
Information Extraction from

Multiple Syntactic Sources

Shubin Zhao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2004

Ralph Grishman

c© Shubin Zhao

All Rights Reserved, 2004

Dedicated to my mother

iii

Acknowledgements

I would like to thank my advisor Ralph Grishman for his guidance in academics.

He is a great researcher with keen interests in science, constant efforts in doing

things by hand and great personality. He is the example I followed and will

continue to follow. Without him this thesis would not be possible.

This research was supported in part by the Defense Advanced Research

Projects Agency as part of the Translingual Information Detection, Extraction

and Summarization (TIDES) program, under Grant N66001-001-1-8917 from

the Space and Naval Warfare Systems Center, San Diego, and by the National

Science Foundation under Grant IIS-0081962 and IIS-00325657. This thesis

does not necessarily reflect the position of the U.S. Government.

I would like to thank my committee members for reviewing this thesis and

providing valuable suggestions. I also thank other people in the NLP group for

the good discussions and inspiring ideas.

I would also thank the staff in the Computer Science Department, Anina

Karman and Rosemary Amico whose efforts made my study in the CS depart-

ment as a Phd student a pleasant process.

I’m grateful to my families for their support and encouragement of my aca-

demic pursuit.

Finally I would like to thank my wife Bing. Her support, care, and jokes

iv

make my life more colorful and enjoyable.

v

Abstract

Information Extraction is the automatic extraction of facts from text, which

includes detection of named entities, entity relations and events. Conventional

approaches to Information Extraction try to find syntactic patterns based on

deep processing of text, such as partial or full parsing. The problem these

solutions have to face is that as deeper analysis is used, the accuracy of the

result decreases, and one cannot recover from the induced errors. On the other

hand, lower level processing is more accurate and it can also provide useful

information. However, within the framework of conventional approaches, this

kind of information can not be efficiently incorporated.

This thesis describes a novel supervised approach based on kernel methods

to address these issues. In this approach customized kernels are used to match

syntactic structures produced from different preprocessing phases. Using prop-

erties of a kernel, individual kernels are combined into a composite kernel to

integrate and extend all the information. The composite kernels can be used

with various classifiers, such as Nearest Neighbor or Support Vector Machines

(SVM). The main classifier we propose to use is SVM due to its ability to gen-

eralize in large dimensional feature spaces. We will show that each level of

syntactic information can contribute to IE tasks, and low level information can

help to recover from errors in deep processing.

vi

The new approach has demonstrated state-of-the-art performance on two

benchmark tasks. The first task is detecting slot fillers for management succes-

sion events (MUC-6). For this task two types of kernels were designed, a surface

kernel based on word n-grams and a kernel built on sentence dependency trees;

the second task is the ACE RDR evaluation, which is to recognize relations

between entities in text from newswire and broadcast news transcript. For this

task, five kernels were built to represent information from sentence tokeniza-

tion, syntactic parsing and dependency parsing. Experimental results for the

two tasks will be shown and discussed.

