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Abstract

Modern Cryptography is based on computational intractability assumptions, e.g.,

Factoring, Discrete Logarithm, Diffie-Helman etc. However, since an assumption

might be proven incorrect, there has been a lot of focus in order to construct

cryptographic primitives based on the possibly most minimal assumption. The

most popular minimal assumption, which is implied by the existence of almost all

cryptographic primitives, is the existence of One Way Functions. Coin-Flipping

protocols are known to be implied by One-Way Functions, however, a complete

characterization of the inverse direction is not known. There was even speculation

that weak notions of Coin Flipping Protocols might be strictly weaker than One

Way Functions. In this thesis we show that even very weak notions of Coin Flipping

protocols do imply One Way Functions.

In particular we show that the existence of a coin-flipping protocol safe against

any non-trivial constant bias (e.g., .499) implies the existence of One Way Func-

tions. This improves upon a recent result of Haitner and Omri [FOCS ’11], who

proved this implication for protocols with bias
√

2−1
2
− o(1) ≈ .207. Unlike the

former result result, our result also holds for weak coin-flipping protocols.
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Chapter 1

Introduction

A central focus of modern cryptography has been to investigate the weakest possi-

ble assumptions under which various cryptographic primitives exist. This direction

of research has been quite fruitful, and minimal assumptions are known for a wide

variety of primitives. In particular, it has been shown that one-way functions

(i.e., easy to compute but hard to invert) imply pseudorandom generators, pseu-

dorandom functions, symmetric-key encryption/message authentication, commit-

ment schemes, and digital signatures [GGM84, GGM86, HILL99, HNO+09, Nao91,

NY89, GL89, Rom90], where one-way functions were also shown to be implied by

each of these primitives [IL89].

An important exception to the above successful characterization, however, is

the case of coin-flipping (-tossing) protocols. A coin-flipping protocol [Blu81] allows

the honest parties to jointly flip an unbiased coin, where even a cheating (efficient)

party cannot bias the outcome of the protocol by very much. Specifically, a coin-

flipping protocol is δ-bias if no efficient cheating party can make the common

output to be 1, or to be 0, with probability greater than 1
2

+ δ. While one-

way functions are known to imply negligible-bias coin-flipping protocols [Blu81,

Nao91, HILL99], the other direction is less clear. Impagliazzo and Luby [IL89]

showed that Θ (1/
√
m)-bias coin-flipping protocols imply one-way functions, where
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m is the number of rounds in the protocol.1 Recently, Maji et. al. [MPS10]

extended the above for (1
2
− 1/ poly(n))-bias constant-round protocols, where n is

the security parameter. And more recently, Haitner and Omri [HO11] have shown

the above implication holds for (
√

2−1
2
− o(1) ≈ 0.207)-bias coin-flipping protocols

(of arbitrary round complexity). No such implications were known for any other

choice of parameters, and in particular for protocols with bias greater than
√

2−1
2

with super-constant round complexity.

1.1 Our Result

In this work, we make progress towards answering the question of whether coin-

flipping protocols also imply one-way functions. We show that (even weak) coin-

flipping protocols, safe against any non-trivial bias (e.g., 0.4999), do in fact imply

such functions. We note that unlike [HO11], but like [IL89, MPS10], our result also

applies to the so-called weak coin-flipping protocols (see Section 2.3 for the formal

definition of strong and weak coin-flipping protocols). Specifically, we prove the

following theorem.

Theorem 1.1.1 (informal). For any c > 0, the existence of a (1
2
− c)-bias coin-

flipping protocol (of any round complexity) implies the existence of one-way func-

tions.

Note that 1
2
-bias coin-flipping protocol requires no assumption (i.e., one party

flips a coin and announces the result to the other party). So our result is tight as

long as constant biases (i.e., independent of the security parameter) are concerned.

1In the original paper, only 1
2 + neg(m) was stated, where the above term follows the proof

technique hinted at the original paper and the result by Cleve [CI93].
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To prove Theorem 1.1.1, we observe a connection between the success proba-

bility of the best (valid) attacks in a two-party game (i.e., chess) and the success

of the biased-continuation attack of [HO11] in winning this game (see more in

Section 1.3). The scope of this interesting connection seems to extend beyond

the question in the focus of this paper, and we hope that it will find additional

implications.

1.2 Related Results

As mentioned above, [IL89] showed that negligible-bias coin-flipping protocols im-

ply one-way functions. Maji et.al. [MPS10] proved the same for (1
2
− o(1))-bias

yet constant-round protocols. Finally, Haitner and Omri [HO11] showed that the

above implication holds for
√

2−1
2
− o(1) ≈ 0.207)-bias (strong) coin-flipping pro-

tocols (of arbitrary round complexity). Results of weaker complexity implications

are also known.

Zachos [Zac86] has shown that non-trivial (i.e., (1
2
−o(1))-bias), constant-round

coin-flipping protocols imply that NP * BPP, where Maji et.al. [MPS10] proved

the same implication for (1
4
− o(1))-bias coin-flipping protocols of arbitrary round

complexity. Finally, it is well known that the existence of non-trivial coin-flipping

protocols implies that PSPACE * BPP. Apart from [HO11], all the above results

extend to weak coin-flipping protocols. See Table 1.1 for a summary of the above

results.

Information theoretic coin-flipping protocols (i.e., whose security holds against

all-powerful attackers) were shown to exist in the quantum world; Mochon [Moc07]

1Only holds for strong coin-flipping protocols.
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Implication Protocol type Paper
Existence of OWFs (1

2
− c)-bias, for some c > 0 This work

Existence of OWFs (
√

2−1
2
− o(1))-bias [HO11]2

Existence of OWFs (1
2
− o(1))-bias, constant round [MPS10]

Existence of OWFs Negligible bias [IL89]

NP * BPP (1
4
− o(1))-bias [MPS10]

NP * BPP (1
2
− o(1))-bias, constant round [Zac86]

PSPACE * BPP Non-trivial Folklore

Table 1.1: Results summary.

presented an ε-bias quantum weak coin-flipping protocol for any ε > 0. Chailloux

et.al. [CK09] presented a
(√

2−1
2
− ε
)

-bias quantum strong coin-flipping protocol

for any ε > 0 (this bias was shown in [Kit03] to be tight). A key step in [CK09]

is a reduction from strong to weak coin-flipping protocols, which holds also in the

classical world.

A related line of work considers fair coin-flipping protocols. In this setting the

honest party is required to always output a bit, whatever the other party does. In

particular, a cheating party might bias the output coin just by aborting. We know

that one-way functions imply fair (1/
√
m)-bias coin-flipping protocols [ABC+85,

Cle86], where m is the round complexity of the protocol, and this quantity is

known to be tight for O(m/ logm)-round protocols with fully black-box reductions

[DSLMM11]. Oblivious transfer, on the other hand, implies fair 1/m-bias protocols

[MNS09, BOO10] (this bias was shown in [Cle86] to be tight).
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1.3 Our Techniques

The following is a rather elaborate, high-level description of the ideas underlying

our proof.

That the existence of a given (cryptographic) primitive implies the existence

of one-way functions is typically proven by looking at the primitive core function

— an efficiently computable function (not necessarily unique) whose inversion on

uniformly chosen outputs implies breaking the security of the primitive.3 For

private-key encryption, for instance, a possible core function is the mapping from

the inputs of the encryption algorithm (i.e., message, secret key, and randomness)

into the ciphertexts. Assuming that one has defined such a core function for a

given primitive, then, by definition, this function should be one-way. So it all

boils down to finding, or proving the existence of, such a core function for the

primitive under consideration. For a non-interactive primitive, finding such a core

function is typically easy. In contrast, for an interactive primitive, finding such a

core function, or functions is, at least in many settings, a much more involved task.

The reason is that in order to break an interactive primitive, the attacker typically

has to invert a given function on many different outputs, where these outputs

are chosen adaptively by the attacker, after seeing the answers to the previous

queries. As a result, it is very challenging to find a single function, or even finitely

many functions, whose output distribution (on uniformly chosen input) matches

the distribution of the attacker’s queries.4

3For the sake of this informal discussion, inverting a function on a given value means returning
a uniformly chosen preimage of this value.

4If the attacker makes constant number of queries, one can overcome the above difficulty by
defining a set of core functions f1, . . . , fk, where f1 is the function defined by the primitive, f2

is the function defined by the attacker after making the first inversion call, and so on. Since the
evaluation time of fi+1 is polynomial in the evaluation time of fi (since evaluating fi+1 requires
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What seems as the only plausible candidate to serve as the core function of a

coin-flipping protocol is its transcript function: the function that maps the parties’

randomness into the resulting protocol transcript (i.e., the transcript produced by

executing the protocol with this randomness). In order to bias the output of an

m-round coin-flipping protocol by more than O( 1√
m

), a super-constant number of

adaptive inversions of the transcript function seems necessary. Yet, we managed

to prove that the transcript function is the core function of any (constant-bias)

coin-flipping protocol. This is done by designing an adaptive attacker for any such

protocol, whose query distribution is “not too far” from the output distribution

of the transcript function (when invoked on uniform inputs). Since our attacker,

described below, is not only adaptive, but also defined in a recursive manner,

proving it possesses the aforementioned property is one of the major challenges we

had to deal with.

In what follows, we give a high-level overview of our attacker that ignores

computational issues (i.e., assumes it has a perfect inverter for any function). We

then explain how to adjust this attacker to work with the inverter of the protocol’s

transcript function.

Optimal Valid Attacks and The Biased-Continuation Attack

The crux of our approach lies in an interesting connection between the opti-

mal attack on a coin-flipping protocol and the, more feasible, recursive biased-

continuation attack. The latter attack recursively applies the biased-continuation

attack used by [HO11] to achieve their constant-bias attack (called there, the

a call to an inverter of fi), this approach fails miserably for attackers of super-constant query
complexity.
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random-continuation attack) and is the basis of our efficient attack (assuming

one-way functions do not exist) on coin-flipping protocols.

Let Π = (A,B) be a coin-flipping protocol (i.e., the common output of the

honest parties is a uniformly chosen bit). In this discussion we restrict ourselves

to analyzing attacks that when carried out by the left-hand side party, i.e., A, are

used to bias the outcome towards one, and when carried out by the right-hand side

party, i.e., B, are used to bias the outcome towards zero. Analogous statements

hold for opposite attacks (i.e., attacks carried out by A and used to bias towards

zero, and attacks carried out by B and used to bias towards one). The optimal

valid attacker A carry out the best attack A can employ (using unbounded power)

to bias the protocol towards one, while sending valid messages — ones that could

have been sent by the honest party. The optimal valid attacker B carry out the

best attack B can employ to bias the protocol towards zero is analogously defined.

Since coin-flipping protocol is a zero-sum game, for any such protocol the expected

outcome of (A,B) is either zero or one. As a first step, we give a lower bound on

the success probability of the recursive biased-continuation attack carried out by

the party winning the aforementioned zero-sum game. As this lower bound might

not be sufficient for our goal (it might be less that constant) — and this is a

crucial point in the description below — our analysis takes additional steps to give

an arbitrarily-close-to-one lower bound on the success probability of the recursive

biased-continuation attack carried out by some party, which may or may not be

the same party winning the zero-sum game.5

5That the identity of the winner in (A,B) cannot be determined by the recursive biased-
continuation attack is crucial. Since we show that the latter attack can be efficiently approximated
assuming one-way functions do not exist, the consequences of giving up this information would
be profound. It would mean that we can estimate the optimal attack (which is implemented in
PSPACE) using only the assumption that one-way functions do not exist.
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Assume thatA is the winning party when playing against B. SinceA sends only

valid messages, it follows that the expected outcome of (A,B), i.e., honest A against

the optimal attacker for B, is larger than zero (since A might send the optimal

messages “by mistake”). Let OPTA (Π) be the expected outcome of the protocol

(A,B) and let OPTB (Π) be 1 minus the expected outcome of the protocol (A,B).

The above observation yields that OPTA (Π) = 1, while OPTB (Π) = 1 − α < 1.

This gives rise to the following question: what gives A an advantage over B?

We show that if OPTB (Π) = 1 − α, then there exists an α-dense set SA of

1-transcripts, full transcripts in which the parties’ common output is 1,6 that are

“dominated by A”. The A-dominated set has an important property — its density

is “immune” to any action B might take, even if B is employing its optimal attack;

specifically, the following holds:

Pr〈A,B〉
[
SA
]

= Pr〈A,B〉
[
SA
]

= α, (1.1)

where 〈Π′〉 samples a random full transcript of protocol Π′. It is easy to be con-

vinced that the above holds in case A controls the root of the tree and has a

1-transcript as a direct descendant; see Figure 1.1 for a concrete example. The

proof of the general case can be found in Chapter 3. Since the A-dominated set is

B-immune, a possible attack for A is to go towards this set. Hence, what seems

like a feasible adversarial attack for A is to mimic A’s attack by hitting the A-

dominated set with high probability. It turns out that the biased-continuation

attack of [HO11] does exactly that.

The biased-continuation attacker A(1), taking the role of A in Π and trying to

bias the output of Π towards one, is defined as follows: given that the partial

6Throughout, we assume without loss of generality that the protocol’s transcripts determines
the common output of the parties.
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transcript is trans, algorithm A(1) samples a pair of random coins (rA, rB) that is

consistent with trans and leads to a 1-transcript, and then acts as the honest A on

the random coins rA, given the transcript trans. In other words, A(1) takes the first

step of a random continuation of (A,B) leading to a 1-transcript. (The attacker

B(1), taking the role of B and trying to bias the outcome towards zero, is analogously

defined.) [HO11] showed that for any coin-flipping protocol, if either A or B carries

out the biased-continuation attack towards one, the outcome of the protocol will be

biased towards one by
√

2−1
2

(when interacting with the honest party).7 Our basic

attack employs the above biased-continuation attack recursively. Specifically, for

i > 1 we consider the attacker A(i) that takes the first step of a random continuation

of (A(i−1),B) leading to a 1-transcript, letting A(0) ≡ A. The attacker B(i) is

analogously defined. Our analysis takes a different route from that of [HO11],

whose approach is only applicable for handling bias up to
√

2−1
2

and cannot be

applied to weak coin-flipping protocols.8 Instead, we analyze the probability of

the biased-continuation attacker to hit the dominated set we introduced above.

Let trans be a 1-transcript of Π in which all messages are sent by A. Since A(1)

picks a random 1-transcript, and B cannot force A(1) to diverge from this transcript,

the probability to produce trans under an execution of (A(1),B) is doubled with

respect to this probability under an execution of (A,B) (assuming the expected

outcome of (A,B) is 1/2). The above property, that B cannot force A(1) to diverge

7They show that the same holds for the analogous attackers carry out the biased-continuation
attack towards zero.

8A key step in the analysis of [HO11] is to consider the “all-cheating protocol” (A(1),1,B(1),1),
where A(1),1 plays against B(1),1 and they both carry out the biased-continuation attack trying
to bias the outcome towards one. Since, and this is easy to versify, the expected outcome of
(A(1),1,B(1),1) is one, using symmetry one can show that the expected outcome of either (A(1),1,B)
or (A,B(1),1) is at least 1√

2
, yielding a bias of 1√

2
− 1

2 . As mentioned in [HO11], symmetry cannot

be used to prove a bias larger than 1√
2
− 1

2 .

9



from a transcript, is in fact the B-immune property of the A-dominated set. A key

point we make is to generalize the above argument to show that for the α-dense

A-dominated set SA (exists assuming that OPTB (Π) = 1− α < 1), it holds that:

Pr〈A(1),B〉
[
SA
]
≥ α

val(Π)
, (1.2)

where val(Π′) is the expected outcome of Π′. Namely, in (A(1),B) the probability

of hitting the set SA of 1-transcripts is larger by a factor of at least 1
val(Π)

than

the probability of hitting this set in the original protocol Π. Again, it is easy to

be convinced that the above holds in case A controls the root of the tree and has

a 1-transcript as a direct descendant; see Figure 1.1 for a concrete example. The

proof of the general case can be found in Chapter 3.

Consider now the protocol (A(1),B). In this protocol, the probability of hitting

the set SA is at least α
val(Π)

, and clearly the set SA remains B-immune. Hence, we

can apply Equation (1.2) again, to deduce that

Pr〈A(2),B〉
[
SA
]

= Pr〈(A(1))(1),B〉
[
SA
]
≥

Pr〈A(1),B〉
[
SA
]

val(A(1),B)
≥ α

val(Π) · val(A(1),B)
.

(1.3)

Continuing it for κ iterations yields that

val(A(κ),B) ≥ Pr〈A(κ),B〉
[
SA
]
≥ α∏κ−1

i=0 val(A(i),B)
. (1.4)

So, modulo some cheating,9 it seems that we are in good shape. Taking, for ex-

ample, κ = log( 1
α

)/ log( 1
0.9

), Equation (1.4) yields that val(A(κ),B) > 0.9. Namely,

if we assume that A has an advantage over B, then by recursively applying

9The actual argument is somewhat more complicated than the one given above. To ensure
the above argument holds we need to consider measures over the 1-transcripts (and not sets). In
addition, while (the measure variant of) Equation (1.3) is correct, deriving it from Equation (1.2)
takes some additional steps.
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the biased-continuation attack for A enough times, we arbitrarily bias the ex-

pected output of the protocol towards one. Unfortunately, if this advantage (i.e.,

α = (1−OPTB (Π))) is very small, which is the case in typical examples, the num-

ber of recursions required might be linear in the protocol depth (or even larger).

Given the recursive nature of the above attack, the running time of the described

attacker is exponential. To overcome this obstacle, we consider not only the dom-

inated set, but additional sets that are “close to” being dominated. Informally

speaking, a 1-transcript belongs to the A-dominated set if it can be generated by

an execution of (A,B). In other words, the probability, over B’s coins, that a tran-

script generated by a random execution of (A,B) belongs to the A-dominated set

is one. We define a set of 1-transcripts that does not belong to the A-dominated

set to be “close to” A-dominated if there is an (unbounded) attacker Â, such that

the probability, over B’s coins, that a transcript generated by a random execution

of (Â,B) belongs to the set is close to one. These sets are formally defined via the

notion of conditional protocols, discussed next.

Conditional Protocols Let Π = (A,B) be a coin-flipping protocol in which

there exists an A-dominated set SA of density α > 0. Consider the “conditional”

protocol Π′ = (A′,B′), resulting from conditioning on not hitting the set SA.

Namely, the message distribution of Π′ is that induced by a random execution

of Π that does not generate transcripts in SA. See Figure 1.1 for a concrete exam-

ple. We note that the protocol Π′ might not be efficiently computable (even if Π

is), but this does not bother us, since we only use it as a thought experiment.

We have effectively removed all the 1-transcripts dominated by A (the set SA

must contain all such transcripts; otherwise OPTB (Π) would be smaller than 1−α).

11



A

1

α1

B

0

β1

A

1

α2

0

1− α2

1− β1

1− α1

Figure 1.1: Coin-flipping protocol Π. The label of an internal node (i.e., partial
transcript) denotes the name of the party controlling it (i.e., the party that sends
the next message given this partial transcript), and that of a leaf (i.e., full tran-
script) denotes its value — the parties’ common output once reaching this leaf.
Finally, the label on an edge leaving a node u to node u′ denotes the probability
that a random execution of Π visits u′ once in u. Note that OPTA (Π) = 1 and
OPTB (Π) = 1 − α1. The A-dominated set SA in this case consists of the single
1-leaf to the left of the root. The conditional protocol Π′ is the protocol rooted in
the node to the right of the root (of Π), and the B′-dominated set SB consists of
the single 0-leaf to the left of the root of Π′.

Thus, the expected outcome of (A′,B′) is zero. Therefore, OPTB′ (Π
′) = 1 and

OPTA′ (Π
′) = 1− β < 1. It follows from this crucial observation that there exists

a B′-dominated SB of density β, over the 0-transcripts of Π′. Applying a similar

argument to that used for Equation (1.4) yields that for large enough κ, the biased-

continuation attacker B′(κ), playing the role of B′, succeeds in biasing the outcome

of Π′ toward zero, where κ is proportional to log( 1
β
). Moreover, if α is small,

the above yields that B(κ) is doing almost equally well in the original protocol Π.

If β is also small, we can now consider the conditional protocol Π′′, obtained by

conditioning Π′ on not hitting the B′-dominated set, and so on.

By iterating the above process enough times, the A-dominated sets cover all

the 1-transcripts, and the B-dominated sets cover all the 0-transcripts.10 Assume

10When considering measures and not sets, as done in the actual proof, this covering property
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that in the above iterated process, the density of the A-dominated sets is the first

to go beyond ε > 0. It can be shown — and this a key technical contribution

of this paper — that it is almost as good as if the density of the initial set SA

was ε.11 We conclude that for any ε > 0, there exists a constant κ such that

val(A(κ),B) > 1− ε.12

Using the Transcript Inverter

We have seen above that for any constant ε, by recursively applying the biased-

continuation attack for constantly many times, we get an attack that biases the

outcome of the protocol by 1
2
−ε. The next thing is to implement the above attack

efficiently, under the assumption that one-way functions do not exist. Given a par-

tial transcript u of protocol Π, we wish to return a uniformly chosen full transcript

of Π that is consistent with u and the common outcome it induces is one. Biased

continuation can be reduced to the task of finding honest continuation: returning

a uniformly chosen full transcript of Π that is consistent with u. Assuming honest

continuations can be done for the protocol, biased-continuation can also be done

by calling the honest continuation many times, until transcript whose output is

one is obtained. The latter can be done efficiently, as long as the value of the

partial transcript u — the expected outcome of the protocol conditioned on u, is

not too low. (If it is too low, too much time might pass before a full transcript

leading to one is obtained.) Ignoring this low value problem, and noting that hon-

is not trivial.
11More accurately, let S̃A be the union of these 1-transcript sets and let α̃ be the density of

S̃A in Π. Then val(A(κ),B) ≥ Pr〈A(κ),B〉
[
S̃A
]
≥ α̃∏κ−1

i=0 val(A(i),B)
.

12The assumption that the density of the A-dominated sets is the first to go beyond ε > 0 is
independent of the assumption that A wins in the zero-sum game (A,B). Specifically, the fact
that A(κ) succeeds in biasing the protocol does not guarantee that A is the winner of (A,B).
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est continuation of a protocol can be reduced to inverting the protocol’s transcript

function, all we need to do to implement A(i) is to invert the transcript functions

of the protocols (A,B), (A(1),B), . . . , (A(i−1),B). Furthermore, noting that the at-

tackers A(1), . . . ,A(i−1) are stateless, it suffices to have the ability to invert only the

transcript function of (A,B).

So attacking a coin-flipping protocol Π boils down to inverting the transcript

function fΠ of Π, and making sure we are not doing that on low value transcripts.

Assuming one-way functions do not exist, there exists an efficient inverter Inv

for fΠ that is guaranteed to work well when invoked on random outputs of fΠ

(i.e., when fΠ is invoked on the uniform distribution. Nothing is guaranteed for

distributions far from uniform). By the above discussion, algorithm Inv implies

an efficient approximation of A(i), as long as the partial transcripts attacked by

A(i) are neither low-value nor unbalanced (by low-value transcript we mean that

the expected outcome of the protocol conditioned on the transcript is low; by

unbalanced transcript we mean that its density with respect to (A(i),B) is not to

far from its density with respect to (A,B)). Unlike [HO11], we failed to prove (and

we believe that it is untrue) that the queries of A(i) obey these two conditions

with sufficiently high probability, and thus we cannot simply argue that A(i) has

an efficient approximation, assuming one-way functions do not exist. Fortunately,

we managed to prove the above for the “pruned” variant of A(i), defined below.

Unbalanced and low value transcripts Before defining our final attacker, we

relate the problem of unbalanced transcripts to that of low-value transcripts. We

say that a (partial) transcript u is γ-unbalanced, if the probability that u is visited

with respect to a random execution of (A(1),B), is at least γ times larger than
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with respect to a random execution of (A,B). Furthermore, we say that a (partial)

transcript u is δ-small, if the expected outcome of (A,B), conditioned on visiting

u, is at most δ. We prove (a variant of) the following statement. For any δ > 0

and γ > 1, there exists c that depends on δ, such that

Pr`←〈A(1),B〉 [` has a γ-unbalanced prefix but no δ-small prefix] ≤ 1

γc
. (1.5)

Namely, as long as (A(1),B) does not visit low-value transcripts, it is only at

low risk to significantly deviate (in a multiplicative sense) from the distribution in-

duced by (A,B). Equation (1.5) naturally extends to recursive biased-continuation

attacks. It also has an equivalent form for the attacker B(1), trying to bias the

protocol towards zero, with respect to δ-high transcripts — the expected outcome

of Π, conditioned on visiting the transcript, is at least 1− δ.

The pruning attacker At last we are ready to define our final attacker. To this

end, for protocol Π = (A,B) we define its δ-pruned variant Πδ = (Aδ,Bδ), where

δ ∈ (0, 1
2
), as follows. As long as the execution does not visit a δ-low or δ-high

transcripts, the parties act as in Π. Once a δ-low transcript is visited, only the

party B sends messages, and it does so according to the distribution induced by Π.

If a δ-high transcript is visited (and has no δ-low prefix), only the party A sends

messages, and again it does so according to the distribution induced by Π.

Since the transcript distribution induced by Πδ is the same as of Π, protocol

Πδ is also a coin-flipping protocol. We also note that Πδ can be implemented ef-

ficiently assuming one-way functions do not exist (simply use the inverter of Π’s

transcript function to estimate the value of a given transcript). Finally, by Equa-

tion (1.5), A
(i)
δ (i.e., recursive biased-continuation attacks for Πδ) can be efficiently

implemented, since there are no low-value transcripts where A needs to send the
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next message. (Similarly, B
(i)
δ can be efficiently implemented since there are no

high-value transcripts where B needs to send the next message.)

It follows that for any constant ε > 0, there exists constant κ such that either

the expected outcome of (A
(κ)
δ ,Bδ) is a least 1 − ε, or the expected outcome of

(Aδ,B
(κ)
δ ) is at most ε. Assume for concreteness that it is the former case. We

define our pruning attacker A(κ,δ) as follows. When playing against B, the attacker

A(κ,δ) acts like A
(κ)
δ would when playing against Bδ. Namely, the attacker pretends

that it is in the δ-pruned protocol Πδ. But once a low or high value transcript is

reached, A(κ,δ) acts honestly in the rest of the execution (like A would).

It follows that until a low or high value transcript has been reached for the

first time, the distribution of (A(κ,δ),B) is the same as that of (A
(κ)
δ ,Bδ). Once a

δ-low transcript is reached, the expected outcome of both (A(κ,δ),B) and (A
(κ)
δ ,Bδ)

is δ, but when a δ-high transcript is reached, the expected outcome of (A(κ,δ),B)

is (1 − δ) (since it plays like A would), where the expected outcome of (A
(κ)
δ ,Bδ)

is at most one. All in all, the expected outcome of (A(κ,δ),B) is δ-close to that of

(A
(κ)
δ ,Bδ), and thus the expected outcome of (A(κ,δ),B) is at least 1− ε− δ. Since

ε and δ are arbitrary constants, we have established an efficient attacker to bias

the outcome of Π by a value that is an arbitrary constant close to one.
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Chapter 2

Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and

functions, lowercase for values, boldface for vectors, and sans-serif (e.g., A) for

algorithms (i.e., Turing Machines). All logarithms considered here are in base two,

where ◦ denotes string concatenation. Let N denote the set of natural numbers,

where 0 is considered as a natural number, i.e., N = {0, 1, 2, 3, . . .}. For n ∈ N, let

(n) = {0, . . . , n} and if n is positive let [n] = {1, · · · , n}, where [0] = ∅. For a ∈ R

and b ≥ 0, let [a± b] stand for the interval [a− b, a+ b], (a± b] for (a− b, a+ b] etc.

For a non-empty string t ∈ {0, 1}∗ and i ∈ [|t|], let ti be the i’th bit of t, and for

i, j ∈ [|t|] such that i < j, let ti,...,j = ti ◦ ti+1 ◦ . . . ◦ tj. The empty string is denoted

by λ, and for a non-empty string, let t1,...,0 = λ. We let poly denote the set all

polynomials and let PPTM denote a probabilistic algorithm that runs in strictly

polynomial time. Give a PPTM algorithm A we let A(u; r) be an execution of

A on input u given randomness r. A function ν : N 7→ [0, 1] is negligible, denoted

ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and large enough n.

Given a random variable X, we write x ← X to indicate that x is selected

according to X. Similarly, given a finite set S, we let s ← S denote that s is
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selected according to the uniform distribution on S. We adopt the convention

that when the same random variable occurs several times in an expression, all

occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be

the probability that when x ← X, we have f(x) = x. We write Un to denote the

random variable distributed uniformly over {0, 1}n. The support of a distribution

D over a finite set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}. The

statistical distance of two distributions P and Q over a finite set U , denoted as

SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| = 1
2

∑
u∈U |P (u)−Q(u)|.

A measure is a function M : Ω 7→ [0, 1]. The support of M over a set Ω,

denoted Supp(M), is defined as {ω ∈ Ω: M(ω) > 0}. A measure M over Ω is the

zero measure if Supp(M) = ∅.

