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ABSTRACT 

 

 

In recent years, the increase in the amounts of available genomic as well 

as gene expression data has provided researchers with the necessary 

information to train and test various models of gene origin, evolution, 

function and regulation. In this thesis, we present novel solutions to key 

problems in computational biology that deal with nucleotide sequences 

(horizontal gene transfer detection), amino-acid sequences (protein sub-

cellular localization prediction), and gene expression data (transcription 

factor - binding site pair discovery). Different pattern discovery 

techniques are utilized, such as maximal sequence motif discovery and 

maximal itemset discovery, and combined with support vector machines 

in order to achieve significant improvements against previously proposed 

methods.  
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1 Introduction 

 

 

There is an enormous variety in the kind of data involved in 

biology and their mathematical representations can range from the 

simplest, e.g. scalar values, to the most complex, e.g. graphs. 

Commonly used representations are listed below: 

• vectors (gene expression, features) 

• sequences (DNA, RNA, protein sequences) 

• sets (protein families) 

• trees (phylogenetic trees) 

• graphs (regulatory networks, pathways) 

Given the complexity of biological processes, and therefore the 

complexity of the mathematical models used to describe these 

processes as well as the possibility that the latter may involve any 

combination of the kind of data mentioned above, both in terms of input 

and in terms of output, it is obvious that rigorous probabilistic and 

computational learning methods are required to combine all this diverse 

data and help infer biologically meaningful predictions. In this thesis, we 
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apply pattern discovery and machine learning techniques to three distinct 

problems: horizontal gene transfer detection, protein sub-cellular 

localization prediction and discovery of binding site - transcription factor 

pairs.  

In chapter 2, we present an overview of fundamental pattern 

discovery and machine learning techniques that are frequently applied to 

problems in computational biology. In chapter 3, we introduce and 

discuss a novel computational method for identifying horizontal transfers 

using gene nucleotide composition. In chapter 4, we introduce a new 

pattern-based method for the prediction of a protein’s sub-cellular 

location that relies on the analysis of the corresponding amino acid 

sequence. In chapter 5, we propose a novel method for the discovery of 

candidate binding sites for transcription factors via the computation of bi-

clusters. Finally, in chapter 6, we conclude this thesis with some ideas 

about future research.   
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2 Machine learning methods in bioinformatics 

 

 

Machine learning methods for computational biology can be 

divided into three categories: 

• unsupervised pattern discovery 

• probabilistic modeling 

• large-margin learning 

In the next three sections we provide a brief overview of the 

relevant methods in each category. 

 

2.1 Unsupervised pattern discovery 

Pattern discovery is a research area that focuses on the 

development of efficient unsupervised methods for extracting 

“interesting” pieces of data given a set of objects, mainly sequences, 

although active research is being done on more complex objects, such 

as trees and graphs. Pattern discovery is widely used in problems where 

there is minimal prior knowledge about the structure of the observed 
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sequences. This minimal knowledge is usually reflected in the 

representation scheme of the sequences, which defines the alphabet of 

the patterns, and gives some hints about the language that should be 

used to describe them.  

According to Brazma et al. 1998 [1], the pattern discovery problem 

can be divided into three sub-problems:  

• choosing the appropriate language to describe patterns (mismatch 

patterns, regular expressions with restricted and unrestricted 

number of wild cards, probabilistic modeling) 

• choosing the scoring function for comparing patterns (e.g. pattern 

statistical significance) 

• designing an efficient algorithm that will be used to find the 

patterns.  

Pattern discovery methods can either be sequence driven, mostly 

based on alignments, or pattern-driven, where all patterns that occur at 

least k times are enumerated. Pattern-driven approaches can often be 

designed to run in linear time with respect to the number of output 

patterns.  

The probabilistic models usually employed to describe a pattern 

or, equivalently, a motif, are variations of Position-Specific Scoring 

Matrices (PSSMs) obtained as a summary of multiple motif alignments. 
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Different searching methods have been used resulting in different tools: 

the Gibbs Motif Sampler (Lawrence et al. 1993 [2], Neuwald et al. 1995 

[3]), based on Gibbs sampling,  MEME (Bailey and Elkan 1995 [4]), 

based on multiple runs of the Expectation Maximization algorithm, 

AlignACE (Roth et al. 1998 [5]), based on information content 

maximization, PSI-BLAST (Altschul et al. 1997 [6]), based on iterative 

refinement of initial sequence alignments, CONSENSUS (Hertz and 

Stormo 1999 [7]), and other (Rocke and Tompa 1998 [8], Wolfertstetter 

et al. 1996 [9]). 

The pattern-driven tool Teiresias1, developed by the IBM 

Bioinformatics Research Group, for the discovery of patterns in biological 

sequences, described in Rigoutsos and Floratos (1998) [10, 11], and in 

Hart et al. (2000) [12], operates in two phases: scanning and 

convolution. During the scanning phase, elementary patterns with 

sufficient occurrences are found, and during the convolution phase the 

elementary patterns are synthesized into progressively larger patterns 

until all maximal patterns are generated. A pattern is maximal if and only 

if it is not subsumed by any other pattern that has the same location list, 

                                            

1
 Named after the famous blind prophet Teiresias in ancient Greece 
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i.e. it occurs in the same set of sequences. The running time of the 

algorithm is linear with respect to the number of output patterns. 

Other approaches utilize the well-known suffix tree data structure 

(McCreight 1976 [13]; Ukkonen 1995 [14]). When sequences are 

organized into suffix trees, any query about a pattern can be answered 

by starting reading from the root of the tree without any searching and 

independent of the size of the sequence. There are many bioinformatics 

applications of suffix trees (Gusfield 1997 [15]). One of the pattern 

discovery tools based on suffix trees is Verbumculus (Lonardi 2001 [16], 

Apostolico, Bock, and Lonardi 2002 [17]). 

Xlandscape (Levy et al. 1998 [18]) was designed for on-line 

pattern queries and graphical analysis and visualization based on the 

suffix array data structure (Manber and Myers 1990 [19]). It can also 

detect repeating patterns of words, such as tandem repeats, and over-

represented words in a given database. 

Vilo (2002) [20] modified the writeonly-topdown algorithm (wotd) 

for constructing the suffix trees (Giegerich and Kurtz 1995 [21]; 

Giegerich, Kurtz, and Stoye 1999 [22]) to perform pattern discovery for 

different pattern languages (mismatch patterns, regular expressions with 

restricted and unrestricted number of wild cards) and in several distinct 
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settings (patterns that appear at least k times, sort patterns according to 

their score, find overrepresented patterns in a sample subset). 

 

2.2 Probabilistic models 

Probabilistic models that are frequently used in biology include 

Bayesian Networks (BNs) and Probabilistic Relational Models (PRMs). 

We review the basic concepts below. 

 

2.2.1 Bayesian Networks  

Bayesian networks were introduced by Pearl in 1998 [23]. A 

Bayesian Network (BN) is defined over a set of random variables 

{ }1,..., NX X X=  and provides a static model of their interdependence 

both qualitatively and quantitatively.  

Qualitatively, random variables are represented by nodes in a 

graph G and conditional dependencies between relevant random 

variables are represented by directed edges pointing from the node 

representing the independent variable to the one representing the 

dependent one. For any given variable Xi the set of the variables on 
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which it depends, i.e. its parents in the graphical representation, is 

denoted by iPa . 

Quantitatively, the probability distribution of the dependent 

variable Xi is modeled as a conditional probability distribution (CPD) 

( )| ;i i iP X Pa θ  with respect to the parent variables in set iPa , where iθ  

is the parameter vector associated with the CPD. There are several 

different types of CPDs depending on whether the relevant random 

variables are discrete or continuous. Widely used CPDs include tables 

for discrete variables, regression trees for the case where the parent 

variables are continuous and the dependent variable is discrete, softmax 

(linear threshold) functions, Gaussian when all relevant variables are 

continuous, and others.  

Given the conditional probabilities, we can compute the joint 

probability distribution using the chain rule: 

( ) ( )1 1

1

,..., ; ,..., | ;
N

N N i i i

i

P X X P X Paθ θ θ
=

= ∏  

Learning a BN model with a known structure G involves 

determining the parameters 1,..., Nθ θ  of the CPDs, given a training set D 

which comprises multiple observations over the random variables whose 
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joint probability is modeled by the BN. The main idea is to find those 

parameters that maximize the probability of the observed data given the 

model: 

( ) ( )1 1 1| ,..., ,..., ; ,...,  N N N

X D

P D P X Xθ θ θ θ
∈

= ∏  

assuming that the observed data is chosen independently. The 

maximization problem can be posed as: 

( )
( )

( )
( )

( )
1

1 1

* *
1 1 1

,..., ,...,

,..., arg max ,..., | arg max | ,..., ( ,..., )
N

N N

N N NP D P D P
θ θ θ θ

θ θ θ θ θ θ θ θ= =  

Unfortunately, only in very few practical cases is it possible to find 

a global maximum for the parameters sought, both because of the lack of 

continuity in most CPDs used in practice, and because of some of the 

random variables, the so-called hidden variables, cannot be directly 

observed, and therefore they do not belong in the training set. In 

practice, Expectation Maximization (EM) is used to compute an estimate 

of the parameters. EM begins by randomly choosing the parameters of 

the BN and it then proceeds to an iterative procedure comprising two 

steps. First, given the current estimate of the parameters, the expected 

statistics of the random variables on the training data are computed. 
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Then, for each CPD, and assuming that the expected statistics obtained 

from the previous step are the true statistics, we re-estimate its 

parameters by simply maximizing their probability. The EM procedure will 

converge (under some assumptions) to a local maximum.  

For more information about training Bayesian Networks and 

learning their structure the reader is referred to Heckerman’s tutorial [24]. 

 

2.2.2 Probabilistic Relational Models 

Although Bayesian Networks have been applied with great 

success in a wide variety of applications, including in biology, the 

availability of more data and, more importantly, its increasing specificity, 

underline the inflexibility and, ultimately, the inadequacy of Bayesian 

Networks to accurately model the complex interactions omnipresent in 

the biological domain.  

The limitations of Bayesian Networks stem from the fact that they 

lack the concept of an “object”, and therefore they cannot account for 

cases where entities modeled by several random variables (attributes) 

behave in similar, but not necessarily identical, ways. Consequently, 

some form of parameter sharing must be enabled. For example, in a 

regulatory network comprising transcription factors and motifs, each of 
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the two classes of nodes should be allowed to share common properties 

that are different for each class. Probabilistic Relational Models (PRMs) 

(Koller and Pfeffer, 1998 [25], Getoor, 2001 [26]) extend Bayesian 

Networks towards that direction.  

An RPM schema consists of fixed BN-like parent/child 

relationships embedded in a dynamic relational model, the relational 

schema, comprising the following: 

• A set of n classes of objects: C = {C1, … , Cn} 

• For each class C, a set of attributes A(C), the random variables 

that collectively describe the objects of class C 

• For each class C, a set of BN-like dependencies between the 

attributes of the class represented by a structure S(C) 

• For each class C, a set of reference slots R(C), which mark the 

dependencies of the attributes of class C on attributes of other 

classes 

From the description above, it is obvious that random variables 

can potentially have two types of parents, depending on whether the 

parent variable belongs to the same or different class.  

The fact that there is a relation (reference slot) between two 

classes does not mean that all objects in the two classes will be related. 
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The actual relations among the objects are represented by the relational 

skeleton σ, which can be conceptualized as a graph defined on the 

objects.  

General algorithms developed for training the parameters of the 

relational schema, as well as searching for the skeleton with the highest 

likelihood, can be found in Getoor (2001) [26]. The objective is always to 

maximize the a posteriori probability of the training data given the model 

parameters.  

 

2.3 Distribution-free methods 

In computational learning we are generally given a set of inputs 

nxx ,...,1 , randomly sampled from the input space X , together with their 

corresponding outputs nyy ,...,1  in the output space Y , and the learning 

task is to find a function YXf →:  which maps any Xx ∈  to a 

prediction )(ˆ xfy = . Distribution-free methods assume no prior model 

for the data, and select a model f  that minimizes the generalization 

error (loss) ( )fL , i.e. the expected error when it is applied to the entire 

input space: 
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( ) ( )∫
∈

≠=
Xx

yxfPfL )(  

This is achieved by a choice of f  that yields the maximum margin 

on the training set, where margin is a measure of how far, under a pre-

selected distance metric, the data is from being misclassified under 

model f . Boosting and Support Vector Machines are the two large-

margin training algorithms widely used in practice and we discuss them 

next. 

 

2.3.1 Boosting 

The boosting algorithm [27-29] chooses a set of weights 1,..., Tw w  

over T hypotheses, where T is the number of iterations of the algorithm, 

so that the final hypothesis, constructed from the weighted sum of the 

predictions of the individual hypotheses, minimizes a fixed loss function 

over the training data { }( , ) | 1..i iS x y i N= = . Most widely used loss 

functions are the exponential loss function: 

( ) { }
1

exp  ( ) 
N

i i

i

L f y f x
=

= −∑  
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and the log-loss function: 

( ) { }( )
1

log 1 exp  ( ) 
N

i i

i

L f y f x
=

= + −∑  

The quantity )( ii xfy  is the margin of instance ix  and it is 

positive if the prediction is correct and negative otherwise.  

In order to minimize the loss over the training set, the boosting 

algorithm goes through T boosting iterations, in each of which a 

hypothesis is chosen according to any common classifier (e.g. decision 

trees) on a weighted version of the training set. The weights are 

determined at the end of each iteration (so that they can be used in the 

next one), in such a way so that instances with small margin are given 

higher weights than instances with large margins. The goal is to give 

more weight to the instances misclassified by the hypothesis chosen in 

the current iteration, so that in the next iteration there is a higher 

probability that those instances will be correctly classified. Finally, the 

hypotheses produced in each boosting iteration are linearly combined 

(and weighted according to their performance on the data set) in order to 

compute the final hypothesis. It can be shown that if the data is 

separable, the training error approaches zero exponentially fast with the 
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number of iterations, and that the final hypothesis induced by the 

boosting algorithm minimizes the generalization error according to the 

large-margin principle.  

The initial boosting algorithm was intended to solve the binary 

classification problem. However, several extensions where introduced to 

perform more complex learning tasks, such as ranking [28], permutations 

[30], and learning a set of constraints as a generalization of multi-class 

learning [31]. 

 

2.3.2 Support Vector Machines 

Support Vector Machines (SVM) [32] finds a hyperplane that 

separates the positive from the negative instances in a fixed (pre-

selected) feature space )(⋅ψ
 
for binary classification. The separating 

hyperplane chosen by the original SVM algorithm is the one that 

maximizes the distance (margin) from the hyperplane of those instances 

closest to it. These instances are called support vectors and this is where 

the name of learning algorithm originates. In practice, data is expected to 

be noisy, and therefore a realistic model should also account for outliers, 

i.e. instances that find themselves on the “wrong side” of the hyperplane. 

In mathematical terms, the hyperplane is defined as follows:  
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 ( ) k k

k

f z w z b w z b= + = ⋅ +∑  

where z belongs in the feature space and w is a vector of real numbers. 

