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Abstract

Modern learning problems in computer vision, natural language processing,

computational biology, and other areas are often based on large data sets

of tens of thousands to millions of training instances. However, several stan-

dard learning algorithms, such as kernel-based algorithms, e.g., Support Vector

Machines, Kernel Ridge Regression, Kernel PCA, do not easily scale to such

orders of magnitude. This thesis focuses on sampling-based matrix approxima-

tion techniques that help scale kernel-based algorithms to large-scale datasets.

We address several fundamental theoretical and empirical questions including:

1. What approximation should be used? We discuss two common sampling-

based methods, providing novel theoretical insights regarding their suit-

ability for various applications and experimental results motivated by

this theory. Our results show that one of these methods, the Nyström

method, is superior in the context of large-scale learning.

2. Do these approximations work in practice? We show the effectiveness of

approximation techniques on a variety of problems. In the largest study
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to-date for manifold learning, we use the Nyström method to extract low-

dimensional structure from high-dimensional data to effectively cluster

face images. We also report good empirical results for Kernel Ridge

Regression and Kernel Logistic Regression.

3. How should we sample columns? A key aspect of sampling-based algo-

rithms is the distribution according to which columns are sampled. We

study both fixed and adaptive sampling schemes as well as a promising

ensemble technique that can be easily parallelized and generates superior

approximations, both in theory and in practice.

4. How well do these approximations work in theory? We provide theoret-

ical analyses of the Nyström method to understand when this technique

should be used. We present guarantees on approximation accuracy based

on various matrix properties and analyze the effect of matrix approxi-

mation on actual kernel-based algorithms.

This work has important consequences for the machine learning commu-

nity since it extends to large-scale applications the benefits of kernel-based

algorithms. The crucial aspect of this research, involving low-rank matrix

approximation, is of independent interest within the field of linear algebra.
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Chapter 1

Introduction

1.1 Motivation

Machine Learning can be defined as a set of computational methods that uses

experience to improve performance and make accurate predictions. In today’s

data-driven society, this experience often takes the form of large-scale data,

e.g., images from the web, sequence data from the human genome, graphs rep-

resenting friendship networks, time-series data of stock prices, speech corpora

of news broadcasts, etc. Hence, modern learning problems in computer vision,

natural language processing, computational biology, and other areas are often

based on large data sets of tens of thousands to millions of training instances.

In this thesis, we ask the fundamental question: How can machine learning

algorithms handle such large-scale data?

In particular, we focus our attention on kernel-based algorithms (Schölkopf

1



& Smola, 2002; Shawe-Taylor & Cristianini, 2004). This broad class of learn-

ing algorithms has rich theoretical underpinnings and state-of-the-art empirical

performance for a variety of problems, e.g., Support Vector Machines (SVMs)

and Kernel Logistic Regression (KLR) for classification, Support Vector Re-

gression (SVR) and Kernel Ridge Regression (KRR) for regression, Kernel

Principle Component Analysis (KPCA) for non-linear dimensionality reduc-

tion, SVM-Rank for ranking, etc. Kernel methods rely solely on similarity

measures between pairs of data points, namely inner products. The power of

these algorithms stems from the ability to replace the standard inner product

with some other kernel function, allowing context-specific information to be

incorporated into these algorithms via the choice of kernel function. More

specifically, data points can be mapped in a non-linear fashion from their in-

put space into some high-dimensional feature space, and inner products in

this feature space can be used to solve a variety of learning problems. Popular

kernels include polynomial, Gaussian, sigmoid and sequence kernels. Indeed,

the flexibility in choice of kernel is a major benefit of these algorithms, as the

kernel function can be chosen arbitrarily so long as it is positive definite sym-

metric, which means that for any set of n data points, the similarity matrix

derived from the kernel function must be symmetric positive semidefinite (see

Section 2.1.1 for further discussion).

Despite the favorable properties of kernel methods in terms of theory,

empirical performance and flexibility, scalability remains a major drawback.

These algorithms require O(n2) space to store the kernel matrix. Further-
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more, they often require O(n3) time, requiring matrix inversion, Singular Value

Decomposition (SVD) or quadratic programming in the case of SVMs. For

large-scale data sets, both the space and time requirements quickly become

intractable. For instance, when working with a dataset of 18M data points (as

we will discuss in Section 3.1), storing the entire kernel matrix would require

∼1300TB, and even if we could somehow store all of this data, performing

O(n3) operations would be completely infeasible. Various optimization meth-

ods have been introduced to speed up kernel methods, e.g., SMO (Platt, 1999),

shrinking (Joachims, 1999), chunking (Boser et al., 1992), parallelized SVMs

(Chang et al., 2008) and parallelized KLR (Mann et al., 2009). However for

large-scale problems, the storage and processing costs can nonetheless be in-

tractable.

In this thesis, we will focus on an attractive solution to this problem that

involves efficiently generating low-rank approximations to the kernel matrix.

Low-rank approximation appears in a wide variety of applications including

lossy data compression, image processing, text analysis and cryptography, and

is at the core of widely used algorithms such as Principle Component Analysis,

Multidimensional Scaling and Latent Semantic Indexing. In the context of

kernel methods, kernel functions are sometimes chosen such that the resulting

kernel matrix is sparse, in which case sparse computation methods can be

used. However, in many applications the kernel matrix is dense, but can be

well approximated by a low-rank matrix. SVD can be used to find ‘optimal’

low-rank approximations, as we will formalize in Section 2.1.1. However SVD
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requires storage of the full kernel matrix and the runtime is superlinear in

n, and hence does not scale well for large-scale applications. The sampling-

based approaches that we discuss attempt to construct low-rank matrices that

are nearly ‘optimal’ while also having linear space and time constraints with

respect to n.

1.2 Related Work

There has been a wide array of work on low-rank matrix approximation within

the numerical linear algebra and computer science communities, much of which

has been inspired by the celebrated result of Johnson and Lindenstrauss (John-

son & Lindenstrauss, 1984), which showed that random low-dimensional em-

beddings preserve Euclidean geometry. This result has led to a family of

random projection algorithms, which involves projecting the original matrix

onto a random low-dimensional subspace (Papadimitriou et al., 1998; Indyk,

2006; Liberty, 2009). Alternatively, SVD can be used to generate ‘optimal’

low-rank matrix approximations, as mentioned earlier. However, both the

random projection and the SVD algorithms involve storage and operating on

the entire input matrix. SVD is more computationally expensive than random

projection methods, though neither are linear in n in terms of time and space

complexity. When dealing with sparse matrices, there exist less computation-

ally intensive techniques such as Jacobi, Arnoldi, Hebbian and more recent

randomized methods (Golub & Loan, 1983; Gorrell, 2006; Rokhlin et al., 2009;

4



Halko et al., 2009) for generating low-rank approximations. These iterative

methods require computation of matrix-vector products at each step and in-

volve multiple passes through the data. Once again, these algorithms are not

suitable for large, dense matrices. Matrix sparsification algorithms (Achliop-

tas & Mcsherry, 2007; Arora et al., 2006), as the name suggests, attempt to

sparsify dense matrices to speed up future storage and computational burdens,

though they too require storage of the input matrix and exhibit superlinear

processing time.

Alternatively, sampling-based approaches can be used to generate low-rank

approximations. Research in this area dates back to classical theoretical results

that show, for any arbitrary matrix, the existence of a subset of k columns for

which the error in matrix projection (defined in Section 2.2.2) can be bounded

relative to the optimal rank-k approximation of the matrix (Ruston, 1964).

Deterministic algorithms such as rank-revealing QR (Gu & Eisenstat, 1996)

can achieve nearly optimal matrix projection errors. More recently, research

in the theoretical computer science community has been aimed at deriving

bounds on matrix projection error using sampling-based approximations, in-

cluding additive error bounds using sampling distributions based on leverage

scores, i.e., the squared L2 norms of the columns (Frieze et al., 1998; Drineas

et al., 2006a; Rudelson & Vershynin, 2007); relative error bounds using adap-

tive sampling techniques (Deshpande et al., 2006; Har-peled, 2006); and, rel-

ative error bounds based on distributions derived from the singular vectors

of the input matrix, in work related to the column-subset selection problem

5



(Drineas et al., 2008; Boutsidis et al., 2009). However, as we will discuss Sec-

tion 2.2.2, the task of matrix projection involves projecting the input matrix

onto a low-rank subspace, and for kernel matrices this requires superlinear

time and space with respect to n.

There does however, exist another class of sampling-based approximation

algorithms that only store and operate on a subset of the original matrix. For

arbitrary rectangular matrices, these algorithms are known as ‘CUR’ approx-

imations (the name ‘CUR’ corresponds to the three low-rank matrices whose

product is an approximation to the original matrix). The theoretical perfor-

mance of CUR approximations has been analyzed using a variety of sampling

schemes, although the column-selection processes associated with these anal-

yses often require operating on the entire input matrix (Goreinov et al., 1997;

Stewart, 1999; Drineas et al., 2008; Mahoney & Drineas, 2009). In the context

of symmetric positive semidefinite matrices, the Nyström method is the most

commonly used algorithm to efficiently generate low-rank approximations.

The Nyström method was initially introduced as a quadrature method for

numerical integration, used to approximate eigenfunction solutions (Nyström,

1928; Baker, 1977). More recently, it was presented in Williams and Seeger

(2000) to speed up kernel algorithms and has been studied theoretically using

a variety of sampling schemes (Smola & Schölkopf, 2000; Drineas & Mahoney,

2005; Zhang et al., 2008; Zhang & Kwok, 2009; Kumar et al., 2009c; Ku-

mar et al., 2009b; Kumar et al., 2009a; Belabbas & Wolfe, 2009; Belabbas

& Wolfe, 2009; Talwalkar & Rostamizadeh, 2010). It has also been used for
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a variety of machine learning tasks ranging from manifold learning to image

segmentation (Platt, 2004; Fowlkes et al., 2004; Talwalkar et al., 2008). A

closely related algorithm, known as the Incomplete Cholesky Decomposition

(Fine & Scheinberg, 2002; Bach & Jordan, 2002; Bach & Jordan, 2005), can

also be viewed as a specific sampling technique associated with the Nyström

method (Bach & Jordan, 2005). As noted by Candès and Recht (2009); Tal-

walkar and Rostamizadeh (2010), the Nyström approximation is related to the

problem of matrix completion (Candès & Recht, 2009; Candès & Tao, 2009),

which attempts to complete a low-rank matrix from a random sample of its

entries. However, the matrix completion setting assumes that the target ma-

trix is low-rank and only allows for limited access to the data. In contrast, the

Nyström method, and sampling-based low-rank approximation algorithms in

general, deal with full-rank matrices that are amenable to low-rank approxi-

mation. Furthermore, when we have access to the underlying kernel function

that generates the kernel matrix of interest, we can generate matrix entries

on-the-fly as desired, providing us with more flexibility in our access to the

original matrix.

1.3 Contributions

In this thesis, we provide a unified treatment of sampling-based matrix ap-

proximation in the context of machine learning, in part based on work from

the following publications: Talwalkar et al. (2008); Kumar et al. (2009c);
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Kumar et al. (2009b); Kumar et al. (2009a); Cortes et al. (2010); Talwalkar

and Rostamizadeh (2010). We address several fundamental theoretical and

empirical questions including:

1. What approximation should be used? We discuss two recently introduced

sampling-based methods that estimate the SVD of a positive semidefinite

matrix from a small subset of its columns. We present a theoretical

comparison between the two methods, provide novel insights regarding

their suitability for various applications, and include experimental results

motivated by this theory. Our results show that one of these methods,

the Nyström method, is superior in the context of large-scale kernel-

based algorithms on the scale of millions of training instances.

2. Do these approximations work in practice? We show the effectiveness

of matrix approximation techniques on a variety of problems. We first

focus on the task of large-scale manifold learning, which involves ex-

tracting low-dimensional structure from high-dimensional data in an un-

supervised manner. In this study, the largest such study on manifold

learning to-date involving 18M face images, we are able to use the low-

dimensional embeddings to more effectively cluster face images. In fact,

the techniques we describe are currently used by Google as part of its

social networking application (Kumar & Rowley, 2010). We further show

the effectiveness of the Nyström method to scale algorithms such as Ker-

nel Ridge Regression and Kernel Logistic Regression.
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3. How should we sample columns? A key aspect of sampling-based algo-

rithms is the distribution according to which the columns are sampled.

We study both fixed and adaptive sampling schemes. In a fixed dis-

tribution scheme, the distribution over the columns remains the same

throughout the procedure. In contrast, adaptive schemes iteratively up-

date the distribution after each round of sampling. Furthermore, we

introduce a promising ensemble technique that can be easily parallelized

and generates superior approximations, both in theory and in practice

when working with millions of training instances.

4. How well do these approximations work in theory? We provide theoreti-

cal analyses of the Nyström method to understand when these sampling

techniques should be used. We present a variety of guarantees on the ap-

proximation accuracy based on various properties of the kernel matrix.

In addition to studying the quality of matrix approximation relative to

original kernel matrix, we also provide a theoretical analysis of the ef-

fect of matrix approximation on actual kernel-based algorithms such as

SVMs, SVR, KPCA and KRR, as this is a major application of these

sampling techniques.

This work has important consequences for the machine learning commu-

nity since it extends to large-scale applications the benefits of kernel-based

algorithms. The crucial aspect of this research, involving low-rank matrix

approximation, is of independent interest within the field of linear algebra.
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Chapter 2

Low Rank Approximations

2.1 Preliminaries

In this chapter, we introduce the two most common sampling-based techniques

for matrix approximation and compare their performance on a variety of tasks.

The content of this chapter is primarily based on results presented in Kumar

et al. (2009b). We begin by introducing notation and basic definitions.

2.1.1 Notation

Let T ∈ R
a×b be an arbitrary matrix. We define T(j), j = 1 . . . b, as the jth

column vector of T and T(i), i = 1 . . . a, as the ith row vector of T and ‖·‖ the

l2 norm of a vector. Furthermore, T(i:j) refers to the ith through jth columns

of T and T(i:j) refers to the ith through jth rows of T. If rank(T) = r,

we can write the thin Singular Value Decomposition (SVD) of this matrix as

10



T = UTΣTV⊤
T where ΣT is diagonal and contains the singular values of T

sorted in decreasing order and UT ∈ R
a×r and VT ∈ R

b×r have orthogonal

columns that contain the left and right singular vectors of T corresponding

to its singular values. We denote by Tk the ‘best’ rank-k approximation to

T, that is Tk = argmin
V∈Ra×b,rank(V)=k‖T − V‖ξ, where ξ ∈ {2, F} and ‖·‖2

denotes the spectral norm and ‖·‖F the Frobenius norm of a matrix. We can

describe this matrix in terms of its SVD as Tk = UT,kΣT,kV
⊤
T,k where ΣT,k is

a diagonal matrix of the top k singular values of T and UT,k and VT,k are the

associated left and right singular vectors.

Now let K ∈ R
n×n be a symmetric positive semidefinite (SPSD) kernel

or Gram matrix with rank(K) = r ≤ n, i.e. a symmetric matrix for which

there exists an X ∈ R
N×n such that K = X⊤X. We will write the SVD

of K as K = UΣU⊤, where the columns of U are orthogonal and Σ =

diag(σ1, . . . , σr) is diagonal. The pseudo-inverse of K is defined as K+ =
∑r

t=1 σ
−1
t U(t)U(t)⊤, and K+ = K−1 when K is full rank. For k < r, Kk =

∑k
t=1 σtU

(t)U(t)⊤ = UkΣkU
⊤
k is the ‘best’ rank-k approximation to K, i.e.,

Kk = argmin
K′∈Rn×n,rank(K′)=k‖K − K′‖ξ∈{2,F}, with ‖K − Kk‖2 = σk+1 and

‖K−Kk‖F =
√∑r

t=k+1 σ
2
t (Golub & Loan, 1983).

We will be focusing on generating an approximation K̃ of K based on a

sample of l ≪ n of its columns. For now, we assume that we sample columns

uniformly without replacement, though various methods have been proposed

to select columns, and Chapter 4 is devoted to this crucial aspect of sampling-

based algorithms. Let C denote the n× l matrix formed by these columns and
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W the l × l matrix consisting of the intersection of these l columns with the

corresponding l rows of K. Note that W is SPSD since K is SPSD. Without

loss of generality, the columns and rows of K can be rearranged based on this

sampling so that K and C be written as follows:

K =




W K⊤
21

K21 K22


 and C =




W

K21


 . (2.1)

The approximation techniques discussed next use the SVD of W and C to

generate approximations for K.

2.1.2 Nyström method

The Nyström method was initially introduced as a quadrature method for

numerical integration, used to approximate eigenfunction solutions (Nyström,

1928; Baker, 1977). More recently, it was presented in Williams and Seeger

(2000) to speed up kernel algorithms and has been used in applications ranging

from manifold learning to image segmentation (Platt, 2004; Fowlkes et al.,

2004; Talwalkar et al., 2008). The Nyström method uses W and C from (2.1)

to approximate K, and for a uniform sampling of the columns, the Nyström

method generates a rank-k approximation K̃ of K for k < n defined by:

K̃nys
k = CW+

k C⊤ ≈ K, (2.2)
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where Wk is the best k-rank approximation of W for the Frobenius norm

and W+
k denotes the pseudo-inverse of Wk. If we write the SVD of W as

W = UWΣWU⊤
W , then plugging into (2.2) we can write

K̃nys
k = CUW,kΣ

+
W,kU

⊤
W,kC

⊤

=

(√
l

n
CUW,kΣ

+
W,k

)(
n

l
ΣW,k

)(√
l

n
CUW,kΣ

+
W,k

)⊤
,

and hence the Nyström method approximates the top k singular values (Σk)

and singular vectors (Uk) of K as:

Σ̃nys =
(n
l

)
ΣW,k and Ũnys =

√
l

n
CUW,kΣ

+
W,k. (2.3)

Since the running time complexity of SVD on W is in O(l3) and matrix mul-

tiplication with C takes O(kln), the total complexity of the Nyström approx-

imation computation is in O(l3+kln).

2.1.3 Column-sampling method

The Column-sampling method was introduced to approximate the SVD of any

rectangular matrix (Frieze et al., 1998). It generates approximations of K by

using the SVD of C. If we write the SVD of C as C = UCΣCV⊤
C then the

Column-sampling method approximates the top k singular values (Σk) and
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singular vectors (Uk) of K as:

Σ̃col =

√
n

l
ΣC and Ũcol = UC = CVCΣ+

C . (2.4)

The runtime of the Column-sampling method is dominated by the SVD of

C. Even when only k singular values and singular vectors are required, the

algorithm takes O(nl2) time to perform SVD on C, and is thus more expensive

than the Nyström method. Often, in practice, the SVD of C⊤C is performed

in O(l3) time instead of the running SVD of C. However, this procedure is

still more expensive than the Nyström method due to the additional cost of

computing C⊤C which is in O(nl2).

2.2 Nyström vs Column-sampling

Given that two sampling-based techniques exist to approximate the SVD of

SPSD matrices, we pose a natural question: which method should one use to

approximate singular values, singular vectors and low-rank approximations?1

We first analyze the form of these approximations and then empirically eval-

uate their performance in Section 2.2.3 on a variety of datasets.

1We will address the performance of the Nyström and Column-sampling methods for
computing low-dimensional embeddings separately in Section 3.1 when we discuss the prob-
lem of manifold learning, since low-dimensional embedding is fundamentally related to the
problem of manifold learning.
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2.2.1 Singular values and singular vectors

As shown in (2.3) and (2.4), the singular values of K are approximated as the

scaled singular values of W and C, respectively. The scaling terms are quite

rudimentary and are primarily meant to compensate for the ‘small sample size’

effect for both approximations. However, the form of singular vectors is more

interesting. The Column-sampling singular vectors (Ũcol) are orthonormal

since they are the singular vectors of C. In contrast, the Nyström singular

vectors (Ũnys) are approximated by extrapolating the singular vectors of W as

shown in (2.3), and are not orthonormal. It is easy to verify that Ũ⊤
nysŨnys 6=

Il, where Il is the identity matrix of size l. As we show in Section 2.2.3,

this adversely affects the accuracy of singular vector approximation from the

Nyström method.

It is possible to orthonormalize the Nyström singular vectors by using QR

decomposition. Since Ũnys ∝ CUWΣ+
W , where UW is orthogonal and ΣW is

diagonal, this simply implies that QR decomposition creates an orthonormal

span of C rotated by UW . However, the complexity of QR decomposition of

Ũnys is the same as that of the SVD of C. Thus, the computational cost of

orthogonalizing Ũnys would nullify the computational benefit of the Nyström

method over Column-sampling.
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2.2.2 Low-rank approximation

Several studies have empirically shown that the accuracy of low-rank approxi-

mations of kernel matrices is tied to the performance of kernel-based learning

algorithms (Williams & Seeger, 2000; Talwalkar et al., 2008; Zhang et al.,

2008). Furthermore, we will theoretically show the effect of an approxima-

tion in the kernel matrix on the hypothesis generated by several widely used

kernel-based learning algorithms in Section 5.3. Hence, accurate low-rank ap-

proximations are of great practical interest in machine learning. As discussed

in Section 2.1.1, the optimal Kk is given by,

Kk = UkΣkU
⊤
k = UkU

⊤
k K = KUkU

⊤
k (2.5)

where the columns of Uk are the k singular vectors of K corresponding to the

top k singular values of K. We refer to UkΣkU
⊤
k as Spectral Reconstruction,

since it uses both the singular values and vectors of K, and UkU
⊤
k K as Matrix

Projection, since it uses only singular vectors to compute the projection of K

onto the space spanned by vectors Uk. These two low-rank approximations

are equal only if Σk and Uk contain the true singular values and singular

vectors of K. Since this is not the case for approximate methods such as the

Nyström method and Column-sampling, these two measures generally give

different errors. Thus, we analyze each measure separately in the following

sections.
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Matrix projection

For Column-sampling, using (2.4), the low-rank approximation via matrix

projection is

K̃col
k = Ũcol,kŨ

⊤
col,kK = UC,kU

⊤
C,kK = C((C⊤C)k)

+C⊤K, (2.6)

where (C⊤C)k = VC,k(Σ
2
C,k)

+V⊤
C,k. Clearly, if k = l, (C⊤C)k = C⊤C. Simi-

larly, using (2.3), the Nyström matrix projection is

K̃nys
k = Ũnys,kŨ

⊤
nys,kK =

l

n
C(W2

k)
+C⊤K, (2.7)

where Wk = W if k = l.