2.2 Two-Party Protocols

The following discussion is restricted to no-input (possibly randomized), two-party

protocols, where each message consists of a single bit. We do not assume, however,

that the parties play in turns (i.e., the same party might send two consecutive

messages), but only that the protocol’s transcript uniquely determines which party

is playing next (i.e., the protocol is well defined). In an m-round protocol, the

parties interact for exactly m rounds. The tuple of the messages sent so far in

any partial execution of a protocol is called the (communication) transcript of this

execution.

We write that a protocol Π is equal to (A,B), when A and B are the interactive

Turing Machines that control the left and right hand side party respectively, of the

interaction according to Π. For a party C interacting according to Π, let CΠ be the
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other party in Π, where in case Π is clear from the context, we simply write C.

If A,B are deterministic, then by trans(A,B), we denote the uniquely defined

transcript, namely the bits sent by both parties in the order of appearance, when

these parties run the protocol.

Binary Trees

Definition 2.2.1 (binary trees). For m ∈ N, let T m be the complete directed binary

tree of height m. We naturally identify the vertices of T m with binary strings: the

root is denoted by the empty string λ, and the the left-hand side and right-hand

side children of a non-leaf node u, are denoted by u0 and u1 respectively.

• Let V(T m), E(T m), root(T m) and L(T m) denote the vertices, edges, root and

leaves of T m respectively.

• For u ∈ V(T m) \ L(T m), let T mu be the subtree of T m rooted at u.

• For u ∈ V(T m), let descm(u) [resp., descm(u)] be the descendants of u in

T m including u [resp., excluding u], and for U ⊆ V(T m) let descm(U) =⋃
u∈U descm(u) and descm(U) =

⋃
u∈U descm(u).

• The frontier of a set U ⊆ V(T m), denoted by frnt (U), is defined as U \

descm(U).

When m is clear from the context, it is typically omitted from the above nota-

tion.

19



Protocol Trees

We naturally identify a (possibly partial) transcript of a m-round, single-bit mes-

sage protocol with a rooted path in T m. That is, the transcript t ∈ {0, 1}m is

identified with the path λ, t1, t1,2, . . . , t.

Definition 2.2.2 (tree representation of a protocol). We make use of the following

definitions with respect to an m-round protocol Π = (A,B), and C ∈ {A,B}.

• Let round(Π) = m, let T (Π) = T m and for X ∈ {V , E , root,L} let X(Π) =

X(T (Π)).

• The edge distribution induced by a protocol Π, is the function eΠ : E(Π) 7→

[0, 1] defined as eΠ(u, v) being the probability that the transcript of a random

execution of Π visits v, conditioned that it visits u.

• For u ∈ V(Π), let vΠ(u) = eΠ(λ, u1) · eΠ(u1, u1,2) . . . · eΠ(u1,...,|u|−1, u), and

let the leavesdistribution induced by Π be the distribution 〈Π〉 over L(Π),

defined by 〈Π〉(u) = vΠ(u).

• The party that sends the next message on transcript u, is said to control u,

and we denote this party by cntrlΠ(u). Let CtrlCΠ = {u ∈ V(Π): cntrlΠ(u) = C}.

Let cntrl′Π(u) be 0 if cntrlΠ(u) = A, and 1 otherwise. The leaf-control distribu-

tion over L(Π)×{0, 1}m, denoted by [Π], is (`, cntrl′Π(`1), cntrl′Π(`1,2) . . . , cntrl′Π(`))`←〈Π〉.

Note that every function e : E(T m) 7→ [0, 1] with e(u, u0) + e(u, u1) = 1 for

every u ∈ V(T m) \ L(T m) with v(u) > 0, along with a controlling scheme (who

is active in each node), defines a two party, m-round, single-bit message protocol
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(the resulting protocol might be inefficient). This observation allows us to consider

the protocols induced by subtrees of T (Π).

The analysis done in Chapter 3 naturally gives rise to functions over binary

trees, that do not corresponds to any two parties execution. We identify the

“protocols” induced by such functions by the special symbol⊥. We let E〈⊥〉 [f ] = 0,

for any real-value function f .

Definition 2.2.3 (sub-protocols). Let Π be a protocol and let u ∈ V(Π). Let (Π)u

denotes the the protocol induced by the function eΠ on the subtree of T (Π) rooted

at u, in case such protocol exists,1 and let (Π)u =⊥, otherwise.

When convenient, we remove the parentheses from notation, and simply write

Πu. Two sub-protocols of interest are Π0 and Π1, induced by eΠ and the trees

rooted at the left-hand side and right-hand side descendants of root(T ). For a

measure M : L(Π) 7→ [0, 1] and u ∈ V(Π), let (M)u : L(Πu) 7→ [0, 1] be the re-

stricted measure induced by M on the sub-protocol Πu. Namely, for any ` ∈ L(Πu),

(M)u(`) = M(`).

Tree Value

Definition 2.2.4 (tree value). Let Π a two-party protocol, in which at the end of

any of its executions the parties output the same real value. Let χΠ : L(Π) 7→ R

be the common output function of Π, where χΠ(`) being the common output of

the parties in an execution ending in `.2 Let val(Π) = E〈Π〉[χΠ], and for x ∈ R let

Lx(Π) = {` ∈ L(Π): χΠ(`) = x}.
1Namely, the protocol Πu, is the protocol Π conditioned on u being the transcript of the first

|u| rounds.
2Since condition on u, the random coins of the parties are in a product distribution, under

the above assumption the common output is indeed a function of u.
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The following immediate fact states that the expected value of a measure,

whose support is a subset of the 1-leaves of some protocol, is always smaller than

the value of that protocol.

Fact 2.2.5. Let Π be a protocol and let M be a measure over L1(Π), then E〈Π〉 [M ] ≤

val(Π).

Protocol with Common Inputs

We sometimes would like to apply the above terminology to a protocol Π = (A,B)

whose parties get a common security parameter 1n. This is formally done by

considering the protocol Πn = (An,Bn), where Cn is the algorithm derived by of

“hardwiring” 1n into the code of C.

2.3 Coin-Flipping Protocols

In a coin-flipping protocol two parties interact and in the end they have a common

output bit. Ideally, this bit should be random and no cheating party should be

able to bias its outcome to neither direction (if the other party remains honest).

For interactive, probabilistic algorithms A and B, and x ∈ {0, 1}∗, let out(A,B)(x)

denotes parties’ output, on common input x.

Definition 2.3.1 ((strong) coin-flipping). A PPT protocol (A,B) is a δ-bias coin-

flipping protocol, if the following holds.

Correctness: Pr[out(A,B)(1n) = (0, 0)] = Pr[out(A,B)(1n) = (1, 1)] = 1
2
.

Security: Pr[out(A∗,B)(1n) = (∗, c)],Pr[out(A,B∗)(1n) = (c, ∗)] ≤ 1
2

+ δ(n), for

any PPTM’s A∗ and B∗, bit c ∈ {0, 1} and large enough n.
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Sometimes, e.g., if the parties have (a priori known) opposite preferences, an

even weaker definition of coin-flipping protocols is of interest.

Definition 2.3.2 (weak coin-flipping). A PPT protocol (A,B) is a weak δ-bias

coin-flipping protocol, if the following holds.

Correctness: Same as in Definition 2.3.1.

Security: There exist bits cA 6= cB ∈ {0, 1} such that

Pr[out(A∗,B)(n) = cA],Pr[out(A,B∗)(n) = cB] ≤ 1

2
+ δ(n)

for any PPTM’s A∗ and B∗, and large enough n.

Remark 2.3.3. Our result still holds when replacing the value 1
2

in the correct-

ness requirement above, with any constant in (0, 1). It also holds for protocols in

which, with some small probability, the parties are not in agreement regarding the

protocol’s outcome, or even might output values that are not bits.

In the the rest of the paper we restrict our attention to m-round single-bit

message coin-flipping protocols, where m = m(n) is a function of the protocol’s

security parameter. Given such protocol Π = (A,B), we assume that the common

output of the protocol (i.e., the coin), is efficiently computable from a (full) tran-

script of the protocol. (It is easy to see that these assumptions are without loss of

generality).
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2.4 One-Way Functions and Distributional

One-Way Functions

A one-way function (OWF) is an efficiently computable function whose inverse

cannot be computed on average by any PPTM.

Definition 2.4.1. A polynomial-time computable function f : {0, 1}n 7→ {0, 1}`(n)

is one-way, if

Prx←{0,1}n;y=f(x)

[
A(1n, y) ∈ f−1(y)

]
= neg(n)

for any PPTM A.

A seemingly weaker definition is that of a distributional OWF. Such a function

is easy to compute, but, roughly speaking, it is hard to compute uniformly random

preimages of random images.

Definition 2.4.2. A polynomial-time computable f : {0, 1}n 7→ {0, 1}`(n) is distributional

one-way, if ∃p ∈ poly such that

SD
(
(x, f(x))x←{0,1}n , (A(f(x)), f(x))x←{0,1}n

)
≥ 1

p(n)

for any PPTM A and large enough n.

Clearly, any one-way function is also a distributional one-way function. While

the other implication is not necessarily always true, [IL89] showed that the ex-

istence of distributional one-way functions implyies that of (standard) one-way

functions. In particular, [IL89] proved that if one-way functions do not exist, then

any efficiently computable function has an inverter of the following form.
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Definition 2.4.3 (γ-inverter). An algorithm Inv is a γ-inverter of f : D 7→ R, if

the following holds.

Prx←D;y=f(x)

[
SD

(
(y, x′)x′←f−1(y), (y, Inv(y))

)
≥ γ

]
≤ γ.

Lemma 2.4.4 ([IL89, Lemma 1]). Assume one-way functions do not exit, then

for any polynomial-time computable function f : {0, 1}n 7→ {0, 1}`(n) and p ∈ poly,

there exists a PPTM algorithm Inv such the that the following holds for infinitely

many n’s. On security parameter 1n, algorithm Inv is a 1/p(n)-inverter of fn (i.e.,

f restricted to {0, 1}n).

Note that nothing is guaranteed when invoking a good inverter (i.e., a γ-inverter

for some small γ) on an arbitrary distribution. Yet, the following lemma yields

that if the distribution in consideration is “not too different” from the output

distribution of f , then such good inverters are useful.

Lemma 2.4.5. Let f and g be two randomized functions over the same domain

D, and let {Di}i∈[k] be a set of distributions over D such that for some a ≥ 0 it

holds that Ed←Di [SD(f(d), g(d))] ≤ a for every i ∈ [k]. Let A be a k-query oracle-

aided algorithm that only makes queries in D ∪ {⊥}. For i ∈ [k], let Fi be the

probability distribution of the i’th query to f in a random execution of Af , and let

Q = (Q1, . . . , Qk) be the random variable of the queries of Af in such a random

execution (in case the i’th query was ⊥, we also set its reply to ⊥).

Assume Pr(q1,...,qk)←Q [∃i ∈ [k] : qi 6=⊥ ∧Fi(qi) > λ ·Di(qi)] ≤ b for some λ, b ≥

0, then SD
(
Af ,Ag

)
≤ b+ kaλ.

For proving Lemma 2.4.5, we use the following fact.
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Proposition 2.4.6. For every two distributions P and Q over as set D there exists

a distribution RP,Q over D ×D, such that the following holds:

1. (RP,Q)1 ≡ P and (RP,Q)2 ≡ Q, where (RP,Q)b is the projection of RP,Q into

its b’th coordinate.

2. Pr(x1,x2)←RP,Q [x1 6= x2] = SD(P,Q).

Proof. For every x ∈ D, let M(x) = min {P (x), Q(x)}, let MP (x) = P (x)−M(x)

and MQ(x) = Q(x) − M(x). The distribution RP,Q is defined by the following

procedure. With probability µ =
∑

x∈DM(x), sample an element x according to

M (i.e., x is return with probability M(x)
µ

), and return (x, x), otherwise return

(xP , xQ) where xP is sampled according to MP and xQ is sampled according to

MQ. It is clear that Pr(x1,x2)←RP,Q [x1 6= x2] = SD(P,Q). It also holds that

(RP,Q)1(x) = µ · M(x)

µ
+ (1− µ) · MP (x)

µP

= M(x) +MP (x)

= P (x),

where µP :=
∑

x∈DMP = (1−µ). Namely, (RP,Q)1 ≡ P . The proof that (RP,Q)2 ≡

Q is analogous.

2

Proof of Lemma 2.4.5. Using Proposition 2.4.6 and standard argument, it holds

that SD
(
Af ,Ag

)
is at most the probability that the following experiment aborts.

Experiment 2.4.7.

1. Start emulating a random execution of A.
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2. Do until A halts:

a) Let q be the next query of A(r).

b) if q =⊥ give ⊥ to A as the oracle answer and continue.

c) Otherwise, sample (a1, a2)← Rf(q),g(q).

d) If a1 = a2, give a1 to A as the oracle answer.

Otherwise, abort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Letting SD(f(⊥), g(⊥)) = 0 and setting Si = {q : q ∈ Supp(Fi) ∧ Fi(q) ≤ λ ·Di(q)}

for i ∈ [k], we conclude that

SD
(
Af ,Ag

)
≤ Pr(q1,...,qk)←Q [∃i ∈ [k] : qi /∈ Si ∪ {⊥}]

+ Pr(q1,...,qk)←Q
[(
∃i ∈ [k] : a1 6= a2 where (a1, a2)← Rf(qi),g(qi)

)
∧ (∀ ∈ [k] : qi ∈ Si)

]
≤ δ +

∑
i∈[k]

∑
q∈Si

Fi(q) · Pr
[
a1 6= a2 where (a1, a2)← Rf(q),g(q)

]
≤ δ +

∑
i∈[k]

∑
q∈Si

Fi(q) · SD(f(q), g(q))

≤ δ +
∑
i∈[k]

∑
q∈Supp(Di)

λ ·Di(q) · SD(f(q), g(q))

≤ δ + λ
∑
i∈[k]

Eq←Di [SD(f(q), g(q))]

≤ δ + kλα,

Where the third inequality follows from Proposition 2.4.6 and the fourth form the

definition of the sets Si. 2
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2.5 Two Inequalities

We make use of following technical lemmata, whose proofs are given in Appendix A.

Lemma 2.5.1. Let x, y ∈ [0, 1] and a1, . . . , ak, b1, . . . , bk ∈ (0, 1]. Then for any

p0, p1 ≥ 0 with p0 + p1 = 1, it holds that

p0 ·
xk+1∏k
i=1 ai

+ p1 ·
yk+1∏k
i=1 bi

≥ (p0x+ p1y)k+1∏k
i=1(p0ai + p1bi)

. (2.1)

Lemma 2.5.2. For every δ ∈ (0, 1
2
], there exists α = α(δ) ∈ (0, 1] such that for

every x ≥ δ

λ · a1+α
1 · (2− a1 · x) + a1+α

2 · (2− a2 · x) ≤ (1 + λ) · (2− x) (2.2)

for every λ, y ≥ 0 with λy ≤ 1, where a1 = 1 + y and a2 = 1− λy.
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Chapter 3

The Biased-Continuation Attack

3.1 Biased Continuation

In this section we describe an attack to bias any (coin-flipping) protocol (in the

following we typically omit the term “coin-flipping”, since we only consider such

protocols). The described attack, however, might be impossible to implement

efficiently (even when assuming one-way functions do not exist). Specifically, we

assume access to an ideal sampling algorithm to sample a uniform preimage of any

output of the functions in consideration. Our actual attack, subject of Section 4.1,

tries to mimic the behaviour of this attack while being efficiently implemented

(assuming one-way functions do not exist).

The following discussion is restricted to (coin-flipping) protocols whose parties

always output the same bit as their common output, and this bit is determined by

the protocol’s transcript. In all protocols considered in this section, the messages

are bits. In addition, the protocols in consideration have no inputs (neither private

nor common), and in particular no security parameter is involved.1. Recall that

⊥ stands for a canonical invalid/udenfined protocol, and that E〈⊥〉[f ] = 0, for any

real value function f . (We refer the reader to Chapter 2 for a discussion on the

1In Section 4.1, we make use of these input-less protocols by “hardwiring” the security pa-
rameter of the protocols in consideration.
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conventions and assumptions used above.)

For concreteness, the attackers described below taking the left-hand side party

of the protocol (i.e., A), are trying to bias the common output of the protocol

towards one where the attackers taking the right-hand side party (i.e., B) are

trying to bias the common output towards zero. All statements have analogues

ones with respect to the opposite attack goals.

Let Π = (A,B) be a protocol. The iterated biased-continuation attack described

below applies recursively the biased-continuation attack introduced by (author?)

[HO11].2 The biased-continuation attacker A
(1)
Π – playing the role of A – works as

follows: in each of A’s turns, A
(1)
Π picks a random continuation of Π, whose output

it induces is equal one, and plays the current turn accordingly. The i’th biased-

continuation attacker A
(i)
Π , formally described below, uses the same strategy but

the random continuation taken is of the protocol (A
(i−1)
Π ,B).

Moving to the formal discussion, for a protocol Π = (A,B), let BiasedContΠ be

the following algorithm.

Algorithm 3.1.1 (BiasedContΠ).

Input: u ∈ V(Π) \ L(Π) and a bit b ∈ {0, 1}

Operation:

1. Choose `← 〈Π〉 conditioned that

a) ` ∈ desc(u), and

b) χΠ(`) = b.3

2. Return `|u|+1.

2Called the “random continuation attack” in [HO11].
3In case no such ` exists, the algorithm returns an arbitrary leaf in desc(u).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let A
(0)
Π ≡ A, and for integer i > 0 define:

Algorithm 3.1.2 (A
(i)
Π ).

Oracle: BiasedCont(A(i−1),B)

Input: transcript u ∈ {0, 1}∗.

Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Set msg = BiasedCont
(A

(i−1)
Π ,B)

(u, 1).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adversary B
(i)
Π attacking towards zero is analogously defined. Specifically,

changing the call BiasedCont
(A

(i−1)
Π ,B)

(u, 1) in Algorithm 3.1.2 to

BiasedCont
(A,B

(i−1)
Π )

(u, 0).5

It is relatively easy to show that the more recursions A
(i)
Π and B

(i)
Π do, the closer

their success probability to that of an all powerful adversary, who can either bias

the outcome to zero or to one. The important point of the following theorem

is that for any ε > 0 there exists a global constant κ = κ(ε) (i.e., independent

4For the mere purpose of biassing B’s output, there is no need for A(i) to output anything.
Yet, doing that helps us to simplify our recursion definitions (specifically, we use the fact that in
(A(i),B) the parties always have the same output).

5The subscript Π is added to the notation (i.e., A
(i)
Π ), since the biased-continuation attack

for A depends not only on the definition of the party A, but also on the definition of B, the other
party in the protocol.
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of the underlying protocol), for which either A
(κ)
Π or B

(κ)
Π succeeds in its attack

with probability at least 1 − ε. This fact gets crucial when trying to efficiently

implement these adversaries (see Section 4.1), as each recursion call might induce

a polynomial blowup in the running time of the adversary. Since κ is constant (for

a constant ε), the recursive attacker is still efficient.

Theorem 3.1.3 (main theorem, ideal version). For every ε ∈ (0, 1
2
] there exists an

integer κ = κ(ε) ≥ 0 such that for every protocol Π = (A,B), either val(A
(κ)
Π ,B) >

1− ε or val(A,B
(κ)
Π ) < ε.

The rest of this section is dedicated for proving the above theorem.

In what follows, we typically omit the subscript Π from the notation of the

above attackers. Towards proving Theorem 3.1.3 we show a strong (and somewhat

surprising) connection between iterated biased-continuation attacks on a given

protocol, and the optimal valid attack one this protocol. The latter is the best

(unbounded) attack on this protocol, which sends only valid messages (one that

could have been sent by the honest party). Towards this goal we define sequences

of a measures over the leaves (i.e., transcripts) of the protocol, connect these

measures to the optimal attack, and then relate the success of the iterated biased-

continuation attacks to these measures.

In the following we first observe some basic properties of the iterated biased-

continuation attack. Next, we define the optimal valid attack, define a simple

measure with respect to this attack, and prove, as a warm-up, the performance of

iterated biased-continuation attacks on this measure. After arguing why consid-

ering the latter measure does not suffice, we define a sequence of measures, and

then state, in Section 3.7, a property of this sequence that yields Theorem 3.1.3
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as a corollary. The main body of this section deals with proving Section 3.7,

3.2 Basic Observations About A(i)

We make two basic observations regarding the iterated biased-continuation attack.

The first gives expression to the edge distribution this attack induces. The second

is that this attack is stateless. We’ll use these observations in the following sections,

however, the reader might want to skip their straightforward proofs for now.

Recall that at each internal node of its control, A(1) picks a random continuation

to one. Put it differently, A(1), after seeing a transcript u, biases the probability

of sending, e.g., 0 to B proportionally to the relative chance of having output one

among all honest executions of the protocol, which are consistent with transcript

u ◦ 0, to those with transcript u. The behavior of A(i) is analogues where A(i−1)

replaces the role of A in the above discussion. Formally, we have the following fact.

Claim 3.2.1. Let Π = (A,B) be a protocol and let A(j) be according to Algo-

rithm 3.1.2, then

e(A(i),B)(u, ub) = eΠ(u, ub) ·
∏i−1

j=0 val((A
(j),B)ub)∏i−1

j=0 val((A
(j),B)u)

, 6

for any i ∈ N, A-controlled u ∈ V(Π) and b ∈ {0, 1}.

This claim is a straightforward generalization of the proof of [HO11, Lemma

12]. Yet, for the purposes of completeness and giving an example of using our

notations, a full proof is given below.

6Recall that for a protocol Π and a partial transcript u, we let eΠ(u, ub) stands for the
probability that the party controlling u sends b as the next message, conditioning that u is the
transcript of the execution thus far.
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Proof. The proof is by induction on i. For i = 0, recall that A(0) ≡ A, and hence

e(A(0),B)(u, ub) = eΠ(u, ub), as required.

Assume the claim holds for i− 1, and we want to compute e(A(i),B)(u, ub). The

definition of Algorithm 3.1.2 yields that for any positive i ∈ N, it holds that

e(A(i),B)(u, ub) = Pr`←〈A(i−1),B〉
[
`|u|+1 = b | ` ∈ desc(u) ∧ χ(A(i−1),B)(`) = 1

]
7 (3.1)

=
Pr`←〈A(i−1),B〉

[
`|u|+1 = b ∧ χ(A(i−1),B)(`) = 1 | ` ∈ desc(u)

]
Pr`←〈A(i−1),B〉

[
χ(A(i−1),B)(`) = 1 | ` ∈ desc(u)

]
= e(A(i−1),B)(u, ub) ·

val((A(i−1),B)ub)

val((A(i−1),B)u)
,

where the last equality is by a simple chain rule, i.e., since

e(A(i−1),B)(u, ub) = Pr`←〈A(i−1),B〉
[
`|u|+1 = b | ` ∈ desc(u)

]
, and

val((A(i−1),B)ub) = Pr`←〈A(i−1),B〉
[
χ(A(i−1),B)(`) = 1 | ` ∈ desc(u) ∧ `|u|+1 = b

]
.

The proof in concluded by plugin the induction hypothesis into Equation (3.1).

2

The following observation enable us to use induction when analyzing the power

of the A(i).

Proposition 3.2.2. For every protocol Π = (AΠ,BΠ), i ∈ N and b ∈ {0, 1}, it

holds that
(
A

(i)
Π ,B

)
b

and
(
A

(i)
Πb
,BΠb

)
are the same protocol, where Πb = (AΠb ,BΠb)

Proof. Immediately follows from A
(i)
Π being stateless. 2

Remark 3.2.3. Note that the party BΠb, defined by the sub-protocol Πb (specif-

ically, by the edge distribution of the subtree T (Πb)) might not have an efficient

7Recall that for a protocol Π, we let 〈Π〉 stands for the leaf distribution of Π.
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implementation, even if B has. For the sake of the arguments we make in this

section, however, we only care that BΠb is well defined.

3.3 Optimal Valid Attacks

When consider the optimal adversaries for a given protocol, we restrict ourselves

to valid attackers. Informally, on each of its turns, a valid attacker sends a mes-

sage from the set of possible replies that the honest party might choose given the

transcript so far.

Definition 3.3.1 (optimal valid adversary). Let Π = (A,B) be a protocol. A de-

terministic algorithm A′ playing the role of A in Π is in A∗, if vΠ(u) = 0 =⇒

v(A′,B)(u) = 0 for any u ∈ V(Π). The class B∗ is analogously defined. Let

OPTA (Π) = maxA′∈A∗ {val(A′,B)} and OPTB (Π) = maxB′∈B∗ {1− val(A,B′)}.

The following fact is immediate.

Proposition 3.3.2. Let Π = (A,B) be a protocol and let u ∈ V(Π). Then,

OPTA (Πu) =



χΠ(u) u ∈ L(Π);

max {OPTA (Πub) : eΠ(u, ub) > 0} , u /∈ L(Π)

and u is controlled by A;

eΠ(u, u0) · OPTA (Πu0) + eΠ(u, u1) · OPTA (Πu1), u /∈ L(Π)

and u is controlled by B,

and the analog conditions hold for OPTB (Πu).8

The following holds true for any (bit value) protocol.

8Recall that for a (possible partial) transcript u, Πu is the protocol Π, conditioned that
u1, . . . , u|u| were that first |u| messages.
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Proposition 3.3.3. Let Π = (A,B) be a protocol with val(Π) ∈ [0, 1], then either

OPTA (Π) or OPTB (Π) (but not both) is equal to 1.

The somewhat surprising part is that only one party has a winning valid strat-

egy. Assume for simplicity that OPTA (Π) = 1. Since A might accidently act like

the optimal winning adversary, it follows that for any valid strategy B′ for B there

is a positive probability over the random choices of the honest A that the outcome

is not zero. Namely, it holds that OPTB (Π) < 1. The formal proof follows a

straightforward induction on the protocol’s round complexity.

Proof of Proposition 3.3.3. The proof is by induction on the round complexity of

Π. Assume that round(Π) = 0 and let ` be the only node in T (Π). In case

χΠ(`) = 1 the proof follows since OPTA (Π) = 1 and OPTB (Π) = 0. In the

complementary case, i.e., χπ(`) = 0 the proof follows since OPTA (Π) = 0 and

OPTB (Π) = 1.

Assume that the lemma holds for m-round protocols and that round(Π) =

m+ 1. In case eΠ(λ, b) = 19 for some b ∈ {0, 1}, since Π is a protocol, it holds that

eΠ(λ, 1− b) = 0. Hence, by Proposition 3.3.2 it holds that OPTA (Π) = OPTA (Πb)

and OPTB (Π) = OPTB (Πb), regardless of the party controlling root(Π). The proof

follows from the induction hypothesis.

In case eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, the proof splits according to the

following complementary cases.

OPTB (Π0) < 1 and OPTB (Π1) < 1. The induction hypothesis yields that

OPTA (Π0) = 1 and OPTA (Π1) = 1. Proposition 3.3.2 now yields that

OPTB (Π) < 1 and OPTA (Π) = 1, regardless of the party controlling root(Π).

9Recall that λ is the string representation of the root of T (Π).
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OPTB (Π0) = 1 and OPTB (Π1) = 1. The induction hypothesis yields that

OPTA (Π0) < 1 and OPTA (Π1) < 1. Proposition 3.3.2 now yields that

OPTB (Π) = 1 and OPTA (Π) < 1, regardless of the party controlling root(Π).

OPTB (Π0) = 1 and OPTB (Π1) < 1. The induction hypothesis yields that

OPTA (Π0) < 1 and OPTA (Π1) = 1. In case A controls root(Π), Proposi-

tion 3.3.2 yields that OPTA (Π) = 1 and OPTB (Π) < 1. In case B controls

root(Π), Proposition 3.3.2 yields that OPTA (Π) < 1 and OPTB (Π) = 1.

Hence, the proof follows.

OPTB (Π0) < 1 and OPTB (Π1) = 1. The proof follows arguments similar to the

previous case.

2

In the next sections we show the connection between the optimal valid ad-

versary and iterated biased-continuation attacks, by connecting them both to a

specific measure over the protocol’s leaves, called here the “dominated measure”

of a protocol.

3.4 Dominated Measures

Consider the following measure over the protocol’s leaves.

Definition 3.4.1 (dominated measures). The A-dominated measure of protocol

Π = (A,B), denoted MA
Π, is a measure over L(Π) defined as MA

Π(`) = χΠ(`) in
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case round(Π) = 0, and otherwise recursively defined by:

MA
Π(`) =



0, eΠ(λ, `1) = 0; 10

MA
Π`1

(`2,...,|`|), eΠ(λ, `1) = 1;

MA
Π`1

(`2,...,|`|), eΠ(λ, `1) /∈ {0, 1}

∧(A controls root(Π) ∨ SmallerΠ (`1));

E〈Π1−`1〉
[
MA

Π1−`1

]
E〈Π`1〉

[
MA

Π`1

] ·MA
Π`1

(`2,...,|`|), otherwise.

,

where SmallerΠ (`1) = 1 if E〈Π`1〉
[
MA

Π`1

]
≤ E〈Π1−`1〉

[
MA

Π1−`1

]
. Finally, we let MA

⊥

be the zero measure.

The B-dominated measure of protocol Π, denoted MB
Π, is analogously defined,

except that MB
Π(`) = 1− χΠ(`) in case round(Π) = 0.

The following key observation justifies the name of the above measures.

Lemma 3.4.2. Let Π = (A,B) be a protocol and let MA
Π be its A-dominated mea-

sure, then OPTB (Π) = 1− E〈Π〉
[
MA

Π

]
.