Given a training set { }( , ) | 1..i iS x y i N= = , where the input xi is a 

real number and its associated label yi is 1 for positive and -1 for 

negative instances, and also given a feature space )(⋅ψ , the SVM 

algorithm solves a quadratic optimization problem with a unique global 

optimum2: 

2

, ,
1

1
min   

2i

N

i
w b

i

w C
ξ

ξ
=

+ ∑  

subject to constraints ( )( ) 1i i iy x w bψ ξ< ⋅ >+ ≥ −  and 0≥iξ  for all 

i=1..N. 

The variables iξ  (one for each training instance) are non-zero 

only for the outliers, i.e. positive instances lying on the side of the 

computed hyperplane which is assigned negative predictions and 

negative instances lying on the side of the computed hyperplane which is 

                                            

2
 The optimum is unique in the case of kernel-induced feature spaces. 
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assigned positive predictions. The parameter C establishes a tradeoff 

between the total effect of outliers and the maximum achievable margin. 

In order to see that there is actually such a tradeoff, observe that the 

margin can be arbitrarily increased by simply allowing room for an 

increasing number of outliers.  

The optimization problem is solved by a transformation to its 

corresponding dual form and the solution is given in terms of the 

Lagrangian multipliers iα  of the dual problem: 

1

( ) ( ) ( )
N

i i i

i

f x y x x bα ψ ψ
=

= < ⋅ > +∑  

It is worth noting that iα  is non-zero only for support vectors and 

therefore only those instances contribute to the sum. Also, in practice, 

the dot product of the instance with each training example 

( ) ( )ix xψ ψ< ⋅ >  can be efficiently computed using special similarity 

functions called kernels, where the computation takes place in the input 

space and therefore mapping the instances to the feature space (whose 

dimensionality is much higher, sometimes infinite) is not necessary. 

Thus, if ( , )K ⋅ ⋅  is a kernel function inducing the feature space )(⋅ψ , and 
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SV S⊆  is the set of support vectors, the previous equation can be 

rewritten as: 

( ) ( , )

i

i i i

x SV

f x y K x x bα
∈

= +∑  

The final hypothesis h for binary classification is obtained by 

taking the sign of f: 

( ) sgn ( )h x f x=  

As with the boosting algorithm, several SVM extensions, including 

the introduction of new notions of margin and variations of the original 

quadratic optimization problem, have been proposed for solving a variety 

of learning problems, such as hierarchical classification [33], clustering 

[34], one-class SVM [35], and structured classification [36, 37]. In this 

thesis, one-class SVM is used for horizontal gene transfer detection 

(chapter 3) and multi-class SVM (based on all-against-all binary SVM 

classifiers) for protein sub-cellular localization prediction (chapter 4). 
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3 Horizontal Gene Transfer 

 

 

In recent years, the increase in the amounts of available genomic 

data has made it easier to appreciate the extent by which organisms 

increase their genetic diversity through horizontally transferred genetic 

material.  Such transfers have the potential to give rise to extremely 

dynamic genomes where a significant proportion of their coding DNA has 

been contributed by external sources.  Because of the impact of these 

horizontal transfers on the ecological and pathogenic character of the 

recipient organisms, methods are continuously sought that are able to 

computationally determine which of the genes of a given genome are 

products of transfer events.  In this thesis, we introduce and discuss a 

novel computational method for identifying horizontal transfers that relies 

on a gene’s nucleotide composition and obviates the need for knowledge 

of codon boundaries.  In addition to being applicable to individual genes, 

the method can be easily extended to the case of clusters of horizontally 

transferred genes.  With the help of an extensive and carefully designed 

set of experiments on 123 archaeal and bacterial genomes, we 
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demonstrate that the new method exhibits significant improvement in 

sensitivity when compared to previously published approaches.  In fact, it 

achieves an average relative improvement across genomes of between 

11% and 41% compared to the Codon Adaptation Index method in 

distinguishing native from foreign genes. Our method’s horizontal gene 

transfer predictions for 123 microbial genomes are available online at 

http://cbcsrv.watson.ibm.com/HGT/. 

 

3.1 Related work 

As early as 1944, scientists began accumulating experimental 

evidence on the ability of microbes to uptake “naked” DNA from their 

environment and incorporate it into their genome [38].  Several years 

later, in 1959, plasmids carrying antibiotic resistance genes were shown 

to spread among various bacterial species.  And as the 20th century 

came to a close, there was increased appreciation of the fact that genes 

found in mitochondria and chloroplasts are often incorporated in the 

nuclear genome of their host organism [39-41].  Nonetheless, there have 

been intense debates through the years on the possibility that the 

transfer of genetic material among different species may play a 
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significant role in evolution. This process is known as horizontal gene 

transfer (HGT), or, equivalently, lateral gene transfer (LGT).    

Before the advent of the genomics era, only a handful of 

horizontal gene transfer events were documented in the literature [42].  

And even though it had been argued that gene acquisition from foreign 

species could potentially have a great impact on evolution [43], it was not 

until after the genomic sequences of numerous prokaryotic and 

eukaryotic organisms became publicly available that the traditional tree-

based evolutionary model was seriously challenged, considering even 

the possibility of substantial gene exchange [44, 45]. In particular, it was 

first observed that some Escherichia coli genes exhibit codon 

frequencies that deviate significantly from those of the majority of its 

genes [46].  Also, the genomes of A. aeolicus and T. maritima, two 

hyperthermophilic bacteria, supported the hypothesis of a massive gene 

transfer from archaeal organisms with which they shared the same 

lifestyle [47, 48].   

Subsequent phylogenetic studies at a genomic scale have 

demonstrated that the archaeal proteins can be categorized into two 

distinct groups with bacterial and eukaryotic homologues [49-51].  

Incidentally, and in full agreement with the model of early evolution 
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whereby eukaryotes and archaea descended from a common ancestor, 

the so-called informational genes (involved in translation, transcription 

and replication) exhibit eukaryotic affinity, whereas metabolic enzymes, 

structural components and uncharacterized proteins seem to be 

homologous to bacterial genes.   

The significance of horizontal gene transfer goes beyond helping 

interpret phylogenetic incongruencies in the evolutionary history of 

genes.  In fact, there is strong evidence that pathogenic bacteria can 

develop multi-drug resistance simply by acquiring antibiotic resistance 

genes from other bacteria [52, 53].  More evidence of gene transfer as 

well as a detailed description of the underlying biological mechanisms 

can be found in [54, 55].  And in [56], the authors present a quantitative 

estimate of this phenomenon in prokaryotes and propose a classification 

comprising two distinct types of horizontal gene transfer.   

Several methods have been devised for the identification of 

horizontally acquired genes.  Traditionally, phylogenetic methods have 

been used to prove that a gene has been horizontally transferred [55].  

These methods work well when sufficient amounts of data are available 

for building trees with good support; but very frequently this is not the 

case and other approaches need to be exploited in order to identify 

horizontally-transferred genes in the genome under consideration.  
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Examples of such approaches include the unexpected ranking of 

sequence similarity among homologs where genes from a particular 

organism show the strongest similarity to a homolog from a distant taxon 

[56], gene order conservation in operons from distant taxa [57, 58], and 

atypical nucleotide composition [59]. 

 Previously published methods for horizontal gene transfer 

detection were based on gene content and operated under the 

assumption that in a given organism there exist compositional features 

that remain relatively constant across its genomic sequence.  Genes that 

display atypical nucleotide composition compared to the prevalent 

compositional features of their containing genome are likely to have been 

acquired through a horizontal process.  Consequently, over the years, a 

number of features have been proposed for defining ‘signatures’ that 

would be characteristic for a genome: any gene deviating from the 

signature can be marked as a horizontal transfer candidate.  We 

continue with a brief summary of the various signatures that have been 

discussed in the literature.   

The simplest and historically earliest type of proposed genomic 

signature is a genome’s composition in terms of the bases G and C, 

known as the genome’s G+C content [59].  It is important to note that 

due to the periodicity of the DNA code, as this periodicity is implied by 
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the organization of the coding regions into codons, the G+C content 

varies significantly as a function of the position within the codon.  As a 

result, four discrete G+C content signatures can be identified.  The first 

corresponds to the overall G+C content and is computed by considering 

all of the nucleotides in a genome.  Each of the remaining three 

signatures, denoted by G+C(k), with k=1,2,3, corresponds to the value of 

the G+C content as the latter is determined by considering only those 

nucleotides occupying the k-th position within each codon; unlike the 

G+C signature which is computed across all genomic positions, only 

coding regions are used in the computation of G+C(k). 

A related variation of the G+C(k) content idea is the so-called 

Codon Adaptation Index (CAI) which was introduced in [60].  CAI 

measures the degree of correlation between a given gene’s codon usage 

and the codon usage that is deduced by considering only highly 

expressed genes from the organism under consideration. 

In yet another variation introduced in the context of a study of the 

Escherichia coli genome, Lawrence and Ochman [61] identified atypical 

protein coding regions by simultaneously combining G+C(1) and G+C(3).  

Moreover, and for each gene in turn, they computed a ‘codon usage’ that 

assessed the degree of bias in the use of synonymous codons compared 

to what was expected from each of the three G+C(k) values.  A gene 
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was rendered atypical when its relative ‘codon usage’ - as defined above 

- differed significantly from its CAI value. 

The codon usage patterns in Escherichia coli were also 

investigated by Karlin et al in [62] who found that the codon biases 

observed in ribosomal proteins deviate the most from the biases of the 

average Escherichia coli gene.  Using this observation, they defined 

‘alien’ genes as those genes whose codon bias was high relative to the 

one observed in ribosomal proteins and also exceeded a threshold when 

compared to that of the average gene.   

Another popular genomic signature is the relative abundance of 

dinucleotides compared to single nucleotide composition.  Despite the 

fact that genomic sequences display various kinds of internal 

heterogeneity including G+C content variation, coding versus non-

coding, mobile insertion sequences, etc., they nonetheless preserve an 

approximately constant distribution of dinucleotide relative-abundance 

values, when calculated over non-overlapping 50-kb-wide windows 

covering the genome; this observation was demonstrated by Karlin et al 

in [63, 64].  But more importantly, the dinucleotide relative-abundance 

values of different sequence samples of DNA from the same or from 

closely related organisms are generally much more similar to each other 

than they are to sequence samples from other organisms.  In related 
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work, Karlin and co-workers introduced the ‘codon signature,’ which was 

defined as the dinucleotide relative abundances at the distinct codon 

positions 1-2, 2-3 and 3-4 (4 = 1 of the next codon) [65]: for large 

collections of genes (50 or more), they showed that this codon signature 

is essentially invariant, in a manner analogous to the genome signature.  

A genomic signature comprising higher-order nucleotides was 

proposed by Pride and Blaser in [66], where the observed frequencies of 

all n-sized oligonucleotides in a gene are contrasted against their 

expected frequencies estimated by the observed frequencies of (n-1)-

sized oligonucleotides in the host genome.  In the accompanying 

analysis, the authors focused on identifying horizontally transferred 

genes in Helicobacter pylori, and for that genome they showed that 

signatures based on tetranucleotides exhibit the best performance, 

whereas higher-order oligonucleotides did not result in any improvement. 

However, since their analysis was based on a single genome, it is not 

possible to deduce any generally applicable guidelines.  

In [67], Hooper and Berg propose as a genomic signature the 

dinucleotide composed of the nucleotide in the third codon position and 

the first position nucleotide of the following codon. Using the 16 possible 

dinucleotide combinations, they calculate how well individual genes 

conform to the computed mean dinucleotide frequencies of the genome 
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to which they belong.  Mahalanobis distance, instead of Euclidean, is 

used to generate a distance measure on the dinucleotide distribution.  It 

was also found that genes from different genomes could be separated 

with a high degree of accuracy using the same distance.   

Sandberg et al. investigated the possibility of predicting the 

genome of origin for a specific genomic sequence based on the 

differences in oligonucleotide frequency between bacterial genomes [68].  

To this end, they developed a naïve Bayesian classifier and 

systematically analyzed 28 eubacterial and archaeal genomes, and 

concluded that sequences as short as 400 bases could be correctly 

classified with an accuracy of 85%.  Using this classifier they 

demonstrated that they could identify horizontal transfers from 

H influenzae to N. meningitis. 

Hayes and Borodovsky demonstrated the connection between 

gene prediction and atypical gene detection in [69]. Working with 

bacterial species, they addressed the problem of accurate statistical 

modeling of DNA sequences and observed that more than one statistical 

model were needed to describe the protein-coding regions.  This was the 

result of diverse oligo-nucleotide compositions among the protein-coding 

genes and in particular of the variety of their codon usage strategies.  In 

the simplest case, two models sufficed, one capturing typical and the 
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other atypical genes.  Clearly, the latter model also allowed the 

identification of good horizontal transfer candidates. Along similar lines, 

Nakamura et al. [70] recently conducted a study of biological functions of 

horizontally transferred genes in prokaryotic genomes. Their work did not 

introduce a new computational method but rather applied anew the 

method originally introduced by Borodovksi et. al. [71] in the context of 

gene finding.  In a manner analogous to deciding whether a given ORF 

corresponds to a gene, Nakamura et al. determined whether a given 

gene was horizontally transferred and compiled and reported results for 

a total of 116 complete genomes. 

In [72], the authors identified horizontal gene transfer candidates 

by combining multiple identification methods.  Their analysis is based on 

a hybrid signature that includes G+C and G+C(k) content, codon usage, 

amino-acid usage and gene position.  Genes whose G+C content 

significantly deviates from the mean G+C content of the organism are 

candidate gene transfers provided they also satisfy the following 

constraints: a) they have an unusual codon usage (computed in a similar 

way); b) their length exceeds 300bp; and c) their amino-acid composition 

deviates from the average amino-acid composition of the genome.  

However, the authors stressed the need to exclude highly expressed 

genes from the set of candidate transfers: such genes may deviate from 
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the mean values of codon usage simply because of a need to adapt so 

as to reflect changes in tRNA abundance.  As an example, ribosomal 

proteins are filtered out and are not included in the list of predictions. 

Similar in flavor, the method described in [73] applies several 

approaches simultaneously, for example, G+C content, codon and 

amino-acid usage, and generates results for 88 complete bacterial and 

archaeal genomes.  The putative horizontally transferred genes are 

collected and presented in the HGT-DB database that is accessible on-

line.   

The methods in [72, 73] do not introduce a new genomic 

representation scheme but rather combine several distinct modalities into 

one feature vector.  As is always the case with feature vectors 

comprising distinct and non-uniform features, it is difficult to derive a 

distance function that properly takes into account the different units, the 

different ranges of values, etc.  Notably, and in direct contrast to this 

approach, our proposed method which is outlined below uses a single 

feature in order to determine whether a gene is indigenous to a genome 

or not. 

In [74], surrogate methods for detecting lateral gene transfer are 

defined as those that do not require inference of phylogenetic trees.  

Four such methods were used to process the genome of Escherichia coli 
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K12.  Only two of these methods detect the same ORFs more frequently 

than expected by chance, whereas several intersections contain many 

fewer ORFs than expected.   

Finally, we should mention an approach that is radically distinct 

from the ones described above.  In [75], Ragan and Charlebois organize 

ORFs from different genomes in groups of high sequence similarity 

(using gapped BLAST) and look at the distributional profile of each group 

across the genomes. Those ORFs whose distribution profile cannot be 

reconciled parsimoniously with a tree-like descent and loss are likely 

instances of horizontal gene transfer.  In other words, instead of deciding 

whether a gene is typical or atypical by comparing its composition to that 

of the containing genome, they perform a statistical comparison of similar 

genes across genomes.   