As shown in (2.6) and (2.7), the two methods have similar expressions for

matrix projection, except that C⊤C is replaced by a scaled W2. Furthermore,

the scaling term appears only in the expression for the Nyström method. We

now present Theorem 2.1 and Observations 2.1 and 2.2, which provide further

insights about these two methods in the context of matrix projection.

Theorem 2.1 The Column-sampling and Nyström matrix projections are of

the form UCRU⊤
CK, where R ∈ R

l×l is SPSD. Further, Column-sampling

gives the lowest reconstruction error (measured in ‖·‖F ) among all such ap-

proximations if k = l.
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Proof. From (2.6), it is easy to see that

K̃col
k =UC,kU

⊤
C,kK = UCRcolU

⊤
CK, (2.8)

where Rcol =
[

Ik 0
0 0

]
. Similarly, from (2.7) we can derive

K̃nys
k = UCRnysU

⊤
CK where Rnys = Y(Σ2

W,k)
+Y⊤, (2.9)

and Y =
√
l/nΣCV⊤

CUW,k. Note that both Rcol and Rnys are SPSD matrices.

Furthermore, if k = l, Rcol = Il. Let E be the (squared) reconstruction error

for an approximation of the form UCRU⊤
CK, where R is an arbitrary SPSD

matrix. Hence, when k = l, the difference in reconstruction error between the

generic and the Column-sampling approximations is

E− Ecol =‖K−UCRU⊤
CK‖2F − ‖K−UCU⊤

CK‖2F

= Tr
[
K⊤(In −UCRU⊤

C)⊤(In −UCRU⊤
C)K

]

−Tr
[
K⊤(In −UCU⊤

C)⊤(In −UCU⊤
C)K

]

= Tr
[
K⊤(UCR2U⊤

C − 2UCRU⊤
C + UCU⊤

C)K
]

= Tr
[
((R− In)U⊤

CK)⊤((R− In)U⊤
CK)

]

≥ 0. (2.10)

We used the facts that U⊤
CUC = In and A⊤A is SPSD for any matrix A. 2

Observation 2.1 For k = l, matrix projection for Column-sampling recon-
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structs C exactly. This can be seen by block-decomposing K as: K = [C C̄],

where C̄ = [K21 K22]
⊤, and using (2.6):

K̃col
l = C(C⊤C)+C⊤K = [C C(C⊤C)+C⊤C̄] = [C C̄]. (2.11)

Observation 2.2 For k = l, the span of the orthogonalized Nyström singular

vectors equals the span of Ũcol, as discussed in Section 2.2.1. Hence, matrix

projection is identical for Column-sampling and Orthonormal Nyström for k =

l.

From an application point of view, matrix projection approximations tend

to be more accurate than the spectral reconstruction approximations discussed

in the next section. However, these low-rank approximations are not neces-

sarily symmetric and require storage of and multiplication with K. Hence,

although matrix projection is often analyzed theoretically, for large-scale prob-

lems, the storage and computational requirements may be inefficient or even

infeasible.

Spectral reconstruction

Using (2.3), the Nyström spectral reconstruction is:

K̃nys
k = Ũnys,kΣ̃nys,kŨ

⊤
nys,k = CW+

k C⊤. (2.12)
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When k= l, this approximation perfectly reconstructs three blocks of K, and

K22 is approximated by the Schur Complement of W in K:

K̃nys
l = CW+C⊤ =




W K⊤
21

K21 K21W
+K21


 . (2.13)

The Column-sampling spectral reconstruction has a similar form as (2.12):

K̃col
k = Ũcol,kΣ̃col,kŨ

⊤
col,k =

√
n/lC

(
(C⊤C)

1

2

k

)+
C⊤. (2.14)

In contrast with matrix projection, the scaling term now appears in the Column-

sampling reconstruction. To analyze the two approximations, we consider an

alternative characterization using the fact that K = X⊤X for some X ∈ R
N×n.

Similar to Drineas and Mahoney (2005), we define a zero-one sampling ma-

trix, S ∈ R
n×l, that selects l columns from K, i.e., C = KS. Each column

of S has exactly one non-zero entry per column. Further, W = S⊤KS =

(XS)⊤XS = X′⊤X′, where X′ ∈ R
N×l contains l sampled columns of X and

X′ = UX′ΣX′V⊤
X′ is the SVD of X′. We use these definitions to present

Theorems 2.2 and 2.3.

Theorem 2.2 Column-sampling and Nyström spectral reconstructions of rank

k are of the form X⊤UX′,kZU⊤
X′,kX, where Z ∈ R

k×k is SPSD. Further, among

all approximations of this form, neither the Column-sampling nor the Nyström

approximation is optimal (in ‖·‖F ).
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Proof. If α =
√
n/l, then starting from (2.14) and expressing C and W in

terms of X and S, we have

K̃col
k =αKS((S⊤K2S)

1/2
k )+S⊤K⊤

=αX⊤X′((VC,kΣ
2
C,kV

⊤
C,k)

1/2
)+

X′⊤X

=X⊤UX′,kZcolU
⊤
X′,kX, (2.15)

where Zcol = αΣX′V⊤
X′VC,kΣ

+
C,kV

⊤
C,kVX′ΣX′ . Similarly, from (2.12) we have:

K̃nys
k =KS(S⊤KS)+

k S⊤K⊤

=X⊤X′(X′⊤X′)+

k
X′⊤X

=X⊤UX′,kU
⊤
X′,kX. (2.16)

Clearly, Znys = Ik. Next, we analyze the error, E, for an arbitrary Z, which

yields the approximation K̃Z
k :

E = ‖K− K̃Z
k ‖2F = ‖X⊤(IN −UX′,kZU⊤

X′,k)X‖2F . (2.17)
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Let X = UXΣXV⊤
X and Y = U⊤

XUX′,k. Then,

E = Tr
[(

(IN −UX′,kZU⊤
X′,k)UXΣ2

XU⊤
X

)2]

= Tr
[(

UXΣXU⊤
X(IN −UX′,kZU⊤

X′,k)UXΣXU⊤
X

)2]

= Tr
[(

UXΣX(IN −YZY⊤)ΣXU⊤
X

)2]

= Tr
[
ΣX(IN −YZY⊤)Σ2

X(IN −YZY⊤)ΣX

)]

= Tr
[
Σ4

X − 2Σ2
XYZY⊤Σ2

X + ΣXYZY⊤Σ2
XYZY⊤ΣX

)]
. (2.18)

To find Z∗, the Z that minimizes (2.18), we use the convexity of (2.18) and

set:

∂E/∂Z = −2Y⊤Σ4
XY + 2(Y⊤Σ2

XY)Z∗(Y⊤Σ2
XY) = 0

and solve for Z∗, which gives us:

Z∗ = (Y⊤Σ2
XY)+(Y⊤Σ4

XY)(Y⊤Σ2
XY)+.

Z∗ = Znys = Ik if Y = Ik, though Z∗ does not in general equal either Zcol

or Znys, which is clear by comparing the expressions of these three matri-

ces, and also by example (see results for ‘DEXT’ dataset in Figure 2.3(a)).

Furthermore, since Σ2
X = ΣK , Z∗ depends on the spectrum of K. 2

While Theorem 2.2 shows that the optimal approximation is data-dependent

and may differ from the Nyström and Column-sampling approximations, The-

orem 2.3 reveals that in certain instances the Nyström method is optimal. In
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contrast, the Column-sampling method enjoys no such guarantee.

Theorem 2.3 Suppose r = rank(K) ≤ k ≤ l and rank(W) = r. Then,

the Nyström approximation is exact for spectral reconstruction. In contrast,

Column-sampling is exact iff W =
(
(l/n)C⊤C

)1/2
. When this very specific

condition holds, Column-Sampling trivially reduces to the Nyström method.

Proof. Since K = X⊤X, rank(K) = rank(X) = r. Similarly, W = X′⊤X′

implies rank(X′) = r. Thus the columns of X′ span the columns of X and

UX′,r is an orthonormal basis for X, i.e., IN −UX′,rU
⊤
X′,r ∈ Null(X). Since

k ≥ r, from (2.16) we have

‖K− K̃nys
k ‖F = ‖X⊤(IN −UX′,rU

⊤
X′,r)X‖F = 0. (2.19)

To prove the second part of the theorem, we note that rank(C) = r. Thus, C =

UC,rΣC,rV
⊤
C,r and (C⊤C)

1/2
k = (C⊤C)1/2 = VC,rΣC,rV

⊤
C,r since k ≥ r. If W =

(1/α)(C⊤C)1/2, then the Column-sampling and Nyström approximations are

identical and hence exact. Conversely, to exactly reconstruct K, Column-

sampling necessarily reconstructs C exactly. Using C⊤ = [W K⊤
21] in (2.14)
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Table 2.1: Description of the datasets used in our experiments comparing
sampling-based matrix approximations (Sim et al., 2002; LeCun & Cortes,
1998; Talwalkar et al., 2008). ‘n’ denotes the number of points and ‘d’ denotes
the number of features in input space.

Dataset Data n d Kernel
PIE-2.7K faces 2731 2304 linear
PIE-7K faces 7412 2304 linear
MNIST digits 4000 784 linear

ESS proteins 4728 16 RBF
ABN abalones 4177 8 RBF

we have:

K̃col
k = K =⇒ αC

(
(C⊤C)

1

2

k

)+
W = C (2.20)

=⇒ αUC,rV
⊤
C,rW = UC,rΣC,rV

⊤
C,r (2.21)

=⇒ αVC,rV
⊤
C,rW = VC,rΣC,rV

⊤
C,r (2.22)

=⇒ W =
1

α
(C⊤C)1/2. (2.23)

In (2.22) we use U⊤
C,rUC,r = Ir, while (2.23) follows since VC,rV

⊤
C,r is an

orthogonal projection onto the span of the rows of C and the columns of W

lie within this span implying VC,rV
⊤
C,rW = W. 2

2.2.3 Empirical comparison

To test the accuracy of singular values/vectors and low-rank approximations

for different methods, we used several kernel matrices arising in different ap-

plications, as described in Table 2.1. We worked with datasets containing less
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than ten thousand points to be able to compare with exact SVD. We fixed k

to be 100 in all the experiments, which captures more than 90% of the spectral

energy for each dataset.

For singular values, we measured percentage accuracy of the approximate

singular values with respect to the exact ones. For a fixed l, we performed 10

trials by selecting columns uniformly at random from K. We show in Figure

2.1(a) the difference in mean percentage accuracy for the two methods for

l = n/10, with results bucketed by groups of singular values. The empirical

results show that the Column-sampling method generates more accurate sin-

gular values than the Nyström method. A similar trend was observed for other

values of l.

For singular vectors, the accuracy was measured by the dot product i.e.,

cosine of principal angles between the exact and the approximate singular vec-

tors. Figure 2.1(b) shows the difference in mean accuracy between Nyström

and Column-sampling methods bucketed by groups of singular vectors. The

top 100 singular vectors were all better approximated by Column-sampling

for all datasets. This trend was observed for other values of l as well. Fur-

thermore, even when the Nyström singular vectors are orthogonalized, the

Column-sampling approximations are superior, as shown in Figure 2.1(c).

Next we compared the low-rank approximations generated by the two

methods using matrix projection and spectral reconstruction as described in

Section 2.2.2 and Section 2.2.2, respectively. We measured the accuracy of
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Figure 2.1: Differences in accuracy between Nyström and Column-Sampling.
Values above zero indicate better performance of Nyström and vice-versa. (a)
Top 100 singular values with l = n/10. (b) Top 100 singular vectors with
l = n/10. (c) Comparison using orthogonalized Nyström singular vectors.

reconstruction relative to the optimal rank-k approximation, Kk, as:

relative accuracy =
‖K−Kk‖F
‖K− K̃

nys/col
k ‖F

. (2.24)
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Figure 2.2: Performance accuracy of various matrix projection approximations
with k = 100. Values below zero indicate better performance of the Column-
sampling method. (a) Nyström versus Column-sampling. (b) Orthonormal
Nyström versus Column-sampling.
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Figure 2.3: Performance accuracy of spectral reconstruction approximations
for different methods with k = 100. Values above zero indicate better per-
formance of the Nyström method. (a) Nyström versus Column-sampling. (b)
Nyström versus Orthonormal Nyström.
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The relative accuracy will approach one for good approximations. Results are

shown in Figures 2.2(a) and 2.3(a). As motivated by Theorem 2.1 and in

agreement with the superior performance of Column-sampling in approximat-

ing singular values and vectors, Column-sampling generates better reconstruc-

tions via matrix projection. This was observed not only for l = k but also for

other values of l. In contrast, the Nyström method produces superior results

for spectral reconstruction. These results are somewhat surprising given the

relatively poor quality of the singular values/vectors for the Nyström method,

but they are in agreement with the consequences of Theorem 2.3. We also note

that for both reconstruction measures, the methods that exactly reconstruct

subsets of the original matrix when k = l (see (2.11) and (2.13)) generate

better approximations. Interestingly, these are also the two methods that do

not contain scaling terms (see (2.6) and (2.12)).

Further, as stated in Theorem 2.2, the optimal spectral reconstruction

approximation is tied to the spectrum of K. Our results suggest that the rela-

tive accuracies of Nyström and Column-sampling spectral reconstructions are

also tied to this spectrum. When we analyzed spectral reconstruction perfor-

mance on a sparse kernel matrix with a slowly decaying spectrum, we found

that Nyström and Column-sampling approximations were roughly equivalent

(‘DEXT’ in Figure 2.3(a)). This result contrasts the results for dense kernel

matrices with exponentially decaying spectra arising from the other datasets

used in the experiments.

One factor that impacts the accuracy of the Nyström method for some
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Figure 2.4: Properties of spectral reconstruction approximations. (a) Dif-
ference in spectral reconstruction accuracy between Nyström and Column-
sampling for various k and fixed l. Values above zero indicate better perfor-
mance of Nyström method. (a) Percentage of columns (l/n) needed to achieve
75% relative accuracy for Nyström spectral reconstruction as a function of n.

tasks is the non-orthonormality of its singular vectors (Section 2.2.1). When

orthonormalized, the Nyström matrix projection error is reduced considerably

as shown in Figure 2.2(b). Further, as discussed in Observation 2.2 Orthonor-

mal Nyström is identical to Column-sampling when k = l. However, since

orthonormalization is computationally costly, it is avoided in practice. More-

over, the accuracy of Orthonormal Nyström spectral reconstruction is actually

worse relative to the standard Nyström approximation, as shown in Figure

2.3(b). This surprising result can be attributed to the fact that orthonormal-

ization of the singular vectors leads to the loss of some of the unique properties

described in Section 2.2.2. For instance, Theorem 2.3 no longer holds and the

scaling terms do not cancel out, i.e., K̃nys
k 6= CW+

k C⊤.
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Even though matrix projection tends to produce more accurate approx-

imations, spectral reconstruction is of great practical interest for large-scale

problems since, unlike matrix projection, it does not use all entries in K to

produce a low-rank approximation. Thus, we further expand upon the results

from Figure 2.3. We first tested the accuracy of spectral reconstruction for

the two methods for varying values of k and a fixed l. We found that the

Nyström method outperforms Column-sampling across all tested values of k,

as shown in Figure 2.4(a). Next, we addressed another basic issue: how many

columns do we need to obtain reasonable reconstruction accuracy? For very

large matrices (n ≈ 106), one would wish to select only a small fraction of the

samples. Hence, we performed an experiment in which we fixed k and varied

the size of our dataset (n). For each n, we performed grid search over l to

find the minimal l for which the relative accuracy of Nyström spectral recon-

struction was at least 75%. Figure 2.4(a) shows that the required percentage

of columns (l/n) decreases quickly as n increases, lending support to the use

of sampling-based algorithms for large-scale data.

2.3 Summary

We presented an analysis of two sampling-based techniques for approximating

SVD on large dense SPSD matrices, and provided a theoretical and empirical

comparison. Although the Column-sampling method generates more accurate

singular values/vectors and low-rank matrix projections, the Nyström method
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constructs better low-rank spectral approximations, which are of great practi-

cal interest as they do not use the full matrix.
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Chapter 3

Applications

In the previous chapter, we discussed two sampling-based techniques that gen-

erate approximations for kernel matrices. Although we analyzed the effective-

ness of these techniques for approximating singular values, singular vectors

and low-rank matrix reconstruction, we have yet to discuss the effectiveness

of these techniques in the context of actual machine learning tasks. In fact,

the Nyström method has been shown to be successful on a variety of learning

tasks including Support Vector Machines (Fine & Scheinberg, 2002), Gaus-

sian Processes (Williams & Seeger, 2000), Spectral Clustering (Fowlkes et al.,

2004), manifold learning (Talwalkar et al., 2008), Kernel Logistic Regression

(Karsmakers et al., 2007), Kernel Ridge Regression (Cortes et al., 2010) and

more generally to approximate regularized matrix inverses via the Woodbury

approximation (Williams & Seeger, 2000). In this chapter, we will discuss in

detail two specific applications of these approximations, particularly in the
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context of large-scale applications. First, we will discuss how approximate

embeddings can be used in the context of manifold learning, as initially pre-

sented in Talwalkar et al. (2008). We will next show the connection between

approximate spectral reconstruction and the Woodbury approximation, and

will present associated experimental results for Kernel Logistic Regression and

Kernel Ridge Regression.

3.1 Large-scale Manifold Learning

The problem of dimensionality reduction arises in many computer vision appli-

cations, where it is natural to represent images as vectors in a high-dimensional

space. Manifold learning techniques extract low-dimensional structure from

high-dimensional data in an unsupervised manner. These techniques typically

try to unfold the underlying manifold so that some quantity, e.g., pairwise

geodesic distances, is maintained invariant in the new space. This makes cer-

tain applications such as K-means clustering more effective in the transformed

space.

In contrast to linear dimensionality reduction techniques such as Principal

Component Analysis (PCA), manifold learning methods provide more power-

ful non-linear dimensionality reduction by preserving the local structure of the

input data. Instead of assuming global linearity, these methods typically make

a weaker local-linearity assumption, i.e., for nearby points in high-dimensional

input space, l2 distance is assumed to be a good measure of geodesic distance,
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or distance along the manifold. Good sampling of the underlying manifold is

essential for this assumption to hold. In fact, many manifold learning tech-

niques provide guarantees that the accuracy of the recovered manifold increases

as the number of data samples increases. In the limit of infinite samples,

one can recover the true underlying manifold for certain classes of manifolds

(Tenenbaum et al., 2000; Belkin & Niyogi, 2006; Donoho & Grimes, 2003).

However, there is a trade-off between improved sampling of the manifold and

the computational cost of manifold learning algorithms. This paper addresses

the computational challenges involved in learning manifolds given millions of

face images extracted from the Web.

Several manifold learning techniques have recently been proposed, e.g.,

Semidefinite Embedding (SDE) (Weinberger & Saul, 2006), Isomap (Tenen-

baum et al., 2000), Laplacian Eigenmaps (Belkin & Niyogi, 2001), and Lo-

cal Linear Embedding (LLE) (Roweis & Saul, 2000). SDE aims to preserve

distances and angles between all neighboring points. It is formulated as an

instance of semidefinite programming, and is thus prohibitively expensive

for large-scale problems. Isomap constructs a dense matrix of approximate

geodesic distances between all pairs of inputs, and aims to find a low di-

mensional space that best preserves these distances. Other algorithms, e.g.,

Laplacian Eigenmaps and LLE, focus only on preserving local neighborhood

relationships in the input space. They generate low-dimensional representa-

tions via manipulation of the graph Laplacian or other sparse matrices related

to the graph Laplacian (Chapelle et al., 2006). In this work, we focus mainly
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on Isomap and Laplacian Eigenmaps, as both methods have good theoretical

properties and the differences in their approaches allow us to make interesting

comparisons between dense and sparse methods.

All of the manifold learning methods described above can be viewed as

specific instances of Kernel PCA (Ham et al., 2004). These kernel-based algo-

rithms require SVD of matrices of size n×n, where n is the number of samples.

This generally takes O(n3) time. When only a few singular values and singular

vectors are required, there exist less computationally intensive techniques such

as Jacobi, Arnoldi, Hebbian and more recent randomized methods (Golub &

Loan, 1983; Gorrell, 2006; Rokhlin et al., 2009). These iterative methods re-

quire computation of matrix-vector products at each step and involve multiple

passes through the data. When the matrix is sparse, these techniques can be

implemented relatively efficiently. However, when dealing with a large, dense

matrix, as in the case of Isomap, these products become expensive to com-

pute. Moreover, when working with 18M data points, it is not possible even

to store the full matrix (∼1300TB), rendering the iterative methods infeasible.

Random sampling techniques provide a powerful alternative for approximate

SVD and only operate on a subset of the matrix. In this section, we work

with both the Nyström and Column-sampling methods described in Section 2,

providing the first direct comparison between their performances on practical

applications.

Apart from SVD, the other main computational hurdle associated with

Isomap and Laplacian Eigenmaps is large-scale graph construction and manip-
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ulation. These algorithms first need to construct a local neighborhood graph

in the input space, which is an O(n2) problem. Moreover, Isomap requires

shortest paths between every pair of points resulting in O(n2 log n) computa-

tion. Both steps are intractable when n is as large as 18M. In this work, we

use approximate nearest neighbor methods, and show that random sampling

based singular value decomposition requires the computation of shortest paths

only for a subset of points. Furthermore, these approximations allow for an

efficient distributed implementation of the algorithms.

We now summarize our main contributions of this section. First, we present

the largest scale study so far on manifold learning, using 18M data points. To

date, the largest manifold learning study involves the analysis of music data

using 267K points (Platt, 2004). In computer vision, the largest study is lim-

ited to less than 10K images (He et al., 2005). Our work is thus the largest

scale study on face manifolds by a large margin, and is two orders of magnitude

larger than any other manifold learning study. Second, we show connections

between two random sampling based spectral decomposition algorithms and

provide the first direct comparison of the performances of the Nyström and

Column-sampling methods for a learning task. Finally, we provide a quan-

titative comparison of Isomap and Laplacian Eigenmaps for large-scale face

manifold construction on clustering and classification tasks.
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3.1.1 Manifold learning

Manifold learning considers the problem of extracting low-dimensional struc-

ture from high-dimensional data. Given n input points, X = {xi}ni=1 and

xi ∈ R
d, the goal is to find corresponding outputs Y = {yi}ni=1, where yi ∈ R

k,

k ≪ d, such that Y ‘faithfully’ represents X. We now briefly review the

Isomap and Laplacian Eigenmaps techniques to discuss their computational

complexity.

