic face detection and pose estima-

tion with energy-based models. Journal of Machine Learning Research, 8:1197–1215,

May 2007. 10

[32] Sermanet, P, Kavukcuoglu, K, Chintala, S, and LeCun, Y. Pedestrian detection

with unsupervised multi-stage feature learning. In Proc. International Conference

on Computer Vision and Pattern Recognition (CVPR’13). IEEE, June 2013. 10, 67

80

[33] Taylor, G, Fergus, R, Williams, G, Spiro, I, and Bregler, C. Pose-sensitive embed-

ding by nonlinear nca regression. In NIPS, 2011. 10

[34] Taylor, G, Spiro, I, Bregler, C, and Fergus, R. Learning invarance through imitation.

In CVPR, 2011. 10

[35] Hinton, G. E, Krizhevsky, A, and Wang, S. D. Transforming auto-encoders. In Arti-

ficial Neural Networks and Machine Learning–ICANN 2011, pages 44–51. Springer

Berlin Heidelberg, 2011. 10

[36] Jain, V, Murray, J. F, Roth, F, Turaga, S, Zhigulin, V, Briggman, K, Helmstaedter,

M, Denk, W, and Seung, H. S. Supervised learning of image restoration with

convolutional networks. In ICCV’07. 11

[37] Ning, F, Delhomme, D, LeCun, Y, Piano, F, Bottou, L, and Barbano, P. Toward

automatic phenotyping of developing embryos from videos. IEEE Transactions on

Image Processing, 14(9):1360–1371, September 2005. Special issue on Molecular and

Cellular Bioimaging. 11

[38] Hadsell, R, Sermanet, P, Scoffier, M, Erkan, A, Kavackuoglu, K, Muller, U, and

LeCun, Y. Learning long-range vision for autonomous off-road driving. Journal of

Field Robotics, 26(2):120–144, February 2009. 11

[39] Farabet, C, Couprie, C, Najman, L, and LeCun, Y. Learning hierarchical features for

scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2013. in press. 11

[40] Manen, S, Guillaumin, M, and Van Gool, L. Prime object proposals with random-

ized prims algorithm. In International Conference on Computer Vision (ICCV),

2013. 11

81

[41] Carreira, J and Sminchisescu, C. Constrained parametric min-cuts for automatic

object segmentation, release 1. http://sminchisescu.ins.uni-bonn.de/code/cpmc/.

11

[42] Endres, I and Hoiem, D. Category independent object proposals. In Computer

Vision–ECCV 2010, pages 575–588. Springer, 2010. 11

[43] Uijlings, J. R. R, van de Sande, K. E. A, Gevers, T, and Smeulders, A. W. M.

Selective search for object recognition. International Journal of Computer Vision,

104(2):154–171, 2013. 11, 71

[44] Carreira, J, Li, F, and Sminchisescu, C. Object recognition by sequential figure-

ground ranking. International journal of computer vision, 98(3):243–262, 2012. 11,

71

[45] Girshick, R, Donahue, J, Darrell, T, and Malik, J. Rich feature hierarchies for accu-

rate object detection and semantic segmentation. arXiv preprint arXiv:1311.2524,

2013. 11

[46] Netzer, Y, Wang, T, Coates, A, Bissacco, A, Wu, B, and Ng, A. Y. Reading digits

in natural images with unsupervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2011. 13, 29, 44

[47] Stallkamp, J, Schlipsing, M, Salmen, J, and Igel, C. The German Traffic Sign

Recognition Benchmark: A multi-class classification competition. In submitted to

International Joint Conference on Neural Networks, 2011. 14

[48] Hinton, G, Srivastave, N, Krizhevsky, A, Sutskever, I, and Salakhutdinov, R. R.

Improving neural networks by preventing co-adaptation of feature detectors.

arXiv:1207.0580, 2012. 13, 38

82

[49] Giusti, A, Ciresan, D. C, Masci, J, Gambardella, L. M, and Schmidhuber, J. Fast

image scanning with deep max-pooling convolutional neural networks. In Interna-

tional Conference on Image Processing (ICIP), 2013. 17, 19

[50] Tyagi, V and Wellekens, C. On desensitizing the mel-cepstrum to spurious spectral

components for robust speech recognition. In Proc. ICASSP, volume 5, pages 529–

532, 2005. 21

[51] Palaz, D, Collobert, R, and Magimai. -Doss, M. End-to-end Phoneme Sequence

Recognition using Convolutional Neural Networks. ArXiv e-prints, at NIPS Deep

Learning Workshop, 2013, December 2013. 21

[52] Krizhevsky, A, Sutskever, I, and Hinton, G. E. Imagenet classification with deep

convolutional neural networks. In NIPS 2012: Neural Information Processing Sys-

tems, Lake Tahoe, Nevada. 26

[53] Fan, J, Xu, W, Wu, Y, and Gong, Y. Human tracking using convolutional neural

networks. Neural Networks, IEEE Transactions on, 21(10):1610 –1623, 2010. 26,

27

[54] Sermanet, P, Kavukcuoglu, K, and LeCun, Y. Traffic signs and pedestrians vision

with multi-scale convolutional networks. In Snowbird Machine Learning Workshop,

2011. 27

[55] Simoncelli, E. P and Heeger, D. J. A model of neuronal responses in visual area

mt, 1997. 27

[56] Hyvrinen, A and Kster, U. Complex cell pooling and the statistics of natural images.