In what follows, we present a novel methodology that exploits 

genomic composition to discover putative horizontal transfers.  Notably, 

our method does not require knowledge of codon boundaries.  By 

carrying out a very extensive set of experiments with 123 archaeal and 

bacterial genomes, we demonstrate that our method significantly 

outperforms previously published approaches including the Codon 

Adaptation Index (CAI), C+G and all its variants as well as methods 

based on dinucleotide frequencies. 
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3.2 Generalized compositional features 

Our proposed approach extends and generalizes composition-

based methods in three distinct ways:  

• first, we advocate the use of higher order nucleotide sequences 

(templates) so as to overcome the diminished discrimination 

power exhibited by the previously proposed di- and tri-nucleotide 

models.  Our use of richer compositional features is expected to 

lead to an increased ability in identifying genes with atypical 

compositions and thus an improved ability to classify; 

• that include ‘wildcards’ and thus do not comprise consecutive 

nucleotides.  Wildcards are indicated with the help of a “dot” or 

“don’t care” character: any nucleotide that occupies the “don’t 

care” position will be ignored during the computation of the 

signature.  As an example, the template A.G will match any of 

AAG, ACG, AGG, or ATG, while ignoring the identity of the 

nucleotide occupying the middle position; and, 

• third, we optionally take into account the periodicity of the DNA 

code; in particular, when collecting the instances of a template, we 

can impose the constraint that a template be position-specific.  
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For example, when calculating the codon frequencies, the tri-

nucleotide templates to be considered are only the ones that start 

at positions 3k+1, where k is a non-negative integer. 

In our augmented model, let us denote the compositional feature 

vector for any given DNA sequence s over a set of templates π = { π1, 

π2, ..., πq } as ( )q21  ..., , ,)( αααφ =s ; here αi is the frequency of 

template πi in sequence s. 

Instead of using the absolute template frequencies, we also 

considered normalizing these frequencies over the expected template 

frequencies: the latter can be derived from the single nucleotide 

composition with respect to some background reference sequence under 

the assumption of an i.i.d. model.  Typically, if the sequence of interest is 

a gene g, or a DNA fragment belonging to a genome G, the single 

nucleotide frequencies of genome G ought to also reflect the expected 

single nucleotide frequencies of an endogenous gene g.  The relative 

(normalized) frequencies are thus given by the following equation: 
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where πij is the j-th nucleotide of template πi, Pg(i) is the observed 

frequency of template πi in gene Gg ∈ , whereas the single nucleotide 

probabilities PG(ij) in the denominator are computed from the entire 

genome G, and we can choose to make them position-specific or not. 

The probability of the ‘dot’ character is one.  

 

3.2.1 From compositional features to gene typicality scores 

Given a genome sequence, our ultimate objective is to 

characterize the genes in the genome in terms of how “atypical” they are.  

Under the assumption that any given genome exhibits a relatively 

constant composition over intervals that may not be contiguous, genes 

whose template composition differs substantially from the typical 

composition of their host genome are likely to have been acquired 

through a horizontal transfer event.  In our work, we assign a typicality 

score SG(g) to each gene g of genome G: the higher the score the more 

typical the gene is for the genome.  Consequently, genes with low scores 

will correspond to gene transfer candidates.   

A straightforward approach towards the computation of a gene’s 

typicality score given its feature vector φ(g) is to compare it to the feature 

vector φ(G) for the whole genome.  The comparison can be performed in 
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many different ways and it will yield a score that gauges the similarity 

between the gene in question and the genome as a whole.  Five 

commonly used similarity measures are correlation, covariance, χ2 test, 

Mahalanobis distance and relative entropy. 

The first method involves the calculation of the classic Pearson 

correlation between the gene and genome vectors.  In this case, the 

gene’s typicality score SG(g) within the “context” of genome G can be 

written as: 
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Very similar to the correlation measure is the covariance of two 

vectors: 
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The standard χ2 test measures the deviation of a vector from its 

expected value by summing up the deviations of each vector component.  

In this case, the gene score is obtained by negating the χ2 score, so that 

high χ2 values (and thus high deviations) will correspond to low and, 

thus, atypical gene scores:  
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Here, the expected value for component k is estimated by the 

mean value of the component across all nG genes in the genome: 
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The need to use the Mahalanobis distance arises in the case 

where the selected compositional features are significantly correlated 

with each other, and as a result their covariance matrix K contains 

important information.  Their score is obtained by negating the 

corresponding Mahalanobis distance, so that high distance values will 

correspond to low and, thus, atypical gene scores:  
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In the case where the feature vector defines a probability 

distribution (e.g. all tri-nucleotides), we can assign a score to each gene 

by measuring the distance of the distribution defined by the gene vector 
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from the one defined by the genome vector using the concept of relative 

entropy (also known as Kullback-Leibler distance): 
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Again the gene score is obtained by negating the distance value, 

so that high distance values will correspond to low, hence atypical gene 

scores. 

3.2.2 Our proposed algorithm, Wn, for HGT detection: 

individual genes 

Here we describe in detail our proposed algorithm.  Given any 

genome G, the algorithm returns a list of putative horizontal gene 

transfers.  The goal is to first compute a typicality score for each gene in 

the genome that reflects the similarity of the gene sequence to the whole 

genome with respect to the selected compositional features. 

Through our analysis, we have discovered that for template sizes 

greater than two, the optimal performance is obtained when we ignore 

the periodicity of the genetic code (i.e.  by ignoring codon boundaries 

and counting all the templates including those that begin at the 2nd and 
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3rd codon positions), use no wildcards in the templates, and by choosing 

covariance as the similarity measure for computing the final scores. We 

use Wn to denote our method, where n is greater that two and is equal to 

the size of the template. An example of a template is shown in Figure 1. 

It should be stressed here that, allowing representations based on 

generalized templates comprising both gap and non-gap characters 

seems to yield no further improvement for the particular set of genomes 

we experimented with. Nonetheless we can expect that, as the 

sequences of more complete genomes become available, the additional 

flexibility provided by the gapped templates that we introduced in this 

work has the potential of further improving performance.  

We observed that the performance of our method increased with 

the size of the template, reaching a maximum at size 8; increasing the 

size of the template further resulted in a sharp drop of performance.  

With respect to the choice of template size one needs to keep in mind 

that higher template sizes will result in greater specificity provided of 

course that the regions of DNA being processed can yield a sufficient 

percentage of non-zero counts.  As a rule of thumb, smaller size 

templates should be used when individual gene transfers are sought, 

whereas larger size templates can be chosen when attempting to identify 
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clusters of horizontally transferred genes, which in turn can be done by 

using the sliding window method described below. 

3.2.3 Our proposed algorithm, Wn, for HGT detection: 

clusters of transferred genes 

For completeness, we now describe a modification of the 

proposed Wn algorithm that can be applied to the problem of detecting 

clusters of putative gene transfers: instead of computing the feature 

vectors over individual genes, the computation is now applied on sliding 

windows that span multiple, neighboring genes.  The size of the window 

is given in terms of the number of genes that it spans and not in terms of 

a nucleic acid span: the number of genes to be included in the 

computation is a parameter in this modified version of our algorithm, 

while n of course still denotes the template size.  For each such window, 

we obtain a score:  the score of a given gene within the window is 

computed as the average of the scores of all of the windows that include 

the gene in question.  In the next section, we discuss the application of 

our algorithm on the genome of Enterococcus faecalis which contains a 

known cluster of horizontally transferred genes conferring vancomycin-

resistance.   
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3.2.4 Our proposed algorithm, Wn, for HGT detection: 

automated threshold selection 

Given the typicality scores that Wn computes for each gene of a 

genome, we need to be able to automatically determine a threshold 

value: all genes with scores below it are considered to be horizontal 

transfers.  We illustrate our automated threshold selection methodology 

with the help of the genome of A pernix.  The distribution of the obtained 

scores f, sorted in order of increasing values, is shown in Figure 2.  In 

the same figure, we also show the derivative f’ of the distribution, 

properly smoothed by taking the average over sliding windows and 

normalized so that its values range from zero to one.   

It can be seen that the scores increase very fast for the first few 

genes, but once we make the transition from atypical genes to genes of 

higher typicality the derivative remains approximately constant.  It is 

precisely at this point that we set the threshold value T on the derivative 

f’.  With the score threshold having been decided automatically, we 

define the number NHGT of predicted horizontal gene transfers to be the 

smallest value i for which the derivative of the ranked scores becomes 

equal to the threshold T: clearly these NHGT lowest scoring genes 

comprise our list of putative gene transfers. 
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3.2.5 Results 

In order to assess the potential of using compositional features in 

the detection of horizontal gene transfers in a host genome, we designed 

and carried out a very large number of experiments that simulated gene 

transfer.  The experimental procedure has as follows: we created a pool 

of donor genes, and randomly subselected an appropriate fraction of 

these genes that were then incorporated into the bacterial or archaeal 

host genome under consideration.  The task at hand is that of recovering 

as many as possible of the inserted donor genes.   

It is important to note that, unlike previously proposed random 

experiments where artificial genes were produced as random sequences 

which obeyed some very general statistics (e.g. a given observed 

mononucleotide frequency distribution), our simulations are carried out 

using real genes and thus are realistic simulations of what happens in 

nature (as we currently understand it). Constructing and using random 

sequences to simulate gene transfers is simply not a valid approach.   

We have carried out experiments with two distinct pools of donor 

genes.  The first pool was built from the gene complement of the 27 

phages that are shown in Table 1 and comprised 1,485 genes. The 
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second pool comprised more than 350,000 archaeal and bacterial genes 

and is discussed later in this section.  In both sets of experiments, we 

used as “host” genomes a collection of 123 fully sequenced prokaryotic 

genomes (archaea and bacteria), which we downloaded from the 

NCBI/NIH ftp server. 

3.2.5.1 Case 1: donor pool comprising phage genes 

For each of the 123 host organisms in turn, we conducted k=100 

experiments of simulated transfers from the pool of phage genes into the 

genome of the host organism.  In each case, the number of added genes 

was chosen to be a fixed percentage of the number of genes in the host 

genome.  The “transferred” genes were selected from the donor pool at 

random and with replacement.  So as to be more realistic, we carried out 

the simulated-transfer-experiment for transfer percentages that ranged 

between 1% and 8% of the genes in the host genome at hand.  For each 

genome and transfer percentage combination, the task was that of 

recovering as many of the artificially transferred genes as possible, 

without using any a priori knowledge about the host genome or the donor 

genes.  For the genome and percentage combination being considered, 

we accumulated results from over 100 repetitions of the transfer-and-

recover experiment and reported the arithmetic average. 



 42 

In the ideal case, a method ought to be able to recover every 

single one of the added genes.  But the reader should keep in mind that 

our artificially transferred genes compete with all of the bona fide 

horizontal transfers, already-present in the genome under consideration, 

for the same top putative-transfer positions.  Nonetheless, this situation 

poses no problem for the purposes of simulation as it holds true for all of 

the tested methods, and thus no method is favored at the expense of 

another. 

Each tested method computes a “typicality” score for each gene 

based on different gene features each time.  Let ρ be the number of 

genes that we artificially added to the genome being studied: the various 

methods are evaluated according to their “hit ratio,” which is defined as 

the percentage of artificially-added genes occupying the ρ-lowest 

typicality score values.  In other words, we measure how many of the 

artificial transfers end up occupying the ρ-lowest positions.  Clearly, the 

more successful a method is in discovering gene transfers, the closer the 

computed hit ratio will be to 100%. If m denotes a gene-scoring method, 

G the genome under consideration, and )(Gr
m

i  the hit ratio obtained 

by the method m at the i-th iteration of the experiment (with ki ≤≤1 ), 

then we can define the performance 
m

GPerf  of method m on genome G 
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as the “average of the hit ratios” that we observed across the k 

experiments:  

∑
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Similarly, we define the “overall performance” 
m

Perf
 
of method 

m as its average performance across all N organisms: 
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We experimented with numerous methods, based on different 

compositional features and similarity measures and computed the overall 

feature-based typicality of the genes.  In Table 2, we provide a summary 

of the methods that we have discussed here: four of the methods have 

appeared previously in the literature whereas the fifth one is Wn, the 

method we propose and discussed in this manuscript.   

Each of the five methods computes a score for each gene 

according to the method’s rules.  The Codon Adaptation Index (CAI) is 

computed and assigned to each gene as its score.  The lower this score 

is the more atypical the gene is considered to be, and its synonymous 

codon composition deviates from the one observed in its genome.  The 

CAI value for gene g in genome G is given by the following formula: 
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where fi is the relative frequency of codon i in the coding sequence, and 

wi the ratio of the frequency of codon i to the frequency of the major 

codon for the same amino-acid in the whole genome. In the CG method, 

the G+C content for each gene is computed and compared against the 

G+C content of the genome using the χ2 test and the χ2 value is negated 

in order to yield the gene typicality score.  The third method is based on 

the composition of the dinucleotides formed by the third position of codon 

j and the first position of codon j+1.  As before, the χ2 test is used to 

compute the gene scores. CODONS uses the χ2 test and W8 uses 

covariance as similarity measures, and templates of size 3 and 8 

respectively to form their compositional features: in the case of 

CODONS, only the tri-nucleotides that correspond to codons are used in 

the calculation; however, in the case of W8, we count all 8-nucleotide 

templates without observing codon boundaries. 

In Table 3 we list the overall performance 
mPerf  of all 5 

methods for different percentages of artificially-added genes.  Notably, 

across all percentages of added genes, our W8 method outperforms the 
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rest.  The entries of Table 3 are also shown in Figure 3a in the form of a 

plot.  

Table 4 shows the improvement achieved by our method when 

compared to the remaining four methods: the improvement is shown 

both in absolute percentage points (Part A of the Table) and in terms of 

relative values (Part B of the Table) and represents the average across 

the 100 experiments that we carried out with each genome and amount 

of artificial transfers.  Part B of Table 4 is also depicted graphically in 

Figure 4. The amount of relative improvement that W8 achieves relative 

to method m is computed as the average increase in the number of 

artificially-transferred genes that our method detects: 
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and is a measure of how many more horizontal transfers are detected by 

W8.  For example, in the experiments with 2% added genes from the 

prokaryotic pool, our method discovered 27% (resp.  70%) more artificial 

transfers than CAI (resp.  CG).   

It is worth pointing out that our method outperforms CAI across all 

amounts of artificial insertions with which we have experimented, and 
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exhibits significant relative improvements that range between 11% and 

41%.  Equally important is the fact that our method exhibits much greater 

sensitivity and shows a very significant advantage over all of the earlier 

methods when the number of horizontally transferred genes is small 

compared to the number of genes in the host genome.   

Figure 5 shows a detailed analysis of the performance of W8 

compared to the CAI method for each of the 123 genomes and for those 

experiments where we added 2% donor genes.  In this Figure use green 

colored bars for those genomes in which W8 outperforms CAI, and a 

red-colored bar if the opposite holds true.  The height of each bar shows 

the magnitude of the relative improvement 
m
GRel  achieved by our 

method over CAI as an average over the 100 experiments and can be 

either positive (green bars) or negative (red bars).  As can be seen here, 

for the majority of the organisms (91 vs. 32) the W8 method recovers 

more of the artificially inserted genes than CAI does. But more 

importantly, W8 does so while achieving a significantly higher relative 

improvement margins than CAI. 