Isomap

Isomap aims to extract a low-dimensional data representation that best pre-

serves all pairwise distances between input points, as measured by their geodesic

distances along the manifold (Tenenbaum et al., 2000). It approximates the

geodesic distance assuming that input space distance provides good approxi-

mations for nearby points, and for faraway points it estimates distance as a

series of hops between neighboring points. This approximation becomes exact

in the limit of infinite data. Isomap can be viewed as an adaptation of Clas-

sical Multidimensional Scaling (Cox et al., 2000), in which geodesic distances

replace Euclidean distances.

Computationally, Isomap requires three steps:

1. Find t nearest neighbors for each point in input space and construct

an undirected neighborhood graph, G, with points as nodes and links

between neighbors as edges. This requires O(n2) time.
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2. Compute approximate geodesic distances, ∆ij, between all pairs of nodes

(i, j) by finding shortest paths in G using Dijkstra’s algorithm at each

node. Construct a dense, n × n similarity matrix, K, by centering ∆2
ij,

where centering converts distances into similarities. This step takes

O(n2 log n) time, dominated by the calculation of geodesic distances.

3. Find the optimal k dimensional representation, Y = {yi}ni=1, such that

Y = argmin
Y′

∑
i,j

(
‖y′

i − y′
j‖22 −∆2

ij

)
. The solution is given by,

Y = (Σk)
1/2U⊤

k (3.1)

where Σk is the diagonal matrix of the top k singular values of K and Uk

are the associated singular vectors. This step requires O(n2) space for

storing K, and O(n3) time for its SVD. The time and space complexities

for all three steps are intractable for n = 18M.

Laplacian Eigenmaps

Laplacian Eigenmaps aims to find a low-dimensional representation that best

preserves neighborhood relations as measured by a weight matrix W (Belkin

& Niyogi, 2001).1 The algorithm works as follows:

1. Similar to Isomap, first find t nearest neighbors for each point. Then

construct W, a sparse, symmetric n × n matrix, where Wij = exp
(
−

1The weight matrix should not be confused with the subsampled SPSD matrix, W,
associated with the Nyström method. Since sampling-based approximation techniques will
not be used with Laplacian Eigenmaps, the notation should be clear from the context.
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‖xi − xj‖22/σ2
)

if (xi,xj) are neighbors, 0 otherwise, and σ is a scaling

parameter.

2. Construct the diagonal matrix D, such that Dii =
∑

j Wij, in O(tn)

time.

3. Find the k dimensional representation by minimizing the normalized,

weighted distance between neighbors as,

Y = argmin
Y′

∑

i,j

(
Wij‖y′

i − y′
j‖22√

DiiDjj

)
. (3.2)

This objective function penalizes nearby inputs for being mapped to

faraway outputs, with ‘nearness’ measured by the weight matrix W

(Chapelle et al., 2006). To find Y, we define L = In − D−1/2WD−1/2

where L ∈ R
n×n is the symmetrized, normalized form of the graph Lapla-

cian, given by D −W. Then, the solution to the minimization in (3.2)

is

Y = U⊤
L,k (3.3)

where U⊤
L,k are the bottom k singular vectors of L, excluding the last

singular vector corresponding to the singular value 0. Since L is sparse,

it can be stored in O(tn) space, and iterative methods can be used to

find these k singular vectors relatively quickly.

To summarize, in both the Isomap and Laplacian Eigenmaps methods, the

two main computational efforts required are neighborhood graph construc-
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tion/manipulation and SVD of a symmetric positive semidefinite (SPSD) ma-

trix. In the next section, we will further discuss the Nyström and Column-

sampling methods in the context of manifold learning, and we will describe

the graph operations in Section 3.1.3.

3.1.2 Approximation experiments

Since we aimed to use sampling-based SVD approximation to scale Isomap,

we first examined how well the Nyström and Column-sampling methods ap-

proximated low-dimensional embeddings, i.e., Y = (Σk)
1/2U⊤

k . Using (2.3),

the Nyström low-dimensional embeddings are:

Ỹnys = Σ̃
1/2
nys,kŨ

⊤
nys,k =

(
ΣW )

1/2
k

)+
U⊤

W,kC
⊤. (3.4)

Similarly, from (2.4) we can express the Column-sampling low-dimensional

embeddings as:

Ỹcol = Σ̃
1/2
col,kŨ

⊤
col,k = 4

√
n

l

(
ΣC)

1/2
k

)+
V⊤

C,kC
⊤. (3.5)

Both approximations are of a similar form. Further, notice that the op-

timal low-dimensional embeddings are in fact the square root of the optimal

rank k approximation to the associated SPSD matrix, i.e., Y⊤Y = Kk, for

Isomap. As such, there is a connection between the task of approximating

low-dimensional embeddings and the task of generating low-rank approximate
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spectral reconstructions, as discussed in Section 2.2.2. Recall that the the-

oretical analysis in Section 2.2.2 as well as the empirical results in Section

2.2.3 both suggested that the Nyström method was superior in its spectral

reconstruction accuracy. Hence, we performed an empirical study using the

datasets from Table 2.1 to measure the quality of the low-dimensional embed-

dings generated by the two techniques and see if the same trend exists.

We measured the quality of the low-dimensional embeddings by calculating

the extent to which they preserve distances, which is the appropriate criterion

in the context of manifold learning. For each dataset, we started with a kernel

matrix, K, from which we computed the associated n × n squared distance

matrix, D, using the fact that ‖xi−xj‖2 = Kii+Kjj−2Kij. We then computed

the approximate low-dimensional embeddings using the Nyström and Column-

sampling methods, and then used these embeddings to compute the associated

approximate squared distance matrix, D̃. We measured accuracy using the

notion of relative accuracy defined in (2.24), which can be expressed in terms

of distance matrices as:

relative accuracy =
‖D−Dk‖F
‖D− D̃‖F

,

where Dk corresponds to the distance matrix computed from the optimal k di-

mensional embeddings obtained using the singular values and singular vectors

of K. In our experiments, we set k = 100 and used various numbers of sampled

columns, ranging from l = n/50 to l = n/5. Figure 3.1 presents the results of
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Figure 3.1: Embedding accuracy of Nyström and Column-Sampling. Values
above zero indicate better performance of Nyström and vice-versa.

our experiments. Surprisingly, we do not see the same trend in our empirical

results for embeddings as we previously observed for spectral reconstruction,

as the two techniques exhibit roughly similar behavior across datasets. As a

result, we decided to use both the Nyström and Column-sampling methods

for our subsequent manifold learning study.

3.1.3 Large-scale learning

The following sections outline the process of learning a manifold of faces. We

first describe the datasets used in Section 3.1.3. Section 3.1.3 explains how to

extract nearest neighbors, a common step between Laplacian Eigenmaps and

Isomap. The remaining steps of Laplacian Eigenmaps are straightforward, so

the subsequent sections focus on Isomap, and specifically on the computational
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efforts required to generate a manifold using Webfaces-18M.

Datasets

We used two datasets of faces consisting of 35K and 18M images. The CMU

PIE face dataset (Sim et al., 2002) contains 41, 368 images of 68 subjects un-

der 13 different poses and various illumination conditions. A standard face

detector extracted 35, 247 faces (each 48 × 48 pixels), which comprised our

35K set (PIE-35K). We used this set because, being labeled, it allowed us to

perform quantitative comparisons. The second dataset, named Webfaces-18M,

contains 18.2 million images of faces extracted from the Web using the same

face detector. For both datasets, face images were represented as 2304 dimen-

sional pixel vectors which were globally normalized to have zero mean and

unit variance. No other pre-processing, e.g., face alignment, was performed.

In contrast, He et al. (2005) used well-aligned faces (as well as much smaller

data sets) to learn face manifolds. Constructing Webfaces-18M, including face

detection and duplicate removal, took 15 hours using a cluster of several hun-

dred machines. We used this cluster for all experiments requiring distributed

processing and data storage.

Nearest neighbors and neighborhood graph

The cost of naive nearest neighbor computation is O(n2), where n is the size

of the dataset. It is possible to compute exact neighbors for PIE-35K, but

for Webfaces-18M this computation is prohibitively expensive. So, for this
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set, we used a combination of random projections and spill trees (Liu et al.,

2004) to get approximate neighbors. Computing 5 nearest neighbors in parallel

with spill trees took ∼2 days on the cluster. Figure 3.2 shows the top 5

neighbors for a few randomly chosen images in Webfaces-18M. In addition to

this visualization, comparison of exact neighbors and spill tree approximations

for smaller subsets suggested good performance of spill trees.

We next constructed the neighborhood graph by representing each image

as a node and connecting all neighboring nodes. Since Isomap and Laplacian

Eigenmaps require this graph to be connected, we used depth-first search to

find its largest connected component. These steps required O(tn) space and

time. Constructing the neighborhood graph for Webfaces-18M and finding the

largest connected component took 10 minutes on a single machine using the

OpenFST library (Allauzen et al., 2007).

For neighborhood graph construction, the ‘right’ choice of number of neigh-

bors, t, is crucial. A small tmay give too many disconnected components, while

a large t may introduce unwanted edges. These edges stem from inadequately

sampled regions of the manifold and false positives introduced by the face de-

tector. Since Isomap needs to compute shortest paths in the neighborhood

graph, the presence of bad edges can adversely impact these computations.

This is known as the problem of leakage or ‘short-circuits’ (Balasubramanian

& Schwartz, 2002). Here, we chose t = 5 and also enforced an upper limit

on neighbor distance to alleviate the problem of leakage. We used a distance

limit corresponding to the 95th percentile of neighbor distances in the PIE-35K
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No Upper Limit Upper Limit Enforced
t # Comp % Largest # Comp % Largest

1 1.7M 0.05 % 4.3M 0.03 %
2 97K 97.2 % 285K 80.1 %
3 18K 99.3 % 277K 82.2 %
5 1.9K 99.9 % 275K 83.1 %

Table 3.1: Number of components in the Webfaces-18M neighbor graph and
the percentage of images within the largest connected component (‘% Largest’)
for varying numbers of neighbors (t) with and without an upper limit on
neighbor distances.

dataset.

Table 3.1 shows the effect of choosing different values for t with and without

enforcing the upper distance limit. As expected, the size of the largest con-

nected component increases as t increases. Also, enforcing the distance limit

reduces the size of the largest component. Figure 3.3 shows a few random sam-

ples from the largest component. Images not within the largest component are

either part of a strongly connected set of images (Figure 3.4) or do not have

any neighbors within the upper distance limit (Figure 3.5). There are signif-

icantly more false positives in Figure 3.5 than in Figure 3.3, although some

of the images in Figure 3.5 are actually faces. Clearly, the distance limit in-

troduces a trade-off between filtering out non-faces and excluding actual faces

from the largest component.2

2To construct embeddings with Laplacian Eigenmaps, we generated W and D from
nearest neighbor data for images within the largest component of the neighborhood graph
and solved (3.3) using a sparse eigensolver.
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Figure 3.2: Visualization of neighbors for Webfaces-18M. The first image in
each row is the target, and the next five are its neighbors.

Figure 3.3: A few random samples from the largest connected component of
the Webfaces-18M neighborhood graph.
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Figure 3.4: Visualization of disconnected components of the neighborhood
graphs from Webfaces-18M (top row) and from PIE-35K (bottom row). The
neighbors for each of these images are all within this set, thus making the
entire set disconnected from the rest of the graph. Note that these images are
not exactly the same.

Figure 3.5: Visualization of disconnected components containing exactly one
image. Although several of the images above are not faces, some are actual
faces, suggesting that certain areas of the face manifold are not adequately
sampled by Webfaces-18M.
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Approximating geodesics

To construct the similarity matrix K in Isomap, one approximates geodesic

distance by shortest-path lengths between every pair of nodes in the neighbor-

hood graph. This requires O(n2 logn) time and O(n2) space, both of which are

prohibitive for 18M nodes. However, since we use sampling-based approximate

decomposition, we need only l ≪ n columns of K, which form the submatrix

C. We thus computed geodesic distance between l randomly selected nodes

(called landmark points) and the rest of the nodes, which required O(ln log n)

time and O(ln) space. Since this computation can easily be parallelized, we

performed geodesic computation on the cluster and stored the output in a

distributed fashion. The overall procedure took 60 minutes for Webfaces-18M

using l = 10K. The bottom four rows in Figure 3.7 show sample shortest

paths for images within the largest component for Webfaces-18M, illustrating

smooth transitions between images along each path.

Generating low-dimensional embeddings

Before generating low-dimensional embeddings in Isomap, one needs to convert

distances into similarities using a process called centering (Cox et al., 2000).

For the Nyström approximation, we computed W by double centering D, the

l × l matrix of squared geodesic distances between all landmark nodes, as

W = −1
2
HDH, where H = Il − 1

l
11⊤ is the centering matrix, Il is the l × l

identity matrix and 1 is a column vector of all ones. Similarly, the matrix C

was obtained from squared geodesic distances between the landmark nodes and
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all other nodes using single-centering as described in de Silva and Tenenbaum

(2003).

For the Column-sampling approximation, we decomposed C⊤C, which we

constructed by performing matrix multiplication in parallel on C. For both

approximations, decomposition on an l × l matrix (C⊤C or W) took about

one hour. Finally, we computed low-dimensional embeddings by multiply-

ing the scaled singular vectors from approximate decomposition with C. For

Webfaces-18M, generating low dimensional embeddings took 1.5 hours for the

Nyström method and 6 hours for the Column-sampling method.

3.1.4 Manifold evaluation

Manifold learning techniques typically transform the data such that Euclidean

distance in the transformed space between any pair of points is meaningful, un-

der the assumption that in the original space Euclidean distance is meaningful

only in local neighborhoods. Since K-means clustering computes Euclidean

distances between all pairs of points, it is a natural choice for evaluating these

techniques. We also compared the performance of various techniques using

nearest neighbor classification. Since CMU-PIE is a labeled dataset, we first

focused on quantitative evaluation of different embeddings using face pose as

class labels. The PIE set contains faces in 13 poses, and such a fine sampling

of the pose space makes clustering and classification tasks very challenging. In

all the experiments we fixed the dimension of the reduced space, k, to be 100.

The first set of experiments was aimed at finding how well different Isomap
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approximations perform in comparison to exact Isomap. We used a subset of

PIE with 10K images (PIE-10K) since, for this size, exact SVD could be done

on a single machine within reasonable time and memory limits. We fixed the

number of clusters in our experiments to equal the number of pose classes, and

measured clustering performance using two measures, Purity and Accuracy.

Purity measures the frequency of data belonging to the same cluster sharing

the same class label, while Accuracy measures the frequency of data from the

same class appearing in a single cluster. Thus, ideal clustering will have 100%

Purity and 100% Accuracy.

Table 3.2 shows that clustering with Nyström Isomap with just l = 1K

performs almost as well as exact Isomap on this dataset3. This matches with

the observation made in Williams and Seeger (2000), where the Nyström ap-

proximation was used to speed up kernel machines. Further, Column-sampling

Isomap performs slightly worse than Nyström Isomap. The clustering results

on the full PIE-35K set (Table 3.3) with l = 10K also affirm this observa-

tion. Figure 3.6 shows the optimal 2D projections from different methods

for PIE-35K. The Nyström method separates the pose clusters better than

Column-sampling, verifying the quantitative results.

The fact that Nyström outperforms Column-sampling is somewhat surpris-

ing given the experimental evaluations in Section 3.1.2, where we found the

two approximation techniques to achieve similar performance. We believe that

the poor performance of Column-sampling Isomap is due to the form of the

3The differences are statistically insignificant.
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Methods Purity (%) Accuracy (%)
PCA 54.3 (±0.8) 46.1 (±1.4)

Exact Isomap 58.4 (±1.1) 53.3 (±4.3)
Nyström Isomap 59.1 (±0.9) 53.3 (±2.7)

Col-Sampling Isomap 56.5 (±0.7) 49.4 (±3.8)
Laplacian Eigenmaps 35.8 (±5.0) 69.2 (±10.8)

Table 3.2: Results of K-means clustering of face poses applied to PIE-10K for
different algorithms. Results are averaged over 10 random K-means initializa-
tions.

similarity matrix K. When using a finite number of data points for Isomap,

K is not guaranteed to be SPSD. We verified that K was not SPSD in our ex-

periments, and a significant number of top eigenvalues, i.e., those with largest

magnitudes, were negative. The two approximation techniques differ in their

treatment of negative eigenvalues and the corresponding eigenvectors. The

Nyström method allows one to use eigenvalue decomposition (EVD) of W to

yield signed eigenvalues, making it possible to discard the negative eigenval-

ues and the corresponding eigenvectors. On the contrary, it is not possible to

discard these in the Column-based method, since the signs of eigenvalues are

lost in the SVD of the rectangular matrix C (or EVD of C⊤C), i.e., the pres-

ence of negative eigenvalues deteriorates the performance of Column-sampling

method more than the Nyström method.

Tables 3.2 and 3.3 also show a significant difference in the Isomap and

Laplacian Eigenmaps results. The 2D embeddings of PIE-35K (Figure 3.6)

reveal that Laplacian Eigenmaps projects data points into a small compact

region, consistent with its objective function defined in (3.2), as it tends to map
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Methods Purity (%) Accuracy (%)
PCA 54.6 (±1.3) 46.8 (±1.3)

Nyström Isomap 59.9 (±1.5) 53.7 (±4.4)
Col-Sampling Isomap 56.1 (±1.0) 50.7 (±3.3)
Laplacian Eigenmaps 39.3 (±4.9) 74.7 (±5.1)

Table 3.3: Results of K-means clustering of face poses applied to PIE-35K for
different algorithms. Results are averaged over 10 random K-means initializa-
tions.

neighboring inputs as nearby as possible in the low-dimensional space. When

used for clustering, these compact embeddings lead to a few large clusters and

several tiny clusters, thus explaining the high accuracy and low purity of the

clusters. This indicates poor clustering performance of Laplacian Eigenmaps,

since one can achieve even 100% Accuracy simply by grouping all points into

a single cluster. However, the Purity of such clustering would be very low.

Finally, the improved clustering results of Isomap over PCA for both datasets

verify that the manifold of faces is not linear in the input space.

We also compared the performance of Laplacian Eigenmaps and Isomap

embeddings on pose classification.4 The data was randomly split into a train-

ing and a test set, and K-Nearest Neighbor (KNN) was used for classification.

K = 1 gives lower error than higher K as shown in Table 3.4. Also, the

classification error is lower for both exact and approximate Isomap than for

Laplacian Eigenmaps, suggesting that neighborhood information is better pre-

served by Isomap (Tables 3.4 and 3.5). Note that, similar to clustering, the

4KNN only uses nearest neighbor information for classification. Since neighborhoods are
considered to be locally linear in the input space, we expect KNN to perform well in the
input space. Hence, using KNN to compare low-level embeddings indirectly measures how
well nearest neighbor information is preserved.
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Methods K = 1 K = 3 K = 5
Exact Isomap 10.9 (±0.5) 14.1 (±0.7) 15.8 (±0.3)

Nyström Isomap 11.0 (±0.5) 14.0 (±0.6) 15.8 (±0.6)
Col-Sampling Isomap 12.0 (±0.4) 15.3 (±0.6) 16.6 (±0.5)
Laplacian Eigenmaps 12.7 (±0.7) 16.6 (±0.5) 18.9 (±0.9)

Table 3.4: K-nearest neighbor classification error (%) of face pose applied to
PIE-10K subset for different algorithms. Results are averaged over 10 random
splits of training and test sets. K = 1 gives the lowest error.

Nyström Isomap Col-Sampling Isomap Laplacian Eigenmaps
9.8 (±0.2) 10.3 (±0.3) 11.1 (±0.3)

Table 3.5: 1-nearest neighbor classification error (%) of face pose applied to
PIE-35K for different algorithms. Results are averaged over 10 random splits
of training and test sets.

Nyström approximation performs as well as Exact Isomap (Table 3.4). Better

clustering and classification results, combined with 2D visualizations, imply

that approximate Isomap outperforms exact Laplacian Eigenmaps. Moreover,

the Nyström approximation is computationally cheaper and empirically more

effective than the Column-sampling approximation. Thus, we used Nyström

Isomap to generate embeddings for Webfaces-18M.

After learning a face manifold from Webfaces-18M, we analyzed the results

with various visualizations. The top row of Figure 3.7 shows the 2D embed-

dings from Nyström Isomap. The top left figure shows the face samples from

various locations in the manifold. It is interesting to see that embeddings tend

to cluster the faces by pose. These results support the good clustering per-

formance observed using Isomap on PIE data. Also, two groups (bottom left

and top right) with similar poses but different illuminations are projected at
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Figure 3.6: Optimal 2D projections of PIE-35K where each point is color
coded according to its pose label. Top Left: PCA projections tend to spread
the data to capture maximum variance, Top Right: Isomap projections with
Nyström approximation tend to separate the clusters of different poses while
keeping the cluster of each pose compact, Bottom Left: Isomap projections
with Column-sampling approximation have more overlap than with Nyström
approximation. Bottom Right: Laplacian Eigenmaps projects the data into a
very compact range.
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Figure 3.7: 2D embedding of Webfaces-18M using Nyström Isomap (Top row).
Darker areas indicate denser manifold regions. Top Left: Face samples at
different locations on the manifold. Top Right: Approximate geodesic paths
between celebrities. The corresponding shortest-paths are shown in the bottom
four rows.
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different locations. Additionally, since 2D projections are very condensed for

18M points, one can expect more discrimination for higher k, e.g., k = 100.

In Figure 3.7, the top right figure shows the shortest paths on the manifold

between different public figures. The images along the corresponding paths

have smooth transitions as shown in the bottom of the figure. In the limit

of infinite samples, Isomap guarantees that the distance along the shortest

path between any pair of points will be preserved as Euclidean distance in

the embedded space. Even though the paths in the figure are reasonable

approximations of straight lines in the embedded space, these results suggest

that 18M faces are perhaps not enough samples to learn the face manifold

exactly.

3.2 Woodbury Approximation

The previous section focused on the application of approximate embeddings in

the context of manifold learning. In this section, we will shift focus to matrix

reconstruction. We will show how approximate spectral reconstruction can be

used in conjunction with the Woodbury inversion lemma to speed up a variety

of kernel-based algorithms. Given the superior performance of the Nyström

method for spectral reconstruction, as discussed in Chapter 2, we will focus in

this section on spectral approximations generated via the Nyström method.

