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Abstract

It has long been the goal in computer vision to learn a hierarchy of features useful

for object recognition. Spanning the two traditional paradigms of machine learning,

unsupervised and supervised learning, we investigate the application of deep learning

methods to tackle this challenging task and to learn robust representations of images.

We begin our investigation with the introduction of a novel unsupervised learning tech-

nique called deconvolutional networks. Based on convolutional sparse coding, we show

this model learns interesting decompositions of images into parts without object label

information. This method, which easily scales to large images, becomes increasingly in-

variant by learning multiple layers of feature extraction coupled with pooling layers. We

introduce a novel pooling method called Gaussian pooling to enable these layers to store

continuous location information while being differentiable, creating a unified objective

function to optimize.

In the supervised learning domain, a well-established model for recognition of objects

is the convolutional network. We introduce a new regularization method for convolu-

tional networks called stochastic pooling which relies on sampling noise to prevent these

powerful models from overfitting. Additionally, we show novel visualizations of these

complex models to better understand what they learn and to provide insight on how

to develop state-of-the-art architectures for large-scale classification of 1,000 different

object categories.

We also investigate related problems in deep learning. First, we introduce a model for the

task of mapping one high dimensional time series sequence onto another. Second, we ad-

dress the choice of nonlinearity in neural networks, showing evidence that rectified linear

units outperform others types in automatic speech recognition. Finally, we introduce

a novel optimization method called ADADELTA which shows promising convergence

speeds in practice whilst being robust to hyper-parameter selection.
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Chapter 1

Introduction

It has long been the goal of computer vision researchers to have a flexible representa-

tion of the visual world capable of recognizing objects in complex scenes. While this

seems natural and simple to humans, the task of object recognition has been studied for

many years with no robust solution to date. There have been successful methods that

are adequate for specific classifying object categories such as faces but the problem of

large-scale object recognition involving many different classes of objects remains largely

unsolved.

This task is difficult due to the large number of objects in the world, the continuous

set of viewpoints from which they can be viewed, and any number of external factors.

These factors can include the lighting of objects in a scene, color variations for different

instances of the same object, background clutter which can confuse classification, and

occlusion which prevents the entire object from being seen. In addition to all these

factors, there is also the possibility for several classes to look remarkably similar, a

common occurrence when the number of objects to distinguish between becomes very

large, or for objects in the same class to look very different such as when age, gender,

version, make, etc. are present. See for example Figure 1.1 where images of dogs are

shown at various poses and backgrounds with different colored fur. Despite all the dogs
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Figure 1.1: An illustration of the difficulty in detecting various classes of objects. Shown
from left to right are examples of a golden retriever, a Labrador retriever, a flat-coated
retriever, and another Labrador retriever. Only slight variations in hair length or color
set these breeds apart. We demonstrate in this thesis a model that can predict these
classes correctly out of 1,000 known objects with 53%, 70%, 96%, and 63% confidence
respectively despite the wide variety of pose, background, and colors of the dogs seen in
these images.

being relatively similar, there are three distinct breeds shown. This can be confusing not

only for a computer system, but for humans who are unfamiliar with the small details

that make these breeds different. To be able to recognize a set of known objects like

these in this vast world of variation seems like a daunting task. However, this is a task

that even young infants can handle without much challenge, and it is also plausible that

a computer system could be designed to handle all these variations and recognize objects

in the visual world.

If a reliable object recognition system was designed, it could be useful in numerous

applications. For instance, it could be useful for image search where understanding the

content of images rather than relying on tags found in image captions could greatly

improve the relevance of results. Image search based on an input image could also

become feasible because only objects found in the images need to be matched. The field

of surveillance could be improved by having systems looking for specific objects to be

present or not in a given area. Car navigation could rely on a vision system to detect

nearby cars or obstacles on the road and automatically determine how to safely position

the car. These systems could also be used to aid blind people to see traffic signals, read

signs, or move around new environments without additional help. These are just a few

obvious examples, but with a reliable visual system capable of recognizing objects there
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are many possible applications across a wide variety of domains.

In the past it has proved difficult to create hand crafted system to recognize these objects.

Not only are there too many combinations of features needed to handle all the variations

of the objects, this method seems like an implausible explanation for how the human

visual system could work. Learning of some form takes place from the time we are born

until we understand a large number of distinct objects. Therefore as the main crux of

this thesis we attempt to determine what form of learning algorithm is applicable to the

task of object recognition with the goal of producing a reliable system that could be

useful for some of these aforementioned applications.

We chose to explore various forms of deep learning, that is, learning multiple layers of

abstraction from the input images. As the number of classes, the amount of variability,

and the number of training examples grow, deep learning out performs other methods.

We investigate both unsupervised learning which requires no external guidance and su-

pervised learning in which labelled examples of objects are utilized to train the model.

Both forms of learning also exist in the human visual system, infants are given labels of

select objects they see in the world, but can also cope with unseen objects by relating

them to common things they have previously seen.

Learning structures from images without any supervision was the goal of our initial

work on deconvolutional networks discussed in Chapter 3. By encouraging sparsity in

the activations of an unsupervised learning method such as sparse coding [93], simple

primitives such as oriented edges spontaneously emerge and resemble those found in

the V1 area of the human visual pipeline. To easily build upon these primitives we

first make the overall system more flexible whilst it simultaneously becoms more robust.

Convolutional architectures, which share parameters at each spatial location over an

image have the benefit of being equivariant to shifts in the input. That is, shifting

the image in one direction creates a corresponding shift of the features responses in

the same direction. This allows the representation to respond regardless of the object
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position in the image. Combining the benefits of convolutions with sparse coding we

show interesting edges, curves, and colors emerge while having an equivariant sparse

distribution of features.

Building these simple primitives into more complex structures such as corners and curves

seems like a plausible next step in building a robust object recognition system in an

unsupervised way. By stacking multiple levels of sparse convolutional feature extractors

we show these structures emerge sa the hierarchy ascends. A third layer on top of these

mid-level features extracts more complex color variations and grating patterns similar

to those proposed by Marr in the 1970’s [83].

To further extend the idea of stacking convolutional sparse coding layers, we look toward

convolutional networks [74] to see how those models handle invariance. Convolutional

networks are essentially the inverse model to a deconvolutional network in that they apply

feedforward filtering operations to images to extract interesting features. By adding a

pooling layer between feature extraction layers, each higher layer feature handles complex

invariances to different configurations of pixels in the input image. Incorporating similar

pooling layers into our unsupervised learning approach with deconvolutional networks

allows the third layer of the model to have a much larger receptive field and learn to

represent parts of objects. Furthermore, an additional fourth layer in the model can

learn to represent entire objects in a completely unsupervised fashion.

Having this hierarchical representation of objects proves useful for object recognition,

improving performance as the hierarchy is ascended. This composition of low-level struc-

ture in multiple layers leading to high level object concepts is perhaps biologically plau-

sible as well. V1 neurons are known to be selective to specific orientations [93] and to

connect to several additional layers of processing with the final layers providing some

representations of entire objects.

While the unsupervised deconvolutional networks are conceptually more ideal and can

handle the nearly unlimited amounts of unlabelled data available, the classification per-
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formance and inference speed does not necessarily scale well. A brief attempt at adding

label information to the deconvolutional network suggested that extreme levels of spar-

sity were not useful for classification. This, along with recent success in large-scale object

recognition by Krizhevsky et al. [67] using convolutional networks, led our research in

the direction of these models which can take advantage of labelled information to tune

the representation well for specific classes.

With the advent of rectified linear units (ReLU) [90], relatively sparse distributions can

still be achieved in a convolutional network at a fraction of the computational cost of

inference in a deconvolutional network. Since these rectified linear units are used in

conjunction with a supervised objective function, the classification performance does

not suffer from large amounts of sparsification as was the case with deconvolutional

networks trained in an unsupervised fashion. By combining these ReLUs with a novel

stochastic pooling procedure we show state of the art performance across a number of

common benchmarks. This stochastic pooling provides a hyper-parameter free way of

regularizing a large convolutional network such that it does not memorize or overfit the

training data.

This approach was applied to several small scale object recognition benchmarks where

the number of classes ranged up to 100 and the number of training examples was in the

10k regime. This is far from what even young children have been exposed to and likely

not how the powerful visual system in our brains is trained. Therefore, we moved in the

direction of more classes and data to tackle the ImageNet challenge for large-scale object

recognition with 1000 classes and over 1 million training examples. Building a system

for this dataset was challenging. By using deconvolutional networks as a tool to visualize

the inner workings of a large convolutional network we achieved state-of-the-art results

on the ImageNet benchmark as well as several other datasets. These visualizations also

help understand the invariances the model can cope with and with collaboration with the

neuroscience community could potentially lead to a better understanding of our visual

systems.
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The above work constitutes the main body of this work. In addition to investigating

learning methods for object recognition, we also explore several other interesting prob-

lems in machine learning in the second part of this thesis. One such problem is that of

facial expression transfer where the goal is to convert an input sequence of facial motions

into a output sequence of a different person’s corresponding motions. We derived a novel

approach to this problem and surpassed existing methods in this useful task which can

be applied directly to cartoon character animation.

Another problem that benefits from the use of rectified linear units is that of automatic

speech recognition. We show faster training times and better generalization abilities for

large scale speech recognition when using these types of nonlinearities. This work formed

the basis for the production systems being used in various speech recognition products

at Google.

Finally, we investigate the fundamental problem of optimization in machine learning and

introduce a novel update rule. The proposed method is insensitive to hyperparameter

settings and model architectures while providing fast convergence that is robust to large

gradient magnitudes. We hope this method can be applied to many more problems in

the future to improve convergence and generalization throughout machine learning.
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Chapter 2

Background Literature

This chapter provides an outline of the basic principles upon which the remaining chap-

ters are based with the aim of making this thesis self contained. The chapter also

introduces some of the notation that will be used throughout this thesis.

The work in this thesis brings together previous methods from two major fields, com-

puter vision and machine learning. Therefore this chapter is broken into two sections to

describe some of the most common approaches used in each field. Additionally, back-

ground information about convolutions, a mathematical operation used throughout this

thesis, is included in Appendix A.1.

2.1 Computer Vision

The field of computer vision has the broad goals of representing natural images in a way

that can be useful for segmentation, object classification, object detection, image de-

noising and image de-blurring to name a few tasks. While all these tasks are seemingly

disjoint, having a good underlying representation of an image is a common factor in all

of them and relates to the work presented in this thesis. The entire field of computer

vision is too broad to cover in depth, including a large body of work on hand-engineering
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visual features which is not the focus of this thesis. Below are some prior art on learning

representations in computer vision which relate to this thesis.

2.1.1 Sparse Coding

The goal of sparse coding is to learn an overcomplete set of basis functions that describe

the input data [93]. Using a small number of such basis functions to reconstruction each

input vector requires a sparse distribution of coefficients or features activations z, one

for each basis function. For a given input vector, x, of Nd dimensions, the cost function

C that sparse coding attempts to optimize is:

C =
λ

2
||Wz − x||22 + |z|1 (2.1)

where W is a Nd × Nk matrix of basis functions and z are the feature activations as a

Nk×1 vector for each example. To be over-complete Nk is chosen to be > Nd. Note, for

simplicity here and throughout this thesis we omit summing the cost function over all

examples x in the dataset X . In practice the goal is to minimize the cost over the entire

dataset and optimization may proceed using one example at a time, in mini-batches, or

in full batch (entire dataset). Variables are defined as either being shared over the entire

dataset, for example W in Eq. 2.1 or as being per-example variables such as x and z in

Eq. 2.1. For a full list of notation see Appendix A.1 where all the methods mentioned

in this thesis share a common set of notation in order to show their similarities.

This cost function is composed to two terms, the first being a reconstruction term that

enforces the reconstruction from the inferred features, z, using the learned weight matrix

W to be close to the inputs x for each data case. The second term encourages the

inferred feature maps to become sparse in the `1 sense as a proxy for optimizing the true

`0 sparsity which is non-differentiable [129].

To optimize this cost function, typically there is a alternating procedure between 1)
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updating the weights W that are shared between all examples given each x and z, and

2) inferring the feature activations z for each example x given the current setting of the

weights W .

In terms of updating the weights, gradient descent [106] is often employed [93]:

W = W − η ∂C
∂W

= W − η(Wz − x)zT (2.2)

where η is a learning rate chosen by hand. More advanced conjugate gradient methods

can also be used to speed up the converge, reducing the number of optimization updates

needed for each weight update [115].

Given a setting of the weights, the feature activations must be inferred. Many ap-

proaches utilize an alternating optimization approach such as iterative shrinkage and

thresholding algorithm (ISTA) [18]. This alternates taking a gradient step to optimize

the reconstruction term:

z′ = z − η
(
∂C

∂z

)

recon

= z − ηW T (Wz − x) (2.3)

followed by a step for the `1 sparsity term which has a closed form shrinkage operation:

z = max(0, z′ − λη) (2.4)

This simple algorithm is fairly effective at optimizing the cost function in Eq. 2.1, however

several other optimization algorithms have been designed for minimizing this sparse

coding objective. Fast iterative shrinkage-thresholding algorithm (FISTA) [4] is the most

immediate extension to the ISTA algorithm and changes the convergence properties to

be O(1/t2) rather than the O(1/t) convergence rate of ISTA, where t is there number of

iterations. Additional efficient optimization methods for sparse coding include: atomic
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Figure 2.1: Sparse coding of an input patch x. Shown here are a few non-zero ele-
ments of the feature activations z which create a weighed sum reconstruction using the
corresponding dictionary elements from W . Reproduced from Kavukcuoglu et al. [61].

decomposition by basis pursuit [20], continuation methods used by Geman [40] and Wang

et al. [138], the feature-sign algorithm by Lee et al. [77], and the online primal-dual convex

optimization toolbox by Mairal et al. [81, 82]. Regardless of the optimization method

used, sparse coding has been shown to learn Gabor features when applied to patches of

image, similar to those found in the V1 region of visual cortex [93] as shown in Figure 2.1.

A modification of sparse coding that can be helpful in computer vision is that of non-

negative sparse coding [51,52] or matrix factorization [76]. In this approach the feature

activations z are constrained to be in the non-negative range, making the reconstruction

model to be far simpler. This often has the benefit of the representation being easier to

interpret as the basis function decomposition that results cannot arbitrarily create new

solutions by subtracting other basis functions as we will show in later chapters. This

may also be related to the success of rectified linear units (ReLU) [90] which have shown

significant performance gains on feedforward models as we show in Chapter 10.

Two applications of the sparse coding method are: 1) image de-noising in which the

goal is the recover a clean image given a noisy image corrupted by some process such as

sensor noise, and 2) image de-blurring in which the goal is the recovery of a sharp image
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given a blurry image typically created due to camera motion.

Sparse coding for image de-noising relies on using only a small number of feature ac-

tivations such that the sparse reconstruction of the input signal cannot include all the

detailed noise. Therefore, if a noisy input image is split into small patches and for each

patch a sparse feature representation is obtained, the reconstruction of each patch will

be a cleaner version of that portion of the image [54,81].

In terms of de-blurring images, sparse coding can be used in a slightly different context.

Fergus et al. [35] introduced the idea of decomposing a blury image into a sharp image

and blur kernel while imposing a prior on the gradients of the image. Krishnan et al. [64]

extended this approach to use sparse coding with hyper-Laplacian priors (instead of `1)

to further tease apart the blur kernel and sharp image simultaneously given just the

blurry image.

While sparsity alone produces interesting feature decompositions, it is not necessarily

useful directly for classification, [102,103]. As the sparseness of a solution increases, the

discriminative information that remains in the few activations seems to be limited as we

show in Section 4.4.5 of this thesis. Therefore it may be advantageous to combine sparse

coding into a larger classification pipeline, as a regularization technique or use it simply

as pre-training for other models.

2.1.2 Spatial Pyramid Matching

To build a better representation of an entire image we can combine low-level represen-

tations together. Low-level image features such as SIFT [80], HOG [26] or DAISY [139]

have been shown to be useful for tasks such as image matching and retrieval [15]. These

hand-crafted descriptors are designed to be slightly invariant to rotation, scale, transla-

tions, and brightness changes to varying degrees. Each feature is composed of an orienta-

tion binning stage that groups similarly oriented image structures together within local

regions followed by a normalization stage that makes the resulting descriptor slightly
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invariant to brightness variations. While these descriptors are sometimes useful for

matching tasks, they only represent a small image region which is alone not very useful

for object recognition.

To attempt to make low-level descriptors useful for object recognition, Lazebnik et al. [70]

introduced the Spatial Pyramid Matching (SPM) method. This method has become the

de facto standard method in computer vision for object recognition and has produced

several state of the art results in the past. The first step of this method is to compute

SIFT or HOG descriptors densely over over an image. Then a dictionary learning method

such as K-means is used to learn a dictionary over these descriptors, representing each

by a 1− of −Nk sparse feature vector. The third step involves computing histograms of

neighboring feature vectors over multiple levels of regular grids placed over the image,

forming a pyramid of grids from fine to coarse scale as shown in Figure 2.2. Finally, there

is a concatenation step in which the histogram results from each grid in the pyramid

are concatenated into a single vector per image and a Support Vector Machine (SVM)

is trained in order to discriminate between these vectors.

The intuition behind the method is that the low-level hand-crafted descriptors are ad-

equate for removing small variations in the input pixels. By quantizing these over a

learned dictionary, they can be represented concisely knowing the Nk dictionary atoms.

Then pooling on the pyramid of regions allows for objects to be recognized at multiple

scales potentially and creates a high dimensional input making it easier for the SVM to

discriminate examples.

Many SPM variants exist in which either the coding method or the pooling stage is var-

ied. Replacing K-means (a form of hard partitioning) with sparse coding (soft partition-

ing) produces noticeable performance gains [11, 137, 141]. Combining local descriptors

like SIFT into large more complex descriptors such as the macro-features of Boureau

et al. [11] also improves performance. These essentially code larger image structures and

are therefore more discriminative in practice.
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get the following definition of a pyramid match kernel:

κL(X,Y ) = IL +
L−1∑

!=0

1
2L−!

(
I! − I!+1

)
(2)

=
1
2L

I0 +
L∑

!=1

1
2L−!+1

I! . (3)

Both the histogram intersection and the pyramid match ker-
nel are Mercer kernels [7].

3.2. Spatial Matching Scheme

As introduced in [7], a pyramid match kernel works
with an orderless image representation. It allows for pre-
cise matching of two collections of features in a high-
dimensional appearance space, but discards all spatial in-
formation. This paper advocates an “orthogonal” approach:
perform pyramid matching in the two-dimensional image
space, and use traditional clustering techniques in feature
space.1 Specifically, we quantize all feature vectors into M
discrete types, and make the simplifying assumption that
only features of the same type can be matched to one an-
other. Each channel m gives us two sets of two-dimensional
vectors, Xm and Ym, representing the coordinates of fea-
tures of type m found in the respective images. The final
kernel is then the sum of the separate channel kernels:

KL(X,Y ) =
M∑

m=1

κL(Xm, Ym) . (4)

This approach has the advantage of maintaining continuity
with the popular “visual vocabulary” paradigm — in fact, it
reduces to a standard bag of features when L = 0.

Because the pyramid match kernel (3) is simply a
weighted sum of histogram intersections, and because
c min(a, b) = min(ca, cb) for positive numbers, we can
implement KL as a single histogram intersection of “long”
vectors formed by concatenating the appropriately weighted
histograms of all channels at all resolutions (Fig. 1). For
L levels and M channels, the resulting vector has dimen-
sionality M

∑L
!=0 4! = M 1

3 (4L+1 − 1). Several experi-
ments reported in Section 5 use the settings of M = 400
and L = 3, resulting in 34000-dimensional histogram in-
tersections. However, these operations are efficient because
the histogram vectors are extremely sparse (in fact, just as
in [7], the computational complexity of the kernel is linear
in the number of features). It must also be noted that we did
not observe any significant increase in performance beyond
M = 200 and L = 2, where the concatenated histograms
are only 4200-dimensional.

1In principle, it is possible to integrate geometric information directly
into the original pyramid matching framework by treating image coordi-
nates as two extra dimensions in the feature space.
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Figure 1. Toy example of constructing a three-level pyramid. The
image has three feature types, indicated by circles, diamonds, and
crosses. At the top, we subdivide the image at three different lev-
els of resolution. Next, for each level of resolution and each chan-
nel, we count the features that fall in each spatial bin. Finally, we
weight each spatial histogram according to eq. (3).

The final implementation issue is that of normalization.
For maximum computational efficiency, we normalize all
histograms by the total weight of all features in the image,
in effect forcing the total number of features in all images to
be the same. Because we use a dense feature representation
(see Section 4), and thus do not need to worry about spuri-
ous feature detections resulting from clutter, this practice is
sufficient to deal with the effects of variable image size.

4. Feature Extraction

This section briefly describes the two kinds of features
used in the experiments of Section 5. First, we have so-
called “weak features,” which are oriented edge points, i.e.,
points whose gradient magnitude in a given direction ex-
ceeds a minimum threshold. We extract edge points at two
scales and eight orientations, for a total of M = 16 chan-
nels. We designed these features to obtain a representation
similar to the “gist” [21] or to a global SIFT descriptor [12]
of the image.

For better discriminative power, we also utilize higher-
dimensional “strong features,” which are SIFT descriptors
of 16× 16 pixel patches computed over a grid with spacing
of 8 pixels. Our decision to use a dense regular grid in-
stead of interest points was based on the comparative evalu-
ation of Fei-Fei and Perona [4], who have shown that dense
features work better for scene classification. Intuitively, a
dense image description is necessary to capture uniform re-
gions such as sky, calm water, or road surface (to deal with
low-contrast regions, we skip the usual SIFT normalization
procedure when the overall gradient magnitude of the patch
is too weak). We perform k-means clustering of a random
subset of patches from the training set to form a visual vo-
cabulary. Typical vocabulary sizes for our experiments are
M = 200 and M = 400.

Figure 2.2: Spatial pyramid matching example where each type of marker represents a
different dictionary atom determined by clustering SIFT features which are computed
densely on the input image. These selected atoms are histogrammed over regular grids on
the image and the resulting histograms are concatenated to create the final representation
per image. Reproduced from Lazebnik et al. [70].

The histogram procedure in the canonical SPM approach is analogous to average pooling

over the regions of the spatial pyramid. This is evident when the 1 − of − Nk sparse

feature vector at each of the dense descriptor locations is considered as a set of binary

activations at that location in 2-D feature maps. Replacing this average pooling with

max pooling is known to improve performance [12], analogous to using max pooling in

neural networks which shows improvements [56]. This pooling procedure can also be

made more sophisticated by grouping the features to be pooled based on clustering in

the input space (known as Locally-constrained Linear Coding) [137] or by learning the

pooling regions instead of using regular grids [58].

2.1.3 Hierarchical Models

While sparse coding alone can learn interesting features from small image patches, it is

the goal of hierarchical models to learn various levels of abstraction from an entire input

image. Recent performance enhancements have been produced by Bo et al. [10] using
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lus (unless the afferents showed no overlap in space
or scale); consequently, excitation of the ‘complex’
cell would increase along with the stimulus size,
even though the afferents show size invariance!
(This is borne out in simulations using a simplified
two-layer model25.) For the MAX mechanism, how-
ever, cell response would show little variation, even as stimulus
size increased, because the cell’s response would be determined
just by the best-matching afferent.

These considerations (supported by quantitative simulations
of the model, described below) suggest that a nonlinear MAX
function represents a sensible way of pooling responses to achieve
invariance. This would involve implicitly scanning (see Discus-
sion) over afferents of the same type differing in the parameter
of the transformation to which responses should be invariant
(for instance, feature size for scale invariance), and then select-
ing the best-matching afferent. Note that these considerations
apply where different afferent to a pooling cell (for instance, those
looking at different parts of space), are likely to respond to dif-
ferent objects (or different parts of the same object) in the visu-
al field. (This is the case with cells in lower visual areas with their
broad shape tuning.) Here, pooling by combining afferents would

mix up signals caused by different stimuli. However, if the affer-
ents are specific enough to respond only to one pattern, as one
expects in the final stages of the model, then it is advantageous
to pool them using a weighted sum, as in the RBF network15,
where VTUs tuned to different viewpoints were combined to
interpolate between the stored views.

MAX-like mechanisms at some stages of the circuitry seem
compatible with neurophysiological data. For instance, when two
stimuli are brought into the receptive field of an IT neuron, that
neuron’s response seems dominated by the stimulus that, when
presented in isolation to the cell, produces a higher firing rate24—
just as expected if a MAX-like operation is performed at the level
of this neuron or its afferents. Theoretical investigations into pos-
sible pooling mechanisms for V1 complex cells also support a
maximum-like pooling mechanism (K. Sakai and S. Tanaka, Soc.
Neurosci. Abstr. 23, 453, 1997).

articles

View-tuned cells

MAX

weighted sum

Simple cells (S1)

Complex cells (C1)

Complex composite cells (C2)

Composite feature cells (S2)

Fig. 2. Sketch of the model. The model was an extension of
classical models of complex cells built from simple cells4,
consisting of a hierarchy of layers with linear (‘S’ units in the
notation of Fukushima6, performing template matching, solid
lines) and non-linear operations (‘C’ pooling units6, perform-
ing a ‘MAX’ operation, dashed lines). The nonlinear MAX
operation—which selected the maximum of the cell’s inputs
and used it to drive the cell—was key to the model’s proper-
ties, and differed from the basically linear summation of
inputs usually assumed for complex cells. These two types of
operations provided pattern specificity and invariance to
translation, by pooling over afferents tuned to different posi-
tions, and to scale (not shown), by pooling over afferents
tuned to different scales.

Fig. 3. Highly nonlinear shape-tuning properties of the MAX mechanism. (a) Experimentally observed responses of IT cells obtained using a ‘simplifi-
cation procedure’26 designed to determine ‘optimal’ features (responses normalized so that the response to the preferred stimulus is equal to 1). In
that experiment, the cell originally responded quite strongly to the image of a ‘water bottle’ (leftmost object). The stimulus was then ‘simplified’ to its
monochromatic outline, which increased the cell’s firing, and further, to a paddle-like object consisting of a bar supporting an ellipse. Whereas this
object evoked a strong response, the bar or the ellipse alone produced almost no response at all (figure used by permission). (b) Comparison of
experiment and model. White bars show the responses of the experimental neuron from (a). Black and gray bars show the response of a model neu-
ron tuned to the stem-ellipsoidal base transition of the preferred stimulus. The model neuron is at the top of a simplified version of the model shown
in Fig. 2, where there were only two types of S1 features at each position in the receptive field, each tuned to the left or right side of the transition
region, which fed into C1 units that pooled them using either a MAX function (black bars) or a SUM function (gray bars). The model neuron was con-
nected to these C1 units so that its response was maximal when the experimental neuron’s preferred stimulus was in its receptive field.
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Figure 2.3: HMAX model consisting of layers of simple and complex cells. Simple cells
represent a template matching phase, whereas complex cells represent an aggregation
function to provide invariance. Reproduced from Riesenhuber and Poggio [101].

what is called multipath sparse coding. The idea is based on two extensions to SPMs.

The first is to have different paths take as input different sized input patches. The

second is to stack the sparse coding feature extractors in layers with pooling functions

in between layers to provide invariance.

A wide range of other hierarchical image models have been proposed in computer vision.

Relevant work includes that of Zhu and colleagues [131,145], in particular Guo et al. [43].

In these approaches, edges are composed using a hand-crafted set of image tokens into

larger image structures. Grouping is performed via basis pursuit with intricate splitting

and merging operations on image edges. The stochastic image grammars of Zhu and

Mumford [145] also use fixed image primitives, as well as a complex Markov Chain

Monte-Carlo (MCMC)-based scheme to parse scenes into object parts.

Zhu et al. [144] propose a top-down parts-and-structure model but it only reasons about
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image edges, as provided by a standard edge detector instead of operating on pixels

directly. The biologically inspired HMax model of Serre et al. [101, 114] uses exem-

plar templates in their intermediate representations, rather than learning conjunctions

of edges (see Figure 2.3). Fidler and Leonardis [36, 37] propose a top-down model for

object recognition which has an explicit notion of parts whose correspondence is rea-

soned about at each level. Hierarchical models have also been applied to other tasks

than generic object recognition. Amit and Geman [2] and Jin and Geman [60] apply

hierarchical models to deformed Latex digits and car license plate recognition. All of

these hierarchical models show some resemblance to the work presented in this thesis.

2.2 Machine Learning

The field of machine learning is far too broad to cover in depth here. Therefore, we

focus on a small portion of interesting neural network models and techniques that have

influenced this work.

2.2.1 Autoencoders

One of the simplest neural networks for unsupervised learning is known as the autoen-

coder [13,106] (see Figure 2.4). The idea of this approach is to process an input example

through multiple layers of a neural network in order to reconstruct the original input

example at the output of the network. A given input x is mapped through neural net

layers (sometimes referred to as a multi-layer perceptron (MLP)), each layer consisting

of a matrix of weights W and biases b along with some form of nonlinearity such as a

sigmoid function, tanh function, or rectified linear unit [90]. We refer to the features

before the nonlinearity as z to be consistent with other notation and the activations after

the nonlinearity as h. The output of each layer is:
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z = Wx+ b⇒ h = σ(z) (2.5)

where σ here is the sigmoid function but could be tanh, relu or other activation function.

The target y for the autoencoder is simply the input x and the object to minimize is the

squared distance between the output of the last layer ŷ = hl and the targets:

C =
∑

i

(ŷi − yi)2 (2.6)

Autoencoders can also be stacked and trained layer by layer. This is done by treating the

activations of the layer below as input and targets for the current layer. Once all layers

have been trained in this fashion, the entire network can be fine-tuned to reconstruct the

original input as a deep autoencoder [133]. This can be a useful method for pretraining

general deep networks [7] or for creating a compact codes from high dimensional data [50].

Several variations of the autoencoder have been proposed. Denoising autoencoders

x

x̂

W

WT

a = �(z)

Figure 2.4: Autoencoder taking as input x, encoding it through weights W to get a set
of feature responses z which are mapped through a nonlinearity σ to get activations h.
These are input to higher layers which eventually output a reconstruction of the original
input as x̂. Note: biases b are omitted from this figure.
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improves generalization by corrupting the input x while keeping the targets y noise-

free [133,134]. This provides the autoencoder with many perturbations of the input and

requires it to learn a mapping back to the original data. A similar approach is used

in the transforming autoencoder [47], with a slightly different goal. An input image is

shifted or modified with an affine transformation in a known way and the autoencoder

must predict both the presence of a template feature and the transformation that the

template must have gone through in order to reconstruct the input image. This makes

the network robust to many variations in the input while being able to output pose

parameters for each template it can detect. This is analogous to the work by Ranzato

et al. [99] in which an autoencoder outputs pooling locations in order to place reconstruc-

tions from pooled features back in the optimal locations. This makes their autoencoder

translation invariant and we show storing these locations is integral for reconstructing

through multiple layers of a hierarchy in Chapter 4.

A similar approach to autoencoders for unsupervised learning is called predictive sparse

decomposition (PSD) [61,96,97,100]. Traditionally, sparse coding is an expensive process

as many iterations are needed to converge to a sparse solution. With PSD, the goal is to

learn a fast approximate encoder for the solution of traditional sparse coding problems.

This is analogous to the feedforward portion of a traditional autoencoder except the

encoder and decoder are decoupled with a latent feature variable acting as a centerpiece

for all terms of the object function. The three-fold objective is to reconstruct the image

accurately from these features z through decoder matrix Wdec, make the features sparse

as in sparse coding with an `1 prior, and have the feed-forward encoder weight Wenc

produce outputs close to z:

C =
1
2
||Wdecz − x||22 +

1
2
||Wencx− z||22 + λ|z|1 (2.7)

This algorithm learns interesting complex features in an unsupervised fashion with the

benefits of avoiding the expensive sparsifying procedure.
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Figure 2.5: A Restricted Boltzmann Machine which has a joint distribution between
visible units x and hidden unit activations h. The bidirectional weight matrix W maps
between the bipartite set of units produce feature responses z that are mapped through
a nonlinearity h before mapping back to the inputs through W T .

2.2.2 Restricted Boltzmann Machines

A related model to autoencoders is called a Restricted Boltzmann Machine (RBM) [45,

119]. This is an extension of Boltzmann machines [1] in which the term restricted refers

to the lack of connections between hidden units. This forms a bipartite graph between

visible units x and hidden unit activations h (traditionally v and h in previous work) as

shown in Figure 2.5. This generative model is governed by the following energy function

to be minimized:

E(x, h) = −
∑

i

bxixi −
∑

j

bhjhj −
∑

i

∑

j

hjWi,jxi (2.8)

where bx and bh are the biases for the input units and hidden units respectively. This

energy function can be interpreted as a joint probability to be maximized:

P (x, h) =
e−E(x,h)

∑
x

∑
h e
−E(x,h)

(2.9)

where the denominator is the partition function which sums over all possible configu-

rations. Training with an RBM typically uses an algorithm called contrastive diver-
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gence [17,45] where the goal is essentially to push down on the energy surface near data

examples and push up on other points in the space.