vii

Contents

Dedication iii

Acknowledgements iv

Abstract viii

List of Figures xii

List of Tables xiii

List of Appendices xv

1 Introduction 1

1.1 The Problem . 1

1.2 The Solution . 3

1.3 Overview . 5

2 Background 7

2.1 Information Extraction . 7

2.1.1 Named Entity Recognition 11

2.1.2 Entity Relation Detection 13

2.1.3 Event Extraction . 14

viii

2.2 The MUCs . 15

2.3 ACE Evaluations . 16

2.4 Other Flavors of IE Research 18

3 Classical IE Approaches 19

3.1 Cascaded finite state models . 20

3.2 Example-based Learning Models 22

3.3 Statistical Models . 24

3.4 Limitations of Traditional Models 26

4 Kernel-based Learning 27

4.1 Linear Classifier . 28

4.2 Support Vector Machine . 30

4.3 SVM in NLP . 34

4.4 Kernel Space . 35

4.5 Kernel Properties . 38

4.6 Kernel Applications in NLP . 40

4.6.1 String Kernel . 41

4.6.2 Convolution Kernel for Natural Language 42

4.6.3 Other Kernels . 44

4.6.4 Comments about Convolution Kernels in NLP 44

5 A Discriminative Model 46

5.1 Motivation . 46

5.2 The Kernel-based Model . 47

5.3 Syntactic Kernels . 48

5.4 Applications . 49

ix

6 GLARF: The Dependency Analyzer 51

6.1 Example . 52

7 Kernel Slot Filler Detection 55

7.1 Introduction . 55

7.2 Related Work . 56

7.3 Event and Slot Kernels . 58

7.3.1 Event Occurrence Detection Kernels 58

7.3.2 Slot Filler Detection Kernels 60

7.4 Experiments . 62

7.4.1 Corpus . 62

7.4.2 EOD Experiments . 62

7.4.3 SFD Experiments . 64

7.4.4 Comparison with MUC-6 System 66

7.5 Examples . 67

7.6 Discussion and Further Work 70

8 Entity Relation Detection 72

8.1 Introduction . 72

8.2 Prior Work . 74

8.3 ACE RDR Task . 75

8.4 Kernels . 77

8.4.1 Definitions . 77

8.4.2 Syntactic Kernels . 80

8.4.3 Composite Kernels . 83

8.5 Experiments . 84

8.5.1 Corpus . 84

x

8.5.2 Results . 85

8.5.3 Examples . 88

8.6 Discussion . 90

8.7 Further Work . 91

9 Further Development 92

9.1 Conclusion . 92

9.2 The Learning Paradigm . 93

9.3 Text Analysis . 93

Appendices 95

Bibliography 97

xi

List of Figures

4.1 Separable case in Support Vector Machine 31

4.2 Non-separable case in Support Vector Machine 33

5.1 Infrastructure of the discriminative model 48

8.1 Example sentence from nwire text with three relations 76

8.2 Illustration of a relation example R. The link sequence is gen-

erated from seq by removing some unimportant words based on

syntax. The dependency links are generated by GLARF. 79

xii

List of Tables

1.1 Performance of different levels of text processing 2

2.1 Table of management succession events. 9

2.2 List of the Message Understanding Conferences. 15

2.3 List of the ACE evaluations. EDT and RDC are abbreviations

of “Entity Detection and Tracking” and “Relation Detection and

Characterization” . 17

4.1 The iterative learning procedure of Perceptron 29

4.2 List of common kernels. k(x, y) can be either a normal inner

product on a vector space or a user-defined kernel function on an

object domain. ‖x− y‖2 can be computed as k(x, x)− 2k(x, y)+

k(y, y). 37

7.1 EOD performance of ARES using different kernels 63

7.2 SFD performance of ARES with ψ1
SFD(E1, E2) 65

7.3 SFD performance of ARES with ψ2
SFD(< S1, E1 >,< S2, E2 >) . 66

7.4 Slot performance of ARES on the MUC-6 test data 66

7.5 Slot performance of the rule-based Proteus system for MUC-6 . 67

xiii

8.1 ACE relation types and examples. The heads of two entity ar-

guments in a relation are marked. Types are listed in decreasing

order of frequency of occurrence in the ACE corpus. 76

8.2 SVM performance on incremental kernel setups. Each setup adds

one level of kernel(s) to the previous one except setup F. Perfor-

mance was evaluated on the ACE training data with 5-fold cross-

validation. F-scores marked by * are significantly better than the

previous setup (at 95% confidence level) 86

8.3 Performance of SVM and KNN (k=3) on different kernel setups.

Types are ordered in decreasing order of frequency of occurrence

in the ACE corpus. For SVM, the same training parameters were

used for all 7 types. 87

xiv

List of Appendices

Appendix A

Proof: ψ1
SFD is a kernel

95

xv

Chapter 1

Introduction

1.1 The Problem

Information Extraction (IE), a subarea of Natural Language Processing, ex-

tracts facts from text and puts them into structured representations such as

templates or databases. IE research has been promoted by U.S. Government-

sponsored programs (MUCs and ACE).

The techniques used by Information Extraction depend greatly on the sub-

language used in a domain, such as financial news or medical records. The

training data for an IE system is often sparse as the target domain changes

quickly. Traditional IE approaches[6][22][44][53] try to generate patterns from

training data by human observation or by learning with predefined pattern tem-

plates. There are also statistical approaches[16][43] which encode event patterns

in probabilistic CFG grammars.

Most of these approaches are based on generative models. They assume that

events occur in text in certain patterns and these patterns can be discovered and

expressed by a metalanguage. However this assumption may not be completely

1

Processing Performance (F-measure)

Tokenization 99%

POS tagging 94%

NP chunking 92%

Parsing 88%

Table 1.1: Performance of different levels of text processing

right and it has limitations.