The Woodbury inversion lemma states that the inverse of a rank-k cor-

rection of some matrix can be computed by performing a rank-k correction

56



to the inverse of the original matrix. As suggested by Williams and Seeger

(2000), low-rank approximations can be combined with the Woodbury inver-

sion lemma to derive an efficient algorithm for inverting kernel matrices. Using

the rank-k approximation K̃ given by the Nyström method, instead of K, and

applying the inversion lemma yields:

(λI + K)−1 (3.6)

≈
(
λI + K̃

)−1
(3.7)

≈
(
λI + CW+

k C⊤)−1
(3.8)

=
1

λ

(
I−C

[
λIk + W+

k C⊤C
]−1

W+
k C⊤

)
. (3.9)

Thus, only an inversion of a matrix of size k is needed as opposed to the

original problem of size n.

This technique has been previously used to speed up various algorithms

including Support Vector Machines (Fine & Scheinberg, 2002) and Gaussian

Processes (Williams & Seeger, 2000). In the remainder of this section, we

present experiments showing how this technique can also be used to effectively

speed up Kernel Logistic Regression and Kernel Ridge Regression.

3.2.1 Nyström Logistic Regression

Logistic Regression is a classification algorithm with N parameters, where N

is the number of features (Hastie & Tibshirani, 1990). Let X ∈ R
N×n contain

n datapoints, with xi = X(i) representing the ith datapoint, and let y ∈ R
n be
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Figure 3.8: Pose classification experiments for a set of 2.8K faces images with
two similar poses. (a) Classification performance for Kernel Logistic Regres-
sion with empirical kernel map using linear and RBF kernels. (b) Relative
classification performance for Kernel Logistic Regression with empirical kernel
map using the Nyström approximation with different percentages of sampled
columns. Results are reported in comparison to the performance obtained
using the standard Newton method. (c) Timing comparison for the same ex-
periments as in (b), where ‘Full’ corresponds to the standard Newton method.

the corresponding labels. If we assume yi ∈ {0, 1}, then Logistic Regression
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aims to maximize the following loss function:

l(w) =
n∑

i=1

[
yi ln si + (1− yi) ln(1− si))

]
(3.10)

=
n∑

i=1

[
yiw

⊤xi − ln(1 + exp(w⊤xi))
]
, (3.11)

where σ(a) = (1 + exp(−a))−1 is the sigmoid function and s ∈ R
n with si =

σ(w⊤xi). To avoid overfitting of the training data, a regularization term is

often added to the error function. L2 regularization is commonly used in

practice, in which case we aim to minimize the following regularized loss:

min
w

E(w) =
λ

2
w⊤w − l(w) , (3.12)

where λ is the regularization parameter. Since E(w) is concave, a unique

minimum value exists and the function can be minimized using iterative tech-

niques.

Newton’s method is an efficient iterative method for minimizing the neg-

ative log likelihood in (3.12), by setting its derivatives to zero. The Newton

step can be expressed as:

wnew = wold −H−1∂E(w)

∂w
(3.13)

=
(
λIN + XRX⊤)−1

XR(X⊤λwold + R−1(y − s)), (3.14)

where H is the Hessian matrix whose elements are the second derivatives of
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E(w) with respect to w and R ∈ R
n×n is the diagonal matrix with Rii =

si(1 − si). Thus, each iteration of the Newton method requires the inversion

of an N ×N matrix that depends on wold, taking approximately O(N3).

Our proposed algorithm involves speeding up the computation of the ma-

trix inverse using the Nyström method. For each Newton iteration, we de-

fine T = XRX⊤ and generate the associated Nyström approximation: T̃ =

CW+
k C⊤. We can now speed up the inverse computation in (3.14) as follows:

(λI + T)−1 ≈
(
λI + T̃

)−1

=
(
λI + CW+

k C⊤)−1
(3.15)

=
1

λ

(
IN −C

[
λIk + W+

k C⊤C
]−1

W+
k C⊤

)
, (3.16)

where we get (3.16) via the Woodbury Inversion Lemma, i.e., (3.9).

As shown in Chapter 2, the Nyström method does not typically generate

good approximations for small singular values and their associated singular

vectors, which are exactly the singular values/vectors that have the largest im-

pact on the inverse of the matrix. However, the regularization term damps the

effect of small singular values, thus making the Nyström method feasible. Each

iteration of Nyström Newton takes O(k3) time to calculate [λIk +W+
k C⊤C]−1

as well as O(nN+N2) for matrix multiplication in (3.14). In order to kernelize

this algorithm, we replace X with the kernel matrix, K ∈ R
n×n, i.e., using the

empirical kernel map as features.5 In this case, the runtime is O(n2).

5Using the empirical kernel map leads to a different formulation than the standard Kernel
Logistic Regression algorithm (KLR) as described in Keerthi et al. (2005). The difference
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In Figure 3.8, we present results that show the performance of our pro-

posed algorithm for a sample dataset consisting of a subset of the PIE dataset

containing 2.8K images with two similar face poses. In these experiments,

we ran 10 trials, and for each trial 2.4K points were used for training while

the remaining 400 points were held out for testing. For all experiments, the

regularization parameter and the RBF parameter were determined via cross

validation. In Figure 3.8(a), we compare classification performance using linear

and RBF kernels, and the results show the benefit of using non-linear kernels

for this classification task. Next, we performed experiments to see the effect

of the Nyström approximation on the quality and runtime of the algorithm.

Figure 3.8(b) shows that using the Nyström approximation with as little as 5%

of sampled columns converges to same solution as exact Logistic Regression

with empirical kernel map, while Figure 3.8(c) shows the associated speed gain

obtained by using of the Nyström method.

3.2.2 Kernel Ridge Regression

Kernel Ridge Regression (KRR) is a powerful regression algorithm that is

commonly used in practice. The dual optimization problem solved by KRR

(Saunders et al., 1998) can be written as follows:

max
α∈Rm

λα⊤
α + α

⊤Kα− 2α⊤y, (3.17)

stems from the use of slightly different regularization terms: the L2 regularizer for Logistic
Regression with empirical map is of the form w

⊤
w while the penalty term in KLR is of the

form w
⊤
Kw.
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where λ=nλ0>0 is the ridge parameter. The problem admits the closed form

solution α = (K+λI)−1y. Clearly, substituting K by K̃ would allow us to

employ the Woodbury approximation as presented in (3.9).

Dataset # Points (n) # Features (d) Kernel Largest label (M)
ABALONE 4177 8 RBF 29
KIN-8nm 4000 8 RBF 1.5

Table 3.6: Description of datasets used in our KRR perturbation experiments
(Asuncion & Newman, 2007; Ghahramani, 1996). Note that M denotes the
largest possible magnitude of the regression labels.

We next present experiments that directly illustrate the connection between

spectral reconstruction error and the quality of the Woodbury approximation,

i.e., we will show the impact of kernel perturbation on the output of Kernel

Ridge Regression. For our experiments, we worked with the datasets listed in

Table 3.6, and for each dataset, we randomly selected 80% of the points to

generate K and used the remaining 20% as the test set, T . For each test-train

split, we first performed grid search to determine the optimal ridge for K,

as well as the associated optimal hypothesis, h(·). Next, using this optimal

ridge, we generated a set of Nyström approximations, using various numbers

of sampled columns, i.e., l ranging from 1% to 50% of n. For each Nyström

approximation, K̃, we computed the associated hypothesis h′(·) using the same

ridge and measured the distance between h and h′ as follows:

average absolute error =

∑
x∈T |h′(x)− h(x)|

|T | . (3.18)
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Figure 3.9: Average absolute error of the Kernel Ridge Regression hypothesis,
h′(·), generated from the Nyström approximation, K̃, as a function of relative

spectral distance ‖K̃−K‖2/‖K‖2. For each dataset, the reported results show
the average absolute error as a function of relative spectral distance for both
the full dataset and for a subset of the data containing n = 2000 points.
Results for the same value of n are connected with a line. The different
points along the lines correspond to various numbers of sampled columns,
i.e., l ranging from 1% to 50% of l.

We measured the distance between K̃ and K as follows:

relative spectral distance =
‖K̃−K‖2
‖K‖2

× 100. (3.19)
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Figure 3.9 presents results for each dataset using all n points and a subset

of 2000 points. The plots show the average absolute error of h(·) as a func-

tion of relative spectral distance. Results corresponding to the same value of

n are connected with a line, and points along each line correspond to vari-

ous numbers of sampled columns, i.e., l ranging from 1% to 50% of n. The

values of the relative spectral distance are computed as the means over the

splits for the same value of l. The values of the average absolute error are

computed correspondingly. These experiments clearly show the impact that

spectral reconstruction accuracy has on the hypothesis generated by KRR, as

the results suggest a linear relationship between kernel approximation and av-

erage absolute error. Corresponding theoretical results, presented in Section

5.3 (specifically Proposition 5.1), corroborate these empirical findings.

3.3 Summary

Sampling-based matrix approximations have been used in a variety of large-

scale machine learning tasks. In this chapter, we focused on two specific appli-

cations. We first studied non-linear dimensionality reduction using unsuper-

vised manifold learning and our experimental results reveal that Isomap cou-

pled with the Nyström approximation can effectively extract low-dimensional

structure from datasets containing millions of images. In fact, the techniques

we described in the context of large-scale manifold learning are currently used

by Google for its “People Hopper” application which runs on the social net-
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working site Orkut (Kumar & Rowley, 2010). Next, we discussed how ma-

trix approximation techniques can be used in conjunction with the Woodbury

approximation, and we presented results for Kernel Logistic Regression and

Kernel Ridge Regression that show the effectiveness of this approach.
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Chapter 4

Sampling Schemes

Although we have been focusing on sampling based techniques for matrix

approximation, to this point, we have sidestepped the important issue of how

to sample columns of the matrix, i.e., how to obtain C from K. As we shall

see in this chapter, the selection of columns can significantly influence the

accuracy of approximation, and hence we will now discuss various sampling

options used to select columns from K. Furthermore, given the favorable

performance of the Nyström method relative to the column-sampling method,

both in the analysis in Chapter 2 and the empirical studies in Chapter 3, our

discussion in this chapter will focus on the Nyström method.

The material in this chapter is organized as follows. Section 4.1 presents

the most basic sampling techniques which involve sampling columns from

a fixed distribution over the columns. Next, in Section 4.2 we will discuss

more sophisticated adaptive sampling techniques that choose a better subset
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of columns but at a greater cost. Finally, in Section 4.3 we present an ensemble

meta-algorithm for combining multiple matrix approximations that generate

improved approximations and naturally fit within a distributed computing

environment, an issue of great practical significance given the prevalence of

distributed computing frameworks to handle large-scale learning problems.

4.1 Fixed Sampling

The most basic sampling technique involves uniform sampling of the columns.

Alternatively, the ith column can be sampled non-uniformly with weight pro-

portional to either its corresponding diagonal element Kii (diagonal sampling)

or the L2 norm of the column (column-norm sampling) (Drineas et al., 2006b;

Drineas & Mahoney, 2005). There are additional computational costs asso-

ciated with these non-uniform sampling methods: O(n) time and space re-

quirements for diagonal sampling and O(n2) time and space for column-norm

sampling. These non-uniform sampling techniques are often presented us-

ing sampling with replacement to simplify theoretical analysis. Column-norm

sampling has been used to analyze a general SVD approximation algorithm.

Further, diagonal sampling with replacement was used by Drineas and Ma-

honey (2005) and Belabbas and Wolfe (2009) to bound the reconstruction

error of the Nyström method.1 In Drineas and Mahoney (2005) however, the

1Although Drineas and Mahoney (2005) claims to weight each column proportional to
K

2

ii
, they in fact use the diagonal sampling we present in this work, i.e., weights proportional

to Kii (Drineas, 2008).
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authors suggest that column-norm sampling would be a better sampling as-

sumption for the analysis of the Nyström method. We also note that Belabbas

and Wolfe (2009) proposed a family of ‘annealed determinantal’ distributions

for which multiplicative bounds on reconstruction error were derived. How-

ever, in practice, these distributions cannot be efficiently computed except for

special cases coinciding with uniform and column-norm sampling.

In the remainder of this section we present novel experimental results com-

paring the performance of these sampling methods on several data sets. Pre-

vious works have compared uniform and non-uniform in a more restrictive

setting, using fewer types of kernels and focusing only on column-norm sam-

pling (Drineas et al., 2001; Zhang et al., 2008). However in this work we

provide the first comparison that includes diagonal sampling, which is the

non-uniform distribution that is more scalable for large-scale applications and

which has been utilized in some theoretical analyses of the Nyström method.

4.1.1 Datasets

We used 5 datasets from a variety of applications, e.g., computer vision and

biology, as described in Table 4.1. SPSD kernel matrices were generated by

mean centering the datasets and applying either a linear kernel or RBF kernel.

The diagonals (respectively column norms) of these kernel matrices were used

to calculate diagonal (respectively column-norm) distributions. Note that the

diagonal distribution equals the uniform distribution for RBF kernels since

diagonal entries of RBF kernel matrices always equal one.
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Name Type n d Kernel
PIE-2.7K faces (profile) 2731 2304 linear
PIE-7K faces (front) 7412 2304 linear
MNIST digit images 4000 784 linear

ESS proteins 4728 16 RBF
ABN abalones 4177 8 RBF

Table 4.1: Description of the datasets and kernels used in our fixed and adap-
tive sampling experiments (Sim et al., 2002; LeCun & Cortes, 1998; Gustafson
et al., 2006; Asuncion & Newman, 2007). ‘d’ denotes the number of features
in input space.

4.1.2 Experiments

We used the datasets described in the previous section to test the approxi-

mation accuracy for each sampling method. Low-rank approximations of K

were generated using the Nyström method along with these sampling meth-

ods, and accuracies were measured relative to the best rank-k approximation

(Kk) using the same notion of relative accuracy originally defined in (2.24):

relative accuracy =
‖K−Kk‖F
‖K− K̃k‖F

.

We fixed k=100 for all experiments, a value that captures more than 90% of

the spectral energy for each dataset. We first compared the effectiveness of

the three sampling techniques using sampling with replacement. The results

for PIE-7K are presented in Figure 4.1(a) and summarized for all datasets

in Figure 4.1(b). The results across all datasets show that uniform sampling

outperforms all other methods, while being much cheaper computationally and

space-wise. Thus, while non-uniform sampling techniques may be effective

69



10 20 30 40 50
40

50

60

70

80

90

100

% of Columns Sampled (l / n )

R
el

at
iv

e 
A

cc
ur

ac
y

Uniform vs Non−Uni Sampling: PIE−7K

 

 

Uni+Rep
Diag+Rep
Col−Norm+Rep

(a)

l/n Dataset Uniform+Rep Diag+Rep Col-Norm+Rep
PIE-2.7K 38.8 (±1.5) 38.3 (±0.9) 37.0 (±0.9)
PIE-7K 55.8 (±1.1) 46.4 (±1.7) 54.2 (±0.9)

5% MNIST 47.4 (±0.8) 46.9 (±0.7) 45.6 (±1.0)
ESS 45.1 (±2.3) - 41.0 (±2.2)
ABN 47.3 (±3.9) - 44.2 (±1.2)

PIE-2.7K 72.3 (±0.9) 65.0 (±0.9) 63.4 (±1.4)
PIE-7K 83.5 (±1.1) 69.8 (±2.2) 79.9 (±1.6)

20% MNIST 80.8 (±0.5) 79.4 (±0.5) 78.1 (±0.5)
ESS 80.1 (±0.7) - 75.5 (±1.1)
ABN 77.1 (±3.0) - 66.3 (±4.0)

(b)

Figure 4.1: (a) Nyström relative accuracy for various sampling techniques on
PIE-7K. (b) Nyström relative accuracy for various sampling methods for two
values of l/n with k = 100. Values in parentheses show standard deviations for
10 different runs for a fixed l. ‘+Rep’ denotes sampling with replacement. No
error (‘-’) is reported for diagonal sampling with RBF kernels since diagonal
sampling is equivalent to uniform sampling in this case.

in extreme cases where a few columns of K dominate in terms of ‖·‖2, this

situation does not tend to arise with real-world data, where uniform sampling

is most effective.
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(a)

Dataset 5% 10% 15% 30%

PIE-2.7K 0.8 (±.6) 1.7 (±.3) 2.3 (±.9) 4.4 (±.4)
PIE-7K 0.7 (±.3) 1.5 (±.3) 2.1 (±.6) 3.2 (±.3)
MNIST 1.0 (±.5) 1.9 (±.6) 2.3 (±.4) 3.4 (±.4)

ESS 0.9 (±.9) 1.8 (±.9) 2.2 (±.6) 3.7 (±.7)
ABN 0.7 (±1.2) 1.3 (±1.8) 2.6 (±1.4) 4.5 (±1.1)

(b)

Figure 4.2: Comparison of uniform sampling with and without replacement
measured by the difference in relative accuracy. (a) Improvement in relative
accuracy for PIE-7K when sampling without replacement. (b) Improvement
in relative accuracy when sampling without replacement across all datasets for
various l/n percentages.

Next, we compared the performance of uniform sampling with and without

replacement. Figure 4.2(a) illustrates the effect of replacement for the PIE-7K

dataset for different l/n ratios. Similar results for the remaining datasets are

summarized in Figure 4.2(b). The results show that uniform sampling without

replacement improves the accuracy of the Nyström method over sampling with

replacement, even when sampling less than 5% of the total columns. In sum-

mary, these experimental show that uniform sampling without replacement is
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the cheapest and most efficient sampling technique across several datasets (it

is also the most commonly used method in practice). In Chapter 5 we will

present a theoretical analysis of the Nyström method using precisely this type

of sampling.

4.2 Adaptive Sampling

In Section 4.1, we focused on fixed sampling schemes to create low-rank ap-

proximations. In this section we discuss various sampling options that aim

to select more informative columns from K while storing and operating on

only O(ln) entries of K. The Sparse Matrix Greedy Approximation (SMGA)

(Smola & Schölkopf, 2000) and the Incomplete Cholesky Decomposition (ICL)

(Fine & Scheinberg, 2002; Bach & Jordan, 2002) were the first such adaptive

schemes suggested for the Nyström method. SGMA is a matching-pursuit

algorithm that randomly selects a new sample at each round from a random

subset of s≪ n samples, with s = 59 in practice as per the suggestion of Smola

and Schölkopf (2000). The runtime to select l columns is O(sl2n), which is of

the same order as the Nyström method itself when s is a constant and k = l

(see Section 2.1.2 for details).

Whereas SGMA was proposed as a sampling scheme to be used in con-

junction with the Nyström method, ICL generates a low-rank factorization

of K on-the-fly as it adaptively selects columns based on potential pivots of

the Incomplete Cholesky Decomposition. ICL is a greedy, deterministic selec-
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tion process that generates an approximation of the form K̃icl = X̃X̃⊤ where

X̃ ∈ R
n×l is low-rank. The runtime of ICL is O(l2n). Although ICL does not

generate an approximate SVD of K, it does yield a low-rank approximation

of K that can be used with the Woodbury approximation. Moreover, when

k = l, the Nyström approximation generated from the l columns of K associ-

ated with the pivots selected by ICL is identical to K̃icl (Bach & Jordan, 2005).

Related greedy adaptive sampling techniques were proposed by Ouimet and

Bengio (2005) and Liu et al. (2006) in the contexts of spectral embedding and

spectral mesh processing, respectively.

More recently, Zhang et al. (2008); Zhang and Kwok (2009) proposed a

technique to generate informative columns using centroids resulting from K-

means clustering, withK = l. This algorithm, which uses out-of-sample exten-

sions to generate a set of l representative columns of K, has been shown to give

good empirical accuracy (Zhang et al., 2008). Finally, an adaptive sampling

technique with strong theoretical foundations (adaptive-full) was proposed in

Deshpande et al. (2006). It requires a full pass through K in each iteration

and is thus inefficient for large K. In the remainder of this section, we first

propose a novel adaptive technique that extends the ideas of Deshpande et al.

(2006) and then present empirical results comparing the performance of this

new algorithm with uniform sampling as well as SGMA, ICL, K-means and

the adaptive-full techniques.
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Input: n × n SPSD matrix (K), number columns to be chosen (l), initial
distribution over columns (P0), number columns selected at each iteration (s)
Output: l indices corresponding to columns of K

Sample-Adaptive(K, n, l, P0, s)

1 R← set of s indices sampled according to P0

2 t← l
s
− 1 � number of iterations

3 for i ∈ [1 . . . t] do
4 Pi ← Update-Probability-Full(R)
5 Ri ← set of s indices sampled according to Pi

6 R← R ∪Ri

7 return R

Update-Probability-Full(R)

1 C′ ← columns of K corresponding to indices in R
2 UC′ ← left singular vectors of C′

3 E← K−UC′U⊤
C′K

4 for j ∈ [1 . . . n] do
5 if j ∈ R then
6 Pj ← 0
7 else Pj ← ||Ej||22
8 P ← P

||P ||2
9 return P

Figure 4.3: The adaptive sampling technique (Deshpande et al., 2006) that
operates on the entire matrix K to compute the probability distribution over
columns at each adaptive step.

4.2.1 Adaptive Nyström sampling

Instead of sampling all l columns from a fixed distribution, adaptive sampling

alternates between selecting a set of columns and updating the distribution

over all the columns. Starting with an initial distribution over the columns,

s < l columns are chosen to form a submatrix C′. The probabilities are then
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Update-Probability-Partial(R)

1 C′ ← columns of K corresponding to indices in R

2 k′ ← Choose-rank() � low-rank (k) or |R|
2

3 Σnys, Unys ← Do-Nyström (C′, k′) � see eq (2.3)
4 C′

nys ← Spectral reconstruction using Σnys, Unys

5 E← C′ −C′
nys

6 for j ∈ [1 . . . n] do
7 if j ∈ R then
8 Pj ← 0 � sample without replacement
9 else Pj ← ||E(j) ||22

10 P ← P
||P ||2

11 return P

Figure 4.4: The proposed adaptive sampling technique that uses a small subset
of the original matrix K to adaptively choose columns. It does not need to
store or operate on K.

updated as a function of previously chosen columns and s new columns are

sampled and incorporated in C′. This process is repeated until l columns have

been selected. The adaptive sampling scheme in Deshpande et al. (2006) is de-

tailed in Figure 4.3. Note that the sampling step, UPDATE-PROBABILITY-

FULL, requires a full pass over K at each step, and hence O(n2) time and

space.