A nice property of RBMs compared to other methods such as sparse coding is that

inference is fast, involving a single feedforward encoding:

h = σ(z) = σ(Wx+ bh) (2.10)

where σ is typically a logistic function which is sampled to create binary hidden unit

activations.

RBMs have been used to initialize deep models in what is termed greedy layer-wise

pretraining [7, 48, 49]. This approach is greedy in that the first layer is trained initially

with no consideration of what will be trained on top. Once a good representation is

learned in the first layer, an additional layer can be added on top which takes as input

the feed-forward activations of the first layer for each input example. At this stage,

the first layer in not trained and is simply used to produce training examples for the

second layer. This procedure can continue for as many layers as desired. Afterwards, it

is common practice to unroll the entire network and fine-tune all layers together with

backpropagation of an objective function placed on top [7, 49]. This is beneficial when

labelled training examples are scarce, as the unsupervised greedy pretraining can learning

a good generative model on unlabelled data, which helps initialize a supervised training

algorithm. This also provides an interesting learning algorithm for creating compact

representations of the inputs [50].

RBMs have been extended in many ways since their introduction. Temporal versions

[124, 128] can be applied to sequential data by conditioning on the past time steps to

generate the current step. This produces a model exponentially more powerful than a

hidden markov as the hidden state in a conditional RBM is distributed over all hidden

units. We use an extension of this model in Chapter 9 to map from one temporal sequence
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32x32
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C1: feature maps 
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Subsampling

S2: f. maps
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S4: f. maps 16@5x5
C5: layer
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C3: f. maps 16@10x10
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 84

Full connection
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Gaussian connections

OUTPUT
 10

Figure 2.6: Convolutional network (LeNet5 [74]) composed of multiple alternating layers
of convolutions and subsampling followed by a few fully connected layers and finally
output units for discriminating between 10 classes of handwritten digits. Reproduced
from LeCun et al. [74].

to another. Collaborative filtering is another application of RBMs [109] where filling in

missing information conditioned on known information is critical. Furthermore, RBMs

can be trained with a discriminative objective in addition to the generative objective in

order to improve classification performance [69].

Deep Boltzmann machines (DBMs) [108] are a similar model to stacked RBMs except

all the connections between layers are bidirectional. This allows DBMs to be jointly

trained instead of doing greedy layer wise training. DBMs provide a powerful generative

framework for high level reasoning of object classes [110] and for modelling complex

object part relationships in natural images [32].

2.2.3 Convolutional Networks

The inspiration for much of the work in this thesis is the convolutional neural network

(CNN) created by LeCun et al. [74] (see Figure 2.6). Images exhibit many spatial

relationships between neighboring pixels that should not be affected by their location

within the image [39]. To incorporate that into the model, a convolutional network learns

a set of Nk filters F = {f1, . . . , fNk} which are convolved with input image x to produce

a set of Nk 2D features maps z:
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zk = fk ⊗ x (2.11)

where ⊗ is the convolution operator. The learned filters are analogous to templates that

are matched to every possible patch of the input image. When the filter correlates well

with a region of the input image, the response in the corresponding feature map location

is strong. The convolution operation has many beneficial properties: 1) weight sharing

over the entire image reduces the number of parameters per response 2) local connectivity

learns correlations between neighboring pixels, and 3) equivariance (i.e. an object shifted

in the input image will simply shift the corresponding responses in a similar way).

Typically the convolutional responses are passed through a non-linear activation function

such as sigmoids, tanh, or rectified linear units (ReLU) [90] to produce activation maps

denoted h. Following this activation function, a pooling layer is typically present to

provide invariance to slightly different input images. This pooling involves executing

some operation P , typically average or max, over the activations within a small spatial

region G of each map of activations:

pG = max
i∈G

hi (2.12)

where i indexes the activations within the pooling region. Typically max pooling is

preferred [12, 56] as it avoids cancellation of negative elements and prevents blurring of

the activations and gradients throughout the network since the gradient is placed in a

single location during backpropagation. After multiple convolutional and pooling layers,

a convolutional network typically has one or more fully connected neural net layers with

weights W and biases b before the final classifier. The entire network is trained with

back-propagation of a supervised loss such as the cross entropy of a softmax classifier

output and the target labels y represented as a 1−of−Nc vector where Nc is the number

of classes to discriminate between:
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C = −
Nc∑

c

yclog(ŷc) (2.13)

where ŷc are the activations of the l− th layer of the model hl pushed through a softmax

function:

ŷi = softmax(hli) =
eh

l
i

∑
j e

hlj
(2.14)

Other variants of convolutional networks have been proposed, such as tiled convolutional

networks [71] which reduce the computations needed for convolutions by using a strided

convolution. Also, multi-column convolutional networks which improve generalization

abilities through model averaging of multiple networks [22].

Convolutional networks have been used to tackle many practical object recognition ap-

plications. For instance, they have been successful applied to recognizing digits and

characters in documents [74] and house numbers [113]. Recently, fast computation li-

braries [23, 66] on GPUs have enabled large scale training of convolutional networks.

Large convolutional networks have been used to produce impressive gains over state of

the art computer vision techniques in the ImageNet challenge [67].

2.2.4 Other Convolutional Models

Many of the existing approaches discussed above have also been converted to the con-

volutional domain for image processing. The immediate advantages of being equivariant

are crucial for a good image model. First, autoencoders have recently been extended

to convolutional autoencoders [85] to encode simple shift invariances directly into the

model. Stacking these convolutional autoencoders seems to learn interesting features

when pooling is used and they can outperform CNN’s on some benchmarks.

The HMAX model [101, 114] incorporates simple cells via convolution and complex cell
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via max pooling inspired biological findings in the visual cortex. The predictive sparse

decomposition (PSD) algorithm has been extended to learning convolutional features [62]

in which corners, crosses, curves, circles, Gabors, etc. emerge from a single layer of

encoding.

To extend convolutional models into the unsupervised training regime with RBMs Lee

et al. [78] extended the work of Hinton et al. on Deep Belief Networks (DBN) [50] to be

convolutional. The matrix multiplications in each RBM layer of a DBN are replaced with

2D convolutions. Additionally, a probabilistic form of max pooling is used to generate

from each pooling region while providing invariance to the feedforward inference. This

shows promising results in learning mid-level features such as curves and circles directly

from pixels. Additionally, this model has been applied on top of SIFT vectors to learn

discriminative features for classification [121].

2.2.5 Regularization Approaches

Neural networks are powerful models that given the opportunity can memorize training

data. If a model has enough parameters, the performance on the training data typi-

cally converges towards perfection while the test performance degrades [89]. This well

known side effect of training is known as overfitting and there have been many proposed

approaches to overcome this.

Weight decay, weight tying or data augmentation are some common approaches. Weight

decay is the simplest approach, which adds a term to the cost function to penalize

the parameters in each dimension preventing it from exactly modelling the training

data and therefore help generalize to new examples. Weight tying has already been

shown in convolutional networks to reduce the number of parameters while still allowing

models to learn good representations of the input data. Data augmentation is a method

of boosting the size of the training set so that the model cannot memorize all of it.

This may take several forms, for example elastic distortions have been applied on the
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MNIST handwritten digit recognition challenge to generate additional realistic looking

digits [23,75,116].

Translating an image is an integral part of the transforming autoencoder [47] and is also

useful for inputs to other models [65, 136]. By taking small randomly located crops out

of the original image and treating that as input to a network, the model sees a large

variation of inputs that are labelled with the original class. This technique is essential

in the impressive ImageNet results by Krizhevsky et al. due to the large number of

parameters in their approach [67].

Another regularization technique is to encourage activations to have a sparse prior so

the all the information about the training set cannot be captured in the representation.

Several approaches have been proposed to induce this sparsity such as sparsifying logistic

activations [100], a target sparsity penalty for each activation [125], or separating out

activations into spike and slab units [25].

Finally, recent success has been shown with a regularization technique called Dropout

[44]. The idea is to randomly set half of the activations in each hidden layer (and a smaller

fraction of input dimensions) to 0. By doing this, the hidden units cannot co-adapt to

each other being active, therefore they must learn a better representation of the input

that generalizes well. Additionally, at test time, the hidden units are simply multiplied

by the rate at which they are kept which acts like a form of model averaging over all

possible instantiations of the model. Extensions to this method have been proposed

where the weights, not the activations, are dropped [136], showing this to be an even

better regularizer in certain cases.
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Part I

Hierarchical Image Models
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Chapter 3

Deconvolutional Networks

3.1 Introduction

Building robust low and mid-level image representations, beyond edge primitives, is a

long-standing goal in vision. Many existing feature detectors spatially pool edge infor-

mation which destroys cues such as edge intersections, parallelism and symmetry. In

this chapter we introduce deconvolutional networks (DN), a framework that permits the

unsupervised construction of hierarchical image representations. These representations

can be used for both low-level tasks such as denoising, as well as providing features for

object recognition. This forms the basis for the following two chapters which extend this

early work on deconvolutional networks.

In a deconvolutional network, each level of the hierarchy groups information from the

level beneath to form more complex features that exist over a larger scale in the image.

Our grouping mechanism is sparsity: by encouraging parsimonious representations at

each level of the hierarchy, features naturally assemble into more complex structures.

However, as we demonstrate, sparsity itself is not enough – it must be deployed within

the correct architecture to have the desired effect. We adopt a convolutional approach

since it provides stable equivariant latent representations at each level which preserve
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locality and thus facilitate the grouping behavior. Using the same parameters for learning

each layer, our deconvolutional network can automatically extract rich features that

correspond to mid-level concepts such as edge junctions, parallel lines, curves and basic

geometric elements, such as rectangles. Remarkably, some of them look very similar to

the mid-level tokens posited by Marr in his primal sketch theory [84] (see Figure 3.1).

(a)

(b)

Figure 3.1: (a): “Tokens” from Fig. 2-4 of Vision by D. Marr [84]. These idealized local
groupings are proposed as an intermediate level of representation in Marr’s primal sketch
theory. (b): Selected filters from the 3rd layer of our deconvolutional network, trained
in an unsupervised fashion on real-world images.

Our proposed model is similar in spirit to the convolutional neural networks (CNN) of

LeCun et al. [74], but quite different in operation. Convolutional networks are a bottom-

up approach where the input signal is subjected to multiple layers of convolutions, non-

linearities and sub-sampling. By contrast, each layer in our deconvolutional network is

top-down; it seeks to generate the input signal by a sum over convolutions of the feature

maps (as opposed to the input) with learned filters (see Figure 3.2). Given an input and

a set of filters, inferring the feature map activations requires solving a multi-component

deconvolution problem that is computationally challenging. In response, we use a range

of tools from low-level vision, such as sparse image priors and efficient algorithms for

image deblurring. Correspondingly, our work is an attempt to link high-level object

recognition with low-level tasks like image deblurring through a unified architecture.

Deconvolutional networks are closely related to a number of “deep learning” meth-

ods [7, 48] from the machine learning community that attempt to extract feature hi-

erarchies from data. Deep Belief networks (DBNs) [48] and hierarchies of sparse auto-

encoders [56, 100, 133], like our approach, greedily construct layers from the image up-

wards in an unsupervised fashion. In these approaches, each layer consists of an encoder
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and decoder1. The encoder provides a bottom-up mapping from the input to latent fea-

ture space while the decoder maps the latent features back to the input space, hopefully

giving a reconstruction close to the original input. Going from the input directly to the

latent representation without using the encoder is difficult because it requires solving

an inference problem (multiple elements in the latent features are competing to explain

each part of the input). As these models have been motivated to improve high-level

tasks like recognition, an encoder is needed to perform fast, but highly approximate,

inference to compute the latent representation at test time. However, during training

the latent representation produced by performing top-down inference with the decoder

is constrained to be close to the output of the encoder. Since the encoders are typ-

ically simple non-linear functions, they have the potential to significantly restrict the

latent representation obtainable, producing sub-optimal features. Restricted Boltzmann

Machines (RBM), the basic module of DBNs, have the additional constraint that the en-

coder and decoder must share weights. In deconvolutional networks, there is no encoder:

we directly solve the inference problem by means of efficient optimization techniques.

The idea is that by computing the features exactly (instead of approximately with an

encoder) we can learn superior features.

Most unsupervised deep learning architectures are not convolutional, but work by Kavukcuoglu

et al. [62] on convolutional PSD has been shown to learn interesting convolutional fea-

tures with fast encoders and Lee et al. [78] has extended DBNs to be convolutional

which learns high-level image features for recognition. This convolutional DBN is most

similar to our deconvolutional network, with the main difference being that we use a

decoder-only model as opposed to the symmetric encoder-decoder of the RBM layers.

Our work also has links to recent work in sparse image decompositions, as well as hier-

archical representations. Lee et al. [77] and Mairal et al. [81, 82] have proposed efficient

schemes for learning sparse over-complete decompositions of image patches [93], using

a convex `1 sparsity term. We however perform sparse decomposition over the whole
1Convolutional networks can be regarded as a hierarchy of encoder-only layers [74].
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image at once, not just for small image patches. As demonstrated by our experiments,

this is vital to learning rich features. The key to making this work efficiently is to use a

convolutional approach.

A range of hierarchical image models have been proposed. Particularly relevant is the

work of Zhu and colleagues [131, 145], in particular Guo et al. [43]. Here, edges are

composed using a hand-crafted set of image tokens into large-scale image structures.

Grouping is performed via basis pursuit with intricate splitting and merging operations

on image edges. The stochastic image grammars of Zhu and Mumford [145] also use

fixed image primitives, as well as a complex Markov Chain Monte-Carlo (MCMC)-based

scheme to parse scenes. Deconvolutional networks differ in two important ways: first, we

learn image tokens completely automatically. Second, our inference scheme is far simpler

than either of the above frameworks.

Zhu et al. [144] propose a top-down parts-and-structure model but it only reasons about

image edges, as provided by a standard edge detector, unlike DNs which directly operates

on pixels. The biologically inspired HMax model of Serre et al. [101, 114] use exemplar

templates in their intermediate representations, rather than learning conjunctions of

edges as we do. Fidler and Leonardis [36, 37] propose a top-down model for object

recognition which has an explicit notion of parts whose correspondence is explicitly

reasoned about at each level. In contrast, DNs approach simply performs a low-level

deconvolution operations at each level, rather than attempting to solve a correspondence

problem.

3.2 The Deconvolutional Network

We first consider a single deconvolutional network layer applied to an image. This layer

takes as input an image x, composed of Nk
0 color channels x = {x1, . . . , xNk0}. We

represent each channel xc of this image as a linear sum of Nk
1 latent feature maps
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z1
k = {z1

1 , . . . , z
1
Nk

1} specific to this image 2 that are convolved with filters f1
c,k learned

from a dataset of images X :

x̂1
c =

Nk
1∑

k=1

f1
c,k ⊗ z1

k (3.1)

where ⊗ denotes the convolution operator and x̂1
c the resulting reconstruction from the

layer 1 feature maps. If xc is an Nxrows×Nxcols image and the filters are NFrows×NFcols ,

then the latent feature maps are Nzrows × Nzcols = (Nxrows + NFrows − 1) × (Nxcols +

NFcols − 1) in size, i.e. a valid convolution is used for reconstruction. But Eq. 3.1 is

an under-determined system, so to yield a unique solution we introduce a regularization

term on z1
k that encourages sparsity in the latent feature maps. This gives us an overall

cost function of the form:

C1 =
λ1

2

Nk
0∑

c=1

‖
Nk

1∑

k=1

f1
c,k ⊗ z1

k − xc‖22 +
Nk

1∑

k=1

|z1
k|α (3.2)

where we assume Gaussian noise on the reconstruction term and some sparse norm α for

the regularization. Note that the sparse norm over all feature maps |z1|α is actually the

α-norm on the vectorized version of matrix z1, i.e. |z1|α =
∑

k,i,j |z1
k(i, j)|α (where i and

j index the spatial locations in z). Typically, α = 1, although other values are possible,

as described in Section 3.2.2. λ1 is a constant that balances the relative contributions

of the reconstruction of x and the sparsity of the feature maps z1
k. To further simplify

notation throughout this work, we replace the sum of convolutions with matrix notation

as:

x̂1 = F 1z1 ≡
Nk

1∑

k

f1
c,k ⊗ z1

k ∀c ∈ Nk
0 (3.3)

2The superscript 1 denotes layer 1 of the model, whereas superscript 0 in Nk
0 refers to the input

image. Multiple layers will be described in later sections.
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where we have been explicit to denote variables by their layer using the superscript 1

in this case. The collection of filters planes is denoted F 1 where F 1 = {f1
c,k ∀k, c} This

makes the overall cost function from Eq. 3.2 much simpler:

C1 =
λ1

2
‖F 1z1 − x‖22 + |z1|α (3.4)

Note that our model is top-down in nature: given the latent feature maps, we can

synthesize an image. But unlike the sparse auto-encoder approach of Ranzato et al. [97],

or DBNs [48], there is no mechanism for generating the feature maps from the input,

apart from minimizing the cost function C1 in Eq. 3.4. Many approaches focus on

bottom-up inference, but we concentrate on obtaining high quality latent representations.

Input  
image  
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econv  Layer 1 

Feature 
Map  

1st Layer Filters 

Feature 
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N0
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1,1

|z1|1 |z1|1 |z1|1 |z1|1

z1
N1

k
z1
1

x

⌦ ⌦ ⌦ ⌦

Figure 3.2: A single deconvolutional network layer (best viewed in color). In practice
the first layer is fully connected, and thus the connectivity matrix g1 is not shown.

In learning, described in Section 3.2.2, we use a set of images x = {x1, . . . , xNx} for which

we seek argminf,z C1, the latent feature maps for each image and the filters 3. Note that

each image has its own set of feature maps while the filters are common to all images.
3We define C1 =

P
x∈X C

1(x), the sum of per-image cost.
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3.2.1 Forming a hierarchy

The architecture described above produces sparse feature maps from a multi-channel

input image. It can easily be stacked to form a hierarchy by treating the feature maps

zL−1
k of layer L − 1 as input for layer L. In other words, layer L has as its input an

image with Nk
L−1 channels being the number of feature maps at layer L− 1. The cost

function CL for layer L is a generalization of Eq. 3.2, being:

CL =
λL

2

Nk
L−1∑

c=1

‖
Nk

L∑

k=1

gLc,k(f
L
c,k ⊗ zLk )− zL−1

c ‖22

+
Nk

L∑

k=1

|zLk |ρ (3.5)

where zL−1
c are the feature maps from the previous layer, and gLc,k are elements of a fixed

binary matrix that determines the connectivity between the feature maps at successive

layers, i.e. whether zLk is connected to zL−1
c or not [74]. In layer-1 we assume that g1

c,k is

always 1, but in higher layers it can be sparse. We train the hierarchy from the bottom

upwards, thus zL−1
c is given from the results of inference with CL−1. This structure is

illustrated in Figure 3.2.

To further simplify this notation, we again use matrix form to write:

ẑL−1 = gL(FL)zL ≡
Nk

L∑

k=1

gLc,k(f
L
c,k ⊗ zLk ) ∀c ∈ Nk

L−1 (3.6)

where ẑL−1 is the reconstruction of the feature maps of the layer below. Chaining these

g, F , and z variables together can result in complicated expressions as we will see in

later sections, therefore a reconstruction operator is introduced to further simplify the

notation. This operator will be extended to include additional functions in later chapter

and will be used throughout this work:

32



RL→l = gl(F l) . . . gL(FL)zL (3.7)

where L is the layer the reconstruction starts from and l is the layer the reconstruction

ends at. If only one layer is given for the R operator, such as R1, it is the layer from

which the reconstruction begins and it is assumed to end at the input image pixel space,

sometimes referred to as layer 0. This makes the overall cost for the first layer:

C1 =
λ1

2
‖R1z1 − x‖22 + |z1|α (3.8)

And for a higher layer L:

CL =
λL

2
‖RL→L−1zL − zL−1‖22 + |zL|α (3.9)

Unlike several other hierarchical models [56,78,97] we do not perform any pooling, sub-

sampling or divisive normalization operations between layers at this stage, though this

is addressed in later chapters.

3.2.2 Learning filters

To learn the filters, we alternately minimize CL over the feature maps while keeping the

filters fixed (i.e. perform inference) and then minimize CL over the filters while keeping

the feature maps fixed. This minimization is done in a layer-wise manner starting with

the first layer where the inputs are the training images x. Details are given in Algorithm

1. We now describe how we learn the feature maps and filters by introducing a framework

suited for large scale problems.

Inferring feature maps: Inferring the optimal feature maps zL, given the filters and

inputs is the crux of our approach. The sparsity constraint on zL which prevents the
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model from learning trivial solutions such as the identity function. When α = 1 the

minimization problem for the feature maps is convex and a wide range of techniques

have been proposed [20, 77]. Although in theory the global minimum can always be

found, in practice this is difficult as the problem is very poorly conditioned. This is due

to the fact that elements in the feature maps are coupled to one another through the

filters. One element in the map can be affected by another distant element, meaning

that the minimization can take a very long time to converge to a good solution.

We tried a range of different minimization approaches to solve Eq. 3.5, including direct

gradient descent, Iterative Reweighted Least Squares (IRLS) and stochastic gradient

descent. We found that direct gradient descent suffers from the usual problem of flat-

lining and thereby gives a poor solution. IRLS is too slow for large-scale problems with

many input images. Stochastic gradient descent was found to require many thousands

of iterations for convergence.

Instead, we introduce a more general framework that is suitable for any value of α > 0,

including pseudo-norms where α < 1. The approach is a type of continuation method,

as used by Geman [40] and Wang et al. [138]. Instead of optimizing Eq. 3.8 directly,

we minimize an auxiliary cost function C̃L which incorporates auxiliary variables ωL for

each element in the feature maps zL:

C̃L =
λL

2
‖RL→L−1zL − zL−1‖22

+
β

2
‖zL − ωL‖22 + |ωL|α (3.10)

where β is a continuation parameter. Introducing the auxiliary variables separates the

convolution part of the cost function from the | · |α term. By doing so, an alternating

form of minimization for zL can be used. We first fix ωL yielding a quadratic problem in

zL. Then, we fix zL and solve a separable 1D problem for each element in ωL. We call
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these two stages the z and ω sub-problems respectively. As we alternate between these

two steps, we slowly increase β from a small initial value until it strongly clamps zL to

ωL. This has the effect of gradually introducing the sparsity constraint and gives good

numerical stability in practice [64,138]. We now consider each sub-problem.

z sub-problem: From Eq. 3.10, we see that we can solve for each zL independently of

the others. Here we take derivatives of C̃L w.r.t. zL, assuming a fixed ωL:

∂C̃L

∂zLk
= λL

Nk
L−1∑

c=1

gLc,k(f
LT

c,k ⊗ (
Nk

L∑

k̃=1

gL
c,k̃

(fL
c,k̃
⊗ zL

k̃
)− zL−1

c )) + β(zLk − ωLk ) (3.11)

which can be written much more succinctly as:

∂C̃L

∂zL
= λLRL−1→LT (RL→L−1zL − zL−1) + β(zL − ωL) (3.12)

where the first term in parenthesis is the error between the reconstruction and the feature

maps in the layer below eL = (RL→L−1zL− zL−1) and the second term in parenthesis is

the error of the continuation variables. We have also introduced the projection operator,

denoted as the transpose of the reconstruction operator RL−1→LT . The projection op-

erator which is the backpropagation operator that undoes the reconstruction operator’s

sequence of operations back from l up to the layer where the reconstruction began L:

∇Lz = Rl→L
T

eL = gL(FL)T . . . gl(F l)T eL (3.13)

where ∇Lz is the gradient of the cost function backpropagated up the model to layer L.

Each transposed convolution sums over the input maps to a layer as:

gL(FL)T eL−1 ≡
Nk

L−1∑

c

gLc,k(f
LT

c,k ⊗ eL−1
c ) ∀k ∈ Nk

L (3.14)
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where if (FL)T ≡ flipud(fliplr(fLc,k))∀c ∈ Nk
L−1,∀k ∈ Nk

L using Matlab nota-

tion. Although a variety of other sparse decomposition techniques [81,97] use stochastic

gradient descent methods to update zLk for each k separately, this is not viable in a convo-

lutional setting. Here, the various feature maps compete with each other to explain local

structure in the most compact way. This requires us to simultaneously optimize over

zL = {zL1 , . . . , zLNkL}. Setting ∂C̃
∂zL

= 0, the optimal zL is the solution to the following

Nk
L(Nzrows)(Nzcols) linear system:

A




zL1

·

zL
Nk

L




=




∑Nk
L−1

c=1 FL
T

c,1 z
L−1
c + β

λω
L
1

·
∑Nk

L−1

c=1 FL
T

c,Nk
Lz

L−1
c + β

λω
L
Nk

L




(3.15)

where

A =




∑Nk
L−1

c=1 FL
T

c,1 F
L
c,1 + β

λI · ∑Nk
L−1

c=1 FLc,1F
LT

c,Nk
L

· · ·
∑Nk

L−1

c=1 FL
T

c,Nk
LF

L
c,1 · ∑Nk

L−1

c=1 FL
T

c,Nk
LF

L
c,Nk

L + β
λI




(3.16)

The matrix A represents the outer product of each filter F convolved with itself, being a

Nk by Nk set of larger filter planes. Eq. 3.15 can be effectively minimized by conjugate

gradient (CG) descent. Note that A never needs to be formed since the Az product

can be directly computed using convolution operations inside the CG iteration. Each

Az product requires 2Nk
L−1Nk

L convolutions of filters with the (Nzrows)(Nzcols) feature

maps and can easily be parallelized.

Although some speed-up might be gained by using FFTs in place of spatial convolutions

[14], particularly if the filter size NFrows by NFcols is large, this can introduce boundary

effects in the feature maps – therefore solving in the spatial domain was used throughout

this work.

ω sub-problem: Given fixed zL, finding the optimal ωL requires solving a 1D opti-

mization problem for each element in the feature map. If α = 1 then, following Wang
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et al. [138], ωL has a closed-form solution given by:

ωL = max(|zL| − 1
β
, 0)

zL

|zL| (3.17)

where all operations are element-wise. Alternatively for arbitrary values of α > 0, the

optimal solution can be computed via a lookup-table [64]. This permits us to impose

more aggressive forms of sparsity than α = 1.

Filter updates : With ωL fixed and zL computed for a fixed i, we use the following for

gradient updates for each filter plan fLc,k:

∂C̃L

∂fLc,k
= λLzL

T

k ⊗ (
Nk

L∑

k̃=1

gL
c,k̃

(fL
c,k̃
⊗ zL

k̃
)− zL−1

c ) = λLzL
T

(RL→L−1zL − zL−1) (3.18)

where zL
T

performs a convolution between the reconstruction error in parenthesis and

the rotated versions of the feature maps. The overall learning procedure is summarized in

Algorithm 1. In practice, instead of updating a single image, we operate on mini-batches

of images at once to run inference in parallel and filter learning using the average gradient

over the mini-batch.

3.2.3 Image representation/reconstruction

To use the model for image reconstruction, we first decompose an input image by using

the learned filters F to find the latent representation z. We explain the procedure for

a 2 layer model. We first infer the feature maps z1 for layer 1 using the input x and

the filters F 1 by minimizing C1. Next we update the feature maps for layer 2, z2 in an

alternating fashion. In step 1, we first minimize the reconstruction error between the

original image x and the reconstruction x̂2 from z2, projecting z2 through F 2 and F 1 to

the image:

37



Algorithm 1 : Learning a single layer, L, of the deconvolutional network.
Require: Input to layer L: Training images x ∈ X if L = 1, otherwise zL−1

Require: # feature maps NkL, connectivity gL

Require: Regularization weight λL, # epochs Ne
Require: Continuation parameters: β0, βInc, βMax

1: Initialize feature maps and filters z ∼ N (0, ε), F ∼ N (0, ε)
2: for epoch = 1 : Ne do
3: for im = 1 : Nx do %% note: zL and ωL are per-image
4: β = β0

5: while β < βMax do
6: Given zL, solve for ωL using Eq. 3.17
7: Given ωL, solve for zL using Eq. 3.15
8: β = β · βInc

9: end while
10: end for
11: Update FL using gradient descent on Eq. 3.18
12: end for
13: Output: Filters F

x̂2 = R2z2 =
Nk

1∑

k=1

g1
c,k(f

1
c,k ⊗

Nk
2∑

k̃=1

g2
k,k̃

(f2
k,k̃
⊗ z2

k̃
)) ∀c ∈ Nk

0 (3.19)

thus minimizing the cost:
λ2

2
‖R2z2 − x‖22 + |z2| (3.20)

In step 2, we minimize the reconstruction error w.r.t. z1:

λ2

2
‖R2→1z2 − z1‖22 + |z2| (3.21)

We alternate between steps 1 and 2, using conjugate gradient descent in both. Once z2

has converged, we reconstruct x by projecting back to the image via F 2 and F 1:

x̂2 = R2z2 (3.22)

An important detail is the addition of an extra feature map z0 per input map of layer 1

that connects to the image via a constant uniform filter F 0. Unlike the sparsity priors

on the other feature maps, z0 has an `2 prior on the gradients of z0, i.e. the prior is of
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the form ‖∇z0‖2. These maps capture the low-frequency components, leaving the high-

frequency edge structure to be modeled by the learned filters. Given that the filters were

learned on high-pass filtered images, the z0 maps assist in reconstructing raw unprocessed

images.

3.3 Experiments

In our experiments, we train on two datasets of 100×100 images, one containing natural

scenes of fruits and vegetables and the other consisting of scenes of urban environments.

In all our experiments, unless otherwise stated, the same learning settings were used for

all layers, namely: H=7, λ=1, α=1, β0 =1, βInc =6, βMax =105, Ne=3.

3.3.1 Learning multi-layer deconvolutional filters

With the settings described above we trained a separate 3 layer model for each dataset,

using an identical architecture. The first layer had 9 feature maps fully-connected to

the input. The second layer had 45 maps: 36 were connected to pairs of maps in the

first layer, and the remainder were singly-connected. The third layer had 150 feature

maps, each of which was connected to a random pair of second layer feature maps. In

Figure 3.7 and Figure 3.8 we show the filters that spontaneously emerge, projected back

into pixel space.

The first layer in each model learns Gabor-style filters, although for the city images

they are not evenly distributed in orientation, preferring vertical and horizontal struc-

tures. The second layer filters comprise an assorted set of V2-like elements, with center-

surround, corners, T-junctions, angle-junctions and curves.

The third layer filters are highly diverse. Those from the model trained on food images

(Figure 3.7) comprise several types: oriented gratings (rows 1–4); blobs (D8, E7, H9);

box-like structures (B10, F12) and others that capture parallel and converging lines
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(C12, J11). The filters trained on city images (Figure 3.8) capture line groupings in

horizontal and vertical configurations. These include: conjunctions of T-junctions (C15,

G11); boxes (D14, E4) and various parallel lines (B15, D8, I3). Some of the filters are

representative of the tokens shown in Fig. 2-4 of Marr [84] (see Figure 3.1).

Layer 1 Layer 2 Layer 3
Ci

ty
Ci

ty
Fr

ui
t

Fr
ui

t

Figure 3.3: Samples from the layers of two deconvolutional network models, trained on
fruit (top) or city (bottom) images.

Since our model is generative, we can sample from it. In Figure 3.3 we show samples from

the two different models from each level projected down into pixel space. The samples

were drawn using the relative firing frequencies of each feature from the training set.

3.3.2 Comparison to patch-based decomposition

To demonstrate the benefits of imposing sparsity within a convolutional architecture,

we compare our model to the patch-based sparse decomposition approach of Mairal

et al. [81]. Using the SPAMS code accompanying [81] we performed a patch-based

decomposition of the two image sets, using 100 dictionary elements. The resulting filters

are shown in Figure 3.4(left). We then attempted to build a hierarchical 2 layer model

by taking the sparse output vectors from each image patch and arranging them into a

map over the image. Applying the SPAMS code to this map produces the 2nd layer

filters shown in Figure 3.4(right). While larger in scale than the 1st layer filters, they are

generally Gabor-like and do not show the diverse edge conjunctions present in our 2nd

layer filters. To probe this result, we visualize the latent feature maps of our convolutional

decomposition and Mairal et al. .’s patch-based decomposition in Figure 3.5.
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1st layer  -- Mairal et al.  -- 2nd layer

Figure 3.4: Examples of 1st and 2nd layer filters learned using the patch-based sparse
deconvolution approach of Mairal et al. [81], applied to the food dataset. While the first
layer filters look similar to ours, the 2nd layer filters are merely larger versions of the 1st

layer filters, lacking the edge compositions found in our 2nd layer (see Figure 3.7 and
Figure 3.8).

Feature map Filters
(c) Patch-based Representation

Feature map Filters
(b) Convolutional Representation

(a) Cropped image  & Sliding Window

Figure 3.5: A comparison of convolutional and patch-based sparse representations for a
crop from a natural image (a). (b): Sparse convolutional decomposition of (a). Note the
smoothly varying feature maps that preserve spatial locality. (c): Patch-based convolu-
tional decomposition of (a) using a sliding window (green). Each column in the feature
map corresponds to the sparse vector over the filters for a given x-location of the slid-
ing window. As the sliding window moves the latent representation is highly unstable,
changing rapidly across edges. Without a stable representation, stacking the layers will
not yield higher-order filters, as demonstrated in Figure 3.4.