Next, we exhaustively studied the impact that the size of the 

template has on the overall performance.  Using the same experimental 

protocol as above and carrying out 100 experiments per organism, we 
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observed that for template sizes greater than 2, the optimal performance 

is achieved when we ignore codon boundaries and use covariance to 

compute the similarity scores.  Figure 7a shows atypical gene detection 

performance as a function of the employed template size.  It is evident 

from this figure that an increase in template size leads to continuous 

increase in performance reaching a maximum for template sizes 

between 6 and 8 inclusive. In fact, the performance is nearly identical for 

these three template sizes. Any further increase in the template size 

leads to a quick drop in performance. 

3.2.5.2 Case 2: donor pool comprising genes from 

archaeal and bacterial genomes. 

We also repeated the above experiments but this time the pool 

from which the donor genes were selected comprised the approximately 

350,000 genes from the 123 genomes that we used as hosts.  In other 

words, we effectively simulated the case where our host genomes could 

exchange genes with one another in any conceivable combination.  To 

the best of our knowledge, this kind of simulation has not been 

previously used in the context of evaluating a horizontal gene transfer 

method.  Naturally, we added a bookkeeping stage in this simulation that 
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ensured that all the genes that were artificially inserted in genome G 

originated in genomes other than G. 

In order to account for the bigger size of the donor pool, we 

conducted k=1000 repetitions for each artificial transfer experiment. In 

Figure 3b, we show the overall performance of the five evaluated 

methods as a function of the percentage of added genes, and in Figure 6 

we plot the relative improvement achieved in each genome by our 

method compared to CAI. Finally, the effect that changing the template 

size has on performance is shown in Figure 7b. Not surprisingly, the 

results obtained during the simulation with the prokaryotic donor pool are 

in agreement with those obtained from the simulation with the phage 

donor gene pool.   

There still remains the issue of which of the three best-performing 

template sizes to use.  This depends on the expected size of the DNA 

fragment that will be processed.  Given that the sensitivity achieved by 

template sizes 6 through 8 is virtually the same, use of the largest 

possible template size will allow us to achieve greater specificity, 

provided of course that the regions of DNA under consideration can 

generate a substantial number of non-zero counts.  As a rule of thumb, 

we propose that smaller template sizes be used when isolated gene 
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transfers are sought.  Larger size templates will be more appropriate 

when attempting to identify clusters of horizontally transferred genes. 

We conclude by applying the sliding-window version of our 

algorithm to the genome of Enterococcus faecalis, where a cluster of 

vancomycin resistance related genes is known to have been horizontally 

transferred.  As a matter of fact, in Enterococcus faecalis V583 there is a 

cluster of seven genes, EF2293-EF2299, that confers vancomycin 

resistance to Enterococcus faecalis.  Using the sliding window version of 

our method over windows of 5 consecutive genes, and template sizes 

that ranged from 6 through 11 inclusive, we computed scores for each of 

of Enterococcus faecalis’ genes. CAI values were also generated for the 

same gene collection.  Our goal was to compare the atypicality ranks of 

the genes that are known to be horizontal transfers as these ranks would 

be deduced by each of five scoring methods.  As stated above, the lower 

the score of a gene (equivalently: the lower the gene’s rank), the more 

atypical it is considered to be.  Given the cluster’s common origin, the 

ideal method should be able to report this collection as a group with no 

other genes achieving atypicality scores within the range of values 

spanned by the cluster’s genes.  Moreover, the ideal method should be 

able to assign as low scores as possible to this collection emphasizing its 

horizontally transferred nature.  In Figure 8, we show the results of the 



 50 

gene ranks produced by some of the methods.  As can be seen here, 

W6 through W8 perform equally well.  The span of gene ranks for the 

cluster’s members is low for template sizes 6 through 8 and equal to the 

span obtained by the CAI method.  As anticipated, W8 outperforms CAI 

by reporting the genes of this cluster earlier in the list of putative 

horizontal transfers – this is indicated by the overall lower rank values 

which are assigned to the cluster as a whole.  Further increasing the 

specificity of the employed templates by increasing their size results in 

earlier reporting of the vancomycin cluster in the list of candidate 

transfers.  But this is achieved at the expense of increasingly losing the 

score coherence which is expected given that the genes under 

consideration are part of the same logical unit.  This last experiment 

further corroborates the conclusion reached during our artificial-insertion 

experiments that a template size of 8 nucleotides (i.e. W8 method) 

represents an optimal choice for Wn. 

 

3.2.6 Discussion 

In this chapter we introduced and discussed a new, composition-

based framework for the detection of horizontal gene transfers.  Our 

proposed method, Wn, is based on compositional features but extends 
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and generalizes all previously proposed schemes.  Wn works by 

assigning a typicality score to each gene that reflects the gene’s 

similarity with the containing genome as this is gauged by the features in 

use.  We have also described a way to automatically determine a 

typicality score threshold was also described.  Finally, an extension of 

Wn for the case where the sought transfers are likely to appear in 

clusters (as opposed to isolated genes) was also described and 

discussed.  We have created a web-site comprising the predictions of the 

horizontal gene transfers for all 123 archaeal and bacterial genomes 

based on our method at http://cbcsrv.watson.ibm.com/HGT/. 

We carried out a comparative evaluation of Wn and previously-

reported computational methods for the discovery of horizontal gene 

transfers.  In particular, we evaluated five representative methods by 

inserting random, varying-size collections of phage and prokaryotic 

genes in each of 123 host genomes (archaea and bacteria) and 

processing those artificially-created genomes with each method.  Our 

objective was to recover in the lowest-scoring positions (highly atypical 

genes) as many of the added phage genes as possible without making 

use of any a priori knowledge about either the host organism or the 

inserted genes.  These experiments as well as the study of a specific, 

documented case from Enterococcus faecalis strongly demonstrated that 
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templates with sizes ranging from 6 to 8 nucleotides yield optimal 

performance.   

We also reported on pairwise comparisons of Wn with the CAI 

and G+C methods and for each of 123 genomes in turn.  Combining the 

results across all 123 genomes, W8 clearly outperformed both CAI and 

G+C. W8  achieved very significant relative improvements over CAI that 

averaged 25%.  The relative improvements over G+C were even more 

pronounced. 

Arguably, for many years, the essence of computational methods 

that relied on genomic DNA alone to draw conclusions on horizontal 

gene transfers had remained largely unchanged.  In this light, our 

proposed method is of particular relevance: it is very fast, it need only 

access the genomic DNA in question (i.e. partial or whole sequence of 

host genome and partial or whole sequence of candidate stretch of 

DNA), it obviates the need for access to databases of genomic 

sequences, it obviates the need for comparative analyses with other 

genomes, and finally, it does not make use of any codon boundary 

knowledge.  Despite the minimal amounts of information that our method 

uses, a very extensive series of computational experiments on one 

hundred and twenty-three (123) genomes amply demonstrated the 
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superiority of our method which achieved a relative improvement of 

between 11% and 41% over CAI.   

Summarizing, we would like to point out that our method aims at 

identifying genes that diverge from the typical gene profile – measured in 

terms of template frequencies – of the genome where they are found.  It 

is known however that in addition to horizontally transferred genes with 

atypical profiles, there exist also native to the organism genes that 

exhibit atypical characteristics.  Classic examples include the ribosomal 

RNA proteins whose profiles are often relatively atypical: these genes 

belong to the category of informational genes that are widely believed to 

have limited mobility and do not tend to transfer across species [76].  

Consequently, we exclude these genes from our final list of candidate 

gene transfers.  It should be noted however that even informational 

genes can undergo horizontal transfer, as was recently shown through a 

phylogenetic analysis of the ribosomal protein S14 [77].  Other groups of 

informational genes such as the aminoacyl-tRNA synthetases, which are 

essential components of the genome’s translation machinery, appear to 

also undergo horizontal transfer [78-80] – but unlike the case of 

ribosomal proteins, we do not exclude any aminoacyl-tRNA synthetases 

from our reported results. 
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3.3 A New Similarity Measure: one-class SVM  

Given a set of training data points in a high-dimensional input 

space, the objective of the one-class SVM method [35] is to learn a 

function that will take the value +1 in the region where the majority of the 

data points are concentrated, and the value -1 everywhere else.  The 

function to be learned is modeled as a hyperplane in a transformed 

space (=feature space), and hyperplane parameters are estimated so 

that its margin with respect to the training data is maximized, as dictated 

by the data-driven distribution-free paradigm.  

More formally, let us consider the training data 1,..., lx x X∈  

and a feature map : m
Xφ →�  which maps points from the input 

space X  to points in the feature space 
m
� , where m  is the 

dimensionality of the feature space, i.e. the number of features. The 

maximum margin solution of the one-class SVM problem, i.e. the 

problem of finding the maximum-margin hyperplane in the feature space 
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that separates the data from the origin, is obtained by solving the 

following quadratic optimization problem: 

 

where 
mu ∈�  is a vector describing the hyperplane in the feature 

space, ρ ∈�  is the margin of the hyperplane with respect to the data, 

iξ  are nonzero slack variables allowing for a soft margin, and ( ]0,1v∈  

is a parameter that represents an upper bound on the fraction of outliers 

in the data. Finally, the decision function inferred by the learned 

hyperplane is: 

( )( ) sgn ( )f x u xφ ρ= ⋅ − . 

The optimization problem is solved by applying the Lagrange 

multipliers, thus converting it to the equivalent dual problem: 
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with the hyperplane parameters given by 
1

( )
l

i ii
u xα φ

=
=∑ . 

In the context of the HGT detection problem the input space X  

is the set of all possible nucleotide sequences whereas the feature space 

m
�  comprises the selected set of compositional features of the 

nucleotide sequences, i.e. the frequencies of all templates of size n.  We 

can use the learned decision function to induce a scoring measure GS  of 

genes belonging to a fixed genome G , where more atypical genes will 

receive lower scores:  ( ) ( )GS x u xφ= ⋅ .   

When v=1, this last measure, GS , is proportional to the 

covariance of the two vectors involved in the inner product.  Additionally, 

it is worth pointing out that for any feature map φ , the typicality measure 

obtained from the solution of the one-class SVM optimization problem 

and the covariance measure discussed in [81] will result in the same 

relative ranking of genes with respect to typicality.  This can be shown 

with the help of the Lemma contained in Appendix A. 

On the other hand, for values of 1v < , the optimal hyperplane 

solution will have some coefficients iα  assume a zero value;  the genes 
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for which 0iα =  will not contribute their compositional features ( )ixφ  

to the computation of u .  

From the above, we can give a natural interpretation to the 

optimal hyperplane u  as a generalized genome signature:  when 1v =  

the generalized signature is equivalent to the usual genome signature 

which is computed as the mean of the gene signatures in the genome;  

for 0 1v< ≤  the generalized signature will comprise only a subset of 

special “signature genes.” This also constitutes a natural interpretation of 

the parameter v  for the problem that we try to solve here as an upper 

bound on the fraction of gene transfers in the genome. In the next 

section, we use this fact to estimate, via a series of experiments, the 

optimal parameter v  for any given genome so that the number of 

recovered horizontal gene transfers is maximized. In the worst-case 

scenario, the performance of the one-class SVM-based method can be 

as good as the covariance-based method introduced in [81] (this is again 

a direct sequence of the lemma in Appendix A), but in practice the 

method we propose here achieves an average improvement of more 

than 10% across the 123 archaea and bacterial genomes we have been 

using as a reference. 
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3.3.1 Results 

In this section, we present results for several datasets.  First, we 

carried out an experiment where artificial horizontal transfers have been 

simulated across a collection of 123 archaeal and bacterial genomes.  As 

in [81], this simulation was carried out using a pool of more than 350,000 

prokaryotic genes: in fact, we permitted all our genomes to exchange 

genes while making sure that a given genome did not become a gene 

donor for itself.  The genes were randomly selected from the pool and 

“inserted” in the i-th genome: the task at hand for each of the tested 

methods was to recover as many as possible of these artificially inserted 

genes.  It is important to note here that, to the best of our knowledge, this 

simulation as well as those mentioned in [81] are unique in that they are 

carried out using donor sets comprising actual genes. The tested 

methods included CAI, Wn and Wn-SVM.  Moreover the set of donors is 

the same as the set of acceptors, in other words we allowed our tested 

genomes to exchange genes with one another in any conceivable 

combination. As such, this is a realistic simulation of what happens 

naturally (as it is currently understood).   

In addition to the prokaryotic simulation and analysis, we present 

an analysis of the human cytomegalovirus genome from the standpoint 
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of horizontal gene transfer and compare our results with existing 

knowledge from the literature about genes of this virus. 

3.3.1.1 Evaluation of Wn-SVM: prokaryotic donor and 

prokaryotic hosts 

For each of the 123 host organisms in turn, we conducted k=20 

experiments of simulated transfers from the prokaryotic gene pool. The 

latter, as we described above, contained the approximately 350,000 

prokaryotic genes from the 123 genomes that we used as hosts – in 

other words, the host genomes also played the role of donors.  In each 

experiment, the number of added genes was chosen to be a fixed 

percentage of the number of genes in the host genome. The 

“transferred” genes were selected from the donor pool at random and 

with replacement.  The simulated-transfer-experiments were carried out 

for transfer percentages which ranged between 1% and 8% of the genes 

in the host genome under consideration.   

Given each genome and transfer percentage combination, each of 

the tested methods had to recover as many of the artificially transferred 

genes as possible, without using any a priori knowledge about the host 

genome or the donor genes.  The ideal method should recover each and 

every one of the artificially added genes. However, our artificial insertions 
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compete for the top, putative-transfer positions with the horizontal gene 

transfers which are already present in the genome under consideration.  

Consequently, not all of the artificially inserted genes will occupy the top, 

putative-transfer positions: the fraction of the artificially inserted genes 

that a tested method manages to recover is referred to as the ‘hit ratio’ of 

the method.  We should point out that this situation poses no problem for 

the purposes of simulation as it holds true for all of the tested methods, 

and thus no method is favored at the expense of another.   

In [81] we showed that the best performance was achieved for 

templates of size w=8. We thus evaluated the W8 and W8-SVM 

measures, and the Codon Adaptation Index (CAI).  Table 2 summarizes 

the methods under evaluation and their characteristics.   Method m’s 

overall performance across the N genomes under consideration is 

defined as: 
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i  is the hit ratio obtained by the method m at the i-th 

iteration of the experiment (with ki ≤≤1 ) 
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For the one-class SVM method, we had the additional task of 

estimating the parameter v  which controls the fraction of genes that 

contribute to the genome signature. For each genome and each given 

percentage of added genes, we estimate the optimal value of the 

parameter v  so that the fraction of the artificially inserted genes 

recovered by the SVM method is maximized.  This estimation is done by 

varying the value of v  from 0 to 1 using a step of 0.1 and conducting 

k=20 experiments for each value; performance was averaged over these 

20 experiments and the value of v  which maximized performance was 

chosen as the optimal value for v .  The highly optimized SVM package 

LibSVM [82] was used to solve a total of 200 quadratic problems per 

organism.  

In Table 3 we list the overall performance of all methods for 

different percentages of artificially-added genes. The entries of Table 3 

are also shown in Figure 9 the form of a plot.  Table 4 shows the 

improvement that our new W8-SVM method achieves when compared to 

the remaining methods: the improvement is shown both in absolute 

percentage points (Part A of Table 4) and in terms of relative values 

(Part B of Table 4) and represents the average across the 20 

experiments that we carried out for each genome and artificial transfer 

percentage. The amount of relative improvement that W8-SVM achieves 
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relative to method m is computed as the average increase in the number 

of artificially-transferred genes that our method detects 

W8/SVM
1 1 ( ) ( )

( )
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m m
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 . 