In particular, since OPTA (Π) = 1 iff OPTB (Π) < 1 (Proposition 3.3.2), it holds

that OPTA (Π) = 1 iff E〈Π〉
[
MA

Π

]
> 0.

The proof of Lemma 3.4.2 is given below. For the intuitive explanation, note

that in case A controls the root, the expected value of the A-dominated measure

is the weighted average of the measures of the sub-protocols Π0 and Π1 (according

to the edge distributions). Where in case B controls the root, the expected value

is that of the lowest measure of the same sub-protocols. Hence, in both cases the

A-dominated measure “captures” the behaviour of the optimal adversary for B.

10Recall that for transcript `, `1 stands for the first messages sent in `.
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Example 3.4.3. Before continuing with the formal proof, we believe the reader

might find the following concrete example useful. Let Π = (A,B) be the protocol

described in Figure 3.1a and assume for the sake of this example that α0 < α1.

The A-dominated measures of Π and its sub-protocols are given in Figure 3.1b.

We would like to highlight some points regarding the calculations of the A-

dominated measures. The first point we note is that MA
Π011

(011) = 1 but MA
Π01

(011) =

0. Namely, the A-dominated measure of the sub-protocol Π011 assign the leaf rep-

resented by the string 011 with the value 1, while the A-dominated measure of the

sub-protocol Π01 (for which Π011 is a sub-protocol) assign the same leaf with the

value 0. This follows since E〈Π010〉
[
MA

Π010

]
= 0 and E〈Π011〉

[
MA

Π011

]
= 1, which

yield that SmallerΠ01 (1) = 0 (recall that SmallerΠ′ (b) = 0 iff the expected value of

the A-dominated measure of Π′b is larger than that of the A-dominated measure of

Π′1−b). Hence, Definition 3.4.1 with respect to Π01 now yields that

MA
Π01

(011) =
E〈Π010〉

[
MA

Π010

]
E〈Π011〉

[
MA

Π011

] ·MA
Π011

(011)

=
0

1
· 1 = 0.

The second point we note is that MA
Π1

(10) = 1 but MA
Π(10) = α0

α1
(recall that we

assumed that α0 < α1, so α0

α1
< 1). This follows similar arguments to the previous

point; it holds that E〈Π0〉
[
MA

Π0

]
= α0 and E〈Π1〉

[
MA

Π1

]
= α1, which yields that

SmallerΠ (1) = 0 (since α0 < α1). Definition 3.4.1 with respect to Π now yields

that

MA
Π(10) =

E〈Π0〉
[
MA

Π0

]
E〈Π1〉

[
MA

Π1

] ·MA
Π1

(10)

=
α0

α1

· 1 =
α0

α1

.
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B

A

1

α0

B

0

β01

1

1− β01

1− α0

β

A

1

α1

0

1− α1

1− β

(a) Protocol Π = (A,B). The label of
an internal node denotes the name of the
party controlling it, and that of a leaf de-
notes its value. The label on an edge leav-
ing a node u to node u′ denotes the proba-
bility that a random execution of Π visits
u′ once in u. Finally, all nodes are repre-
sented as strings from the root of Π, even
when considering sub-protocols (e.g., the
string representations of the leaf with the
thick borders is 011).

Leaves

measures 00 010 011 10 11

MA
Π00

1

MA
Π010

0

MA
Π011

1

MA
Π01

0 0

MA
Π0

1 0 0

MA
Π10

1

MA
Π11

0

MA
Π1

1 0

MA
Π 1 0 0 α0/α1 0

(b) Calculating the A-dominated measure
of Π. The A-dominated measure of a sub-
protocol Πu, is only defined over the leaves
in the subtree T (Πu).

Figure 3.1: Example for a coin flipping protocol is given to the left, and for
calculating its A-dominated measure is given to the right.

The third and final point we note is the implication of Lemma 3.4.2 for this

protocol. By the assumption that α0 < α1 it holds that OPTB (Π) = 1 − α0. In-

dependently, let us calculate the expected value of the A-dominated measure. Since

Supp
(
MA

Π

)
= {00, 01}, it holds that

E〈Π〉
[
MA

Π

]
= vΠ(00) ·MA

Π(00) + vΠ(10) ·MA
Π(10)

= β · α0 · 1 + (1− β) · α1 ·
α0

α1

= α0.

Hence, E〈Π〉
[
MA

Π

]
= 1− OPTB (Π).
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Towards proving Lemma 3.4.2, we first notice that the definition of MA
Π assures

three important properties.

Proposition 3.4.4. Let Π be a protocol with eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}.

Then

1. (A-maximal) A controls root(Π) =⇒
(
MA

Π

)
b
≡MA

Πb
for both b ∈ {0, 1}.11

2. (B-minimal) B controls root(Π) =⇒
(
MA

Π

)
b
≡


MA

Πb
, SmallerΠ (b) = 1;

E〈Π1−b〉
[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] ·MA
Πb
, else.

3. (B-immune) B controls root(Π) =⇒ E〈Π0〉
[(
MA

Π

)
0

]
= E〈Π1〉

[(
MA

Π

)
1

]
.

Namely, in case A controls root(Π), the A-maximal property of MA
Π (the A-

dominated measure of Π) assures that the restrictions of this measure to the sub-

protocols of Π are the A-dominated measures of these sub-protocols. In the com-

plementary case, i.e., B controls root(Π), the B-minimal property of MA
Π assures

that for at least one sub-protocol of Π, the restriction of this measure to this

sub-protocol is equal to the A-dominated measure of the sub-protocol. Moreover,

the B-immune property of MA
Π assures that the expected values of the measures

derived by restrict MA
Π to the sub-protocols of Π are equal (and hence, they are

also equal to the expected value of MA
Π).

Proof of Proposition 3.4.4. The proof of Items 1 and 2 immediately follows Defi-

nition 3.4.1.

Towards proving Item 3, assume B controls root(Π). In case SmallerΠ (0) =

SmallerΠ (1) = 1, the proof again follows immediately from Definition 3.4.1. In

11Recall that for a measure M : L(Π) 7→ [0, 1] and a bit b, (M)b is the measure induced by M
when restricted to L(Πb) ⊆ L(Π).
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the complementary case, i.e., SmallerΠ (b) = 0 and SmallerΠ (1− b) = 1 for some

b ∈ {0, 1}, it holds that

E〈Πb〉
[(
MA

Π

)
b

]
= E〈Πb〉

E〈Π1−b〉

[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] ·MA
Πb


=

E〈Π1−b〉

[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] · E〈Πb〉
[
MA

Πb

]
= E〈Π1−b〉

[
MA

Π1−b

]
= E〈Π1−b〉

[(
MA

Π

)
1−b

]
,

where the first and last equalities follow the B-minimal property of MA
Π (Proposi-

tion 3.4.4(2)). 2

We are now ready to prove Lemma 3.4.2.

Proof of Lemma 3.4.2. The proof is by induction on the round complexity of Π.

Assume that round(Π) = 0 and let ` be the only node in T (Π). In case χΠ(`) =

1, then by Definition 3.4.1 it holds that MA
Π(`) = 1, implying that E〈Π〉

[
MA

Π

]
= 1.

The proof follows since in this case, by Proposition 3.3.3, OPTB (Π) = 0. In the

complementary case, i.e., χ(`) = 0, by Definition 3.4.1 it holds that MA
Π(`) = 0,

implying that E〈Π〉
[
MA

Π

]
= 0. The proof follows since in this case, by Proposi-

tion 3.3.3, OPTB (Π) = 1.

Assume that the lemma holds for m-round protocols and that round(Π) =

m + 1. For b ∈ {0, 1} let αb := E〈Πb〉
[
MA

Πb

]
. The induction hypothesis yields that

OPTB (Πb) = 1 − αb for both b ∈ {0, 1}. In case eΠ(λ, b) = 1 for some b ∈ {0, 1}

(which also means that eΠ(λ, 1− b) = 0), the proof follows since Proposition 3.3.2

yields that OPTB (Π) = OPTB (Πb) = 1 − αb, where Definition 3.4.1 yields that

E〈Π〉
[
MA

Π

]
= E〈Πb〉

[
MA

Πb

]
= αb.
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Assume eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1} and let p := eΠ(λ, 0). The proof

splits according to who controls the root of Π.

A controls root(Π). Definition 3.4.1 yields that

E〈Π〉
[
MA

Π

]
= p · E〈Π0〉

[(
MA

Π

)
0

]
+ (1− p) · E〈Π1〉

[(
MA

Π

)
1

]
= p · E〈Π0〉

[
MA

Π0

]
+ (1− p) · E〈Π1〉

[
MA

Π1

]
= p · α0 + (1− p) · α1,

where the second equality follows the A-maximal property of MA
Πb

(Proposi-

tion 3.4.4(1)). Using Proposition 3.3.2 we conclude that

OPTB (Π) = p · OPTB (Π0) + (1− p) · OPTB (Π1)

= p · (1− α0) + (1− p) · (1− α1)

= 1− (p · α0 + (1− p) · α1)

= 1− E〈Π〉
[
MA

Π

]
.

B controls root(Π). We assume that α0 ≤ α1 (the complementary case is analo-

gous). Proposition 3.3.2 and the induction hypothesis yield that OPTB (A,B) =

1 − α0. Hence, it is left to show that E〈Π〉
[
MA

Π

]
= α0. Note that the as-

sumption that α0 ≤ α1 yields that SmallerΠ (0) = 1. Thus, by the B-minimal

property of MA
Π (Proposition 3.4.4(2)), it holds that

(
MA

Π

)
0
≡ MA

Π0
. It fol-

lows that E〈Π0〉
[(
MA

Π

)
0

]
= α0, and the B-immune property of MA

Π (Propo-

sition 3.4.4(3)) yields that E〈Π1〉
[(
MA

Π

)
1

]
= α0. To conclude the proof com-
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pute,

E〈Π〉
[
MA

Π

]
= p · E〈Π0〉

[(
MA

Π

)
0

]
+ (1− p) · E〈Π1〉

[(
MA

Π

)
1

]
= p · α0 + (1− p) · α0

= α0.

2

Lemma 3.4.2 shows a connection between optimal attacks and the dominated

measure. In the next section we show that the iterated biased-continuation attack

also has a connection to the dominated measure. Unfortunately, this connection

does not seem to suffice for our goal. In Section 3.6 we generalize the dominated

measure described above to a sequence of (alternating) dominated measures, where

in Section 3.7 we use this new notion to prove that the iterated biased continuation

is indeed a good attack.

3.5 Warmup — Proof Attempt Using a (Single)

Dominated Measure

As mentioned above, the approach described in this section falls too short to serve

our goals. Yet, we describe it here as a detailed overview for the more compli-

cated proof, given in in following sections (with respect to sequence of dominated

measures). Specifically, we sketch the proof of the following lemma, relates the

performance of the iterate biased-continuation attack, A(k), running on some pro-

tocol Π, to the performance of the optimal (valid) adversary playing the role of B

in the same protocol. The proof, see below, is done via the A-dominated measure
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of Π defined above.12

Lemma 3.5.1. Let Π = (A,B) be a protocol with val(Π) > 0, let k ∈ N and let

A(k) be according to Algorithm 3.1.2, then

val(A(k),B) ≥ 1− OPTB (Π)∏k−1
i=0 val(A(i),B)

.

The proof of the above lemma is a direct implication of the next lemma.

Lemma 3.5.2. Let Π = (A,B) be a protocol with val(Π) > 0, let k ∈ N and let

A(k) be according to Algorithm 3.1.2, then

E〈A(k),B〉
[
MA

Π

]
≥

E〈Π〉
[
MA

Π

]∏k−1
i=0 val(A(i),B)

.

Proof of Lemma 3.5.1. Immediately follows Lemmas 3.4.2 and 3.5.2 and Fact 2.2.5.

2

We begin by sketching the proof of the following lemma, which is a special

case of Lemma 3.5.2. Later we say how to generalize the below proof to derive

Lemma 3.5.2.

Lemma 3.5.3. Let Π = (A,B) be a protocol with val(Π) > 0 and let A(1) be

according to Algorithm 3.1.2, then E〈A(1),B〉
[
MA

Π

]
≥ E〈Π〉[MA

Π]
val(Π)

.

Sketch. The proof is by induction on the round complexity of Π. The base case

(i.e., round(Π) = 0) is straightforward. Assume that the lemma holds for m-round

protocols and that round(Π) = m+ 1. For b ∈ {0, 1} let αb := E〈Πb〉
[
MA

Πb

]
and let

p := eΠ(λ, 0).

12Formal proof of Lemma 3.5.1 follows its stronger variant, Lemma 3.7.1, introduced in Sec-
tion 3.7.
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In case root(Π) is controlled by A, the A-maximal property of MA
Π (Proposi-

tion 3.4.4(1)) yields that E〈Π〉
[
MA

Π

]
= p · α0 + (1− p) · α1. It holds that

E〈A(1),B〉
[
MA

Π

]
= e(A(1),B)(λ, 0) · E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ e(A(1),B)(λ, 1) · E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
(3.2)

= p · val(Π0)

val(Π)
· E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ (1− p) · val(Π1)

val(Π)
· E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
,

where the second equality follows Claim 3.2.1. Since A(1) is stateless (Proposi-

tion 3.2.2), we can write Equation (3.2) as

E〈A(1),B〉
[
MA

Π

]
= p · val(Π0)

val(Π)
· E〈

A
(1)
Π0
,BΠ0

〉 [(MA
Π

)
0

]
+ (1− p) · val(Π1)

val(Π)
· E〈

A
(1)
Π1
,BΠ1

〉 [(MA
Π

)
1

]
(3.3)

The A-maximal property of MA
Π and Equation (3.3) yield that

E〈A(1),B〉
[
MA

Π

]
= p · val(Π0)

val(Π)
· E〈

A
(1)
Π0
,BΠ0

〉 [MA
Π0

]
+ (1− p) · val(Π1)

val(Π)
· E〈

A
(1)
Π1
,BΠ1

〉 [MA
Π1

]
(3.4)

Applying the induction hypothesis on the right-hand side of Equation (3.4) yields

that

E〈A(1),B〉
[
MA

Π

]
≥ p · val(Π0)

val(Π)
· α0

val(Π0)
+ (1− p) · val(Π1)

val(Π)
· α1

val(Π1)

=
p · α0 + (1− p) · α1

val(Π)

=
E〈Π〉

[
MA

Π

]
val(Π)

,

which concludes the proof for the case that A controls root(Π).

In case root(Π) is controlled by B, and assuming that α0 ≤ α1 (the com-

plementary case is analogous), it holds that SmallerΠ (0) = 1. Thus, by the B-

minimal property of MA
Π (Proposition 3.4.4(2)), it holds that

(
MA

Π

)
0
≡ MA

Π0
and
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(
MA

Π

)
1
≡ α0

α1
MA

Π1
. Hence, the B-immune property of MA

Π (Proposition 3.4.4(3))

yields that E〈Π〉
[
MA

Π

]
= α0. In addition, since B controls root(Π), the edge distri-

bution of the edges (λ, 0) and (λ, 1) has not changed. It holds that

E〈A(1),B〉
[
MA

Π

]
= p · E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ (1− p) · E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
(3.5)

= p · E〈
A

(1)
Π0
,BΠ0

〉 [(MA
Π

)
0

]
+ (1− p) · E〈

A
(1)
Π1
,BΠ1

〉 [(MA
Π

)
1

]
= p · E〈

A
(1)
Π0
,BΠ0

〉 [MA
Π0

]
+ (1− p) · E〈

A
(1)
Π1
,BΠ1

〉 [α0

α1

MA
Π1

]
= p · E〈

A
(1)
Π0
,BΠ0

〉 [MA
Π0

]
+ (1− p) · α0

α1

· E〈
A

(1)
Π1
,BΠ1

〉 [MA
Π1

]
,

where the second equality follows since A(1) is stateless (Proposition 3.2.2). Ap-

plying the induction hypothesis on the right-hand side of Equation (3.5) yields

that

E〈A(1),B〉
[
MA

Π

]
≥ p · α0

val(Π0)
+ (1− p) · α0

α1

· α1

val(Π1)

= α0

(
p

val(Π0)
+

1− p
val(Π1)

)
≥

E〈Π〉
[
MA

Π

]
val(Π)

,

which concludes the proof for the case that A controls root(Π), and where the last

equality holds since

p

val(Π0)
+

1− p
val(Π1)

≥ 1

val(Π)
(3.6)

2

The proof of Lemma 3.5.2 follows similar arguments to the ones used above for

proving Lemma 3.5.3.13 Informally, we proved Lemma 3.5.3 by showing that A(1)

13The proof sketch given for Lemma 3.5.3 is almost a formal proof. It only lacks dealing with
the base case and the extreme cases in which eΠ(λ, b) = 1 for some b ∈ {0, 1}.
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“puts” more weight on the dominated measure, than what A does. A natural step

is to consider A(2), and to see if it puts more weight on the dominated measure

than what A(1) does. It turns out that one can turn this intuitive argument into a

formal proof, and prove Lemma 3.5.1 by repeating this procedure with respect to

many iterated biased-continuation attacks.14

The shortcoming of Lemma 3.5.1. Given a protocol Π = (A,B), we are inter-

ested in the minimal value of κ for which A(κ) biases the value of protocol towards

one with probability at least 0.9 (as a concrete example). Following Lemma 3.5.1,

it suffices to find a value κ such that

val(A(κ),B) ≥ 1− OPTB (Π)∏κ−1
i=0 val(A(i),B)

≥ 0.9 (3.7)

Using worse case analysis, it suffices to find κ such that (1− OPTB (Π))/(0.9)κ ≥

0.9, where the latter dictates that

κ ≥
log
(

1
1−OPTB(Π)

)
log
(

1
0.9

) (3.8)

Recall that our ultimate goal is to implement an efficient attack on any coin-

flipping protocol, under the mere assumption that one-way functions do not exist.

Specifically, we would like to do so by given an efficient version of the iterated

biased-continuation attack. For the very least, this requires the protocols in con-

sideration by the iterated attack (i.e., (A(1),B), . . . , (A(κ−1),B)) to be efficient com-

paring to the basic protocol. The latter efficiency restriction together with the

recursive definition of A(i), dictates κ (the number of iterations) to be constant.

Unfortunately, the above discussion tells that in case in case OPTB (Π) ∈ 1 −

o(1), we need take κ ∈ ω(1), yielding an inefficient attack.
14The main additional complication in the proof of Lemma 3.5.1, is that the simple argu-

ment used to derive Equation (3.6), is replaced with a the more general argument, described in
Lemma 2.5.1.
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3.6 Back to the Proof — Sequence of

Alternating Dominated Measures

Let Π = (A,B) be a protocol and let M be a measure over the leaves of Π. Consider

the variant of Π whose parties act identically like in Π, but with the following

tweak: when the execution reaches a leaf `, the protocol restarts with probability

M(`). Namely, a random execution of the resulting (possibly inefficient) protocol,

is distributed like a random execution of Π, conditioned on not “hitting” the

measure M .15 The above is formally captured by the definition below.

Conditional protocols.

Definition 3.6.1 (conditional protocols). Let Π be an m-message protocol and let

M be a measure over L(Π) with E〈Π〉[M ] < 1. The m-message, M-conditional

protocol of Π, denoted Π|¬M , is defined by the color function χ(Π|¬M) ≡ χΠ, and

the edge distribution function e(Π|¬M) defined by

e(Π|¬M)(u, ub) =


0, E〈Πu〉[M ] = 1; 16

eΠ(u, ub) ·
1−E〈Πub〉[M ]

1−E〈Πu〉[M ]
, otherwise.

,

for every u ∈ V(Π) \ L(Π) and b ∈ {0, 1}. The controlling scheme of the protocol

Π|¬M is the same as in Π.

In case E〈Π〉[M ] = 1 or Π =⊥, we set Π|¬M =⊥.

The next proposition shows that the M -conditional protocol is indeed a proto-

col. It also shows a relation between the leaves distributions of the M -conditional

15For concreteness, one might like to consider the case where M is a set.
16Note that this case does not affect the resulting protocol, and is defined only to simply

future discussion.
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protocol and the original protocol. Using this relation we conclude that the set of

possible transcripts of the M -conditional protocol is a subset the original proto-

col’s possible transcripts and that in case M gives value of 1 to some transcript,

then this transcript is inaccessible by the M -conditional protocol.

Proposition 3.6.2. Let Π be a protocol and let M be a measure over L(Π) with

E〈Π〉 [M ] < 1, then

1. ∀u ∈ V(Π) \ L(Π): v(Π|¬M)(u) > 0 =⇒ e(Π|¬M)(u, u0) + e(Π|¬M)(u, u1) = 1;

2. ∀` ∈ L(Π): v(Π|¬M)(`) = vΠ(`) · 1−M(`)

1− E〈Π〉 [M ]
;

3. ∀` ∈ L(Π): v(Π|¬M)(`) > 0 =⇒ vΠ(`) > 0; and

4. ∀` ∈ L(Π): M(`) = 1 =⇒ v(Π|¬M)(`) = 0.

Proof. The first two items immediately follows from Definition 3.6.1. The last two

items follows the second item. 2

In addition to the above properties, Definition 3.6.1 guarantees the following

“locality” property of the M -conditional protocol.

Proposition 3.6.3. Let Π be a protocol and let M be a measure over L(Π), then

(Π|¬M)u = Πu|¬(M)u for every u ∈ V(Π) \ L(Π).

Proof. Immediately follows from Definition 3.6.1. 2

Proposition 3.6.3 helps us to apply induction on conditional protocols. Specifi-

cally, we use it to prove the following lemma, which relates the dominated measure

conditional protocol with the optimal (valid) attack.

Lemma 3.6.4. Let Π = (A,B) be a protocol with val(Π) < 1, then OPTB

(
Π|¬MA

Π

)
=

1.
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Proof. First, observe that by assuming that val(Π) < 1, Definition 3.4.1 yields that

E〈Π〉
[
MA

Π

]
< 1, and hence Π|¬MA

Π 6=⊥ (i.e., is a protocol). The rest of the proof

is by induction on the round complexity of Π.

Assume that round(Π) = 0 and let ` be the only node in T (Π). Since it is

assumed that val(Π) < 1, it must be the case that χΠ(`) = 0. The proof follows

since MA
Π(`) = 0, and thus Π|¬MA

Π = Π, and since OPTB (Π) = 1.

Assume the lemma holds for m-round protocols and that round(Π) = m + 1.

In case eΠ(λ, b) = 1 for some b ∈ {0, 1}, Definition 3.4.1 yields that
(
MA

Π

)
b

= MA
Πb

.

Moreover, Definition 3.6.1 yields that e(Π|¬MA
Π)(λ, b) = 1. It holds that

OPTB

(
Π|¬MA

Π

)
= OPTB

((
Π|¬MA

Π

)
b

)
(3.9)

= OPTB

(
Πb|¬

(
MA

Π

)
b

)
= OPTB

(
Πb|¬MA

Πb

)
= 1,

where the first equality follows Proposition 3.3.2, the second follows Proposi-

tion 3.6.3, and the last equality follows the induction hypothesis.

In the complementary case, i.e., eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, the proof

splits according to who controls the roof of Π.

A controls root(Π). The assumption that val(Π) < 1 dictates that val(Π0) < 1 or

val(Π1) < 1. Consider the following complimentary cases.
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val(Π0), val(Π1) < 1: Proposition 3.3.2 yields that

OPTB

(
Π|¬MA

Π

)
= e(Π|¬MA

Π)(λ, 0) · OPTB

((
Π|¬MA

Π

)
0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

((
Π|¬MA

Π

)
1

)
= e(Π|¬MA

Π)(λ, 0) · OPTB

(
Π0|¬

(
MA

Π

)
0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

(
Π1|¬

(
MA

Π

)
1

)
= e(Π|¬MA

Π)(λ, 0) · OPTB

(
Π0|¬MA

Π0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

(
Π1|¬MA

Π1

)
= 1,

where the first equality follows Proposition 3.3.2, the second follows Propo-

sition 3.6.3, the third follows by the A-maximal property of MA
Π (Proposi-

tion 3.4.4(1)), and last equality follows the induction hypothesis.

val(Π0) < 1, val(Π1) = 1: By Definition 3.6.1, it holds that

e(Π|¬MA
Π)(λ, 1) = eΠ(λ, 1) ·

1− E〈Π1〉
[(
MA

Π

)
1

]
1− E〈Π〉

[
MA

Π

]
= eΠ(λ, 1) ·

1− E〈Π1〉
[
MA

Π1

]
1− E〈Π〉

[
MA

Π

]
= 0,

where the second equality follows the A-maximal property ofMA
Π , and the last

equality follows since val(Π1) = 1, which yields that E〈Π1〉
[
MA

Π1

]
= 1. Since

Π|¬MA
Π is a protocol (Proposition 3.6.2), it holds that e(Π|¬MA

Π)(λ, 0) = 1.

The proof now follows Equation (3.9).

val(Π0) = 1, val(Π1) < 1: The proof in analogous to the previous case.

B controls root(Π). Assume for simplicity that SmallerΠ (0) = 1, namely that

E〈Π0〉
[
MA

Π0

]
≤ E〈Π1〉

[
MA

Π1

]
(the other case is analogous). First, observe that it
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must hold that val(Π0) < 1 (otherwise, it holds that E〈Π0〉
[
MA

Π0

]
= E〈Π1〉

[
MA

Π1

]
=

1, which yields that val(Π1) = 1, and thus val(Π) = 1). Hence, E〈Π0〉
[
MA

Π0

]
< 1,

and Definition 3.6.1 yields that e(Π|¬MA
Π)(λ, 0) > 0. By Proposition 3.3.2, it holds

that

OPTB

(
Π|¬MA

Π

)
≥ OPTB

((
Π|¬MA

Π

)
0

)
= OPTB

(
Π0|¬

(
MA

Π

)
0

)
= OPTB

(
Π0|¬MA

Π0

)
= 1,

where the second equality follows Proposition 3.6.3, the third follows the B-minimal

property of MA
Π (Proposition 3.4.4(2)), and the last equality follows the induction

hypothesis. 2

Let Π = (A,B) be a protocol in which an optimal adversary playing the role of

A biases the outcome towards one with probability one. Lemma 3.6.4 shows that in

the conditional protocol Π(B,0) := Π|¬MA
Π , an optimal adversary playing the role of

B can bias the outcome towards zero with probability one. Repeating this proce-

dure with respect to Π(B,0) results in the protocol Π(A,1) := Π(B,0)|¬MA
Π(B,0)

, in which

again an optimal adversary playing the role of A can bias the outcome towards one

with probability one. This procedure is formally put in Definition 3.6.6.

Dominated measures sequence. Given a protocol (A,B), we use the simple

ordering over the pairs {(C, j)}(C,j)∈{A,B}×Z.

Notation 3.6.5. Let (A,B) be a protocol. For j ∈ Z let pred(A, j) = (B, j −

1) and pred(B, j) = (A, j), and let succ be the inverse operation of pred (i.e.,

succ(pred(C, j)) = (C, j)). For pairs (C, j), (C′, j′) ∈ {A,B} × Z, we write

53



• (C, j) is less equal than (C′, j′) , denoted (C, j) � (C′, j′), if ∃ {(C1, j1), . . . , (Cn, jn)}

such that (C, j) = (C1, j1), (C′, j′) = (Cn, jn) and (Ci, ji) = pred(Ci+1, ji+1)

for any i ∈ [n− 1].

• (C, j) is less than (C′, j′), denoted (C, j) ≺ (C′, j′), if (C, j) � (C′, j′) and

(C, j) 6= (C′, j′).

Finally, for (C, j) � (A, 0), let [(C, j)] := {(C′, j′) : (A, 0) � (C′, j′) � (C, j)}.

Definition 3.6.6. (dominated measures sequence) For a protocol Π = (A,B) and

(C, j) ∈ {A,B} × N, the protocol Π(C,j) is defined by

Π(C,j) =

 Π, (C, j) = (A, 0);

Π(C′,j′)=pred(C,j)|¬
(
MC′

Π(C′,j′)

)
, otherwise.17

Define the (C, j) dominated measures sequence of Π, denoted (C, j)-DMS (Π),

by
{
MC′

Π(C′,j′)

}
(C′,j′)∈[(C,j)]

. Finally, for z ∈ N, let LC,z
Π ≡

∑z
j=0M

C
Π

(C,j)

∏j−1
t=0

(
1−MC

Π
(C,t)

)
.

We show that LA,z
Π is a measure (i.e., its range is [0, 1]) and that its support is

a subset of the 1-leaves of Π. We also give an explicit expression for its expected

value (analogous to the expected value of MA
Π given in Lemma 3.4.2).

Lemma 3.6.7. Let Π = (A,B) be a protocol, let z ∈ N and let LA,z
Π be as in

Definition 3.6.6. It holds that

1. LA,z
Π is a measure over L1(Π):

a) LA,z
Π (`) ∈ [0, 1] for every ` ∈ L(Π), and

17Note that in case E〈
Π

(C,j)

〉 [MC
Π

(C,j)

]
= 1, Definition 3.6.1 yields that Πsucc(C,j) =⊥. In

fact, since we defined ⊥ |¬M =⊥ for any measure M (also in Definition 3.6.1), it follows that
Π(C′,j′) =⊥ for any (C′, j′) � (C, j).

54



b) Supp
(
LA,z

Π

)
⊆ L1(Π).