3.3.3 Caltech-101 object recognition

We now demonstrate how deconvolutional networks can be used in an object recognition

setting. As we are primarily interested in image representation, we compare to other

methods using a common framework of one or more layers of feature extraction, followed

by Spatial Pyramid Matching [70]. We use the standard Caltech-101 dataset for evaluat-

ing classification performance, but we would like to emphasize that the filters of our DN

have been learned using a generic, disparate training set: a concatenation of the natural

and city images. The Caltech-101 images are only used for supervised training4 of the
4The 150x150 pixel contrast normalized gray images used for classification were connected to 8 feature

maps in layer 2. Second layer maps were connected singly and in every possible pair to the layer 1 maps,
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Table 3.1: Recognition performance on Caltech-101.
# training examples 15 30
DN-1 (KM) 57.7± 1.0% 65.8± 1.3%
DN-2 (KM) 57.0± 0.8% 65.5± 1.0%
DN-(1+2) (KM) 58.6± 0.7% 66.9± 1.1%
Lazebnik et al. [70] 56.4% 64.6± 0.7%
Jarret et al. [56] – 65.6± 1.0%
Lee et al. [78] layer-1 53.2± 1.2% 60.5± 1.1%
Lee et al. [78] layer-1+2 57.7± 1.5% 65.4± 0.5%
Zhang et al. [143] 59.1± 0.6% 66.2± 0.5%

classifier.

Our baseline is the method of Lazebnik et al. [70] where SIFT descriptors are computed

densely over the image, followed by Spatial Pyramid Matching. To compare our latent

representation with this approach, we densely constructed descriptors5 from layer 1 (DN-

1) and layer 2 (DN-2) feature activations. These were then vector quantized using K-

means (KM) into 1000 clusters and grouped into a spatial pyramid from which an SVM

histogram intersection kernel was computed for classification. Results for 10-fold cross

validation with 15 and 30 images training per category are reported in Table 3.1.

Our method slightly outperforms the SIFT-based approach [70] as well as other multi-

stage convolutional feature-learning methods such as convolutional DBNs [78] and feed-

forward convolutional networks [56]. We achieved the best performance when we con-

catenated the spatial pyramids of both layers before computing the SVM histogram

intersection kernels: denoted DN-(1+2).
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Figure 3.6: Exploring the trade-off between sparsity and denoising performance for our
1st and 2nd layer representations (red and green respectively), as well as the patch-
based approach of Mairal et al. [81] (blue). Our 2nd layer representation simultaneously
achieves a lower reconstruction error and sparser feature maps.

3.3.4 Denoising images

Given that our learned representation can be used for synthesis as well as analysis, we

explore the ability of a two layer model to denoise images. Applying Gaussian noise to

an image with a SNR of 13.84dB, the first layer of our model was able to reduce the

noise to 16.31dB. Further, using the latent features of our second layer to reconstruct

the image, the noise was reduced to a SNR of 18.01dB.

We also explore the relative sparsity of the feature maps in the 1st and 2nd layers of

our model as we vary λ. In Figure 3.6 we plot the average sparsity of each feature map

against RMS reconstruction error, we see that the feature maps at layer 2 are sparser and

give a lower reconstruction error, than those of layer 1. We also plot the same curve for

the patch-based sparse decomposition of Mairal et al. [81]. In this framework, inference

is performed separately for each image patch and since patches overlap, a much larger

number of latent features are needed to represent the image. The curve was produced

for a total of 36 layer 2 feature maps. α=0.8, λ1=10, and λ2=1 were used to maintain more discriminative
information in the feature maps.

5Activations from each layer were split into overlapping 16x16 patches at a stride of 2 pixels. The
absolute value of activations in each patch were pooled by a factor of 4 then grouped in 4x4 regions on
each of 8 layer 1 feature maps giving a 128-D descriptor per patch and grouped in 2x2 regions on each
of 36 layer 2 maps leading to 144-D layer 2 descriptors.
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by varying the number of active dictionary atoms per patch in reconstruction.

3.3.5 Inference timings

Our efficient optimization scheme makes it feasible to perform exact inference in a convo-

lutional setting. Alternate approaches [78] rely on simple non-linear encoders to perform

approximate inference. Our scheme is linear in the number of filters and pixels in the

image (5.8± 1.0secs/filter/megapixel) Thus for 150×150 images used in the Caltech 101

experiments, using the architecture described in Section 3.3.1, inferences takes 2.5s, 10s,

55s layers-1,2,3 respectively. Due to the small filter sizes, learning incurs only a 10%

overhead relative to inference. While our algorithm is slow compared to approaches that

use bottom-up encoders, heavy use of the convolution operator makes it amenable to

parallelization and GPU-based implementations which we show to give between 1 and 2

orders of magnitude speed-up in later chapters. Additional performance gains are also

shown when pooling is introduced between layers.

3.4 Discussion

In this chapter we introduced deconvolutional networks: a conceptually simple frame-

work for learning sparse, over-complete feature hierarchies. Applying this framework

to natural images produces a highly diverse set of filters that capture high-order image

structure beyond edge primitives. These arise without the need for hyper-parameter

tuning or additional modules, such as local contrast normalization, max-pooling and

rectification [56]. Our approach relies on robust optimization techniques to minimize the

poorly conditioned cost functions that arise in the convolutional setting. Supplemental

images, video, and code for this chapter can be found at: http://www.cs.nyu.edu/

~zeiler/pubs/cvpr2010/.
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Figure 3.7: Filters from each layer in our model, trained on food scenes. Note the rich
diversity of filters and their increasing complexity with each layer. In contrast to the
filters shown in Figure 3.8, the filters are evenly distributed over orientation.
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Figure 3.8: Filters from each layer in our model, trained on the city dataset. Note the
predominance of horizontal and vertical structures.
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Chapter 4

Adaptive Deconvolutional

Networks for Mid and High Level

Feature Learning

4.1 Introduction

For many tasks in vision, the critical problem is discovering good image representations

that are invariant to many changes in input. For example, the advent of local image

descriptors such as SIFT and HOG has precipitated dramatic progress in matching and

object recognition. Interestingly, many of the successful representations are quite similar

[139], essentially involving the calculation of edge gradients, followed by some histogram

or pooling operation. While this is effective at capturing low-level image structure,

the challenge is to find representations appropriate for mid and high-level structures,

i.e. corners, junctions, and object parts, which are surely important for understanding

images.

The previous chapter introduced deconvolutional networks which can learn interesting
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Figure 4.1: Top-down parts-based image decomposition with an adaptive deconvolutional
network. Each column corresponds to a different input image under the same model.
Row 1 shows a single activation of a 4th layer feature map projected into image space.
Conditional on the activations in the layer above, we also take a subset of 5, 25 and
125 active features in layers 3, 2 and 1 respectively and visualize them in image space
(rows 2-4). The activations reveal mid and high level primitives learned by our model. In
practice there are many more activations such that the complete set sharply reconstructs
the entire image from each layer.

compositions of edge primitives into corner, curve and parallel line features. However,

due to some crucial missing components in the model, the features learned in higher

layers do not represent object parts or entire objects. In this chapter we extend decon-

volutional networks such that when trained on natural images, the layers of the model

capture image information in a variety of forms: low-level edges, mid-level edge junc-

tions, high-level object parts and complete objects. We propose novel solutions to two

fundamental problems associated with all types of feature hierarchies, not only decon-

volutional networks, in order to make this possible.

The first problem relates to invariance: while edges only vary in orientation and scale,

larger-scale structures are more variable. Trying to explicitly record all possible shapes

of t-junction or corners, for example, would lead to a model that is exponential in

the number of primitives. Hence invariance is crucial for modeling mid and high-level
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structure.

The second problem relates to the layer-by-layer training scheme employed in hierarchical

models, such as deep belief networks [48, 78] and convolutional sparse coding [19, 62].

Lacking a method to efficiently train all layers with respect to the input, these models

are trained greedily from the bottom up, using the output of the previous layer as

input for the next. The major drawback to this paradigm is that the image pixels are

discarded after the first layer, thus higher layers of the model have an increasingly diluted

connection to the input. This makes learning fragile and impractical for models beyond

a few layers.

Our solution to both these issues is to introduce a set of latent switch variables, computed

for each image, that locally adapt the model’s filters to the observed data. Hence, a

relatively simple model can capture wide variability in image structure. The switches

also provide a direct path to the input, even from high layers in the model, allowing each

layer to be trained with respect to the image, rather than the output of the previous

layer. As we demonstrate, this makes learning far more robust. Additionally, the switches

enable the use of an efficient training method, allowing us to learn models with many

layers and hundreds of feature maps on thousands of images.

Some related approaches have been proposed in the past to learn hierarchies of features,

but these previous attempts have not directly tackled both of these two problems in

the unsupervised learning setting. Convolutional neural networks (CNN) [74], like de-

convolutional networks, produce a hierarchy of latent feature maps via learned filters.

However, they process images bottom-up and are trained discriminatively and purely

supervised, while our approach is top-down (generative) and unsupervised. Predictive

Sparse Decomposition (PSD) [56] adds a sparse coding component to CNNs that allows

unsupervised training. In contrast to our model, each layer only reconstructs the layer

below. Additional shift invariance can be incorporated as in [99] by recording transfor-

mation parameters for use in reconstruction. This is similar to the work presented here,
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storing location information from max pooling operations, but was previously used in a

single layer autoencoders whereas we extend this to train multiple layers of deconvolu-

tions.

This limitation is shared by Deep Belief Networks (DBNs) [48,78] which are comprised of

layers of Restricted Boltzmann Machines. Each RBM layer, conditional on its input, has

a factored representation that does not directly perform explaining away. Also, training

is relatively slow.

The closest approaches to ours are those based on convolutional sparse coding [19, 62].

Like PSD and DBNs, each layer only attempts to reconstruct the output of the layer

below. Additionally, they manually impose sparse connectivity between the feature maps

of different layers, thus limiting the complexity of the learned representation. This is

similar to the first chapter on deconvolutional networks, where connectivity could be

sparse in higher layers. In contrast, in this chapter and the remainder of this work we

found full connectivity to work well for learning complex structures and eliminates the

choice of connectivity structure to use. Additional differences include: the lack of pooling

layers and inefficient inference schemes [19] that do not scale.

Our model performs a decomposition of the full image, in the spirit of Zhu and Mumford

[145] and Tu and Zhu [131]. This differs from other hierarchical models, such as Fidler

and Leonardis [36] and Zhu et al. [144], that only model a stable sub-set of image

structures at each level rather than all pixels. Another key aspect of our approach is

that we learn the decomposition from natural images. Several other hierarchical models

such as Serre et al.’s HMax [101, 114] and Guo et al. [43] use hand-crafted features at

each layer.
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Figure 4.2: (a): A visualization of two layers of our model. Each layer consists of a
deconvolution and a max-pooling. The deconvolution layer is a convolutional form of
sparse coding that decomposes input image x into feature maps z1 (green) and learned
filters F 1 (red), which convolve together and sum to reconstruct x. The filters have Nc

planes, each used to reconstruct a different channel of the input image. Each z map
is penalized by a per-element `1 sparsity term (purple). The max-pooling layer pools
within and between feature maps, reducing them in size and number to give pooled
maps p (blue). The locations of the maxima in each pooling region are recorded in
switches s (yellow). The second deconvolution/pooling layer is conceptually identical to
the first, but now has two input channels rather than three. In practice, we have many
more feature maps per layer and have up to 4 layers in total. (b): A block diagram
view of the inference operations within the model for layer 2. See Section 4.2.1 for an
explanation. (c): A toy instantiation of the model on the left, trained using a single
input image of a (contrast-normalized) circle. The switches and sparsity terms are not
shown. Note the sparse feature maps (green) and the effect of the pooling operations
(blue). Since the input is grayscale, the planes of the 1st layer filters are identical.

4.2 Deconvolutional Networks with Adaptive Pooling

Our model produces an over-complete image representation that can be used as input

to standard object classifiers. Unlike many image representations, ours is learned from

natural images and, given a new image, requires inference to compute. The model

decomposes an image in a hierarchical fashion using multiple alternating layers of con-

volutional sparse coding (deconvolution) and max-pooling. Each of the deconvolution

layers attempts to directly minimize the reconstruction error of the input image under

a sparsity constraint on an over-complete set of feature maps. The cost function CL(x)
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for layer L comprises two terms 1: (i) a likelihood term that keeps the reconstruction of

the input x̂L close to the original input image x; (ii) a regularization term that penalizes

the `1 norm of the 2D feature maps zL on which the reconstruction x̂L depends. The

relative weighting of the two terms is controlled by λL:

CL =
λL

2
‖x̂L − x‖22 + |zL|1 (4.1)

Unlike existing approaches [19, 62], our convolutional sparse coding layers attempt to

directly minimize the reconstruction error of the input image, rather than the output of

the layer below.

Deconvolution: Consider the first layer of the model, as shown in Figure 4.2(a). The

reconstruction x̂1 from the first layer, which remains the same as in the previous chapter,

is formed by convolving each of the 2D feature maps z1 with filters F 1 and sums them:

x̂1 = F 1z1 = R1z1 (4.2)

We describe the inference scheme used to discover an optimal z1 and the closely related

learning approach for estimating F 1 in Sections 4.2.1 and 4.2.2 respectively, which differs

slightly from the previous chapter.

Pooling: On top of each deconvolutional layer, we perform a 3D max-pooling operation

on the feature maps z. This allows the feature maps of the layer above to capture

structure at a larger scale than the current layer. The pooling is 3D in that it occurs

both spatially (within each 2D z map) and also between adjacent maps, as shown in

Figure 4.3. Within each neighborhood of z we record both the value and location of the

maximum (irrespective of sign). Pooled maps p store the values, while switches s record

the locations.
1We utilize L instead of l from this point on to distinguish the top layer where reconstruction begins,

L, from an intermediate layer l.
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Figure 4.3: An example of 3D max pooling using a neighborhood of size 2 × 2 × 2, as
indicated by the colors. The pooling operation P is applied to the feature maps z, yielding
pooled maps p and switches s that record the location of the maximum (irrespective of
sign). Given the pooled maps and switches, we can also perform an unpooling operation
Us which inserts the pooled values in the appropriate locations in the feature maps, with
the remaining elements being set to zero.

Our model uses two distinct forms of pooling operation on the feature maps z. The first,

shown in Figure 4.3, treats the switches s as an output: [p, s] = Pz. The second takes

the switches s as an input, where they specify which elements in z are copied into p. If s

is fixed, then this is a linear operation which can be written as p = Psz, with Ps being a

binary selection matrix, set by switches s. This latter operation is used when computer

gradients up the model.

The corresponding unpooling operation Us, shown in Figure 4.3, takes the elements in

p and places them in z at the locations specified by s, the remaining elements being set

to zero: ẑ = Usp. Note that this is also a linear operation for fixed s and that Us = P Ts .

Multiple Layers: The architecture remains the same for higher layers in the model but

there are typically a larger number of feature maps Nk
l in higher layers. Starting recon-

struction from layer L we reconstruct the input pixels through the filters and switches

of the layers below. We extend the reconstruction operator RL to take the feature maps

zL from layer L and alternately convolve (F ) and unpool them (Us) down to the input:
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x̂L = F 1Us1F
2Us2 . . . F

LzL = RLzL (4.3)

Note that x̂L depends on the feature maps zL from the current layer but not those

beneath2. However, the reconstruction operator RL does depend on the pooling switches

in the intermediate layers (sL−1, . . . , s1) since they determine the unpooling operations

UsL−1 , . . . , Us1 . These switches are configured by the values of zL−1 . . . z1 from previous

iterations.

We also redefine the projection operator RL
T

which takes error signal eL at the input

and projects it back up to the feature maps of any layer l ≤ L. Given previously

determined switches in the lower layers, s1, . . . , sL−1, the new operator maps upwards

through convolutions and pooling operations:

RL
T

= FL
T
PsL−1FL−1TPsl−2 . . . Ps1F

1T (4.4)

A crucial property of our model is that given the switches s, both the reconstruction

RL and projection operators RL
T

are linear, thus allowing the gradients to be easily

computed, even in models with many layers, making inference and learning straightfor-

ward. Figure 4.2(a) illustrates two layers of deconvolution and pooling within our model.

Figure 4.2(b) shows how the reconstruction and projection operators are made up of the

filtering, pooling and unpooling operations.

4.2.1 Inference

For a given layer L, inference involves finding the feature maps zL that minimize CL,

given an input image x and filters F . For each layer we need to solve a large `1 convolu-

tional sparse coding problem and we adapt the ISTA scheme of Beck and Teboulle [4].
2In other words, when we project down to the image, we do not impose sparsity on any of the

intermediate layer reconstructions ẑL−1, . . . , ẑ1
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This uses an iterative framework of gradient and shrinkage steps.

Gradient step: This involves taking a step in the direction of the gradient gL of the

reconstruction term of Eq. 4.1, with respect to zL:

∇Lz = RL
T

(RLzL − x) = RL
T
eL (4.5)

To compute the gradient, we take feature maps zL and, using the filters and switch

settings of the layers below, reconstruct the input x̂L = RLzL. We then compute the

reconstruction error x̂L − x. This is then propagated back up the network using RL
T

which alternately filters (F T ) and pools it (Ps) up to layer L, yielding the gradient ∇Lz .

This process is visualized in Figure 4.2(middle) for a two layer model.

Once we have the gradient ∇Lz , we then can update zL:

zL = zL − λLηL∇Lz (4.6)

where the ηL parameter sets the size of the gradient step.

Shrinkage step: Following the gradient step, we perform a per-element shrinkage op-

eration that clamps small elements in zL to zero, thus increasing its sparsity:

zL = max(|zL| − ηL, 0)sign(zL) (4.7)

Pooling/unpooling: We then update the switches sL of the current layer by performing

a pooling operation3 [pL, sL] = P (zL), immediately followed by an unpooling operation

zL = UsLp
L. This fulfills two purposes: (i) it ensures that we can accurately reconstruct

the input through the pooling operation, when building additional layers on top and (ii)
3This is the form of pooling shown in Figure 4.3 that treats the switches as an output. It is not the

same as the form of pooling used in projection operator RT , where they are an input
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Algorithm 2 Adaptive Deconvolutional Networks
Require: Training set X , # layers Nl, # epochs Ne, # ISTA steps Nt
Require: Regularization weights λl, # feature maps Nkl ∀l ∈ Nl
Require: Shrinkage parameters ηl ∀l ∈ Nl
1: for L = 1 : Nl do %% Loop over layers to reconstruct from
2: Init. features/filters: zL ∼ N (0, ε), FL ∼ N (0, ε)
3: for epoch = 1 : Ne do %% Epoch iteration
4: for im = 1 : Nx do %% Loop over images
5: for t = 1 : Nt do %% ISTA iteration
6: Reconstruct input: x̂L = RLzk
7: Compute reconstruction error: e = x̂L − x
8: Propagate error up to layer L: ∇Lz = RL

T

eL

9: Take gradient step: zL = zL − λLηL∇Lz
10: Perform shrinkage: zL = max(|zL| − ηL, 0)sign(zL)
11: Pool zL, updating the switches sL: [pL, sL] = P (zL)
12: Unpool pL, using sL to give zL: zL = UsLp

L

13: end for
14: end for
15: Update FL by solving Eq. 4.8 using CG
16: end for
17: end for
18: Output: filters F , feature maps z and switches s.

it updates the switches to reflect the revised values of the feature maps. Once inference

has converged, the switches will be fixed, ready for training the layer above. Hence, a

secondary goal of inference is to determine the optimal switch settings in the current

layer.

Overall iteration: A single ISTA iteration consists of each of the three steps above:

gradient, shrinkage and pooling/unpooling. During inference we perform 10 ISTA iter-

ations per image for each layer.

Both the reconstruction R and propagation RT operations are very quick, just consist-

ing of convolutions, summations, pooling and unpooling operations, all of which are

amenable to parallelization. This makes it possible to efficiently solve the system in

Eq. 4.1, even with massively over-complete layers where zL may be up to 105 in length.

Note that while the gradient step is linear, the model as a whole is not. The non-linearity

arises from two sources: (i) sparsity, as induced by the shrinkage Eq. 4.7, and (ii) the

settings of the switches s which alter the pooling/unpooling within RL.
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4.2.2 Learning

In learning the goal is to estimate the filters F in the model, which are shared across all

images X = {x1, . . . , x, . . . , xNx}. For a given layer L, we perform inference to compute

zL. Taking derivatives of Eq. 4.1 with respect to FL and setting to zero, we obtain the

following linear system in FL 4:

(
zL

T
PsL−1RL−1T

)
x̂L =

(
zL

T
PsL−1RL−1T

)
x (4.8)

where x̂ is the reconstruction of the input using the current value of FL. We have omitted

the sum over images within an mini-batch which appear on both sides of the equation

to simplify notation. Note, the reconstruction operator RL is image specific because it

uses the location of pooling switches sL in each layer L below L to operate. We solve

this system using linear conjugate gradients (CG). The matrix-vector product of the

left-hand side is computed efficiently by mapping down to the input and back up again

using the RL and RL
T

operations. After solving Eq. 4.8, we normalize FL to have unit

length. The overall algorithm for learning all layers of the model is given in Algorithm

1. We alternate small steps in zL and FL, using a single ISTA step per epoch to infer

zL and two CG iterations for FL, repeated over 10 epochs. The procedure for inference

is identical, except the FL update on line 15 is not performed and we use a single epoch

with 10 ISTA steps.

4.3 Application to object recognition

Our model is purely unsupervised and so must be combined with a classifier to perform

object recognition. In view of its simplicity and performance, we use the Spatial Pyramid

Matching (SPM) of Lazebnik et al. [70].

4FL appears in the reconstruction: x̂L = RLzL = RL−1UsL−1FLzL.
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1st Max 2nd Max 3rd Max ∑ Maxes Input

Figure 4.4: Col 1–3: The largest 3 absolute activations in the 4th layer projected down
to pixel space for 2 different images. Note how distinct structures are reconstructed,
despite the model being entirely unsupervised. See Section 4.3 for details on their use
for recognition. Col 4–5: sum of first 3 columns; original input image.

Given a new image, performing inference with our model decomposes it into multiple

layers of feature maps and switch configurations. We now describe a novel approach for

using this decomposition in conjunction with the SPM classifier.

While the filters are shared between images, the switch settings are not, thus the feature

maps of two images are not directly comparable since they use different bases RL. For

example, in Figure 4.1 each 4th layer top-down decomposition begins from the same

feature map, yet gives quite different reconstructions. This shows two key aspects of the

model: (i) within a class or between similar classes, the decompositions share similar

parts and focus on particular regions of the image; and (ii) the adaptability of the switch

settings allows the model to learn complex interactions with other classes. However, this

makes direct use of the higher-level feature maps problematic for classification and we

propose a different approach.

For each image im, we take the set of the Nm largest absolute activations from the

top layer feature maps and project each one separately down to the input to create Nm

different images (x̂1, . . . , x̂Nm), each containing various image parts generated by our

model. This only makes sense for high layers with large receptive fields. In Figure 4.4 we

show the pixel space reconstructions of the top Nm = 3 4th layer activations inferred for 2

different images. Note how they contain good reconstructions of select image structures,
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as extracted by the model, while neighboring content is suppressed, providing a soft

decomposition. For example, the 2nd max for the face reconstructs the left eye, mouth,

and left shoulder, but little else. Conversely, the 3rd max focuses on reconstructing

the hair. The structures within each max reconstruction consist of textured regions

(e.g. shading of the cougar), as well as edge structures. They also tend to reconstruct

the object better than the background.

Instead of directly inputting x̂1, . . . , x̂Nm to the SPM, we instead use the corresponding

reconstructions of the 1st layer feature maps (i.e. ẑ1
1 , . . . , ẑ

1
Nm

), since activations at this

layer are roughly equivalent to unnormalized SIFT features (the standard SPM input

[70]). After computing separate pyramids for each ẑ1
m, we average all Nm of them to give

a single pyramid for each image. We can also apply SPM to the actual 1st layer feature

maps z1
k, which are far denser and have even coverage of the image5. The pyramids of

the two can be combined to boost performance.

4.4 Experiments

We train our model on the entire training set of 3060 images from the Caltech-101 dataset

(30 images per class with 101 object classes and 1 background class).

Pre-processing: Each image is converted to gray-scale and resized to 150× 150 (zero

padding to preserve the aspect ratio). Local subtractive and divisive normalization

(i.e. the patch around each pixel should have zero mean and unit norm) is applied using

a 13× 13 Gaussian filter with σ = 5.

Model architecture: We use a 4 layer model, with 7× 7 filters, and E = 10 epochs of

training. Various parameters, timings and statistics are shown in Table 4.1. Due to the

efficient inference scheme, we are able to train with many more feature maps and more

data than other approaches, such as [19, 62, 78]. By the 4th layer, the receptive field
5Specific details: pixel spacing=2, patch size=16, codebook size=2000.
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Property Layer 1 Layer 2 Layer 3 Layer 4

# Feature maps Nkl 15 50 100 150
Pooling size 3x3x3 3x3x2 3x3x2 3x3x2

λl 2 0.1 0.005 0.001
ηl 10−3 10−4 10−6 10−8

CPU Inference time 0.12 s 0.21 s 0.38 s 0.54 s
GPU Inference time 0.006 s 0.01 s 0.03 s 0.05 s

z pixel field 7x7 21x21 63x63 189x189
Feature map dims 156x156 58x58 26x26 15x15
# Filter Params 735 7,350 122,500 367,500
Total # z & s 378,560 178,200 71,650 37,500

Table 4.1: Parameter settings (top 4 rows) and statistics (lower 5 rows) of our model.

of each feature map element (z pixel field) covers the entire image, making it suitable

for the novel feature extraction process described in Section 4.3. At lower layers of the

model, the representation has many latent variables (i.e. z’s and s’s) but as we ascend,

the number drops. Counterbalancing this trend, the number of filter parameters grows

dramatically as we ascend and the top layers of the model are able to learn object specific

structures.

Timings: With 3060 training images and Ne = 10 epochs, it takes around 5 hours to

train the entire 4 layer model using a MATLAB implementation on a six-core CPU.

For inference, a single epoch suffices with 10 ISTA iterations at each layer. The total

inference time per image is 1.25 secs (see Table 4.1 for each layer). Additionally, since

the algorithm is highly parallel at each layer, the use of a Nvidia GTX 480 GPU reduces

training time down to 30 mins for the entire model and 0.1 secs to infer each image.

4.4.1 Model visualization

The top-down nature of our model makes it easy to inspect what it has learned. In

Figure 4.5 we visualize the filters in the model by taking each feature map separately and

picking the single largest absolute activation over the entire training set. Using the switch

settings particular to that activation we project it down to the input pixel space. At layer

1 (Figure 4.5(a)), we see a range of oriented Gabors of differing frequencies and some
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Our model - layer 1 67.8± 1.2%
Our model - layer 4 69.8± 1.2%
Our model - layer 1 + 4 71.0± 1.0%
Chen et al. [19] layer-1+2 (ConvFA) 65.7± 0.7%
Kavukcuoglu et al. [62] (ConvSC) 65.7± 0.7%
Zeiler et al. [142] layer-1+2 (DN) 66.9± 1.1%
Boureau et al. [11] (Macrofeatures) 70.9± 1.0%
Jarrett et al. [56] (PSD) 65.6± 1.0%
Lazebnik et al. [70] (SPM) 64.6± 0.7%
Lee et al. [78] layer-1+2 (CDBN) 65.4± 0.5%
Our Caltech-256 Model - layer 1+4 70.5± 1.1%

Table 4.2: Recognition performance on Caltech-101 compared to other approaches
grouped by similarity (from top). Group 1: our approach; Group 2: related convo-
lutional sparse coding methods with SPM classifier; Group 3: other methods using SPM
classifier; group 4: our model with filters trained on Caltech-256 images.

DC filters. In layer 2 (Figure 4.5(b)), a range of edge junctions and curves can be seen,

built from combinations of the 1st layer filters. For select filters (highlighted in color),

we expand to show the 25 strongest activations across all images. Each group shows

clustering with a certain degree of variation produced by the specific switch settings for

that particular activation. See, for example, the sliding configuration of the T-junction

(blue box). Reflecting their large receptive field, the filters in layer 3 (Figure 4.5(c)) show

a range of complex compositions. The highlighted boxes show that the model is able to

cluster quite complex structures. Note that the groupings produced are quite different

to a pixel-space clustering of image patches since they are: (i) far from rectangular in

shape; (ii) utilize the adaptable geometric transformations offered by the switches below.

The 4th layer filters (Figure 4.5(d)) show fairly complete reconstructions of entire objects

with groupings amongst objects of the same class or of similar shape.

To understand the relative sizes of each projection we also show the receptive fields for

layers 1-4 in Figure 4.5(e). Finally, reconstructions from each layer of the model of 4

example input images are shown in Figure 4.5(f). Note that unlike related models, such

as Lee et al. [78], sharp image edges are preserved in the reconstructions, even from layer

4.
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Figure 4.5: a-d) Visualizations of the filters learned in each layer of our model with zoom-
ins showing the variability of select features. e) An illustration of the relative receptive
field sizes. f) Image reconstructions for each layer. See Section 4.4.1 for explanation.
This figure is best viewed in electronic form.

62



4.4.2 Evaluation on Caltech-101

We use Nm = 50 decompositions from our model to produce input for training the

Spatial Pyramid Match (SPM) classifier of Lazebnik et al. [70]. The classification results

on the Caltech-101 test set are shown in Table 4.2.6

Applying the SPM classifier to layer 1 features z1 from our model produces similar

results (67.8%) to many other approaches, including those using convolutional sparse

coding (2nd group in Table 4.2). However, using the 50 max decompositions from layer

4 in the SPM classifier, as detailed in Section 4.3, we obtain a significant performance

improvement of 2%, surpassing the majority of hierarchical and sparse coding approaches

that also use the same SPM classifier (middle two groups in Table 4.2). Summing the

SVM kernels resulting from the max activations from layer 4 and the layer 1 features, we

achieve 71.0%. The only approach based on the SPM with comparable performance is

that of Boureau et al. [11], based on Macrofeatures. Current state-of-the-art techniques

[11,137,141] use forms of soft quantization of the descriptors, in place of the hard k-means

quantization used in the SPM (e.g. Wang et al. [137] obtain 73.4% using a sparse-coding

based classifier).

4.4.3 Evaluation on Caltech-256

Using the same training and evaluation parameters as for Caltech-101, we evaluated our

model on the more difficult Caltech-256 dataset (see Table 4.3). By training our model

on 30 images in each of the 256 categories and using Nm = 50 decompositions as before,

we show a gain of 3.7% over SIFT features with the SPM classifier [141].
6In Table 4.2 and Table 4.3, we only consider approaches based on a single feature type. Approaches

that combine hundreds of different features with multiple kernel learning methods outperform the meth-
ods listed. Also, only hard quantizatino approaches are shown.
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Our model - layer 1 31.2± 1.0%
Our model - layer 4 30.1± 0.9%
Our model - layer 1 + 4 33.2± 0.8%
Yang et al. [141] (SPM) 29.5± 0.5%
Our Caltech-101 Model - layer 1+4 33.9± 1.1%

Table 4.3: Caltech-256 recognition performance of our model and a similar SPM method.
Our Caltech-101 model was also evaluated.

4.4.4 Transfer learning

By using filters trained on Caltech-101, then classifying Caltech-256 and vice versa we

can test how well our model generalizes to new images. In both cases, classification

performance remains within errors of the original results (see Table 4.2 and Table 4.3)

showing the adaptability of our model to generalize to new instances and entirely new

classes.

4.4.5 Classification and reconstruction relationship

While we have shown sparsity to be useful for learning high level features and decompos-

ing images into a hierarchy of parts, it is not necessarily a strong cue for classification as

Rigamonti et al. [103] note. By varying the λl parameter at each layer for inference, hold-

ing the filters fixed, we analyzed the tradeoff of sparsity and classification performance

on Caltech-101 in Figure 4.6. With higher λl values, sparsity is reduced, reconstructions
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Figure 4.6: Relationship between reconstruction (solid line) and classification rates (dot-
ted line) for varied amounts of sparsity.
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improve, and recognition rates increase. The optimum appears around 3× the λl used

for training, after which the increased λl results in larger ISTA steps that introduce

instability in optimization.7

4.4.6 Analysis of switch settings

Other deep models lack explicit pooling switches, thus during reconstruction either place

a single activation in the center of each pool [19], or distribute it equally over all locations

[78]. Figure 4.7 demonstrates the utility of switches: we (i) reconstruct using the top 25

activations in layers 2,3 and 4 for different forms of switch behavior; (ii) sum the resulting

reconstructions and (iii) classify Caltech-101 using the layer 1 features (as before).
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Figure 4.7: Switch importance for reconstruction and classification.