The latter is a measure of how many more horizontal transfers are 

detected by W8-SVM.  For example, in the experiments with 2% added 

genes from the prokaryotic pool, the W8-SVM method discovered 10.6% 

more artificial transfers than W8 and 33.6% more than CAI. 

In Figure 10, we show a comparison between W8-SVM and W8 

for each of the 123 genomes and for those experiments where we added 

2% donor genes. As predicted theoretically, W8-SVM improves upon W8 

essentially across all the genomes with which we experimented (but of 

course is in no-case inferior to W8).   

In Figure 11, we compare W8-SVM with the CAI method: we use 

green solid bars to indicate the cases where W8-SVM outperforms CAI, 

and red-colored bars for when CAI outperforms W8-SVM.  The height of 

each bar corresponds to the relative improvement 
m
GRel  achieved by our 

method over CAI as an average over the 20 experiments and can be 

either positive (green bars) or negative (red bars). 
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3.3.1.2 Evaluation of Wn-SVM: analysis of the human 

cytomegalovirus genome 

This experiment is of particular relevance given that we set out to 

create a method that would be suitable for the analysis of large as well 

as small genomes.  As the genome of choice to analyze with our 

Wn-SVM method, we selected the human cytomegalovirus, also known 

as human herpesvirus 5 or HHV5.   The reason for this particular choice 

is due to our long standing interest in the cytomegalovirus in conjunction 

with the fact that this is a virus that transmits very easily, knows no age 

or geographic boundaries, has no seasonal dependencies and affects a 

very large percentage of the population in modernized societies [83-85]. 

 

Figure 12 shows a map of the HHV5 genome marked by Wn-

SVM. The strain we worked with was the laboratory strain AD169 [86]. In 

the absence of detailed knowledge as to the extent of horizontal 

transfers into the cytomegalovirus genomes, we generated results for 

three values of v, namely 1.0, 0.9 and 0.8, and reported a region as a 

HGT if and only if it were marked as a HGT by Wn-SVM at all three 

values of v.  Supplementary Figure 1 shows the boundaries of the 

evaluated genomic regions, the genes that overlap with each region, and 
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the similarity score assigned by Wn-SVM to each region. The forward 

and reverse strands of the genome are treated separately and the genes 

are shown on their respective strand.  The evaluated regions were 300 

nucleotides in length and consecutive regions overlapped by 200 

nucleotides. 

Several interesting results can be seen from. With some very 

interesting exceptions that clearly demonstrate the capabilities of Wn-

SVM and which we will discuss next, effectively every single one of the 

blocks of genes that are known to be conserved across the -

herpesvirinae is marked by Wn-SVM as native to the cytomegalovirus 

genome, precisely as described in [87]. These blocks are: genes UL22 

through UL33, UL45 through UL53, UL69 through UL72, UL75 through 

UL80, UL85 through UL87, UL89 through UL105, UL112 through UL117, 

and the TRL/IRL and TRS/IRS regions. 

Although the above mentioned blocks of genes are marked as 

herpesvirinae-specific, there are a few small regions within them which 

are notably flagged as horizontally transferred.  In particular, and as is 

seen in  

Figure 12, genes UL33, UL78, US12 and US21 are all reported by 

Wn-SVM as horizontal transfer candidates.   This is in fact a correct 

result given that all four of these genes are G-protein coupled receptor 
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homologues and thus eukaryotic in origin.  Also marked, in a piece-meal 

fashion this time, is UL48, a virion protein that comprises several distinct, 

non-contiguous domains (hence the piece-meal marking by Wn-SVM) 

which are known to be characteristic of eukaryotes (see relevant entry 

from Table 1 from [84]). 

A few additional observations are warranted here as they further 

demonstrate the new method’s capabilities and increased sensitivity.  

First, we would like to point out that much of the genomic sequence 

outside the gene blocks that are known to be conserved across 

herpesvirinae have been marked as horizontal transfer candidates.  This 

is a very interesting result which does not contradict the current 

knowledge about the cytomegalovirus and which suggests several new 

avenues of investigation. 

Another interesting region is the one that genes UL107, UL108 

and (partially so) UL109 span.  The region is marked as a horizontal 

transfer candidate and we believe that it is correctly marked as non-

native.  Indeed, our earlier analysis of this virus’ genome that we 

described in [85] concluded that UL106 through UL111 are unlikely to 

code for genes.  This claim was verified by very recent work [87]: therein, 

it was shown that the corresponding 5kbp region does code for a spliced 

intron.  More importantly, this region is not conserved in the murine 
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cytomegalovirus, a strain that is close to the analyzed AD169 strain.  

Taken together these observations corroborate the Wn-SVM result about 

the region in question. 

Finally, and as can be seen from  

Figure 12, the TRL6/7 and IRL6/7 regions are reported by Wn-

SVM to be non-native to the human cytomegalovirus. Although this last 

statement may be in disagreement with the discussion presented in [87], 

it bodes well with the more recent findings of [85] according to which 

these two blocks are unlike the rest of the TRL and IRL regions and may 

in fact be non-coding. 

3.3.2 Conclusion 

We introduced a new more sensitive method, Wn/SVM, that is 

based on a one-class support vector machine (SVM). Wn/SVM utilizes 

the generalized compositional features which we proposed in our earlier 

work.  Our current work represents a substantial point of departure in 

that Wn-SVM relies on a distribution-free, one-class SVM method in 

order to draw conclusions instead of defining an a priori model as in the 

case of the covariance measure.  For each gene in turn, the new method 

computes a typicality score which is then used as a proxy for the 
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probability that the gene under consideration has been acquired through 

a horizontal transfer event.    

Additional very important methodological differences involve the 

manner in which the genome’s compositional signature (“reference 

signature”) is now computed.  In the earlier, covariance-based method, 

all genes of the genome at hand contributed equally to the genomic 

signature.  However, in the Wn-SVM method weights are chosen 

optimally using the maximum margin criterion.  As such, Wn-SVM 

extends the notion of a compositional genomic signature by enforcing 

genes to contribute their compositional features in a non-uniform fashion.  

In fact, due to the constraints of the optimization problem, some genes 

may end up not contributing at all to the genomic signature (they will be 

assigned a weight of zero).  Interestingly enough, preliminary analysis 

shows that the informational genes are under-represented in this group 

of signature genes, exactly as expected: these genes tend to have 

atypical compositions and therefore should not be contributing to the 

genomic signature.   

It is also worth pointing out that from a mathematical standpoint, 

our previous method, [81], can be viewed as a special case of the one-

class SVM category of approaches.  It in fact corresponds to a fixed 

parameter v=1, which is known to yield sub-optimal performance for 
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most classes of problems that have been solved using support vector 

machines.  Also, it should be pointed out that although the compositional 

features used in this work comprised templates of size 8, further 

performance improvements may be possible through the application of 

Gaussian or polynomial kernels on the same features, or through the use 

of especially-designed kernel functions that are applied directly on 

sequences without any need to first extract the compositional features 

(see chapter 8 of [32]). 

With respect to evaluating the performance of Wn-SVM, we 

carried out a comparative analysis of W8-SVM and W8 for the discovery 

of horizontal gene transfers by inserting random, varying-size collections 

of prokaryotic genes in each of 123 host genomes (archaea and 

bacteria) and processing those artificially-created genomes with each 

method in turn.  Our findings clearly show that Wn-SVM offers significant 

sensitivity improvements over Wn.  We further validated Wn-SVM by 

demonstrating its applicability to the analysis of smaller viral genomes, 

an area of research that has to date remained unexplored from the 

standpoint of horizontal gene transfer.  As a case-study, we analyzed the 

genome of the human cytomegalovirus (human herpesvirus 5) and 

showed that we can successfully mark genomic regions as horizontally 

transferred, in direct agreement with earlier independent studies.  Finally, 
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we have made available Wn-SVM’s predictions for numerous, publicly 

available archaeal, bacterial and viral genomes on the world-wide-web at 

http://cbcsrv.watson.ibm.com/HGT_SVM/. 
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APPENDIX A 

Lemma.   For 1v = , the solution vector u  of the optimization problem is 

equal to the feature vector of the entire genome ( )Gφ , i.e. the genome 

compositional signature, defined as the average of the feature vectors of 

all the genes in the genome. 

Proof.   For 1v =  the constraints of the dual problem are simplified to 

1
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feasible point for the optimization problem, and therefore it must also be 

the optimal solution. This means that: 
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From the previous lemma we immediately conclude that, because 

the two typicality measures are proportional to each other, they will 

induce identical rankings, and therefore the two methods will produce 

identical results with respect to identifying atypical genes in a genome.  
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Table 1: List of phages 

Phage GenBank ID Genes 

Streptococcus thermophilus bacteriophage Sfi21 NC_000872 50 

Coliphage alpha3 NC_001330 10 

Mycobacterium phage L5 NC_001335 85 

Haemophilus phage HP1 NC_001697 42 

Methanobacterium phage psiM2 NC_001902 32 

Mycoplasma arthritidis bacteriophage MAV1 NC_001942 15 

Chlamydia phage 2 virion NC_002194 8 

Methanothermobacter wolfeii prophage psiM100 NC_002628 35 

Bacillus phage GA-1 virion NC_002649 35 

Lactococcus lactis bacteriophage TP901-1 NC_002747 56 

Streptococcus pneumoniae bacteriophage MM1 provirus NC_003050 53 

Sulfolobus islandicus filamentous virus NC_003214 72 

Bacteriophage PSA NC_003291 59 

Halovirus HF2 NC_003345 114 

Cyanophage P60 NC_003390 80 

Lactobacillus casei bacteriophage A2 virion NC_004112 61 

Vibrio cholerae O139 fs1 phage NC_004306 15 

Salmonella typhimurium phage ST64B NC_004313 56 

Pseudomonas aeruginosa phage PaP3 NC_004466 71 

Streptococcus pyogenes phage 315.4 provirus NC_004587 64 

Staphylococcus aureus phage phi 13 provirus NC_004617 49 

Yersinia pestis phage phiA1122 NC_004777 50 

Xanthomonas oryzae bacteriophage Xp10 NC_004902 60 

Enterobacteria phage RB69 NC_004928 179 

Burkholderia cepacia phage BcepNazgul NC_005091 75 

Ralstonia phage p12J virion NC_005131 10 

Bordetella phage BPP-1 NC_005357 49 
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Table 2: Gene scoring methods 

Name Width Step Measure Description 

CG 1 1 χ2 G+C content 

3/4 2 3 χ2 
Dinucleotide composition of codon 
positions 3 and 1  

CODONS 3 3 χ2 Codon composition 

CAI 3 3 N/A Codon Adaptation Index 

W8 8 1 covariance 
8-nucleotide composition (no 
wildcards) 

 

  

Table 3: Overall performance m
Perf  for the methods under evaluation.   

%HGT CG 3/4 CODONS CAI W8 
1% 38.81% 36.80% 27.68% 43.83% 51.28% 
2% 44.41% 43.08% 34.41% 49.58% 56.26% 
4% 50.33% 49.34% 41.59% 55.30% 61.21% 
8% 56.41% 56.24% 49.79% 61.11% 65.88% 

 



 73 

 

Table 4: Improvement of reported W8 method over previous methods. 

 

PART A: % improvement in overall performance 
 

 

  

 

 

PART B: % average relative improvement  

%HGT W8 vs.  CG W8 vs.  3/4 W8 vs.  CODONS W8 vs.  CAI 

1% 146.57% 93.01% 232.79% 41.61% 

2% 70.57% 59.82% 129.98% 27.87% 

4% 32.90% 37.24% 78.96% 18.18% 

8% 19.88% 22.04% 45.05% 11.64% 

 

 

Table 5: Gene scoring methods 

Name Width Step Measure Description 

CAI 3 3 N/A Codon Adaptation Index 

W8 8 1 covariance 
8-nucleotide composition (no 
wildcards) 

W8-
SVM 

8 1 SVM 
8-nucleotide composition (no 
wildcards) 

 
 

%HGT W8 vs.  CG W8 vs.  3/4 W8 vs.  CODONS W8 vs.  CAI 

1% 12.47% 14.48% 23.60% 7.45% 

2% 11.85% 13.18% 21.85% 6.68% 

4% 10.88% 11.87% 19.62% 5.91% 

8% 9.47% 9.64% 16.09% 4.77% 
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Table 6: Overall performance m
Perf  for the methods under evaluation 

(higher numbers are better – see also text for a definition of m
Perf ).   

%HGT CAI W8 W8-SVM 

1% 46.3% 51.6% 56.6% 

2% 51.6% 56.2% 60.6% 

4% 56.5% 60.9% 64.1% 

8% 61.5% 65.4% 67.7% 

 
 

Table 7: Improvement of the new W8-SVM method over CAI and over 

W8. 

 PART A: % improvement in overall performance 
 
 

 

  

 

PART B: % average relative improvement  

%HGT W8-SVM vs. CAI W8-SVM vs. W8 

1% 52.0% 15.0% 

2% 33.6% 10.6% 

4% 23.5% 6.3% 

8% 15.4% 3.8% 

 
 

%HGT W8-SVM vs. CAI W8-SVM vs. W8 

1% 10.3% 5.0% 

2% 9.0% 4.4% 

4% 7.6% 3.2% 

8% 6.2% 2.3% 
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Figure 1: Example of a template. 
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Figure 2:  Demonstrating the automatic method for selecting a score 

threshold using the genome of Aeropyrum pernix as a test case (see 

also text). 
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Figure 3: Overall performance 
m

Perf  of five scoring methods that has 

been averaged over 123 genomes: (a) case of a phage donor gene pool, 

(b) case of a prokaryote donor gene pool.   
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Figure 4: Achieved relative improvement of W8 vs. CAI averaged over all 

experiments and all genomes (see also text). 
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Figure 5: Average relative improvement 
CAI

GRel  of W8 over CAI for each 

one of 123 organisms.  Each point is an average over 100 experiments 

with donor genes drawn from the phage gene pool (see also text). 
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Figure 6: Average relative improvement 
CAI

GRel  of W8 over CAI for each 

one of 123 organisms. Each point is an average over 1000 experiments 

with donor genes drawn from the prokaryote gene pool (see also text). 
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Figure 7: Achieved overall performance m
Perf  as a function of template 

size and for different percentages of artificially added genes: (a) case of 

phage gene donor pool, (b) case of prokaryotic gene donor pool.   
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Figure 8: Detecting the vancomycin-resistance cluster of horizontally 

transferred genes in Enterococcus faecalis.  In an ideal setting, the 

genes of this cluster should be reported as a group (i.e.  their ranks for a 

given scoring scheme should be as close to each other as possible) and 

uninterrupted by genes that do not belong to the cluster.  Additionally, 

the ideal method should be able to report typicality scores for the group 

as a whole that are as low as possible, or, equivalently, assign gene 

ranks to these genes that are as low as possible (see also text). 
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Figure 9: Achieved relative improvement of W8-SVM vs. CAI and of W8-

SVM vs. W8.  The results represent an average over all experiments and 

all genomes (see also text). 
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Figure 10: Average relative improvement 
W8

GRel  of W8-SVM over W8 for 

each one of 123 organisms. Each point is an average over 20 

experiments with donor genes drawn from the prokaryote gene pool (see 

also text). 
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Figure 11: Average relative improvement 
CAI

GRel  of W8-SVM over CAI for 

each one of 123 organisms.  Each point is an average over 20 

experiments with donor genes drawn from the prokaryotic gene pool (see 

also text).  
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Figure 12: Horizontal transferred regions in the HHV5 genome, strain 
AD169.  
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4 Protein Localization 

 

 

The computational prediction of a protein’s sub-cellular location 

directly from the amino acid sequence is a well-known problem in 

bioinformatics. Together with structural and functional protein annotation 

methods, it is a valuable tool in high-throughput sequencing projects.  In 

this work, we introduce a new pattern-based method for the prediction of 

a protein’s sub-cellular location that relies on the analysis of the 

corresponding amino acid sequence.  Our method uses a training set of 

amino acid sequences to compute fixed-length and highly-significant, 

variable-length amino acid patterns that it then uses in order to assign 

unclassified proteins into one of twelve categories (i.e. sub-cellular 

locations). Through a series of experiments, we demonstrate that the 

new method can achieve improvements of more than 6% in total 

accuracy and almost 13% in average sub-cellular location accuracy over 
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previous approaches. An implementation of the described method can 

be accessed on the web at: 

http://cbcsrv.watson.ibm.com/ProteinLocalization. 