We propose a simple sampling technique (adaptive-partial) that incorpo-

rates the advantages of adaptive sampling while avoiding the computational

and storage burdens of the adaptive-full technique. At each iterative step, we

measure the reconstruction error for each row of C′ and the distribution over

corresponding columns of K is updated proportional to this error. We com-
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Table 4.2: Nyström spectral reconstruction accuracy for various sampling
methods for all datasets for k = 100 and three l/n percentages. Numbers
in parenthesis indicate the standard deviations for 10 different runs for each
l. Numbers in bold indicate the best performance on each dataset, i.e., each
row of the table, while numbers in italics indicate adaptive techniques that
were outperformed by random sampling on each dataset. Dashes (‘-’) indicate
experiments that were too costly to run on the larger datasets (ESS, PIE-7K).

l/n% Dataset Uniform ICL SGMA Adapt-Part K-means Adapt-Full

PIE-2.7K 39.3 (2.1) 41.6 54.4 (0.5) 42.4 (1.4) 61.7 (0.7) 44.2 (0.9)
PIE-7K 56.8 (0.7) 50.1 68.1 (0.9) 62.1 (0.9) - -

5% MNIST 47.0 (1.0) 41.5 59.1 (0.7) 49.1 (0.9) 72.3 (0.7) 50.1 (0.6)
ESS 44.6 (2.4) 25.2 61.9 (0.5) 50.1 (0.4) 58.5 (1.8) -
ABN 48.7 (7.2) 15.6 67.1 (1.4) 20.3 (4.5) 65.0 (2.8) 53.5 (1.6)

PIE-2.7K 58.0 (0.8) 61.1 73.1 (0.4) 61.3 (0.7) 73.1 (2.6) 62.7 (0.7)
PIE-7K 73.1 (1.1) 60.8 74.5 (0.6) 76.8 (0.8) - -

10% MNIST 67.5 (0.9) 58.3 72.2 (0.4) 69.2 (0.6) 80.4 (2.8) 68.8 (0.3)
ESS 66.7 (1.6) 39.1 74.7 (0.5) 70.0 (1.8) 76.3 (2.3) -
ABN 61.3 (4.3) 25.8 68.5 (2.3) 32.4 (8.4) 78.2 (6.9) 60.2 (2.5)

PIE-2.7K 75.1 (1.3) 80.5 85.9 (0.2) 78.3 (0.6) 86.5 (0.7) 80.2 (0.5)
PIE-7K 86.4 (0.3) 69.5 79.4 (0.5) 85.7 (1.0) - -

20% MNIST 83.2 (0.2) 77.9 78.9 (0.3) 83.9 (0.3) 90.4 (0.2) 80.9 (0.6)
ESS 82.9 (0.9) 55.3 79.4 (0.7) 83.9 (0.5) 83.5 (0.3) -
ABN 83.1 (1.3) 41.2 66.2 (3.7) 43.8 (12.6) 90.0 (0.7) 61.5 (3.3)

pute the error for C′, which is much smaller than K, thus avoiding the O(n2)

computation. As described in (2.13), if k′ is fixed to be the number of columns

in C′, it will lead to C′
nys = C′ resulting in perfect reconstruction of C′. So,

one must choose a smaller k′ to generate non-zero reconstruction errors from

which probabilities can be updated (we used k′ = (# columns in C′)/2 in our

experiments). One artifact of using a k′ smaller than the rank of C′ is that

all the columns of K will have a non-zero probability of being selected, which

could lead to the selection of previously selected columns in the next itera-
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Table 4.3: Run times (in seconds) corresponding to Nyström spectral recon-
struction results in Table 4.2. Numbers in bold indicate the fastest algorithm
for each dataset, i.e., each row of the table, while numbers in italics indicate
the slowest algorithm for each dataset. Dashes (‘-’) indicate experiments that
were too costly to run on the larger datasets (ESS, PIE-7K).

l/n% Dataset Uniform ICL SGMA Adapt-Part K-means Adapt-Full

PIE-2.7K 1 3 12 1 65 33
PIE-7K 2 18 59 6 - -

5% MNIST 1 6 21 2 42 65

ESS 1 16 62 9 4 -
ABN 1 7 24 2 3 100

PIE-2.7K 1 13 40 5 428 41
PIE-7K 13 69 244 36 - -

10% MNIST 2 17 66 6 142 74
ESS 3 55 152 13 20 -
ABN 1 25 84 6 7 90

PIE-2.7K 5 34 126 17 1351 61
PIE-7K 79 280 1107 250 - -

20% MNIST 8 37 134 27 860 112
ESS 12 87 458 48 62 -
ABN 9 73 332 28 24 108

tion. However, sampling without replacement strategy alleviates this problem.

Working with C′ instead of K to iteratively compute errors makes this algo-

rithm significantly more efficient than that of Deshpande et al. (2006), as each

iteration is O(nlk′ + l3) and requires at most the storage of l columns of K.

The details of the proposed sampling technique are outlined in Figure 4.4.

4.2.2 Experiments

We used the datasets already shown in Table 2.1, and compared the effect

of different sampling techniques on the relative accuracy of Nyström spectral
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reconstruction for k = 100. Experiments were conducted in Matlab, with ICL

code from Cawley and Talbot (2004), SGMA code from Smola (2000) and K-

means code from authors of Zhang et al. (2008). The relative accuracy results

across datasets for varying values of l are presented in Table 4.2, while the

corresponding timing results are detailed in Table 4.2. These empirical results

reveal the strengths and weaknesses of the adaptive techniques. SGMA and

K-means often generate the best relative accuracy, but are also the most ex-

pensive algorithms. K-means in particular is costly when working with a large

number of features, e.g., it was difficult to run K-means on our 7K dataset

containing 2304 features. Our proposed Nyström adaptive technique, which is

a natural extension of an important algorithm introduced in the theory com-

munity, has performance similar to this original algorithm at a fraction of the

cost. In fact, it is faster than all other adaptive techniques and outperforms

uniform sampling on 4 of 5 datasets. ICL is also fast, though its performance

is the worst of all the adaptive techniques, and it is often worse than random

sampling (this observation is also noted by Zhang et al. (2008)). The empirical

results strongly suggest that the performance gain due to adaptive sampling

is inversely proportional to the percentage of sampled columns – random sam-

pling actually outperforms many of the adaptive approaches when sampling

20% of the columns.

In summary, the results suggest a trade-off between time and space re-

quirements, as noted by Schölkopf and Smola (2002)[Chapter 10.2]. Adaptive

techniques spend more time to find a concise subset of informative columns
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with approximation accuracy roughly equal to approximations generated from

slightly larger subsets of randomly sampled columns. This trade-off between

time and approximation quality will be revisited in Section 4.3.2, where we

compare the approximation performance given fixed-time constraints.

4.3 Ensemble Sampling

In this section, we slightly shift focus, and discuss a meta algorithm called the

ensemble Nyström algorithm. We treat each approximation generated by the

Nyström method for a sample of l columns as an expert and combine p≥ 1

such experts to derive an improved hypothesis, typically more accurate than

any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernel function

K : X×X →R that can be used to generate the entries of a kernel matrix K.

The learner receives a set S of lp columns randomly selected from matrix K

uniformly without replacement. S is decomposed into p subsets S1,. . ., Sp.

Each subset Sr, r ∈ [1, p], contains l columns and is used to define a rank-k

Nyström approximation K̃r. Dropping the rank subscript k in favor of the

sample index r, K̃r can be written as K̃r = CrW
+
r C⊤

r , where Cr and Wr

denote the matrices formed from the columns of Sr and W+
r is the pseudo-

inverse of the rank-k approximation of Wr.
2 The learner further receives a

2In this study, we focus on the class of base learners generated from the Nyström approx-
imation with uniform sampling of columns. Alternatively, base learners could be generated
using other (or a combination of) sampling schemes discussed in Sections 4.1 and 4.2.
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sample V of s columns used to determine the weight µr∈R attributed to each

expert K̃r. Thus, the general form of the approximation, Kens, generated by

the ensemble Nyström algorithm, with k ≤ rank(Kens) ≤ pk, is

K̃ens =

p∑

r=1

µrK̃r. (4.1)

The mixture weights µr can be defined in many ways. The most straight-

forward choice consists of assigning equal weight to each expert, µr = 1/p,

r∈ [1, p]. This choice does not require the additional sample V , but it ignores

the relative quality of each Nyström approximation. Nevertheless, this simple

uniform method already generates a solution superior to any one of the ap-

proximations K̃r used in the combination, as we shall see in the experimental

section.

Another method, the exponential weight method, consists of measuring the

reconstruction error ǫ̂r of each expert K̃r over the validation sample V and

defining the mixture weight as µr = exp(−ηǫ̂r)/Z, where η > 0 is a param-

eter of the algorithm and Z a normalization factor ensuring that the vec-

tor µ = (µ1, . . . , µp) belongs to the simplex ∆ of R
p: ∆ = {µ ∈ R

p : µ ≥

0 ∧∑p
r=1 µr = 1}. The choice of the mixture weights here is similar to those

used in the Weighted Majority algorithm (Littlestone & Warmuth, 1994). Let

KV denote the matrix formed by using the samples from V as its columns and

let K̃V
r denote the submatrix of K̃r containing the columns corresponding to

the columns in V . The reconstruction error ǫ̂r = ‖K̃V
r −KV ‖ can be directly
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computed from these matrices.

A more general class of methods consists of using the sample V to train

the mixture weights µr to optimize a regression objective function such as the

following:

min
µ

λ‖µ‖22 + ‖
p∑

r=1

µrK̃
V
r −KV ‖2F , (4.2)

where KV denotes the matrix formed by the columns of the samples S and

V and λ > 0. This can be viewed as a ridge regression objective function

and admits a closed form solution. We will refer to this method as the ridge

regression method. Note that to ensure that the resulting matrix is SPSD for

use in subsequent kernel-based algorithms, the optimization problem must be

augmented with standard non-negativity constraints. This is not necessary

however for reducing the reconstruction error, as in our experiments. Also,

clearly, a variety of other regression algorithms such as Lasso can be used here

instead.

The total complexity of the ensemble Nyström algorithm is O(pl3+plkn+

Cµ), where Cµ is the cost of computing the mixture weights, µ, used to com-

bine the p Nyström approximations. In general, the cubic term dominates

the complexity since the mixture weights can be computed in constant time

for the uniform method, in O(psn) for the exponential weight method, or in

O(p3+pls) for the ridge regression method. Furthermore, although the ensem-

ble Nyström algorithm requires p times more space and CPU cycles than the

standard Nyström method, these additional requirements are quite reasonable

81



in practice. The space requirement is still manageable for even large-scale ap-

plications given that p is typically O(1) and l is usually a very small percentage

of n (see Section 5.2.3 for further details). In terms of CPU requirements, we

note that our algorithm can be easily parallelized, as all p experts can be com-

puted simultaneously. Thus, with a cluster of p machines, the running time

complexity of this algorithm is nearly equal to that of the standard Nyström

algorithm with l samples.

4.3.1 Ensemble Woodbury approximation

In Section 3.2, the Woodbury approximation was presented as a useful tool

to use alongside low-rank approximations to efficiently (and approximately)

invert kernel matrices. Recall that we are able to apply the Woodbury approx-

imation since the Nyström method represents K̃ as the product of low-rank

matrices. This is clear from the definition of the Woodbury approximation:

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1, (4.3)

where A = λI and K̃ = BCD in the context of the Nyström method. In

contrast, the ensemble Nyström method represents K̃ as the sum of products

of low-rank matrices, where each of the p terms corresponds to a base learner.

Hence, we cannot directly apply the Woodbury approximation as presented

above. There is however, a natural extension of the Woodbury approximation

in this setting, which at the simplest level involves running the approximation
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p times. Starting with p base learners with their associated weights, i.e., K̃r

and µr for r∈ [1, p], and defining T0 = λI, we perform the following series of

calculations:

T−1
1 = (T0 + µ1K̃1)

−1

T−1
2 = (T1 + µ2K̃2)

−1

· · ·

T−1
p = (Tp−1 + µpK̃p)

−1 .

To compute T−1
1 , notice that we can use Woodbury approximation as stated

in (4.3) since we can express µ1K̃1 as the product of low-rank matrices and

we know that T−1
0 = 1

λ
I. More generally, for 1 ≤ i ≤ p, given an expression

of T−1
i−1 as a product of low-rank matrices, we can efficiently compute T−1

i

using the Woodbury approximation (we use the low-rank structure to avoid

ever computing or storing a full n × n matrix). Hence, after performing this

series of p calculations, we are left with the inverse of Tp, which is exactly

the quantity of interest since Tp = λI +
∑p

r=1 µrK̃r. Although this algorithm

requires p iterations of the Woodbury approximation, these iterations can be

parallelized in a tree-like fashion. Hence, when working on a cluster, using an

ensemble Nyström approximation along with the Woodbury approximation

requires only log2(p) more time than using the standard Nyström method.
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Dataset Type of data # Points (n) # Features (d) Kernel
PIE-2.7K face images 2731 2304 linear
MNIST digit images 4000 784 linear
ESS proteins 4728 16 RBF
AB-S abalones 4177 8 RBF
DEXT bag of words 2000 20000 linear
SIFT-1M Image features 1M 128 RBF

Table 4.4: Description of the datasets used in our ensemble Nyström experi-
ments (Sim et al., 2002; LeCun & Cortes, 1998; Gustafson et al., 2006; Asun-
cion & Newman, 2007; Lowe, 2004).

4.3.2 Experiments

In this section, we present experimental results that illustrate the performance

of the ensemble Nyström method. We work with the datasets listed in Ta-

ble 4.4, and compare the performance of various methods for calculating the

mixture weights (µr). Throughout our experiments, we measure the accuracy

of a low-rank approximation K̃ by calculating the relative error in Frobenius

and spectral norms, that is, if we let ξ = {2, F}, then we calculate the following

quantity:3

% error =
‖K− K̃‖ξ
‖K‖ξ

× 100. (4.4)
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Figure 4.5: Percent error in Frobenius norm for ensemble Nyström method us-
ing uniform (‘uni’), exponential (‘exp’), ridge (‘ridge’) and optimal (‘optimal’)
mixture weights as well as the best (‘best b.l.’) and mean (‘mean b.l.’) of the
p base learners used to create the ensemble approximations.
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Figure 4.6: Percent error in spectral norm for ensemble Nyström method using
various mixture weights and the best/mean of the p approximations. Legend
entries are the same as in Figure 4.5.

Ensemble Nyström with various mixture weights

In this set of experiments, we show results for our ensemble Nyström method

using different techniques to choose the mixture weights as previously dis-

3Note that we are not using relative accuracy, as in the empirical results presented
earlier in this chapter and in Chapter 2, since relative accuracy requires computation of
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Figure 4.7: Percent error in Frobenius norm for ensemble Nyström method
using uniform (‘uni’) mixture weights, the optimal rank-k approximation of
the uniform ensemble result (‘uni rank-k’) as well as the best (‘best b.l.’) of
the p base learners used to create the ensemble approximations.

cussed. We first experimented with the first five datasets shown in Table 4.4.

the best low-rank approximation, Kk, which is not possible to compute for our large-scale
experiments. However, percentage error and relative accuracy are highly correlated and are
both valid measurements for quality of reconstruction.
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Figure 4.8: Comparison of percent error in Frobenius norm for the ensemble
Nyström method with p= 10 experts with weights derived from linear (‘no-
ridge’) and ridge (‘ridge’) regression. The dotted line indicates the optimal
combination. The relative size of the validation set equals s/n×100.

For each dataset, we fixed the reduced rank to k=50, and set the number of

sampled columns to l = 3% × n.4 Furthermore, for the exponential and the

4Similar results (not reported here) were observed for other values of k and l as well.
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ridge regression variants, we sampled an additional set of s=20 columns and

used an additional 20 columns (s′) as a hold-out set for selecting the optimal

values of η and λ. The number of approximations, p, was varied from 2 to 30.

As a baseline, we also measured the minimal and mean percent error across the

p Nyström approximations used to construct K̃ens. For the Frobenius norm,

we also calculated the performance when using the optimal µ, that is, we used

least-square regression to find the best possible choice of combination weights

for a fixed set of p approximations by setting s=n.

The results of these experiments are presented in Figure 4.5 for the Frobe-

nius norm and in Figure 4.6 for the spectral norm. These results clearly show

that the ensemble Nyström performance is significantly better than any of the

individual Nyström approximations. As mentioned earlier, the rank of the en-

semble approximations can be p times greater than the rank of each of the base

learners. Hence, to validate the results in Figures 4.5 and 4.6, we performed

a simple experiment in which we compared the performance of the best base

learner to the best rank k approximation of the uniform ensemble approxima-

tion (obtained via SVD of the uniform ensemble approximation). The results

of this experiment, presented in Figure 4.7, suggest that the performance gain

of the ensemble methods is not due to this increased rank.

Furthermore, the ridge regression technique is the best of the proposed

techniques and generates nearly the optimal solution in terms of the percent

error in Frobenius norm. We also observed that when s is increased to approx-

imately 5% to 10% of n, linear regression without any regularization performs
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about as well as ridge regression for both the Frobenius and spectral norm.

Figure 4.8 shows this comparison between linear regression and ridge regres-

sion for varying values of s using a fixed number of experts (p=10). Finally

we note that the ensemble Nyström method tends to converge very quickly,

and the most significant gain in performance occurs as p increases from 2 to

10.

Large-scale experiments

We now present an empirical study of the effectiveness of the ensemble Nyström

method on the SIFT-1M dataset in Table 2.1 containing 1 million data points.

As is common practice with large-scale datasets, we worked on a cluster of sev-

eral machines for this dataset. We present results comparing the performance

of the ensemble Nyström method, using both uniform and ridge regression mix-

ture weights, with that of the best and mean performance across the p Nyström

approximations used to construct K̃ens. We also make comparisons with the

K-means adaptive sampling technique introduced in Section 4.2 (Zhang et al.,

2008; Zhang & Kwok, 2009). Although the K-means technique is quite ef-

fective at generating informative columns by exploiting the data distribution,

the cost of performing K-means becomes expensive for even moderately sized

datasets, making it difficult to use in large-scale settings. Nevertheless, in this

work, we include the K-means method in our comparison, and we present re-

sults for various subsamples of the SIFT-1M dataset, with n ranging from 5K

to 1M.
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Figure 4.9: Large-scale performance comparison with SIFT-1M dataset. For
a fixed computational time, the ensemble Nyström approximation with ridge
weights tends to outperform other techniques.

To fairly compare these techniques, we performed ‘fixed-time’ experiments.

We first searched for an appropriate l such that the percent error for the

ensemble Nyström method with ridge weights was approximately 10%, and

measured the time required by the cluster to construct this approximation.

We then allotted an equal amount of time (within 1 second) for the other

techniques, and measured the quality of the resulting approximations. For

these experiments, we set k = 50 and p = 10, based on the results from the

previous section. Furthermore, in order to speed up computation on this large

dataset, we decreased the size of the validation and hold-out sets to s=2 and

s′=2, respectively.

The results of this experiment, presented in Figure 4.9, clearly show that

the ensemble Nyström method is the most effective technique given a fixed

amount of time. Furthermore, even with the small values of s and s′, ensem-
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ble Nyström with ridge-regression weighting outperforms the uniform ensemble

Nyström method. We also observe that due to the high computational cost

of K-means for large datasets, the K-means approximation does not perform

well in this ‘fixed-time’ experiment. It generates an approximation that is

worse than the mean standard Nyström approximation and its performance

increasingly deteriorates as n approaches 1M. Finally, we note that although

the space requirements are 10 times greater for ensemble Nyström in com-

parison to standard Nyström (since p = 10 in this experiment), the space

constraints are nonetheless quite reasonable. For instance, when working with

1M points, the ensemble Nyström method with ridge regression weights only

required approximately 1% of the columns of K to achieve a percent error of

10%.

4.4 Summary

A key aspect to sampling-based matrix approximations is the manner in which

we choose a subset of representative columns. In this chapter we have discussed

both fixed and adaptive approaches to sampling columns of a matrix. We have

seen that the approximation performance is significantly affected by the choice

of sampling algorithm, and furthermore, that there is often a tradeoff between

choosing a more informative set of columns and the efficiency of the sampling

algorithm. Finally, we discussed an ensemble meta-algorithm for combining

multiple matrix approximations that generates favorable matrix reconstruc-
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tions and yet naturally fits within a distributed computing environment, thus

making it quite efficient even in large-scale settings.
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Chapter 5

Theoretical Analysis

The effectiveness of the Nyström method hinges on two key assumptions on

the input matrix, K. First, we assume that a low-rank approximation to K

can be effective for the task at hand. This assumption is often true empiri-

cally as demonstrated by the widespread use of Singular Value Decomposition

(SVD) and Principal Component Analysis (PCA) in practical applications. As

expected, the Nyström method is not appropriate in cases where this assump-

tion does not hold, which explains its poor performance in the experimental

results of Fergus et al. (2009). In Section 5.1, we present theoretical results

based on work in Kumar et al. (2009c) and Kumar et al. (2009a) that in-

corporate this low-rank assumption by comparing the quality of the Nyström

approximation to the ‘best’ low-rank approximation, i.e., the approximation

constructed from the top singular values and singular vectors of K. This work,

related to work by Drineas and Mahoney (2005), provides performance bounds

94



for the Nyström method as it is used in practice, i.e., using uniform sampling

without replacement, and holds for both the standard Nyström method as well

as the ensemble Nyström method discussed in Section 4.3.