2. E〈Π〉

[
LA,z

Π

]
=
∑z

j=0 αj ·
∏j−1

t=0(1− βt)(1− αt), where αj = 1−OPTB

(
Π(A,j)

)
,

βj = 1− OPTA

(
Π(B,j)

)
and OPTA (⊥) = OPTB (⊥) = 1.

Proof. We prove the above two items separately.

Proof of Item 1. Let ` ∈ L0(Π). Since MA
Π

(A,j)
(`) = 0 for every j ∈ (z), it holds

that LA,z
Π (`) = 0. Let ` ∈ L1(Π). Since LA,z

Π (`) is a sum of non negative

numbers, it follows that its value is non negative. It is left to argue that

LA,z
Π (`) ≤ 1. Since MA

Π
(A,z)

is a measure, note that MA
Π

(A,z)
(`) ≤ 1. Thus

LA,z
Π (`) =

z∑
j=0

MA
Π

(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

≤
z−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

+
z−1∑
j=0

MA
Π

(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

=

 ∑
I⊆(z−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)


+

z−1∑
j=0

MA
Π

(A,j)
(`) ·

 ∑
I⊆(j−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)


=

 ∑
I⊆(z−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)


+

 ∑
∅6=I⊆(z−1)

(−1)|I|+1 ·
∏
t∈I

MA
Π

(A,t)
(`)


= 1.
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Proof of Item 2. By linearity of expectation, it suffice to prove that

E〈Π〉

[
MA

Π(A,j)
·
j−1∏
t=0

(
1−MA

Π(A,t)

)]
= αj ·

j−1∏
t=0

(1− βt)(1− αt) (3.10)

for any j ∈ (z). Fix j ∈ (z). In case Π(A,j) =⊥, then by Definition 3.4.1

it holds that MA
Π(A,j)

is the zero measure, and both sides of Equation (3.10)

equal 0.

In the following we assume that Π(A,j) 6=⊥. We first note that E〈Π(C,t)〉
[
MC

Π(C,t)

]
<

1 for any (C, t) ∈ [pred(A, j)] (otherwise, it must be that Π(A,j) =⊥). Thus,

Lemma 3.4.2 yields that αt, βt < 1 for every t ∈ (j − 1). Hence, recursively

applying Proposition 3.6.2(2) yields that

v(Π(A,j))(`) = vΠ(`) ·
j−1∏
t=0

1−MA
Π(A,t)

(`)

1− αt
·

1−MB
Π(B,t)

(`)

1− βt
(3.11)

for every ` ∈ L(Π). Moreover, for ` ∈ Supp
(
Π(A,j)

)
, i.e., v(Π(A,j))(`) > 0, we

can manipulate Equation (3.11) to get that

vΠ(`) = v(Π(A,j))(`) ·
j−1∏
t=0

1− αt
1−MA

Π(A,t)
(`)
· 1− βt

1−MB
Π(B,t)

(`)
(3.12)

for every ` ∈ Supp
(
Π(A,j)

)
.
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It follows that

E〈Π〉

[
MA

Π(A,j)
·
j−1∏
t=0

(
1−MA

Π(A,t)

)]

=
∑
`∈L(Π)

vΠ(`) ·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

=
∑

`∈Supp(Π(A,j))∩L1(Π)

vΠ(`) ·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

=
∑

`∈Supp(Π(A,j))∩L1(Π)

v(Π(A,j))(`) ·
j−1∏
t=0

1− αt
1−MA

Π(A,t)
(`)
· 1− βt

1−MB
Π(B,t)

(`)

·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

=
∑

`∈Supp(Π(A,j))∩L1(Π)

v(Π(A,j))(`) ·MA
Π(A,j)

(`) ·
j−1∏
t=0

(1− αj) (1− βj)

= αj ·
j−1∏
t=0

(1− βt)(1− αt),

concluding the proof. The second equality follows since Definition 3.4.1 yields

that MA
Π(A,j)

(`) = 0 for any ` /∈ Supp
(
Π(A,j)

)
∩ L1(Π), the third equality

follows by Equation (3.12) and the forth equality follows since MB
Π(B,t)

(`) = 0

for every ` ∈ L1(Π) and t ∈ (j − 1).

2

Example 3.6.8. Once again we consider the protocol Π from Figure 3.1a. In

Figure 3.2 we present the conditional protocol Π(B,0) = Π|¬MA
Π, namely the protocol

derived when protocol Π is conditioned not to “hit” the A-dominated measure of Π.

We would like to highlight some points regarding this conditional protocol.

The first point we note is the changes in the edges distribution. Considering

the root of Π0 (i.e., the node 0), then according to the calculations in Figure 3.1b,
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it holds that E〈Π00〉
[
MA

Π

]
= MA

Π(00) = 1 and that E〈Π0〉
[
MA

Π

]
= α0. Hence, Defi-

nition 3.6.1 yields that

e(Π|¬MA
Π)(0, 00) = α0 ·

1− E〈Π00〉
[
MA

Π

]
1− E〈Π0〉

[
MA

Π

]
= α0 ·

0

1− α0

= 0.

Note that the above change makes the leaf 00 inaccessible in Π(B,0). This occurs

since MA
Π(00) = 1 and follows Proposition 3.6.2. Similar calculations yield the

changes in the edge distribution of the edges leaving the root of Π1 (i.e., the node

1).

The second point we note is that the conditional protocol is in fact a protocol.

Namely, that for every node, the sum of the edge distribution of the edges leaving

it is one. This is easily seen from Figure 3.2 and again follows Proposition 3.6.2.

The third point we note is that the edges distribution of the root of Π does not

change at all. This follows Definition 3.6.1 and the fact that

E〈Π0〉
[
MA

Π

]
= E〈Π1〉

[
MA

Π

]
= E〈Π〉

[
MA

Π

]
= α0.

The forth point we note is that in the conditional protocol, optimal valid ad-

versary playing the role of B can bias the outcome towards zero with probability

one. Namely, OPTB

(
Π|¬MA

Π

)
= 1. Such adversary will send 0 as the first mes-

sage, A must send 1 as the next message, and then the adversary will send 0. The

outcome of this interaction is the value of the leaf 010, which is 0. This follows

Lemma 3.6.4.

Using dominated measures sequences we manage to give an improved bound for

the success probability of the iterated biased-continuation attacks (comparing to
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B

A

1

0

B

0

β01

1

1− β01

1

β

A

1

α1−α0

1−α0

0

1−α1

1−α0

1− β

Figure 3.2: The conditional protocol Π(B,0) = Π|¬MA
Π of Π from Figure 3.1a.

Dashed Edges are such that their edge distribution has changed. Note that due to
this change, the leaf 00 (the leftmost leaf, signal by thick border) is inaccessible in
Π(B,0). The B-dominated measure of Π(B,0) assign value of 1 to the leaf 010, and
value of 0 to all other leaves.

the bound of Lemma 3.5.3, which uses a single dominated measure). The improved

analysis yields that constant iteration of biased-continuation attack is successful

in biassing the protocol to arbitrary constant close to either 0 or 1.

3.7 Improved Analysis Using Alternating

Dominated Measures

We are finally ready to state two main lemmas, whose proofs – given in the next

two sections – are the main technical contribution of Chapter 3, and then show

how to use them from proving Theorem 3.1.3.

The first lemma is analogous to Lemma 3.5.1, but applied on the sequence of

the dominated measures, and not just on a single dominated measure.
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Lemma 3.7.1. For a protocol Π = (A,B) with val(Π) > 0 and z ∈ N, it holds that

val(A(k),B) ≥ E〈A(k),B〉
[
LA,z

Π

]
≥

E〈Π〉

[
LA,z

Π

]
∏k−1

i=0 val(A(i),B)
·

(
1−

z−1∑
j=0

βj

)k

for every k ∈ N, where βj = 1− OPTA

(
Π(B,j)

)
, letting OPTA (⊥) = 1.

In words, Lemma 3.7.1 states that the iterated biased-continuation attacker

biases the outcome of the protocol by a similar bound given in Lemma 3.5.1, but

applied with respect to LA,z
Π , instead of MA

Π in Lemma 3.5.1. This is helpful since

the expected value of LA,z
Π is strictly larger than that of MA

Π . However, since LA,z
Π

is defined in with respect to sequence of conditional protocols, we must “pay” the

term
(

1−
∑z−1

j=0 βj

)k
in order to get this bound in the original protocol.

The following lemma states that Lemma 3.7.1 provides a sufficient bound.

Specifically, it shows that taking long enough sequence of conditional protocols, the

expected value of the measure LA,z
Π is sufficiently large, while keeping the payment

term mentioned above sufficiently small.

Lemma 3.7.2. Let Π = (A,B) be a protocol. Then for every c ∈ (0, 1
2
] there exists

z = z(c,Π) ∈ N (possibly exponential large) such that:

1. E〈Π〉

[
LA,z

Π

]
≥ c · (1− 2c) and

∑z−1
j=0 βj < c; or

2. E〈Π〉

[
LB,z

Π

]
≥ c · (1− 2c) and

∑z
j=0 αj < c,

where αj = 1− OPTB

(
Π(A,j)

)
and βj = 1− OPTA

(
Π(B,j)

)
.

To derive Theorem 3.1.3, we take long enough sequence of the dominated mea-

sures so that its accumulated weight is sufficiently large. Furthermore, the weight

of the dominated measures precedes the final dominated measure in the sequence is
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small (otherwise, we would have taken shorter sequence), so the parties are “miss-

ing” these measures with high probability. The formal proof of Theorem 3.1.3 is

given next, and the proofs of Lemmas 3.7.1 and 3.7.2 are given in Sections 3.8

and 3.8 respectively.

Proving Theorem 3.1.3.

Proof of Theorem 3.1.3. In case val(Π) = 0, Theorem 3.1.3 trivially holds. Assume

that val(Π) > 0, let z be the minimum integer guaranteed by Lemma 3.7.2 for

c = ε/2 and let κ =

⌈
log( 2

ε)
log( 1−ε/2

1−ε )

⌉
.

In case z satisfies Item 1 of Lemma 3.7.2, assume towards a contradiction that

val(A(κ),B) ≤ 1− ε. Lemma 3.7.1 yields that

val(A(κ),B) ≥
E〈Π〉

[
LA,z

Π

]
∏κ−1

i=0 val(A(i),B)
·

(
1−

z−1∑
j=0

βj

)κ

>
ε(1− ε)

2
·
(

1− ε/2
1− ε

)κ
≥ 1− ε,

and a contradiction is derived.

In case z satisfies Item 2 of Lemma 3.7.2, analogous argument to the above

yields that val(A,B(κ)) ≤ ε. 2

3.8 Proving Lemma 3.7.1

The proof of Lemma 3.7.1 is an easy implication of Lemma 3.6.7 and the following

key lemma, defined with respect to sequences of submeasures of the dominated

measure.
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Definition 3.8.1. (dominated submeasures sequence) For a protocol Π = (A,B), a

pair (C∗, j∗) ∈ {A,B} × N and η =
{
η(C,j) ∈ [0, 1]

}
(C,j)∈[(C∗,j∗)]

, define the protocol

Π̂η
(C,j) by

Π̂η
(C,j) :=

 Π, (C, j) = (A, 0);

Π̂η
(C′,j′)=pred(C,j)|¬

(
M̂Π,η

(C′,j′)

)
, otherwise.

,

where M̂Π,η
(C′,j′) ≡ η(C′,j′) · MC′

Πη

(C′,j′)
. For (C, j) ∈ [(C∗, j∗)], define the (C, j,η)-

dominated measures sequence of Π, denoted (C, j,η)-DMS (Π), as{
M̂Π,η

(C′,j′)

}
(C′,j′)∈[(C,j)]

, and let µ̂Π,η
(C,j) = E〈

Π̂η
(C,j)

〉 [M̂Π,η
(C,j)

]
.18

Finally, let L̂C,η
Π ≡

∑
j : (C,j)∈[(C∗,j∗)] M̂

Π,η
(C,j) ·

∏j−1
t=0

(
1− M̂Π,η

(C,t)

)
.

Lemma 3.8.2. Let Π = (A,B) be a protocol with val(Π) > 0, let z ∈ N and let

η =
{
η(C,j) ∈ [0, 1]

}
(C,j)∈[(A,z)]

. For j ∈ (z) let αj = µ̂Π,η
(A,j), and for j ∈ (z − 1) let

βj = µ̂Π,η
(B,j). Then

E〈A(k),B〉
[
L̂A,η

Π

]
≥
∑z

j=0 αj ·
∏j−1

t=0(1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

for any positive k ∈ N.

The proof of Lemma 3.8.2 is given below, but we first use it for proving

Lemma 3.7.1.

Proof of Lemma 3.7.1. Let η(C,j) = 1 for every (C, j) ∈ [(A, z)] and let η ={
η(C,j)

}
(C,j)∈[(A,z)]

. It follows that L̂A,η
Π ≡ LA,z

Π . Applying Lemma 3.8.2 yields that

E〈A(k),B〉
[
LA,z

Π

]
≥
∑z

j=0 αj ·
∏j−1

t=0(1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

(3.13)

18Note that for η = (1, 1, 1, . . . , 1), Definition 3.8.1 coincides with Definition 3.6.6.
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where αj = µ̂Π,η
(A,j) and βj = µ̂Π,η

(B,j). Multiplying the j’th summand of the right hand

side of Equation (3.13) by
∏z−1

t=j (1− βj)k ≤ 1 yields that

E〈A(k),B〉
[
LA,z

Π

]
≥
∑z

j=0 αj ·
∏j−1

t=0(1− βt)(1− αt)∏k−1
i=0 val(A(i),B)

·
z−1∏
t=0

(1− βt)k (3.14)

≥
∑z

j=0 αj ·
∏j−1

t=0(1− βt)(1− αt)∏k−1
i=0 val(A(i),B)

·

(
1−

z−1∑
t=0

βt

)k

where the second inequality follows since βj ≥ 0 and (1− x)(1− y) ≥ 1− (x+ y)

for any x, y ≥ 0. By Lemma 3.4.2 and the definition of η it follows that µ̂Π,η
(A,j) =

1 − OPTB

(
Π(A,j)

)
and µ̂Π,η

(B,j) = 1 − OPTA

(
Π(B,j)

)
. Hence, plugin Lemma 3.6.7

into Equation (3.14) yields that

E〈A(k),B〉
[
LA,z

Π

]
≥

E〈Π〉

[
LA,z

Π

]
∏k−1

i=0 val(A(i),B)
·

(
1−

z−1∑
t=0

βt

)k

(3.15)

Finally, the proof is concluded, since by Lemma 3.6.7 and Fact 2.2.5 it immediately

follows that val(A(k),B) ≥ E〈A(k),B〉
[
LA,z

Π

]
. 2

Proving Lemma 3.8.2

Proof of Lemma 3.8.2. In the following we fix a protocol Π, real vector η ={
η(C,j)

}
(C,j)∈[(A,z)]

and a positive integer k. We also assume for simplicity that

Π̂η
(A,z) is not the undefined protocol, i.e., Π̂η

(A,z) 6=⊥.19 The proof is by induction

on the round complexity of Π.

Base case. Assume round(Π) = 0 and let ` be the only node in T (Π). For j ∈ (z),

Definition 3.8.1 yields that χΠ̂η
(A,j)

(`) = χΠ(`) = 1, where the last equality holds

19In case this assumption does not hold, let z′ ∈ (z − 1) be the largest index such that

Π̂η
(A,z′) 6=⊥, and let η′ =

{
η(C,j)

}
(C,j)∈[(A,z′)]

. It follows Definition 3.4.1 that M̂Π,η
(A,j) is the zero

measure for any z′ < j ≤ z, and thus L̂Π,η′

A ≡ L̂Π,η
A . Moreover, noticing that αj = 0 for any

z′ < j ≤ z suffices for validating the assumption.
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since, by assumption, val(Π) > 0. It follows Definition 3.4.1 that MA
Π̂η

(A,j)

(`) = 1 and

Definition 3.8.1 that M̂Π,η
(A,j)(`) = η(A,j). Hence, it holds that αj = η(A,j). Similarly,

for j ∈ (z − 1) it holds that M̂Π,η
(B,j)(`) = 0 and thus βj = 0. Clearly,

(
A(k),B

)
= Π

and val(A(i),B) = 1 for every i ∈ [k − 1]. We conclude that

E〈A(k),B〉
[
L̂Π,η

A

]
=E〈Π〉

[
L̂Π,η

A

]
=

z∑
j=0

M̂Π,η
(A,j)(`) ·

j−1∏
t=0

(
1− M̂Π,η

(A,t)(`)
)

=
z∑
j=0

η(A,j) ·
j−1∏
t=0

(
1− η(A,t)

)
=

z∑
j=0

αj ·
j−1∏
t=0

(1− αt)

=

∑z
j=0 αj

∏j−1
t=0(1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

.

Induction step. Assume the lemma holds form-round protocols and that round(Π) =

m + 1. The proof takes the following steps: (1) defines two real vectors η0 and

η1 such that the restriction of L̂Π,η
A to Π0 and Π1 is equal to L̂

Π0,η0
A and L̂

Π1,η1
A

respectively; (2) Applies the induction hypothesis on the two latter measures; (3)

In case A controls root(Π), uses the properties of A(k) – as put in Claim 3.2.1 –

to derive the lemma, whereas in case B controls root(Π), derives the lemma from

Lemma 2.5.1.

All claims given in the context of this proof are proven in Section 3.8. We defer

handling the case that eΠ(λ, b) ∈ {0, 1} for some b ∈ {0, 1} for later and assume

for now that eΠ(λ, 0), eΠ(λ, 1) ∈ (0, 1). The real vectors η0 and η1 are defined as

follows.
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Definition 3.8.3. Let ηb =
{
ηb(C,j)

}
(C,j)∈[(A,z)]

, where for (C, j) ∈ [(A, z)] and

b ∈ {0, 1}, let

ηb(C,j) =



0 eΠ̂η
(C,j)

(λ, b) = 0;

η(C,j) eΠ̂η
(C,j)

(λ, b) = 1;

η(C,j) eΠ̂η
(C,j)

(λ, b) /∈ {0, 1} ∧ (C controls root(Π) ∨ SmallerΠ̂η
(C,j)

(b));

ξ1−b
(C,j)

ξb
(C,j)

· η(C,j) otherwise;

,

where ξb(C,j) = E〈(
Π̂η

(C,j)

)
b

〉 [MC(
Π̂η

(C,j)

)
b

]
and SmallerΠ̂η

(C,j)
(b) = 1 if ξb(C,j) ≤ ξ1−b

(C,j).
20

Given the real vector ηb, consider the dominated submeasure sequence ηb

induces on the sub-protocol Πb. At a first look, the relation of this submeasure

sequence to the dominated submeasure sequence η induces on Π, is unclear; yet,

we manage to prove the following key observation.

Claim 3.8.4. It holds that L̂
Πb,ηb
A ≡

(
L̂Π,η

A

)
b

for both b ∈ {0, 1}.

Namely, taking (A, z,ηb)-DMS (Πb) – the dominated submeasures defined with

respect to Πb and ηb – and combining it to the measure L̂
Πb,ηb
A , results in the same

measure as taking (A, z,η)-DMS (Π) – the dominated submeasures defined with

respect to Π and η – combine it to the measure L̂Π,η
A and restrict the latter to Πb.

Given the above fact, we can use our induction hypothesis on the sub-protocols

Π0 and Π1 with respect to the real vectors η0 and η1, respectively. For b ∈ {0, 1}

and j ∈ (z), let αbj := µ
Πb,ηb

(A,j) (:= E〈
(Π̂b)

ηb

(A,j)

〉 [M̂Πb,ηb

(A,j)

]
), and for j ∈ (z − 1) let

20Note that the definition of ηb follows the same lines of the definition of the dominated
measure (given in Definition 3.4.1).
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βbj := µ
Πb,ηb

(B,j) . Assuming that val(Π1) > 0, then

E〈(A(k),B)
1
〉
[(
L̂Π,η

A

)
1

]
= E〈

A
(k)
Π1
,BΠ1

〉 [L̂Π1,η1
A

]
≥
∑z

j=0 α
1
j

∏j−1
t=0(1− β1

t )
k+1(1− α1

t )∏k−1
i=0 val ((A(i),B)1)

(3.16)

where the equality holds by Proposition 3.2.2 and Claim 3.8.4, and the inequality

by the induction hypothesis. Similarly, if val(Π0) > 1, then

E〈(A(k),B)
0
〉
[(
L̂Π,η

A

)
0

]
= E〈

A
(k)
Π0
,BΠ0

〉 [L̂Π0,η0
A

]
≥
∑z

j=0 α
0
j

∏j−1
t=0(1− β0

t )
k+1(1− α0

t )∏k−1
i=0 val ((A(i),B)0)

(3.17)

In the following we use the fact that at least the dominated submeasure se-

quence of one of sub-protocols is at least as long as the submeasure sequence of

the protocol itself. Specifically, we show the following.

Definition 3.8.5. For b ∈ {0, 1} let zb = min
{{
j ∈ (z) : αbj = 1 ∨ βbj = 1

}
∪ {z}

}
.

Assuming without loss of generality (and throughout the proof of the lemma)

that z1 ≤ z0, we have the following claim (proved in Section 3.8).

Claim 3.8.6. Assume that z1 ≤ z0, then z0 = z.

We are now ready to prove the lemma by separately considering which party

controls the root of Π.

A controls root(Π) and val(Π0), val(Π1) > 0. Under these assumptions, we can

apply the induction hypothesis on both subtrees (namely, to use Equa-
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tions (3.16) and (3.17)). Let p = eΠ(λ, 0). Compute

E〈A(k),B〉
[
L̂Π,η

A

]
(3.18)

= e(A(k),B)(λ, 0) · E〈(A(k),B)
0
〉
[(
L̂Π,η

A

)
0

]
+ e(A(k),B)(λ, 1) · E〈(A(k),B)

1
〉
[(
L̂Π,η

A

)
1

]
= p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val (A(i),B)

· E〈(A(k),B)
0
〉
[(
L̂Π,η

A

)
0

]
+ (1− p) ·

∏k−1
i=0 val

((
A(i),B

)
1

)∏k−1
i=0 val(A(i),B)

· E〈(A(k),B)
1
〉
[(
L̂Π,η

A

)
1

]
≥ p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val (A(i),B)

·
∑z

j=0 α
0
j

∏j−1
t=0(1− β0

t )
k+1(1− α0

t )∏k−1
i=0 val ((A(i),B)0)

+ (1− p) ·
∏k−1

i=0 val
((
A(i),B

)
1

)∏k−1
i=0 val(A(i),B)

·
∑z

j=0 α
1
j

∏j−1
t=0(1− β1

t )
i+1(1− α1

t )∏k−1
i=0 val ((A(i),B)1)

=
p ·
(∑z

j=0 α
0
j

∏j−1
t=0(1− β0

t )
k+1(1− α0

t )
)

∏k−1
i=0 val(A(i),B)

(3.19)

+
(1− p) ·

(∑z
j=0 α

1
j

∏j−1
t=0(1− β1

t )
k+1(1− α1

t )
)

∏k−1
i=0 val(A(i),B)

where the second equality follows Claim 3.2.1 and the third inequality follows

Equations (3.16) and (3.17).

Our next step is to establish a connection between the above
{
α0
j , α

1
j

}
j∈(z)

and
{
β0
j , β

1
j

}
j∈(z−1)

to {αj}j∈(z) and {βj}j∈(z−1) (appearing in the lemma’s

statement). We prove the following claims.

Claim 3.8.7. In case A controls root(Π), it holds that β0
j = βj for every

j ∈ (z − 1) and β1
j = βj for every j ∈ (z1 − 1).

Intuitively (Section 3.8 for the formal proof), the fact that β0
j = β1

j = βj for

j ∈ (z1−1) is a direct implication of Proposition 3.4.4, whereas the fact that
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β0
j = βj for every z1 ≤ j ≤ z − 1 is of technical nature, and formally proved

in Section 3.8.

Claim 3.8.8. In case A controls root(Π) and z1 < z, it holds that α1
z1 = 1.

Intuitively, (again, Section 3.8 for the formal proof), by Claim 3.8.7 it follows

that as long as an undefined protocol was not reached in one of the sub-

protocols, then β0
j = β1

j = βj. Assuming that z1 < z and β1
z1 = 1, it would

have followed that βz1 = 1, and an undefined protocol is reached in the

original protocol before z, a contradiction to our assumption.

Claims 3.8.7 and 3.8.8 and Equation (3.18) yield that

E〈A(k),B〉
[
L̂Π,η

A

]
≥

∑z
j=0

∏j−1
t=0(1− βt)k+1

(
p · α0

j

∏j−1
t=0(1− α0

t )
)

∏k−1
i=0 val(A(i),B)

(3.20)

+

∑z
j=0

∏j−1
t=0(1− βt)k+1

(
(1− p) · α1

j ·
∏j−1

t=0(1− α1
t )
)

∏k−1
i=0 val(A(i),B)

(3.21)

The proof of this case is concluded by plugin the next claim into Equa-

tion (3.20).

Claim 3.8.9. In case A controls root(Π) it holds that

αj ·
j−1∏
t=0

(1− αt) = p · α0
j ·

j−1∏
t=0

(1− α0
t ) + (1− p) · α1

j ·
j−1∏
t=1

(1− α1
t )

for any j ∈ (z).

Claim 3.8.9 is proved in Section 3.8, but informally it holds since the probabil-

ity of visiting the left-hand [resp., right-hand] sub-protocol in the conditional

protocol Π̂η
(A,j) (in which αj is defined) is p ·

∏j−1
t=0(1−α0

t )/
∏j−1

t=0(1−αt) [resp.,
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(1− p) ·
∏j−1

t=0(1− α1
t )/
∏j−1

t=0(1− αt)]. Since αj is defined to be the expected

value of some measure in the above conditional protocol, its value is a linear

combination of α0
j and α1

j , with the coefficient being the above probabilities.

A controls root(Π) and val(Π0) > val(Π1) = 0. Under these assumptions, we can

still use the induction hypothesis for the left-hand sub-protocol Π0, where

for right-hand sub-protocol Π1, we argue the following.

Claim 3.8.10. In case val(Π1) = 0, it holds that
(
L̂Π,η

A

)
1
≡ 0.21

Intuitively, Claim 3.8.10 holds since according to Claim 3.8.4 we can simply

argue that L̂
Π1,η1
A is the zero measure, and this holds since the latter measure

is a combination of A-dominated measures, all of which are the zero measure

in a zero-value protocol.

Using Claim 3.8.10, and similar to Equation (3.18), we deduce

E〈A(k),B〉
[
L̂Π,η

A

]
(3.22)

= e(A(k),B)(λ, 0) · E〈(A(k),B)
0
〉
[(
L̂Π,η

A

)
0

]
+ e(A(k),B)(λ, 1) · E〈(A(k),B)

1
〉
[(
L̂Π,η

A

)
1

]
≥ p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val (A(i),B)

·
∑z

j=0 α
0
j

∏j−1
t=0(1− β0

t )
k+1(1− α0

t )∏k−1
i=0 val ((A(i),B)0)

=
p ·
(∑z

j=0 α
0
j

∏j−1
t=0(1− β0

t )
k+1(1− α0

t )
)

∏k−1
i=0 val(A(i),B)

.

Using similar argument to that of Equation (3.20), combining Claim 3.8.7

and Equation (3.22) yields that

E〈A(k),B〉
[
L̂Π,η

A

]
≥

∑z
j=0

∏j−1
t=0(1− βt)k+1

[
p · α0

j

∏j−1
t=0(1− α0

t )
]

∏k−1
i=0 val(A(i),B)

(3.23)

21I.e.,
(
L̂Π,η

A

)
1

is the zero measure.
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The proof of this case is concluded by plugin the next claim (proved in

Section 3.8) into Claim 3.8.9, and plugin the result into Equation (3.23).

Claim 3.8.11. In case val(Π1) = 0, it holds that α1
j = 0 for every j ∈ (z).

A controls root(Π) and val(Π1) > val(Π0) = 0. The proof of the lemma under

these assumptions is analogous to the previous case.

We have concluded the proof for cases in which A controls root(Π), and now

proceed to prove the cases in which B controls root(Π). Roughly speaking, A

and B switched roles, and claims true before regarding βj are now true for αj,

and viceversa. Additional significant difference to the above cases is that the

probabilities of visiting the left- and right-hand side sub-protocols does not change

when the biassed-continuation attack plays the role of A (namely, they remain p

and 1 − p respectively). Instead, we derive the lemma by using a convex type

argument stated in Lemma 2.5.1.

B controls root(Π) and val(Π0), val(Π1) > 0. In this case Equations (3.16) and (3.17)

hold.

Compute,

E〈A(k),B〉
[
L̂Π,η

A

]
(3.24)

= p · E〈(A(k),B)
0
〉
[(
L̂Π,η

A

)
0

]
+ (1− p) · E〈(A(k),B)

1
〉
[(
L̂Π,η

A

)
1

]
≥ p ·

∑z
j=0 α

0
j

∏j−1
t=0(1− β0

t )
k+1(1− α0

t )∏k−1
i=0 val ((A(i),B)0)

(3.25)

+ (1− p) ·
∑z

j=0 α
1
j

∏j−1
t=0(1− β1

t )
k+1(1− α1

t )∏k−1
i=0 val ((A(i),B)1)

,
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where the inequality follows Equations (3.16) and (3.17). In case B controls

root(Π) we can prove the next claims (proved in Section 3.8), analogous to

Claims 3.8.7 and 3.8.8.