 

4.1 Related work 

Intracellular protein sorting is responsible for maintaining the correct 

structure and function of every cell within an organism. Organelles such 

as the nucleus, Golgi, endoplasmic reticulum (ER) and plasma 

membrane need to maintain a strict collection of resident proteins for 

optimal function.  The importance of protein sorting is highlighted only 

when it breaks down and a disease state occurs [88, 89]. Protein 

trafficking is a highly-complex procedure involving various forms of 

cargo, carriers, destinations and routes.  The entire process is highly 

dynamic and characterized by the constant movement of proteins 

throughout the cell. 

Current hypotheses maintain that protein trafficking is dependent on 

bulk flow movement through the cell in combination with active sorting 

signals and retention signals which are present within proteins [90].  

Most proteins are able to reach their destination by using one or more of 

signals directing general bulk flow, active sorting or retention.  For 
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example, a newly synthesized cadherin protein uses a N-terminal signal 

sequence to enter the ER, bulk flow to transverse from the ER to the 

Golgi and finally a basolateral sorting signal to reach the plasma 

membrane.  At the plasma membrane it can be either retained through 

interaction with other cadherins, or undergo endocytosis through an as-

yet-undefined mechanism [91].   

The myriad of trafficking steps undertaken by E-cadherin exemplify 

the scale and difficulty of predicting a proteins sub-cellular localization.  

Experimental validation of the sub-cellular localization of an individual 

protein is currently a slow and labor-intensive process.  Computational 

methods that can help speed-up the elucidation of the underlying 

sequence signals are thus very important.   

Predicting sub-cellular localization is a well known problem in 

computational biology and several methods have been proposed to date 

that address this task.  We refer the interested reader to several review 

articles which have already covered this subject [92-94] rather 

extensively.   

The localization prediction methods can be broken down into two 

major categories.  The first category utilizes protein sorting and retention 

signals to predict protein localization.  Traditionally, the focus has been 

on predicting secreted and plasma membrane proteins due to their 



 90 

importance for multicellular organisms.  Some recent additions to this 

class of methods include the ones described in [95-102].  An important 

limitation of these methods is that they rely on the knowledge of such 

signals: unfortunately, many of the signals remain unknown. 

The second category of methods predict the location of proteins by 

relying on the observation that global sequence features, such as amino 

acid composition, are specific to sub-cellular location  [103].  Numerous 

tools following this approach have been developed in the recent years, 

the most prominent of which are described in [104-111].  Hybrid methods 

have also been reported in the literature [112, 113].   

4.2 Overview of unsupervised pattern discovery 

Our method is based on the use of a collection of amino acid patterns 

that are discovered in an automated manner and cover the sequence 

space of the training set under consideration. Such signals have been 

shown to capture functional and structural signals [27-29]. 

Typically, an unsupervised pattern discovery tool takes a set D of 

protein sequences as input and automatically discovers a 

comprehensive set of patterns that appear many times in different 

subsets of sequences.  For the work described below, we have used the 

Teiresias pattern discovery algorithm [10, 114]; the algorithm can 
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provably find all patterns p  in the input set D that satisfy the following 

properties: 

(1) each p  is composed of either literal characters, i.e.  individual 

amino acids, or classes of amino acids (designated by brackets), 

possibly separated by a number of wild-cards characters (“dots”); a 

wild-card indicates that the corresponding position can be occupied 

by any amino acid.   

(2) each p
 comprises at least L  literal characters (or equivalence 

classes) in any span of W L≥  positions.  Then the pattern p is 

considered to be an ,L W
 

pattern.  For example, the pattern 

A.C.[115]..L is a <2,4> pattern, whereas patterns A…C.[FY]..L, 

A.C...[FY]..L and A.C.[FY]…L are not. 

(3) each p  occurs at least K times in the set D.  K is referred to as 

the “support” of pattern p. 

 

Teiresias works in two phases which are termed scanning and 

convolution. Scanning is performed in order to discover all <L,W> 

patterns with length at most W (“seed patterns”). These seed patterns 

are combined during convolution to form progressively longer patterns.  

The extension process is guided by the contents of the processed 

dataset and thus terminates naturally – the algorithm imposes no upper 

bounds on the length of the discovered patterns.   
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4.3 Method A: fixed-length patterns 

We first attempt to build a classifier for predicting protein sub-cellular 

locations using only the seed patterns that are generated by the 

scanning phase of Teiresias. The key idea is to explore the use of 

higher-order amino acid patterns (cf. the amino acid pairs used in [106]) 

in an effort to improve accuracy while at the same time discover a simple 

one-classifier model to perform the task.  This bypasses the need for 

elaborate voting schemes that are necessary when multiple classifier 

methods are used.   

The discovery step generated a total of 5,433,264 patterns that 

belong to one of the four different categories shown here:   

• L=1 and W=1 with chemical equivalences: this category 

comprises 27 patterns, one pattern for each of the 20 amino acids 

plus one for each of the 7 chemical equivalence classes shown in 

Table 8. It is also referred to as single amino acid composition. 

• L=2 and W=2 with chemical equivalences: this class comprises a 

total of 272 = 729 patterns, and is also known as composition of 

amino acid pairs.   

• L=3 and W=5 with chemical equivalences: this category 

comprises all patterns containing exactly 3 letters (amino acids, or 



 93 

equivalence classes of amino acids) possibly separated by at 

most two wildcards, a total of 6·273 = 118,098. 

• L=4 and W=6 with chemical equivalences: this category 

comprises all patterns containing exactly 4 letters (amino acids, or 

equivalence classes of amino acids) possibly separated by a total 

of at most two wildcards, a total of 10·274 = 5,314,410. 

In Table 9 we show several examples of patterns from each category. 

These four types of patterns are then used to decompose the input 

sequences: each protein is effectively converted into a feature vector 

with each feature corresponding to one of the discovered patterns – the 

value of the feature is equal to the number of times the pattern is found 

in the protein sequence.  These feature values are subsequently 

normalized per unit length, so as to remove the bias which would favor 

longer proteins. Also, given that shorter patterns/features are expected to 

occur much more frequently than longer ones, we linearly scale the 

feature values across proteins of each feature separately, so that they 

range from 0 to 1: this removes the bias towards more frequent patterns 

and is a necessary step (otherwise, more frequent patterns would have 

been treated as more predictive that less frequent ones).  Intuitively, 

there must exist longer patterns which, despite occurring only once in 

some sequences, they can actually be used to predict protein localization 
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much more accurately than the frequency of single amino acids because 

they turn out to be specific to a given sub-cellular location.   

After the preprocessing of the train and test feature vectors is 

complete, we train a all-against-all multi-class SVM classifier [116, 117] 

using an RBF kernel6 and classify the test vectors according to the model 

obtained from the training phase.  The highly optimized SVM package 

LibSVM by Chang and Lin was used to train the SVM classifier and do 

the final testing: see http://www.csie.ntu.edu.tw/~cjlin/libsvm for the code 

and reference manuals for LibSVM.  The training and testing process are 

summarized in Figure 13.   

It is worth mentioning that for a classification problem that is 

characterized by millions of features, feature selection becomes an 

important preprocessing step.  As advocated by LibSVM developers 

[118], we apply multi-class Fisher scoring [119] to evaluate the 

importance of individual features.  We found that selecting 25% of the 

top scoring features boosts classification accuracy by 2-3%, while 

significantly reducing classifier training and testing times. 

 

                                            

6
 ( )2

( , ) expK x y x yγ= − − , where x and y are vectors of the same size and 

γ>0. 
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4.4 Method B: variable-length patterns 

The following observations highlight the importance of discovering 

variable-size patterns in the input set (training set). 

• patterns that are allowed to grow in length in an unrestricted 

manner will be as specific as possible for the given input dataset 

• long patterns can be highly significant even if they appear few 

times in the dataset 

• highly-significant, variable-length patterns can help identify 

important local similarities among sequences which are destined 

for the same sub-cellular location; on the other hand, 

computations of similarities among full-length sequences can lead 

to artificially high (or low) values since they ignore the small-by-

comparison part of the sequence which is relevant for the 

classification task at hand.   

The training and testing process for Method B is summarized in 

Figure 14.  In the first step, unsupervised pattern discovery is performed 

using both the scanning and the convolution phases of Teiresias in order 

to extract all, maximal in composition and length patterns in the training 

set.  The parameters we used for this step were L=4 and W=6 with 

minimum support set to K=2 – no amino acid equivalences were taken 
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into account.  In general, the total number of discovered patterns can be 

very high.  Clearly, this number can be affected by the choice of 

parameters and the use of amino acid equivalences (e.g. chemical, 

structural etc.).  As one would intuitively expect, a larger pattern 

collection could potentially increase the final classification performance.  

However, in the presence of more patterns, the training and classification 

tasks would become harder to manage given that the computational 

resources in terms of memory, disk storage and processing power are 

finite.   

During the second step, we compute z-scores for each discovered 

pattern as a function of its expected probability and its support in the 

database.  Formally, the z-score zp of a pattern p is computed using the 

following formula: 

( )

( ) ( )( )ppD

pDN p
pz

Pr1Pr

Pr

−⋅⋅

⋅−
=

 

where Np is the observed number of occurrences of the pattern in the 

given dataset, D is the size of the dataset (total number of amino acids), 

and Pr(p) is the expected probability of the pattern given the observed 

probabilities of single amino acids assuming iid. Patterns that have z-

scores lower than a threshold θ are discarded. 
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The third step ensures that, among the highly-significant patterns, 

only those which give rise to the same sub-cellular location are kept: in 

other words, we keep only the patterns that are found in protein 

sequences of the same sub-cellular location (zero-entropy).  We note 

here that since this is done using the training set only there is no 

guarantee that the same will hold true in the test set.  However, this 

“guilty by association” approach has been time-honored and is very 

typical for this kind of methods: intuitively, we do expect this to be the 

case most of the time.   

With the completion of the third step, we now have a set of highly-

significant patterns each one of which is associated with a specific sub-

cellular location.  We use these pattern sets as predicates that can 

predict the eventual sub-cellular location of the test sequences.  Since 

there is no guarantee that these patterns will appear in a test sequence 

unchanged, we introduce what we refer to as a “pattern matching score” 

between a pattern and a protein sequence: this score is defined as the 

maximum fraction over all possible ungapped alignments of the total 

number of matched amino acids in the pattern/protein alignment divided 

by the total number of matched and unmatched amino acids – obviously, 

this score ranges between 0 and 1 inclusive.   
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We are now ready to assign predictions to our test sequences.  This 

is simply done by finding, for any given test sequence, the pattern with 

the highest z-score which aligns best with the test sequence (i.e. leads to 

the highest matching score).  If the matching score is greater than or 

equal to a threshold α, then the test sequence is assigned to the location 

associated with the matching pattern, otherwise it remains unassigned 

(inability to predict with confidence).  In other words, we try each pattern 

in turn, in order from the highest to the lowest z-score: when a pattern is 

found whose matching score is not lower than α, we stop and assign the 

test sequence to the sub-cellular location of the pattern at hand.  Clearly, 

more elaborate schemes could be applied, but such an endeavor is 

beyond the scope of this work; our goal is to demonstrate that variable-

length patterns can in fact be used effectively to improve prediction 

accuracy. In the Results section we explain how to use Method B in 

conjunction with Method A in order to deal with the test sequences that 

are left unclassified by Method B.   

4.5 Results 

4.5.1 Method A:  fixed-length patterns 

Despite the fact that a lot of research has been done on 

computationally predicting protein sub-cellular locations, the area still 
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lacks universally accepted reference datasets and performance 

measures.  We thus chose to work with the dataset introduced in [106] 

which includes a large number of proteins classified into 12 sub-cellular 

location (i.e. categories).  The location-specific datasets are derived from 

eukaryotic entries of Swiss-Prot database release 39.0 based on the 

content of SUB-CELLULAR LOCATION section of CC (comment) lines: 

the 12 sub-cellular locations that are covered include chloroplast, 

cytoplasm, cytoskeleton, endoplasmic reticulum (ER), Golgi apparatus, 

lysosome, mitochondria, nucleus, peroxisome, plasma membrane, and 

vacuole. The datasets are located at http://web.kuicr.kyoto-

u.ac.jp/~park/Seqdata/.  The number of entries in each category is 

indicated in the first column of Table 10. 

We estimate the prediction performance of our method using a 5-fold 

cross-validation test as in [106].  The idea of the test is to split the 

dataset into five approximately equal subsets. One subset is used as a 

test set; the remaining four subsets are combined together into a training 

set.  This process is repeated five times so that each protein sequence is 

evaluated once.  The final performance is measured on the five test sets 

and is defined separately for each sub-cellular location i as i i i
P T n= , 

where i
T  is the number of sequences correctly ascribed to the i-th 
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category (a.k.a. true positives) and i
n is the total number of sequences 

in this category.  This last measure is often referred to as sensitivity. In 

addition, we define two cumulative, location-independent measures. The 

first one, location accuracy, is an average of 
i

P over all K locations and is 

defined as follows:  

1

K

ii
LP P K

=
=∑ . 

The second measure, total accuracy, is the fraction of correct 

predictions for the total of N sequences in the dataset and is defined as 

follows: 

1

K

ii
TP T N

=
=∑ . 

The two cumulative measures are complementary: TP tracks 

performance mainly in categories with large numbers of sequences. On 

the contrary, LP treats each category equally regardless of the 

category’s size. 

We set up an optimization grid in order to determine the optimal 

parameters β, c and γ of our SVM classifier: β is the percentage of top 

scoring features selected for training, c is used to control the complexity 

of the learned hyperplane, and, γ is a parameter of the RBF kernel. As 

shown in Figure 15, the test accuracy is computed for each parameter 



 101 

triplet (c,γ,β) using the 5-fold cross-validation process. Using this 

process, we determined that the maximum test accuracy was achieved 

when β=25%, c=64 and γ=0.0001, and the resulting value for the total 

accuracy of our SVM classifier was 82.4%. This represents a very 

significant performance improvement over PLOC whose total accuracy is 

78.2%. 