The second crucial assumption involves the sampling-based nature of the

algorithm, namely that an accurate low-rank approximation can be generated

exclusively from information extracted from a small subset of l ≪ n columns

of K. This assumption is not generally true for all matrices. For instance,

consider the extreme case of the n× n matrix described below:

K =




∣∣∣
∣∣∣

∣∣∣
∣∣∣

e1 . . . er 0 . . . 0
∣∣∣

∣∣∣
∣∣∣

∣∣∣



, (5.1)

where ei is the ith column of the n dimensional identity matrix and 0 is the

n dimensional zero vector. Although this matrix has rank r, it nonetheless

cannot be well approximated by a random subset of l columns unless this

subset includes e1, . . . , er. In order to account for such pathological cases, pre-

vious theoretical bounds relied on sampling columns of K from a non-uniform

distribution weighted precisely by the magnitude of the diagonal elements of

K, as discussed in Section 4.1. Indeed, these bounds give better guarantees

for pathological cases. However, in practice, when working with real-world

datasets, uniform sampling is more commonly used, e.g., Williams and Seeger

(2000); Fowlkes et al. (2004); Platt (2004); Talwalkar et al. (2008), since di-

agonal sampling is more expensive and does not typically outperform uniform
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sampling, as discussed in Section 4.1. Hence the diagonal sampling bounds are

not applicable in this setting. Furthermore, these bounds are typically loose

for matrices in which the diagonal entries of the matrix are roughly of the same

magnitude, as in the case of all kernel matrices generated from RBF kernels,

for which the Nyström has been noted to work particularly well (Williams &

Seeger, 2000). Adaptive techniques have also been proposed to handle these

pathological cases, though they are not well studied theoretically and in prac-

tice are outperformed by uniform sampling given fixed time constraints, as

shown in empirical studies in Zhang et al. (2008) and discussed in Section 4.2.

Hence, we propose to characterize the ability to extract information from a

small subset of l columns using the notion of matrix coherence, an alternative

data-dependent measurement which we believe to be intrinsically related to

the algorithm’s performance. Recent work on compressed sensing and matrix

completion, which also involve sampling-based approximations, have relied

heavily on coherence assumptions (Donoho, 2006; Candès et al., 2006; Candès

& Romberg, 2007). Coherence measures the extent to which the singular

vectors of a matrix are correlated with the standard basis. Intuitively, if we

work with sufficiently incoherent matrices, then we avoid pathological cases

such as the one presented in (5.1), as we will show theoretically and empirically

in Section 5.2. This research based on work in Talwalkar and Rostamizadeh

(2010).

Finally, in Section 5.3, we address the question of how kernel approxima-

tion affects the performance of learning algorithms. There exists some previous
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work on this subject. Spectral clustering with perturbed data was studied in a

restrictive setting with several assumption by Huang et al. (2008). In Fine and

Scheinberg (2002), the authors address this question in terms of the impact on

the value of the objective function to be optimized by the learning algorithm.

However, we strive to take the question one step further and directly analyze

the effect of an approximation in the kernel matrix on the hypothesis generated

by several widely used kernel-based learning algorithms. Based on initial work

in Cortes et al. (2010), we give stability bounds based on the norm of the

kernel approximation for these algorithms, including SVMs, SVR, KRR, Ker-

nel PCA and graph Laplacian-based regularization algorithms (Belkin et al.,

2004). These bounds help determine the degree of approximation that can

be tolerated in the estimation of the kernel matrix. Our analysis differs from

previous applications of stability analysis as put forward by Bousquet and

Elisseeff (2001). Instead of studying the effect of changing one training point,

we study the effect of changing the kernel matrix. Our analysis is general

and applies to arbitrary approximations of the kernel matrix. However, we

also give a specific analysis of the Nyström low-rank approximation given the

recent interest in this method and the successful applications of this algorithm

to large-scale applications. We also discuss experimental results for Kernel

Ridge Regression that support our theoretical analyses.
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5.1 Nyström Analysis

We now present a theoretical analysis of the Nyström method based on work

from Kumar et al. (2009a) for which we use as tools some results previously

shown by Drineas and Mahoney (2005) and Kumar et al. (2009c). As in

Kumar et al. (2009c), we shall use the following generalization of McDiarmid’s

concentration bound to sampling without replacement (Cortes et al., 2008).

Theorem 5.1 Let Z1, . . . , Zl be a sequence of random variables sampled uni-

formly without replacement from a fixed set of l+u elements Z, and let φ : Z l→

R be a symmetric function such that for all i∈ [1, l] and for all z1, . . . , zl ∈Z

and z′1, . . . , z
′
l ∈Z, |φ(z1, . . . , zl)−φ(z1, . . . , zi−1, z

′
i, zi+1, . . . , zl)|≤ c. Then, for

all ǫ>0, the following inequality holds:

Pr
[
φ− E[φ] ≥ ǫ

]
≤ exp

[ −2ǫ2

α(l,u)c2

]
, (5.2)

where α(l, u) = lu
l+u−1/2

1
1−1/(2 max{l,u}) .

We define the selection matrix corresponding to a sample of l columns as

the matrix S∈R
n×l defined by Sii =1 if the ith column of K is among those

sampled, Sij =0 otherwise. Thus, C=KS is the matrix formed by the columns

sampled. Since K is SPSD, there exists X ∈ R
N×n such that K = X⊤X. We

shall denote by Kmax the maximum diagonal entry of K, Kmax =maxi Kii, and

by dK

max the distance maxij

√
Kii + Kjj − 2Kij.
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5.1.1 Standard Nyström method

The following theorem gives an upper bound on the norm-2 error of the

Nyström approximation of the form ‖K − K̃‖2/‖K‖2 ≤ ‖K −Kk‖2/‖K‖2 +

O(1/
√
l) and an upper bound on the Frobenius error of the Nyström approx-

imation of the form ‖K− K̃‖F/‖K‖F ≤ ‖K−Kk‖F/‖K‖F +O(1/l
1

4 ).

Theorem 5.2 Let K̃ denote the rank-k Nyström approximation of K based

on l columns sampled uniformly at random without replacement from K, and

Kk the best rank-k approximation of K. Then, with probability at least 1− δ,

the following inequalities hold for any sample of size l:

‖K− K̃‖2 ≤ ‖K−Kk‖2 + 2n√
l
Kmax

[
1 +

√
n−l

n−1/2
1

β(l,n)
log 1

δ
dK

max/K
1

2

max

]

‖K− K̃‖F ≤ ‖K−Kk‖F +

[
64k
l

] 1

4nKmax

[
1 +

√
n−l

n−1/2
1

β(l,n)
log 1

δ
dK

max/K
1

2

max

] 1

2

,

where β(l, n) = 1− 1
2 max{l,n−l} .

Proof. To bound the norm-2 error of the Nyström method in the scenario of

sampling without replacement, we start with the following general inequality

given by Drineas and Mahoney (2005)[proof of Lemma 4]:

‖K− K̃‖2 ≤ ‖K−Kk‖2 + 2‖XX⊤ − ZZ⊤‖2, (5.3)
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where Z =
√

n
l
XS. We then apply the McDiarmid-type inequality of Theo-

rem 5.1 to φ(S)= ‖XX⊤−ZZ⊤‖2. Let S′ be a sampling matrix selecting the

same columns as S except for one, and let Z′ denote
√

n
l
XS′. Let z and z′

denote the only differing columns of Z and Z′, then

|φ(S′)− φ(S)| ≤ ‖z′z′⊤ − zz⊤‖2 = ‖(z′ − z)z′⊤ + z(z′ − z)⊤‖2 (5.4)

≤ 2‖z′ − z‖2 max{‖z‖2, ‖z′‖2}. (5.5)

Columns of Z are those of X scaled by
√
n/l. The norm of the difference of

two columns of X can be viewed as the norm of the difference of two feature

vectors associated to K and thus can be bounded by dK. Similarly, the norm

of a single column of X is bounded by K
1

2

max. This leads to the following

inequality:

|φ(S′)− φ(S)| ≤ 2n

l
dK

maxK
1

2

max. (5.6)

The expectation of φ can be bounded as follows:

E[Φ] = E[‖XX⊤ − ZZ⊤‖2] ≤ E[‖XX⊤ − ZZ⊤‖F ] ≤ n√
l
Kmax, (5.7)

where the last inequality follows Corollary 2 of Kumar et al. (2009c). The

inequalities (5.6) and (5.7) combined with Theorem 5.1 give a bound on

‖XX⊤ − ZZ⊤‖2 and yield the statement of the theorem.
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The following general inequality holds for the Frobenius error of the Nyström

method (Drineas & Mahoney, 2005):

‖K− K̃‖2F ≤ ‖K−Kk‖2F +
√

64k ‖XX⊤ − ZZ⊤‖2F nKmax
ii . (5.8)

Bounding the term ‖XX⊤−ZZ⊤‖2F as in the norm-2 case and using the con-

centration bound of Theorem 5.1 yields the result of the theorem. 2

5.1.2 Ensemble Nyström method

The following error bounds hold for ensemble Nyström methods based on a

convex combination of Nyström approximations.

Theorem 5.3 Let S be a sample of pl columns drawn uniformly at ran-

dom without replacement from K, decomposed into p subsamples of size l,

S1, . . . , Sp. For r∈ [1, p], let K̃r denote the rank-k Nyström approximation of

K based on the sample Sr, and let Kk denote the best rank-k approximation of

K. Then, with probability at least 1− δ, the following inequalities hold for any

sample S of size pl and for any µ in the simplex ∆ and K̃ens =
∑p

r=1 µrK̃r:

‖K− K̃ens‖2 ≤ ‖K−Kk‖2 +

2n√
l
Kmax

[
1 + µmaxp

1

2

√
n−pl

n−1/2
1

β(pl,n)
log 1

δ
dK

max/K
1

2

max

]

‖K− K̃ens‖F ≤ ‖K−Kk‖F +

[
64k
l

] 1

4nKmax

[
1 + µmaxp

1

2

√
n−pl

n−1/2
1

β(pl,n)
log 1

δ
dK

max/K
1

2

max

] 1

2

,
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where β(pl, n) = 1− 1
2 max{pl,n−pl} and µmax = maxp

r=1 µr.

Proof. For r ∈ [1, p], let Zr =
√
n/lXSr, where Sr denotes the selection

matrix corresponding to the sample Sr. By definition of K̃ens and the upper

bound on ‖K − K̃r‖2 already used in the proof of theorem 5.2, the following

holds:

‖K− K̃ens‖2 =
∥∥∥

p∑

r=1

µr(K− K̃r)
∥∥∥

2
≤

p∑

r=1

µr‖K− K̃r‖2 (5.9)

≤
p∑

r=1

µr

(
‖K−Kk‖2 + 2‖XX⊤ − ZrZ

⊤
r ‖2

)
(5.10)

= ‖K−Kk‖2 + 2

p∑

r=1

µr‖XX⊤ − ZrZ
⊤
r ‖2. (5.11)

We apply Theorem 5.1 to φ(S)=
∑p

r=1 µr‖XX⊤−ZrZ
⊤
r ‖2. Let S ′ be a sample

differing from S by only one column. Observe that changing one column of the

full sample S changes only one subsample Sr and thus only one term µr‖XX⊤−

ZrZ
⊤
r ‖2. Thus, in view of the bound (5.6) on the change to ‖XX⊤ −ZrZ

⊤
r ‖2,

the following holds:

|φ(S ′)− φ(S)| ≤ 2n

l
µmaxd

K

maxK
1

2

max, (5.12)

The expectation of Φ can be straightforwardly bounded by:

E[Φ(S)] =

p∑

r=1

µr E[‖XX⊤ − ZrZ
⊤
r ‖2] ≤

p∑

r=1

µr
n√
l
Kmax =

n√
l
Kmax
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using the bound (5.7) for a single expert. Plugging in this upper bound and

the Lipschitz bound (5.12) in Theorem 5.1 yields our norm-2 bound for the

ensemble Nyström method.

For the Frobenius error bound, using the convexity of the Frobenius norm

square ‖·‖2F and the general inequality (5.8), we can write

‖K− K̃ens‖2F =
∥∥∥

p∑

r=1

µr(K− K̃r)
∥∥∥

2

F
≤

p∑

r=1

µr‖K− K̃r‖2F (5.13)

≤
p∑

r=1

µr

[
‖K−Kk‖2F +

√
64k ‖XX⊤ − ZrZ

⊤
r ‖F nKmax

ii

]
.

(5.14)

= ‖K−Kk‖2F +
√

64k

p∑

r=1

µr‖XX⊤ − ZrZ
⊤
r ‖F nKmax

ii . (5.15)

The result follows by the application of Theorem 5.1 to ψ(S)=
∑p

r=1 µr‖XX⊤−

ZrZ
⊤
r ‖F in a way similar to the norm-2 case. 2

The bounds of Theorem 5.3 are similar in form to those of Theorem 5.2.

However, the bounds for the ensemble Nyström are tighter than those for any

Nyström expert based on a single sample of size l even for a uniform weighting.

In particular, for µi = 1/p for all i, the last term of the ensemble bound for

norm-2 is smaller by a factor larger than µmaxp
1

2 = 1/
√
p.

103



5.2 Coherence-based Bounds

The main contribution of this section is the connection made between matrix

coherence and the Nyström method. Making use of related work in the com-

pressed sensing and the matrix completion literature, we give a more refined

analysis of the Nyström method as a function of matrix coherence. We also

present extensive empirical results that strongly relate coherence to the per-

formance of the Nyström method. The results in this section are based on

work from Talwalkar and Rostamizadeh (2010).

5.2.1 Coherence

Although the Nyström method tends to work well in practice, the performance

of this algorithm depends on the structure of the underlying matrix. We will

show that the performance is related to the size of the entries of the singular

vectors of K, or the coherence of its singular vectors. We define Ur as the top

r singular vectors of K, and denote the coherence of these singular vectors as

µ(Ur), which is adapted from Candès and Romberg (2007).

Definition 5.1 (Coherence) The coherence of a matrix Ur with orthonor-

mal columns is defined as:

µ(Ur) =
√
nmax

i,j
|Ur

(j)
(i) | . (5.16)
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The coherence of Ur is lower bounded by 1, as is the case for the rank-1

matrix with all entries equal to 1/
√
n, and upper bounded by

√
n, as is the

case for the matrix of canonical basis vectors. As discussed in Candès and

Recht (2009); Candès and Tao (2009), highly coherent matrices are difficult

to randomly recover via matrix completion algorithms, and this same logic

extends to the Nyström method. In contrast, incoherent matrices are much

easier to successfully complete and to approximate via the Nyström method,

as discussed in Section 5.2.2.

In order to provide some intuition, Candès and Recht (2009) give several

classes of randomly generated matrices with low coherence. One such class of

matrices is generated from uniform random orthonormal singular vectors and

arbitrary singular values. For such a class they show that µ = O(
√

log n 4
√
r)

with high probability.1 In what follows, we will show bounds on the number

of points needed for reconstruction that become more favorable as coherence

decreases. However, the bounds are useful for more generous values of coher-

ence than given in the above example. We will also provide an empirical study

of coherence for various real-world and synthetic examples.

5.2.2 Low-rank, low-coherence bounds

In this section, we make use of coherence to analyze the Nyström method

when used with low-rank matrices. We note that although the bounds pre-

1For low-rank matrices, 4
√

r is quite small. Moreover, this 4
√

r factor only appears due to
our use of the generally loose inequality µ2 ≤ √rµ1, where µ1 is a slightly different notion of
coherence used in the original bound in Candès and Recht (2009) for this class of matrices.
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sented throughout this section hold for matrices of any rank r, they are only

interesting when r = o(
√
n), and hence they are most applicable in the “low-

rank” setting.

As discussed in Section 2.2, the Nyström method generates high quality

low-rank approximations in cases where K has low-rank structure even if the

matrix has full rank, i.e., K ≈ Kk for some k ≪ n. Furthermore, as stated

in Theorem 2.3, when K is actually a low-rank matrix, then the Nyström

method can exactly recover the initial matrix. This theorem implies that if K

has low-rank and l ≥ k ≥ r, then there exists a particular sampling such that

rank(W) = rank(K) and the Nyström method can perfectly recover the full

matrix. However, selecting a suitable set of l columns from an n × n SPSD

matrix can be an intractable combinatorial problem, and there exist matrices

for which the probability of selecting such a subset uniformly at random is

exponentially small, e.g., the rank-r SPSD diagonal matrices discussed earlier.

In contrast, a large class of SPSD matrices are much more incoherent, and

for these matrices, we will next show that by choosing l to be linear in r and

logarithmic in n we can with very high probability guarantee that rank(W) =

r, and hence exactly recover the initial matrix.

Probability of choosing a good subset

We start with a rank-r Gram matrix, K, and a fixed distribution, D, over the

columns of K. Our goal is to calculate the probability of randomly choosing a

subset of l columns of K according to D such that rank(W) = r. Recall that
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K = X⊤X, X = [X1 X2] and W = X⊤
1 X1. Then, by properties of SVD,

we know that rank(K) = rank(X) and rank(W) = rank(X1). Hence, the

probability of this desired event is equivalent to the probability of sampling

l columns of X according to D such that rank(X1) = r, as shown in (5.18).

Next, we can write the thin SVD of X as X = UXΣXV⊤
X , where UX ∈

R
N×r, ΣX ∈ R

r×r and VX ∈ R
n×r. Since UX contains orthonormal columns

and ΣX is invertible, we know that Σ−1
X U⊤

XX = V⊤
X . Further, using the block

representation of X, we have

X⊤
1 UXΣ−1

X = VX (1:l), (5.17)

where VX (1:l) ∈ R
l×r corresponds to the first l rows of VX , i.e., the first

l components for each of the r right singular vectors of X. Since the left

singular vectors of X span the columns X and hence of X1, we know that

rank(X1) = rank(X⊤
1 UXΣ−1

X ) and we obtain the equality of (5.19).

Pr
D

[rank(W) = r] = Pr
D

[rank(X1) = r] (5.18)

= Pr
D

[rank(VX (1:l)) = r]. (5.19)

In the next section we calculate this probability for a specific distribution in

terms of l as well as a measure of the coherence of VX .
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Dataset Type of data # Points (n) # Features (d) Kernel
PIE face images 2731 2304 linear
MNIST digit images 4000 784 linear
Essential proteins 4728 16 RBF
Abalone abalones 4177 8 RBF
Dexter bag of words 2000 20000 linear
Artificial random features 1000 20000 linear

Table 5.1: Description of the datasets used in our coherence experiments,
including the type of data, the number of points (n), the number of features
(d) and the choice of kernel (Sim et al., 2002; LeCun & Cortes, 1998; Gustafson
et al., 2006; Asuncion & Newman, 2007).

Sampling bound

Given the orthonormal matrix Ur, we would like to find a choice of l such

that VX (1:l) created by uniform sampling has rank r with high probability. As

pointed out in the previous section, a meaningful bound may not be possible

for any l < n if no assumption is made on Vr. Here we adopt the assumption

that Vr has low coherence, as defined in Definition 5.1. If we define A =

VX
⊤
(1:l)VX (1:l), we then observe that by properties of SVD we have

Pr
(
rank(VX (1:l)) = r

)
= Pr

(
rank(A) = r

)
. (5.20)

Next, we define σ = ‖A‖2 and note that for 0 < c < 1/σ, cA is an r × r

SPSD matrix with singular values less than one. Furthermore, I− cA is also

SPSD with

Pr
(
rank(A) = r

)
= Pr

(
‖cA− I‖2 < 1

)
, (5.21)

since ‖cA− I‖ = 1 implies that the nullspace of A is nonempty. Alternatively,
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if c ≥ 1/σ, then

Pr
(
rank(A) = r

)
≥ Pr

(
‖cA− I‖2 < 1

)
, (5.22)

since, for large enough c, we could have ‖cA − I‖2 ≥ 1 even if rank(A) = r.

Thus the inequality in (5.22) holds for any constant c > 0, i.e., the probability

on the RHS of (5.22) serves as a lower bound to the probability of interest.

The probability on the RHS of (5.22) has been studied in previous com-

pressive sampling literature. Specifically, Candès and Romberg (2007) makes

use of a main lemma of Rudelson (1999) to derive Theorem 5.4, which provides

us with our desired lower bound.

Theorem 5.4 ((Candès & Romberg, 2007) Thm 1.2) Define V ∈ R
n×r

such that V⊤V = I and let V(1:l) ∈ R
l×r be generated from V by sampling l

rows uniformly at random. Then, the following holds with probability at least

1− δ,
∥∥n
l
V⊤

(1:l)V(1:l) − I
∥∥ < 1

2
, (5.23)

for any l that satisfies,

l ≥ rµ2(V) max
(
C1 log(r), C2 log(3/δ)

)
, (5.24)

where C1 and C2 are positive constants.

Note that our definition of coherence and statement of Theorem 5.4 are

modified to account for the fact that V⊤V = I as oppose to nI, as in Candès
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and Romberg (2007). Also, V is not square as assumed in the original theorem,

however it can be verified that the proof holds even for this case.

By making use of Theorem 5.4, we can now answer the question regarding

the number of columns needed to sample from K in order to obtain an exact

reconstruction via the Nyström method. Theorem 5.5 presents a bound on l

for matrix completion in terms of µ.

Theorem 5.5 Let K = UΣU⊤ ∈ R
n×n be a rank-r SPSD matrix, where

(Σ, U) are matrices of its singular values and singular vectors. Then it suffices

to sample l ≥ rµ2(V) max
(
C1 log(r), C2 log(3/δ)

)
columns, where C1 and C2

are positive constants, to have with probability at least 1− δ,

‖K− K̃k‖ = 0 . (5.25)

Proof. Theorem 2.3 states sufficient conditions for exact matrix completion.

Equations (5.18) and (5.19) reduce these sufficient conditions to a condition on

the rank of VX (1:l). Equations (5.20) and (5.22) further reduce this problem

to a similar problem previously studied in the context of compressed sensing.

Finally, we use Theorem 5.4 to bound with high probability the RHS of (5.22).

2

5.2.3 Experiments

In this section we present a series of empirical results that show the empirical

connection between matrix coherence and the performance of the Nyström
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method. We first perform experiments that corroborate the theoretical claims

made in the previous section. We work with the six datasets detailed in Table

5.1 to illustrate the performance of the Nyström method for low-rank matri-

ces, and then interpret these results in the context of the coherence of these

datasets. We then present more general experimental results that connect

matrix coherence to the Nyström method in the case of full rank matrices.
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Figure 5.1: Mean percent error over 10 trials of Nyström approximations of
rank 100 matrices. Left: Results for l ranging from 5 to 200. Right: Detailed
view of experimental results for l ranging from 50 to 130.

Reconstruction

In our first set of experiments we measure the accuracy of the Nyström ap-

proximation (K̃k) for a variety of rank-r matrices, with r = 100. For each of

the six datasets listed above, we first constructed the optimal rank-r approxi-

mation to each kernel matrix by reconstructing with the top r singular values

and singular vectors. Next, we performed the Nyström method for various
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values of l to generate a series of approximations to our rank-r matrix (note

that we set k = l). For each approximation, we calculated the percent error of

the Nyström approximation using the notion of percent error, which we have

previously defined as follows:

Percent error =
‖K− K̃k‖F
‖K‖F

× 100.