First, this assumption requires deep processing (parsing) of text. Parsing,

either shallow or deep, constructs the syntatic structure of text, which con-

tains more regularity than word sequences. Generalization at the syntax level

is much more effective, thus extraction patterns are mostly expressed at the

syntax level. Lower levels of information such as word sequences are ignored

by these approaches, even though they may still contain useful information.

Incorporating them would make the patterns too complicated to manipulate.

The general problem in Natural Language Processing is that processing of

text is incremental, such that errors in shallow analysis propagate to deeper

analysis. Hence when the processing level gets deeper, it becomes less accurate.

Table 1.1 shows the state-of-the-art performance of text processing at different

levels. This table shows an error rate of about 10% in deep processing. When

an approach is based solely on deep representations of text, these errors are

irrecoverable.

Generally speaking, systems based on a single level of representation are

forced to choose between shallower representations, which will have fewer errors,

and deeper representations, which may be more general.

2

Second, patterns are local. A pattern often needs anchor points (such as

words in a regular expression) and matches other items continuously from there.

They can only describe syntax in a local context. It is difficult and often in-

effective to use patterns for a whole sentence. In pattern matching, the long

distance or non-contiguous information outside of the local context is missed.

But it could be useful for an IE task.

Statistical models are based on sentence parsing. But they only attempted

to model short-range context, such as the relation between two named entities.

In long and complicated sentences, this is still local context. It is not clear how

long distance information can affect prediction of the local context.

1.2 The Solution

The idea to overcome these problems is to make no prior assumption about

the syntactic structure an event may assume. We should consider all syntactic

features in text and use a discriminative classifier to make decisions based on

them. Discriminative classifiers make no attempt to resolve the structure of

the target class. They only care about the decision boundary that separates

the objects. In our case, we only need criteria to separate the targets (named

entities, relations or event slots) from text using all the syntactic information

from preprocessing.

This thesis presents a new framework that uses kernel functions to represent

different levels of syntactic structure. With the properties of kernel functions,

individual kernels can be combined freely into composite kernels to incorporate

information. The main classifier we propose to use is SVM (Support Vector

Machine), mostly due to its ability to generalize in high dimensional feature

3

spaces. But other classifiers that work with kernel functions can also be used

where appropriate.

In this framework, by combining different levels of syntactic analysis of a

sentence, the generalization ability of a classifier can help to overcome errors

in deep processing results. Each kernel represents features from the analysis of

whole sentences. Using a discriminative classifier like SVM, these features are

weighted in the training phase according to their contribution to separating the

targets. Therefore, in addition to the local features, long distance information

can also come into play.

The new approach has demonstrated state-of-the-art performance on two

benchmark tasks: detecting slot fillers for management succession events (MUC-

6) and finding relation between entities (ACE RDR). For the MUC-6 task, two

types of kernels were designed, including a surface kernel based on word n-grams

and a kernel built on sentence dependency trees. The ACE RDR (Relation

Detection and Recognition) task is to recognize relations between entities from

newswire text and broadcast news transcripts. For this task, five kernels were

built to represent information from sentence tokenization, syntactic parsing and

dependency parsing.

Experimental results for the two tasks will be provided and discussed. Com-

parisons with the start-of-the-art approaches will also be included. For the

relation detection task, we will also compare performance of different classifiers

under the same kernel setups.

4

1.3 Overview

This section describes the chapter structure of this thesis. Chapter 1 is an in-

troduction of the central issues and the new approach proposed in this thesis.

Chapter 2 covers the background of Information Extraction and its basic compo-

nent technologies, including named entity recognition, entity relation detection

and event extraction.

Chapter 3 surveys the classical approaches for Information Extraction, rang-

ing from rule-based approaches and symbolic learning to statistical models.

Chapter 4 covers the basics of kernel methods and Support Vector Ma-

chines. It also includes their applications in Information Extraction or Natural

Language Processing in general. Since we only focus on their application, the

complete machine learning theories behind them are not covered. References

are given for deeper theoretical interests.

Chapter 5 provides an analysis of the limitations in prior approaches. Then

a new supervised model based on kernel methods is proposed to address these

issues. The discriminative model uses kernels to represent information from

different levels of syntactic preprocessing and combines them into composite

kernels for a classifier. This chapter will show the structure of this model and

explain the intuitions behind it.