It is evident from the layer 3 reconstructions shown in Figure 4.7(a) that retaining all

max locations allows for sharp reconstructions while average unpooling Figure 4.7(b,d)

causes blur and using the center indices in max unpooling Figure 4.7(c,e) causes jitter

with corresponding drops in recognition performance. When reconstruction, maintaining

the proper k switches Figure 4.7(b,c) is crucial for selecting the proper feature maps in

lower layers, so preventing extreme deformations of the objects (see Figure 4.7(d,e))

which leads to severely reduced recognition performance.
7The results in Table 4.2 and Table 4.3 used 2× λl.
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4.5 Discussion

The novel methods introduced in this chapter allow us to reliably learn models with many

layers. As we ascend the layers, the switches in our model allow the filters to adapt to

increasingly variable input patterns. The model is thus able to capture mid and high-level

features that generalize between classes. Using these features with standard classifiers

gives competitive rates on Caltech-101 and Caltech-256. The generality of our learned

representation is demonstrated by its ability to generalize to datasets on which it was

not trained, while maintaining a comparable performance. Matlab code for this chapter

is available at www.matthewzeiler.com/pubs/iccv2011/.
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Chapter 5

Differentiable Pooling for

Hierarchical Feature Learning

5.1 Introduction

The max pooling in the previous chapter allowed deconvolutional networks to scale

to large images and represent entire objects using a deep combination of convolutions

and unpooling for reconstruction. Each reconstruction involves the unpooling operation

which uses the discrete switch locations in each pooling region to place reconstructed ac-

tivations in place. This provides decent reconstructions in deep models, but information

is lost in this discretization step. This chapter proposes a novel pooling method which

provides continuous translation and scale parameterization for each pooling region that

is also differentiable. This facilitates a unified objective function which involves recon-

struction from the pooled features of the top layer, as opposed to the unpooled features

as in the last chapter, while allowing pooling parameters to be jointly optimized in all

layers.

In many hierarchical image representations spatial pooling plays an important role in

providing invariance to local perturbations of the input and allowing higher-level features

67



to model large portions of the image. Sum and max pooling are the most common forms,

with max being typically preferred (see Boureau et al. [12] for an analysis).

This chapter uses a parametric form of pooling that can be directly integrated into the

overall objective function of many hierarchical models. Using a Gaussian parametric

model, we can directly optimize the mean and variance of each Gaussian pooling region

during inference to minimize a global objective function. This contrasts with existing

pooling methods that just optimize a local criterion (e.g. max over a region). Adjusting

the variance of each Gaussian allows a smooth transition between selecting a single

element (akin to max pooling) over the pooling region, or averaging over it (like a sum

operation).

Integrating pooling into the objective facilitates joint training and inference across all

layers of the hierarchy, something that is often a major issue in many deep models.

During training, most approaches build up layer-by-layer, holding the output of the layer

beneath fixed. However, this is sub-optimal, since the features in the low-layers cannot

use top-down information from a higher layer to improve them. A few approaches do

perform full joint training of the layers, notably the Deep Boltzmann Machine [108], and

Eslami et al. [32], as applied to images, and the Deep Energy Models of Ngiam et al. [92].

We demonstrate our differentiable pooling in a third model with this capability, the

deconvolutional networks introduced earlier. We show how joint inference and training

of all layers is possible, using this differentiable pooling. However, differentiable pooling

is not confined to the deconvolutional network model – it is capable of being incorporated

into many existing hierarchical models as well.

The latent variables that control the Gaussians in our pooling scheme store location

information (“where”), distinct from the features that capture appearance (“what”).

This separation of what/where is also present in Ranzato et al. [99], the transforming

auto-encoders of Hinton et al. [47], and the adaptive deconvolutional networks from the

previous chapter.
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In this work, we also explore a number of secondary issues that help with training deep

models: non-negativity constraints; different forms of sparsity; overcoming local minima

during inference and different sparsity levels during training and testing.
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Figure 5.1: (a): A 2-layer model architecture. (b): Schematic of inference in a two
layer model. (c): Illustration of the Gaussian parameterization used in our differentiable
pooling.

5.2 Deconvolution Networks with Differentiable Pooling

We explain our contributions in the context of a deconvolutional network, introduced

in the previous two chapters. This model is a hierarchical form of convolutional sparse

coding that can learn invariant image features in an unsupervised manner. Its simplicity

allows the easy integration of differentiable pooling and is amenable to joint inference

over all layers.

Let us start by reviewing a single deconvolutional network layer, presented with an input

image x (having Nk
0 color channels). The goal is to produce a reconstruction x̂ from

sparse pooled features p, that is close to x. We achieve this by minimizing:
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C =
λ

2
‖x̂− x‖22 + |p|α (5.1)

where λ is a hyper-parameter that controls the influence of the reconstruction term and

the layer [ ]L notation will be omitted for clarity until needed. p consists of a set of Nk 2-D

feature maps, thus forming an over complete-basis. To give a unique solution, a sparsity

constraint on p is needed and we use an element-wise pseudo-norm where 0.5 ≤ α ≤ 1.

The reconstruction x̂ is produced from p by two alternating operations: Unpooling and

Convolution. This is different from previous chapters where the reconstruction began

from the unpooled features z. The difference involves a generalization to the unpooling

operation which is explained next.

5.2.1 Unpooling

In the unpooling sub-stage, each 2D feature map pk undergoes an unpooling operation

to produce a larger 2D unpooled feature map zk1. Each element j in pk influences a small

neighborhood Gj (typically 2× 2 or 3× 3) in the unpooled map zk, via a set of weights

wk(i) within the neighborhood:

zk(i) = wk(i)pk(j) ∀i ∈ Gj (5.2)

We constrain the weights wk(i) to have unit `2-norm, as this makes the unpooling op-

eration invertible2. The inverse pooling operation computes each element j in pk as the

sum of weights wk(i) in neighborhood Gj of the unpooled map zk:

pk(j) =
∑

i∈Gj

wk(i)zk(j) (5.3)

13D (un)pooling is also possible, as explored previous.
2Combining Eqs. 5.2 and 5.3, we have pk(j) =

P
i w

2
k(i)pk(j), hence

P
i w

2
k(i)=1.
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In the previous chapter, max (un)pooling was used, equivalent to wk(i) being all zero,

except for a single element set to 1. In this work, we consider more general wk(i)’s, as

detailed in Section 5.2.3, treating them as latent variables which will be inferred for each

input image. Note that each element in p has its own set of w’s.

For the rest of this chapter, we consider the neighborhoods Gj to be non-overlapping, but

the above formulation generalizes to overlapping regions as well. For brevity, we write

the unpooling operation as a single linear matrix, parameterized by weights w: z = Uwp.

5.2.2 Updated Cost Function

The feature maps exist solely at the top of the model where the reconstruction begins

from a layer L (there are no explicit features in intermediate layers, l). Thus, the

reconstruction can be updated to include the variables of the intermediate layers, the

filters F l and unpooling weights wl:

x̂L = F 1Uw1F 2Uw2 . . . FLUwLp
L = RLpL (5.4)

where F l and Uwl are the convolutional and unpooling operations from each layer l. This

lets us write the overall objective for a multi-layer model (shown here for a single image,

x, but optimized over a set of images x1, . . . , xX during training):

CL =
λ

2
‖RLpL − x‖22 + |pL|α (5.5)

This integrated formulation allows the straightforward optimization of the features pL of

the top layer and the filters F l and the (un)pooling weights wl of lower layers to minimize

a single objective function. A multi-layer model is shown in Figure 5.1(a). While most

other models also learn filters and features, the pooling operation is typically fixed.

Direct optimization of Eq. 5.5 with respect to w is one the main contributions of this
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work and is described in Section 5.2.3.

Note that, given fixed weights w, the reconstruction is linear in p, thus Eq. 5.5 describes

a tri-linear model, with w coding position (where) information about the (what) features

p. Since the reconstruction RL is linear, the reconstruction term is easily differentiable.

The derivative of RL is:

RL
T

= UTwLF
LT . . . UTw1F

1T (5.6)

which is the updated projection operator. This takes a signal at the input and repeatedly

convolves (using flipped versions of the filters at each layer) and pools (using weights wl)

all the way up to the features. This is a key operation for both inference and learning,

as described in Section 5.3 and Section 5.4 respectively. Figure 5.1(b) illustrates the

reconstruction and forward propagation operations.

The objective function in Eq. 5.5 differs from the original deconvolutional network for-

mulation in several important ways. First, sparsity is imposed directly on pL, as opposed

to zL. This integrates pooling into the objective function, allowing it to become part of

the inference. Second, previously only α = 1 was considered, whereas we consider the

hyper-Laplacian (α < 1) sparsity here which enforce a stronger sparsity penalty. Third,

pL is non-negative, as opposed to previously where there was no such constraint. Fourth,

and most importantly, by inferring the optimal (un)pooling weights w we directly mini-

mize the objective function of the model. Fixed sum or max pooling, employed by other

approaches, is a local heuristic that has no clear relationship to the overall cost.

5.2.3 Differentiable Pooling

We impose a parametric form on the (un)pooling weights w to ensure that the features

are invariant to small changes in the input. The pooling would otherwise be able to

memorize perfectly the unpooled features, giving “lossless” pooling which would not

generalize at all.
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The parametric model we use is a 2D axis-aligned Gaussian, with mean (µx, µy) and

precision (γx, γy) over the pooling neighborhood Gj , introduced in Section 5.2.1. The

Gaussian is normalized within the extent of the pooling region to give weights w whose

square sums to 1 (thus giving unit `2 norm):

w(i) =

√
v(i)√∑
i′∈G v(i′)

(5.7)

where v(i) is value of the Gaussian for element i, at the spatial locations spx(i), spy(i)

within the neighborhood Gj :

v(i) = e−[ γx
2

(spx(i)−µx)2+
γy
2

(spy(i)−µy)2] (5.8)

Figure 5.1(c) shows an illustration of this parameterization. For brevity, we let θj =

{µx, µy, γx, γy} be the parameters for neighborhood Gj . We thus rewrite the unpooling

operation in Uwl as Uθl . The reconstruction operator RL from layer L is also parameter-

ized by θ from each layer below L which makes this an image dependent operator, but

we omit the θ in the notation for R to avoid clutter. The Gaussian representation has

several advantages over existing sum or max pooling:

• Varying the mean of the Gaussian selects a particular region in the unpooled feature

map, just like max pooling. This makes the feature invariant to small translations

within the unpooled maps.

• Varying the precision of the Gaussian allows a smooth variation between max and

sum operations (high and low precision respectively).

• Changes in precision allow invariance to small scale changes in the unpooled fea-

tures. For example, the width of an edge can easily be altered by adjusting the

variance (see Figure 5.2(c)).
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• The continuous nature of the Gaussian allows sub-pixel reconstruction that avoids

aliasing artifacts, which can occur with max pooling. See Figure 5.5 for an illus-

tration of this.

• The Gaussian representation is differentiable, i.e. the gradient of Eq. 5.5 with

respect to θj has analytic form, as detailed in Section 5.3.2.

5.2.4 Non-Negativity

In standard sparse coding and other learning methods both the feature activations and

the learned parameters can be positive or negative. This contrasts with our model, in

which we enforce non-negativity.

This is motivated by several factors. First, there is no notion of negative intensities or

objects in the visual world. Second, the Gaussian parameterization used in the differen-

tiable pooling scheme, described in Section 5.2.3 has positive weights, so cannot represent

individual negative values in the unpooled feature maps. Third, there is some biological

evidence for non-negative representations within the brain [52]. Finally, we find experi-

mentally that non-negativity reduces the flexibility of the model, encouraging it to learn

good representations. The features computed at test-time have improved classification

performance, compared with models without this constraint (see Section 5.6.4).

5.2.5 Hyper-Laplacian Sparsity

Most sparse coding models utilize the `1-norm to enforce a sparsity constraint on the

features [93], as a proxy for optimizing `0 sparsity [129]. However, a drawback of this

form of regularization is that it gives the same cost to two elements being 0.5 versus a

single elements at 1 and the other at 0, even though the latter has a lower `0 cost.

To encourage features with lower `0 cost, we use a pseudo-norm `0.5 (i.e. α = 0.5 in

Eq. 5.5) inspired by Krishnan and Fergus [64], which aggressively pushes small elements
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toward zero. To optimize this, we experimented with closed form optimization techniques

in [64], but settled on gradient descent for simplicity.

5.3 Inference

During inference, the filters F at all layers are fixed and the objective is to find the

features p and (un)pooling variables θ for all neighborhoods and all layers that minimize

Eq. 5.5. We do this by alternating between updating the features p and the Gaussian

variables θ, while holding the other fixed.

5.3.1 Feature Updates

For a given layer L, we seek the features pL that minimize CL (Eq. 5.5), given an

input image x, filters F 1, . . . , FL and unpooling variables θ1, . . . , θL. This is a large

convolutional sparse coding problem and we adapt the ISTA scheme of Beck and Teboulle

[4]. This uses an iterative framework of gradient and shrinkage steps.

Gradient step: The gradient of CL with respect to pL is:

∇Lp =
∂CL

∂pL
= RL

T
(RLpL − x) (5.9)

This involves first reconstructing the input from the current features: x̂L = RLpL,

computing the error signal eL = (x̂L − x), and then forward propagating this up to

compute the top layer gradient ∇Lp = RL
T
eL. Given the gradient, we then can update

pL:

pL = pL − λLηpL∇Lp (5.10)

where the ηpL parameter sets the size of the gradient step.
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Shrinkage step: Following the gradient step, we perform a per-element shrinkage op-

eration that clamps small elements in pL to zero, increasing its sparsity. For α = 1, we

use the standard `1 shrinkage:

pL = max(|pL| − ηpL , 0) · sign(pL) (5.11)

For α = 0.5, we step in the direction of the gradient:

pL = pL − ηpL
1
2

√
|pL|

−1

· sign(pL) (5.12)

Projection step: After shrinking small elements away, the solution is then projected

onto the non-negative set:

pL = max(pL, 0) (5.13)

Step size calculation: In order to set a learning rate for the feature map optimization,

we employ an estimation technique for steepest descent problems [115] which uses the

gradients ∇Lp = ∂CL

∂pL
:

ηpL =
∇LTp ∇Lp

∇LTp RLTRL∇Lp
(5.14)

Automating the step-size computation has two advantages. First, each layer requires a

significantly different learning rate on account of the differences in architecture, making

it hard to set manually. Second, by computing the step-size before each gradient step,

each ISTA iteration makes good progress at reducing the overall cost. In practice, we

find fixed step-sizes to be significantly inferior.

∇Lp is computed once per mini-batch. For efficiency, instead of computing the denomi-

nator in Eq. 5.14 for each image, we estimate it by selecting a small portion (∼10%) of

each mini-batch and then averaging the final learning rates.
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Reset step: Repeated optimization of the objective function tends to get stuck in local

minima as it proceeds over the dataset for several epochs. We found a simple and effective

way to overcome this problem. By setting all feature maps pL to 0 every few epochs

(essentially re-initializing inference), cleaner filters and better performing features can

be learned, as demonstrated in Section 5.6.5.

This reset may be explained as follows. During alternating inference and learning stages,

the model can overfit a mini-batch of data by optimizing either the filters or feature maps

too much. This causes the model to lock up in a state where no new feature map elements

can turn on because the reconstruction performance is sufficient to have only a small

error propagating forward to the feature level. Since no new features turn on after

shrinkage, the filters remain fixed as they continue to get the similar gradients. This

can happen early in the learning procedure when the filters are still not optimal and

therefore the learned representation suffers. By resetting the feature maps, at the next

epoch the model has to reevaluate how to reconstruct the image from scratch, and can

therefore turn on the optimal feature elements and continue to optimize the filters.

5.3.2 (Un)pooling Variable Updates

Given a model with Nl layers, we wish to update the (un)pooling variables θl at each

intermediate layer l to optimize the objective CL where the layer we reconstruct from L

is the top layer Nl of the model. We assume that the filters F1, . . . , FNl and features pL

are fixed.

The gradients for the pooling variables θl involve combining, at layer l, the forward

propagated error signal with the top down reconstruction signal. This combined signal

then drives the update of the pooling variables. More formally:

∂CL

∂Uθl
= Rl

T
(RLpL − x) · (R(L→l)pL) (5.15)
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where RL→l is the top down reconstruction from layer L feature maps to layer l feature

maps and Rl
T

is the error propagation up to zl.

With the chosen Gaussian parameterization of the pooling regions, the chain rule can be

used to compute the gradient for each parameter θl = {µx, µy, γx, γy}:

∇lθ =
∂CL

∂θl(j)
=
∑

ĩ∈Gj

∂CL

∂Uθl (̃i)
∂Uθl (̃i)
∂w(̃i)

∑

i∈Gj

∂w(̃i)
∂v(i)

∂v(i)
∂θl(j)

(5.16)

where j is the neighborhood index,

∂Uθl (̃i)
∂w(̃i)

= p̂l(̃i) = (R(L→l)pL)(̃i) (5.17)

∂w(̃i)
∂v(i)

= (
∑

n∈G
v(n))−1[w(i)] (5.18)

∂w(̃i)
∂v(̃i)

= (
∑

n∈G
v(n))−1[1− w(̃i)] (5.19)

∂v(i)
∂µx(j)

= γx(j)(spx(i)− µx(j))v(i) (5.20)

∂v(i)
∂µy(j)

= γy(j)(spy(i)− µy(j))v(i) (5.21)

∂v(i)
∂γx(j)

= −1
2

(spx(i)− µx(j))2v(i) (5.22)

∂v(i)
∂γy(j)

= −1
2

(spy(i)− µy(j))2v(i) (5.23)
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Algorithm 3 Learning with Differentiable Pooling in deconvolutional networks
Require: Training set X , # layers Nl, # epochs Ne, # ISTA steps Nt
Require: Regularization coefficients λl, # feature maps Nkl,∀l < Nl
Require: Pooling step sizes ηU l
1: for L = 1 : Nl do %% Loop over the layers to reconstruct from
2: Init. features/filters: pL ∼ 0, FL ∼ N (0, ε)
3: Init. switches: θl = Fit(Rl

T

x) ∀l < L
4: for epoch = 1 : Ne do %% Epoch iteration
5: for im = 1 : Nx do %% Loop over images. Note: z, p, and θ are per-image
6: for t = 1 : Nt do %% ISTA iteration
7: Reconstruct input: x̂L = RLpL

8: Compute reconstruction error: eL = x̂L − x
9: Propagate error up to layer L: ∇Lp = RL

T

eL

10: Estimate step size ηpL as in Eq. 5.14
11: Take gradient step on p: pL = pL − λLηpL∇Lp
12: Perform shrink: pL = max(|pL| − ηpL , 0)sign(pL)
13: Project to positive: pL = max(pL, 0)
14: for l = 1 : L do %% Loop over lower layers
15: Take gradient step on θ: θl = θl − λLηU l∇lθ
16: end for
17: end for
18: end for
19: Update FL by solving Eq. 5.25 using CG
20: Project FL to positive and unit length
21: end for
22: end for
23: Output: filters F , feature maps p and pooling variables θ.

where spx(i) and spy(i) are the coordinates within the pooling neighborhood Gj .

Once the complete gradient is computed as in Eq. 5.16, we do a gradient step on each

pooling variable:

θl = θl − λLηU l∇lθ (5.24)

using a fixed step size ηU l . We experimented with a similar step size to Eq. 5.14 for

the pooling parameters, however found the estimates to be unstable, likely due to the

nonlinear derivatives involved in the Gaussian pooling.
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5.4 Learning

After inference of the feature maps for the top layer and (un)pooling variables for all

layers is complete, the filters in each layer are updated. This is done using the gradient

with respect to each layer’s filters:

∂CL

∂(Fc,k)l
= λL[Rl−1T (RLpL − x)]c ⊗ [(UθlR

(L→l)pL)]k (5.25)

where the left term is the bottom up error signal propagated up to the feature maps

pl−1 below the given filters via Rl−1T , and the right term is the top down reconstruction

to the unpooled feature maps zl. The gradient is therefore the convolution between all

combinations of input error maps to the layer (indexed by c) and the unpooled feature

maps reconstructed from above (indexed by k), resulting in updates of each filter plane

F lc,k, for each layer l.

In practice we use batch conjugate gradient updates for learning the filters as the model

is linear in F l once the feature maps and pooling parameters are inferred. After 2 steps

of conjugate gradients, the filters are projected to be nonnegative and renormalized to

unit `2 length.

5.4.1 Joint Inference

The objective function explicitly constrains the reconstruction from the top layer features

to be close to the input image. From this we can calculate gradients for each layer’s filters

and pooling variables while optimizing the top level features maps. Therefore for each

image we can infer the local shifts and scalings of low level features as the high level

concepts develop.

We have found that pre-training the first layer in one phase of training and then using

the pooling variables and learned layer 1 filters to initialize a second phase of training
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works best. The second phase of training optimizes the second layer objective from

which we can update p2, Uw2 , Uw1 , F 2, and F 1 jointly. If care is not taken in this joint

update, the first layer features can trade off representation power with the second layer

filters. This can result in the second layer filters capturing the details while the first

layer filters become dots. To avoid this problem, after the first phase of training we hold

F 1 fixed and optimize the remaining variables jointly. Thus, while the filters are learned

layer-by-layer, inference is always performed jointly across all layers. This has the nice

property that these low level parts can move and scale as the Uw1 variables are optimized

while the high level concepts are learned.

5.5 Initialization of Parameters

Before training, the filter parameters are initialized to zero mean Gaussian distributed

random values with 1e−2 standard deviation. After this random initialization, the filters

are projected to be non-negative and normalized to unit length before training begins.

Before inference, either at the start of training or at test time, we initialize the features

maps to 0. This creates a reconstruction of 0 in the pixel space, therefore the initial

gradient being propagated up the network is −x. This is similar to a feedforward network

for the first iteration of inference. While forward propagating this signal up the network

we can leverage the Gaussian parameterization of the pooling regions to fit these pooling

parameters using moment matching. That is, at each layer, we extract the optimal

pooling parameter that fit this bottom up signal. This provides a natural initialization

to both the pooling variables at each layer and the top level feature activations given

the input image and the filter initialization.

5.6 Experiments

Evaluation on MNIST We choose to evaluate our model on the MNIST handwritten
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digit classification task. This dataset provides a relatively large number of training

instances per class, has many other results to compare to, and allows easy interpretation

of how a trained model is decomposing each image.

Pre-processing: The inputs were the unprocessed MNIST digits at 28x28 resolution.

Since no preprocessing was done, the elements remained nonnegative.

Model architecture: We trained a 2 layer model with 5x5 filters in each layer and

2x2 non-overlapping pooling regions. The first layer contained 16 feature maps and

the second layer contained 48 features maps. Each of these 48 feature maps connect

randomly to 8 different layer 1 feature maps through the second layer filters. These

sizes were chosen comparable to our previous work while being more amenable to GPU

processing. The receptive fields of the second layer features are 14x14 pixels with this

configuration, or one quarter the input image size.

Classification: One motivation of this work was to analyze how the classification

pipeline of the previous chapter could be simplified by making the top level features

of the network more informative. Therefore, in these experiments we simply treat the

top level activations inferred for each image as input to a linear SVM [33].

The only post processing done to these high level activations is that overlapping patches

are extracted and pooled, analogous to the dense SIFT processing which is shown by

many computer vision researchers to improve results [11]. This step provides an expan-

sion in the number of inputs, allowing the linear SVM to operate in a higher dimensional

space. For layer 1 classification these patches were 9x9 elements of the layer 1 features

maps. For layer 2 they were 6x6 patches, roughly the same ratio to the feature map size

as for layer 1. These patches were concatenated as input to the classifier. Throughout

the experiments we did not combine features from multiple layers, concatenating only

layer 1 patches together for layer 1 classification and only layer 2 features together for

layer 2 classification. These final inputs to the classifier were each normalized to unit

length.
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Hyperparameters: By cross validating on a 50,000 train and 10,000 validation set

of MNIST images, we found that λ1 = 2 and λ2 = 0.5 gave optimal classification

performance. Each layer was trained with 100 ISTA steps/epoch for 50 epochs (passes

through the dataset). After epoch 25, the feature maps were reset to 0 during training.

At test time, we found higher λ1 = 5 and λ2 = 5 improved classification, as did optimizing

for only 50 ISTA steps of inference.

5.6.1 Model visualization

By visualizing the filters and features maps of the model, we can easily understand what

it has learned. In Figure 5.2 (a) we demonstrate sharp reconstructions of the input

images from the second layer features maps. In Figure 5.2 (b) we display the raw filter

coefficients for layer 1 which have learned small pieces of strokes. By incorporating the

pooling parameters into the layer, these filters are robust to small changes in the input.

Visualizing these invariances of a model can be helpful in understanding the inputs the

model is sensitive to. Searching through the dataset of inferred feature map activations

and selecting the maximum element per feature map to project downward into the pixel

space is one way of visualizing these invariances. However, these selected elements are

only exemplars of inputs that most strongly activated that feature. In Figure 5.2(c)

we show a more representative selection of invariances by instead selecting a feature

activation to be projected down based on sampling from the distribution of activations

for that feature in the dataset. This gives a less biased view of what activates that

feature than selecting the largest few activations from the dataset. Once a sample is

selected for a given feature map, the pooling variables corresponding to the image from

which the activation was selected are used in the unpooling stages to do the top down

visualization.

Examining the 16 sample visualizations for each feature in Figure 5.2(c) shows the scale

and shifts that the Gaussian pooling provides to these relatively simple first layer fil-
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(b)

(d)

(e)

(a)

(c)

Figure 5.2: Visualization of the trained model: (a) reconstructions from layer 2, (b) the
16 layer 1 filter weights, (c) invariance visualization for layer 1 incorporating unpooling
and convolutions (see Section 5.6.1 for details) (d) layer 2 filter weights (shown as 16
groups of filter planes connecting to all 48 layer 2 maps), (e) layer 2 pixel space invariance
visualization of features projected down from samples of the layer 2 feature distribution
(see Section 5.6.1).

ters. We can continue to analyze the model by viewing the layer 2 filters planes in

Figure 5.2(d). Each of the 48 second layer features has 16 filter planes (shown in sepa-

rate groups), one connecting to each of the layer 1 feature maps. While the second layer
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filters are difficult to understand directly, we can visualize the learned representation

of the second layer by projecting down all the way to the pixel space through layer 1.

Figure 5.2(e) shows for each of the 48 feature maps a 4x4 grid of pixel space projec-

tions obtained by sampling 16 activations from the distribution of activations of each

layer 2 feature and projecting down via alternating convolution and unpooling with the

corresponding pooling variables separately for each activation.

While analyzing the features in pixel space is informative, we have also found it is useful

to view the features as decompositions of an input image to know how the model is rep-

resenting the data. One possible method of displaying the decomposition is by coloring

each pixel of the reconstruction according to which feature it came from. Each feature is

assigned a hue (in no particular order) and the associated reconstruction produced then

defines the saturation of that color. The resulting image therefore depicts the high level

feature assignments. Pixels with brownish colors indicate a summation of several colors

(features) together. Note that the input images themselves are grayscale – the colors are

just for visualization purposes.

In Figure 5.3(d) we show such a reconstruction from layer 1 for the original image in

(e). To understand the model we also show the layer 1 feature map activations in (a)

with their corresponding color assignment around them. Notice the sparse distribution

of activations can reconstruct the entire image by utilizing the Gaussian pooling and

layer 1 filters in (c). Figure 5.3(b) shows the result of this unpooling operation on the

feature maps. Notice in the orange and purple boxes the elongated lines in the unpooled

maps, made possible by a low precision in one dimension.

Figure 5.4 takes this analysis one step further by using the second layer of the model.

Starting from 3 features in the layer 2 feature maps as shown in (a), they are unpooled

(as shown in (b)) and then convolved with the second layer filters to reconstruct many

elements down on to the first layer features maps (c). These are further unpooled to

(d) where again you can see the benefits of the Gaussian pooling smoothly transitioning
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(b) Layer 1 unpooled feature maps (z1)

(c) Layer 1 �lters (f1) (d) Reconstruction y (e) Input image y

(a)  Layer 1 feature maps (p1)

^

Figure 5.3: One layer decomposition of a digit into parts. From the top down the
layer 1 feature maps (a) are unpooled into (b) and convolved with (e) to produce the
reconstruction (f). The colors in the reconstruction simply represent which feature the
reconstructed pixel came from.

between non-overlapping pooling regions. These are finally convolved with first layer

filters (e) to give the decomposition shown in (f). Notice how long range structures are

grouped into common features in the higher layer compared to the layer 1 decomposition
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^

(d) Reconstructed Layer 1 unpooled feature maps (z1)

(e) Layer 1 �lters (f1) (f ) Reconstruction y (g) Input image y

^

(c) Reconstructed Layer 1 feature maps (p1)

(a) Layer 2 feature maps (p2)

^

(b) Reconstructed Layer 2 unpooled feature maps (z2)^

Figure 5.4: Two layer decomposition of a digit into parts. From the top down the layer 2
feature maps (a) are unpooled into (b) and convolved within the layer 2 filters to produce
the reconstruction of layer 1 feature maps (c). These are unpooled into (c) and convolved
with (e) to produce (f), colored according to the layer 2 feature that the reconstructed
pixel it was reconstructed from.

of Figure 5.3.

87



5.6.2 Max Pooling vs Gaussian Pooling

The discrete locations that max pooling allows within a region are a limiting factor in

the reconstruction quality of the model. Figure 5.5 (bottom) shows a significant aliasing

effect is present in the visualizations of the model when max pooling is used. With the

complex interactions between positive and negative elements removed, the model is not

able to form smooth transitions between non overlapping pooling regions even though

the filters used in the succeeding convolution sublayer have overlap between regions.

Using the Gaussian pooling, the model can infer the desired precisions and means in

order to optimize the reconstruction quality from high layers of the model.

This fine tuning of reconstruction allows for improvements without significantly varying

the features activations (ie. maintains or decreases the sparsity while adjusting the

pooling parameters). This is confirmed in Figure 5.6 where we break down the cost

function into the reconstruction and regularization terms. In this figure we also display

the `0 sparsity of each model as this can directly be used for comparison.

The Gaussian pooling significantly outperforms Max pooling in terms of optimizing the

objective. By not being able to adjust the pooling variables to optimize the overall

cost, Max pooling plateaus despite running for many epochs. Additionally it has a

much higher `0 cost throughout training. In contrast, the `0 cost with Gaussian pooling

decreases smoothly throughout training because the model can fine tune the pooling

parameters to explain much more with each feature activation. This property is shown

in Table 5.1 to significantly improve classification performance compared to Max pooling

when stacking.

Layer 1 Layer 2
Max Pooling 1.30% 1.25%
Gaussian Pooling 1.38% 0.84%

Table 5.1: MNIST error rate of Max pooling versus Gaussian pooling for 1 and 2 layer
models. Note the performance improvement when stacking layer with Gaussian pooling.
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Figure 5.5: Feature decomposition comparison between Gaussian pooling (top) and max
pooling (bottom). Each reconstructed pixel’s color corresponds to the layer 2 feature
map it was reconstructed from. Note the reuse of similar strokes in digits of a different
class. Aliasing artifacts are present in the reconstructions using max pooling – see
Section 5.6.2.
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Figure 5.6: Breakdown of cost function into reconstruction and regularization terms for
Max and Gaussian pooling for 2 layer models. Gaussian pooling gives consistently lower
cost than max pooling. Furthermore, the `0 sparsity (shown in blue), is significantly
lower for the Gaussian pooling, although not explicitly part of the cost.

5.6.3 Joint Inference

One of the main criticisms of sparse coding methods is that inference must be conducted

even at test time due to the lack of a feedforward connection to encode the features. In

our approach we discovered two fundamental techniques that mitigate this drawback.

The first is that running a joint inference procedure over both layers of our network

improves the classification performance compared to running each layer separately. In-

stead of inferring the feature maps and pooling variables for the first layer and then using

these pooling variables to initialize the second layer inference (2 phases), we can directly

run inference with a two layer model. The differentiable pooling allows us to infer the

pooling variables of both layers in addition to the layer 2 feature values simultaneously

in 1 phase. At the first iteration of inference we leverage the ability to fit the Gaussian

pooling parameters in a feed forward way as mentioned in Section 5.5. This halves the

number of inference iterations needed by not requiring any first layer inference prior to

inferring the second layer.

To examine this first discovery in depth we considered several combinations of how to
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joint train and then run inference at test time with this model. During training we

have found both qualitatively in terms of feature diversity and quantitatively in terms

of classification performance that training in separate phases, one for each layer of the

model, works better than jointly training both layers from scratch. In the second phase

of training, when optimizing for reconstruction from the second layer feature maps, the

first layer pooling variables and filters can either be updated or held fixed. Each row of

Table 5.2 examines each combination of these updates during training. We can see that

the optimal training scheme was with fixed first layer filters but pooling updates on both

layers. This made the system more stable while still allowing these first layer filters to

move and scale as needed by updating the first layer pooling variables.

In all cases we see a significant reduction in error rates when doing inference in 1 phase.

The middle column of the table shows this 1 phase inference, but without optimizing

the first layer pooling parameters U1 whereas the last column does optimize U1. We see

an improvement in updating U1 for all but the last row which was trained without U1

and so is accustomed to that type of inference. This improvement with joint inference

of U1, U2, and p2 is a key finding which is only possible with differentiable pooling.