In Computation in Neural Systems,, 2005. 27

[57] Kavukcuoglu, K, Ranzato, M, Fergus, R, and LeCun, Y. Learning invariant features

through topographic filter maps. In Proc. International Conference on Computer

Vision and Pattern Recognition (CVPR’09). IEEE, 2009. 28

83

[58] Yang, J, Yu, K, Gong, Y, and Huang, T. Linear spatial pyramid matching using

sparse coding for image classification. In in IEEE Conference on Computer Vision

and Pattern Recognition, 2009. 28

[59] Boureau, Y, Ponce, J, and LeCun, Y. A theoretical analysis of feature pooling in vi-

sion algorithms. In Proc. International Conference on Machine learning (ICML’10),

2010. 28

[60] Ciresan, D. C, Meier, U, Gambardella, L. M, and Schmidhuber, J. Deep big multi-

layer perceptrons for digit recognition. Neural Networks Tricks of the Trade, 1:581–

598, 2012. 30

[61] Stallkamp, J, Schlipsing, M, Salmen, J, and Igel, C. Man vs. computer: Bench-

marking machine learning algorithms for traffic sign recognition. Neural Networks,

2012. 30

[62] Nair, V and Hinton, G. Rectified linear units improve restricted boltzmann ma-

chines. 2010. 32

[63] Eigen, D, Rolfe, J, Fergus, R, and LeCun, Y. Understanding deep architectures

using a recursive convolutional network. arXiv preprint arXiv:1312.1847, 2013. 37

[64] Goodfellow, I. J, Warde-Farley, D, Mirza, M, Courville, A, and Bengio, Y. Maxout

networks. arXiv preprint arXiv:1302.4389, 2013. 37, 38

[65] Cireşan, D. C, Meier, U, Masci, J, Gambardella, L. M, and Schmidhuber, J.

High-performance neural networks for visual object classification. arXiv preprint

arXiv:1102.0183, 2011. 37

[66] Claudiu Ciresan, D, Meier, U, Gambardella, L. M, and Schmidhuber, J. Deep

big simple neural nets excel on handwritten digit recognition. arXiv preprint

arXiv:1003.0358, 2010. 38

84

[67] Le, Q. V, Ranzato, M, Monga, R, Devin, M, Chen, K, Corrado, G. S, Dean, J,

and Ng, A. Y. Building high-level features using large scale unsupervised learning.

arXiv preprint arXiv:1112.6209, 2011. 38

[68] Yu, D and Seltzer, M. L. Improved bottleneck features using pretrained deep neural

networks. 2011. 39

[69] Hinton, G. E and Salakhutdinov, R. R. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006. 39

[70] Saxe, A, Koh, P. W, Chen, Z, Bhand, M, Suresh, B, and Ng, A. In Adv. Neu-

ral Information Processing Systems (NIPS*10), Workshop on Deep Learning and

Unsupervised Feature Learning., 2010. 39

[71] Dollár, P, Wojek, C, Schiele, B, and Perona, P. Pedestrian detection: A benchmark.

In CVPR’09. IEEE, June 2009. 44, 45, 52, 53, 58

[72] Aharon, M, Elad, M, and Bruckstein, A. M. K-SVD and its non-negative variant for

dictionary design. In Papadakis, M, Laine, A. F, and Unser, M. A, editors, Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 5914,

pages 327–339, August 2005. 47, 48

[73] Daubechies, I, Defrise, M, and De Mol, C. An iterative thresholding algorithm for

linear inverse problems with a sparsity constraint. Communications on Pure and

Applied Mathematics, 57(11):1413–1457, 2004. 47, 49

[74] Beck, A and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM J. Img. Sci., 2(1):183–202, 2009. 47, 49, 50

[75] Li, Y and Osher, S. Coordinate Descent Optimization for l1 Minimization with

Application to Compressed Sensing; a Greedy Algorithm. CAM Report, pages 09–

17. 47

85

[76] Olshausen, B. A and Field, D. J. Sparse coding with an overcomplete basis set: a

strategy employed by v1? Vision Research, 37(23):3311–3325, 1997. 48

[77] Mairal, J, Bach, F, Ponce, J, Sapiro, G, and Zisserman, A. Discriminative learned

dictionaries for local image analysis. Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1–8, June 2008. 48

[78] Kavukcuoglu, K, Ranzato, M, and LeCun, Y. Fast inference in sparse coding al-

gorithms with applications to object recognition. Technical report, Computational

and Biological Learning Lab, Courant Institute, NYU, 2008. Tech Report CBLL-

TR-2008-12-01. 48

[79] Zeiler, M, Krishnan, D, Taylor, G, and Fergus, R. Deconvolutional Networks. In

CVPR’10. IEEE, 2010. 48

86