Chapter 6 briefly describes the GLARF dependency analyzer developed at

NYU. It explains the features of GLARF and shows examples of its analysis.

Chapter 7 introduces an application of this approach to slot filler detection

for the MUC-6 events. The kernels used for this task will be formulated and

explained. There will also be experiment results for different kernel setups and

the comparison to a good rule-based system.

5

Chapter 8 presents another application of this approach applied to the entity

relation detection task specified by the ACE RDR project in 2004. We will

show performance on different kernel setups and a comparison using different

classifiers. Evaluation results on the official RDR test data are also included.

Chapter 9 provides discussion and proposes further directions to explore.

6

Chapter 2

Background

2.1 Information Extraction

Text has been a major way to store and convey information in human society.

With the development of the internet and digital media, a user can have instant

access to a huge amount of text. The volume of text available on the web

is accumulating at a constantly increasing speed. The world in text is full of

information and how to locate the specific information a user needs becomes a

critical issue.

A central goal of Natural Language Processing (NLP) is to be able to un-

derstand the underlying meaning of texts and translate them into machine-

comprehensible representations. Then the computational power of machines

would enable us to manipulate the information in more user-friendly ways, such

as producing summaries or answering questions.

However, human knowledge about the world is complicated. Even after

decades of research, there is still no effective way to represent the full range of

real world knowledge. Although it is impossible to obtain a universal represen-

7

tation of knowledge, we can make the problem tractable by confining the domain

of the text. Then it is possible to represent the underlying world knowledge or

semantics in a simple format like templates. Information Extraction (IE) is the

practical way to get one step closer to the goal of NLP. It is domain-dependent.

In a narrow sense, Information Extraction reduces facts in text into a struc-

tured representation[23], such as tables or templates. The concept of infor-

mation extraction was first introduced by Harris[25] in the 1950’s. Its first

application[48] was reported in the 1980’s within the medical domain. Since

then it has evolved greatly. Now Information Extraction involves extracting

facts of different granularity, ranging from named entities and entity relations

to complete events.

Since there are different flavors of Information Extraction, the focus of this

thesis will be extraction from free text. Here is an example of input and output

for extraction of corporate management succession events:

Input:

An extraordinary shareholders meeting of AB Volvo in Gothenburg, Swe-

den, elected Bert-Olof Svanholm chairman of the Swedish automotive

group, in line with an earlier proposal.

Mr. Svanholm is president of ABB Asea Brown Boveri Ltd., an engi-

neering concern jointly owned by Asea AB of Sweden and BBC Brown

Boveri AG of Switzerland. He succeeds Pehr G. Gyllenhammar, who re-

signed in December after the collapse of a plan to merge Volvo’s vehicle

operations with those of French partner Renault SA.

The expected output is shown in table 2.1.

The output of this example is represented as a table. The fields of the table

are predefined items of a management succession event, such as the company

8

Type Event 1 Event 2

Company AB Volvo ABB Asea Brown Boveri Ltd.

Post chairman president

Person In Bert-Olof Svanholm –

Person Out Pehr G. Gyllenhammar Mr. Svanholm

...

Table 2.1: Table of management succession events.

involved (Company), the management position (Post), the person who assumed

the position (Person In) and the person who left the position (Person Out). This

table is customizable, depending on what kind of information is of interest. For

example, someone may also like to know when the succession happened or in

which country this company is located. Then extraction of these items will also

become part of the IE task.

In the sample text above, there are names that have to be identified correctly,

such as “Bert-Olof Svanholm” and “Pehr G. Gyllenhammar” as person names,

“AB Volvo” and “ABB Asea Brown Boveri Ltd.” as company names. These are

called Named Entities. Recognition of them from text is a basic technology for

Information Extraction.

Once we have the event information stored in tables, we can build relational

databases from them, where different events can be indexed by their common at-

tributes. Then it is possible to answer questions like “Who was named chairman

by AB Volvo in 1986?” or even “Who left ABB Asea and joined AB Volvo?”.

As the growth of information surrounding us accelerates, information extraction

becomes an intriguing and fast-developing technology for people. Although it

9

is still far from perfection, it already shows its power to facilitate collecting and

accessing information.