Training Infer 2 Infer 1 Infer 1
phases phase (no U1) phase

Updating F 1 Uw1 1.79% 1.63% 1.40%
Updating F 1 1.71% 1.21% 1.10%
Updating Uw1 1.39% 1.04% 0.84%
No Layer 1 Updates 1.46% 0.99% 1.03%

Table 5.2: Comparison of joint training techniques. Each row is a trained two layer
model that updates select variables in layer 1 during training (in addition to F 2 and
Uw2). The three columns use these models but run inference at test time in 2 phases, 1
phase without updating U1, and 1 phase with all updates respectively.

The second discovery that reduces evaluation time is that running the same number of

ISTA iterations as was done during training does not give optimal classification perfor-

mance, possibly due to over-sparsification of the features. Similarly running with too

few iterations also reduces performance. Figure 5.7 shows a plot comparing the number

of ISTA iterations to the classification performance with an optimum at 50 ISTA steps,
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half the number used during training.
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Figure 5.7: Comparison of MNIST digit classification errors versus number of ISTA steps
used during inference.

5.6.4 Effects of Non-Negativity

With negative elements present in the system, many possible solutions can be found

during optimization. This happens because subtractions allow the removal of portions

of high level features. This has the effect of making them less discriminative because

the model can change parameters in-between the high level feature activations and the

input image in order to reconstruct better while assigning less meaning to the feature

activations themselves.

To show this is not an artifact of the Gaussian pooling being more suited to nonnegative

systems (due to the summation over the pooling region possibly leading to cancellations

if negatives are present), we include comparison in Table 5.3 to Max pooling. In both

cases, enforcing positivity via projected gradient descent improves the discriminative

information preserved in the features.
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Positive/Negative Non-negative
Max Pooling 2.04% 1.25%
Gaussian Pooling 2.32% 0.84%

Table 5.3: MNIST error rate for Max and Gaussian models trained with and without
the non-negativity constraint.

5.6.5 Effects of Feature Reset

When training the model on MNIST, some less than optimal filters are learned when

not resetting the feature maps. For example, in Figure 5.8 (c) many of these layer 1

filters are block-like such as the 3rd row, 2nd column. However this same feature in

(a) improves if the feature maps are reset to 0 once half way through training. This

single reset is enough to encourage the filters to specialize and improve. Similarly, the

layer 2 pixel visualizations in (b) have much more variation due to the reset compared

to (d) which did not have the reset. In particular, notice many blob-like features learned

in (d) without reset such as the 2nd and 5th rows of the 1st column that improve in

(b). These larger, more varied features learned with the reset help improve classification

performance as shown in Table 5.4.

(a)

(b)

(c)

(d)

Figure 5.8: Qualitative difference in first layer filters with (left) and without (right)
resetting of the feature maps.

Trained with No Reset Trained with Reset
1.00% 0.84%

Table 5.4: MNIST error rates for 2 layer models trained with and without resetting the
feature maps.
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5.6.6 Effects of Hyper-Laplacian Sparsity

It has previously been shown that sparsity encourages learning of distinctive features,

however it is not necessarily useful for classification [103]. We analyze this in the context

of hyper-Laplacian sparsity applied to both training and inference. In this comparison

we trained two models, one with a `1 prior on the feature maps and the other with a

`0.5 prior. Once trained, we took each model and ran inference with both `1 and `0.5

priors. For reference the `0 sparsity for the training runs was 4.2 for the `0.5 regularized

training and 20.2 for the `1 regularized training with the same λ2 = 0.5 setting. Since the

amount of sparsity can also be controlled during inference by the λ2 parameter, we plot

in Figure 5.9 the classification performance for various λ2 settings in these four model

combinations.
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Figure 5.9: Error rates for `1 and `0.5 priors used in training and inference.

Interestingly, utilizing the added sparsity during training enforced by the `0.5 while using

the more relaxed `1 prior for inference is the optimal combination for all λ settings. This

suggests sparsity is useful during training to learn meaningful features, but is not as

useful for inference at test time.
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Pre-training Fine-tuning
Our Method 0.84% –
CDBN (1+2 layers) [78] 0.82% –
DBN (3 layers) [49] [50] 2.5% 1.18%
DBM (2 layers) [108] – 0.95%

Table 5.5: MNIST errors rates for related generative models.

5.6.7 Comparison to Other Methods

We chose the MNIST dataset for its large number of results to compare to. Of these,

deep learning methods typically fall into one of two categories, 1) those that are com-

pletely unsupervised and have a simple classifier on top, or 2) those that are fine-tunes

discriminatively with labels. Our method falls into the first category as it is completely

unsupervised during training, and only the linear SVM applied on top has access to the

label information of the training set. We do not back propagate this information through

the network, but this would be an interesting future direction to pursue. Table 5.5 shows

our method is competitive with other deep generative models, even surpassing several

which use discriminative fine tuning.

5.7 Discussion

In this chapter we introduced the concept of differentiable pooling for deep learning

methods. Also, we demonstrated that joint training a deconvolutional network with

differential pooling improves performance, positivity encourages the model to learn better

representations, and that there is an optimal amount of sparsity to be used during

training and inference. Finally, we introduced a simple resetting scheme to avoid local

minimum and learn better features. We believe many of the approaches and findings in

this work are applicable not only to deconvolutional networks but also to sparse coding

and other deep learning methods in general.
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Chapter 6

Stochastic Pooling for

Regularization of

Deep Convolutional Neural

Networks

6.1 Transition

The previous three chapters introduced the deconvolutional network and several novel

variations of them. These models were shown to learn interesting low, mid, and high level

features of objects. The unsupervised learning in deconvolutional networks found natural

groupings at each layer of similar looking object features with no label information

provided to the system. These groupings were useful for object classification on classic

computer vision benchmarks using spatial pyramids and linear SVM classifiers. However,

since there was no discriminative information provided during training, such as class

labels, it proved difficult to outperform state of the art classification methods using

deconvolutional networks directly.
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We attempted to make deconvolutional networks perform better for large-scale object

classification. A classification term added to the overall cost function along with the

reconstruction term and sparsity could encourage the latent features p to group based

on class. However, we found tuning the multiple coefficients which trade off the three

terms was too difficult and made the model unstable. Additionally, to scale to large

datasets with millions of images rather than the thousands of images used thus far is

not necessarily possible with the current deconvolutional network framework. Multiple

iterations for optimizing the sparse coding object is slow when operating on millions of

images. Additionally, the memory requirements to store the top layer feature maps and

all lower layer pooling parameters is infeasible. Approximations of the sparse coding it-

erations were attempted where only the previous number of nonzero elements were saved

for each image (i.e. the `0 sparsity) and on the next epoch for that same image pooling

parameters were set in a feedforward fashion just as the Gaussian pooling parameters

were initialized in the previous chapter while the shrinkage threshold for the first ISTA

iteration was set to restore the saved `0 sparsity. While this did eliminate the memory

issues and seemed to speed up the sparsification process initially, the overall objective

function required nearly the same number of iterations to reach comparable objective

values.

It was this memory constraint and lack of improvement with a discriminative objective

that led to investigate fully supervised training with convolutional networks. Addition-

ally, at nearly the same time the impressive work of [67] on large convolutional networks

applied to ImageNet came out, which gave us additional motivation to transition into

exploring convolutional networks.

The operations of a convolutional network are simply the opposite of a deconvolution

network, the forward prop in a convolutional network being the backprop for a decon-

volutional network and vice versa. This allowed a simple transition to convolutional

networks using our expertise from training deconvolutional networks so we could investi-

gate how convolutional networks could be improved and understood. This investigation
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makes up the remainder of our work on hierarchical image models.

6.2 Introduction

We begin our work on convolutional networks by determining how the models can effec-

tively scale to many parameters. Neural network models, including convolutional neural

networks, are prone to over-fitting due to their high capacity. A range of regularization

techniques are used to prevent this, such as weight decay, weight tying and the augmen-

tation of the training set with transformed copies [89]. These allow the training of larger

capacity models than would otherwise be possible, which yield superior test performance

compared to smaller un-regularized models.

Dropout, recently proposed by Hinton et al. [44], is another regularization approach that

stochastically sets half the activations within a layer to zero for each training sample

during training. It has been shown to deliver significant gains in performance across a

wide range of problems, although the reasons for its efficacy are not yet fully understood.

A drawback to dropout is that it does not seem to have the same benefits for convolutional

layers, which are common in many networks designed for vision tasks. A generalization

of dropout called DropConnect [136] could potentially be applied to convolutional layers

though this would require a carefully crafted implementation. In this work, we propose

a novel type of regularization for convolutional layers that enables the training of larger

models without over-fitting, and produces superior performance on recognition tasks.

The key idea is to make the pooling that occurs in each convolutional layer a stochastic

process. Conventional forms of pooling such as average and max are deterministic, the

latter selecting the largest activation in each pooling region. In our stochastic pooling,

the selected activation is drawn from a multinomial distribution formed by the activations

within the pooling region.

An alternate view of stochastic pooling is that it is equivalent to standard max pooling
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but with many copies of an input image, each having small local deformations. This is

similar to explicit elastic deformations of the input images [117], which delivers excellent

MNIST performance. Other types of data augmentation, such as flipping and cropping

differ in that they are global image transformations. Furthermore, using stochastic

pooling in a multi-layer model gives an exponential number of deformations since the

selections in higher layers are independent of those below.

6.3 Review of Convolutional Networks

Our stochastic pooling scheme is designed for use in a standard convolutional neural net-

work architecture. We first review this model, along with conventional pooling schemes,

before introducing our novel stochastic pooling approach.

A classical convolutional network is composed of alternating layers of convolution and

pooling (i.e. subsampling). The aim of the first convolutional layer is to extract patterns

found within local regions of the input images that are common throughout the dataset.

This is done by convolving a template or filter over the input image pixels, computing

the inner product of the template at every location in the image and outputting this as

a feature maps z, one for each filter f in the layer. This output is a measure of how

well the template matches each portion of the image. A non-linear function σ() is then

applied element-wise to each feature map z: h = σ(z). The resulting activations h are

then passed to the pooling layer. This aggregates the information within a set of small

local regions, G, producing a pooled feature map p (of smaller size) as output. Denoting

the aggregation function as P (), for each feature map z we have:

pj = P (σ(zi)) ∀i ∈ Gj (6.1)

where Gj is pooling region j in feature map z and i is the index of each element within

it.
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The motivation behind pooling is that the activations in the pooled map p are less

sensitive to the precise locations of structures within the image than the original feature

map z. In a multi-layer model, the convolutional layers, which take the pooled maps as

input, can thus extract features that are increasingly invariant to local transformations

of the input image. This is important for classification tasks, since these transformations

obfuscate the object identity.

A range of functions can be used for σ(), with tanh() and logistic functions being pop-

ular choices. In this work we use a rectified linear function σ(z) = max(0, z) as the

non-linearity. In general, this has been shown [90] to have significant benefits over

tanh() or logistic functions (also see the evidence in Chapter 10 of this thesis). However,

it is especially suited to our pooling mechanism since: (i) our formulation involves the

non-negativity of elements in the pooling regions and (ii) the clipping of negative re-

sponses introduces zeros into the pooling regions, ensuring that the stochastic sampling

is selecting from a few specific locations (those with strong responses), rather than all

possible locations in the region.

There are two conventional choices for P : average and max. The former takes the

arithmetic mean of the elements in each pooling region:

pj =
1
|Gj |

∑

i∈Gj

hi (6.2)

while the max operation selects the largest element:

pj = max
i∈Gj

hi (6.3)

Both types of pooling have drawbacks when training deep convolutional networks. In

average pooling, all elements in a pooling region are considered, even if many have low

magnitude. When combined with linear rectification non-linearities, this has the effect of
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down-weighting strong activations since many zero elements are included in the average.

Even worse, with tanh() non-linearities, strong positive and negative activations can

cancel each other out, leading to small pooled responses.

While max pooling does not suffer from these drawbacks, we find it easily overfits the

training set in practice, making it hard to generalize well to test examples. Our proposed

pooling scheme has the advantages of max pooling but its stochastic nature helps prevent

over-fitting.

6.4 Stochastic Pooling

In stochastic pooling, we select the pooled map response by sampling from a multinomial

distribution formed from the activations of each pooling region. More precisely, we first

compute the probabilities P () for each region j by normalizing the activations within

the region:

P (loc = i) =
hi∑

n∈Gj hn
(6.4)

We then sample from the multinomial distribution based on P (loc) to pick a location

loc within the region. The pooled activation is then simply hloc:

pj = hloc where loc ∼ P (P (loc = 1), . . . , P (loc = |Gj |)) (6.5)

The procedure is illustrated in Figure 6.1. The samples for each pooling region in

each layer for each training example are drawn independently to one another. When

back-propagating through the network this same selected location loc is used to direct

the gradient back through the pooling region, analogous to back-propagation with max

pooling.

Max pooling only captures the strongest activation of the filter template with the input
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for each region. However, there may be additional activations in the same pooling

region that should be taken into account when passing information up the network and

stochastic pooling ensures that these non-maximal activations will also be utilized.

★	  

a)	  Image	  

b)	  Filter	  

c)	  Rec0fied	  Linear	   e)	  Probabili0es,	  P(loc=i) 

0	   0	   0	  

0	  0	  

0	  0	  

1.6	  

2.4	  

0	   0	   0	  

0	  0	  

0	  0	  

0.4	  

0.6	  

d)	  Ac0va0ons,	  ai 

1.6	  

f)	  Sampled	  	  
	  	  	  	  Ac0va0on,	  p=a1	  

Sample	  a	  loca0on	  
from	  P():	  e.g.	  	  loc = 1 

Figure 6.1: Toy example illustrating stochastic pooling. a) Input image. b) Convolu-
tional filter. c) Rectified linear function. d) Resulting activations within a given pooling
region. e) Probabilities based on the activations. f) Sampled activation. Note that
the selected element for the pooling region may not be the largest element. Stochastic
pooling can thus represent multi-modal distributions of activations within a region.

6.4.1 Probabilistic Weighting at Test Time

Using stochastic pooling at test time introduces noise into the network’s predictions

which we found to degrade performance (see Section 6.5.7). Instead, we use a proba-

bilistic form of averaging. In this, the activations in each region are weighted by the

probability P (loc = i) (see Eq. 6.4) and summed:

pj =
∑

i∈Gj

P (loc = i)hi (6.6)

This differs from standard average pooling because each element has a potentially differ-

ent weighting and the denominator is the sum of activations
∑

i∈Gj hi, rather than the

pooling region size |Gj |. In practice, using conventional average (or sum) pooling results

in a huge performance drop (see Section 6.5.7).

Our probabilistic weighting can be viewed as a form of model averaging in which each

setting of the locations loc in the pooling regions defines a new model. At training time,
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sampling to get new locations produces a new model since the connection structure

throughout the network is modified. At test time, using the probabilities instead of

sampling, we effectively get an estimate of averaging over all of these possible models

without having to instantiate them. Given a network architecture with NG different

pooling regions, each of size Ni∈G , the number of possible models is NGNi∈G where NG

can be in the 104-106 range and Ni∈G is typically 4,9, or 16 for example (corresponding

to 2× 2, 3× 3 or 4× 4 pooling regions). This is a significantly larger number than the

model averaging that occurs in dropout [44], where Ni∈G = 2 always (since an activation

is either present or not). In Section 6.5.7 we confirm that using this probability weighting

achieves similar performance compared to using a large number of model instantiations,

while requiring only one pass through the network.

Using the probabilities for sampling at training time and for weighting the activations at

test time leads to what was state-of-the-art performance on many common benchmarks

at the time of publication.

6.5 Experiments

6.5.1 Overview

We compare our method to average and max pooling on a variety of image classification

tasks. In all experiments we use mini-batch gradient descent with momentum to optimize

the cross entropy between our network’s prediction of the class and the ground truth

labels. For a given parameter θ at time t the weight updates added to the parameters,

∆θt are ∆θt = 0.9∆θt−1 − η∇θt where ∇θt is the gradient of the cost function with

respect to that parameter at time t averaged over the batch and η is a learning rate set

by hand.

All experiments were conducted using an extremely efficient C++ GPU convolution

library [66] wrapped in MATLAB using GPUmat [132], which allowed for rapid develop-
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Figure 6.2: A selection of images from each of the datasets we evaluated. The top row
shows the raw images while the bottom row are the preprocessed versions of the images
we used for training. The CIFAR datasets (f,h) show slight changes by subtracting the
per pixel mean, whereas SVHN (b) is almost indistinguishable from the original images.
This prompted the use of local contrast normalization (c) to normalize the extreme
brightness variations and color changes for SVHN.

ment and experimentation. We begin with the same network layout as in Hinton et al. ’s

dropout work [44], which has 3 convolutional layers with 5x5 filters and 64 feature maps

per layer with rectified linear units as their outputs. We use this same model and train

for 280 epochs in all experiments aside from one additional model in Section 6.5.5 that

has 128 feature maps in layer 3 and is trained for 500 epochs. Unless otherwise specified

we use 3× 3 pooling with stride 2 (i.e. neighboring pooling regions overlap by 1 element

along the borders) for each of the 3 pooling layers. Additionally, after each pooling

layer there is a response normalization layer (as in [44]), which normalizes the pooling

outputs at each location over a subset of neighboring feature maps. This typically helps

training by suppressing extremely large outputs allowed by the rectified linear units as

well as helps neighboring features communicate. Finally, we use a single fully-connected

layer with soft-max outputs to produce the network’s class predictions. We applied this

model to four different datasets: MNIST, CIFAR-10, CIFAR-100 and Street View House

Numbers (SVHN), see Figure 6.2 for examples images.

104



6.5.2 CIFAR-10

We begin our experiments with the CIFAR-10 dataset where convolutional networks and

methods such as dropout are known to work well [44,65]. This dataset is composed of 10

classes of natural images with 50,000 training examples in total, 5,000 per class. Each

image is an RGB image of size 32x32 taken from the tiny images dataset and labeled

by hand. For this dataset we scale to [0,1] and follow Hinton et al. ’s [44] approach of

subtracting the per-pixel mean computed over the dataset from each image as shown in

Figure 6.2(f).

Cross-validating with a set of 5,000 CIFAR-10 training images, we found a good value for

the learning rate η to be 10−2 for convolutional layers and 1 for the final softmax output

layer. These rates were annealed linearly throughout training to 1/100th of their original

values. Additionally, we found a small weight decay of 0.001 to improve performance and

was applied to all layers. These hyper-parameter settings found through cross-validation

were used for all other datasets in our experiments.

Using the same network architecture described above, we trained three models using

average, max and stochastic pooling respectively and compare their performance. Fig-

ure 6.3 shows the progression of train and test errors over 280 training epochs. Stochastic

pooling avoids over-fitting, unlike average and max pooling, and produces less test errors.

Table 6.1 compares the test performance of the three pooling approaches to the current

state-of-the-art result on CIFAR-10 which uses no data augmentation but adds dropout

on an additional locally connected layer [44]. Stochastic pooling surpasses this result

by 0.47% using the same architecture but without requiring the locally connected layer.

This is near the state of the art results found by tuning hyperparameters with Gaus-

sian Processes [120] or the even more recent work on Maxout networks by Goodfellow

et al. [41].
1Weight decay prevented training errors from reaching 0 with average and stochastic pooling methods

and required the high number of epochs for training. All methods performed slightly better with weight
decay.
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Figure 6.3: CIFAR-10 train and test error rates throughout training for average, max,
and stochastic pooling. Max and average pooling test errors plateau as those methods
overfit. With stochastic pooling, training error remains higher while test errors continue
to decrease.

Train Error % Test Error %
3-layer Conv. Net [44] – 16.6
3-layer Conv. Net + 1 Locally Conn. layer with dropout [44] – 15.6
3-layer Conv. Net + GP [120] – 14.93
Maxout Networks [41] – 12.93
Avg Pooling 1.92 19.24
Max Pooling 0.0 19.40
Stochastic Pooling 3.40 15.13

Table 6.1: CIFAR-10 Classification performance for various pooling methods in our
model compared to the state-of-the-art performance [44] with and without dropout,
with Gaussian process hyperparameter tuning, or using maxout networks.

To determine the effect of the pooling region size on the behavior of the system with

stochastic pooling, we compare the CIFAR-10 train and test set performance for 5x5,

4x4, 3x3, and 2x2 pooling sizes throughout the network in Figure 6.4. The optimal size

appears to be 3x3, with smaller regions over-fitting and larger regions possibly being

too noisy during training. At all sizes the stochastic pooling outperforms both max and

average pooling.

106



16.55	  

15.13	  

15.71	  

15.86	  

3.18	  

3.4	  

4.38	  

6.4	  

21.11	  

19.53	  

18.59	  

19.25	  

0	  

0	  

0	  

0	  

20.74	  

19.52	  

18.83	  

19.38	  

0.25	  

1.8	  

4.88	  

9.08	  

0	   5	   10	   15	   20	   25	  

2x2	  

3x3	  

4x4	  

5x5	  

%	  Error	  

Po
ol
in
g	  
Re

gi
on

	  S
iz
e	  

Avg	  Train	  

Avg	  Test	  

Max	  Train	  

Max	  Test	  

Stochas>c	  Train	  

Stochas>c	  Test	  

Figure 6.4: CIFAR-10 train and test error rates for various pooling region sizes with
each method.

6.5.3 MNIST

The MNIST digit classification task is composed of 28x28 images of the 10 handwritten

digits [75]. There are 60,000 training images with 10,000 test images in this benchmark.

The images are scaled to [0,1] and we do not perform any other pre-processing.

During training, the error using both stochastic pooling and max pooling dropped

quickly, but the latter completely overfit the training data. Weight decay prevented

average pooling from over-fitting, but had an inferior performance to the other two

methods. Table 6.2 compares the three pooling approaches to state-of-the-art methods

on MNIST, which also utilize convolutional networks. Stochastic pooling outperforms

all other methods that do not use data augmentation methods such as jittering or elastic

distortions [72]. The current state-of-the-art single model approach by Ciresan et al. [23]

uses elastic distortions to augment the original training set. As stochastic pooling is a

different type of regularization, it could be combined with data augmentation to further

improve performance.
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Train Error % Test Error %
2-layer Conv. Net + 2-layer Classifier [56] – 0.53
6-layer Conv. Net + 2-layer Classifier + elastic distortions [23] – 0.35
Maxout Networks [41] – 0.45
Avg Pooling 0.57 0.83
Max Pooling 0.04 0.55
Stochastic Pooling 0.33 0.47

Table 6.2: MNIST Classification performance for various pooling methods. Rows 1 & 2
show the current state-of-the-art approaches. More recently maxout networks have been
shown to surpass our results [41].

6.5.4 CIFAR-100

The CIFAR-100 dataset is another subset of the tiny images dataset, but with 100

classes [65]. There are 50,000 training examples in total (500 per class) and 10,000 test

examples. As with the CIFAR-10, we scale to [0,1] and subtract the per-pixel mean from

each image as shown in Figure 6.2(h). Due to the limited number of training examples

per class, typical pooling methods used in convolutional networks do not perform well, as

shown in Table 6.3. Stochastic pooling outperforms these methods by preventing over-

fitting and surpasses what we was the state-of-the-art method by 2.66% and nearing the

more recent Maxout Network results [41].

Train Error % Test Error %
Receptive Field Learning [57] – 45.17
Maxout Networks [41] – 38.57
Avg Pooling 11.20 47.77
Max Pooling 0.17 50.90
Stochastic Pooling 21.22 42.51

Table 6.3: CIFAR-100 Classification performance for various pooling methods compared
to the previous state-of-the-art method based on receptive field learning. More recently
maxout networks have been shown to improve upon our results [41].

6.5.5 Street View House Numbers

The Street View House Numbers (SVHN) dataset is composed of 604,388 images (using

both the difficult training set and simpler extra set) and 26,032 test images [91]. The

goal of this task is to classify the digit in the center of each cropped 32x32 color image.

108



This is a difficult real world problem since multiple digits may be visible within each

image. The practical application of this is to classify house numbers throughout Google’s

street view database of images.

We found that subtracting the per-pixel mean from each image did not really modify

the statistics of the images (see Figure 6.2(b)) and left large variations of brightness and

color that could make classification more difficult. Instead, we utilized local contrast

normalization (as in [113]) on each of the three RGB channels to pre-process the images

Figure 6.2(c). This normalized the brightness and color variations and helped training

proceed quickly on this relatively large dataset.

Despite having significant amounts of training data, a large convolutional network can

still overfit. For this dataset, we train an additional model for 500 epochs with 64, 64

and 128 feature maps in layers 1, 2 and 3 respectively. Our stochastic pooling helps to

prevent overfitting even in this large model (denoted 64-64-128 in Table 6.4), despite

training for a long time. The existing state-of-the-art on this dataset is the multi-stage

convolutional network of Sermanet et al. [113], but stochastic pooling beats this by 2.10%

(relative gain of 43%) similar to the recent Maxout results [41].

Train Error % Test Error %
Multi-Stage Conv. Net + 2-layer Classifier [113] – 5.03
Multi-Stage Conv. Net + 2-layer Classifer + padding [113] – 4.90
Maxout Networks [41] – 2.72
64-64-64 Avg Pooling 1.83 3.98
64-64-64 Max Pooling 0.38 3.65
64-64-64 Stochastic Pooling 1.72 3.13
64-64-128 Avg Pooling 1.65 3.72
64-64-128 Max Pooling 0.13 3.81
64-64-128 Stochastic Pooling 1.41 2.80

Table 6.4: SVHN Classification performance for various pooling methods in our model
with 64 or 128 layer 3 feature maps compared to state-of-the-art results with and with-
out data augmentation. Maxout network recently edged out stochastic pooling in this
benchmark as well [41].

109



6.5.6 Reduced Training Set Size

To further illustrate the ability of stochastic pooling to prevent over-fitting, we reduced

the training set size on MINST and CIFAR-10 datasets. Figure 6.5 shows test perfor-

mance when training on a random selection of only 1000, 2000, 3000, 5000, 10000, half,

or the full training set. In most cases, stochastic pooling overfits less than the other

pooling approaches.
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Figure 6.5: Test error when training with reduced dataset sizes (on log scale) for MNIST
(left) and CIFAR-10 (right). Stochastic pooling generally overfits the least.

6.5.7 Importance of Model Averaging

To analyze the importance of stochastic sampling at training time and probability weight-

ing at test time, we use different methods of pooling when training and testing on

CIFAR-10 (see Table 6.5). Choosing the locations stochastically at test time degrades

performance slightly as could be expected, however it still outperforms models where

max or average pooling are used at test time. To confirm that probability weighting

is a valid approximation to averaging many models, we draw N samples of the pooling

locations throughout the network and average the output probabilities from those N

models (denoted Stochastic-N in Table 6.5). As N increases, the results approach the

probability weighting method, but have the obvious downside of an N -fold increase in

computations.
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Using a model trained with max or average pooling and using stochastic pooling at

test time performs poorly. This suggests that training with stochastic pooling, which

incorporates non-maximal elements and sampling noise, makes the model more robust

at test time. Furthermore, if these non-maximal elements are not utilized correctly or

the scale produced by the pooling function is not correct, such as if average pooling is

used at test time, a drastic performance hit is seen.

When using probability weighting during training, the network easily over-fits and per-

forms sub-optimally at test time using any of the pooling methods. However, the benefits

of probability weighting at test time are seen when the model has specifically been trained

to utilize it through either probability weighting or stochastic pooling at training time.

Train Method Test Method Train Error % Test Error %
Stochastic Pooling Probability Weighting 3.20 15.20
Stochastic Pooling Stochastic Pooling 3.20 17.49
Stochastic Pooling Stochastic-10 Pooling 3.20 15.51
Stochastic Pooling Stochastic-100 Pooling 3.20 15.12
Stochastic Pooling Max Pooling 3.20 17.66
Stochastic Pooling Avg Pooling 3.20 53.50
Probability Weighting Probability Weighting 0.0 19.40
Probability Weighting Stochastic Pooling 0.0 24.00
Probability Weighting Max Pooling 0.0 22.45
Probability Weighting Avg Pooling 0.0 58.97
Max Pooling Max Pooling 0.0 19.40
Max Pooling Stochastic Pooling 0.0 32.75
Max Pooling Probability Weighting 0.0 30.00
Avg Pooling Avg Pooling 1.92 19.24
Avg Pooling Stochastic Pooling 1.92 44.25
Avg Pooling Probability Weighting 1.92 40.09

Table 6.5: CIFAR-10 Classification performance for various train and test combinations
of pooling methods. The best performance is obtained by using stochastic pooling when
training (to prevent over-fitting), while using the probability weighting at test time.

6.5.8 Visualizations

Some insight into the mechanism of stochastic pooling can be gained by using a decon-

volutional network to provide a novel visualization of our trained convolutional network.

The deconvolutional network has the same components (pooling, filtering) as a convo-
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lutional network but are inverted to act as a top-down decoder that maps the top-layer

feature maps back to the input pixels. The unpooling operation uses the stochastically

chosen locations selected during the forward pass. The deconvolution network filters

(now applied to the feature maps, rather than the input) are the transpose of the feed-

forward filters, as in an auto-encoder with tied encoder/decoder weights. We repeat this

top-down process until the input pixel level is reached, producing the visualizations in

Figure 6.6. With max pooling, many of the input image edges are present, but average

pooling produces a reconstruction with no discernible structure. Figure 6.6(a) shows

16 examples of pixel-space reconstructions for different location samples throughout the

network. The reconstructions are similar to the max pooling case, but as the pooling

locations change they result in small local deformations of the visualized image.

a)	  FF(3)	  –	  FF(2)	  –	  FF(1)	  	   b)	  UN(3)	  –	  FF(2)	  –	  FF(1)	   c)	  FF(3)	  –	  UN(2)	  –	  FF(1)	   d)	  FF(3)	  –	  FF(2)	  –	  UN(1)	  

h)	  UN(3)	  –	  UN(2)	  –	  UN(1)	  e)	  UN(3)	  –	  UN(2)	  –	  FF(1)	   g)	  FF(3)	  –	  UN(2)	  –	  UN(1)	  f)	  FF(3)	  –	  UN(2)	  –	  UN(1)	  

Image	  

Avg	  

Max	  

Figure 6.6: Top down visualizations from the third layer feature map activations for the
horse image (far left). Max and average pooling visualizations are also shown on the left.
(a)–(h): Each image in a 4x4 block is one instantiation of the pooling locations using
stochastic pooling. For sampling the locations, each layer (indicated in parenthesis) can
either use: (i) the multinomial distribution over a pooling region derived from the feed-
forward (FF) activations as in Eq. 6.4, or (ii) a uniform (UN) distribution. We can see
that the feed-forward probabilities encode much of the structure in the image, as almost
all of it is lost when uniform sampling is used, especially in the lower layers.

Despite the stochastic nature of the model, the multinomial distributions effectively cap-

ture the regularities of the data. To demonstrate this, we compare the outputs produced
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by a deconvolutional network when sampling using the feedforward (FF) probabilities

versus sampling from uniform (UN) distributions. In contrast to Figure 6.6(a) which

uses only feedforward probabilities, Figure 6.6(b-h) replace one or more of the pooling

layers’ distributions with uniform distributions. The feed forward probabilities encode

significant structural information, especially in the lower layers of the model. Additional

visualizations and videos of the sampling process are provided as supplementary material

at www.matthewzeiler.com/pubs/iclr2013/.

6.6 Discussion

We propose a simple and effective stochastic pooling strategy that can be combined with

any other forms of regularization such as weight decay, dropout, data augmentation,

etc. to prevent over-fitting when training deep convolutional networks. The method is

intuitive, selecting from information the network is already providing, as opposed to

methods such as dropout which throw information away. We show what was state-of-

the-art performance at the time of publication on numerous datasets, when comparing

to other approaches that do not employ data augmentation. Furthermore, our method

has negligible computational overhead and no hyper-parameters to tune, thus can be

swapped into to any existing convolutional network architecture.
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Chapter 7

Visualizing and Understanding

Convolutional Neural Networks

7.1 Introduction

One solution to the problem of overfitting, namely stochastic pooling, was introduced

in the previous chapter. This was shown to enable state of the art performance on a

variety of datasets. However, the datasets we used are relatively small in terms of pixel

dimensions and number of images, too small to fully utilize the representational power

of a large convolutional network. Such large convolutional neural network models have

recently demonstrated impressive classification performance on the ImageNet benchmark

(Krizhevsky et al. [67]). Despite this, there is no clear understanding of why they perform

so well, or how they might be improved. In this chapter we address both issues.

We introduce a novel visualization technique based on deconvolutional networks that

gives insight into the function of intermediate feature layers and the operation of the

classifier. We also systematically analyze the performance contribution of individual

layers to determine their importance. This enables us to find model architectures that

outperform Krizhevsky et al. on the ImageNet classification benchmark. We show our
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ImageNet model generalizes well to other datasets: when the softmax classifier is re-

trained, it convincingly beats the current state-of-the-art results on Caltech-101 and

Caltech-256 datasets.

Since their introduction by LeCun et al. [73] in the early 1990’s, convolutional neural

networks have demonstrated excellent performance at tasks such as hand-written digit

classification and face detection. Recently, several papers have shown that they can also

deliver outstanding performance on more challenging visual classification tasks. Ciresan

et al. [22] demonstrate state-of-the-art performance on NORB and CIFAR-10 datasets.