This performance improvement is particularly notable if one considers 

the following:  

a) it is obtained using a single classifier (vs. 5 classifiers used by 

PLOC);  

b) there is a single value for the parameter γ of the RBF kernel (vs. 

use of a mixture of two different γ values by PLOC); and, most 

importantly,  

c) our approach obviates the need for the use of a voting scheme that 

combines the results from multiple classifiers.   

Analogously, our achieved location accuracy performance is 

62.1% which again represents a considerable improvement over PLOC’s 

performance of 57.9%. Table 10 details the results of our method for 

each category separately. 
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4.5.2 Method B: variable-length patterns 

Figure 16 highlights the tradeoff between accuracy and coverage at 

various z-score threshold levels when Method B is used alone: as the 

threshold for pattern selection increases the number of sequences in the 

test set that will be covered by those patterns decreases, but the 

prediction accuracy does increase as a result. For example, at z-score 

threshold logθ=20, only 63% of the 7579 proteins are classified but the 

classification accuracy reaches the impressive level of 93.5%; however, 

if we attempt to cover more proteins by lowering the threshold to 

logθ=15, although almost all proteins are covered (96%), the 

classification accuracy drops sharply. 

These findings suggested that instead of trying to cover all 

sequences using the individual patterns of Method B, a hybrid method 

that combined the best characteristics from Method A and Method B 

would be a better choice. 

4.5.3 Hybrid Method B/A: fixed- and variable-length patterns 

The hybrid scheme that we advocate works as follows.  We first use 

Method B to classify a test sequence.  If none of the patterns that 

Method B has at its disposal have instances in the sequence at hand, 

then Method A is brought to bear. 
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The same training and testing approach used for Method A was 

applied in order to evaluate the hybrid Method B/A. A grid search was set 

up in order to determine the optimal z-score threshold θ and the pattern 

matching cutoff α for our Method B classifier, while, for Method A, we 

simply used the optimal parameters obtained from the previous 

optimization of Method A alone. The optimization process for determining 

the optimal parameters of α and θ is summarized in Figure 17. Ideally, 

we would have attempted a joint optimization over all 5 parameters of the 

two methods, which would probably have increased performance even 

further. However, this optimization over 5 parameters would have 

required a tremendous amount of computational resources.  

This hybrid scheme works very well as can be seen from the results 

shown in Table 10.  The hybrid Method B/A approach exhibits markedly 

better total (=84.4%) and location (=70.8%) prediction accuracies when 

compared to the corresponding PLOC values (78.2% and 57.9% 

respectively). These numbers reflect an improvement of 6.2% and 12.9% 

respectively. This is especially important for the location accuracy as it 

implies that better predictions can now be made for the under-

represented categories.  Indeed, we achieve an almost 3–fold 

improvement for the “Golgi apparatus” category and a 2–fold 

improvement for the “peroxisome” and “vacuole” categories when 
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compared to PLOC. Analogous performance improvements are achieved 

for all remaining location categories as can be seen in Figure 18. 

 

4.6 Conclusion 

We have presented a new method that allows to confidently predict 

sub-cellular protein locations.  It is based on the unsupervised discovery 

of fixed-length as well as variable-length patterns. Our method results in 

a significantly-improved ability to predict a protein’s eventual location 

directly from amino acid sequence. When compared with the state-of-

the-art amino-acid-composition-based tool PLOC, we demonstrate 

improvements of total accuracy by 6.2% and of location accuracy by 

12.9% respectively. 

Despite significant computational advances over the years, the 

problem of sub-cellular protein localization is still far from solved for 

eukaryotic organisms.  And, even though we have demonstrated that our 

method achieves significant prediction gains, we believe that it is only 

prudent for practitioners to use the output from all available prediction 

tools before drawing any conclusions. 

Our future work will concentrate on the analysis of factors which limit 

the performance of the proposed method. In this regard, one important 
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improvement, we believe, is likely to result from the use of 

organism-specific datasets.  A significantly harder variation of this 

problem would require that one address the case of proteins with 

multiple locations and that one predict all intermediate such locations. 
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Figure 13: Training/testing for method based on fixed-length pattern 

discovery (Method A). 
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Figure 14: Training/testing for method based on variable-length pattern 

discovery (Method B). 
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Figure 15: 5-fold cross-validation for Method A. 

 

INPUT: 7579 protein sequences and their known locations 

PARTITION input data into 5 folds 

CHOOSE parameters (c,γ,β) from optimization grid 

    FOR fold j = 1 to 5 

      Obtain predictions using Method A with parameters (c,γ,β) 

    END FOR 

    Compute total accuracy based on the predictions from all 5 folds 

END CHOOSE 

Select the parameters (c,γ,β)  that yield the maximum accuracy 
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Figure 16: Tradeoff between accuracy and coverage using Method B as 

standalone. 
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Figure 17: 5-fold cross-validation for hybrid Method B/A. 

 

INPUT: 7579 protein sequences and their known locations 

PARTITION input data into 5 folds 

CHOOSE parameters (α,θ) from optimization grid 

    FOR fold j = 1 to 5 

        Obtain predictions using Method B with parameters (α,θ) 

        Obtain predictions for unclassified instances using Method A 

    END FOR 

    Compute total accuracy based on the predictions from all 5 folds 

END CHOOSE 

Select the parameters (α,θ)  that yield the maximum accuracy 

 

 

 

 

 

 



 111 

 

Figure 18: Comparison of our method with PLOC. 
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 Table 8: Chemical equivalence classes for amino acids. 

 

EQUIVALENCE CLASS 
MEMBERS 

SYMBOL 

A, G [AG] 

D, E [DE] 

F, Y [FY] 

K, R [KR] 

I, L, M, V [ILMV] 

N, Q [NQ] 

S, T [ST] 
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Table 9: Examples of patterns. 

 

CATEGORY EXAMPLES 

L=1/W=1 

A 
Q 
[AG] 
[ILMV] 

L=2/W=2 

AE 
ST 
[DE]A 
T[ILMV] 
[AG][NQ] 
[KR][ILMV] 

L=3/W=5 

ADY  
AD.Y  
A.DY  
A..DY  
A.D.Y  
AD..Y 
[AG][DE][FY] 
[AG]..D[ILMV] 

L=4/W=6 
ADYV  
AD.V.Y  
[AG].[DE].[FY] 
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Table 10: Comparison of prediction accuracy (sensitivity) for the 12 sub-

cellular locations. The PLOC data is taken from [106]. 

LOCATION  METHOD B/A METHOD A PLOC 

CHLOROPLAST (671) 81.7% 79.0% 72.0% 

CYTOPLASM (1245) 79.4% 77.9% 72.0% 

CYTOSKELETON (41) 75.0% 72.5% 59.0% 

ER (114) 71.1% 58.8% 47.0% 

GOLGI APPARATUS (48) 44.7% 14.9% 15.0% 

LYSOSOME (93) 68.8% 52.7% 62.0% 

MITOCHONDRIA (727) 63.5% 60.7% 57.0% 

NUCLEUS (1932) 92.5% 91.3% 90.0% 

PEROXISOME (125) 48.8% 36.0% 25.0% 

PLASMA MEMBRANE (1677) 94.0% 94.1% 92.0% 

SECRETED (862) 89.0% 87.6% 78.0% 

VACUOLE (54) 40.7% 20.4% 25.0% 

TOTAL ACCURACY, TP 84.4% 82.3% 78.2% 

LOCATION ACCURACY, LP 70.8% 62.1% 57.9% 



 115 

 

5 Transcription factor binding site prediction 

 

 

The discovery of transcription factor-binding site pairs has 

applications ranging from medicine to nanotechnology. Microarray data 

provides a promising base from which to infer such pairs, but pose two 

important challenges: (a) microarray measurements are often noisy 

making it difficult to obtain reliable correlation measurements; (b) 

transcription often depends on multiple transcription factor-binding site 

pairings, so simple correlation is insufficiently powerful to discover 

individual pairings. In this work, we propose a novel method for the 

discovery of candidate binding sites for transcription factors via the 

computation of bi-clusters that measure the degree of correlation in 

specific experimental conditions between a transcription factor and a set 

of genes containing a potential binding site. We demonstrate that our bi-

cluster based method performs better than a method that is simply based 

on pair-wise correlations between the transcription factor and the genes 

containing the binding site. Moreover, we demonstrate that the number 
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of ways different sets of genes containing a binding site for a 

transcription factor are co-expressed with the transcription factor, i.e. the 

total number of bi-clusters, is higher than the number of bi-clusters found 

in a set of genes that contain a motif different that the actual binding site, 

a result that is in accordance with the notion of combinatorial regulation. 

  

5.1 Related work 

Motifs are short DNA sequences present in the upstream regions 

of genes that play some kind of regulatory role in protein expression. 

Motif finding in unaligned DNA sequences is therefore a fundamental 

problem in computational biology, because it can potentially unveil the 

regulatory signals that control the processes of activating and repressing 

genes.  

The most popular methods for motif finding depend on the 

probabilistic modeling (profile) of the motifs, usually with variations of 

Position-Specific Scoring Matrices (PSSMs) obtained as a summary of 

multiple motif alignments. Different searching methods have been used 

resulting in different tools: the Gibbs Motif Sampler (Lawrence et al. 1993 

[2], Neuwald et al. 1995 [3]), based on Gibbs sampling, MEME (Bailey 

and Elkan 1995 [4]), based on multiple runs of the Expectation 
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Maximization algorithm, AlignACE (Roth et al. 1998 [5]), based on 

information content maximization, PSI-BLAST (Altschul et al. 1997 [6]), 

based on iterative refinement of initial sequence alignments, 

CONSENSUS (Hertz and Stormo 1999 [7]), and other [8, 9, 120-122]. 

These methods aim at discovering the highest scoring signals and are 

not necessarily suitable for cases where a pair of monad signals, i.e. a 

dyad signal, is sought, since the members of the dyad signal would be 

statistically significant as a pair but not necessarily as individuals. In fact, 

many of the actual regulatory signals are composite patterns, i.e. groups 

of monad patterns [123]. 

Profile-based methods have been extended to detect dyad signals 

in GuhaThakurta and Stormo (2001) [124] and Liu et al. (2001) [125], but 

are based on approximations and therefore they cannot guarantee that 

all signals will be discovered. Exhaustive enumeration using suffix trees 

is performed in the dyad pattern search algorithm of Marsan and Sagot 

(2000) [126]. Based on the observation that many regulatory sites 

consist of a pair of highly conserved trinucleotides separated by a fixed 

number of unconserved nucleotides, a method called dyad analysis was 

introduced by van Helden et al. (2000) [127], which reports dyads 

conforming to the pattern described above and satisfying some notion of 

statistical significance. Finally, MITRA [128] is designed to discover 
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composite patterns that occur with mismatches. It is based on the 

pairwise similarity information introduced in the WINNOWER algorithm 

[121], and borrows the trie structure for data indexing used in the Speller 

algorithm [129]. 

In order to provide a complete picture of the regulatory 

mechanisms that determine gene expression in the cell, the complete 

map of interactions among regulatory elements (e.g. cis-elements), 

regulating proteins (e.g. transcription factors) and regulated genes must 

be composed.  

An enormous research effort is being devoted to uncovering this 

interaction map. Clearly, upstream regions, which are used as input in 

the motif discovering methods presented in the previous section, must be 

combined with other types of data in order for this to be possible. 

Usually, the additional data comes in the form gene expression data 

obtained from microarray experiments. Models for combining the two 

types of data can be found in Zhang (1999) [130], Vilo and Kivinen 

(2001) [131], Ohler and Niemann (2001) [132], and Werner (2001) [133]. 

Broadly speaking, the huge variety of computational methods for 

discovering regulatory networks can be distinguished in three categories. 

In the first category, we find methods whose starting point is the 

discovery of groups (or clusters) of potentially co-regulated genes in 
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terms of their expression levels across multiple experiments. Given a 

group of potentially co-regulated genes, and under the assumption that 

there is a causal link between the gene upstream region and the 

observed co-expression, they attempt to identify cis-elements by looking 

for overrepresented motifs in the upstream regions of the genes in the 

cluster (Brazma et al. 1998 [134], Roth et al. 1998 [5], Tavazoie et al. 

1999 [135], Sinha and Tompa 2000 [136], Liu et al. 2001 [125]).  

Methods of the second category approach the problem from the 

opposite direction. First, they perform some kind of unsupervised pattern 

discovery on the upstream sequences, which can either be exhaustive or 

may utilize one of the methods presented in the previous section. 

Another option is to use only experimentally validated binding sites, 

using one of the available databases, such as TRANSFAC (Wingender 

et al., 2001 [137]). Then, a model for gene expression is built comprising 

the genes and the discovered motifs, the model is fitted to the available 

data, and finally it is evaluated in terms of whether it actually uncovers 

parts of the underlying biological mechanisms involved. A wide variety of 

models have been applied, such as Bayesian Networks in Barash and 

Friedman (2001) [138], and Probabilistic Relational Models in Segal et al. 

(2001, 2002, 2003) [139-141]. Birnbaum et al. (2001)  [142] use a linear 

model to describe the relationship between transcription factors and 
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motifs, defining the aggregate motif expression as the sum of 

expressions of genes containing the motif in their upstream region, and 

correlating it to the expression of known transcription factors. 

Bussemaker et al. (2001) [143] models gene expression with a weighted 

linear combination of the number of occurrences of each motif in the 

gene upstream region. The method presented in Pilpel et al. (2001) 

[144], seeks significant combinatorial interactions between pairs of 

putative transcription factors. Other methods for identifying both cis-

elements and groups of co-expressed genes can be found in Eisen et al., 

1998  [145], Wu et al., 2002 [146], Ihmels et al., 2002 [147], Halfon et al., 

2002 [148], Tanay et al., 2002 [149], Spellman et al., 1998 [150].  

As researchers become increasingly ambitious, the most popular 

methods today attempt to present a unified model for analyzing gene 

expression data comprising groups of condition-specific co-expressed 

genes, cis-element discovery, and their associated transcription factors. 

In this third category we can find boolean network models (Weaver et al., 

1999 [151], D'Haeseleer et al., 1999 [152]), where gene expression is in 

one of two states (activated or repressed) determined by a boolean 

function of the expression of its transcription factors (TFs), linear models 

(Somogyi et al., 1996 [153], Akutsu et al., 1998 [154]), where each gene 

expression is linearly dependent on the TF expression, Bayesian 
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Networks (Holmes and Bruno 2000 [155], Friedman et al., 2000 [156], 

Beer and Tavazoie (2004) [157]), where each gene expression is a 

modeled as conditional probability distribution with respect to the 

expression of other genes, and, finally, Probabilistic Relational Models 

(Segal, 2004 [158]), an extension of Bayesian Networks modeling 

classes of objects and their relationships.  