Claim 3.8.12. In case B controls root(Π), it holds that α0
j = αj for every

j ∈ (z) and that α1
j = αj for every j ∈ (z1).

Claim 3.8.13. In case B controls root(Π) and z1 < z, it holds that β1
z1 = 1.

Claim 3.8.12 and Equation (3.24) yield that

E〈A(k),B〉
[
L̂Π,η

A

]
(3.26)

≥
z∑
j=0

αj

j−1∏
t=0

(1− αt)

(
p ·

∏j−1
t=0(1− β0

t )
k+1∏k−1

i=0 val ((A(i),B)0)
+ (1− p) ·

∏j−1
t=0(1− β1

t )
k+1∏k−1

i=0 val ((A(i),B)1)

)

Applying the convex type inequality given in Lemma 2.5.1 for each summand

in the right-hand side of Equation (3.26) with respect to x =
∏j−1

t=0(1− β0
t ),

y =
∏j−1

t=0(1 − β1
t ), ai = val(A(i−1),B0), bi = val(A(i−1),B1), p0 = p and

p1 = 1− p, and plugin Equation (3.26) yields that

E〈A(k),B〉
[
L̂Π,η

A

]
(3.27)

≥

∑z
j=0 αj

∏j−1
t=0(1− αt)

(
p ·
∏j−1

t=0(1− β0
t ) + (1− p) ·

∏j−1
t=0(1− β1

t )
)k+1

∏k−1
i=0 (p · val ((A(i),B)0) + (1− p) · val ((A(i),B)1))

(3.28)

We conclude the proof of this case by observing that for every i ∈ (k − 1)

it holds that val
(
A(i),B

)
= p · val

((
A(i),B

)
0

)
+ (1− p) · val

((
A(i),B

)
1

)
, and

using the next claim (proved in Section 3.8), analogous to Claim 3.8.9.
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Claim 3.8.14. In case B controls root(Π), it holds that

j−1∏
t=0

(1− βt) = p ·
j−1∏
t=0

(1− β0
t ) + (1− p) ·

j−1∏
t=0

(1− β1
t )

B controls root(Π) and val(Π0) > val(Π1) = 0. In this case, Claims 3.8.7 and 3.8.12

yield that αj = 0 for any j ∈ (z1). Hence, it suffices to prove that

E〈A(k),B〉
[
L̂Π,η

A

]
≥
∑z

j=z1+1 αj
∏j−1

t=0(1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

(3.29)

Thus, the proof immediately follows in case z1 = z, and in the following we

assume that z1 < z.

Similar to Equation (3.24), compute

E〈A(k),B〉
[
L̂Π,η

A

]
= p · E〈(A(k),B)

0
〉
[(
L̂Π,η

A

)
0

]
+ (1− p) · E〈(A(k),B)

1
〉
[(
L̂Π,η

A

)
1

]
(3.30)

≥ p ·
∑z

j=0 α
0
j

∏j−1
t=0(1− β0

t )
k+1(1− α0

t )∏k−1
i=0 val ((A(i),B)0)

,

where the inequality follows Equation (3.17) and Claim 3.8.10. Claim 3.8.12

now yields

E〈A(k),B〉
[
L̂Π,η

A

]
≥

z∑
j=0

αj

j−1∏
t=0

(1− αt) ·
p ·
∏j−1

t=0(1− β0
t )
k+1∏k−1

i=0 val ((A(i),B)0)
(3.31)

where Claim 3.8.12 yields

E〈A(k),B〉
[
L̂Π,η

A

]
≥

z∑
j=z1+1

αj

j−1∏
t=0

(1− αt) ·
p ·
∏j−1

t=0(1− β0
t )
k+1∏k−1

i=0 val ((A(i),B)0)
(3.32)

Multiplying both the numerator and the denominator for every summand of

Equation (3.32) with pk yields

E〈A(k),B〉
[
L̂Π,η

A

]
≥

z∑
j=z1+1

αj

j−1∏
t=0

(1− αt) ·

(
p ·
∏j−1

t=0(1− β0
t )
)k+1

∏k−1
i=0 p · val ((A(i),B)0)

(3.33)
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Equation (3.29), and hence the proof of this case, is derived by observing that

val(A(i),B) = p·val
((
A(i),B

)
0

)
for every i ∈ (k−1),22 and plugin Claim 3.8.13

combined with Claim 3.8.14 into Equation (3.33).

B controls root(Π) and val(Π1) > val(Π0) = 0. Analogous to Claim 3.8.11, it holds

that α0
j = 0 for every j ∈ (z). Claim 3.8.12 yields that αj = 0 for every

j ∈ (z). The proof of this case trivially follows since∑z
j=0 αj

∏j−1
t=0(1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

= 0.

The above case analysis concludes the proof of the lemma when assuming that

eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}. Assume that eΠ(λ, b) = 1 for some b ∈

{0, 1}. Since, by assumption, val(Π) > 0, it follows that val(Πb) > 0. Moreover,

the definition of conditional protocol (Definition 3.6.1) yields that eΠ̂η
(C,j)

(λ, b) =

1 and eΠ̂η
(C,j)

(λ, 1 − b) = 0 for any (C, j) ∈ [(A, z)] (regardless of which party

controls root(Π)). By defining ηb = η, the definition of the dominated measure

(Definition 3.4.1) yields that αj = αbj for every j ∈ (z) and that βj = βbj for

every j ∈ (z − 1). The proof of this case immediately follows from the induction

hypothesis on Πb. 2

Missing Proofs

This section is dedicated to proving deferred statements used during the proof of

Lemma 3.8.2. The context in which the following claims are proved is defined

according to the proof of the lemma. Specifically, we assume a fixed protocol Π,

fixed real vector η =
(
η(A,0), η(B,0), . . . , η(B,z−1), η(A,z)

)
and a fixed positive integer

22Recall that in case val (A,B) = 0, then val
(
A(i),B

)
= 0 for every i ∈ N.

73



k. We also assume that Π̂η
(A,z) 6=⊥, z1 ≤ z0 and eΠ(λ, b) ∈ (0, 1) for both b ∈

{0, 1}. Recall that we defined two real vectors η0 and η1 (Definition 3.8.3), and

for b ∈ {0, 1} we defined αbj := µ
Πb,ηb

(A,j) (:= E〈
(Π̂b)

ηb

(A,j)

〉 [M̂Πb,ηb

(A,j)

]
) for j ∈ (z), and

βbj := µ
Πb,ηb

(B,j) , for j ∈ (z − 1).

We begin by showing the next fact, underlying many of the claims to follow.

Proposition 3.8.15. For b ∈ {0, 1} and (C, j) ∈ [(A, z)], it holds that

1.
(

Π̂η
(C,j)

)
b

=
(

Π̂b

)ηb

(C,j)
; and

2.
(
M̂Π,η

(C,j)

)
b
≡ M̂

Πb,ηb

(C,j) .

Namely, the restriction of Π̂η
(C,j) (the (C, j)’th conditional protocol with respect

to Π and η) to its b’th subtree, is equal to the (C, j)’th conditional protocol defined

with respect to Πb (b’th subtree of Π) and ηb. Moreover, the result of multiplying

the C-dominated measure of Π̂η
(C,j) by η(C,j), and then restricting it to the subtree(

Π̂η
(C,j)

)
b
, is equivalent to multiplying the C-dominated measure of

(
Π̂b

)ηb

(C,j)
by

ηb(C,j).
23

Proof of Proposition 3.8.15. The proof is by induction on the ordered pairs [(A, z)].

Base case. Recall that the first pair of [(A, z)] is (A, 0). Definition 3.8.1 yields that

Π̂η
(A,0) = Π and that

(
Π̂b

)ηb

(A,0)
= Πb, yielding that Item 1 holds for (A, 0). Where

by Definition 3.4.1 and the assumption that eΠ(λ, b) ∈ (0, 1) for both b ∈ {0, 1}, it

23Note that Item 1 is not immediate. Protocol
(

Π̂η
(C,j)

)
b

is a restriction of a protocol defined

on the root of the Π, whereas
(

Π̂b

)ηb

(C,j)
is a protocol define on the root of Πb.
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holds that

(
M̂Π,η

(A,0)

)
b
≡
(
η(A,0) ·MA

Π

)
b
≡


η(A,0) ·MA

Πb
A controls root(Π) ∨ SmallerΠ (b) ;

η(A,0) ·
ξ1−b
(A,0)

ξb
(A,0)

·MA
Πb

otherwise,

and the proof that Item 2 holds for (A, 0) follows by Definition 3.8.3.

Induction step. Fix (C, j) ∈ [(A, z)] and assume the claim holds for pred(C, j).

Using the induction hypothesis we first prove Item 1 for (C, j). Next, using the

fact that Item 1 holds for (C, j), we prove Item 2.

Proving Item 1. By Definition 3.8.1, it holds that

(
Π̂η

(C,j)

)
b

=
(

Π̂η
pred(C,j)|¬

(
M̂Π,η

pred(C,j)

))
b

=
(

Π̂η
pred(C,j)

)
b
|¬
(
M̂Π,η

pred(C,j)

)
b

=
(

Π̂b

)ηb

pred(C,j)
|¬
(
M̂

Πb,ηb

pred(C,j)

)
=
(

Π̂b

)ηb

(C,j)
,

where the third equality follows from the induction hypothesis.

Proving Item 2. Similarly to the base case, Definition 3.4.1 yields that

(
M̂Π,η

(C,j)

)
b
≡



0 eΠ̂η
(C,j)

(λ, b) = 0;

η(C,j) ·MC(
Π̂η

(C,j)

)
b

eΠ̂η
(C,j)

(λ, b) = 1;

η(C,j) ·MC(
Π̂η

(C,j)

)
b

eΠ̂η
(C,j)

(λ, b) /∈ {0, 1}∧(
C controls root(Π) ∨ SmallerΠ̂η

(C,j)
(b)
)

;

η(C,j) ·
ξ1−b
(C,j)

ξb
(C,j)

·MC(
Π̂η

(C,j)

)
b

otherwise,

and the proof follows by Item 1 and Definition 3.8.3.
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2

Recall, see the proof of Lemma 3.8.2, that the reals αbj and βbj were defined to

be the expected values of the (A, j)’th and (B, j)’th dominated measures in the

sequence (A, z,ηb)-DMS (Πb), respectively. Following Proposition 3.8.15, we can

view αbj and βbj in the context (A, z,η)-DMS (Π).

Proposition 3.8.16. For both b ∈ {0, 1}, it holds that

1. αbj = E〈(
Π̂η

(A,j)

)
b

〉 [(M̂Π,η
(A,j)

)
b

]
for every j ∈ (z); and

2. βbj = E〈(
Π̂η

(B,j)

)
b

〉 [(M̂Π,η
(B,j)

)
b

]
for every j ∈ (z − 1).

Proof. Immediately follows Proposition 3.8.15. 2

Proposition 3.8.16 allows us to use Proposition 3.4.4 in order to analyze the

connections between α0
j and α1

j to αj, and similarly between β0
j and β1

j to βj.

Towards this goal, we analyze the edge distribution of the conditional protocols

defined in the process generating the measure sequence (A, z,η)-DMS (Π).

Proposition 3.8.17. The following holds for both b ∈ {0, 1}.

1. A controls root(Π) =⇒

a) eΠ̂η
(A,j)

(λ, b) = eΠ(λ, b) ·
∏j−1
t=0(1−αbt)∏j−1
t=0 (1−αt)

for all j ∈ (z).

b) eΠ̂η
(B,j)

(λ, b) = eΠ(λ, b) ·
∏j
t=0(1−αbt)∏j
t=0(1−αt)

for all j ∈ (z − 1).

2. B controls root(Π) =⇒

a) eΠ̂η
(A,j)

(λ, b) = eΠ(λ, b) ·
∏j−1
t=0(1−βbt)∏j−1
t=0 (1−βt)

for all j ∈ (z).

b) eΠ̂η
(B,j)

(λ, b) = eΠ(λ, b) ·
∏j−1
t=0(1−βbt)∏j−1
t=0 (1−βt)

for all j ∈ (z − 1).

76



Proof. We prove Item 1 using induction on the ordered pairs [(A, z)]. The proof of

Item 2 is analogous.

Base case. The proof follows since according to Definition 3.8.1, it holds that

Π̂η
(A,0) = Π.

Induction step. Fix (C, j) ∈ [(A, z)] and assume the claim holds for pred(C, j).

The proof splits according to which party C is.

Case C = A. In case eΠ̂η
(B,j−1)

(λ, b) = 0, Definition 3.6.1 yields that eΠ̂η
(A,j)

(λ, b) = 0.

The proof follows since, by the induction hypothesis, it holds that

eΠ̂η
(A,j)

(λ, b) = eΠ̂η
(B,j−1)

(λ, b) = eΠ(λ, b) ·
∏j−1

t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

.

In the complementary case, i.e., eΠ̂η
(B,j−1)

(λ, b) > 0, Proposition 3.4.4 and Def-

inition 3.4.1 yield that βj−1 = βbj−1. It must be the case that βj−1 = βbj−1 < 1,

since otherwise, according to Definition 3.8.1, it holds that Π̂η
(A,j) =⊥, a con-

tradiction to the assumption that Π̂η
(A,z) 6=⊥. The proof follows since in this

case Definition 3.6.1 and Proposition 3.8.16 yield that

eΠ̂η
(A,j)

(λ, b) = eΠ̂η
(B,j−1)

(λ, b) ·
1− βbj−1

1− βj−1

= eΠ̂η
(B,j−1)

(λ, b)

= eΠ(λ, b) ·
∏j−1

t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

,

where the last equality follows the induction hypothesis.

Case C = B. It must be that case that αj < 1, since otherwise, similarly to the

previous case and according to Definition 3.8.1, it holds that Π̂η
(B,j) =⊥, a

contradiction to the assumption that Π̂η
(A,z) 6=⊥. The proof follows since in

77



this case Definition 3.6.1 and Proposition 3.8.16 yield that

eΠ̂η
(B,j)

(λ, b) = eΠ̂η
(A,j)

(λ, b) ·
1− αbj
1− αj

= eΠ(λ, b) ·
∏j−1

t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

·
1− αbj
1− αj

= eΠ(λ, b) ·
∏j

t=0

(
1− αbt

)∏j
t=0 (1− αt)

,

where the second equality follows the induction hypothesis.

2

Using the above propositions, we now turn our focus to proving the claims in

the proof of Lemma 3.8.2. To ease reading and tracking their proofs, we cluster

claims according to the context of the proof of Lemma 3.8.2.

Proving Claims 3.8.4 and 3.8.6.

Proof of Claim 3.8.4. For b ∈ {0, 1} it holds that

L̂
Πb,ηb
A ≡

z∑
j=0

M̂
Πb,ηb

(A,j) ·
j−1∏
t=0

(
1− M̂Πb,ηb

(A,t)

)
≡

z∑
j=0

(
M̂Π,η

(A,j)

)
b
·
j−1∏
t=0

(
1−

(
M̂Π,η

(A,t)

)
b

)
≡
(
L̂Π,η

A

)
b
,

where the second equality follows Proposition 3.8.15. 2

Proof of Claim 3.8.6. Assume towards a contradiction that z0 < z. By the def-

inition of z0 (Definition 3.8.5) and the definition of conditional protocols (Def-

inition 3.6.1), it follows that
(

Π̂0

)η0

(A,z0+1)
=⊥. Since (by assumption) z1 ≤

z0 , it also holds that
(

Π̂1

)η1

(A,z0+1)
=⊥. Hence, Proposition 3.8.15 yields that
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(
Π̂η

(A,z0+1)

)
0
,
(

Π̂η
(A,z0+1)

)
1

=⊥. Namely, the restrictions of the function describing

Π̂η
(A,z0+1) to the subtrees T (Π0) and T (Π1), do not correspond to any two-party

execution. Hence, the aforementioned function does not correspond to a two-party

execution (over T (Π)), in contradiction to the assumption that Π̂η
(A,z) 6=⊥. 2

Proving Claims 3.8.7 to 3.8.9. The following proofs relay on the next obser-

vation. As long as αbj < 1 and βbj < 1, Proposition 3.8.17 assures that there is a

positive probability to visiting both the left and the right subtree of the (C, j)’th

conditional protocol.

Proof of Claim 3.8.8. Assume that A controls root(Π) and that z1 < z. Assume

toward a contradiction that α1
z1 < 1. Since z1 ≤ z0 (by assumption) it follows

that α0
z1 < 1 as well. The definition of z1 (Definition 3.8.5) yields that β1

z1 = 1.

However, Proposition 3.8.17 yields that eΠ̂η
(B,j)

(λ, b) ∈ (0, 1) for both b ∈ {0, 1},

and thus Propositions 3.4.4 and 3.8.16 yield that βz1 = 1. Now, Definition 3.8.1

yield that Π̂η
(A,z1+1) =⊥, a contradiction to the assumption that Π̂η

(A,z) 6=⊥. 2

Proof of Claim 3.8.7. For j ∈ (z1 − 1), it holds that eΠ̂η
(B,j)

(λ, b) ∈ (0, 1) for both

b ∈ {0, 1}. Thus, β0
j = β1

j = βj is a direct implication of Propositions 3.4.4

and 3.8.15.

For z1 ≤ z − 1, Claim 3.8.8 and Proposition 3.8.17 yield that eΠ̂η
(B,j)

(λ, 0) = 1.

Since, by Definition 3.8.3, it holds that η(B,j) = η0
(B,j), Definition 3.4.1 and Propo-

sition 3.8.15 yield that β0
j = βj. 2

Proof of Claim 3.8.9. The proof immediately follows Propositions 3.8.16 and 3.8.17.

2
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Proving Claims 3.8.10 and 3.8.11.

Proof of Claim 3.8.10. By Definition 3.4.1 it holds that M̂
Π1,η1

(A,j) ≡ 0 for every

j ∈ (z). Definition 3.8.1 yields that L̂
Π1,η1
A ≡ 0. The proof follows Claim 3.8.4. 2

Proof of Claim 3.8.11. Follows similar arguments to the above proof of Claim 3.8.10,

together with Proposition 3.8.16. 2

Proving Claims 3.8.12 to 3.8.14. The proofs of the rest of the claims stated

in the proof of Lemma 3.8.2 are analogous to claims proved above. Specifically,

Claim 3.8.12 is analogous to Claim 3.8.7, Claim 3.8.13 is analogous to Claim 3.8.8,

and Claim 3.8.14 is analogous to Claim 3.8.9.

Proving Lemma 3.7.2

Lemma 3.7.2 immediately follows by the next lemma.

Lemma 3.8.18. For every protocol Π, there exists (C, j) ∈ {A,B} × N such that

E〈Π(C,j)〉
[
MC

Π(C,j)

]
= 1.

The proof of Lemma 3.8.18 is given below, but first we use it to derive Lemma 3.7.2.

Proof of Lemma 3.7.2. Let z be the minimal integer such that
∑z

j=0 αj ≥ c or∑z
j=0 βj ≥ c. Note that such z guaranteed to exists by Lemma 3.8.18 and since

by Lemma 3.4.2 it holds that αj = E〈Π(A,j)〉
[
MA

Π(A,j)

]
and βj = E〈Π(B,j)〉

[
MB

Π(B,j)

]
.

The proof splits to the following cases.
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Case
∑z

j=0 αj ≥ c. By the choice of z it holds that
∑z−1

j=0 αj < c and
∑z−1

j=0 βj < c.

Lemma 3.6.7 yields that

E〈Π〉

[
LA,z

Π

]
=

z∑
j=0

αj

j−1∏
t=0

(1− βt)(1− αt)

≥

(
z∑
j=0

αj

)
·

(
1−

z−1∑
j=0

βj

)
·

(
1−

z−1∑
j=0

αj

)

≥ c · (1− 2c),

where the first inequality follows by multiplying the j’th summand by
∏z−1

t=j (1−

βt)(1−αt) ≤ 1 and both inequalities follows since (1−x)(1−y) ≥ 1− (x+y)

for any x, y ≥ 0. Hence, z satisfies Item 1.

Case
∑z

j=0 αj < c. By the choice of z it holds that
∑z

j=0 βj ≥ c and
∑z−1

j=0 βj < c.

Similar arguments to the previous case show that z satisfies Item 2.

2

Towards proving Lemma 3.8.18 we prove that there is always a leaf for which

the value of the dominated measure is 1.

Claim 3.8.19. Let Π be a protocol with OPTA (Π) = 1. Then there exists ` ∈

L1(Π) such that MA
Π(`) = 1.

Proof. The proof is by induction on the round complexity of Π.

Assume that round(Π) = 0 and let ` be the only node in T (Π). Since OPTA (Π) >

0, it must be the case that χΠ(`) = 1. The proof follows since Definition 3.4.1 yields

that MA
Π(`) = 1.

Assume that round(Π) = m+ 1 and that the lemma holds for m-round proto-

cols. In case eΠ(λ, b) = 1 for some b ∈ {0, 1}, then by Proposition 3.3.2 it holds
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that OPTA (Πb) = OPTA (Π) = 1. This allows to apply the induction hypothesis

on Πb, which yields that there exists ` ∈ L1(Πb) such that MA
Πb

(`) = 1. In this

case, according to Definition 3.4.1, MA
Π(`) = MA

Πb
(`) = 1, and the proof follows.

In the following we assume that eΠ(λ, b) ∈ (0, 1) for any b ∈ {0, 1}. We conclude

the proof using the following case analysis.

A controls root(Π). According to Proposition 3.3.2, there exists b ∈ {0, 1} such

that OPTA (Πb) = OPTA (Π) = 1. This allows to apply the induction hypoth-

esis on Πb, which yields that there exists ` ∈ L1(Πb) such that MA
Πb

(`) = 1.

The A-maximal property of MA
Π (Proposition 3.4.4(1)) yields that MA

Π(`) =

MA
Πb

(`) = 1, and the proof for this case follows.

B controls root(Π). According to Proposition 3.3.2, OPTA (Πb) = OPTA (Π) =

1 for both b ∈ {0, 1}. This allows to apply the induction hypothesis on

Π0 and Π1, which yields that there exists `0 ∈ L1(Π0) and `1 ∈ L1(Π1)

such that MA
Π0

(`0) = 1 and MA
Π1

(`1) = 1. The B-minimal property of MA
Π

(Proposition 3.4.4(2)) yields that there exists b ∈ {0, 1} such that MA
Π(`b) =

MA
Πb

(`b) = 1 (the bit b for which SmallerΠ (b) = 1), and the proof for this

case follows.

This concludes the case analysis and the proof follows. 2

We can now derive Lemma 3.8.18. Intuitively, Claim 3.8.19 and Proposi-

tion 3.4.4 yield that the number of possible transcripts of Π(C,j) is shrinking as

(C, j) grows. Specifically, at least one possible transcript of Π(A,j) whose output

is 1 (the transcript represented by the leaf guarantee to exists from Claim 3.8.19)

is not a possible transcript of Π(B,j). Similarly, at least one possible transcript of

Π(B,j−1) whose output is 0 is not a possible transcript of Π(A,j). Since the number
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of possible transcripts of Π is finite (though might be exponentially large), there

exists j ∈ N such that either all possible transcripts Π(A,j) output 1 or all possible

transcripts of Π(B,j) output 0. The expected value of the A-dominated measure of

Π(A,j) or the B-dominated measure of Π(B,j) will be 1. The formal proof is given

next.

Proof of Lemma 3.8.18. Assume towards a contradiction that E〈Π(C,j)〉
[
MC

Π(C,j)

]
<

1 for every (C, j) ∈ {A,B} × N. It follows that Π(C,j) 6=⊥ for every such (C, j).

For a pair (C, j) ∈ {A,B} × N recursively define L(C,j) := Lpred(C,j) ∪ S(C,j), where

S(C,j) :=
{
` ∈ L(Π): MC

Π(C,j)
(`) = 1

}
and L(B,−1) := ∅. The following claim (proved

below) shows two properties of S(C,j).

Claim 3.8.20. It holds that S(C,j) 6= ∅ and Lpred(C,j) ∩S(C,j) = ∅ for every (C, j) �

(B, 0).

Claim 3.8.20 yields that
∣∣L(C,j)

∣∣ > ∣∣Lpred(C,j)

∣∣ for every (C, j) � (B, 0), a con-

tradiction to the fact that L(C,j) ⊆ L(Π) for every (C, j). 2

Proof of Claim 3.8.20. Let (C, j) � (B, 0). By Lemma 3.6.4 it holds that

OPTC

(
Π(C,j)

)
= 1.24 Hence, Claim 3.8.19 yields that S(C,j) 6= ∅.

Towards proving the second property, let `′ ∈ Lpred(C,j), and let (C′, j′) ∈

[pred(C, j)] such that `′ ∈ S(C′,j′). By the definition of S(C′,j′), it holds that

MC′
Π(C′,j′)

(`′) = 1. By Proposition 3.6.2 it holds that `′ /∈ Supp
(〈

Π(C′′,j′′)

〉)
for every (C′′, j′′) � (C′, j′). Since (C, j) � pred(C, j) � (C′, j′), it holds that

`′ /∈ Supp
(〈

Π(C,j)

〉)
. By Definition 3.4.1 it holds that MC

Π(C,j)
(`) = 0 for every

` /∈ Supp
(〈

Π(C,j)

〉)
, and thus `′ /∈ S(C,j). Hence, Lpred(C,j) ∩ S(C,j) = ∅. 2

24Note that this might not hold for Π(A,0) = Π. Namely, it might be the case that OPTB (Π) =

1. In this case MA
Π is the zero measure, Π(B,0) = Π and S(A,0) = ∅.
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3.9 Additional Properties of the

Biased-Continuation Attack

Robustness

The following lemma states that, under a certain condition, by applying the biased-

continuation attack on similar protocols, one does not make them too far apart.

Lemma 3.9.1. Let Π = (A,B) and Π′ = (C,D) be two m-round protocols such

that SD ([Π], [Π′]) ≤ α. let δ ∈ (0, 1
2
] and let c = c(δ) from Lemma 4.3.1. Then

SD

([
A(1),B

]
,
[
C(1),D

])
≤ 2 ·m · γ

δ′
·
(
α + Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)])
+

4

γc
,

for every δ′ ≥ δ and γ ≥ 1, where A(1) and C(1) are as defined in Algorithm 3.1.2.25

Proof. In order to prove this lemma we will use Lemma 2.4.5. The corresponding

function f will be the function implied by the leaf chosen by BiasedContΠ and g

the one implied by the leaf chosen by BiasedContΠ′ , where both in addition output

the controlling scheme of the corresponding leaf. For every i ∈ [m] let Di be the

distribution over the pairs (u, b), where u is node of level i whose distribution is

the one implied by 〈A,B〉 and b is a bit equal 1 with probability val(Πu). For

our purposes we have to give an upper bound on Eu←Di [SD(f(u), g(u))] for every

i ∈ [m]. However, if we set

1. for a node u, ∆u = val(Π′u)− val(Πu),

25Recall that [Π], is the transcript and controlling path (i.e., which party sent each of the
messages), induced by a random execution of Π, as defined in Definition 2.2.2.
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2. for a protocol Π and a node u, [Π]u to be a distribution where any pair (`, x)

is drawn according to [Π] conditioning on `1...i = u and

3. for a leaf `, x` and y` to be the controlling schemes associated with ` in

protocol Π and Π′ respectively.

4. for every node u, Su to be the set of all leaves `, such that ` ∈ desc(u)

and with χΠ(`) = χΠ′(`) = 1 (remember by the assumption we made in the

beginning of this section this is equivalent to `m = 1) and Pr[A,B]u

[
(`, x`)

]
≥

Pr[C,D]u

[
(`, y`)

]
85



Eu←Di [SD(f(u), g(u))] =
∑

u∈{0,1}i
Di(u) · SD(f(u), g(u))

=
∑

u∈{0,1}i
Di(u) ·

(∑
`∈Su

Pr[A,B]u

[
(`, x`)|χΠ(`) = 1

]
−
∑
`∈Su

Pr[C,D]u

[
(`, y`)|χΠ′(`) = 1

])

=
∑

u∈{0,1}i
Di(u) ·

(∑
`∈Su Pr[A,B]u

[
(`, x`)

]
val(Πu)

−
∑

`∈Su Pr[C,D]u

[
(`, y`)

]
val(Π′u)

)

=
∑

u∈{0,1}i
Di(u) ·

(∑
`∈Su Pr[A,B]u

[
(`, x`)

]
val(Πu)

−
∑

`∈Su Pr[C,D]u

[
(`, y`)

]
val(Πu) + ∆u

)

=
∑

u∈{0,1}i∧∆u≤0

Di(u) ·

(∑
`∈Su Pr[A,B]u

[
(`, x`)

]
val(Πu)

−
∑

`∈Su Pr[C,D]u

[
(`, y`)

]
val(Πu) + ∆u

)

+
∑

u∈{0,1}i∧∆u>0

Di(u) ·

(∑
`∈Su Pr[A,B]u

[
(`, x`)

]
val(Πu)

−
∑

`∈Su Pr[C,D]u

[
(`, y`)

]
val(Πu) + ∆u

)

≤
∑

u∈{0,1}i\Smallδ
′,C

Π ∧∆u≤0

Di(u)

val(Π′u)
·

(∑
`∈Su

Pr[A,B]u

[
(`, x`)

]
−
∑
`∈Su

Pr[C,D]u

[
(`, y`)

])

+
∑

u∈{0,1}i\Smallδ
′,A

Π′ ∧∆u>0

Di(u)

val(Πu)
·

(∑
`∈Su

Pr[A,D]u

[
(`, y`)

]
−
∑
`∈Su

Pr[C,D]u

[
(`, y`)

])

+
∑

u∈{0,1}i
Di(u) ·∆u

+Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
≤ SD([Π], [Π′])

δ′
+ SD([Π], [Π′]) + Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
≤ 2α

δ′
+ Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
,

where the third equality follows from the definition of BiasedContΠb , which chooses

a leaf conditioned on its value being 1 and the inequality follows from the fact that

for 0 ≤ a ≤ b and c ≥ 0 it holds a
b
≥ a−c

b−c .
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Moreover, notice that if we set Fi to be the distribution of the i’th query of

A(1) to BiasedCont, we can see (setting Q to be the random variable of the queries

of A(1) of a random execution of (A(1),B)) that

Pr(q1,...,qk)←Q

[
∃i ∈ [k] : qi 6=⊥ ∧Fi(qi) >

γ

δ′
·Di(qi)

]
= Pr〈A(1),B〉

[
desc

(
UnBalγΠ ∪ Smallδ

′,A
Π

)]
≤ Pr〈A(1),B〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc

≤ γ · Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

4

γc

where the first inequality follows from Lemma 4.3.1 and the second from Proposi-

tion 4.3.3(1).