Most notably, Krizhevsky et al. [67] show record beating performance on the ImageNet

2012 classification benchmark, with their convnet model achieving an error rate of 16.4%,

compared to the 2nd place result of 26.1%. Several factors are responsible for this

renewed interest in convnet models: (i) the availability of much larger training sets, with

millions of labeled examples; (ii) powerful GPU implementations, making the training

of very large models practical and (iii) better model regularization strategies, such as

Dropout [44].

Despite this encouraging progress, there is still little insight into the internal operation

and behavior of these complex models, or how they achieve such good performances.

From a scientific standpoint, this is deeply unsatisfactory. Without clear understanding

of how and why they work, the development of better models is reduced to trial-and-error.

In this work we introduce a visualization technique that reveals the input stimuli that

excite individual feature maps at any layer in the model. It also allows us to observe the

evolution of features during training and to diagnose potential problems with the model.

The visualization technique we propose uses a multi-layered deconvolutional network

to project the feature activations back to the input pixel space. We also perform a

sensitivity analysis of the classifier output by occluding portions of the input image,

revealing which parts of the scene are important for classification.

Using these tools, we start with the architecture of Krizhevsky et al. [67] and explore
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different architectures, discovering ones that outperform their results on ImageNet. We

then explore the generalization ability of the model to other datasets, just retraining

the softmax classifier on top. As such, this is a form of supervised pre-training, which

contrasts with the unsupervised pre-training methods popularized by Hinton et al. [49]

and others [7, 133].

Visualizing features to gain intuition about the network is common practice, but mostly

limited to the 1st layer where projections to pixel space are possible. In higher layers this

is not the case, and there are limited methods for interpreting activity. Erhan et al. [31]

find the optimal stimulus for each unit by performing gradient descent in image space to

maximize the unit’s activation. This requires a careful initialization and does not give

any information about the unit’s invariances. Motivated by the latter’s short-coming, Le

et al. [71] (extending an idea by Berkes and Wiskott [9]) show how the Hessian of a given

unit may be computed numerically around the optimal response, giving some insight into

invariances. The problem is that for higher layers, the invariances are extremely complex

so are poorly captured by a simple quadratic approximation. Our approach, by contrast,

provides a non-parametric view of invariance, showing which patterns from the training

set activate the feature map.

7.2 Approach

Before introducing our novel visualization technique, we recap the convnet models to

which they will be applied.

We use standard fully supervised convnet models throughout the work, as defined by

LeCun et al. [73] and Krizhevsky et al. [67]. These models map a color 2D input image

xi, via a series of layers, to a probability vector ŷi over the C different classes. Each

layer consists of (i) convolution of the previous layer output (or, in the case of the 1st

layer, the input image) with a set of learned filters; (ii) passing the responses through

a rectified linear function (relu(x) = max(x, 0)); (iii) [optionally] max pooling over
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local neighborhoods and (iv) [optionally] a local contrast operation that normalizes the

responses across feature maps. For more details of these operations, see Krizhevsky

et al. [67] and Jarrett et al. [56]. The top few layers of the network are conventional

fully-connected networks and the final layer is a softmax classifier. Figure 7.2 shows the

model used in many of our experiments.

We train these models using a large set of Nx labeled images {x, y}, where label yi is

a discrete variable indicating the true class. A cross-entropy loss function, suitable for

image classification, is used to compare ŷi and yi. The parameters of the network (filters

in the convolutional layers, weight matrices in the fully-connected layers and biases) are

trained by back-propagating the derivative of the loss with respect to the parameters

throughout the network, and updating the parameters via stochastic gradient descent.

Full details of training are given in Section 7.3.1.

7.2.1 Visualization with a Deconvolutional Network

Understanding the operation of a convnet requires interpreting the feature activity in

intermediate layers. We present a novel way to map these activities back to the input

pixel space, showing what input pattern originally caused a given activation in the fea-

ture maps. We perform this mapping with a deconvolutional network (deconvnet). A

deconvnet can be thought of as a convnet model that uses the same components (filter-

ing, pooling) but in reverse, so instead of mapping pixels to features does the opposite.

In previous chapters, deconvnets were proposed as a way of performing unsupervised

learning. Here, they are not used in any learning capacity, just as a probe of the con-

vnet.

To examine a convnet, a deconvnet is attached to each of its layers, as illustrated in

Figure 7.1(top), providing a continuous path back to image pixels. To start, an input

image is presented to the convnet and features computed throughout the layers. To

examine a given convnet activation, we set all other activations in the layer to zero and
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pass the feature maps as input to the attached deconvnet layer. Then we successively

(i) unpool, (ii) rectify and (iii) filter to reconstruct the activity in the layer beneath

that gave rise to the chosen activation. This is then repeated until input pixel space is

reached.

Unpooling: In the convnet, the max pooling operation is non-invertible, however we

can obtain an approximate inverse by recording the locations of the maxima within each

pooling region in a set of switch variables. In the deconvnet, the unpooling operation

uses these switches to place the reconstructions from the layer above into appropriate

locations, preserving the structure of the stimulus. See Figure 7.1(bottom) for a visual-

ization of the procedure.

Rectification: The convnet uses relu non-linearities, which rectify the feature maps.

To obtain valid reconstructions, we pass the reconstructed signal through a relu non-

linearity.

Filtering: The convnet uses learned filters to convolve the feature maps from the pre-

vious layer. To invert this, the deconvnet uses transposed versions of the same filters,

but applied to the rectified maps, not the output of the layer beneath. In practice this

means flipping each filter vertically and horizontally.

Projecting down from higher layers uses the switch settings generated by the max pooling

in the convnet on the way up. As these switch settings are peculiar to a given input

image, the reconstruction obtained from a single activation is thus a small piece of the

original input image, with structures weighted according to their contribution toward to

the feature activation. Since the model is trained discriminatively, they implicitly show

which parts of the input image are discriminative.
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Figure 7.1: Top: A deconvnet layer (left) attached to a convnet layer (right). The
deconvnet will reconstruct an approximate version of the convnet features from the layer
beneath. Bottom: An illustration of the unpooling operation in the deconvnet, using
switches which record the location of the local max in each pooling region (colored zones)
during pooling in the convnet.
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Figure 7.2: Architecture of our 8 layer convnet model. A 224 by 224 crop of an image
(with 3 color planes) is presented as the input. This is convolved with 96 different 1st
layer filters (red), each of size 11 by 11, using a stride of 4 in both x and y. The resulting
feature maps are then: (i) passed through a rectified linear function (not shown), (ii)
pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across
feature maps to give 96 different 27 by 27 element feature maps. Similar operations are
repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The
final layer is a C-way softmax function, C being the number of classes. All filters and
feature maps are square in shape.
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7.3 Experiments

We start by training a large convolutional network model on the ImageNet dataset,

using the exact architecture specified in Krizhevsky et al. [67] and attempt to replicate

their result on the validation set. The ImageNet dataset [28] consists of 1.3M/65k/100k

training/validation/test examples, spread over 1000 categories. Details of the training

procedure are given in Section 7.3.1 below. As shown in Table 7.2, we achieve error rate

within 0.1% of their reported value on the ImageNet 2012 validation set.

We now explore a range of different model architectures in an attempt to understand the

relative importance of each layer. In Table 7.1, we modify the size of (a) the convolutional

layers, (b) the fully connected layers and (c) both sections of the model. Decreasing each

part separately only results in a modest performance drop. This is surprising for the

fully connected layers, given that they contain the majority of the model’s parameters.

However, decreasing both serverly affects performance, showing the importance of having

a minimum depth to the model. Altering the number of units in the fully connected

layers (2048 or 8192 vs 4096) makes little difference to performance. Increasing the size

of the convolutional layers 3,4,5 to 512-1024-512 maps, from 384-384-256, does give a

gain in performance, but the model starts to over-fit due to the big increase in number

of parameters. The overfitting is more pronounced when increasing the size of both the

convolutional and fully connected layers.

Train Val Val
Error % Top-1 Top-1 Top-5

Our replication of Krizhevsky et al. [67], 1 convnet 35.1 40.5 18.1
With removed layers 3,4 41.8 45.4 22.1
With removed layer 7 27.4 40.0 18.4
With removed layers 6,7 27.4 44.8 22.4
With removed Layers 3,4,6,7 71.1 71.3 50.1
With layers 6,7: 2048 units 40.3 41.7 18.8
With layers 6,7: 4096 units as per [67] 35.1 40.5 18.1
With layers 6,7: 8192 units 26.8 40.0 18.1
Our model 28.7 38.3 16.4
Our model, layers 6,7: 8192 units 21.4 38.0 16.5

Table 7.1: ImageNet 2012 classification error rates with various architectural changes to
our ImageNet model.
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Val Val Test
Error % Top-1 Top-5 Top-5

Krizhevsky et al. [67], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [67], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. [67], 1 convnets* 39.0 16.6 −−
Krizhevsky et al. [67], 7 convnets* 36.7 15.4 15.3

Our replication of Krizhevsky et al. [67], 1 convnet 40.5 18.1 −−
1 convnet as per Figure 7.2 38.3 16.4 16.5
5 convnets as per Figure 7.2 36.6 15.3 15.3

Table 7.2: ImageNet 2012 classification error rates. The ∗ indicates models that were
trained on both ImageNet 2011 and 2012 training sets with an additional convolution
layer.

The experiments in Table 7.1 show that by increasing the number of feature maps in

the middle layers, the model of [67] may be improved upon. Figure 7.2 shows the

best performing architecture, which has a dramatically larger layers 3,4 and 5. When

evaluated on the Imagenet 2012 validation set, it significantly outperforms [67], beating

their single model result by 1.8% (see Table 7.2). When we combine multiple models,

we obtain a test error of 15.3%, which matches the absolute best performance on this

dataset, despite only using the much smaller 2012 training set. We note that this error

is almost half that of the top non-convnet entry in the ImageNet 2012 classification

challenge, which obtained 26.1% error.

7.3.1 Training Details

The models were trained on the ImageNet 2012 training set (1.3 million images, spread

over 1000 different classes). Each RGB image was preprocessed by resizing the smallest

dimension to 256, cropping the center 256x256 region, subtracting the per-pixel mean

(across all images) and then using 10 different sub-crops of size 224x224 (corners +

center with(out) horizontal flips). Stochastic gradient descent with a mini-batch size

of 128 was used to update the parameters, starting with a learning rate of 10−2, in

conjunction with a momentum term of 0.9. Dropout [44] is used in the fully connected

layers (6 and 7) with a rate of 0.5. We manually anneal the learning rate throughout

training, decreasing it when the validation set error flatlines. All weights are randomly

initialized 10−2 standard deviation and biases are set to 0.
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As in [67], we produce multiple different crops and flips of each training example to boost

training set size. We stopped training after 70 epochs, which took around 24 days on

a single GTX580 GPU, using an implementation based on [67]. One further difference

is that the sparse connections used in Krizhevsky’s layers 3,4,5 (due to the model being

split across 2 GPUs) are replaced with dense connections in our models.

7.4 Convnet Visualization

Using the model described in Section 7.3.1, we now use the deconvnet to visualize the

feature activations on the ImageNet validation set.

7.4.1 Feature Evolution during Training

Figure 7.3 visualizes the progression during training of the strongest activation (across

all training examples) within a given feature map projected back to pixel space. Sudden

jumps in appearance result from a change in the image from which the strongest acti-

vation originates. Due to space constraints, only a randomly selected subset of feature

maps are visualized and zooming is needed to see the details clearly. As expected, the

first layer filters consist of Gabors and low-frequency color. The 2nd layer features are

more complex, corresponding to conjunctions of edges and color patterns. The 3rd layer

features show larger image parts. Within a given feature projection, significant varia-

tions in contrast can be seen, showing which parts of the image contribute most to the

activation and thus are most discriminative, e.g. the lips and eyes on the persons face

(Row 12). The visualization from the 4th and 5th layer show activations that respond

to complex objects. Note that little of the scene background is reconstructed, since it is

irrelevant to predicting the class.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 7.3: Evolution of model features through training. Each layer’s features are
displayed in a different block. Within each block, we show a randomly chosen subset of
features at epochs [1,2,5,10,20,30,40,64]. The visualization shows the strongest activation
(across all training examples) for a given feature map, projected down to pixel space using
our deconvnet approach. Color contrast is artificially enhanced and the figure is best
viewed in electronic form.

7.4.2 Feature Invariance

Figure 7.4 shows feature visualizations from our model once training is complete. How-

ever, instead of showing the single strongest activation for a given feature map, we show

the top 9 activations. Projecting each separately down to pixel space reveals the dif-

ferent structures that excite a given feature map, hence showing its invariance to input

deformations. Layer 2 responds to corners and other edge/color conjunctions. Layer 3

has more complex invariances, capturing similar textures (e.g. mesh patterns (Row 1,

Col 1); grilles (R3,C5)). Layer 4 shows significant variation, but is more class-specific:

faces of children (R4,C4); bear/koala tongue/nose (R3,C6). Layer 5 shows entire objects

with significant pose variation, e.g. keyboards (R1,C11).

Figure 7.5 shows 5 sample images being translated, rotated and scaled by varying degrees

while looking at the changes in the feature vectors from the top and bottom layers of the

model, relative to the untransformed feature. Small transformations have a dramatic

effect in the first layer of the model, but a lesser impact at the top feature layer, being

quasi-linear for translation & scaling. The network output is stable to translations and

scalings, but only slightly to rotation around the original upright orientation.
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Layer 1
Layer 2 Layer 3 Layer 4

Layer 5

Figure 7.4: Visualization of features in a fully trained model. For layers 2-5 we show
the top 9 activations in a random subset of feature maps across the validation data,
projected down to pixel space using our deconvolutional network approach. Note: (i)
the strong grouping within each feature map, (ii) greater invariance at higher layers and
(iii) exaggeration of discriminative parts of the image, e.g. eyes and noses of the cats,
dogs & similar animals (layer 5, 2nd row, cols 2 and 3). Best viewed in electronic form.

7.4.3 Occlusion Sensitivity

With image classification approaches, a natural question is if the model is truly classifying

the object alone, or if it is using the surrounding context. Figure 7.6 attempts to answer

this question by systematically occluding different portions of the input image with a

grey square, and monitoring the output of the classifier. The examples clearly show the

model is localizing the objects within the scene, as the probability of the correct class

drops significantly when the object is occluded. Figure 7.6 also shows visualizations

from the strongest feature map of the top convolution layer, in addition to activity in

this map as a function of occluder position. When the occluder covers the image region

that appears in the visualization, we see a strong drop in activity in the feature map.

This shows that the visualization genuinely corresponds to the image structure that

stimulates that feature map, hence validating the other visualizations in Figure 7.3 and

Figure 7.4.
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Figure 7.5: Analysis of vertical translation, scale, and rotation invariance within the
model (rows a-c respectively). Col 1: 5 example images undergoing the transformations.
Col 2 & 3: Euclidean distance between feature vectors from the original and transformed
images in layers 1 and 7 respectively. Col 4: the probability of the true label for each
image, as the image is transformed.

7.4.4 Correspondence Analysis

Deep models differ from many existing recognition approaches in that there is no explicit

mechanism for establishing correspondence between specific object parts in different

images (e.g. eyes and noses for faces). However, an intriguing possibility is that deep

models might be implicitly computing them. To explore this, we take 5 randomly drawn

dog images with frontal pose and systematically mask out the same part of the face

in each image (e.g. all left eyes, see Figure 7.7). For each image i, we then compute:

εli = hli − h̃li, where hli and h̃li are the feature vectors at layer l for the original and

occluded images respectively. We then measure the consistency of this difference vector

ε between all related image pairs (i, j): ∆l =
∑5

i,j=1,i 6=j H(sign(εli), sign(εlj)), where H is

Hamming distance. A lower value indicates greater consistency in the change resulting
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Figure 7.6: Four test examples where we systematically cover up different portions of the
scene with a gray square (1st column) and see how the top (layer 5) feature maps ((b) &
(c)) and classifier output ((d) & (e)) changes. (b): for each position of the gray scale, we
record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into
the input image (black square), along with visualizations of this map from other images.
The first row example shows the strongest feature to be the dog’s face. When this is
covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of
correct class probability, as a function of the position of the gray square. E.g. when the
dog’s face is obscured, the probability for “pomeranian” drops significantly. (e): the
most probable label as a function of occluder position. E.g. in the 1st row, for most
locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then
it predicts “tennis ball”. In the 2nd example, text on the car is the strongest feature
in layer 5, but the classifier is most sensitive to the wheel. The 3rd example contains
multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier
is sensitive to the dog (blue region in (d)), since it uses multiple feature maps. In the
4th example, the front wheel is the strongest feature, but the output depends on many
parts of the vehicle.

from the masking operation, hence tighter correspondence between the same object parts

in different images. In Table 7.3 we compare the ∆ score for three parts of the face (left
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Figure 7.7: Images used for correspondence experiments. Col 1: Original image. Col
2,3,4: Occlusion of the right eye, left eye, and nose respectively. Other columns show
examples of random occlusions.

eye, right eye and nose) to random parts of the object, using features from layer l = 5

and l = 7. The lower score for these parts, relative to random object regions, for the

layer 5 features show the model does establish some degree of correspondence. We do

not see the same gap in the layer 7 results because the spatial extend of the layer 5

features is not present in the fully connected layer 7 features and these higher features

are more discriminative between the different breeds of dog.

Mean Feature Mean Feature
Sign Change Sign Change

Occlusion Location Layer 5 Layer 7
Right Eye 0.067± 0.007 0.069± 0.015
Left Eye 0.069± 0.007 0.068± 0.013
Nose 0.079± 0.017 0.069± 0.011
Random 0.107± 0.017 0.073± 0.014

Table 7.3: Measure of correspondence for different object parts in 5 different dog images.
The lower scores for the eyes and nose (compared to random object parts) show the model
implicitly establishing some form of correspondence of parts at layer 5 in the model. At
layer 7, the scores are more similar, perhaps due to upper layers trying to discriminate
between the different breeds of dog or their topology being fully connected as opposed
to convolutional.

7.5 Feature Generalization

The experiments above show the importance of the convolutional part of our ImageNet

model in obtaining state-of-the-art performance. This is supported by the visualizations
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of Figure 7.4 which show the complex invariances learned in the convolutional layers. We

now explore the ability of these feature extraction layers to generalize to other datasets,

namely Caltech-101 [34], Caltech-256 [42] and PASCAL VOC 2012. To do this, we keep

layers 1-7 of our ImageNet-trained model fixed and train a new softmax classifier on top

(for the appropriate number of classes) using the training images of the new dataset.

Since the softmax contains relatively few parameters, it can be trained quickly from a

relatively small number of examples, as is the case for certain datasets.

This approach is a supervised form of pre-training, since the bulk of the model parameters

have been learned in a supervised fashion on the ImageNet data. This prevents direct

comparisons to existing algorithms since they did not use the ImageNet data during

training. However, the results do give an absolute assessment of the performance of

features extracted by our network. We also try a second strategy of training a model

from scratch, i.e. resetting layers 1-7 to random values and train them, as well as the

softmax, on the training images of the dataset.

Caltech-101: We follow the procedure of [34] and randomly select 15 or 30 images per

class for training and test on up to 50 images per class reporting the average of the per-

class accuracies in Table 7.4, using 5 train/test folds. Training took 17 minutes for 30

images/class. The pre-trained model beats the best reported result for 30 images/class

from [10] by 2.9%. The convnet model trained from scratch on only Caltech-101 images

however does terribly, only achieving 46.5%.

Acc % Acc %
# Train 15/class 30/class
Bo et al. [10] − 81.4± 0.33
Yang et al. [59] 73.2 84.3

Non-pretrained convnet 22.8± 1.5 46.5± 1.7
ImageNet-pretrained convnet 83.8± 0.5 86.5± 0.5

Table 7.4: Caltech-101 classification accuracy for our convnet models, against two leading
alternate approaches.

Caltech-256: We follow the procedure of [42], selecting 15, 30, 45, or 60 training images

per class, reporting the average of the per-class accuracies in Table 7.5. Our ImageNet-

pretrained model beats the state-of-the-art results obtained by [10] by a significant mar-
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Figure 7.8: Caltech-256 classification performance as the number of training images per
class is varied. Using only 6 training examples per class with our pre-trained feature
extractor, we surpass best reported result by Bo et al. [10].

gin: 74.2% vs 55.2% for 60 training images/class. However, as with Caltech-101, the

model trained from scratch does poorly. In Figure 7.8, we explore the “one-shot learn-

ing” [34] regime. With our pre-trained model, just 6 Caltech-256 training images per

class are needed to beat the leading method using 10 times as many images. This shows

the power of the ImageNet feature extractor.

Acc % Acc % Acc % Acc %
# Train 15/class 30/class 45/class 60/class
Sohn et al. [121] 35.1 42.1 45.7 47.9
Bo et al. [10] 40.5± 0.4 48.0± 0.2 51.9± 0.2 55.2± 0.3

Non-pretr. 9.0± 1.4 22.5± 0.7 31.2± 0.5 38.8± 1.4
ImageNet-pretr. 65.7± 0.2 70.6± 0.2 72.7± 0.4 74.2± 0.3

Table 7.5: Caltech 256 classification accuracies.

PASCAL 2012: We used the standard training and validation images to train a 20-

way softmax on top of the ImageNet-pretrained convnet. This is not ideal, as PASCAL

images can contain multiple objects and our model just provides a single exclusive pre-

diction for each image. Table 7.6 shows the results on the test set. The PASCAL and

ImageNet images are quite different in nature, the former being full scenes unlike the

latter. This may explain our mean performance being 3.2% lower than the leading [140]

result, however we do beat them on 5 classes, sometimes by large margins.
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Acc % Sande et al. [111] Yan et al. [140] Ours Acc % Sande et al. [111] Yan et al. [140] Ours

Airplane 92.0 97.3 96.0 Dining tab 63.2 77.8 67.7
Bicycle 74.2 84.2 77.1 Dog 68.9 83.0 87.8
Bird 73.0 80.8 88.4 Horse 78.2 87.5 86.0
Boat 77.5 85.3 85.5 Motorbike 81.0 90.1 85.1
Bottle 54.3 60.8 55.8 Person 91.6 95.0 90.9
Bus 85.2 89.9 85.8 Potted pl 55.9 57.8 52.2
Car 81.9 86.8 78.6 Sheep 69.4 79.2 83.6
Cat 76.4 89.3 91.2 Sofa 65.4 73.4 61.1
Chair 65.2 75.4 65.0 Train 86.7 94.5 91.8
Cow 63.2 77.8 74.4 Tv 77.4 80.7 76.1

Mean 74.3 82.2 79.0 # won 0 15 5

Table 7.6: PASCAL 2012 classification results, comparing our Imagenet-pretrained con-
vnet against the leading two methods Sande et al. [111] and Yan et al. [140].

7.5.1 Layer-by-Layer Performance Breakdown

We explore how discriminative the features in each layer of our Imagenet-pretrained

model are. We do this by varying the number of layers retained from the ImageNet

model and place either a linear SVM or softmax classifier on top. Table 7.7 shows

results on Caltech-101 and Caltech-256. For both datasets, a steady improvement can

be seen as we ascend the model, with best results being obtained by using all layers. This

supports the premise that as the feature hierarchies become deeper, they learn increasing

powerful features.

Cal-101 Cal-256
(30/class) (60/class)

SVM (1) 44.8± 0.7 24.6± 0.4
SVM (2) 66.2± 0.5 39.6± 0.3
SVM (3) 72.3± 0.4 46.0± 0.3
SVM (4) 76.6± 0.4 51.3± 0.1
SVM (5) 86.2± 0.8 65.6± 0.3
SVM (7) 85.5± 0.4 71.7± 0.2
Softmax (5) 82.9± 0.4 65.7± 0.5
Softmax (7) 85.4± 0.4 72.6± 0.1

Table 7.7: Analysis of the discriminative information contained in each layer of feature
maps within our ImageNet-pretrained convnet. We train either a linear SVM or softmax
on features from different layers (as indicated in brackets) from the convnet. Higher
layers generally produce more discriminative features.
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7.6 Discussion

In this chapter we explored large convolutional neural network models, trained for image

classification, in a number ways. First, we systematically modified the network architec-

ture to reveal that having a minimum depth to the network, rather than any individual

section, is vital to the model’s performance. Expanding the size of these layers results

in models who performance beats that of [67]. We then presented a novel way to visu-

alize the activity within the model. This reveals the features to be far from random,

uninterpretable patterns. Rather, they show many intuitively desirable properties such

as compositionally, increasing invariance and class discrimination as we ascend the lay-

ers. We also demonstrated through a series of occlusion experiments that the model,

while trained for classification, is highly sensitive to local structure in the image and is

not just using broad scene context. The occlusion techniques also allowed us to probe

how the model may be implicitly establishing correspondence with stable object parts

in the upper feature layers, when determining its prediction. Finally, we showed how

the ImageNet trained model can generalize well to other datasets. For Caltech-101 and

Caltech-256, the datasets are similar enough that we can beat the best reported results,

in the latter case by a significant margin. This result brings into question the utility of

benchmarks with small (i.e. < 104) training sets. Our convnet model generalized less

well to the PASCAL data, perhaps suffering from dataset bias [130], although it was still

within 3.2% of the best reported result, despite no tuning for the task. For example, our

performance might improve if a different loss function was used that permitted multiple

objects per image.

131



Chapter 8

Part 1 Conclusion

8.1 Summary of Contributions

The goal of this portion of the thesis was to explore different methods for learning hierar-

chical features from natural images. Throughout this work we utilized machine learning

techniques as opposed to hand-crafted features in order to solve problems in computer

vision. The methods introduced prove useful both for unsupervised learning of deep

convolutional architectures as well as an understanding of what traditional feedforward

architectures actually learn.

In Chapter 3 we introduced a novel unsupervised learning approach called deconvolu-

tional networks. The approach incorporates multiple layers of stacked deconvolutions

with the objective of optimizing the reconstruction of the previous layer’s feature while

forcing the current layer features to be sparse. This is done through an iterative op-

timization technique which is shown to learn interesting low level edge structures and

mid-level corners, curves, etc. in an unsupervised fashion. These models can be applied

to both denoising natural images and object classification.

To provide more invariance into deconvolutional networks so that high level object parts
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can be represented, we introduced the use of switches in Chapter 4. These encode the

maximum activations within pooling regions at each layer so that reconstruction can

proceed from a high level of the model down to the input pixels. This objective ensures

that deep models can still represent the input pixels well as opposed to just being able

to reconstruct the layer below. This was shown to learn interesting high level features

such as object parts and entire objects that group natural via unsupervised learning.

Competitive classification performance was shown to result models trained in this way.

To extend this idea of using pooling parameters to represent the invariances at multiple

levels of the model, Chapter 5 introduced a continuous representation based on 2D

Gaussians in each pooling region. The mean and variance of the Gaussians can be

optimized via backpropagation of the overall objective function which reconstructs from

the highest level pooled features. This allows lower layer parts to adjust as the high level

parts are learned. This joint training of all layers was shown to improve reconstruction

performance while improving the discriminative information contained in the higher level

features.

Our expertise on training deconvolutional networks was then applied to training and

understanding convolutional networks beginning in Chapter 6. A novel regularization

technique called stochastic pooling was introduced to prevent convolutional networks

from overfitting the training set when data is scarce. This led to state of the art perfor-

mance on several common benchmarks using this method which has no parameters and

can be swapped in to existing models.

Finally, we investigated what is learned by convolutional networks using a novel visual-

ization technique based on deconvolutional networks. In doing so we revealed ways to

improve performance of the model for large scale object recognition while showing the

diversity and invariances of the features learned at each layer of the model. This work

enabled state of the art classification performance on the large scale ImageNet bench-

mark as well as several smaller benchmarks upon which the model was tested. We hope
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this understanding of what occurs at all layers of a complex artificial neural network

model will enable future work on better understanding of how these models relate to the

functioning of the visual cortex.

8.2 Future Directions

Several important directions of research based on this thesis are worthwhile investigating:

Improving Classification with Deconvolutional Networks: While the deconvo-

lutional network was shown to learn interesting features, we found that the pooling

parameters contained a great deal of information. Using these parameters in addition to

the high level features could provide one mechanism for improving classification perfor-

mance of deconvolutional networks. Further work on incorporating a classification term

into the objective should be done to pull the features towards natural groupings based

on object class.

Scaling Deconvolutional Networks: The inference methods used for deconvolutional

methods are inherently slow as they involve multiple iterations to be performed. Fast

approximation techniques based on feedforward initializations and strong shrinkage op-

erators should be investigated. Doing so would require only the features and pooling

parameters for the current mini-batch of images to be stored, allowing deconvolutional

networks to scale to large datasets. This combined with the previous objective could

enable these models to leverage labelled data when available, while scaling to the vast

amounts of unlabelled data in the world.

Extend Convolutional Models for detection and multiple objects: Convolu-

tional networks have been known to performance well for object classification for many

years and they have recently been applied to very large datasets. However, future work

is needed for methods of applying convolutional networks to object detection and to cope

with multiple objects being present in a scene at once.
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Part II

Other Work
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The previous chapters of this thesis were focused on solving complex computer vision

tasks. The following few chapters relate to work done during my thesis that is not

directly related to computer vision. The Chapter 9 involves modelling sequences of

motion capture. Chapter 10 applies to speech recognition. While Chapter 11 describes

an optimization technique to improve gradient descent for various problems.
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Chapter 9

Facial Expression Transfer with

Input-Output Temporal

Restricted Boltzmann Machines

9.1 Introduction

In this chapter we work with a different modality of data, motion capture, presented as

sequences of markers representing facial expressions of human. We introduce a new type

of Temporal Restricted Boltzmann Machine that defines a probability distribution over

an output sequence conditional on an input sequence. It shares the desirable properties

of RBMs: efficient exact inference, an exponentially more expressive latent state than

HMMs, and the ability to model nonlinear structure and dynamics. We apply our model

to a challenging real-world graphics problem: facial expression transfer. Our results

demonstrate improved performance over several baselines modeling high-dimensional 2D

and 3D data.

Modeling temporal dependence is an important consideration in many learning prob-
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lems. One can capture temporal structure either explicitly in the model architecture, or

implicitly through latent variables which can act as a “memory”. Feedforward neural

networks which incorporate fixed delays into their architecture are an example of the

former. A limitation of these models is that temporal context is fixed by the architec-

ture instead of inferred from the data. To address this shortcoming, recurrent neural

networks incorporate connections between the latent variables at different time steps.

This enables them to capture arbitrary dynamics, yet they are more difficult to train [8].

Another family of dynamical models that has received much attention are probabilistic

models such as Hidden Markov Models and more general Dynamic Bayes nets. Due

to their statistical structure, they are perhaps more interpretable than their neural-

network counterparts. Such models can be separated into two classes [123]: tractable

models, which permit an exact and efficient procedure for inferring the posterior distri-

bution over latent variables, and intractable models which require approximate inference.

Tractable models such as Linear Dynamical Systems and HMMs are widely applied and

well understood. However, they are limited in the types of structure that they can

capture. These limitations are exactly what permit simple exact inference. Intractable

models, such as Switching LDS, Factorial HMMs, and other more complex variants of

DBNs permit more complex regularities to be learned from data. This comes at the cost

of using approximate inference schemes, for example, Gibbs sampling or variational in-

ference, which introduce either a computational burden or poorly approximate the true

posterior.

In this chapter we focus on Temporal Restricted Boltzmann Machines [123,128], a family

of models that permits tractable inference but allows much more complicated structure

to be extracted from time series data. Models of this class have a number of attractive

properties: 1) They employ a distributed state space where multiple factors interact to

explain the data; 2) They permit nonlinear dynamics and multimodal predictions; and

3) Although maximum likelihood is intractable for these models, there exists a simple

and efficient approximate learning algorithm that works well in practice.
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We concentrate on modeling the distribution of an output sequence conditional on an

input sequence. Recurrent neural networks address this problem, though in a non-

probabilistic sense. The Input-Output HMM [6] extends HMMs by conditioning both

their dynamics and emission model on an input sequence. However, the IOHMM is rep-

resentationally limited by its simple discrete state in the same way as a HMM. Therefore

we extend TRBMs to cope with input-output sequence pairs. Given the conditional na-

ture of a TRBM (its hidden states and observations are conditioned on short histories of

these variables), conditioning on an external input is a natural extension to this model.

Several real-world problems involve sequence-to-sequence mappings. This includes motion-

style transfer [53], economic forecasting with external indicators [86], and various tasks in

natural language processing [24]. Sequence classification is a special case of this setting,

where a scalar target is conditioned on an input sequence. In this chapter, we consider

facial expression transfer, a well-known problem in computer graphics, in which a se-

quence of facial movements is mapped onto another. Current methods considered by the

graphics community are typically linear (e.g., methods based on blendshape mapping)

and they do not take into account dynamical aspects of the facial motion itself. This

makes it difficult to retarget the facial articulations involved in speech. We propose a

model that can encode a complex nonlinear mapping from the motion of one individual

to another which captures facial geometry and dynamics of both source and target.

In the following subsections we discuss several latent variable models which can map an

input sequence to an output sequence. We also briefly review our application field: facial

expression transfer.