 

5.2 Methods 

5.2.1 Discovering bi-clusters 

In this section, we describe our method for discovering 

transcription-factor-specific bi-clusters which we later use in order to 

predict binding sites for transcription factors. Given as an input a 

transcription factor, a set of genes and their expression in several distinct 

experimental conditions, our task is to discover all possible subsets of 

genes from the original set of genes whose expression is tightly 

correlated to the expression of the given transcription factor in some 

subset of the available experiments. An example of transcription factor 

and gene expression profiles which can be provided as an input to our 

algorithm is depicted in Figure 19. In this set of genes, an example of a 

bi-cluster comprises all three genes, all of which are correlated with the 
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given transcription factor in experiments e1 through e6. Another example 

would contain only genes g2 and g3, which are correlated in more 

experiments, i.e. experiments e1 through e7. It is important to note that 

the discovered bi-clusters should take into account shifts and scaling in 

expression. For example, gene g3 does not have identical expression 

values with the transcription factor in experiments e1 through e7, however 

under appropriate shifting and scaling operations the two expression 

vectors match (within some margin of error), which means that the 

correlation is high.  

In order to discover genes whose expression matches that of a 

given transcription factor t subject to shifting and scaling, we order the 

experiments based on the magnitude of the expression of t (from low to 

high). Then for each gene g that exceeds some correlation threshold, we 

plot the expression value for each experiment, and compute a linear 

regression through the resulting scatter plot. An example is shown in 

Figure 20. After computing the line that best describes the relationship 

between the two expressions, i.e. the one that minimizes the total 

squared error, using the least squares method, we compute the error 

(positive or negative) of each point against the optimal line. What we 

have achieved so far, is to convert each original gene expression value 

for each experiment into a value representing the distance of this point 



 123 

from the optimal line which is used as a simple model of the gene’s 

expression against its potential regulator’s (transcription factor’s) 

expression. Of course, this can be extended so that more complex 

models are considered, but we leave this to future work. We further 

process the error values obtained by this process discretizing them in 

terms of how many standard deviations (measured in integral units) each 

point is far from the mean of the error values. The same process is 

repeated for all genes in the input set, so that every gene expression 

vector is effectively converted into a new vector whose values reflect 

how closely any given gene can be matched to its potential transcription 

factor in each experimental condition. For a gene g and a transcription 

factor t we use the notation vg,t to represent this vector. Also, if we want 

to restrict this vector to a subset C of experimental conditions, we use 

the notation vg,t[C]. 

At this point we can use any standard algorithm for bi-cluster 

discovery. This family of algorithms operates on a matrix where rows are 

genes and columns are experiments and finds all sub-matrices of this 
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matrix such that all rows of these sub-matrices are identical7. Formally, a 

bi-cluster β  is defined as a set of genes and set of experiments: 

( ) { } { }( )1 2 1 2, , ,... , , ,...G C g g c cβ β β≡ ≡ , 

such that for any Ggg β∈′, : 

[ ] [ ], ,g t C g t Cv vβ β′= 8. 

More specifically, we are interested in maximal bi-clusters, which 

is a special subset of all the discovered bi-clusters. A bi-

cluster ( ),G Cβ β β=  is maximal if and only if no other bi-

cluster ( ),G Cβ β β′ ′ ′=  exists such that: 

a) GG ββ =′  and Cβ ′  is a proper superset of Cβ , or,  

b) C Cβ β′ =  and Gβ ′  is a proper superset of Gβ . 

For each discovered bi-cluster we compute two useful general 

properties, i.e. its error and standard deviation factor. We now define 

these two properties in turn.  

                                            

7
 Equivalently, the rows of the matrix can be converted into sets whose 

elements are a combination of the matrix value at a given column and the column 
number. Therefore, the bi-cluster discovery problem can effectively be converted into 
an itemset discovery problem. 

8
 Note that a bi-cluster need not be uniform across conditions, for example 

vg,t[βC] = [ 0 1 1 0 0 0  -2 0 0 ]. 
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The error ( )err β  of a bi-cluster ( ),G Cβ β β=  is defined as: 

( )
{ }, [ ] 0 |

err
g t C

C

v c c β
β

β

≠ ∈
= , 

in other words, it is the fraction of non-zero values in a bi-cluster row, 

which represent the experiments where the gene expression matches 

that of the transcription factor within an error margin of one standard 

deviation.  

The standard deviation factor ( )std β  of a bi-cluster ( ),G Cβ β β=  is 

defined with respect to the transcription factor’s expression as: 

( )
( )

( )

2

2

[ ]

std
t

t

t C x

t x

E x

E x

β µ
β

µ

 −  =
 −  

 

where [ ]E ⋅  is the expectation, xt is the (original) expression vector of the 

transcription factor t, and 
t

xµ  is the average of xt. 

 

5.2.2 The proposed model 

The problem we are trying to solve is to discover transcription 

factor binding site pairs given two kinds of information: 
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a) a set of genes and their expression under several 

experimental conditions, not necessarily organized as time 

series, and 

b) the upstream regions of the genes, i.e. the regions where the 

cis regulatory DNA sequences are found. 

In Figure 21, we schematically present the various data structures 

and their relationships to the set of transcription factors and the set of 

potential cis elements (motifs) that need to be assigned to some 

transcription factor. We will attempt to perform this transcription factor to 

cis element assignments using some common properties of the two 

distinct types of data.  

As we can see from Figure 21, each transcription factor is 

associated with an expression profile. At the same time, each gene in the 

database is also associated with an expression profile under the same 

experimental conditions. Therefore, the expression profiles provide an 

obvious link among transcription factors and other genes, which can be 

expressed in terms of some similarity measure among expression 

profiles, such as correlation and bi-cluster analysis. The former focuses 

on global pair-wise similarities between expression profiles, whereas the 

latter discovers sets of two or more genes which share partial similarities 

in a subset of the available experiments only. A similar link exists 
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between motifs and genes as well, this time in terms of gene upstream 

regions. Each gene is associated with one upstream region, and any 

given motif may appear in the upstream region of one or more genes.  

Clearly, several possibilities arise when one attempts to construct 

a model linking transcription factors to motifs using the data structures in 

Figure 21. First, we summarize the approach taken by two broad classes 

of models, one starting from motifs (Model 1 in Figure 22) and another 

one starting from transcription factors (Model 2 in Figure 23). Then, we 

propose a new model designed to address some of the assumptions and 

limitations of the previously proposed models (Figure 24).  

In model 1 (Figure 22), the goal is to compute an expression 

profile for each motif under consideration and correlate it with the 

expression profiles of the available transcription factors. After searching 

for occurrences of the motif in the upstream regions of the available 

genes, the expression profiles of the genes containing the motif in their 

upstream regions are added and the resulting aggregate expression 

profile is designated as the motif expression profile. The advantage of 

the aggregate motif expression lies in the fact that complex regulatory 

mechanisms, such as boolean circuits, are implicitly incorporated into the 

model, provided that the aggregate expression of an active motif is 

indeed correlated with the expression of its associated transcription 
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factor. As a result, transcription factors and motifs can be directly 

compared in the expression profile domain using correlation. However, if 

we are dealing with thousands of genes, it is clear that the vast majority 

of candidate motifs of a modest size will be found in the promoters of 

several hundreds of genes. Since it is highly likely that some genes may 

not be regulated by a single transcription factor, despite the presence of 

its associated binding site in their upstream regions, taking the sum of 

the expression vectors of all the genes where the motif is found will, in 

high probability, yield a aggregate motif expression that is corrupted with 

“noise” coming from genes that are not regulated – under any 

experimental condition – through the motif in question. 

In model 2 (Figure 23), the goal is to find over-represented motifs 

in the upstream regions of genes that are highly correlated to a given 

transcription factor. The underlying hypothesis is that genes that are 

highly correlated to the transcription factor are most probably regulated 

by that transcription factor, and, therefore, they should contain some 

common cis regulatory element in their upstream regions. In fact, this is 

an unjustified assumption, because it relies on a very simple causative 

model shown in Figure 25(a), which implies that the only genes whose 

expression is correlated to that of the transcription factor are the ones 

whose upstream region is bound by this factor. However, in a more 
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realistic setting, shown in Figure 25(b), more genes fall into this category 

both upstream of the transcription factor, and downstream of the 

regulated genes. Thus, in general, it will not be the case that the most 

highly over-represented motifs in the upstream regions of the correlated 

genes actually contain the true binding site.  

In the proposed model (Figure 24), we try to address the main 

limitations of the basic models by mapping motifs to transcription factors 

using sets of discovered bi-clusters. For each pair of motif and 

transcription factor, we discover bi-clusters using the expression profiles 

of only a subset of the available genes. This subset of genes has two 

properties aimed at addressing simultaneously the issues of high 

correlation to the transcription factor and presence of the motif in their 

upstream regions: 

a) only the set of n-top correlating genes Gt with transcription 

factor t can belong to the selected subset, and, 

b) only the set of genes Gm containing the motif m can belong to 

the subset. 

In other words the set of genes we are considering for bi-cluster 

discovery is the intersection of sets Gt and Gm. We denote this set as 

Gm,t. As a result, all the discovered bi-clusters for a given pair of motif 

and transcription factor will comprise genes whose upstream regions 
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contain the motif and whose expression is (relatively) highly correlated to 

that of the transcription factor.  

It is important to explain why we do not use the selected subset of 

genes directly and we instead go a step further computing bi-clusters for 

those genes. Correlations are simply based on pair-wise comparisons of 

gene expression profiles and are not necessarily statistically significant. 

In bi-cluster analysis, a set of two or more genes is discovered so that 

their expression is correlated in a set of experiments. Clearly, the larger 

the number of genes and experiments contained in the bi-cluster, the 

lower the probability of discovering this bi-cluster by chance. 

Analogously, in the protein domain discovery problem, the pair-wise 

alignment of only two homologous proteins will not be capable of 

identifying the actual domain. Multiple sequence alignment of a number 

of homologous proteins must be performed in order to discover the 

conserved domain.  

After discovering for each motif m and transcription factor t a set 

of bi-clusters Bm,t, we define the following score, parameterized by an 

error threshold ε and a standard deviation factor threshold σ: 

( ) ( ) ( ){ }, ,score , | err stdm tm t Bε σ β β ε β σ= ∈ < ∧ >

 (1) 
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In other words, the score is simply the number of bi-clusters 

satisfying the constraints. Given a motif m, the transcription factors are 

ranked according to their score in order to obtain the n-best predictions.  

  

5.3 Results 

5.3.1 Dataset 

The dataset we used comprised 23,000 Arabidopsis genes and 

their expression in a total of 92 experiments, 79 of which were obtained 

by combining replicates of microarray experiments available at 

AtGenExpress9, and the remaining 13 experiments from Birnbaum et al. 

(2003). Of these genes we kept only the relatively highly expressed 

genes, a total of 4,702 genes. For validation we used transcription 

factors and their experimentally validated binding sites shown in Table 

11 downloaded from the PLACE database10. Special nucleotide codes 

appearing in these binding sites are explained in Table 12. A list of 

Arabidopsis transcription factors was downloaded from the AGRIS 

                                            

9
 http://arabidopsis.org/info/expression/ATGenExpress.jsp 

10
 http://www.dna.affrc.go.jp/PLACE/ 
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database11. Of the 1,619 transcription factors, only 223 were highly 

expressed in our dataset.  

 

5.3.2 Testing 

We used the method developed in the previous section in order to 

predict for each motif m a set of transcription factors that potentially bind 

to that motif. The transcription factors were ranked using the score 

introduced in equation (1). We compared the performance of the scoring 

scheme with a simple correlation-based score, which is the average 

correlation of the genes in set Gm,t to the transcription factor t: 

( )
,

,

1
c- score , ( , )

m t

g t

m t g G

m t corr x x
G ∈

= ∑   (2) 

where xg is the expression vector of gene g and xt is the expression 

vector of transcription factor t. 

The results are summarized in Figure 26. Each point in the figure 

represents the percentage of correct transcription factor/binding site pair 

recovered by each scoring scheme within the n-top predictions, where n 

ranges from 5 to 30.  

                                            

11
 http://arabidopsis.med.ohio-state.edu/AtTFDB/ 



 133 

 

Figure 19: A transcription factor expression profile (red) plotted against 

three gene expression profiles in several experimental conditions. 
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Figure 20: Scatter plot of gene expression and transcription factor 

expression profiles. 
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Figure 21: Links between a transcription factor and a potential binding 

site can be constructed using gene expression and gene upstream 

sequence information.  
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Figure 22: Model 1 – begin with a cis element, compute its 

aggregate expression and correlate with transcription factor 

expression. 
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Figure 23: Model 2 - begin with a transcription factor, find a set of 

highly-correlated genes and look at their upstream regions for over-

represented cis elements. 
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Figure 24: Proposed model – find the gene set where all genes are highly 

correlated to a transcription factor and contain the potential binding site 

in their upstream regions, and then discover all bi-clusters in that set. 
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Figure 25: (a) simple interaction model between a transcription factor and 

its downstream genes, (b) realistic model includes genes upstream of the 

transcription factor and downstream of the regulated genes. 
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Figure 26: Comparison against simple correlation 
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Table 11: List of transcription factors with their experimentally 

validated binding sites. 

Factor ID Gene ID Affy ID Binding site 

SEP1 At5g15800 246531_at NNWNCCAWWWWTRGWWAN 
HB-5 At5g65310 247191_at CAATTATTA 
WRKY2 At5g56270 248008_at CATGTG 
OBF4 At5g10030 250463_at CAACA 
OBF5 At5g06960 250655_at TACACTTTTGG 
SHP1 At3g58780 251555_at NTTDCCWWWWNNGGWAAN 
OBP1 At3g50410 252210_at TACACTTTTGG 
DPBF2 At3g44460 252645_at RCCGAC 
RD26 At4g27410 253872_at CCWWWWWWGG 
CBF2 At4g25470 254075_at CCAATGT 
AG At4g18960 254595_at TTDCCWWWWWWGGHAA 
AG At4g18960 254595_at TTWCCWWWWNNGGWW 
ARR1 At3g16857 257649_at CAATWATTG 
ABF4 At3g19290 258026_at CCACGTGG 
ABF4 At3g19290 258026_at RYACGTGGYR 
NAC3 At3g15500 258395_at CATGTG 
HAT5 At3g01470 259165_at CAATSATTG 
RAV1 At1g13260 259364_at CACCTG 
RAV1 At1g13260 259364_at TTAATGG 
NAM At1g52890 260203_at CATGTG 
MYB2 At2g47190 260581_at YAACKG 
SCL21 At2g04890 263626_at TTGACC 
HB-6 At2g22430 264006_at ACACNNG 
AGL3 At2g03710 264041_at TTWCYAWWWWTRGWAA 
WUS At2g17950 265821_at WAACCA 
SEP1 At5g15800 246531_at NNWNCCAWWWWTRGWWAN 
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Table 12: Nucleotide codes. 

Code Corresponding bases 

R A, G 

B C, G, T 

D A, G, T 

H A, C, T 

K G, T 

M A, C 

N A, C, G, T 

S C, G 

V A, C, G 

W A, T 

Y C, T 
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6 Future work 

 

 

In future work, we are planning to extend the work on horizontal 

gene transfer in order to be able to perform phylogenetic placement of 

genes and gene fragments of unknown origin. This will enable the 

classification of environmental samples.  

Of particular interest is the analysis of repetitive non-coding 

elements that in the human genome in order to discover insertion and 

deletion events and therefore trace their evolutionary history. Since these 

elements are also transcribed into mRNA, we are planning to investigate 

a potential regulatory role for these elements.  

Finally, we are currently applying the bi-cluster discovery 

technique presented in chapter 5 in order to identify upstream regulators 

of transcription factors in Arabidopsis and ultimately generate testable 

hypotheses in the form of putative regulatory networks between 

transcription factors.  
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