Putting things together after applying Lemma 2.4.5 with k := m, a := 2α
δ′

+

Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
, λ := γ

δ′
and b := γ·Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

4
γc

we derive (a stronger version of) the lemma. 2
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Chapter 4

The Real Attack

4.1 Attacking Coin Flipping Protocols Using

(Imperfect) Function Inverters

In Chapter 3 we showed that for any constant ε ∈ (0, 1
2
] there exists some constant

κ = κ(ε) such that carrying out κ iterations of the biased-continuation attack

biases any coin-flipping protocol by 1 − ε. Implementing this attack requires,

however, access to a sampling algorithm, denoted BiasedCont (Algorithm 3.1.1),

which we don’t know how to efficiently implement assuming OWFs do not exist.

Our goal in this section is to show that access to an approximation of the sampling

algorithm suffices to bias any coin-flipping protocol. Though we couldn’t prove

that carrying out the bias-continuation attack successfully biases any coin-flipping

protocol (and believe it is not true), we manage to prove it for a variant of the

above attack.

In the rest of the section we prove our main theorem: assuming OWFs do

not exist, then there exists an efficient attacker that successfully biases any coin-

flipping protocol. We begin by defining an approximation of the sampling algo-

rithm BiasedCont, which can be efficiently implemented assuming OWFs do not
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exist. We then define the approximated biases-continuation attacker, that carries

out the iterated biases-continuation attack using oracle access to the approximated

samling algorithm. We show that there exist two sets of transcripts, UnBal and

Small, such that if the probability of the original protocol to generate transcripts

within these sets is small, the biased-continuation attacker still does well (i.e.,

successfully biases any coin-flipping protocol). Next, we show that, in fact, the

biased-continuation attacker still does well when only the probability of the origi-

nal protocol to generate a transcript within Small is small. We then define a vari-

ant of the original protocol, the pruned protocol, which cannot generate transcript

within Small, and thus the biased-continuation attacker does well when attacking

this protocol. Our last step before proving our main theorem is to use the pruned

protocol to define the Pruning-in-the-Head attacker, which if some condition is

met, does well for all protocols. The main theorem is proven by slightly tweaking

the Pruning-in-the-Head attacker, to ensure the above condition is met.

4.2 The Approximated Biased Continuation

Attack

The biased-continuation attacker of Chapter 3 was given an oracle access to an

ideal biased-continuator, BiasedCont (Algorithm 3.1.1). Unfortunately, we do not

know how to efficiently implement this algorithm, even when assuming OWFs do

not exist. Hence, we need to define a relaxation of this algorithm that can be

efficiently implemented assuming OWFs do not exist.

Definition 4.2.1 (approximated biased-continuator). Algorithm ˜BiasedCont is a
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(ξ, δ)-biased-continuator for Π, if the following hold.

Pr`←〈Π〉[∃i ∈ [m] : SD
(

˜BiasedCont(`1,...,i, 1),BiasedCont(`1,...,i, 1)
)
> ξ∧val(Π`1,...,i) >

δ] ≤ ξ

and

Pr`←〈Π〉[∃i ∈ [m] : SD
(

˜BiasedCont(`1,...,i, 0),BiasedCont(`1,...,i, 0)
)
> ξ∧val(Π`1,...,i) <

1− δ] ≤ ξ,

where BiasedCont is as in Algorithm 3.1.1.

The approximated biased-continuation attacker is identical to the biased-continuation

attacker, except it is given an oracle access to the approximated biased-continuator.

Algorithm 4.2.2 (A
(1, ˜BiasedCont)
Π ).

Oracle: ˜BiasedCont.

Input: u ∈ {0, 1}∗.

Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Set msg = ˜BiasedCont(u, 1).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adversary B
(1, ˜BiasedCont)
Π is defined analogously, where the only difference is that

the second argument in the call to ˜BiasedCont is 0. In the rest of the section we

focus on attackers playing the role of A and trying to bias the protocol towards 1.

90



Our goal is to bound the difference between the biased-continuation attacker

and its approximated variant. Intuitively, if the statistical distance of the answers

of BiasedCont and ˜BiasedCont is small, then so would be the difference between

the attackers. Definition 4.2.1, however, does not always guarantee such small

statistical distance. Specifically, there is no such guarantee for low-value and high-

value transcripts.

Definition 4.2.3 (low-value and high-value nodes). For a protocol Π = (A,B) and

δ ∈ [0, 1], let

• SmallδΠ = {u ∈ V(Π) \ L(Π) : val(Πu) ≤ δ}, and

• LargeδΠ = {u ∈ V(Π) \ L(Π) : val(Πu) ≥ 1− δ}.

For C ∈ {A,B}, let Smallδ,CΠ = SmallδΠ ∩ CtrlCΠ and similarly Largeδ,CΠ = LargeδΠ ∩

CtrlCΠ.1

Moreover, even for transcripts that are not low-value or high-value, Defini-

tion 4.2.1 only guarantees small statistical distance between the answers of BiasedCont

and ˜BiasedCont when queried on transcripts chosen according to the honest distri-

bution of leaves, 〈Π〉. However, the queries the biased-continuation attacker makes

might be chosen from a different distribution, making some transcripts much likely

to be asked than before. We call such transcripts “unbalanced”.

Definition 4.2.4 (unbalanced nodes). For a protocol Π = (A,B) and γ ≥ 1,

let UnBalγΠ =
{
u ∈ V(Π): v(A(1),B)(u) ≥ γ · v(A,B)(u)

}
, where A(1) is as in Algo-

rithm 3.1.2 and v as in Definition 2.2.2.

1Recall that CtrlCΠ denotes the nodes in T (Π) controlled by the party C.
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Consider an execution of (A(1, ˜BiasedCont),B). Such execution asks ˜BiasedCont

for continuations of transcripts under A’s control, leading to 1-leaves. Hence, as

long as this execution does not generate low-value transcripts under A’s control or

unbalanced transcripts, we expect the approximated biased-continuation attacker

to do almost as well as its ideal variant. This is formally put in the following

lemma.

Lemma 4.2.5. Let Π = (A,B) be a m-round protocol and let δ ∈ (0, 1
2
]. Then for

every γ ≥ 1 it holds that

SD
([

A(1),B
]
,
[
A(1, ˜BiasedCont),B

])
≤ m · γ ·

(
2ξ + Pr〈A,B〉

[
desc(Smallδ,AΠ )

])
+ Pr〈A(1),B〉 [desc (UnBalγΠ)] , 2

where ˜BiasedCont is a (ξ, δ)-biased-continuator for Π according to Definition 4.2.1.

Proof. The lemma is proven by applying Lemma 2.4.5. The corresponding func-

tions f and g will be the output of BiasedCont and ˜BiasedCont respectively (in

case the query is ⊥, the output will also be ⊥). For every i ∈ [m], let Di be

the distribution over {V(Π)× {1}} ∪ {⊥} set to (`1,...,i, 1), where `← 〈Π〉 in case

`1,...,i ∈ CtrlAΠ; and set to ⊥ otherwise. The definition of ˜BiasedCont as a (ξ, δ′)-

continuator guarantees that for every i ∈ [m], it holds that

Ed←Di [SD(f(d), g(d))] ≤ 2ξ + Pr〈A,B〉

[
desc(Smallδ,AΠ )

]
.

2Recall that for a protocol Π, [Π] denotes the leaf-control distribution, which samples a
leaf according to 〈Π〉, and outputs the party controlling each ancestor of that leaf (see Defini-
tion 2.2.2). Moreover, for S ⊆ V(Π), desc (S) stands for the set of leaves which have an ancestor
in S.
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Moreover, let HO be an oracle-aided algorithm define as follows: randomly

execute (A(1,O),B); when this execution reaches a node u, call O(u, 1) in case u

controlled by A and call O(⊥) otherwise; output the leaf at the end of this execu-

tion, together with its controlling scheme.

It follows that SD
([

A(1),B
]
,
[
A(1, ˜BiasedCont),B

])
= SD

(
Hf ,Hg

)
. Let Fi to be

the distribution of the i’th query to f in a random execution of Hf , and let Q to

be the random variable of the queries of Hf in such a random execution.3 It holds

that

Pr(q1,...,qm)←Q [∃i ∈ [m] : qi 6=⊥ ∧Fi(qi) > γ ·Di(qi)] = Pr〈A(1),B〉 [desc (UnBalγΠ)] .

Applying Lemma 2.4.5 with k := m, a := 2ξ+ Pr〈A,B〉

[
desc(Smallδ,AΠ )

]
, λ := γ and

b := Pr〈A(1),B〉 [desc (UnBalγΠ)] yields the lemma. 2

In the rest of this section we show how to guarantee that the probability of

hitting the sets of unbalanced and low-value transcripts is small. Our first step

is to relate these two sets – if a transcript is unbalanced, it is likely that it has a

low-value prefix.

4.3 Visiting Unbalanced Nodes is Unlikely

Consider a node u ∈ V(Π) of some protocol Π = (A,B). We want to see when u be-

comes unbalanced. Taking the edge distribution of
(
A(1),B

)
, given in Claim 3.2.1,

we get

v(A(1),B)(u)

v(A,B)(u)
=
∏
i∈CA

u

val(Πu1,...,i+1
)

val(Πu1,...,i
)
, (4.1)

3Informally, ignoring the ⊥ queries, Fi is the distribution of the i’th query of A(1) to
BiasedCont, and Q is the random variable of the queries of A(1) of a random execution of (A(1),B)
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where i ∈ CA
u iff u1,...,i is controlled by A. Hence, for u to become unbalanced,

one of the terms of the product of the right-hand side of Equation (4.1) must be

large. This happens when the denominator of that term is small, i.e., when u has

a low-value ancestor controlled by A.

The following key lemma formulates the above intuition, and shows that the

biased-continuation attacker does not biased the original distribution of the at-

tacked protocol by too much, unless it has previously visited a low-value node. To

prove it we use a technical calculus fact, given in Lemma 2.5.2.

Lemma 4.3.1. Let Π = (A,B) be a protocol and let A(1) be as in Algorithm 3.1.2.

Then for every δ ∈ (0, 1
2
], there exists a constant c = c(δ) > 0 such that for every

δ′ ≥ δ and every γ > 1.

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))]
≤ 2

γc
.4

Proof. We prove the lemma in the following three steps:

(1) We prove that for any such δ there exists c > 0, such that for every γ > 1 it

holds that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
≤ 2− val(Π)

γc
. (4.2)

Note that Equation (4.2) only considers descendants of Smallδ,AΠ , and not

proper descendants, as the lemma stated.

(2) We show that if γ > 1, then

desc
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
⊆ desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
.

4Recall that 〈Π〉, is the transcript induced by a random execution of Π, where desc(u) and
desc(u) are the descendants and the proper descendants of u as defined in Definition 2.2.1.
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(3) Then we show that if δ′ > δ, then UnBalγΠ \ desc
(
Smallδ

′,A
Π

)
⊆ UnBalγΠ \

desc
(
Smallδ,AΠ

)
.

Combining the above steps yields (a stronger version of) the lemma.

Proof of (1): Fix some δ ∈ (0, 1
2
] and set c := α(δ) from Lemma 2.5.2. The

proof is by induction on the round complexity of Π.

Assume round(Π) = 0 and let ` be the single leaf of Π. Note that if γ > 1,

then ` /∈ UnBalγΠ, and hence the set UnBalγΠ is empty. Thus, for every δ > 0,

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc(Smallδ,AΠ )

)]
= Pr〈A(1),B〉 [∅] = 0 ≤ 2− val(A,B)

γc
.

Assume that Equation (4.2) holds for m-round protocols and that round(Π) =

m+ 1. In case e(A,B)(λ, b) = 1 for some b ∈ {0, 1}, it holds that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc(Smallδ,AΠ )

)]
= Pr〈(A(1),B)

b
〉
[
desc

(
UnBalγΠb \ desc(Smallδ,AΠb

)
)]

= Pr〈
A

(1)
Πb
,BΠb

〉 [desc(UnBalγΠb \ desc(Smallδ,AΠb
)
)]
,

where the second equality follows Proposition 3.2.2. The proof now follows the

induction hypothesis.

Assume e(A,B)(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, and let p = e(A,B)(λ, 0). The

proof splits according to who controls the root of Π.

B controls root(Π). We first prove that

UnBalγΠ \ desc
(
Smallδ,AΠ

)
(4.3)

=
(
UnBalγΠ0

\ desc
(
Smallδ,AΠ0

))
∪
(
UnBalγΠ1

\ desc
(
Smallδ,AΠ1

))
. (4.4)
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Indeed, let u ∈ V(Π). First, note that since B controls root(Π) it holds that

e(A(1),B)(λ, b) = e(A,B)(λ, b), and thus if u 6= root(Π), it holds that u ∈ UnBalγΠ
if and only if u ∈ UnBalγΠb . Assume u ∈ UnBalγΠ \ desc

(
Smallδ,AΠ

)
. Since

γ > 1, it holds that u 6= root(Π), and thus u ∈ UnBalγΠb . Moreover, it follows

that u1, . . . , u1,...,|u| /∈ Smallδ,AΠb
, and thus u ∈ UnBalγΠb \ desc

(
Smallδ,AΠb

)
. For

the other direction, assume u ∈ UnBalγΠ0
\desc

(
Smallδ,AΠb

)
. As argued before,

it holds that u ∈ UnBalγΠ. Moreover, if follows that u1, . . . , u1,...,|u| /∈ Smallδ,AΠb
,

and since B controls root(Π), it also holds that root(Π) /∈ Smallδ,AΠb
. Hence,

u ∈ UnBalγΠ \ desc
(
Smallδ,AΠ

)
. This complete the proof of Equation (4.3).

We write

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉

[
desc

(
UnBalγΠ0

\ desc(Smallδ,AΠ0
)
)]

+ e(A(1),B)(λ, 1) · Pr〈(A(1),B)1〉
[
desc

(
UnBalγΠ1

\ desc(Smallδ,AΠ1
)
)]

= p · Pr〈
A

(1)
Π0
,BΠ0

〉 [desc(UnBalγΠ0
\ desc(Smallδ,AΠ0

)
)]

+ (1− p) · Pr〈
A

(1)
Π1
,BΠ1

〉 [desc(UnBalγΠ1
\ desc(Smallδ,AΠ1

)
)]

≤ p · 2− val(Π0)

γc
+ (1− p) · 2− val(Π1)

γc

=
2− val(Π)

γc
,

where the first equality follows Equation (4.3), the second equality follows

Proposition 3.2.2, and the inequality follows from the induction hypothesis.

A controls root(Π). In case val(Π) ≤ δ, it holds that root(Π) ∈ Smallδ,AΠ . There-

fore, UnBalγΠ \ desc
(
Smallδ,AΠ

)
= ∅ and the proof follows similar argument as

in the base case.

96



In the complementary case, i.e., val(Π) > δ, assume without loss of generality

that val(Π0) ≥ val(Π) ≥ val(Π1) > 0, where the case that val(Π1) = 0 is

handled later. For b ∈ {0, 1}, let γb := val(Π)
val(Πb)

· γ. By Claim 3.2.1, for

u ∈ V(Π) with u 6= root(Π) and b = u1, it holds that

v(A(1),B)(u)

v(A,B)(u)
=

e(A,B)(λ, b)

e(A(1),B)(λ, b)
·
v(A(1),B)b

(u)

v(A,B)b(u)
=

val(Πb)

val(Π)
·
v(A(1),B)b

(u)

v(A,B)b(u)
.

Thus, u ∈ UnBalγΠ if and only if u ∈ UnBalγbΠb
. Hence, using also the fact that

root(Π) /∈ Smallδ,AΠ (since we assumed val(Π) > δ), similar arguments used to

prove Equation (4.3) yields that

UnBalγΠ \ desc
(
Smallδ,AΠ

)
(4.5)

=
(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))
∪
(
UnBalγ1

Π1
\ desc

(
Smallδ,AΠ1

))
. (4.6)

Moreover, we can write

Pr〈(A(1),B)b〉
[
desc

(
UnBalγbΠb

\ desc(Smallδ,AΠb
)
)]

(4.7)

= Pr〈
A

(1)
Πb
,BΠb

〉 [desc(UnBalγΠ1
\ desc(Smallδ,AΠ1

)
)]

≤ 2− val(Πb)

γcb

=

(
val(Πb)

val(Π)

)c
· 2− val(Πb)

γc
,

where the first equality follows Proposition 3.2.2, and the inequality follows

the induction hypothesis in case γb > 1, and the fact that 2−val(Πb)
γcb

≥ 1
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otherwise. We have that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉

[
desc

(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))]
+ e(A(1),B)(λ, 1) · Pr〈(A(1),B)1〉

[
desc

(
UnBalγ1

Π1
\ desc

(
Smallδ,AΠ1

))]
≤ p ·

(
val(Π0)

val(Π)

)1+c

· 2− val(Π0)

γc
+ (1− p) ·

(
val(Π1)

val(Π)

)1+c

· 2− val(Π1)

γc
,

where the equality follows Equation (4.5), and the inequality follows Equa-

tion (4.7) together with Claim 3.2.1. Setting val(Π0)
val(Π)

:= 1 + y, x := val(Π)

and λ := p
1−p and noticing that λy =

(
val(Π0)
val(Π)

− 1
)
· p

1−p = p·val(Π0)−p·val(Π)
val(Π)−p·val(Π)

≤
p·val(Π0)

val(Π)
≤ 1, we can use Lemma 2.5.2 and have the following inequality (after

multiplying by 1−p
γc

), which completes the proof for the case that val(Π1) > 0:

p ·
(
val(Π0)

val(Π)

)1+c

· 2− val(Π0)

γc
+ (1− p) ·

(
val(Π1)

val(Π)

)1+c

· 2− val(Π1)

γc

≤ 2− val(Π)

γc
.

It is left to argue for the case that val(Π1) = 0. In this case, according to

Claim 3.2.1, is holds that e(A(1),B)(λ, 0) = 1 and e(A(1),B)(λ, 1) = 0. Hence,

there are no unbalanced nodes in Π1, i.e., UnBalγΠ\desc
(
Smallδ,AΠ

)
∩V(Π1) =

∅. As before, let γ0 := val(Π)
val(Π0)

· γ = p · γ. Similar arguments used to prove

Equation (4.5) yields that

UnBalγΠ \ desc
(
Smallδ,AΠ

)
= UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

)
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It holds that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉

[
desc

(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))]
≤
(

1

p

)1+c

· 2− val(Π0)

γc
.

Applying Lemma 2.5.2 with the same parameters as above, completes the

proof.

Proof of (2): We prove the statement by showing that in case γ > 1 it holds

that

frnt
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
⊆ UnBalγΠ \ desc

(
Smallδ,AΠ

)
.5

Let u ∈ frnt
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
. It holds that for every i ∈ (|u| − 1),

it holds that u1...i /∈ UnBalγΠ ∪ Smallδ,AΠ (note that this includes the root). We

complete the proof by showing that u /∈ Smallδ,AΠ .

Since γ > 1, it must be the case that u 6= root(Π). Hence, u has a parent in

T (Π), and let w denote this parent. Since w /∈ UnBalγΠ, it holds that v(A(1),B)(w) <

γ · v(A,B)(w). We write

γ · v(A,B)(w) · e(A(1),B)(w, u) > v(A(1),B)(w) · e(A(1),B)(w, u)

= v(A(1),B)(u)

≥ γ · v(A,B)(u)

= γ · v(A,B)(w) · e(A,B)(w, u).

5Recall that for a set S ⊂ V(Π), frnt (S) stands the frontier of S, i.e., the set of nodes belong
to S, whose ancestors do not belong to S.
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Hence, e(A,B)(w, u) < e(A(1),B)(w, u). It follows that A controls w. By Claim 3.2.1,

it holds that e(A(1),B)(w, u) = e(A,B)(w, u) · val(Πu)
val(Πw)

, and thus val(Πu) > val(Πw). But

since w /∈ Smallδ,AΠ , it holds that val(Πw) > δ, and hence val(Πu) > δ, as required.

Proof of (3): Note that for every δ′ ≥ δ it holds that Smallδ,AΠ ⊆ Smallδ
′,A

Π .

Hence, UnBalγΠ \ desc(Smallδ
′,A

Π ) ⊆ UnBalγΠ \ desc(Smallδ,AΠ ), and the proof follows.

2

The above lemma allows us to argue that if the probability of hitting low-value

nodes is small, then the biased-continuation attacker does not change the leaves

distribution by much. Consider the process in which a transcript u is generated by

(A(1),B). If this process first generates an unbalanced node, then the probability

of hitting u is bounded by Lemma 4.3.1. If it first generates a low-value node,

then the probability of hitting u is bounded by the probability of hitting low-value

nodes. If neither of the above cases apply, then u is a balanced transcript, and the

probability of hitting it can be bounded by the probability of (A,B) hitting u.

Formally, the above intuition is captured in the next lemma.

Corollary 4.3.2. Let Π = (A,B) be an m-round protocol, let S ⊆ V(Π), let

δ ∈ (0, 1
2
] and let c = c(δ) from Lemma 4.3.1.

Then, for every δ′ ≥ δ and every γ > 1, it holds that

Pr〈A(1),B〉 [desc (S)] ≤ γ · Pr〈A,B〉

[
desc

((
S ∪ Smallδ

′,A
Π

)
\ desc (UnBalγΠ)

)]
+

2

γc
.

Proof. Fix δ′ ≥ δ, γ > 1. We start by showing that

desc (S) ⊆ desc
((

frnt (S) ∪ Smallδ
′,A

Π

)
\ desc (UnBalγΠ)

)
(4.8)

∪desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
. (4.9)
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Let u ∈ desc (S) and let v ∈ frnt (S) such that u ∈ desc (v). If

v ∈ desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
we are done. Hence, assume that

v /∈ desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
. If v ∈ desc

(
Smallδ

′,A
Π

)
, and letting w ∈

frnt
(
Smallδ

′,A
Π

)
such that v ∈ desc (w), then it must be that w /∈ desc (UnBalγΠ),

since otherwise it would follow that v ∈ desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
. Hence,

it this case, it holds that v ∈ desc
(
Smallδ

′,A
Π \ desc (UnBalγΠ)

)
. If v /∈ desc

(
Smallδ

′,A
Π

)
,

then it must be that v /∈ desc (UnBalγΠ), since otherwise it would follow that

v ∈ desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
. Hence, in this case, it holds that u ∈

desc (S \ desc (UnBalγΠ)). This concludes the proof of Equation (4.8).

We get

Pr〈A(1),B〉 [desc (S)] ≤ Pr〈A(1),B〉
[
desc

((
frnt (S) ∪ Smallδ

′,A
Π

)
\ desc (UnBalγΠ)

)]
+ Pr〈A(1),B〉

[
desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))]
≤ γ · Pr〈A,B〉

[
desc

((
S ∪ Smallδ

′,A
Π

)
\ desc (UnBalγΠ)

)]
+

2

γc
,

where the first inequality follows Equation (4.8) and the second inequality follows

the definition of UnBalγΠ (Definition 4.2.4) and Lemma 4.3.1. 2

In the rest of the section we need bounds for some special cases of the above

corollary, given in the next proposition.

Proposition 4.3.3. Let Π = (A,B) be an m-round protocol, let δ ∈ (0, 1
2
] and let

c = c(δ) from Lemma 4.3.1. Then the following holds for any δ′ ≥ δ:

1. For any γ > 1 it holds that

Pr〈A(1),B〉
[
desc

(
Smallδ

′,A
Π

)]
≤ γ · Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
.
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and

Pr〈A(1),B〉 [desc (UnBalγΠ)] ≤ γ · Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
.

2. Let S ⊆ V(Π) with Pr〈A,B〉 [desc (S)] ≤ α. If

Smallδ
′,A

Π = ∅, then for every k ∈ N and any γ1, . . . , γk > 1 it holds that

Pr〈A(k),B〉 [desc (S)] ≤ α ·
k∏
i=1

γi + 2 ·
k∑
i=1

·
∏k

j=i+1 γj

γci
:= φBal(α, δ′,γ).

Proof. Item 1 follows by applying Corollary 4.3.2 with respect to sets desc
(
Smallδ

′,A
Π

)
and desc (UnBalγΠ). Item 2 follows by induction and Corollary 4.3.2. 2

The above proposition bounds the probability of hitting unbalanced nodes by

using the probability of hitting A-controlled low-value nodes. Recall that in Sec-

tion 4.2 we showed that the approximated biased-continuation attacker does almost

as well as biased-continuation attacker, if the probability of hitting unbalanced and

A-controlled low-value nodes is small. Hence, using the above proposition, we can

now argue that the approximated biased-continuation attacker does well if the

probability of hitting A-controlled low-value nodes is small.

Corollary 4.3.4. Let Π = (A,B) be a m-round protocol, let δ ∈ (0, 1
2
] and let

c = c(δ) from Lemma 4.3.1. Then for every γ ≥ 1 it holds that

SD
([

A(1),B
]
,
[
A(1, ˜BiasedCont),B

])
≤ 2 ·m · γ ·

(
ξ + Pr〈A,B〉

[
desc(Smallδ,AΠ )

])
+

2

γc
,

where ˜BiasedCont is a (ξ, δ)-biased-continuator for Π according to Definition 4.2.1.

Proof. Follows immediately from Lemma 4.2.5 and Proposition 4.3.3. 2
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Unfortunately, there might be protocols for which the probability of hitting A-

controlled low-value nodes is large. Hence, the above corollary does not suffice to

argue that the approximated biased-continuation attacker successfully biases any

protocol. However, given any protocol, we can define a pruned variant of it, such

that the probability of hitting A-controlled low-value nodes is indeed small. Thus,

the above corollary shows that the biased-continuation attacker successfully biases

the above variant. The definition of the pruned variant and the analysis of it is

given in the next section.

4.4 Approximated Biased-Continuation Attack

on Pruned Protocols

We are now ready to define the pruned variant of a protocol. Recall that Lemma 4.3.1

shows that in case the protocol has no low value node that are in A’s control,

biased-continuation attack does not change the leaves distribution by much. For

a protocol Π = (A,B), the pruned variant of Π will keep the leaves distribution

intact, while changing the controlling scheme of the protocol – for low value nodes

it will give the control to B, and for high value nodes it will give the control to A.

Hence, Lemma 4.3.1 assures that biased continuation will not change the leaves

distribution of the pruned protocol by much.

We give both ideal and approximated variants.

Pruning Protocols

Ideally Pruned Protocols
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Definition 4.4.1 (the pruned variant of a protocol). Let Π = (A,B) be a m-

round protocol and let δ ∈ (0, 1). In the δ-pruned variant of Π, denoted by Π[δ] =(
A

[δ]
Π ,B

[δ]
Π

)
, the parties follow the protocol Π, where A

[δ]
Π and B

[δ]
Π take the roles

of A and B respectively, with the following exception occurring the first time the

protocol’s transcript u is in SmallδΠ ∪ LargeδΠ:

If u ∈ LargeδΠ set C = A
[δ]
Π , otherwise set C = B

[δ]
Π . The party C takes control of

the node u, samples a leaf `← 〈Π〉 conditioned on `1,···|u| = u, and then, bit by bit,

sends `|u|+1,...,m to the other party.6

Namely, for the first time the value of the protocol is close to either 1 or

0, the party who is interested in this value (i.e., Aδ for one, and Bδ for zero),

is taking control and deciding the outcome (without changing the value of the

protocol). Hence, the protocol is effectively pruned at these leaves (each such node

is effectively a parent of two leaves).

Approximately Pruned Protocols

Definition 4.4.2 (Approximated honest continuation). Algorithm ˜HonCont is a

ξ-Honest continuator for Π, if

Pr`←〈Π〉

[
∃i ∈ [m] : SD

(
˜HonCont(`1,...,i),HonCont(`1,...,i)

)
> ξ
]
≤ ξ, where HonCont(u),

for u ∈ V(Π), returns `← 〈Πu〉.