9.1.1 Temporal models

Among probabilistic models, the Input-Output HMM [6] is most similar to the archi-

tecture we propose. Like the HMM, the IOHMM is a generative model of sequences

but it models the distribution of an output sequence conditional on an input, while
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the HMM simply models the distribution of an output sequence. The IOHMM is also

trained with a more discriminative-style EM-based learning paradigm than HMMs. A

similarity between IOHMMs and TRBMs is that in both models, the dynamics and

emission distributions are formulated as neural networks. However, the IOHMM state

space is a multinomial while TRBMs have binary latent states. A K-state TRBM can

thus represent the history of a time series using 2K state configurations while IOHMMs

are restricted to K settings.

The Continuous Profile Model [79] is a rich and robust extension of dynamic time warping

that can be applied to many time series in parallel. The CPM has a discrete state-space

and requires an input sequence. Therefore it is a type of conditional HMM. However,

unlike the IOHMM and our proposed model, the input is unobserved, making learning

completely unsupervised.

Our approach is also related to the many proposed techniques for supervised learning

with structured outputs. The problem of simultaneously predicting multiple, correlated

variables has received a great deal of recent attention [3]. Many of these models, including

the one we propose, are formally defined as undirected graphs whose potential functions

are functions of some input. In Graph Transformer Networks [74] the dependency struc-

ture on the outputs is chosen to be sequential, which decouples the graph into pairwise

potentials. Conditional Random Fields [68] are a special case of this model with linear

potential functions. These models are trained discriminatively, typically with gradient

descent, where our model is trained generatively using an approximate algorithm.

9.1.2 Facial expression transfer

Facial expression transfer, also called motion retargeting or cross-mapping, is the act of

adapting the motion of an actor to a target character. It, as well as the related fields

of facial performance capture and performance-driven animation, have been very active

research areas over the last several years.
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According to a review by Pighin [94], the two most important considerations for this

task are facial model parameterization (called “the rig” in the graphics industry) and

the nature of the chosen cross-mapping. A popular parameterization is “blendshapes”

where a rig is a set of linearly combined facial expressions each controlled by a scalar

weight. Retargeting amounts to estimating a set of blending weights at each frame of

the source data that accurately reconstructs the target frame. There are many different

ways of selecting blendshapes, from simply selecting a set of sufficient frames from the

data, to creating models based on principal components analysis. Another common

parameterization is to simply represent the face by its vertex, polygon or spline geometry.

The downside of this approach is that this representation has many more degrees of

freedom than are present in an actual facial expression.

A linear function is the most common choice for cross-mapping. While it is simple

to estimate from data, it cannot produce subtle nonlinear motion required for realistic

graphics applications. An example of this approach is [21] which uses a parametric model

based on eigen-points to reliably synthesize simple facial expressions but ultimately fails

to capture more subtle details. Vlasic et al. [135] have proposed a multi-linear mapping

where variation in appearance across the source and target is explicitly separated from

the variation in facial expression. None of these models explicitly incorporate dynamics

into the mapping, which is a limitation addressed by our approach.

Finally, we note that Susskind et al. [122] have used RBMs for facial expression genera-

tion, but not retargeting. Their work is focused on static rather than temporal data.

9.2 Modeling dynamics with Temporal Restricted Boltz-

mann Machines

In this section we review the Temporal Restricted Boltzmann Machine. We then in-

troduce the Input-Output Temporal Restricted Boltzmann Machine which extends the
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architecture to model an output sequence conditional on an input sequence.

9.2.1 Temporal Restricted Boltzmann Machines

A Restricted Boltzmann Machine [118] is a bipartite Markov Random Field consist-

ing of a layer of stochastic observed variables (“visible units”) connected to a layer of

stochastic latent variables (“hidden units”). The absence of connections between hidden

units ensures they are conditionally independent given a setting of the visible units, and

vice-versa. This simplifies inference and learning.

The RBM can be extended to model temporal data by conditioning its visible units

and/or hidden units on a short history of their activations. This model is called a Tempo-

ral Restricted Boltzmann Machine [123]. Conditioning the model on the previous settings

of the hidden units complicates inference. Although one can approximate the posterior

distribution with the filtering distribution (treating the past setting of the hidden units as

fixed), we choose to use a simplified form of the model which conditions only on previous

visible states [128]. This model inherits the most important computational properties of

the standard RBM: simple, exact inference and efficient approximate learning.

RBMs typically have binary observed variables and binary latent variables but to model

real-valued data (e.g., the parameterization of a face), we can use a modified form of

the TRBM with conditionally independent linear-Gaussian observed variables [38]. The

model, depicted in Figure 9.1 (left), defines a joint probability distribution over a real-

valued representation of the current frame of data, xt, and a collection of binary latent

variables, ht, where hk,t ∈ {0, 1}:

P (xt, ht|x<t) =
exp (−E(xt, ht|x<t))

Z(x<t)
(9.1)

For notational simplicity, we concatenate a short history of data at t−1,. . ., t−τ into

a vector which we call x<t. The distribution specified by Eq. 9.1 is conditional on this
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Figure 9.1: Left: A Temporal Restricted Boltzmann Machine. Middle: An Input-Output
Temporal Restricted Boltzmann Machine. Right: A factored third-order IOTRBM
(FIOTRBM).

history and normalized by a quantity Z which is intractable to compute exactly1 but

not needed for inference nor learning.

The joint distribution is characterized by an “energy function”:

E(xt, ht|x<t) =
∑

c

1
2

(xc,t − b̂xc,t)2 −
∑

k

hk,tb̂hk,t −
∑

ck

Wckxc,thk,t (9.2)

which captures pairwise interactions between variables, assigning high energy to im-

probable configurations and low energy to probable configurations. In the first term,

each visible unit contributes a quadratic penalty that depends on its deviation from a

“dynamic mean” determined by the history:

b̂xc,t = bxc +
∑

i

Aicxi,<t (9.3)

where i indexes the dimensions of the history vector. Weight matrix A and offset vector

bx (with elements bxc) parameterize the autoregressive relationship between the history
1To compute Z exactly we would need to integrate over the joint space of all possible output config-

urations and all settings of the binary latent variables.
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and current frame of data. Each hidden unit activation hk contributes a linear offset to

the energy which is also a function of the history:

b̂hk,t = bhk +
∑

i

Bikxi,<t. (9.4)

Weight matrix B and offset bh (with elements bhk) parameterize the relationship between

the history and the latent variables. The final term of Eq. 9.2 is a bi-linear constraint

on the interaction between the current setting of the visible units and hidden units,

characterized by matrix W .

The density for observation xt conditioned on the past can be expressed by marginalizing

out the binary hidden units in Eq. 9.1:

P (xt|x<t) =
∑

ht

P (xt, ht|x<t) =

∑
ht

exp (−E(xt, ht|x<t))
Z(x<t)

(9.5)

while the probability of observing a sequence, x(τ+1):T , given an τ -frame history x1:τ , is

simply the product of all the local conditional probabilities up to time T , the length of

a sequence:

P (x(τ+1):T |x1:τ ) =
T∏

t=τ+1

P (xt|x<t). (9.6)

The TRBM has been used to generate and denoise sequences [123, 128], as well as a

prior in multi-view person tracking [127]. In all cases, it requires an initialization, x1:τ ,

to perform these tasks. Alternatively, by learning a prior model of x1:τ it could easily

extended to model sequences non-conditionally, i.e., defining P (x1:T ).
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9.2.2 Input-Output Temporal Restricted Boltzmann Machines

Ultimately we are interested in learning a probabilistic mapping from an input se-

quence, q1:T to an output sequence, x1:T . In other words, we seek a model that defines

P (x1:T |q1:T ). However, the TRBM only defines a distribution over an output sequence

P (x1:T ). Extending this model to learn an input-output mapping is the primary con-

tribution of this chapter. Without loss of generality, we will assume that in addition

to having access to the complete history of the input, we also have access to the first τ

frames of the output. Therefore we seek to model P (x(τ+1):T |x1:τ , q1:T ). By placing an

τ th order Markov assumption on the current output, xt, that is, assuming conditional

independence on all other variables given an τ -frame history of xt and an τ + 1-frame

history of the input sequence q<=t (up to and including time t), we can operate in an

online setting:

P (x(τ+1):T |x1:τ , q1:T ) =
T∏

t=τ+1

P (xt|x<t, q<=t). (9.7)

where we have used the shorthand q<=t to describe a vector that concatenates a window

over the input at time t, t − 1, . . . , t − τ . Note that in an offline setting, it is simple to

generalize the model by conditioning the term inside the product on an arbitrary window

of the source (which may include source observations past time t).

We can easily adapt the TRBM to model P (xt|x<t, q<=t) by modifying its energy func-

tion to incorporate the input. The general form of energy function remains the same as

Eq. 9.2 but it is now also conditioned on q<=t by redefining the dynamic biases (Eq. 9.3

and Eq. 9.4) as follows:
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b̂xct = bxc +
∑

i

Aicxi,<t +
∑

j

Pjcqj,<=t (9.8)

b̂hkt = bhk +
∑

i

Bikxi,<t +
∑

j

Qjkqj,<=t (9.9)

where j is an index over elements of the input vector. Therefore the matrix P ties the

input linearly to the output (much like existing simple models) but the matrix Q also al-

lows the input to nonlinearly interact with the output through the latent variables h. We

call this model an Input-Output Temporal Restricted Boltzmann Machine (IOTRBM).

It is depicted in Figure 9.1 (middle).

A desirable criterion for training the model is to maximize the conditional log likelihood

of the data:

C =
T∑

t=τ+1

logP (xt|x<t, q<=t). (9.10)

However, the gradient of the cost defined in Eq. 9.10 with respect to the model parameters

θ = {W,A,B, P,Q, bx, bh} is difficult to compute analytically due to the normalization

constant Z. Therefore, Contrastive Divergence (CD) learning is typically used in place

of maximum likelihood. It follows the approximate gradient of an objective function

that is the difference between two Kullback-Leibler divergences [45]. It is widely used in

practice and tends to produce good generative models [16].

The CD updates for the IOTRBM have a common form (see the supplementary material

for details 2):

∆θi ∝
T∑

t=τ+1

〈
∂E(xt, ht|x<t, q<=t)

∂θi

〉

data

−
〈
∂E(xt, ht|x<t, q<=t)

∂θi

〉

recon

(9.11)

2http://www.matthewzeiler.com/pubs/nips2011/
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where 〈·〉data is an expectation with respect to the training data distribution, and 〈·〉recon

is the M -step reconstruction distribution as obtained by alternating Gibbs sampling,

starting with the visible units clamped to the training data. The input and output his-

tory stay fixed during Gibbs sampling. CD requires two main operations: 1) sampling

the latent variables, given a window of the input and output,

P (hk,t = 1|xt, x<t, q<=t) =

(
1 + exp(−

∑

c

Wckxc,t − b̂hkt)
)−1

, (9.12)

and 2) reconstructing the output data, given the latent variables:

x̂c,t|ht, x<t, q<=t ∼ N
(
xct;

∑

k

Wckhk,t + b̂xc,t, 1

)
. (9.13)

Eq. 9.12 and Eq. 9.13 are alternated M times to arrive at the M -step quantities used in

the weight updates. More details are given in Section 9.3.

9.2.3 Factored Third-order Input-Output Temporal Restricted Boltz-

mann Machines

In an IOTRBM the input and target history can only modify the hidden units and

current output through additive biases. There has been recent interest in exploring

higher-order RBMs in which variables interact multiplicatively [87, 98, 126]. Figure 9.1

(right) shows an IOTRBM whose parameters W,Q and P have been replaced by a

three-way weight tensor defining a multiplicative interaction between the three sets of

variables. The introduction of the tensor results in the number of model parameters

becoming cubic and therefore we factor the tensor into three matrices: W q,W h, and

W x. These parameters connect the input, hidden units, and current target, respectively

to a set of deterministic units which modulate the connections between variables. The

introduction of these factors corresponds to a kind of low-rank approximation to the

original interaction tensor, that uses O(K2) parameters instead of O(K3).
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The energy function of this model is:

E(xt, ht|x<t, q<=t) =
∑

c

1
2

(xc,t− b̂xc,t)2−
∑

k

hk,tb̂hk,t−
∑

f

∑

ckj

W x
cfW

h
kfW

q
jfxc,thk,tqj,<=t

(9.14)

where f indexes factors and b̂xc,t and b̂hk,t are defined by Eq. 9.3 and Eq. 9.4 respectively.

Weight updates all have the same form as Eq. 9.11 (see the supplementary material for

details 3). The conditional distribution of the latent variables given the other variables

becomes,

P (hk,t = 1|xt, x<t, q<=t) =


1 + exp(−

∑

f

W h
kf

∑

c

W x
cfxc,t

∑

j

W q
jfqj,<=t − b̂hkt)



−1

(9.15)

and the reconstruction distribution becomes,

xc,t|ht, x<t, q<=t ∼ N


xct;

∑

f

W x
cf

∑

k

W h
kfhk,t

∑

j

W q
jfqj,<=t + b̂xc,t, 1


 . (9.16)

9.3 Experiments

We evaluate the IOTRBM on two facial expression transfer datasets, one based on 2D

motion capture and the other on 3D motion capture. On both datasets we compare our

model against three baselines:

Linear regression (LR): We perform a regularized linear regression between each

frame of the input to each frame of the output. The model is solved analytically by least

squares. The regularization parameter is set by cross-validation on the training set.

τ th-order Autoregressive4 model (AR): This model improves on linear regression
3http://www.matthewzeiler.com/pubs/nips2011/
4This model considers the history of the source when predicting the target so it is not purely autore-

gressive.
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by also considering linear dynamics through the history of the input and output. Again

through regularized least squares we fit a matrix that maps from a concatenation of the

(τ + 1)-frame input window q<=t and τ -frame target window, x<t.

Multi-layer perceptron: A nonlinear model with one deterministic hidden layer, the

same cardinality as the IOTRBM. The input is the concatenation of the source and target

history, the output is the current target frame. We train with a nonlinear conjugate

gradient method.

These baselines were chosen to highlight the main difference of our approach over the

majority of techniques proposed for this application, namely the consideration of dy-

namics and the use of a nonlinear mapping through latent variables. We also tried an

IORBM, that is, an IOTRBM with no target history. It consistently performed worse

than the IOTRBM, and we do not report its results.

Details of learning All models saw a window of 4 input frames (3 previous + 1 current)

and 6 previous output frames, with the exception of linear regression which only saw the

current input. For the IOTRBM models, we found that initializing the parameters A

and P to the solution found by the autoregressive model gave slightly better results. All

other parameters were initialized to small random values. For CD learning we set the

learning rates for A and P to 10−6 and for all other parameters to 10−3. This was done

to prevent strong correlations from dominating early in learning. All parameters used a

fixed weight decay of 0.02 and momentum of 0.75. As suggested by [126], we added a

small amount of Gaussian noise (σ = 0.1) to the output history to make the model more

robust to unseen outputs during prediction (recall that the model sees true outputs at

training time, but is fed back predictions at test time).

9.3.1 2D facial expression transfer

The first dataset we consider consists of facial motion capture of two subjects who were

asked to speak the same phrases. It has 186 trials, totaling 10414 fames per subject.
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Each frame is 180 dimensional, representing the x and y position of 90 facial markers.

Each pair of sequences has been manually time-aligned based on a phonetic transcription

so they are synchronized between subjects.

RMS Marker Error (mm)
PPPPPPPPPModel

Split
S1 S2 S3 S4 S5 S6 Mean

Linear regression 6.19 6.18 6.19 5.85 6.13 6.34 6.15 ± 0.15
Autoregressive 5.43 5.22 5.67 5.37 5.37 5.76 5.47 ± 0.20
MLP 5.30 5.28 5.76 5.31 5.28 5.31 5.37 ± 0.19
IOTRBM 5.31 5.27 5.71 5.14 5.17 5.08 5.28 ± 0.22
FIOTRBM 5.41 5.43 5.76 5.42 5.45 5.46 5.49 ± 0.13

Table 9.1: 2D dataset. Mean RMS error on test output sequences.

Input noise Output noise Input & Output Noise
PPPPPPPPPModel

Noise
0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

Linear regression 6.48 15.05 136.2 N/A
Autoregressive 5.83 10.48 84.40 5.78 7.24 36.19 5.85 11.26 94.35
MLP 5.40 5.42 6.80 5.40 5.43 6.37 5.40 5.43 7.55
IOTRBM 5.06 5.07 5.39 5.07 5.18 8.48 5.07 5.17 8.57
FIOTRBM 5.46 5.46 5.66 5.46 5.46 5.56 5.46 5.46 5.82

Table 9.2: 2D dataset. Mean RMS error (in millimeters) under noisy input and output
history (Split 6).

Preprocessing

We found the original data to exhibit significant random relative motion between the two

faces throughout the entire sequences which could not reasonably be modeled. Therefore,

we transformed the data with an affine transform on all markers in each frame such

that a select few nose and skull markers per frame (stationary facial locations) were

approximately fixed relative to the first frame of the source sequences. Both the input

and output were reduced to 30 dimensions by retaining only their first 30 principal

components. This maintained 99.9% of the variance in the data. Finally, the data was

normalized to have zero mean and scaled by the average standard deviation of all the

elements in the training set.
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We evaluate the various methods on 6 random arbitrary splits of the dataset. In each

case, 150 complete sequences are maintained for training and the remaining 36 sequences

are used for testing. Each model is presented with the first 6 frames of the true test

output and successive 4-frame windows of the true test input. The exception is the linear

regression model, which only sees the current input. Therefore prediction is measured

from the 7th frame onward.

The IOTRBM produces its final output by initializing its visible units with the current

previous frame plus a small amount of Gaussian noise and then performing 30 alternating

Gibbs steps. At the last step, we do not sample the hidden units. This predicted output

frame now becomes the most recent frame in the output history and we iterate forward.

The results show a IOTRBM with 30 hidden units. We also tried a model with 100

hidden units which performed slightly worse. Finally, we include the performance of a

factored, third-order IOTRBM. This model used 30 hidden units and 50 factors.

We report RMS marker error in millimeters where the mean is taken over all markers,

frames and test sequences (Table 9.1). Not surprisingly, the IOTRBM consistently out-

performs linear regression. In all but two splits (where performance is comparable) the

IOTRBM outperforms the AR model. Mean performance over the splits shows an ad-

vantage to our approach. This is also qualitatively apparent in videos that superimpose

the true target with predictions from the model 5. We encourage the reader to view

the videos, as certain aesthetic properties such as the tradeoff between smoothness and

responsiveness are not captured by RMS error. We observed that on the 2D dataset, the

FIOTRBM had no advantage over the simpler IOTRBM.

To compare the robustness of each model to corrupted inputs or outputs, we added var-

ious amounts of white Gaussian noise to the input window, output history initialization

or both during retargeting with a trained model. This is performed for data split S6

(though we observed similar results for other splits). The performance of each model is

given in Table 9.2.
5See http://www.matthewzeiler.com/pubs/nips2011/
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The IOTRBM generally outperforms the baseline models in the presence of noise. This

is most apparent in the case of input noise: the scenario we would most likely find in

practice. However, under low to moderate output noise, we note that the IOTRBM is

robust, to the point that it does not even require a valid N frame output initialization to

produce a sensible retargeting. Interestingly, we also observe the FIOTRBM performing

well under high-noise conditions.

9.3.2 3D facial expression transfer

The second dataset we consider consists of facial motion capture data of two subjects,

asked to perform a set of isolated facial movements based on FACS. The movements

are more exaggerated than the speech performed in the 2D set. The dataset consists of

two trials, totaling 1050 frames per subject. In contrast to the 2D set, the marker set

used differs between subjects. The first subject has 313 markers (939 dimensions per

frame) and the second subject has 332 markers (996 dimensions per frame). There is no

correspondence between marker sets.

Preprocessing The 3D data was not spatially aligned. Both the input and output were

PCA-reduced to 50 dimensions (99.9% of variance). We then normalized in the same

way as for the 2D data.

We evaluate performance on 5 random splits of the 3D dataset, shown in Table 9.3. The

IOTRBM and FIOTRBM models considered have identical architectures to the ones

used for 2D data. We found empirically that increasing the noise level of the output

history to σ = 1 improved generalization on this smaller dataset.

Similar to the experiments with 2D data, the IOTRBM consistently outperforms the

autoregressive model. However, it does not outperform the MLP. Interestingly, the

factored, third-order model considerably improves on the performance of the standard

IOTRBM and the MLP. Figure 9.2 visualizes the predictions made by the FIOTRBM. We
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RMS Marker Error (mm)
Split S1 S2 S3 S4 S5 Mean
Autoregressive 2.12 2.98 2.44 2.26 2.46 2.45 ± 0.33
MLP 1.98 1.58 1.69 1.51 1.39 1.63 ± 0.22
IOTRBM 1.98 2.62 2.37 2.11 2.27 2.27 ± 0.25
FIOTRBM 1.70 1.54 1.55 1.42 1.48 1.54 ± 0.10

Table 9.3: 3D dataset. Mean RMS error on test output sequences.

Figure 9.2: Retargeting with the third-order factored TRBM. We show every 30th frame.
The top row shows the input. The bottom row shows the true target (circles) and the
prediction from our model (crosses). This figure is best viewed in electronic form and
zoomed.

also refer the reader to videos included as supplementary material 6. These demonstrate

a qualitative improvement of our models over the baselines considered.

9.4 Discussion

We have introduced the Input-Output Temporal Restricted Boltzmann Machine, a prob-

abilistic model for learning mappings between sequences. We presented two variants of

the model, one with pairwise and one with third-order multiplicative interactions. Our

experiments so far are limited to dynamic facial expression transfer, but nothing restricts

the model to this domain.

Current methods for facial expression transfer are unable to factor out style in the retar-

geted motion, making it difficult to adjust the emotional content of the resulting facial
6http://www.matthewzeiler.com/pubs/nips2011/
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animation. We are therefore interested in exploring extensions of our model that include

style-based contextual variables (c.f., [126]).
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Chapter 10

On Rectified Linear Units for

Speech Processing

10.1 Introduction

In addition to the previous applications shown thus far, deep neural networks have

recently become the gold standard for acoustic modeling in speech recognition systems.

The key computational unit of a deep network is a linear projection followed by a point-

wise non-linearity, which is typically a logistic. In this work, we show that we can improve

generalization and make training of deep networks faster and simpler by substituting the

logistic units with rectified linear units. These units are linear when their input is positive

and zero otherwise. In a supervised setting, we can successfully train very deep nets from

random initialization on a LVCSR (large vocabulary continuous speech recognition) task

achieving lower word error rates than using a logistic network with the same topology.

All our experiments are executed in a distributed environment using several hundred

machines and several hundred of hours of speech data.

Recent years have seen a surge of interest in neural networks for acoustic modeling in

speech recognition systems. Compared to traditional Gaussian Mixture Models (GMMs),
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neural networks have two main advantages. They scale better with the input dimension-

ality allowing the use of larger context windows and they automatically learn discrimi-

native features from data alleviating the problem of manually engineering and selecting

features. Together these two factors have yielded dramatic improvements in terms of

word error rate.

In their seminal work, Mohamed et al. [88] proposed to use a system composed of many

layers of logistic units. In order to overcome the notoriously difficult problem of op-

timizing very deep networks, they proposed to use a layer-wise unsupervised learning

algorithm, called RBM [45], as a way to provide a sensible initialization and they demon-

strated significant improvements over the baseline GMM.

One issue with this training procedure is that tracking convergence of RBMs is difficult

and the overall layer-wise training procedure is laborious and time-consuming, even when

using specialized hardware like GPUs. This challenge continues to motivate researchers

to design better unsupervised algorithms [95, 107] and better optimization methods for

training deep neural nets [29,63].

Inspired by recent work on deep learning for vision applications [67, 90], we propose to

replace the logistic non-linearity with a half-rectification non-linearity which is linear for

positive values and zero otherwise. Because of the shape of this non-linearity, we call the

resulting deep network a “hinge neural network” (HNN), and the units that compose

the HNN “rectified linear units” (ReLUs) [90].

This small change brings several advantages. First, it eliminates the necessity to have

a “pretraining” phase using unsupervised learning. We demonstrate empirically that

we can easily and successfully train extremely deep networks even from random initial-

ization. Second, the convergence of HNN is faster than in a regular logistic neural net

with the same topology. Third, HNN is very simple to optimize. Even vanilla stochastic

gradient descent with constant learning rate yields very good accuracy. Fourth, HNN

generalizes better than its logistic counterpart. And finally, rectified linear units are
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faster to compute because they do not require exponentiation and division, with an

overall speed up of 25% on the 4 hidden layer neural network we tested on.

We conjecture that the reason why rectified linear units are so beneficial for efficient

learning of deep neural nets is twofold. From the optimization perspective, HNN is piece-

wise linear. If we restrict our attention to the units that are non-zero, the whole system

reduces to a linear convex system whose optimization is straightforward even using first

order optimizers. Secondly, HNN generalizes better because the internal representation

produced by the network is much more regularized. Unlike logistic units that produce

small positive values when the input is not aligned with the internal weights, rectified

linear units output exact zeros. For instance, we found that in average about 80% of the

units in a HNN are zero after training. Improved generalization can be seen as the effect

of the increased sparsity of the internal representation or also by interpreting HNN as a

system with stacked binary linear SVM’s (as opposed to logistic regression classifiers),

and it is well known that such classifiers enjoy better generalization properties.

Overall, we demonstrate a clear advantage of ReLU’s over logistic units in the supervised

setting. Our empirical validation uses a recently introduced distributed framework [27]

that allows us to train on four hundred machines using 1600 cores to process 26 million

frames every day.

10.2 Supervised Learning

Our supervised learning set up is conventional, except for the use of the proposed activa-

tion function. The network is given both an input x (typically a few consecutive frames of

a spectrogram representation) and a label representing the state of the HMM for that in-

put. The network processes the input through a sequence of non-linear transformations.

In particular, at the l-th layer the network computes:
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Figure 10.1: The proposed non-linearity, ReLU, and the standard neural network non-
linearity, logistic.

hl = σ(W lhl−1 + bl) (10.1)

where W l ∈ RNk
l×Nkl−1

is a matrix of trainable weights, bl ∈ RNk
l

is a vector of trainable

biases, and hl−1 ∈ RNk
l−1

is the (l− 1)-th hidden layer (or the input x if l is equal to 0)

and hl ∈ RNk
l

is the l-th hidden layer.

In our work, we propose to use as f the following point-wise non-linear function: σ(u) =

max(0, z). The resulting unit in the network is dubbed ReLU [90]. We have also exper-

imented and compared to other functions as well. We tested the widely used logistic,

σ(z) = 1/(1 + exp(−z)), and hyperbolic tangent, σ(z) = tanh(z). Since hyperbolic tan-

gent performed slightly worse than logistic, we only report the latter for our baseline

comparisons.

In order to predict the label, the topmost layer of the network uses a softmax non-linearity

which outputs probability values. If the network has Nl layers, then the prediction for

the probability of the c-th class is:

P (c|x) =
exp(WNl

c hNl−1 + bNlc )
∑Nc

j=1 exp(WNl
j hNl + bNlj )

(10.2)
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where WNl
j is j-th row of the last layer weight matrix, bNlj is the j-th entry in the last

layer vector of biases and Nc is the number of classes.

Training the parameters of the network (the weight matrices and biases at all layers) is

performed by minimizing the cross entropy loss over the training set. The contribution

of each sample x to the loss is:

Csup = −
C∑

j=1

tj logP (j|x; θ) (10.3)

where t is a 1-of-C encoding of the target class label and θ collectively denotes all

parameters of the neural network, namely {(W l, bl), i = 0, . . . , Nl}. We will discuss in

sec. 10.3 how we minimize this loss function.

10.3 Learning in a Distributed Framework

In order to support training on vast amount of data in very short time, we use a recently

proposed distributed framework [27]. The hidden units of the network are partitioned

across several machines and each machine further parallelizes computation across several

cores. Parallel distributed computation is used across the samples in a mini-batch as

well as across the nodes of the neural network.

In the experiments of sec. 10.4 we use this framework and learn the parameters of the

system by asynchronous stochastic gradient descent (SGD) [27]. Training proceeds as

follows. The network is replicated Nreplicas times. Each replica is an exact copy of

the model, with possibly slightly stale parameters and operating on a random subset

of the training data. Besides the Nreplicas replicas, there is also a sharded parameter

server hosting the most updated version of the parameters. Once a model replica has

finished computing the gradients on its mini-batch, it sends them to the parameter server

which uses them to update the parameters. Finally, the parameter server sends back
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an updated copy of the parameters to that model replica. This mechanism allows many

model replicas to work concurrently but asynchronously on the same training problem

and to quickly update the parameters, while being tolerant to machine failure and high

latency.

In this work, we investigated three different ways to update the parameters in the pa-

rameter server. Let θlt be the l-th parameter after t− 1 weight updates. In vanilla SGD

the parameters are updated using:

θlt+1 = θlt − η∇θlt (10.4)

where η is the learning rate. In SGD with ADAGRAD [27, 30], each parameter has its

own adaptive learning rate; the parameter update is

θlt+1 = θlt − ηlt∇θlt , ηlt =
η√∑t

τ=1(∇θlτ )2
(10.5)

Finally, in SGD with momentum the parameters are updated by:

θlt+1 = θlt − η∆l
t+1 (10.6)

with ∆l
t+1 = 0.9∆l

t + ∇θlt. While ADAGRAD aims at gently scaling and annealing

learning rates, momentum speeds up learning along those gradient directions that are

persistent during training.

10.4 Experiments

All experiments are performed using several hundred hours of US English data collected

using Voice Search, Voice IME and read data at Google. The test set follows the same
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Figure 10.2: Test set frame accuracy as a function of time of a 4 hidden layer HNN
trained with different optimizers.

distribution of the training set but uses independent sources. The set up for the hybrid

decoding is exactly the same as the one described in earlier work [55].

In the supervised setting, a baseline GMM-HMM system is trained and used to generate

8000 context dependent senones. This system is also used to produce senone labels for

every input frame using forced alignment. These labels are the target for the supervised

network.

The input to the network consists of 26 consecutive frames, each comprising 40 log-energy

filter bank outputs. The overall input dimensionality is 1040, although spectral analysis

reveals that 95% of the variance is concentrated in the first leading 100 dimensional

principal components.

Finally, all layers of our networks have 2560 hidden units and training has been performed

by partitioning each network across 4 machines using up to 4 CPUs each. The number

of model replicas Nreplicas has been set to 100.

In the first experiment shown in fig. 10.2, we compare the three different optimization
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Figure 10.3: Frame accuracy as a function of time for a 4 hidden layer neural net trained
with either logistic or ReLUs and using as optimizer either SGD or SGD with ADAGRAD
(ADG).

strategies we described in sec. 10.3, on a 4 hidden layer HNN initialized at random. In

terms of wall clock time to reach a given frame accuracy on the validation set, ADAGRAD

exhibits the fastest convergence time, although plain SGD eventually reaches the same

overall frame accuracy. Momentum instead performs slightly worse.

Similar findings were observed using a network with logistic units. However, plain SGD

does not perform as well as ADAGRAD in this case, see fig. 10.3. Unlike HNN, a logistic

network does need accelerated first order methods to yield good frame accuracy. It

seems that optimization is much harder in logistic networks than HNNs. Fig. 10.3 shows

that a logistic network trained with ADAGRAD can achieve the same accuracy as a

HNN trained with either ADAGRAD or even plain SGD. However, we found that the

performance in terms of word error rate is superior when using HNN and SGD. The

word error rate of a logistic network trained with ADAGRAD is 11.8% (slightly better

than when training using SGD), while the word error rate of HNN is 11.7 and 11.4%

when using ADAGRAD and SGD, respectively. Since a difference of 0.1% is statistically
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Figure 10.4: Validation frame accuracy over time using HNN with different number of
hidden layers and SGD.

Nr. hid. layers 1 2 4 8 10 12

WER % 16.0 12.8 11.4 10.9 11.0 11.1

Table 10.1: Word error rate of HNN with varying number of hidden layers.

significant in our data set, we conclude that HNNs are not only easier to train but also

they generalize better.

Finally, fig. 10.4 shows that extremely deep HNNs (we tested up to 12 hidden layers)

can be successfully trained from random initialization. Since we did not allocate more

resources for the deeper networks, their compute and convergence time is slower. How-

ever, they do not get stuck in the optimization and produce among the best results.

Table 10.1 reports the corresponding word error rates on the test set. The 8 hidden

layer neural network produces the best rate of 10.9%, but this is closely followed by the

10 and 12 hidden layer HNN.

We also tested very deep logistic networks from random initialization but did observe
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that the optimization gets stuck when using 8 hidden layers and more. After one week,

8 hidden layers logistic network could only achieve a word error rate of 12.0%.

10.5 Discussion

In this empirical study we advocate the use of ReLU in deep networks since a) they are

easier to optimize, b) they converge faster, c) they generalize better and d) they are

faster to compute. This confirms the previous chapter results where good results where

obtained in computer vision models using rectified linear units.
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Chapter 11

ADADELTA: An Adaptive

Learning Rate Method

11.1 Introduction

The most common method for training deep neural networks is stochastic gradient de-

scent. This was used in all the previous chapters and typically can be applied to any

differentiable objective function. However, it is somewhat unsatisfying that this simply

first order method which requires a scalar hand-tuned learning rate is the only method

that is widely used.