The results of this experiment, averaged over 10 trials, are presented in Figure

5.1. The figure shows that for five of the six datasets, the Nyström method

exactly reconstructs the initial rank r matrix when the number of sampled

columns (l) is equal or slightly larger than r. Note that this observation holds

for each of the ten trials, since the mean error is zero for each of these datasets

when l ≈ r. In contrast, for the case of the Abalone dataset, we do not see

convergence to zero percent error as l surpasses r, and the percent error is

non-zero even when l = 2r.

Coherence of datasets

In this set of experiments, we use the concept of coherence to explain these

low-rank reconstruction results, namely that the Nyström method generates

an exact matrix reconstruction for l ≈ r for five of the six datasets, but fails

to do so for the Abalone dataset. As such, we first calculated the coherence

of each of the six SPSD rank 100 matrices used in these experiments, using

the definition of coherence from Definition 5.1. The left panel of Figure 5.2
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Figure 5.2: Coherence of Datasets. Left: Coherence of rank 100 SPSD ma-
trices derived from datasets listed in Table 5.1. Right: Asymptotic growth of
coherence for MNIST and Abalone datasets. Note that coherence values are
means over ten trials.

shows the coherence of these matrices with respect to the number of points in

the dataset. This plot illustrates the stark contrast between Abalone and the

other five datasets in terms of coherence, and helps validate our theoretical

connection between low-coherence matrices and the ability to generate exact

reconstructions via the Nyström method.

Next, we performed an experiment in which we repeatedly subsampled

the initial SPSD matrices to generate matrices with different dimensions, i.e.,

different values of n. For each value of n, we computed the coherence of

the subsampled matrix, again using Definition 5.1. The right panel of Figure

5.2 shows the mean results over ten trials for both the MNIST and Abalone

datasets. As illustrated by this plot, the coherence of the Abalone dataset

grows much more quickly than that of the MNIST dataset. As illustrated by

the orthogonal random model, we expect incoherent matrices to exhibit a slow
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rate of growth, i.e. O(
√

log n 4
√
r). The plots for the other four datasets (not

shown) are comparable to the MNIST dataset. These results provide further

intuition for why the Nyström method is able to perform exact reconstruction

on all datasets except for Abalone.
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Figure 5.3: Coherence experiments with full rank synthetic datasets. Each plot
corresponds to matrices with a fixed singular value decay rate (resulting in a
fixed percentage of spectrum captured) and each line within a plot corresponds
to the average results of 10 randomly generated matrices with the specified
coherence.
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Full rank experiments

As previously discussed, the Nyström method hinges on two assumptions:

good low-rank structure of the matrix and the ability to extract information

from a small subset of l columns of the input matrix. In this section, we analyze

the effect of each of these assumptions on Nyström method performance on

full-rank matrices, using matrix coherence as a quantification of the latter

assumption. To do so, we devised a series of experiments using synthetic

datasets that precisely control the effects of each of these parameters.

To control the low-rank structure of the matrix, we generated artificial

datasets with exponentially decaying singular values with differing decay rates,

i.e., for i ∈ {1, . . . , n} we defined the ith singular value as σi = exp(−iη),

where η controls the rate of decay. For a fixed value of η, we then measured

the percentage of the spectrum captured by the top k singular values as follows:

Percent of Spectrum =

∑k
i=1 σi∑n
i=1 σi

. (5.26)

To control coherence, we generated singular vectors with varying coherences

by forcing the first singular vector to achieve our desired coherence and then

using QR to generate a full orthogonal basis. The smallest values of µ used in

our experiments correspond to randomly generated orthogonal matrices. We

report the results of our experiments in Figure 5.3. For these experiments

we set n = 2000 and k = 50. Each plot corresponds to matrices with a fixed

singular value decay rate (resulting in a fixed percentage of spectrum captured)
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and each line within a plot corresponds to the average results of 10 randomly

generated matrices with the specified coherence. Furthermore, results for each

such matrix for a fixed percentage of sampled columns are the means over 5

random subsets of columns.

There are two main observations to be drawn from our experiments. First,

as noted in previous work with the Nyström method, the Nyström method

generates better approximations for matrices with better low-rank structure,

i.e., matrices with a higher percentage of spectrum captured by the top k sin-

gular values. Second, following the same pattern as in the low-rank setting,

the Nyström method generates better approximations for lower coherence ma-

trices, and hence, matrix coherence appears to effectively capture the degree

to which information can be extracted from a subset of columns.

5.3 Kernel Stability

Up to this point, we have focused on reconstruction performance while analyz-

ing the Nyström method. In this section we take a different approach, as we

analyze the impact of kernel approximation on several common kernel-based

learning algorithms: KRR, SVM, SVR, Kernel PCA and graph Laplacian-

based regularization algorithms. Our stability analyses result in bounds on

the hypotheses directly in terms of the quality of the kernel approximation.

Some of the results in this section are based on work in Cortes et al. (2010).

In our analysis we assume that the kernel approximation is only used during
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training where the kernel approximation may serve to reduce resource require-

ments. At testing time the true kernel function is used. This scenario that

we are considering is standard for the Nyström method and other approxima-

tions. We consider the standard supervised learning setting where the learning

algorithm receives a sample of n labeled points S = ((x1, y1), . . . , (xn, yn)) ∈

(X × Y )n, where X is the input space and Y the set of labels, Y = R with

|y| ≤ M in the regression case, and Y = {−1,+1} in the classification case.

We will also assume that K′ is a symmetric, positive, and semi-definite (SPSD)

approximation of the SPSD kernel matrix K.2 Hence, K and K′ correspond to

positive definite symmetric kernel functions K(·, ·) and K ′(·, ·), respectively.

5.3.1 Kernel Ridge Regression

We first provide a stability analysis of Kernel Ridge Regression. The following

is the dual optimization problem solved by KRR (Saunders et al., 1998):

max
α∈Rn

λα⊤
α + αKα− 2α⊤y, (5.27)

where λ=nλ0>0 is the ridge parameter. The problem admits the closed form

solution α=(K+λI)−1y. We denote by h the hypothesis returned by Kernel

Ridge Regression when using the exact kernel matrix.

Proposition 5.1 Let h′ denote the hypothesis returned by Kernel Ridge Re-

2Note that we are using the notation K
′ to indicate an arbitrary SPSD approximation

of K. In contrast, throughout this thesis K̃ has referred to SPSD approximations generated
from sampling-based algorithms.
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gression when using the approximate kernel matrix K′ ∈ R
n×n. Furthermore,

define κ > 0 such that K(x, x) ≤ κ and K ′(x, x) ≤ κ for all x ∈ X. This

condition is verified with κ = 1 for Gaussian kernels for example. Then the

following inequalities hold for all x ∈ X,

|h′(x)− h(x)| ≤ κM

λ2
0n
‖K′ −K‖2. (5.28)

Proof. Let α
′ denote the solution obtained using the approximate kernel

matrix K′. We can write

α
′ −α = (K′ + λI)−1y − (K + λI)−1y (5.29)

= −
[
(K′ + λI)−1(K′ −K)(K + λI)−1

]
y, (5.30)

where we used the identity M′−1 −M−1 =−M′−1(M′ −M)M−1 valid for any

invertible matrices M,M′. Thus, ‖α′ −α‖ can be bounded as follows:

‖α′ −α‖ ≤ ‖(K′ + λI)−1‖2‖K′ −K‖2‖(K + λI)−1‖2‖y‖

≤ ‖K′ −K‖2 ‖y‖
λmin(K′ + λI)λmin(K + λI)

, (5.31)

where λmin(K
′ +λI) is the smallest singular value of K′ +λI and λmin(K+λI)

the smallest singular value of K + λI. The hypothesis h derived with the

exact kernel matrix is defined by h(x)=
∑n

i=1 αiK(x, xi)=α
⊤kx, where kx =

(K(x, x1), . . . , K(x, xn))⊤. By assumption, no approximation affects kx, thus
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the approximate hypothesis h′ is given by h′(x)=α
′⊤kx and

|h′(x)− h(x)| ≤ ‖α′ −α‖‖kx‖ ≤ κ
√
n‖α′ −α‖. (5.32)

Using the bound on ‖α′−α‖ given by inequality (5.31), the fact that the

singular values of (K′ + λI) and (K + λI) are larger than or equal to λ since

K and K′ are SPSD matrices, and ‖y‖≤√nM yields

|h′(x)− h(x)| ≤ κnM‖K′ −K‖2
λmin(K′ + λI)λmin(K + λI)

≤ κM

λ2
0n
‖K′ −K‖2.

2

The generalization bounds for KRR, e.g., stability bounds (Bousquet & Elis-

seeff, 2001), are of the form R(h) ≤ R̂(h)+O(1/
√
n), where R(h) denotes

the generalization error and R̂(h) the empirical error of a hypothesis h with

respect to the square loss. The proposition shows that |h′(x) − h(x)|2 =

O(‖K′−K‖22/λ4
0n

2). Thus, it suggests that the kernel approximation toler-

ated should be such that ‖K′−K‖22/λ4
0n

2 ≪ O(1/
√
n), that is, such that

‖K′−K‖2≪O(λ2
0n

3/4).

Note that the main bound used in the proof of the theorem, inequality

(5.31), is tight in the sense that it can be matched for some kernels K and

K ′. Indeed, let K and K ′ be the kernel functions defined by K(x, y)=β and

K ′(x, y) =β′ if x= y, K ′(x, y) = K(x, y) = 0 otherwise, with β, β′≥ 0. Then,

119



the corresponding kernel matrices for a sample S are K=βI and K′=β′I, and

the dual parameter vectors are given by α=y/(β+λ) and α
′=y/(β′+λ). Now,

since λmin(K
′ + λI)=β′+λ and λmin(K + λI)=β+λ, and ‖K′ −K‖=β′ − β,

the following equality holds:

‖α′ −α‖ =
|β′ − β|

(β′ + λ)(β + λ)
‖y‖ (5.33)

=
‖K′ −K‖

λmin(K′ + λI)λmin(K′ + λI)
‖y‖. (5.34)

This limits significant improvements of the bound of Proposition 5.1 using

similar techniques.

5.3.2 Support Vector Machines

This section analyzes the kernel stability of SVMs. For simplicity, we shall

consider the case where the classification function sought has no offset. In

practice, this corresponds to using a constant feature. Let Φ: X → F denote

a feature mapping from the input space X to a Hilbert space F corresponding

to some kernel K. The hypothesis set we consider is thus H = {h : ∃w ∈

F |∀x ∈ X, h(x)=w⊤Φ(x)}.

The following is the standard primal optimization problem for SVMs:

min
w

FK(w) =
1

2
‖w‖2 + C0R̂K(w), (5.35)

where R̂K(w)= 1
n

∑n
i=1 L(yiw

⊤Φ(xi)) is the empirical error and L(yiw
⊤Φ(xi))=
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max(0, 1− yiw
⊤Φ(xi)) is the hinge loss associated to the ith point.

In the following, we analyze the difference between the hypothesis h re-

turned by SVMs when trained on the sample S of n points and using a kernel

K, versus the hypothesis h′ obtained when training on the same sample with

the kernel K ′. For a fixed x ∈ X, we shall compare more specifically h(x) and

h′(x). Thus, we can work with the finite set Xn+1 = {x1, . . . , xn, xn+1}, with

xn+1 =x.

Different feature mappings Φ can be associated to the same kernel K. To

compare the solutions w and w′ of the optimization problems based on FK

and FK′ , we can choose the feature mappings Φ and Φ′ associated to K and

K ′ such that they both map to R
n+1 as follows. Let Kn+1 denote the Gram

matrix associated to K and K′
n+1 that of kernel K ′ for the set of points Xn+1.

Then for all u ∈ Xn+1, Φ and Φ′ can be defined by

Φ(u) = K
+1/2
n+1




K(x1, u)

...

K(xn+1, u)




(5.36)

and Φ′(u) = K′+1/2
n+1




K ′(x1, u)

...

K ′(xn+1, u)



, (5.37)

where K+
n+1 denotes the pseudo-inverse of Kn+1 and K′+

n+1 that of K′
n+1. It

is not hard to see then that for all u, v ∈ Xn+1, K(u, v) = Φ(u)⊤Φ(v) and
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K ′(u, v) = Φ′(u)⊤Φ′(v) (Schölkopf & Smola, 2002). Since the optimization

problem depends only on the sample S, we can use the feature mappings just

defined in the expression of FK and FK′ . This does not affect in any way the

standard SVMs optimization problem.

Let w ∈ R
n+1 denote the minimizer of FK and w′ that of FK′ . By defini-

tion, if we let ∆w denote w′ −w, for all s ∈ [0, 1], the following inequalities

hold:

FK(w) ≤ FK(w + s∆w) (5.38)

and FK′(w′) ≤ FK′(w′ − s∆w). (5.39)

Summing these two inequalities, rearranging terms, and using the identity

(‖w+s∆w‖2−‖w‖2)+(‖w′−s∆w‖2−‖w′‖2)=−2s(1−s)‖∆w‖2, we obtain as

in Bousquet and Elisseeff (2001):

s(1− s)‖∆w‖2 ≤ C0

[(
R̂K(w + s∆w)− R̂K(w)

)

+
(
R̂K′(w′ − s∆w)− R̂K′(w′)

)]
.

Note that w + s∆w = sw′ + (1 − s)w and w′ − s∆w = sw + (1 − s)w′.

Then, by the convexity of the hinge loss and thus R̂K and R̂K′ , the following
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inequalities hold:

R̂K(w + s∆w)−R̂K(w)≤s(R̂K(w′)−R̂K(w))

R̂K′(w′−s∆w)−R̂K′(w′)≤−s(R̂K′(w′)−R̂K′(w)).

Plugging in these inequalities on the left-hand side, simplifying by s and taking

the limit s→0 yields

‖∆w‖2 ≤ C0

[(
R̂K(w′)−R̂K′(w′)

)
+

(
R̂K′(w)−R̂K(w)

)]

=
C0

n

n∑

i=1

[(
L(yiw

′⊤Φ(xi))− L(yiw
′⊤Φ′(xi))

)

+
(
L(yiw

⊤Φ′(xi))− L(yiw
⊤Φ(xi)

)]
,

where the last inequality results from the definition of the empirical error.

Since the hinge loss is 1-Lipschitz, we can bound the terms on the right-hand

side as follows:

‖∆w‖2 ≤ C0

n

n∑

i=1

[
‖w′‖‖Φ′(xi)− Φ(xi)‖

+ ‖w‖‖Φ′(xi)− Φ(xi)‖
]

(5.40)

=
C0

n

n∑

i=1

(‖w′‖+ ‖w‖) ‖Φ′(xi)− Φ(xi)‖. (5.41)

Let ei denote the ith unit vector of R
n+1, then (K(x1, xi), . . . , K(xn+1, xi))

⊤=
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Kn+1ei. Thus, in view of the definition of Φ, for all i ∈ [1, n+ 1],

Φ(xi) = K
+1/2
n+1 [K(x1, xi), . . . , K(xn, xi), K(x, xi)]

⊤

= K
+1/2
n+1 Kn+1ei = K

1/2
n+1ei, (5.42)

and similarly Φ′(xi)=K
′1/2
n+1ei. K

1/2
n+1ei is the ith column of K

1/2
n+1 and similarly

K′1/2ei the ith column of K
′1/2
n+1. Thus, (5.41) can be rewritten as

‖w′ −w‖2 ≤ C0

n

n∑

i=1

(
‖w′‖+ ‖w‖

)
‖(K′1/2

n+1 −K
1/2
n+1)ei‖.

As for the case of KRR, we shall assume that there exists κ > 0 such that

K(x, x)≤ κ and K ′(x, x)≤ κ for all x ∈ Xn+1. Now, since w can be written

in terms of the dual variables 0≤αi≤C, C=C0/n as w=
∑n

i=1 αiK(xi, ·), it

can be bounded as ‖w‖ ≤ nC0/nκ
1/2 = κ1/2C0 and similarly ‖w′‖ ≤ κ1/2C0.

Thus, we can write

‖w′ −w‖2 ≤ 2C2
0κ

1/2

n

n∑

i=1

‖(K′1/2
n+1 −K

1/2
n+1)ei‖

≤ 2C2
0κ

1/2

n

n∑

i=1

‖(K′1/2
n+1 −K

1/2
n+1)‖‖ei‖

= 2C2
0κ

1/2‖K′1/2
n+1 −K

1/2
n+1‖. (5.43)

Let K denote the Gram matrix associated to K and K′ that of kernel K ′ for

the sample S. Then, using Lemma 5.1 the following result holds.
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Lemma 5.1 Let M and M′ be two n×n SPSD matrices. Then, the following

bound holds for the difference of the square root matrices: ‖M′1/2 −M1/2‖2 ≤

‖M′ −M‖1/2
2 .

Proof. Since M′−M � ‖M′−M‖2I where I is the n×n identity matrix. Thus,

M′�M + ‖M′−M‖2I and M′1/2 � (M + λI)1/2, with λ=‖M′−M‖2. Thus,

λmax(M
′) ≤ (λmax(M) + λ)1/2 ≤ λmax(M)1/2 + λ1/2, by sub-additivity of

√·.

This shows that λmax(M
′)−λmax(M)1/2 ≤ λ and by symmetry λmax(M)1/2−

λmax(M
′) ≤ λ1/2, thus ‖M′1/2 −M1/2‖2 ≤ ‖M′ −M‖1/2

2 , which proves the

statement of the lemma. 2

Proposition 5.2 Let h′ denote the hypothesis returned by SVMs when using

the approximate kernel matrix K′ ∈ R
n×n. Then, the following inequality holds

for all x ∈ X :

|h′(x)− h(x)| ≤
√

2κ
3

4C0‖K′ −K‖
1

4

2

[
1 +

[‖K′−K‖2

4κ

] 1

4

]
. (5.44)
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Proof. In view of (5.42) and (5.43), the following holds:

|h′(x)− h(x)|

= ‖w′⊤Φ′(x)−w⊤Φ(x)‖

= ‖(w′ −w)⊤Φ′(x) + w⊤(Φ′(x)− Φ(x))‖

≤ ‖w′ −w‖‖Φ′(x)‖+ ‖w‖‖Φ′(x)− Φ(x)‖

= ‖w′ −w‖‖Φ′(x)‖+ ‖w‖‖Φ′(xn+1)− Φ(xn+1)‖

≤
(
2C2

0κ
1/2‖K′1/2

n+1 −K
1/2
n+1‖

)1/2

κ1/2

+ κ1/2C0‖(K′1/2
n+1 −K

1/2
n+1)en+1‖

≤
√

2κ3/4C0‖K′1/2
n+1 −K

1/2
n+1‖1/2

+ κ1/2C0‖K′1/2
n+1 −K

1/2
n+1‖.

Now, by Lemma 5.1, ‖K′1/2
n+1−K

1/2
n+1‖2≤‖K′

n+1−Kn+1‖1/2
2 . By assumption, the

kernel approximation is only used at training time so K(x, xi)=K ′(x, xi), for

all i∈ [1, n], and since by definition x=xn+1, the last rows or the last columns

of the matrices K′
n+1 and Kn+1 coincide. Therefore, the matrix K′

n+1−Kn+1

coincides with the matrix K′−K bordered with a zero-column and zero-row

and ‖K′1/2
n+1−K

1/2
n+1‖2≤‖K′−K‖1/2

2 . Thus,

|h′(x)− h(x)| ≤
√

2κ3/4C0‖K′ −K‖1/4 + κ1/2C0‖K′ −K‖1/2, (5.45)

which is exactly the statement of the proposition. 2
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Since the hinge loss l is 1-Lipschitz, Proposition 5.2 leads directly to the

following bound on the pointwise difference of the hinge loss between the hy-

potheses h′ and h.

Corollary 5.1 Let h′ denote the hypothesis returned by SVMs when using the

approximate kernel matrix K′ ∈ R
n×n. Then, the following inequality holds

for all x ∈ X and y ∈ Y:

∣∣L
(
yh′(x)

)
− L

(
yh(x)

)∣∣ ≤
√

2κ
3

4C0‖K′ −K‖
1

4

2

[
1 +

[‖K′−K‖2

4κ

] 1

4

]
. (5.46)

The bounds we obtain for SVMs are weaker than our bound for KRR. This

is due mainly to the different loss functions defining the optimization problems

of these algorithms.

5.3.3 Support Vector Regression

This section analyzes the kernel stability of Support Vector Regression. As

with the case of SVMs, we shall consider the case where the regression function

sought has no offset. Let Φ: X → F denote a feature mapping from the input

space X to a Hilbert space F corresponding to some kernel K. The hypothesis

set we consider is thus H = {h : ∃w ∈ F |∀x ∈ X, h(x) = w⊤Φ(x)}. The

standard primal optimization problem for SVR is identical to that of SVMs as

expressed in (5.35), except that the hinge loss is replaced by the ǫ-insensitive

loss, i.e., L(yi −w⊤Φ(xi))=max(0, |yi −w⊤Φ(xi)| − ǫ).

Our goal is to analyze the difference between the hypothesis h returned by
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SVR when trained on the sample S of n points and using a kernelK, versus the

hypothesis h′ obtained when training on the same sample with the kernel K ′.

In the previous section, we presented perturbation bounds for SVMs. However,

this analysis is in fact more general, as the proof technique from Section 5.3.2

holds for all optimization problems of the form described in (5.35) that use

convex and Lipschitz loss functions. Hence, Corollary 5.2 details the kernel

stability bound for SVR that follows directly from the analysis in Section

5.3.2 along with the fact that the ǫ-insensitive loss function is convex and

1-Lipschitz.