6Note that in the pruned protocol, the parties turns might not alternate (i.e., the same party
might sends several consecutive bits), even if they do alternate in the original protocol. Rather,
the protocol’s control scheme (determining what party is active at a given point) is ia function
of the protocol’s transcript and the original protocol scheme. Such schemes are consistent with
the ones considered in the previous sections.
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Definition 4.4.3 (Approximated estimator). An Algorithm Ẽst is a (ξ, δ)-estimator

for an m-round protocol Π, if it is deterministic and

Pr`←〈Π〉

[
∃i ∈ [m] :

∣∣∣Ẽst(`1,...,i)− val(Π`1,...,i)
∣∣∣ > δ

]
≤ ξ.

The approximately pruned protocol is the oracle variant of the above protocol.

Definition 4.4.4. Let Π be a protocol, δ ∈ [0, 1] and let Ẽst be a deterministic real

value algorithm. Let

• S̃mall
δ,Ẽst

Π =
{
u ∈ V(Π): Ẽst(u) ≤ δ

}
.

• L̃arge
δ,Ẽst

Π =
{
u ∈ V(Π) : Ẽst(u) ≥ 1− δ

}
.

Definition 4.4.5 (the approximately pruned variant of a protocol). Let Π = (A,B)

be a m-round protocol, let δ1 < δ2 ∈ (0, 1), let ˜HonCont be an algorithm, and let Ẽst

and be a deterministic real value algorithm. Let F = frnt

(
L̃arge

δ,Ẽst

Π ∪ S̃mall
δ,Ẽst

Π

)
.

The (δ, Ẽst, ˜HonCont)-approximately pruned variant of Π, denoted Π[δ,Ẽst, ˜HonCont] =(
A

[δ,Ẽst, ˜HonCont]
Π ,B

[δ,Ẽst, ˜HonCont]
Π

)
, is defined as follows. For u ∈ V(Π) \ desc (F), the

party cntrlΠ(u) sends the bit ˜HonCont(u)|u|+1 to the other party. For u ∈ F , C

stores state = ˜HonCont(w) and for every w ∈ desc (F), C sends state|w|+1, where

C =


A, u ∈ desc

(
L̃arge

δ,Ẽst

Π \ desc
(
S̃mall

δ,Ẽst

Π

))
B, u ∈ desc

(
S̃mall

δ,Ẽst

Π \ desc
(
L̃arge

δ,Ẽst

Π

))

Namely, until reaching a node in S̃mall
δ,Ẽst

Π ∪ L̃arge
δ,Ẽst

Π , the parties act like in

Π (same party sends each message), but using the oracle ˜HonCont instead of their

random coins, which make them stateless. Once hitting a node in S̃mall
δ,Ẽst

Π ∪

L̃arge
δ,Ẽst

Π for the first time, the control moves (and stays with) A in case u ∈
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L̃arge
δ,Ẽst

Π , or with B in case u ∈ S̃mall
δ,Ẽst

Π . The party taking the control, stores

the response from the oracle ˜HonCont and sends bit by bit all the remaining bits

as directed by this stored value (notice that it also sends the bits that would have

been sent by the other party).

The next lemma states that if there are not too many nodes with values close

to the point of pruning, and the oracle given to the parties are close to their ideal

version, then the approximate pruned variant of the protocol is close to ideal one.

Definition 4.4.6. For a protocol Π, ξ ∈ (0, 1), δ ∈ (0, 1
2
], let

N eighδ,ξΠ = {u ∈ V(Π): val(Πu) ∈ (δ ± ξ] ∨ val(Πu) ∈ [1− δ ± ξ)} ,

and let neighΠ(δ, ξ) = Pr〈Π〉

[
desc

(
N eighδ,ξΠ

)]
.

Lemma 4.4.7. Let Π = (A,B) be m-round protocol, let ξ̄ ∈ (0, 1) and let δ, ξ ∈

(0, 1
2
]. Assume that Ẽst is a deterministic (ξ̄, ξ)-estimator for Π and that ˜HonCont

is a ξ′-honest continuator for Π according to Definitions 4.4.2 and 4.4.3, then

SD

([
A

[δ]
Π ,B

[δ]
Π

]
,

[
A

[δ,Ẽst, ˜HonCont]
Π ,B

[δ,Ẽst, ˜HonCont]
Π

])
≤ neighΠ(δ, ξ) + ξ̄ + 2 ·m · ξ′.

Proof. In the first step we show that

d1 := SD
([

A
[δ]
Π ,B

[δ]
Π

]
,
[
A

[δ,Ẽst,HonCont]
Π ,B

[δ,Ẽst,HonCont]
Π

])
≤ neighΠ(δ, ξ) + ξ̄.

Let Failξ,Ẽst
Π =

{
u ∈ V(Π):

∣∣∣val(Πu)− Ẽst(u)
∣∣∣ > ξ

}
). Since Ẽst is a (ξ̄, ξ)-estimator

for Π, it holds that failẼst
Π (ξ) := Pr〈Π〉

[
desc

(
Failξ,Ẽst

Π

)]
≤ ξ̄, and let N eighδ,ξΠ and

neighΠ(δ, ξ) be according to Definition 4.4.6.

Note that both
(
A

[δ]
Π ,B

[δ]
Π

)
and

(
A

[δ,Ẽst,HonCont]
Π ,B

[δ,Ẽst,HonCont]
Π

)
randomly executes

Π. The former diverts from this execution in case it reaches a node u such that
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u ∈ SmallδΠ ∪ LargeδΠ, where the latter diverts in case u ∈ S̃mall
δ,Ẽst

Π ∪ L̃arge
δ,Ẽst

Π .

Claim 4.4.8 shows that if u /∈ N eighδ,ξΠ ∪ Fail
ξ,Ẽst
Π , both protocols diverts at the

same point, both call for HonCont(u) to determined the rest of the execution, and

both give the control to the same party. Thus, it holds that

d1 ≤ Pr〈Π〉

[
desc

(
N eighδ,ξΠ

)
∪ desc

(
Failξ,Ẽst

Π

)]
≤ Pr〈Π〉

[
desc

(
N eighδ,ξΠ

)]
+ Pr〈Π〉

[
desc

(
Failξ,Ẽst

Π

)]
= neighΠ(δ, ξ) + ξ̄.

In the next step we conclude the proof by using Lemma 2.4.5 to show that

d2 := SD

([
A

[δ,Ẽst,HonCont]
Π ,B

[δ,Ẽst,HonCont]
Π

]
,

[
A

[δ,Ẽst, ˜HonCont]
Π ,B

[δ,Ẽst, ˜HonCont]
Π

])
≤ 2 ·m · ξ′.

Let EHonCont [resp., E
˜HonCont] be an oracle-aided algorithm that randomly executes(

A
[δ,Ẽst,HonCont]
Π ,B

[δ,Ẽst,HonCont]
Π

)
[resp.,

(
A

[δ,Ẽst, ˜HonCont]
Π ,B

[δ,Ẽst, ˜HonCont]
Π

)
] while answer-

ing the oracle calls to HonCont [resp., ˜HonCont] with calls to its own oracle, and

outputs the resulting leaf and the controlling scheme of this execution. Hence, now

it suffices to bound SD
(
EHonCont,E

˜HonCont
)

. Applying Lemma 2.4.5 with respect

to k := m, Di := 〈A,B〉 for every i ∈ [m], a := 2 · ξ, λ := 1 and b := 0 yields that

d2 = SD
(
EHonCont,E

˜HonCont
)
≤ 2 ·m · ξ′

2

Claim 4.4.8. Let u ∈ V(Π) such that u /∈ N eighδ,ξΠ ∪ Fail
ξ,Ẽst
Π , then

• u ∈ SmallδΠ ⇐⇒ u ∈ S̃mall
δ,Ẽst

Π ; and

• u ∈ LargeδΠ ⇐⇒ u ∈ L̃arge
δ,Ẽst

Π .

107



Proof. We prove for the first case, where the proof for the second case is analogous.

Assume u ∈ SmallδΠ. Then by definition it holds that val(Πu) ≤ δ. Since

u /∈ N eighδ,ξΠ , it holds that val(Πu) ≤ δ − ξ. Now, since u /∈ Failξ,Ẽst
Π , it holds that

Ẽst(u) ≤ δ, and thus u ∈ S̃mall
δ,Ẽst

Π .

Assume u /∈ SmallδΠ. Then by definition it holds that val(Πu) > δ. Since

u /∈ N eighδ,ξΠ , it holds that val(Πu) > δ + ξ. Now, since u /∈ Failξ,Ẽst
Π , it holds that

Ẽst(u) > δ, and thus u /∈ S̃mall
δ,Ẽst

Π . 2

The above lemma bounds the difference between the approximate pruned vari-

ant and the pruned variant of the protocol with the probability of hitting nodes

that their value is close to the point of pruning. We next argue that if we allow

small diversion from this point of punning, this probability is small.

Proposition 4.4.9. Let Π be m-round protocol, let δ ∈ (0, 1
2
] and let ξ ∈ (0, 1).

If ξ ≤ δ2

16m2 , then there exists δ′ ∈ [ δ
2
, δ] such that neighΠ(δ′, ξ) ≤ m ·

√
ξ, where

δ′ = δ/2 + j · 2ξ with j ∈ J :=
{

0, 1, . . . ,
⌈
m/
√
ξ
⌉}

.

Proof. For i ∈ [m], let N eighδ,ξ,iΠ =
{
u ∈ V(Π): u ∈ N eighδ,ξΠ ∧ |u| = i

}
. It holds

that

Pr〈Π〉

[
desc

(
N eighδ,ξΠ

)]
≤ Pr〈Π〉

[
desc

(
∪i∈[m]N eighδ,ξ,iΠ

)]
≤

m∑
i=1

Pr〈Π〉

[
desc

(
N eighδ,ξ,iΠ

)]
(4.10)

Fix i ∈ [m] and let n(i) =
∣∣∣{j ∈ J : Pr〈Π〉

[
desc

(
N eigh

δ/2+j·2ξ,ξ,i
Π

)]
>
√
ξ
}∣∣∣. Since

for every j 6= j′ ∈ J it holds that N eigh
δ/2+j·2ξ,ξ,i
Π ∩N eigh

δ/2+j′·2ξ,ξ,i
Π = ∅, it follows

that n(i) < 1/
√
ξ. Hence,

m∑
i=1

n(i) <
m√
ξ
< |J | .
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Thus, ∃j ∈ J such that Pr〈Π〉

[
desc

(
N eighδ

′,ξ,i
Π

)]
≤
√
ξ for any i ∈ [m], where

δ′ = δ/2 + j · 2ξ. Plugging it in Equation (4.10), yields that neighΠ(δ′, ξ) =

Pr〈Π〉

[
desc

(
N eighδ

′,ξ
Π

)]
≤ m ·

√
ξ. 2

Approximated biased continuation attack does well on pruned

protocols

To simplify notation for every δ ∈ [0, 1] let Ãδ be A
[δ,Ẽst, ˜HonCont]
Π and let B̃δ be

analogously defined.

The next lemma shows that Approximated Biased Continuation attack on an

approximated pruned protocol performs almost as good as Biased Continuation

Attack on the ideally pruned protocol (where there is no sampling error and every

A controlled low value node is pruned).

Notation 4.4.10 (iterated approximated attacker). Let Π = (A,B) be a protocol

and ξ, δ ∈ [0, 1]. For every i ∈ N let A
(i,ξ,δ)
Π ≡

(
A

(i−1,ξ,δ)
Π

)(1, ˜BiasedCont
(A

(i−1,ξ,δ)
Π

,B)

)

(see Lemma 4.2.5), where ˜BiasedCont(
A

(i−1,ξ,δ)
Π ,B

) is a (ξ, δ)-Biased Continuator as

in Definition 4.2.1 and A
(0,ξ,δ)
Π ≡ A.

Lemma 4.4.11 (iterated attack). Let Π1 = (A,B) and Π2 = (C,D) be two m-

round protocols, let δ ∈ (0, 1
2
], let c = c(δ) from Lemma 4.3.1. Assume that

1. SD ([Π1], [Π2]) ≤ α.

2. δ′ ∈ [δ, 1
4
] is such that desc

(
Small2δ

′

Π2

)
∩ CtrlCΠ2

= ∅.

Then SD
([

A
(i,δ′,ξ)
Π1

,B
]
,
[
C

(i)
Π2
,D
])
≤ φIt(m,α, ξ, δ′,γ) for any i ∈ N and γ1, . . . , γi >
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1, where

φIt(m,α, ξ, δ′, (γ1, . . . , γi)) := α · 8i ·mi ·
∏i

t=1 γt
δ′2i

+ ξ ·
i∑

j=1

8j ·mj ·
∏j

t=1 γt
δ′2j

+ 6 ·
i∑

j=1

8i−j ·mi−j ·
∏i

t=j+1 γt

δ′2(i−j) · γcj
.

The proof of the above lemma, easily follows from the single attack stated and

proved in Section 4.4.

Proof. Note that for any i ∈ N and any u ∈ V(Π2), it holds that val(
(
C(i+1),D

)
u
) ≥

val(
(
C(i),D

)
u
). Namely, the value of every node can only increases when apply-

ing biased-continuation attack towards 1. It follows that desc
(
Small2δ

′

(C(i),D)

)
∩

CtrlC(C(i),D) = ∅ for every i ∈ N. The proof now follows a straightforward recursion

formula based on Lemma 4.4.14. 2

Corollary 4.4.12. Assume the conditions of Lemma 4.4.11. Then for every ε > 0

and j ∈ [i] if γj =
(

48·i
δ′2
· m
ε
· γj+1

) i
c with γi+1 = 1, it holds

φIt(m,α, ξ, δ′,γ) ≤ (α + 2 · ξ) ·
(

48 · i
δ′2
· m
ε

)( ic)
i

+ ε

The next proposition bounds the running time of the above attacker.

Proposition 4.4.13. Let Π be m-round protocol, let δ ∈ (0, 1
2
] and let ξ ∈ [0, δ/2].

Assume that the running time of Π is TΠ, then the running time of A
(i,δ,ξ)
Π is

TΠ,δ,ξ
Pru (i) := O


m+ ln

(
1
ξ

)
2ξ2

+
ln
(

1
ξ

)
ln
(

1
1−δ

)
i

·m2i · TΠ


Proof. Consider a single call to A

(i,δ,ξ)
Π . In this call it might call Ẽst and ˜BiasedCont

for m times. The running time of Ẽst is TẼst := O

(
m+ln( 1

ξ )
2ξ2

)
, where the running
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time of ˜BiasedCont is TBC = O

(
ln( 1

ξ )
ln( 1

1−δ )

)
. Is also might call A

(i−1,δ,ξ)
Π . Counting for

m possible turns of A
(i,δ,ξ)
Π , we get the following recursion

TΠ,δ,ξ
Pru (i) = O

((
TẼst + TBC

)
·m2 · TΠ,δ,ξ

Pru (i− 1)
)
,

where TΠ,δ,ξ
Pru (0) = TΠ. The proof follows by solving the above recursion. 2

Analyzing a single attack

Lemma 4.4.14 (single attack). Let Π1 = (A,B) and Π2 = (C,D) be two m-round

protocols, let δ ∈ (0, 1
2
], let c = c(δ) from Lemma 4.3.1. Assume that

1. SD ([Π1], [Π2]) ≤ α.

2. δ′ ∈ [δ, 1
4
] is such that desc

(
Small2δ

′

Π2

)
∩ CtrlCΠ2

= ∅.

Then for every (ξ, δ′)-biased continuator for Π, ˜BiasedCont (see Definition 4.2.1)

with ξ ∈ [0, δ′/2] and every γ > 1 it holds that

SD

([
A

(1, ˜BiasedCont)
Π1

,B

]
,
[
C

(1)
Π2
,D
])
≤ 8 ·m · γ · (α + ξ)

δ′2
+

6

γc
.

Proof of Lemma 4.4.14. In order to apply Lemma 3.9.1 (robustness lemma) we

have to bound Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
and by condition 2 it is equal

to bounding Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
.

Let S =
{
` ∈ desc

(
Smallδ

′,A
Π

)
: `|`| = 1

}
7 Let β = Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
and β′ = Pr〈C,D〉

[
desc

(
Smallδ

′,A
Π

)]
. Since SD (〈A,B〉, 〈C,D〉) ≤ α (which is implied

by the assumption that SD ([A,B], [C,D]) ≤ α), it follows that β′ > β−α and also

7Recall that we assume the last message of the transcript is the common output bit.
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Pr〈C,D〉 [desc (S)]−Pr〈A,B〉 [desc (S)] ≤ α. However, by the definition of S it follows

that Pr〈A,B〉 [desc (S)] ≤ β · δ′ and that Pr〈C,D〉 [desc (S)] ≥ β′ · 2δ′. Now we have

α ≥ Pr〈C,D〉 [desc (S)]− Pr〈A,B〉 [desc (S)]

≥ 2β′ · δ′ − β · δ′

≥ 2(β − α) · δ′ − β · δ′

≥ β · δ′ − 2α · δ′

≥ β · δ′ − α

where the last equality follows the assumption and the fact that δ′ ≤ 1/2. The

above implies that Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
= β ≤ 2α

δ
.

Now let γ > 1. First we can apply Lemma 3.9.1 and derive

SD
([

A
(1)
Π1
,B
]
,
[
C

(1)
Π2
,D
])
≤ 2 ·m · γ

δ′
· (α +

2α

δ′
) +

4

γc

≤ 6 ·m · α · γ
δ′2

+
4

γc

Now we can apply Lemma 4.2.5 and have

SD

([
A

(1)
Π1
,B
]
,

[
A

(1, ˜BiasedCont)
Π1

,B

])
≤ m · γ · (2ξ +

2α

δ′
) +

2

γc

Finally, combining the last two inequalities and using triangle inequality we have:

SD

([
A

(1, ˜BiasedCont)
Π1

,B

]
,
[
C

(1)
Π2
,D
])
≤ 8 ·m · γ · (α + ξ)

δ′2
+

6

γc
.

2
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4.5 The Pruning-in-the-Head Attacker

The following attacker successfully applies the pruning attacker of Section 4.4 on

arbitrary protocols. In particular, on a protocol for which the assumptions required

for proving the success probability of the pruning attacker, see Lemma 4.4.11, do

not hold. To do that, it prunes the initial protocol before applying the pruning

attacker, while making sure not to attack pruned transcripts, i.e., low-value and

high-value transcripts.

Algorithm 4.5.1 (A
(i,δ,ξ, state)
Π ).

Oracles: ˜HonCont and Ẽst (the latter is deterministic).

Input: transcript u ∈ {0, 1}∗.

State: state set at the beginning to ⊥

Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Let Π̃ = Π[2δ,Ẽst, ˜HonCont].

3. At round r set msg as follows.

• In case state 6=⊥, set msg := stater.

• In case state =⊥ and u ∈ S̃mall
2δ,Ẽst

Π ∪ L̃arge
2δ,Ẽst

Π , let `← ˜HonCont(u),

set state := ` and msg := stater.

• Else set msg := A
(i,δ,2ξ)

Π̃
(u) (see Notation 4.4.10).

4. Send msg to B.

5. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).
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The next lemma, proven in Section 4.5 states that in case protocol Π does not

have many nodes whose value is close to 2δ, then the above algorithm mimics that

of the ideal attacker for the ideal pruned protocol well.

Lemma 4.5.2. Let Π be m-round protocol, let δ ∈ (0, 1
2
] and let c = c(δ) from

Lemma 4.3.1. It holds that

val
(
A

(i,δ′,ξ,state)
Π ,B

)
≥ val

((
A

[2δ′]
Π

)(i)

,B
[2δ′]
Π

)
− 3δ′

− 9 · φIt(m, neighΠ(2δ′, 2ξ) + 7 ·m · ξ, 2 · ξ, δ′,γ),

for every δ′ ∈ [δ, 1
2
], every ξ ∈ [0, δ′/2], every i ∈ N and every γ = (γ1, . . . , γi), all

larger than 1, where ˜HonCont is ξ-honest continuator and Ẽst is a (2ξ, δ)-estimator

for Π. Moreover, φIt is as in Lemma 4.4.11 and neigh as in Definition 4.4.6.

We also bound the running time of the above attacker,

Proposition 4.5.3. Let Π = (A,B) be m-round protocol let δ ∈ [0, 1
4
] and let

ξ ∈ [0, δ/2]. Assume that the running time of Ĩnv is TĨnv, then the running time of

A
(i,δ,ξ, state)
Π is

T δ,ξ,Ĩnv
final (i) := O

m2i+3 ·

m+ ln
(

1
2ξ

)
4ξ2

+
ln
(

1
2ξ

)
ln
(

1
1−δ

)
i

·

m+ ln
(

1
ξ

)
2ξ2

 · TĨnv


Proof. Consider a single call to A

(i,δ,ξ,state)
Π . It is easy to verify that the dominant

term of this running ti,e is the call to A
(i,δ,2ξ)

Π̃
on the protocol

Π̃ =

(
A

[2δ,Ẽst, ˜HonCont]
Π ,B

[2δ,Ẽst, ˜HonCont]
Π

)
. Note that the running time of Π is TΠ̃ =

O

(
m · TĨnv ·

(
m+ln( 1

ξ )
ξ2

))
. Plugging in T Π̃,δ,2ξ

Pru (i) from Proposition 4.4.13 and con-

sidering m possible rounds A
(i,δ,ξ,state)
Π might run complete the proof. 2
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Analysis of the Pruning-in-the-Head Attack

Proof of Lemma 4.5.2. In order to prove this lemma we will define five hybrids

H0, . . . ,H4. The first hybrid H0 has as output the output bit of a random execu-

tion of
(
A

(i,δ′,ξ,state)
Π ,B

)
, while the last hybrid H5 that of a random execution of((

A
[2δ′]
Π

)(i)

,B
[2δ′]
Π

)
. Then we will give a bound of the statistical distance between

the hybrids and by triangle inequality we will conclude proving the lemma. Let us

define the hybrids one by one.

• H0: As already mentioned, this hybrid is equal to the random variable of the

output of a random execution of
(
A

(i,δ′,ξ,state)
Π ,B

)
.

• H1: In order to define this hybrid let us first define the following sets. Let

Failξ, ˜HonCont = frnt
({
u ∈ V(Π): SD

(
˜HonCont(u),HonCont(u)

)
> ξ
})

and

FailẼst = frnt
({
u ∈ V(Π): val(Πu) < 1− 3δ′ ∧ Ẽst(u) > 1− 2δ′

})
.

Let Fail = Failξ, ˜HonCont ∪ FailẼst and E = frnt

(
S̃mall

2δ′,Ẽst

Π ∪ L̃arge
2δ′,Ẽst

Π

)
\

Fail. This hybrid is the same as the previous one up to a point where the

protocol
(
A

(i,δ′,ξ,state)
Π ,B

)
reaches a node u ∈ E . Then for every w ∈ desc(u),

both parties act like
(
A

(i,δ′,2ξ)

Π̃
, B̃
)

, where

Π̃ = (Ã, B̃) =

(
A

[2δ′,Ẽst, ˜HonCont]
Π ,B

[2δ′,Ẽst, ˜HonCont]
Π

)
.

• H2: In this hybrid both parties act everywhere like
(
A

(i,δ′,2ξ)

Π̃
, B̃
)

except for

nodes u ∈ desc

(
frnt (Fail) \ desc

(
S̃mall

2δ′,Ẽst

Π ∪ L̃arge
2δ′,Ẽst

Π

))
, where both

parties act like
(
A

(i,δ′,ξ,state)
Π ,B

)
.
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• H3: This hybrid is equal to the random variable of the output of a random

execution of
(
A

(i,δ′,2ξ)

Π̃
, B̃
)

.

• H4: This hybrid is equal to the random variable of the output of a random

execution of

((
A

[2δ′]
Π

)(i)

,B
[2δ′]
Π

)
.

Claim 4.5.4. SD(H0,H1) ≤ 3δ′ + 2ξ.

Proof. Now let v(u) = val
((

A
(i,δ′,ξ,state)
Π ,B

)
u

)
and ṽ(u) = val

((
A

(i,δ′,2ξ)

Π̃
, B̃
)
u

)
.

The proof of the claim follows by giving an upper bound on v(u) − ṽ(u) for any

node u ∈ E .

u ∈ E ∩ S̃mall
2δ′,Ẽst

Π : By Algorithm 4.5.1, it holds that v(u) = E[ ˜HonCont(u)m].8

Since u /∈ Failξ, ˜HonCont, it follows that |v(u)− val(Πu)| ≤ ξ.

By Definition 4.4.5, it holds that ṽ(u) = E[ ˜HonCont(u)m]. It again follows

that |ṽ(u)− val(Πu)| ≤ ξ, and the proof follows.

u ∈ E ∩ L̃arge
2δ′,Ẽst

Π : Since u /∈ FailẼst, if holds that val(Πu) ≥ 1 − 3δ′, and thus

v(u) ≥ 1− 3δ′ − ξ. The proof follows since ṽ(u) ≤ 1.

u ∈ L(Π): It holds that v(u) = ṽ(u) = χΠ(u).

2

Claim 4.5.5. SD(H1,H2) ≤ m · ξ.

Proof. By the definition of ˜HonCont and since H0,H1 only differ in nodes outside

Fail, specifically outside Failξ, ˜HonCont and the fact that there are at most m rounds

we conclude that the statistical difference is at most m · ξ. 2

8in case A controls u this is immediate. In case A controls u, note that in the first time it
is A’s turn it makes the same call to the inverter. Since the random coins of the parties are in
product distribution, the outcome is a valid transcript.
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Claim 4.5.6.

SD(H2,H3) ≤ 2 · φBal(neighΠ(2δ′, 2ξ) + 7 ·m · ξ, 2δ′,γ)

+ 2 · φIt(m, neighΠ(2δ′, 2ξ) + 4 ·m · ξ, 2ξ, δ′,γ).

Proof. These two hybrids only differ when the protocol reaches a node u ∈ Fail.

Therefore the statistical distance is bounded by

Pr〈
A

(i,δ′,2ξ)
Π̃

,B̃
〉 [desc(Fail)] ≤ Pr〈

A
(i,δ′,2ξ)
Π̃

,B̃
〉 [desc(Failξ, ˜HonCont)

]
+Pr〈

A
(i,δ′,2ξ)
Π̃

,B̃
〉 [desc(FailẼst \ desc

(
Failξ, ˜HonCont

))]
. The claim will follow from

the next claim.

Claim 4.5.7. Let F be a frontier. Assume that Pr〈A,B〉 [desc (F)] ≤ α and that

F ∩ desc
(
Failξ, ˜HonCont

)
= ∅, then it holds that

Pr〈
A

(i,δ′,2ξ)
Π̃

,B̃
〉 [desc (F)] ≤ φBal(α + neighΠ(2δ′, 2ξ) + 5 ·m · ξ, 2δ′,γ)

+ φIt(m, neighΠ(2δ′, 2ξ) + 4 ·m · ξ, 2ξ, δ′,γ).

Proof. Let HO a process that emulates random execution of
(
A

[2δ′,Ẽst,O]
Π ,B

[2δ′,Ẽst,O]
Π

)
,

halts when reaching a node in F ∪ Failξ, ˜HonCont or when the execution ends and

outputs the transcript of the execution. Note that

Pr〈A,B〉 [desc (F)] [resp., Pr〈Ã,B̃〉 [desc (F)]] is equal to the probability that HHonCont

[resp., H
˜HonCont] outputs a transcript in F , as by assumption F∩desc

(
Failξ, ˜HonCont

)
=

∅. Observing that H makes at most m oracles queries and none of them is in

Failξ, ˜HonCont, together with the fact that ˜HonCont is a ξ-honest continuator of Π as

shown in Claim 4.6.3 and a standard hybrid argument yield that

SD
(
HHonCont,H

˜HonCont
)
≤ m · ξ (4.11)

It follows that Pr〈Ã,B̃〉 [desc (F)] ≤ α+m ·ξ. In order to ease notation, let (C,D) =(
A

[2δ′]
Π ,B

[2δ′]
Π

)
. Since we assume that Ẽst is 2ξ-estimator for Π, Lemma 4.4.7 yields
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that

Pr〈C,D〉 [desc (F)] ≤ α +m · ξ + neighΠ(2δ′, 2ξ) + 2ξ + 2 ·m · ξ (4.12)

= α + neighΠ(2δ′, 2ξ) + 5 ·m · ξ.

Applying Proposition 4.3.3(2) with respect to (C,D)

Pr〈C(i),D〉 [desc (F)] ≤ φBal(α + neighΠ(2δ′, 2ξ) + 5 ·m · ξ, 2δ′,γ). (4.13)

Applying Lemma 4.4.11 with respect to Π1 =
(
Ã, B̃

)
and Π2 = (C,D), yields that

Pr〈
A

(i,δ′,2ξ)
Π̃

,B̃
〉 [desc (F)] ≤ φBal(α + neighΠ(2δ′, 2ξ) + 5 ·m · ξ, 2δ′,γ)

+ φIt(m, neighΠ(2δ′, 2ξ) + 4 ·m · ξ, 2ξ, δ′,γ).