In this final chapter, we present a novel per-dimension learning rate method for gradient

descent called ADADELTA. The method dynamically adapts over time using only first

order information and has minimal computational overhead beyond vanilla stochastic

gradient descent. The method requires no manual tuning of a learning rate and appears

robust to noisy gradient information, different model architecture choices, various data

modalities and selection of hyperparameters. We show promising results compared to

other methods on the MNIST digit classification task using a single machine and on a

large scale voice dataset in a distributed cluster environment.
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Many machine learning algorithms can be framed as deriving updates to a set of param-

eters θ in order to optimize an objective function C. This often involves some iterative

procedure which applies changes to the parameters, ∆θ at each iteration of the algorithm.

Denoting the parameters at the t-th iteration as θt, this simple update rule becomes:

θt+1 = θt + ∆θt (11.1)

In this chapter we consider gradient descent algorithms which attempt to optimize the

objective function by following the steepest descent direction given by the negative of

the gradient ∇θt. This general approach can be applied to update any parameters for

which a derivative can be obtained:

∆θt = −η∇θt (11.2)

where ∇θt is the gradient of the parameters at the t-th iteration ∂C(θt)
∂θt

and η is a learning

rate which controls how large of a step to take in the direction of the negative gradient.

Following this negative gradient for each new sample or batch of samples chosen from

the dataset gives a local estimate of which direction minimizes the cost and is referred to

as stochastic gradient descent (SGD) [104]. While often simple to derive the gradients

for each parameter analytically, the gradient descent algorithm requires the learning rate

hyperparameter to be chosen by hand.

Setting the learning rate typically involves a tuning procedure in which the highest possi-

ble learning rate is used. Choosing higher than this rate can cause the system to diverge

in terms of the objective function, and choosing a lower rate results in slow learning.

Determining a good learning rate becomes more of an art than a science for many prob-

lems. To further complicate the learning rate selection, it is often advantageous to use a

large learning rate early on in training and a small learning rate near the end.
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This work attempts to alleviate the task of choosing a learning rate by introducing a

new dynamic learning rate that is computed on a per-dimension basis using only first

order information. This requires a trivial amount of extra computation per iteration over

gradient descent. Additionally, while there are some hyper parameters in this method,

we have found their selection does not drastically alter the results. The benefits of this

approach are as follows:

• no manual setting of a learning rate.

• insensitive to hyperparameters.

• separate dynamic learning rate per-dimension.

• minimal computation over gradient descent.

• robust to large gradients, noise and architecture choice.

• applicable in both local or distributed environments.

11.2 Other Optimization Techniques

There are many modifications to the gradient descent algorithm. The most powerful

such modification is Newton’s method which requires second order derivatives of the

cost function:

∆θt = H−1
t ∇θt (11.3)

where H−1
t is the inverse of the Hessian matrix of second derivatives computed at it-

eration t. This determines the optimal step size to take for quadratic problems, but

unfortunately is prohibitive to compute in practice for large models. Therefore, many

additional approaches have been proposed to either improve the use of first order infor-

mation or to approximate the second order information.
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11.2.1 Learning Rate Annealing

There have been several attempts to use heuristics for estimating a good learning rate

at each iteration of gradient descent. These either attempt to speed up learning when

suitable or to slow down learning near a local minima. Here we consider the latter.

When gradient descent nears a minima in the cost surface, the parameter values can

oscillate back and forth around the minima. One method to prevent this is to slow down

the parameter updates by decreasing the learning rate. This can be done manually

when the validation accuracy appears to plateau. Alternatively, learning rate schedules

have been proposed [104] to automatically anneal the learning rate based on how many

epochs through the data have been completed. These approaches typically add additional

hyperparameters to control how quickly the learning rate decays.

11.2.2 Per-Dimension First Order Methods

The heuristic annealing procedure discussed above modifies a single global learning rate

that applies to all dimensions of the parameters. Since each dimension of the parameter

vector can relate to the overall cost in vastly different ways, a per-dimension learning

rate that can compensate for these differences is often advantageous.

Momentum

One method of speeding up training per-dimension is the momentum method [105]. This

is perhaps the simplest extension to SGD that has been successfully used for decades.

The main idea behind momentum is to accelerate progress along dimensions in which

gradients consistently have the same sign and to slow progress along dimensions where

the sign of the gradients continues to change. In momentum this accomplished by keeping

track of past parameter updates with an exponential decay:
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∆θt = ρ∆θt−1 − η∇θt (11.4)

where ρ is a constant controlling the decay of the previous parameter updates. This gives

a nice intuitive improvement over SGD when optimizing difficult cost surfaces such as a

long narrow valley. The gradients along the valley, despite being much smaller than the

gradients across the valley, are typically in the same direction and thus the momentum

term accumulates to speed up progress. In SGD the progress along the valley would be

slow since the gradient magnitude is small and the fixed global learning rate shared by

all dimensions cannot speed up progress. Choosing a higher learning rate for SGD may

help but the dimension across the valley would then also make larger parameter updates

which could lead to oscillations back as forth across the valley.

These oscillations are mitigated when using momentum because the sign of the gradient

changes and thus the momentum term damps down these updates to slow progress across

the valley. Again, this occurs per-dimension and therefore the progress along the valley

is unaffected. Note however that this per-dimension adjustment is not a scaling of the

learning rate, but is an additive term that can help with more complex cost functions.

For example, an axis aligned valley in a cost function can be optimized well with a small

learning rate down the valley and a high learning rate along the valley, but this cannot

be done by scaling per-dimension learning rates when the valley is not axis-aligned.

Momentum on the other hand is additive and thus can cope with such optimizations.

ADAGRAD

A recent first order method called ADAGRAD [30] has shown remarkably good results on

large scale learning tasks in a distributed environment [27]. This method relies on only

first order information but has some properties of second order methods and annealing.

The update rule for ADAGRAD is as follows:
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∆θt = − η√∑t
τ=1∇θ2τ

∇θt (11.5)

Here the denominator computes the `2 norm of all previous gradients on a per-dimension

basis and η is a global learning rate shared by all dimensions.

While there is the hand tuned global learning rate, each dimension has its own dynamic

rate. Since this dynamic rate grows with the inverse of the gradient magnitudes, large

gradients have smaller learning rates and small gradients have large learning rates. This

has the nice property, as in second order methods, that the progress along each dimension

evens out over time. This is very beneficial for training deep neural networks since the

scale of the gradients in each layer is often different by several orders of magnitude, so

the optimal learning rate should take that into account. Additionally, this accumulation

of gradient in the denominator has the same effects as annealing, reducing the learning

rate over time.

Since the magnitudes of gradients are factored out in ADAGRAD, this method can be

sensitive to initial conditions of the parameters and the corresponding gradients. If the

initial gradients are large, the learning rates will be low for the remainder of training.

This can be combatted by increasing the global learning rate, making the ADAGRAD

method sensitive to the choice of learning rate. Also, due to the continual accumulation

of squared gradients in the denominator, the learning rate will continue to decrease

throughout training, eventually reaching to zero and stopping training completely. We

created our ADADELTA method to overcome the sensitivity to the hyperparameter

selection as well as to avoid the continual decay of the learning rates.

11.2.3 Methods Using Second Order Information

Whereas the above methods only utilized gradient and function evaluations in order

to optimize the objective, second order methods such as Newton’s method or quasi-
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Newton methods make use of the Hessian matrix or approximations to it. While this

provides additional curvature information useful for optimization, computing accurate

second order information is often expensive.

Since computing the entire Hessian matrix of second derivatives is too computationally

expensive for large models, Becker and LeCun [5] proposed a diagonal approximation

to the Hessian. This diagonal approximation can be computed with one additional

forward and back-propagation through the model, effectively doubling the computation

over SGD. Once the diagonal of the Hessian is computed, diag(H), the update rule

becomes:

∆θt = − 1
|diag(Ht)|+ µ

∇θt (11.6)

where the absolute value of this diagonal Hessian is used to ensure the negative gradient

direction is always followed and µ is a small constant to improve the conditioning of the

Hessian for regions of small curvature.

A recent method by Schaul et al. [112] incorporating the diagonal Hessian with ADAGRAD-

like terms has been introduced to alleviate the need for hand specified learning rates.

This method uses the following update rule:

∆θt = − 1
|diag(Ht)|

E[∇θt−τ :t]2
E[∇θ2t−τ :t]

∇θt (11.7)

where E[∇θt−τ :t] is the expected value of the previous τ gradients and E[∇2
t−τ :t] is the

expected value of squared gradients over the same window τ . Schaul et al. also introduce

a heuristic for this window size τ (see [112] for more details).
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11.3 ADADELTA Method

The idea presented in this chapter was derived from ADAGRAD [30] in order to improve

upon the two main drawbacks of the method: 1) the continual decay of learning rates

throughout training, and 2) the need for a manually selected global learning rate. After

deriving our method we noticed several similarities to Schaul et al. [112], which will be

compared to below.

In the ADAGRAD method the denominator accumulates the squared gradients from each

iteration starting at the beginning of training. Since each term is positive, this accumu-

lated sum continues to grow throughout training, effectively shrinking the learning rate

on each dimension. After many iterations, this learning rate will become infinitesimally

small.

11.3.1 Idea 1: Accumulate Over Window

Instead of accumulating the sum of squared gradients over all time, we restricted the

window of past gradients that are accumulated to be some fixed size τ (instead of size t

where t is the current iteration as in ADAGRAD). With this windowed accumulation the

denominator of ADAGRAD cannot accumulate to infinity and instead becomes a local

estimate using recent gradients. This ensures that learning continues to make progress

even after many iterations of updates have been done.

Since storing τ previous squared gradients is inefficient, our method implements this

accumulation as an exponentially decaying average of the squared gradients. Assume at

time t this running average is E[∇θ2]t then we compute:

E[∇θ2]t = ρ E[∇θ2]t−1 + (1− ρ) ∇θ2t (11.8)

where ρ is a decay constant similar to that used in the momentum method. Since we

172



require the square root of this quantity in the parameter updates, this effectively becomes

the RMS of previous squared gradients up to time t:

RMS[∇θ]t =
√
E[∇θ2]t + ε (11.9)

where a constant ε is added to better condition the denominator as in [5]. The resulting

parameter update is then:

∆θt = − η

RMS[∇θ]t
∇θt (11.10)

The formulation presented in Eq. 11.10 was recently proprosed by Hinton et al. [46]

under the name of RMSPROP and will be compared to the ADADELTA formulation

which combines this approach with the following idea.

11.3.2 Idea 2: Correct Units with Hessian Approximation

When considering the parameter updates, ∆θ, being applied to θ, the units should

match. That is, if the parameter had some hypothetical units, the changes to the pa-

rameter should be changes in those units as well. When considering SGD, Momentum,

or ADAGRAD, we can see that this is not the case. The units in SGD and Momentum

relate to the gradient, not the parameter:

units of ∆θ ∝ units of ∇θ ∝
∂f

∂θ
∝ 1

units of θ
(11.11)

assuming the cost function, f , is unit-less. ADAGRAD also does not have correct units

since the update involves ratios of gradient quantities, hence the update is unit-less.

In contrast, second order methods such as Newton’s method that use Hessian information

or an approximation to the Hessian do have the correct units for the parameter updates:
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Algorithm 4 Computing ADADELTA update at time t
Require: Decay rate ρ, Constant ε
Require: Initial parameter θ1

1: Initialize accumulation variables E[∇θ2]0 = 0, E[∆θ2]0 = 0
2: for t = 1 : T do %% Loop over # of updates
3: Compute Gradient: ∇θt
4: Accumulate Gradient: E[∇θ2]t = ρE[∇θ2]t−1 + (1− ρ)∇θ2

t

5: Compute Update: ∆θt = −RMS[∆θ]t−1
RMS[∇θ]t

∇θt
6: Accumulate Updates: E[∆θ2]t = ρE[∆θ2]t−1 + (1− ρ)∆θ2

t

7: Apply Update: θt+1 = θt + ∆θt
8: end for

∆θ ∝ H−1∇θ ∝
∂f
∂θ
∂2f
∂θ2

∝ units of θ (11.12)

Noticing this mismatch of units we considered terms to add to Eq. 11.10 in order for the

units of the update to match the units of the parameters. Since second order methods

have correct units, we rearrange Newton’s method (assuming a diagonal Hessian) for the

inverse of the second derivative to determine the quantities involved:

∆θ =
∂f
∂θ
∂2f
∂θ2

⇒ 1
∂2f
∂θ2

=
∆θ
∂f
∂θ

(11.13)

Since the RMS of the previous gradients is already represented in the denominator in

Eq. 11.10, a quantity related to the ∆θ quantity should be present in the numerator.

∆θt for the current time step is not known, so we assume the curvature is locally smooth

and approximate ∆θt by compute the exponentially decaying RMS over a window of size

τ of previous ∆θ to give the ADADELTA method:

∆θt = −RMS[∆θ]t−1

RMS[∇θ]t
∇θt (11.14)

where the same constant ε is added to the numerator RMS as well. This constant serves
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the purpose both to start off the first iteration where ∆θ0 = 0 and to ensure progress

continues to be made even if previous updates become small.

This derivation makes the assumption of diagonal curvature so that the second deriva-

tives could easily be rearranged. Furthermore, this is an approximation to the diagonal

Hessian using only RMS measures of ∇θ and ∆θ. This approximation is always positive

as in Becker and LeCun [5], ensuring the update direction follows the negative gradient

at each step.

In Eq. 11.14 the RMS[∆θ]t−1 quantity lags behind the denominator by 1 time step, due

to the recurrence relationship for ∆θt. An interesting side effect of this is that the system

is robust to large sudden gradients which act to increase the denominator, reducing the

effective learning rate at the current time step, before the numerator can react.

The method in Eq. 11.14 uses only first order information and has some properties

from each of the discussed methods. The negative gradient direction for the current

iteration −∇θt is always followed as in SGD. The numerator acts as an acceleration

term, accumulating previous gradients over a window of time as in momentum. The

denominator is related to ADAGRAD in that the squared gradient information per-

dimension helps to even out the progress made in each dimension, but is computed over

a window to ensure progress is made later in training. Finally, the method relates to

Schaul et al. ’s in that some approximation to the Hessian is made, but instead costs only

one gradient computation per iteration by leveraging information from past updates. For

the complete algorithm details see Algorithm 11.3.2.

11.4 Experiments

We evaluate our method on two tasks using several different neural network architectures.

We train the neural networks using SGD, Momentum, ADAGRAD, RMSPROP, and

ADADELTA in a supervised fashion to minimize the cross entropy objective between
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Figure 11.1: Comparison of learning rate methods on MNIST digit classification for 50
epochs.

the network output and ground truth labels. Comparisons are done both on a local

computer and in a distributed compute cluster.

11.4.1 Handwritten Digit Classification

In our first set of experiments we train a neural network on the MNIST handwritten

digit classification task. For comparison with Schaul’s et al. method we trained with

tanh nonlinearities and 500 hidden units in the first layer followed by 300 hidden units

in the second layer, with the final softmax output layer on top. Our method was trained

on mini-batches of 100 images per batch for 6 epochs through the training set. Setting

the hyperparameters to ε = 1e−6 and ρ = 0.95 we achieve 2.00% test set error compared

to the 2.10% of Schaul et al. While this is nowhere near convergence it gives a sense of

how quickly the algorithms can optimize the classification objective.

To further analyze various methods to convergence, we train the same neural network

with 500 hidden units in the first layer, 300 hidden units in the second layer and rec-

tified linear activation functions in both layers for 50 epochs. We notice that rectified

linear units work better in practice than tanh as in the previous chapter, and their non-
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saturating nature further tests each of the methods at coping with large variations of

activations and gradients.

SGD MOMENTUM ADAGRAD
η = 1e0 2.26% 89.68% 43.76%
η = 1e−1 2.51% 2.03% 2.82%
η = 1e−2 7.02% 2.68% 1.79%
η = 1e−3 17.01% 6.98% 5.21%
η = 1e−4 58.10% 16.98% 12.59%

Table 11.1: MNIST test error rates after 6 epochs of training for various hyperparameter
settings using SGD, MOMENTUM, and ADAGRAD.

ε = 1e−2 ε = 1e−4 ε = 1e−6 ε = 1e−8

η = 1e0 90.26% 90.26% 90.26% 90.26%
η = 1e−1 2.33% 89.72% 81.46% 89.72%
η = 1e−2 2.46% 1.99% 3.37% 3.70%
η = 1e−3 5.39% 2.58% 1.93% 2.18%
η = 1e−4 11.03% 5.57% 3.03% 2.78%

Table 11.2: MNIST test error rate after 6 epochs for various hyperparameter settings
using RMSPROP. This uses a setting of ρ = 0.95 and varies the other two parameters,
the lreatning rate η and constant in denomaintor ε so in practice more turning is needed
for optimal RMSPROP performance.

ε = 1e−2 ε = 1e−4 ε = 1e−6 ε = 1e−8

ρ = 0.9 2.59% 2.05% 1.90% 2.29%
ρ = 0.95 2.58% 1.99% 1.83% 2.13%
ρ = 0.99 2.32% 2.28% 2.05% 2.00%

Table 11.3: MNIST test error rate after 6 epochs for various hyperparameter settings
using ADADELTA.

In Figure 11.1 we compare SGD, Momentum, ADAGRAD, RMSPROP, and ADADELTA

in optimizing the test set errors. The unaltered SGD method does the worst in this case,

whereas adding the momentum term to it significantly improves performance. ADA-

GRAD performs well for the first 10 epochs of training, after which it slows down due to

the accumulations in the denominator which continually increase. ADADELTA matches

the fast initial convergence of ADAGRAD while continuing to reduce the test error,

converging near the best performance which occurs with momentum. Using only Idea 1

(ie. RMSPROP) performs well when the manual learning rate is optimally adjusted to

η = 1e−2, but converges to 2.5% error with a setting of η = 1e−3, showing the utility of

the numerator of ADADELTA to auto-tune this rate per dimension.
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11.4.2 Sensitivity to Hyperparameters

While momentum converged to a better final solution than ADADELTA after many

epochs of training, it was very sensitive to the learning rate selection, as was SGD and

ADAGRAD. In Table 11.1 we vary the learning rates for each method and show the

test set errors after 6 epochs of training using rectified linear units as the activation

function. The optimal settings from each column were used to generate Figure 11.1.

With SGD, Momentum, or ADAGRAD the learning rate needs to be set to the correct

order of magnitude, above which the solutions typically diverge and below which the

optimization proceeds slowly. RMSPROP needs a well tuned learning rate as well, plus

two additional coefficients, the constant in the denominator η and the decay ρ for the

denominator running average (see Table 11.2). We can see that these results are highly

variable for each method, compared to ADADELTA in Table 11.3 in which the two

hyperparameters do not significantly alter performance.

11.4.3 Effective Learning Rates

To investigate some of the properties of ADADELTA we plot in Figure 11.2 the step

sizes and parameter updates of 10 randomly selected dimensions in each of the 3 weight

matrices throughout training. There are several interesting things evident in this figure.

First, the step sizes, or effective learning rates (all terms except ∇θt from Eq. 11.14)

shown in the left portion of the figure are larger for the lower layers of the network and

much smaller for the top layer at the beginning of training. This property of ADADELTA

helps to balance the fact that lower layers have smaller gradients due to the diminishing

gradient problem in neural networks and thus should have larger learning rates.

Secondly, near the end of training these step sizes converge to 1. This is typically a high

learning rate that would lead to divergence in most methods, however this convergence

towards 1 only occurs near the end of training when the gradients and parameter updates

are small. In this scenario, the ε constants in the numerator and denominator dominate
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the past gradients and parameter updates, converging to the learning rate of 1.

This leads to the last interesting property of ADADELTA which is that when the step

sizes become 1, the parameter updates (shown on the right of Figure 11.2) tend towards

zero. This occurs smoothly for each of the weight matrices effectively operating as if an

annealing schedule was present.

However, having no explicit annealing schedule imposed on the learning rate could be why

momentum with the proper hyperparameters outperforms ADADELTA later in training

as seen in Figure 11.1. With momentum, oscillations that can occur near a minima are

smoothed out, whereas with ADADELTA these can accumulate in the numerator. An

annealing schedule could possibly be added to the ADADELTA method to counteract

this in future work.
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Figure 11.2: Step sizes and parameter updates shown every 60 batches during training
the MNIST network with tanh nonlinearities for 25 epochs. Left: Step sizes for 10
randomly selected dimensions of each of the 3 weight matrices of the network. Right:
Parameters changes for the same 10 dimensions for each of the 3 weight matrices. Note
the large step sizes in lower layers that help compensate for vanishing gradients that
occur with backpropagation.
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11.4.4 Speech Data

In the next set of experiments we trained a large-scale neural network with 4 hidden

layers on several hundred hours of US English data collected using Voice Search, Voice

IME, and read data. The network was trained using the distributed system of [27] in

which a centralized parameter server accumulates the gradient information reported back

from several replicas of the neural network. In our experiments we used either 100 or

200 such replica networks to test the performance of ADADELTA in a highly distributed

environment.

The neural network is setup as in [55] where the inputs are 26 frames of audio, each

consisting of 40 log-energy filter bank outputs. The outputs of the network were 8,000

senone labels produced from a GMM-HMM system using forced alignment with the input

frames. Each hidden layer of the neural network had 2560 hidden units and was trained

with either logistic or rectified linear nonlinearities.

Figure 11.3 shows the performance of the ADADELTA method when using 100 net-

work replicas. Notice our method initially converges faster and outperforms ADAGRAD

throughout training in terms of frame classification accuracy on the test set. The same

settings of ε = 1e−6 and ρ = 0.95 from the MNIST experiments were used for this setup.

When training with rectified linear units and using 200 model replicas we also used

the same settings of hyperparameters (see Figure 11.4). Despite having 200 replicas

which inherently introduces significant amount of noise to the gradient accumulations,

the ADADELTA method performs well, quickly converging to the same frame accuracy

as the other methods.
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Figure 11.3: Comparison of ADAGRAD and ADADELTA on the Speech Dataset with
100 replicas using logistic nonlinearities.
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Figure 11.4: Comparison of ADAGRAD, Momentum, and ADADELTA on the Speech
Dataset with 200 replicas using rectified linear nonlinearities.

11.5 Discussion

In this chapter we introduced a new learning rate method based on only first order in-

formation which shows promising result on MNIST and a large scale Speech recognition

dataset. This method has trivial computational overhead compared to SGD while pro-

viding a per-dimension learning rate. Despite the wide variation of input data types,

number of hidden units, nonlinearities and number of distributed replicas, the hyperpa-

rameters did not need to be tuned, showing that ADADELTA is a robust learning rate

method that can be applied in a variety of situations.
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Chapter 12

Part 2 Conclusion

12.1 Summary of Contributions

In this second half of this thesis we investigated three different areas of machine learning

research. In Chapter 9 we introduced a novel method called the Input-Output Temporal

Restricted Boltzmann Machine for mapping an input sequence to an output sequence.

The IOTRBM is a generative model of the sequence conditioned on a few frames of

previous outputs and the entire input sequence. We showed superior results to similar

methods in the real world application of mapping motion capture of facial expressions

between two subjects.

In Chapter 10 we moved on to the task of large vocabulary continuous speech recognition

to determine how rectified linear units could improve performance in this challenging

task. The results show that rectified linear units train faster and generalize better than

competing activation functions such as the logistic function or tanh nonlinearities. This

work formed the basis for improvements to the speech recognition system at Google that

is now used in several production systems.

In the final chapter, Chapter 11, of this thesis we explore the optimization problem in
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machine learning. Many algorithms rely on gradient descent with a single hand-tuned

learning rate for optimization. Building on the success of the ADAGRAD method we

designed a novel optimization technique which seems robust in many situations. This

method is insensitive to the settings of its hyperparameters and converges well in both

local and distributed computing environments. We believe it is a promising approach

that could be applied to many machine learning problems.

12.2 Future Directions

Style Variables for Facial Expression Transfer: The IOTRBM presented in Chap-

ter 9 was sufficient for transferring motions of one subject’s face onto another when they

were saying the same sentence with the same emotion. However, it would be interesting

to decouple what is being said from the emotion by using additional style variables. Ar-

bitrary emotions could be mapped between one another during retargeting by modifying

the style variables. This could be useful for animating cartoon characters easily using

human recordings that have generic emotions.

Integrating Speech Acoustic and Language Models: The speech recognition

pipeline presented in Chapter 10 showed good improvements when rectified linear units

were used. However, the overall objective of converting audio signals into predictions at

the word-level is not directly optimized in this system because the neural network acous-

tic model and the HMM language model are not integrated. An interesting direction

would be to combined both components into a single neural network with the objective

to directly predict words from the audio signals themselves.

Improving ADADELTA Near Convergence: We showed fast convergence in Chap-

ter 11 with ADADELTA, but we also found the final performance to be slightly behind

that of the traditional momentum method. This could be due to lack of an anneal-

ing component in the algorithm, which is further exacerbated by accumulating only

positive terms in the numerator. Further investigation is needed into the behaviour of
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ADADELTA near convergence to determine why this method appears not to settle to

good minima and if a momentum-like term could be added to improve performance.
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Part III

Appendices
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A Math Details

A.1 Convolution

A common operation throughout computer vision, machine learning, and especially this

work is the convolution operation, typically denoted as ⊗. Convolution can be viewed as

a mathematical operation between two inputs f and g that results in an output similar

to one of the outputs being smoothed or modulated by the other. Convolution is directly

related to correlation which is simply involves the operations, except one of the inputs

in reversed. For example, correlation in 2D with a filter is the same as convolution with

the filter being flipped up/down followed by flipped left/right (or rotated 180 degrees).

This is evident from the formula for convolution in 2D where the filter f is of size

(2NFrows + 1)× (2NFcols + 1) for simplicity:

(f ⊗ g)[x, y] =
NFrows∑

i=−NFrows

NFcols∑

j=NFcols

f [i, j]g[x− i, y − j] (12.1)

and the formula correlation:

(f ⊗ g)[x, y] =
NFrows∑

i=−NFrows

NFcols∑

j=NFcols

f [i, j]g[x+ i, y + j] (12.2)

Correlation simply does the dot product of the filter centered at position [x, y] in the

image g. Convolution does this same dot product but with the 180 degree rotated filter.

This equation can easily be understood with a figure (Figure 12.1, where f is a filter

that is slid over an input image g.

An interesting property of convolution that is crucial to understanding the gradient

descent operations in this work is that the gradient of a convolution operation is the

correlation operation of the backpropagated errors. That is, it is the convolution of the

backpropagated error signal with the 180 degree rotated filter. Conversely, the gradient
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gf

f ⌦ g

Figure 12.1: f is shown as a typical filter in a convolutional network and g is an image
we want to convolve with this filter.

of a correlation is the convolution of the backpropagated errors.

One final thing to consider with convolutions is what to do at the boundaries of the

image. There are three common types of convolutions to handle this in different ways.

Valid convolutions choose the limits of g and f such that the filter overlap with the image

never extends beyond the image boundaries, making the results smaller than the input

image. Same convolutions allow g and y to range up to the size of the image, with half

of the filter extending beyond the image boundary for edge cases, essentially extending

the image by that amount with zeros and making the result the same size as the image.

Finally full convolutions extend the boundary of the image with zeros such that only a

single row, column, or corner pixel of the filter overlaps with the image making the result

larger than the image. All three of these convolutional are used throughout this work

in various ways and are related. For example, doing a valid convolution in one direction

to get activations requires a full convolution during backpropagation to compute the

proper gradients and vice versa. A same convolution simply uses a same convolution for

gradients as well.
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A.2 Mathematical Notation

The goal of choosing the notation used throughout this thesis was to have a unified view

of different methods so that it is simple to see how they are related. Below is the notation

used throughout the thesis for all methods split up into some high level categories for

better presentation.

Variable Description
x input example of Nd dimensions
y target or outputs
ŷ predictions of targets y
X dataset of input examples
Y dataset of target values
Nc number of classes in data
Nd number of input dimensions
Nx number of examples in dataset

Table 12.1: Dataset related variables.

Variable Description
Nxrows number of rows of pixels in input x
Nxcols number of cols of pixels in input x
NFrows number of rows of pixels in filters f
NFcols number of cols of pixels in filters f
Nzrows number of rows of pixels in feature maps z
Nzcols number of cols of pixels in feature maps z
Nl number of layers of a model
Nk number of features in a layer, with Nk

0 being image colors
NG number of pooling regions
Ni∈G number of elements in pooling region
g connectivity matrix indicating connections between feature maps

Table 12.2: Architecture related variables.

Variable Description
z features before nonlinearity
ω auxiliary features for optimization
σ sigmoid or nonlinearity in general
h features after nonlinearity
s max pooling switch variables
p pooled feature maps

Table 12.3: Intermediate variable names within a model, specific to an image.

189



Variable Description
C cost function to be optimized
E energy function
Ne number of epochs for training
Nt number of optimization iterations per batch
t step number for optimization
Nm number of maxes used in reconstructions
∇ gradient of cost function, in some cases this is written as ∂C

∂θ

∇Lz gradient of cost function with respect to z from a L model.
H the Hessian matrix of second derivatives
∆ change in parameter applied as update during optimization

Nreplicas number of model replicas used to train with asynchronous SGD

Table 12.4: Optimization related concepts.

Variable Description
P probability
Z partition function for probability distributions
bx RBM a bias variable for visible units
bh RBM a bias variable for hidden units
A RBM matrix from previous visibles to current visibles
B RBM matrix from previous visibles to current hiddens
q IOTRBM source input sequence units
P IOTRBM matrix from previous source visibles to current target visibles
Q IOTRBM matrix from previous source visibles to current hiddens
τ IOTRBM time window of previous inputs
x<t history of data at t−1,. . ., t−τ as a vector
x<=t history of data at t,. . ., t−τ as a vector

Table 12.5: RBM related concepts.

Variable Description
P pooling function. Differs from probability which is written as a function P ()
U unpooling function
loc location with a pooling region
s max pooling switch variables
G the group of elements in pooling region
v the unnormalized Gaussian pooling weights
w the normalized Gaussian pooling weights
µx the mean pooling variable in the x dimension
µy the mean pooling variable in the y dimension
γx the variance pooling variable in the x dimension
γy the variance pooling variable in the y dimension
spx the spatial x location within a pooling region
spy the spatial y location within a pooling region

Table 12.6: Pooling related variables.
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Variable Description
θ notation for generic collection of parameters
W weight matrix in sparse coding and full layers
b bias in neural network
f single plane filter weights in deconv and conv
F all planes of filter weights in deconv and conv

Wdec decoder weight matrix in PSD
Wenc encoder weight matrix in PSD

Table 12.7: Learnable parameters names.

Variable Description
im index of image from dataset
i general indexing variable
j general indexing variable
c indexing variable for color channels or number of classes depending on context
k indexing variable for features
m indexing variable for max reconstructions
n indexing variable for pooling group normalizations
l layer of the model (always a superscript)
L top layer from which reconstruction begin

Table 12.8: Various indexing variables.

Variable Description
η learning rate
ρ momentum coefficient or decay factor
λ coefficient on sparse coding prior
β coefficient used in continuation method

Table 12.9: Tunable hyper-parameters.

Variable Description
RL→l reconstruction operator form layer L to l
RL reconstruction operator form layer L to pixels
RT projection operator, backpropagates errors of the reconstruction operator
⊗ convolution operator

[ ]T transpose operator, for filters this is flipud(fliplr([ ]))
[ ]l superscript refers to the layer. If not shown, refers to variable in general, ex. z

[ ]i,j multiple indexes can appear in subscripts
[ ] no subscript refers to the entire set, such as z1 = {z1

1 , . . . , z
1
Nk1}

˜ to differentiate the same index used for different loops
`α generic norm notation, treating variables as vectors, also written as | |α
α the exponent of an `α, | | refers to α = 1

`1/`2 sparsity inducing norm
`0 sparsity inducing norm
`0.5 sparsity inducing norm
`1 sparsity inducing norm
`2 error norm or weight decay regularizer

Table 12.10: Math operators.
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Variable Description
ISTA Iterative Shrinkage and Thresholding Algorithm

FISTA Fast Iterative Shrinkage and Thresholding Algorithm
SPM Spatial Pyramid Matching
SIFT Scale-Invariant Feature Transform
HOG Histogram of Oriented Gradients
SVM Support Vector Machine
CNN Convolutional Neural Network
DN Deconvolutional Network

RBM Restricted Boltzmann Machine
PSD Predictive Sparse Decomposition
DBN Deep Belief Network
HMM Hidden Markov Model

IOHMM Input-Output Hidden Markov Model
TRBM Temporal Restricted Boltzmann Machine

IOTRBM Input-Output Temporal Restricted Boltzmann Machine
FIOTRBM Factored Input-Output Temporal Restricted Boltzmann Machine

CPM Continuous Profile Model
LR Linear Regression
AR Autoregressive model

MLP Multi-Layered Perceptron
IRLS Iterative Reweighted Least Squares

LVCSR Large Vocabulary Continuous Speech Recognition
HNN Hinge Neural Networks

Table 12.11: Acronyms used throughout this work.
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