Corollary 5.2 Let h′ denote the hypothesis returned by SVR when using the

approximate kernel matrix K′ ∈ R
n×n. Then, the following inequality holds

for all x ∈ X :

|h′(x)− h(x)| ≤
√

2κ
3

4C0‖K′ −K‖
1

4

2

[
1 +

[‖K′−K‖2

4κ

] 1

4

]
. (5.47)

5.3.4 Graph Laplacian regularization algorithms

We next study the kernel stability of graph-Laplacian regularization algo-

rithms such as that of Belkin et al. (2004). Given a connected weighted graph

G= (X,E) in which edge weights can be interpreted as similarities between

vertices, the task consists of predicting the vertex labels of u vertices using a

labeled training sample S of n vertices. The input space X is thus reduced

to the set of vertices, and a hypothesis h : X → R can be identified with the
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finite-dimensional vector h of its predictions h = [h(x1), . . . , h(xn+u)]
⊤. The

hypothesis set H can thus be identified with R
n+u here. Let hS denote the re-

striction of h to the training points, [h(x1), . . . , h(xn)]⊤∈R
n, and similarly let

yS denote [y1, . . . , yn]⊤∈R
n. Then, the following is the optimization problem

corresponding to this problem:

min
h∈H

h⊤Lh +
C0

n
(hS − yS)⊤(hS − yS) (5.48)

subject to h⊤1 = 0,

where L is the graph Laplacian and 1 the column vector with all entries equal

to 1. Thus, h⊤Lh =
∑n

ij=1wij(h(xi)− h(xj))
2, for some weight matrix (wij).

The label vector y is assumed to be centered, which implies that 1⊤y = 0.

Since the graph is connected, the singular value zero of the Laplacian has

multiplicity one.

Define IS ∈R
(n+u)×(n+u) to be the diagonal matrix with [IS]i,i = 1 if i ≤ n

and 0 otherwise. Maintaining the notation used in Belkin et al. (2004), we let

PH denote the projection on the hyperplane H orthogonal to 1 and let M =

PH

(
n
C0

L + IS

)
and M′ = PH

(
n
C0

L′ + IS

)
. We denote by h the hypothesis

returned by the algorithm when using the exact kernel matrix L and by L′ an

approximate graph Laplacian such that h⊤L′h =
∑n

ij=1w
′
ij(h(xi) − h(xj))

2,

based on matrix (w′
ij) instead of (wij). We shall assume that there exist M>0

such that yi≤M for i∈ [1, n].

Proposition 5.3 Let h′ denote the hypothesis returned by the graph-Laplacian
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regularization algorithm when using an approximate Laplacian L′ ∈ R
n×n.

Then, the following inequality holds:

‖h′ − h‖ ≤ n3/2M/C0

( n
C0

λ̂2 − 1)2
‖L′ − L‖, (5.49)

where λ̂2 =max{λ2, λ
′
2} with λ2 denoting the second smallest singular value of

the kernel matrix L and λ′2 the second smallest singular value of L′.

Proof. The closed-form solution of (5.48) is given by Belkin et al. (2004):

h=
(
PH

(
n
C0

L+IS

))−1

yS. Thus, we can use that expression and the matrix

identity for (M−1−M′−1) we already used in the analysis of KRR to write

‖h− h′‖ = ‖M−1yS −M′−1yS‖

= ‖(M−1 −M′−1)yS‖

= ‖−M−1(M−M′)M′−1yS‖

≤ n

C0

‖−M−1(L− L′)M′−1yS‖

≤ n

C0

‖M−1‖ ‖M′−1‖ ‖yS‖ ‖L′ − L‖. (5.50)

For any column matrix z ∈R
(n+u)×1, by the triangle inequality and the pro-
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jection property ‖PHz‖ ≤ ‖z‖, the following inequalities hold:

‖ n
C0

PHL‖ = ‖ n
C0

PHL + PHISz− PHISz‖

≤ ‖ n
C0

PHL + PHISz‖+ ‖PHISz‖

≤ ‖PH

( n

C0

L + IS

)
z‖+ ‖ISz‖.

This yields the lower bound:

‖Mz‖ = ‖PH

(
n

C0

L + IS

)
z‖

≥ n

C0

‖PHL‖ − ‖ISz‖

≥
(
n

C0

λ2 − 1

)
‖z‖,

which gives the following upper bounds on ‖M−1‖ and ‖M′−1‖:

‖M−1‖ ≤ 1
n
C0

λ2 − 1
and ‖M′−1‖ ≤ 1

n
C0

λ′2 − 1
.

Plugging in these inequalities in (5.50) and using ‖yS‖ ≤ n1/2M lead to

‖h− h′‖ ≤ n3/2M/C0

( n
C0

λ2 − 1)( n
C0

λ′2 − 1)
‖L′ − L‖.

2

The generalization bounds for the graph-Laplacian algorithm are of the form

R(h)≤ R̂(h) + O( n
( n

C0
λ2−1)2

) (Belkin et al., 2004). In view of the bound given
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by the theorem, this suggests that the approximation tolerated should verify

‖L′ − L‖≪O(1/
√
n).

5.3.5 Kernel Principal Component Analysis

Let K be a PDS kernel defined over X ×X and Φ: X → R
N a feature mapping

corresponding to K. Consider a zero-mean sample S = (x1, . . . , xn). Let X

denote the matrix (Φ(x1), . . . ,Φ(xn)). The covariance matrix C and the kernel

matrix K associated to S are defined by C = XX⊤ and K = X⊤X.3 Principal

Component Analysis (PCA) is defined by the projection over the top k singular

vectors of C. Since X admits the following thin singular value decomposition,

X = VΛU⊤, C and K can be rewritten as C = VΣV⊤ and K = UΣU⊤,

where Σ = Λ2 is the diagonal matrix of the non-zero singular values of C and

K. V is thus the matrix of the singular vectors of C.

Note that V = XUΣ−1/2. Thus, the singular vector v of C associated to

the singular value σ coincides with Xu√
σ
, where u is the singular vector of K

associated to σ. Given an arbitrary feature vector Φ(x), x ∈ X , its projection

over the singular vector v is thus defined by

Φ(x)⊤v = Φ(x)⊤
Xu√
σ

=
k⊤

x u√
σ
, (5.51)

where kx = (K(x1, x), . . . , K(xn, x))
⊤. Thus, KPCA is fully defined by the

top k singular vectors of K, u1, . . . ,uk, and the corresponding singular values.

3Note that in this section, C refers to the covariance matrix, and not the n× l submatrix
used for sampling-based matrix approximations.
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We now define PVk
(Φ(x)) as the projection of Φ(x) onto the top k singular

vectors of C, and observe that

‖PVk
(Φ(x))‖2 =

k∑

i=1

(Φ(x)⊤vi)
2 =

k∑

i=1

k⊤
x uiu

⊤
i kx

σi

= k⊤
x UkΣ

−1
k U⊤

k kx.

In particular, for j ∈ [1, n], kxj
= Kej, and we have:

Ê
[
‖PVk

(Φ(x))‖2
]

=
1

n

n∑

j=1

‖PVk
(Φ(xj))‖2 =

1

n

n∑

j=1

e⊤
j KUkΣ

−1
k U⊤

k Kej

=
1

n

n∑

j=1

e⊤
j UkΣkU

⊤
k ej =

1

n

k∑

i=1

σi,

where Ê is an expectation over the sample S. Let R̂(K) = Ê
[
‖Φ(x)‖2

]
−

Ê
[
‖PVk

(Φ(x))‖2
]

denote the average empirical residue of the kernel K. Fol-

lowing similar steps as above it can be shown that Ê
[
‖Φ(x)‖2

]
= 1

n

∑n
i=1 σi,

and so we have:

R̂(K) =
1

n

∑

i>k

σi. (5.52)

If the kernel K is approximated with the PDS kernel K ′, the difference of

empirical residues is thus

|R̂(K ′)− R̂(K)| = 1

n

∣∣∣
∑

i>k

σi(K
′)− σi(K)

∣∣∣ (5.53)

where σi(·) refers to the ith singular value of its argument. We now present

133



Proposition 5.4, which provides a bound on the effect of kernel perturbation

on empirical residuals.

Proposition 5.4 The difference of empirical residuals of K ′ and K is bounded

as follows:

|R̂(K ′)− R̂(K)| ≤
(
1− k

n

)
‖K′ −K‖2. (5.54)

Proof. The result follows by combining (5.53) with Weyl’s inequality (Golub

& Loan, 1983), which states that |λi(K
′)− λi(K)| ≤ ‖K′ −K‖2. 2

Similar bounds exist for the Frobenius norm. In the remainder of this sec-

tion, we show how Proposition 5.4 can be used to derive various bounds for

applications of Kernel PCA.

Expected residual

We first explore the effect of kernel perturbation on the expected residual. Let

Vopt
k be the matrix of k orthonormal vectors that minimize the average residue

over all possible datapoints, i.e. Vopt
k is the minimizer of R̂(K) as n → ∞.

We then define R(K) as the expected residue of the kernel, EX
[
‖Φ(x)‖2

]
−

E
[
‖PV opt

k
(Φ(x))‖2

]
. Previous work has focused on bounding |R(K) − R̂(K)|

as summarized by Theorem 5.6, which holds under Assumption 5.1 (Zwald

et al., 2004; Shawe-Taylor et al., 2005).

Assumption 5.1 ((Zwald et al., 2004), Assumption 1) Let D denote a

distribution on X according to which x1, . . . , xn are sampled i.i.d. Define K to
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be a positive definite function on X and Hk the associated reproducing kernel

Hilbert space. We assume that:

• for all x ∈ X , K(x, ·) is D-measurable.

• there exists κ > 0 such that K(x, x) ≤ κ D-almost surely.

• Hk is separable.

Theorem 5.6 ((Zwald et al., 2004), Thm 4) Under Assumption 5.1, with

probability at least 1− δ,

−κ
√

log(3/δ)

2n
≤ R(K)− R̂(K) ≤ 2

√
k

n

√√√√
n∑

i=1

K2(xi, xi) + 3κ

√
log(3/δ)

2n
.

(5.55)

Since we are focusing on kernel approximation, we would like to analyze

|R(K) − R̂(K ′)|, or the additional residual error incurred by using a kernel

approximation in addition to empirically estimating the optimal projection

subspace from a sample of n points. Corollary 5.3 provides a bound of this

quantity, while Corollary 5.4 presents a simplified bound in the case of nor-

malized kernels.

Corollary 5.3 Under Assumption 5.1 and with probability at least 1− δ, the

difference between the expected residual of K and the empirical residual of K ′
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is bounded as follows:

|R(K)−R̂(K ′)| ≤ 2
√
k

n

√√√√
n∑

i=1

K2(xi, xi)+3κ

√
log(3/δ)

2n
+

(
1−k

n

)
‖K′−K‖2.

(5.56)

Proof. Using the triangle inequality we have,

|R(K)− R̂(K ′)| ≤ |R(K)− R̂(K)|+ |R̂(K ′)− R̂(K)| . (5.57)

We bound the first term on the RHS using Theorem 5.6 and bound the second

term on the RHS using Proposition 5.4. 2

Corollary 5.4 Assume that K(·, ·) is normalized, i.e., K(x, x) = 1 D-almost

surely, as in the case of Gaussian kernels. Then under Assumption 5.1 and

with probability at least 1 − δ, the difference between the expected residual of

K and the empirical residual of K ′ is bounded as follows:

|R(K) − R̂(K ′)| ≤ 2

√
k

n
+ 3κ

√
log(3/δ)

2n
+

(
1 − k

n

)
‖K′ − K‖2. (5.58)

Subspace perturbation

In the previous analysis, we focused on residuals, which involved projecting the

datapoints onto subspaces spanned by the singular vectors of the covariance

matrix. We now focus on the effect of kernel perturbation on the subspaces

themselves. We define PŜk
= VkV

⊤
k and PSk

= Vopt
k Vopt

k

⊤
as the orthogonal
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projectors onto the subspaces spanned by the top k singular vectors of the

empirical and process covariance matrices, respectively, associated withK(·, ·).

Similarly, we define PŜ′

k
as the orthogonal projector onto the subspace spanned

by the top k singular vectors of the empirical covariance matrix associated

with K ′(·, ·). We would like to analyze ‖PSk
−PŜ′

k
‖F , or the difference in the

approximate empirical subspace and the optimal process subspace. Drawing

upon the work of Zwald and Blanchard (2005), as summarized by Theorems

5.7 and 5.8, we derive our desired bound on subspace perturbation in Corollary

5.5.

Theorem 5.7 ((Zwald & Blanchard, 2005), Thm 3) Let K be a kernel

matrix with simple nonzero singular values σ1 > σ2 > . . ., and define k as an

integer such that σk > 0 and ∆k = 1
2
(σk − σk+1). Let K′ be a perturbation of

K such that K′ is still positive semidefinite and ‖K−K′‖F ≤ ∆k/2. Then the

following bound holds on the difference between the orthogonal projectors onto

the subspaces spanned by the top k singular vectors of the covariance matrices

associated with K and K′:

‖PŜk
− PŜ′

k
‖F ≤

‖K′ −K‖F
∆k

(5.59)

Theorem 5.8 ((Zwald & Blanchard, 2005), Thm 4) Denote the singu-

lar values of the kernel operator associated with K(·, ·) by σ̄1 > σ̄2 > . . ., and

define k as an integer such that σ̄k > 0 and ∆̄k = 1
2
(σ̄k − σ̄k+1). Assume that
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supx∈X K(x, x) ≤ κ. Define

Bk =
2κ

∆̄k

(
1 +

√
log(1/δ

2

)
. (5.60)

Then, with probability at least 1−δ, provided that n ≥ B2
k, the following bound

holds on the difference between the orthogonal projectors onto the subspaces

spanned by the top k singular vectors of the empirical and process covariance

matrices associated with K(·, ·):

‖PSk
− PŜk

‖F ≤
Bk√
n

(5.61)

Corollary 5.5 Following the definitions and assumptions of Theorems 5.7

and 5.8, then, with probability at least 1 − δ, the following bound holds on

the difference between the orthogonal projectors onto the subspaces spanned by

the top k singular vectors of the empirical covariance matrix associated with

K ′(·, ·) and the process covariance matrix associated with K(·, ·):

‖PSk
− PŜ′

k
‖F ≤

Bk√
n

+
‖K′ −K‖F

∆k

(5.62)

Proof. Using the triangle inequality we have,

‖PSk
− PŜ′

k
‖F ≤ ‖PSk

− PŜk
‖F + ‖PŜk

− PŜ′

k
‖F . (5.63)
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Next, we bound the first term on the RHS using Theorem 5.8 and bound the

second term on the RHS using Theorem 5.7. 2

In summary, Corollaries 5.3 and 5.4 show the connections between ex-

pected residuals and the reconstruction error of the sample kernel matrix due

to kernel perturbation. Similarly, Corollary 5.5 shows the connection between

this reconstruction error and subspace perturbation. Together, these results

generalize previous theory on expected residuals and subspace perturbation to

also account for the effect of perturbations of the empirical kernel matrix.

5.3.6 Application to Nyström method

The previous section provided stability analyses for several common learning

algorithms, studying the effect of using an approximate kernel matrix instead

of the true one. The difference in hypothesis value is expressed simply in terms

of the difference between the kernels measured by some norm. Although these

bounds are general bounds that are independent of how the approximation

is obtained (so long as K′ remains SPSD), one relevant application of these

bounds involves the Nyström method. As shown by Williams and Seeger

(2000), later by Drineas and Mahoney (2005); Talwalkar et al. (2008); Zhang

et al. (2008), low-rank approximations of the kernel matrix via the Nyström

method can provide an effective technique for tackling large-scale data sets.

However, all previous theoretical studies analyzing the performance of the

Nyström method have focused on the quality of the low-rank approximations,
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rather than the performance of the kernel learning algorithms used in con-

junction with these approximations. In this section, we show how we can

leverage kernel stability analysis to present novel performance guarantees for

the Nyström method in the context of kernel learning algorithms.

Nyström Kernel Ridge Regression

The accuracy of low-rank Nyström approximations was discussed in Section

5.1. The following corollary, which is a simplified adaptation of Theorem 5.2,

gives an upper bound on the norm-2 error of the Nyström approximation of

the form ‖K−K̃‖2/‖K‖2 ≤ ‖K−Kk‖2/‖K‖2 +O(1/
√
l). We denote by Kmax

the maximum diagonal entry of K.

Corollary 5.6 Let K̃ denote the rank-k Nyström approximation of K based

on l columns sampled uniformly at random with replacement from K, and Kk

the best rank-k approximation of K. Then, with probability at least 1− δ, the

following inequalities hold for any sample of size l:

‖K− K̃‖2 ≤ ‖K−Kk‖2 + n√
l
Kmax

(
2 + log 1

δ

)
.

Corollary 5.6 focuses on the quality of low-rank approximations. Combining

the analysis from Section 5.3.1 with this corollary enables us to bound the rela-

tive performance of the kernel learning algorithms when the Nyström method

is used as a means of scaling kernel learning algorithms. To illustrate this

point, Theorem 5.9 uses Proposition 5.1 along with Corollary 5.6 to upper
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bound the relative performance of KRR as a function of the approximation

accuracy of the Nyström method (a similar technique can be used to bound

the error of the Nyström approximation when used with the other algorithms

discussed in Section 5.3).

Theorem 5.9 Let h′ denote the hypothesis returned by Kernel Ridge Regres-

sion when using the approximate rank-k kernel K̃ ∈ R
n×n generated using the

Nyström method. Then, with probability at least 1− δ, the following inequality

holds for all x ∈ X,

|h′(x)− h(x)| ≤ κM

λ2
0n

[
‖K−Kk‖2 + n√

l
Kmax

(
2 + log 1

δ

)]
.

We note that the experimental results of Figure 3.9 are useful in analyz-

ing our theoretical analysis. In these experiments, we generated approximate

kernel matrices using the Nyström method, and for approximations of vary-

ing quality we measured the perturbation of associated KRR hypotheses (see

Section 3.2.2 for details of the experimental design). The experimental results

suggest a linear relationship between kernel approximation and hypothesis

perturbation, which corroborates the shape of the bound in Proposition 5.1.

5.4 Summary

In this section we presented a variety of analyses of the Nyström method in

the context of machine learning. We first presented theoretical results com-
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paring the quality of the Nyström approximation to the ‘best’ low-rank ap-

proximation, under sampling assumptions that are commonly used in practice,

namely, uniform sampling without replacement. These bounds hold for both

the standard Nyström method as well as the ensemble Nyström method. We

then made a connection between matrix coherence and the performance of the

Nyström method. We derived novel coherence-based bounds for the Nyström

method in the low-rank setting, and presented empirical studies that convinc-

ingly demonstrate the ability of matrix coherence to measure the degree to

which information can be extracted from a subset of columns both in the

low-rank and full-rank settings. Finally, we addressed the issue of how kernel

approximation affects the performance of learning algorithms. Our analysis is

independent of how the approximation is obtained and simply expresses the

change in hypothesis value in terms of the difference between the approximate

kernel matrix and the true one measured by some norm. We also provided a

specific analysis of the Nyström low-rank approximation in this context and

discussed experimental results that support our theoretical analysis.
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Chapter 6

Conclusion

We addressed the question of how machine learning algorithms, in particular

kernel methods, can handle large-scale data. We focused on an attractive so-

lution to this problem that involves sampling-based techniques to efficiently

generate low-rank matrix approximations. In Chapter 2, we answered the

question of what sampling-based approximation should be used. We discussed

two common sampling-based methods, providing novel theoretical insights re-

garding their suitability for various applications and experimental results moti-

vated by this theory. Our results show that one of these methods, the Nyström

method, is superior in the context of large-scale learning. In Chapter 3, we

focused on the applicability of sampling-based low-rank approximations for

practical applications, showing the effectiveness of approximation techniques

on a variety of problems. In particular, we presented the largest study to-date

for manifold learning using the Nyström method to extract low-dimensional
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structure from high-dimensional data to effectively cluster face images. We

also discussed the connection between low-rank matrices and the Woodbury

approximation, reporting good empirical results for Kernel Ridge Regression

and Kernel Logistic Regression using the Nyström method.

An important open question from these two chapters involves obtaining

a better characterization of approximate low-dimensional embeddings, as this

task appears to be closely related to the task of approximating spectral recon-

struction, yet the empirical results are quite different. Additionally, a more

in-depth study is required to understand the convergence properties of the

Nyström Kernel Logistic Regression algorithm and to compare its performance

relative to other optimization techniques, e.g., Gradient Descent, Conjugate

Gradient, Iterative Scaling, Quasi-Newton, etc.

Next, in Chapter 4, we addressed a crucial aspect of these sampling based

algorithms, namely, the method used to select a subset of columns. We fo-

cused our discussion on the Nyström method given its superior performance

on large-scale tasks in Chapters 2 and 3. We first studied both fixed and adap-

tive sampling schemes, and showed that given fixed time constraints, uniform

sampling works remarkably well. Next, we introduced a promising ensemble

technique that can be easily parallelized and generates superior approxima-

tions, both in theory and in practice.

This area remains ripe for future work. A finer theoretical analysis of our

Nyström adaptive sampling technique is required, perhaps inspired by work in

(Deshpande et al., 2006). Additionally, new sampling distributions suggested
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in recent work have led to improved theoretical bounds for matrix projection

reconstruction (Drineas et al., 2008; Mahoney & Drineas, 2009). Although

these sampling techniques are inefficient to compute as they are derived from

the singular vectors of K (in the case of a SPSD matrix), perhaps similar sam-

pling distributions can be computed more efficiently and be used to generate

superior low-rank approximations. Alternatively, sampling methods that ac-

count for the learning task that will use the resultant low-rank approximation

could also lead to better performance (this idea has been studied by (Bach

& Jordan, 2005) for the special case of the Incomplete Cholesky algorithm).

Finally, in reference to the ensemble Nyström algorithm, an interesting avenue

of future work involves the use of different types of base learners to generate

an ensemble approximation. For instance, base learners could be generated

using other (or a combination of) sampling schemes discussed in Sections 4.1

and 4.2, or even using a variety of low-rank approximation methods, e.g., a

combination of Nyström and Column-sampling approximations.

Finally, in Section 5, we provided a variety of theoretical analyses of the

Nyström method. We first presented general guarantees on approximation

accuracy and then introduced coherence-based bounds. We also studied the

effect of matrix approximation on actual kernel-based algorithms. There is

room for improvement in the analysis of the Nyström method. The first set of

bounds can likely be tightened by performing a direct analysis of the Nyström

method, rather than using an indirect analysis based on approximation of

matrix multiplication. The coherence-based bounds can be generalized to
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matrices with full-rank, and would be more practically relevant if there existed

algorithms to efficiently estimate the coherence of a matrix to determine the

applicability of the Nyström method on a case-by-case basis. In terms of

kernel perturbation, future work involves analyzing additional kernel-based

algorithms and tightening existing perturbation bounds, especially those for

SVMs and SVR.

In summary, we have shown that sampling-based low-rank approximation is

an effective tool that extends to large-scale applications the benefits of kernel-

based algorithms, namely their empirical effectiveness and solid theoretical

underpinnings.
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