2

However, notice that by definition Pr〈
A

(i,δ′,2ξ)
Π̃

,B̃
〉 [desc(Failξ, ˜HonCont

)]
≤ ξ and

Pr〈
A

(i,δ′,2ξ)
Π̃

,B̃
〉 [desc(FailẼst \ desc

(
Failξ, ˜HonCont

))]
≤ Pr〈

A
(i,δ′,2ξ)
Π̃

,B̃
〉 [desc(FailẼst

)]
≤

2 · ξ. Moreover, notice that by definition neither of these two sets intersects with

desc
(
Failξ, ˜HonCont

)
and applying the above claim the proof follows. 2

Claim 4.5.8. SD(H3,H4) ≤ φIt(m, neighΠ(2δ′, 2ξ) + 4 ·m · ξ, 2ξ, δ′,γ)

Proof. This is straightforward from Lemmas 4.4.7 and 4.4.11. 2

Putting everything together we derive

SD(H0,H4) ≤ 3δ′ + (3 +m) · ξ

+ 2 · φBal(neighΠ(2δ′, 2ξ) + 7 ·m · ξ, 2δ′,γ)

+ 3 · φIt(m, neighΠ(2δ′, 2ξ) + 4 ·m · ξ, 2ξ, δ′,γ),
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and the lemma follows, by noticing that both φBal(neighΠ(2δ′, 2ξ) + 7 ·m · ξ, 2δ′,γ)

and φIt(m, neighΠ(2δ′, 2ξ) + 4 ·m · ξ, 2ξ, δ′,γ) are at most φIt(m, neighΠ(2δ′, 2ξ) +

7 ·m · ξ, 2ξ, δ′,γ). 2

4.6 Main Theorem - Constructing the Efficient

Attacker

Definition 4.6.1 (Protocol inverter). Algorithm Ĩnv is a ξ-inverter for Π if

Pr`←〈Π〉[∃i ∈ [m] : SD
(

trans (A(`1,...,i; rA),B(`1,...,i; rB))(rA,rB)←Ĩnv(`1...,i)
,HonCont(`1,...,i)

)
>

ξ] ≤ ξ. where HonCont is as in Definition 4.4.2.9

Reductions

We give some simple reduction between the previously defined tools and a Protocol

Inverter.

From inversion to honest continuation

Algorithm 4.6.2 ( ˜HonCont
Ĩnv

(A,B)).

Oracle: algorithm Ĩnv whose domain is in {0, 1}∗.

Input: transcript u ∈ {0, 1}∗.

Operation:

1. Set (rA, rB)← Ĩnv(u).

2. Return (trans(A(rA),B(rB))(u))|u|+1,...,m.

9Recall that A(u; r) is an execution of A on input u with randomness r and trans is the
transcript as defined in Section 2.2.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.6.3. Assume that Ĩnv is ξ-inverter for Π. Then ˜HonCont of Algorithm 4.6.2

is ξ-honest continuator for Π.

Proof. Immediately follows definition. 2

From honest continuation to estimation

Algorithm 4.6.4 (Ẽst
(ξ,O)

).

Parameters: ξ ∈ [0, 1].

Input: transcript u ∈ {0, 1}∗.

Oracle: algorithm O returning values in {0, 1}m−|u|−1.

Operation:

1. Set sum = 0 and s =

⌈
ln
(

2m+2

ξ

)
2·ξ2

⌉
.

2. For i = 1 to s:

a) Let b be the last bit of O(u).

b) sum = sum+ b.

3. Return sum/s.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.6.5. Let Π be an m-round protocol and let α, ξ ∈ (0, 1). Assume that

˜HonCont is a α-honest continuator for Π, then Ẽst
(ξ, ˜HonCont)

is (α + ξ)-estimator

for Π making

⌈
ln
(

2m+2

ξ

)
2·ξ2

⌉
calls to ˜HonCont.
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Proof. Immediately follows from the fact that ˜HonCont is a α-honest continuator

for Π and Claim 4.6.6. 2

Claim 4.6.6. Let Π be an m-round protocol, let α, ξ ∈ (0, 1) and let ˜HonCont be an

algorithm. Then for any u ∈ V(Π) it holds that Pr
[∣∣∣Ẽst(u)− ˜HonCont(Πu)

∣∣∣ > ξ
]
≤

ξ/2m+1.

In order to prove Claim 4.6.6, we use the following fact derived from Hoeffding’s

bound.

Fact 4.6.7 (sampling). Let X1, . . . , Xm ∈ [0, 1] be independent and identically

distributed boolean random variables and let µ = E[Xi]. If m ≥ ln( 2
δ )

2·ε2 , then

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε

]
≤ δ.

Proof of Claim 4.6.6. Fix some u ∈ V(Π), let µ = Pr

[
˜HonCont(u)∣∣∣ ˜HonCont(u)

∣∣∣ = 1

]
and let µ̃ = Ẽst

(ξ, ˜HonCont)
(u). Plugging ε = ξ and δ = ξ/2m+1 in Fact 4.6.7 now

yields that

Pr [|µ̃− µ| > ξ] ≤ ξ

2m+1

2

From honest continuation to biased continuation

Algorithm 4.6.8 ( ˜BiasedCont
(δ,ξ,O)

).

Input: transcript u ∈ {0, 1}∗ and bit b ∈ {0, 1}.

Oracle: algorithm O returning values in {0, 1}m−|u|−1.
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Operation:

1. For i = 1 to
⌈

log ξ
log(1−δ)

⌉
:

a) Let s be the last bit of O(u).

b) If s = b return O(u).

2. Return ⊥.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.6.9. Let Π be an m-round protocol and let ξ, δ ∈ (0, 1). Assume that

˜HonCont is a α-honest continuator for Π, then ˜BiasedCont
(δ,ξ, ˜HonCont)

is a ((t+ 2) ·

α + ξ, δ)-biased continuator for Π, where t =
⌈

log ξ
log(1−δ)

⌉
.

Proof. We prove for the case that the second input of the algorithm is 1 (i.e., the

algorithm is trying to find a continuation of the protocol that ends with 1), where

the proof for the case that the second input of the algorithm is 0 is analogous.

Fix u ∈ V(Π) with val(Πu) ≥ δ and let HonCont be as in Definition 4.4.2. It

is not difficult to verify that SD

(
˜BiasedCont

(δ,ξ,HonCont)

(u, 1),BiasedCont(u, 1)

)
≤

Pr

[
˜BiasedCont

(δ,ξ,HonCont)

(u, 1) =⊥
]

Moreover, it holds that

Pr

[
˜BiasedCont

(δ,ξ,HonCont)

(u, 1) =⊥
]

=
(
Pr
[
HonCont(u)|HonCont(u)| = 0

])t
≤ (1− δ)t

≤ ξ,

where the last inequality follows the choice of t.
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Assume in addition that SD
(
HonCont(u), ˜HonCont(u)

)
≤ α. A standard hy-

brid argument shows that

SD

(
˜BiasedCont

(δ,ξHonCont)

(u, 1), ˜BiasedCont
(δ,ξ ˜HonCont)

(u, 1)

)
≤ (t+ 1) · α

According to Definition 4.2.1 it holds that

Pr`←〈Π〉

[
∃i ∈ [m] : SD

(
˜HonCont(`1,...,i),HonCont(`1,...,i)

)
> α

]
≤ α, and the proof

follows. 2

Honest Continuation for Stateless Protocols

For stateless protocols (i.e., the parties maintain no state), providing (perfect)

honest continuation is immediate.

Algorithm 4.6.10 ( ˜HonContΠ).

Parameters: protocol Π = (A,B).

Input: transcript u ∈ {0, 1}∗.

Operation:

1. Choose uniformly at random coins rA and rB for the parties A and B respec-

tively.

2. Return (trans(A(rA),B(rB))(u))|u|+1,...,m.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.6.11. Assume that Π is stateless, then ˜HonContΠ of Algorithm 4.6.10 is

0-honest continuator for Π.

Proof. Immediate. 2
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Main Theorem

We are finally ready to state and prove our main result – the existence of any

constant bias coin-flipping protocol implies the existence of one-way functions.

Theorem 4.6.12 (main theorem, restatement of Theorem 1.1.1). Assume one-

way functions do not exist. Then for any PPT coin-flipping protocol Π = (A,B)

and ε > 0, there exist PPTM’s A and B such that the following holds for infinitely

many n’s.

1. (A(1),B) ≥ 1− ε or (A,B(0)) ≤ ε, and

2. (A(0),B) ≤ ε or (A,B(1)) ≥ 1− ε.

Proof. Let m(n) = round((A,B)(1n)), and let ρA(n) and ρB(n) respectively, be the

(maximal) number of random bits used by A and B on common input 1n. By

the assumption that Π is probabilistic polynomial time protocol, it follows that

m(n) ∈ poly(n). Consider the function fΠ over 1∗×{0, 1}ρA(n)×{0, 1}ρB(n)×[m(n)],

defined by

fΠ(1n, rA, rB, i) = 1n, trans((A(rA),B(rB))(1n))1,...,i (4.14)

In the following we remove Π from the subscript of fΠ and let Ĩnvf be the ξ-inverter

of f for some ξ = 1/ poly(n) to be determined by the analysis and for every n within

an infinite size index set I ⊆ N, guaranteed to exists by Lemma 2.4.4.

In the rest of the proof we focus on proving the first case of the theorem, where

the second can be proven symmetrically. Let Πn be the variant of the protocol Π

when the parties are given the security parameter 1n. Set δ = ε/12 and for every

n ∈ I ′, let δ′n ∈ [δ/2, δ] be such that
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neighΠn(2δ′n, 2ξ(n)) ≤ m(n) ·
√

2ξ(n), guaranteed to exist from Proposition 4.4.9.

Let κ such that val

((
A

[2δ′n,1−2δ′n]
Πn

)(κ)

,B
[2δ′n,1−2δ′n]
Πn

)
> 1− ε/2 or

val

(
A

[2δ′n,1−2δ′n]
Πn

,
(
B

[2δ′n,1−2δ′n]
Πn

)(κ)
)
< ε/2, guaranteed to exist for every n ∈ I from

Theorem 3.1.3. Assume without loss of generality that there exists an infinite set

I ′ ⊆ I such that

val

((
A

[2δ′n,1−2δ′n]
Πn

)(κ)

,B
[2δ′n,1−2δ′n]
Πn

)
> 1− ε/2 (4.15)

for every n ∈ I ′. Let c = c(δ/2) from Lemma 4.3.1. Note that the bound attained

by Lemma 4.3.1 holds for any δ′ ≥ δ as well. Let γ = (γ1, . . . , γκ) be such that

γi ∈ poly(n), to be determined by the analysis, and let γn = (γ1(n), . . . , γκ(n)).

We recall that κ ∈ N is constant depending only on ε from Theorem 3.1.3, and

not a function of n.

The settings of parameters above guarantee that the term in ?? is in o(1).

Applying Lemma 4.5.2 yields that

val
(
A

(κ,δ′n,ξ(n),Ĩnvf (n))
Πn

,BΠn

)
≥ val

((
A

[2δ′n,1−2δ′n]
Πn

)(i)

,B
[2δ′n,1−2δ′n]
Πn

)
− 3δ′ − o(1)

(4.16)

≥ 1− ε

2
− ε

4
− o(1),

where Ĩnvf (n) is the variant of Ĩnvf when restricted to inputs starting with 1n.

Our final adversary A′(1), on input 1n, checks all possible candidates for δ′n from

Proposition 4.4.9, estimate the value of
(
A

(κ,δ′n,ξ(n),Ĩnvf (n))
Πn

,BΠn

)
by running the

latter for polynomial many times (this will only add exponentially small additive

error) and find δ′n such that

val
(
A

(κ,δ′n,ξ(n),state)
Πn

,BΠn

)
≥ 1− ε− o(1), (4.17)
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for any n ∈ I ′. The last step is to argue about the running time of A(1). By the

setting of parameters above, the facts that κ is constant (i.e., independent of n)

and that TĨnvf (n) ∈ poly(n), by Proposition 4.5.3 it holds that T
δ′n,ξ(n),Ĩnvf (n)

final (κ) ∈

poly(n). Since there are only poly(n) possibilities for setting δ′n, it follows that the

running time of A(1) is also is poly(n). 2
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Appendix A

Missing Proofs

A.1 Proving Lemma 2.5.1

Lemma A.1.1 (Restatement of Lemma 2.5.1). Let x, y ∈ [0, 1] and a1, . . . , ak, b1, . . . , bk ∈

(0, 1]. Then for any p0, p1 ≥ 0 with p0 + p1 = 1, it holds that

p0 ·
xk+1∏k
i=1 ai

+ p1 ·
yk+1∏k
i=1 bi

≥ (p0x+ p1y)k+1∏k
i=1(p0ai + p1bi)

. (A.1)

Proof. The lemma easily follows if one of the following holds: (1) p0 = 1, p1 = 0;

(2) p0 = 0, p1 = 1; and (3) x = y = 0. Assuming 1 > p0, p1 > 0 and x + y > 0,

dividing Equation (A.1) by its right hand side (which is always positive) gives

p0 ·

(
x

(p0x+p1y)

)k+1

∏k
i=1

ai
p0ai+p1bi

+ p1 ·

(
y

(p0x+p1y)

)k+1

∏k
i=1

bi
p0ai+p1bi

≥ 1. (A.2)

Define the following variable changes.

z =
p0x

p0x+ p1y
ci =

p0ai
p0ai + p1bi

for 1 ≤ i ≤ k.

It follows that

1− z =
p1y

p0x+ p1y
1− ci =

p1bi
p0ai + p1bi

for 1 ≤ i ≤ k.
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Note that 0 ≤ z ≤ 1 and that 0 < ci < 1 for every 1 ≤ i ≤ k. Plugging the above

into Equation (A.2), it remains to show that

zk+1∏k
i=1 ci

+
(1− z)k+1∏k
i=1(1− ci)

≥ 1 (A.3)

for all 0 ≤ z ≤ 1 and 0 < ci < 1. Equation (A.3) immediately follows for z = 0, 1,

and in the rest of the proof we show that it also holds for z ∈ (0, 1). Define

f(z, c1, . . . , ck) := zk+1∏k
i=1 ci

+ (1−z)k+1∏k
i=1(1−ci)

− 1. Equation (A.3) follows by showing that

f(z, c1, . . . , ck) ≥ 0 for all z ∈ (0, 1) and 0 < ci < 1. Taking the partial derivative

with respect to ci for 1 ≤ i ≤ k, it holds that

∂

∂ci
f = − zk+1

c2
i

∏
1≤j≤k
j 6=i

cj
+

(1− z)k+1

(1− ci)2
∏

1≤j≤k
j 6=i

(1− cj)
.

Fixed 0 ≤ z ≤ 1, and let fz(c1, . . . , ck) = f(z, c1, . . . , ck). If c1 = . . . = ck = z,

then for every 1 ≤ i ≤ k it holds that ∂
∂ci
fz(c1, . . . , ck) = ∂

∂ci
f(z, c1, . . . , ck) = 0.

Hence, fz has a local extremum at (c1, . . . , ck) = (z, . . . , z). Taking the second

partial derivative with respect to ci for 1 ≤ i ≤ k, it holds that

∂2

∂ci
f =

2zk+1

c3
i

∏
1≤j≤k
j 6=i

cj
+

2(1− z)k+1

(1− ci)3
∏

1≤j≤k
j 6=i

(1− cj)
> 0,

and thus, (c1, . . . , ck) = (z, . . . , z) is a local minimum of fz.

The next step is to show that (c1, . . . , ck) = (z, . . . , z) is a global minimum

of fz. This is done by showing that fz is convex when 0 < ci < 1. Indeed,

consider the function − ln(x). This is a convex function in for 0 < x < 1. Thus

the function
∑k

i=1− ln(ci), which is a sum of convex functions, is also convex.

Moreover, consider the function ex. This is a convex function for any x. Hence,

the function e
∑k
i=1− ln(ci) = 1∏k

i=1 ci
, which is a composition of two convex functions,

is also convex for 0 < ci < 1. Since z is fixed, the function zk+1∏k
i=1 ci

is also convex.
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Similar argument shows that (1−z)k+1∏k
i=1(1−ci)

is also convex for 0 < ci < 1. This yields

that fz, which is a sum of two convex functions, is convex. It is known that a

local minimum of a convex function is also a global minimum for that function [?

, Therorem A, Chapter V], and thus (z, . . . , z) is a global minimum of fz.

Let z′, c′1, . . . , c
′
k ∈ (0, 1). Since (z′, . . . , z′) is a global minimum of fz′ , it

holds that f(z′, z′, . . . , z′) = fz′(z
′, . . . , z′) ≤ fz′(c

′
1, . . . , c

′
k) = f(z′, c′1, . . . , c

′
k). But

f(z′, z′, . . . , z′) = 0, and thus f(z′, c′1, . . . , c
′
k) ≥ 0. This shows that Equation (A.3)

holds, and the proof is concluded. 2

A.2 Proving Lemma 2.5.2

Lemma A.2.1 (Restatement of Lemma 2.5.2). For every δ ∈ (0, 1
2
], there exists

α = α(δ) ∈ (0, 1] such that for every x ≥ δ

λ · a1+α
1 · (2− a1 · x) + a1+α

2 · (2− a2 · x) ≤ (1 + λ) · (2− x) (A.4)

for every λ, y ≥ 0 with λy ≤ 1, where a1 = 1 + y and a2 = 1− λy.

Proof. Fix δ ∈ (0, 1
2
]. Rearranging the terms of Equation (A.4), one can equiva-

lently prove that for some α ∈ (0, 1], it holds that

x · (1 + λ− λ · (1 + y)2+α − (1− λy)2+α) (A.5)

≤ 2 · (1 + λ− λ · (1 + y)1+α − (1− λy)1+α) (A.6)

for all x, λ and y in the proper range. Note that the above trivially holds, regardless

of the choice of α ∈ (0, 1], in case λy = 0 (both sides of the inequality are 0). In

the following we show that for the cases λy = 1 and λy ∈ (0, 1), Equation (A.5)

holds for any small enough choice of α. Hence, the proof follows by taking the

small enough α for which the above cases holds simultaneously.
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λy = 1: Let z = 1
λ

+ 1 = y + 1 > 1. Plugging in Equation (A.5), we need to find

αh ∈ (0, 1] for which it holds that

x ·
(

1 +
1

z − 1
− z2+α

z − 1

)
≤ 2 ·

(
1 +

1

z − 1
− z1+α

z − 1

)
(A.7)

for for all z > 1 and α ∈ (0, αh). Equivalently, by multiplying both sides by

z−1
z

– which, since z > 1, is always positive – it suffices to find αh ∈ (0, 1] for

which it holds that

x · (1− z1+α) ≤ 2 · (1− zα) (A.8)

for all z > 1 and α ∈ (0, αh).

Since 1 − z1+α < 0 for all α ≥ 0 and z > 1, and letting hα(z) := zα−1
z1+α−1

,

proving Equation (A.8) is equivalent to finding αh ∈ (0, 1] such that

δ ≥ sup
z>1
{2 · hα(z)} = 2 · sup

z>1
{hα(z)} (A.9)

for all z > 1 and α ∈ (0, αh).

Consider the function

h(w) := sup
z>1
{hw(z)} , (A.10)

Claim A.2.2 states that limw→0+ h(w) = 0 (i.e., h(w) approaches 0 when w

approaches 0 from the positive side), and hence 2 · limw→0+ h(w) = 0. The

proof of Equation (A.9), and thus the proof of this part, follows since there

is now small enough αh < 1 for which x ≥ 2 · h(α) for every α ∈ (0, αh] and

x ≥ δ.

λy ∈ (0, 1): Consider the function

g(α, λ, y) := 1 + λ− λ · (1 + y)2+α − (1− λy)2+α (A.11)

130



Claim A.2.3 states that for α ≥ 0, the function g is negative over the given

range of λ and y. This allows us to complete the proof by finding α ∈ (0, 1]

for which

δ ≥ 2 · sup
λ,y>0,λy<1

{
fα(λ, y) :=

1 + λ− λ · (1 + y)1+α − (1− λy)1+α

1 + λ− λ · (1 + y)2+α − (1− λy)2+α

}
(A.12)

Consider the function

f(w) := sup
λ,y>0,λy<1

{fw(λ, y)} , (A.13)

Claim A.2.4 states that limw→0+ h(w) = 0, and hence (1+δ)·limw→0+ h(w) =

0. The proof of Equation (A.12), and thus the proof of this part, follows since

there is now small enough αf < 1 for which x ≥ 2 ·h(α) for every α ∈ (0, αf ]

and x ≥ δ.

By setting αmin = min {αh, αf}, it follows that x ≥ h(α), f(α) for any α ∈ (0, αmin)

and x ≥ δ, concluding the the proof of the claim. 2

Claim A.2.2. limw→0+ h(w) = 0.

Proof. Simple calculations show that for fixed w, the function hw(z) is decreasing

in the interval (1,∞). Indeed, fix some w > 0, and consider the derivative of hw

h′w(z) =
wzw−1(z1+w − 1)− (1 + w)zw(zw − 1)

(z1+w − 1)2
(A.14)

=
−zw−1(z1+w − (1 + w)z + w)

(z1+w − 1)2

Let p(z) := z1+w − (1 + w)z + w. Taking the derivative of p and equaling it to 0,

we have that

p′(z) = (1 + w)zw − (1 + w) = 0 (A.15)

⇐⇒ z = 1
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Since p′′(1) = (1 + w)w > 0 for all w > 0, it holds that z = 1 is the minimum of

p in [1,∞). Since p(1) = 0, it holds that p(a) > 0 for every a ∈ (1,∞). Thus,

h′w(z) < 0, and hw(z) is decreasing in the interval (1,∞). The latter fact yields

that

lim
w→0+

h(w) = lim
w→0+

sup
z>1

hw(z)

= lim
w→0+

lim
z→1+

zw − 1

z1+w − 1

= lim
w→0+

lim
z→1+

wzw−1

(1 + w)zw

= lim
w→0+

w

1 + w

= 0,

where the third equality holds by L’Hôpital’s rule. 2

Claim A.2.3. For all α ≥ 0 and λ, y > 0 with λy < 1, it holds that g(α, λ, y) < 0.

Proof. Fix λ, y > 0 with λy ≤ 1 and let f(x) := g(x, λ, y). We first prove that f

is strictly decreasing in the range [0,∞), and then show that f(0) < 0. Yielding

that g(α, λ, y) < 0 for the given range of parameters. Taking the derivative of f ,

we have that

f ′(x) = −λ · (1 + y)2+x · ln(1 + y) + (1− λy)2+x · ln(1− λy), (A.16)

and since ln(1−λy) < 0, it holds that f ′ is a negative function. Hence, f is strictly

decreasing, and takes its (unique) maximum over [0,∞) at 0. We conclude the

proof noting that f(0) = −λ · y2 · (1 + λ) < 0. 2

Claim A.2.4. limw→0+ f(w) = 0.
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Proof. Assume towards a contradiction that the claim does not holds. It follows

that there exist ε > 0 and an infinite sequence {wi}i∈N such that limi→∞wi = 0

and f(wi) ≥ ε for every i ∈ N. Hence, there exists an infinite sequence of pairs

{(λi, yi)}i∈N, such that for every i ∈ N it holds that f(wi) = fwi(λi, yi) ≥ ε,

λi, yi > 0 and λiyi ≤ 1.

In case {λi}i∈N is not bounded from above, we focus on a subsequence of

{(λi, yi)} in which λi converges to ∞, and let λ∗ = ∞. Similarly, in case {yi}i∈N
is not bounded from above, we focus on a subsequence of {(λi, yi)} in which yi

converges to∞, and let y∗ =∞. Otherwise, by the Bolzano-Weierstrass Theorem,

there exists a subsequence of {(λi, yi)} in which both λi and yi converge to some

real values. We let λ∗ and y∗ be these values.

The rest of the proof splits according to the values of λ∗ and y∗. In each case

we focus on the subsequence of {(wi, λi, yi)} that converges to (0, λ∗, y∗), and show

that limi→∞ fwi(λi, yi) = 0, in contradiction to the above assumption.

y∗ =∞: First note that the assumption y∗ = ∞ and the fact that λiyi ≤ 1 for

every i, yield that λ∗ = 0.

For c ∈ [0, 1), the Taylor’s expansion with Lagrange remainder over the interval

[0, c] yields that

(1− c)t = 1− tc+
t(t− 1)(1− s)t−2

2
c2 (A.17)

for some s ∈ (0, c). Consider the function

g(t, λ, y) := 1 + λ− λ · (1 + y)t − (1− λy)t (A.18)
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Equation (A.17) yields that

g(t, λi, yi) = 1 + λi − λi · (1 + yi)
t −
(

1− tλiyi +
t(t− 1)(1− si)t−2

2
λ2
i y

2
i

)
(A.19)

= λi

(
1− (1 + yi)

t + ty − t(t− 1)(1− si)t−2

2
λiy

2
i

)

for every index i and some si ∈ (0, λiyi). We conclude that

lim
i→∞

fwi(λi, yi) = lim
i→∞

g(1 + wi, λi, yi)

g(2 + wi, λi, yi)

= lim
i→∞

1− (1 + yi)
1+wi + (1 + wi)yi − (1+wi)wi(1−si)wi−1

2
λiy

2
i

1− (1 + yi)2+wi + (2 + wi)yi − (2+wi)(1+wi)(1−si)wi
2

λiy2
i

= lim
i→∞

1
(1+yi)2+wi

− (1+yi)
1+wi

(1+yi)2+wi
+ (1+wi)yi

(1+yi)2+wi
− (1+wi)wi(1−si)wi−1λiy

2
i

2(1+yi)2+wi

1
(1+yi)2+wi

− 1 + (2+wi)yi
(1+yi)2+wi

− (2+wi)(1+wi)(1−si)wiλiy2
i

2(1+yi)2+wi

= 0.

λ∗ =∞: Note that the assumption λ∗ =∞ yields that y∗ = 0. For c ∈ [0, 1), the

Taylor’s expansion with Lagrange remainder over the interval [0, c] yields that

that

(1− c)t = 1− tc+
t(t− 1)

2
c2 − t(t− 1)(t− 2)(1− s)t−3

6
c3, (A.20)

for some s ∈ (0, c), and

(1 + c)t = 1 + tc+
t(t− 1)

2
c2 +

t(t− 1)(t− 2)(1 + s′)t−3

6
c3, (A.21)

for some s′ ∈ (0, c).

134



Applying Equations (A.20) and (A.21) for the function g of Equation (A.18),

yields that

g(t, λi, yi) (A.22)

= g̃(t, λi, yi, si, s
′
i)

:= 1 + λi − λi
(

1 + ty +
t(t− 1)

2
y2
i +

t(t− 1)(t− 2)(1 + s′i)
t−3

6
y3
i

)
−
(

1− tλiyi +
t(t− 1)

2
λ2
i y

2
i +

t(t− 1)(t− 2)(1− si)t−3

6
λ3
i y

3
i

)
= −λ

2
i y

2
i

6
(
3t(t− 1)

λi
+
t(t− 1)(t− 2)(1 + s′i)

t−3yi
λi

(A.23)

+ 3t(t− 1) + t(t− 1)(t− 2)(1− si)t−3λiyi)

for large enough index i and some si ∈ (0, λiyi) and s′i ∈ (0, yi). We conclude that

lim
i→∞

fwi(λi, yi)

= lim
i→∞

g(1 + wi, λi, yi)

g(2 + wi, λi, yi)

= lim
i→∞

g̃(1 + wi, λi, yi, si, s
′
i)

g̃(2 + wi, λi, yi, si, s′i)

= 0,

where the before to last equality holds since λiyi ≤ 1 for every i, and hence the

last term of the numerator and denominator goes to 0 when i→∞.

λ∗, y∗ > 0: It holds that

lim
i→∞

fwi(λi, yi) = lim
i→∞

1 + λi − λi · (1 + yi)
1+wi − (1− λiyi)1+wi

1 + λi − λi · (1 + yi)2+wi − (1− λiyi)2+wi

=
1 + λ∗ − λ∗(1 + y∗)− (1− λ∗y∗)

1 + λ∗ − λ∗(1 + y∗)2 − (1− λ∗y∗)2

= 0.
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λ∗ = 0 and y∗ > 0: Equations (A.17) and (A.19) yields that

lim
i→∞

fwi(λi, yi) = lim
i→∞

1− (1 + yi)
1+wi + (1 + wi)yi − (1+wi)wi(1−si)wi−1

2
λiy

2
i

1− (1 + yi)2+wi + (2 + wi)yi − (2+wi)(1+wi)(1−si)wi
2

λiy2
i

=
1− (1 + y∗) + y∗

1− (1 + y∗)2 + 2y∗

= 0.

y∗ = 0: Rearranging Equation (A.22) yields that the following holds for large

enough index i.

g(t, λi, yi) (A.24)

= g̃(t, λi, yi, si, s
′
i)

= −λiy
2
i

6
(3t(t− 1) + t(t− 1)(t− 2)(1 + s′i)

t−3yi + 3t(t− 1)λi (A.25)

+ t(t− 1)(t− 2)(1− si)t−3λ2
i yi)

for some si ∈ (0, λiyi) and si ∈ (0, yi). Giving this formulation it is easy to see

that

lim
i→∞

fwi(λi, yi) = lim
i→∞

g̃(1 + wi, λi, yi, si, s
′
i)

g̃(2 + wi, λi, yi, si, s′i)

=
0

6 + 6λ∗

= 0.

The above holds since every term in numerator goes to 0 and the terms 3(2 +

wi)(1 + wi) in the denominator goes to 6.

This conclude the case analysis, and thus the proof of the claim. 2
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