The example above shows a tabular representation of the output. There are

also other means to represent information, such as templates or XML records.

Most of the information extraction approaches are based on the idea of

finding invariant expressions or patterns across documents from annotated text.

Generation of patterns can be done through human observation or machine

learning techniques. As a domain dependent technology, there are two central

issues in Information Extraction:

1) Portability. The domains of interest can be very different, e.g. medical

records, sports news and financial reports. Real life applications often require

an extraction system for a new domain to be developed in a short period of time.

So portability is an important feature for an IE system. A good IE approach

should be able to adapt to a new domain without too much human effort.

2) Data Sparseness. Annotation of large amount of data is costly and time-

consuming, so training data is often sparse for IE tasks. In a standard MUC

(Message Understanding Conference) evaluation, the training data is hundreds

news articles and 100k - 200k words. So an IE approach should be able to

generalize from limited domain data, in addition to other general purpose data

independent of domain.

The difficulty of Information Extraction is that for human languages, there

are lots of ways to express the same event. The following are examples of

language phenomena given by Ralph Grishman[24] that an IE system has to

deal with.

• Name descriptors: IBM, the famous computer manufacturer, ap-

10

pointed Harriet Smith as president.

• Sentence modifiers: IBM unexpectedly appointed Harriet Smith yes-

terday as president.

• Tense: IBM has appointed / will appoint Harriet Smith as presi-

dent.

• Clause structure: Harriet Smith, who was appointed president by

IBM,

• Nominalization: IBM announced the appointment of Harriet Smith

as president.

• Conjunction: IBM declared a special dividend and appointed Har-

riet Smith as president.

• Anaphoric reference: IBM has made a major management shuffle;

the company appointed Harriet Smith as president this week.

• Need for inference: Thomas J. Watson resigned as president of

IBM, and Harriet Smith succeeded him.

2.1.1 Named Entity Recognition

Text usually contains all kinds of names, for example person names, company

names, sports teams, chemicals and lots of other names from a specific domain.

Other common units can also fall into this category, such as time expressions,

numbers or job titles. These names are referred to as named entities (NE)

in Information Extraction. Failing to recognize them as a unit would affect

the accuracy of deeper analysis of text, such as chunking or parsing. Therefore

named entity recognition becomes a basic component technology for Information

Extraction or Natural Language Processing in general.

11

The following shows an annotation of named entities of the sample text

in section 2.1. The span and type of each NE are indicated in the SGML

annotation.

<ENAMEX TYPE="PERSON">Mr. Svanholm<\ENAMEX> is president of

<ENAMEX TYPE="ORG">ABB Asea Brown Boveri Ltd.<\ENAMEX>, an

engineering concern jointly owned by <ENAMEX TYPE ="ORG">

Asea AB<\ENAMEX> of <ENAMEX TYPE="LOC">Sweden<\ENAMEX> and

<ENAMEX TYPE="ORG">BBC Brown Boveri AG<\ENAMEX> of <ENAMEX

TYPE="LOC">Switzerland<\ENAMEX>. He succeeds <ENAMEX

TYPE="PERSON">Pehr G. Gyllenhammar<\ENAMEX>, who resigned

in December after the collapse of a plan to merge <ENAMEX

TYPE="ORG">Volvo<\ENAMEX>’s vehicle operations with those

of <ENAMEX TYPE="LOC">French<\ENAMEX> partner <ENAMEX

TYPE="ORG">Renault SA<\ENAMEX>.

The task of named entity recognition is to find the span of a name and

determine the type of the entity. For English, capitalization is a good clue to

identify the word span of a name. But it is not easy to recognize “A Real New

York Bargain” as a company name. In other languages or transcripts of English

speech where capitalization information is not available, this becomes a more

difficult task.

The types of named entities also depend on the domain and the task. In

the management succession domain, “chief executive officer” is considered a

job name, while in the disease outbreak domain, “dengue haemorrhagic fever”

should be identified as a disease name. There are seven types of common NEs

defined by MUC for newswire text. They are person, organization, location,

12

date, time, money and percentage. Sekine et al. (2004)[52] defined about 200

categories of common named entities, organized in a hierarchical structure.

Various approaches have been applied to detect NEs in text, such as Decision

Tree[51], Maximum Entropy[10][41] and Hidden Markov Model[9]. The HMM

model is simple but effective in capturing the sequential relations between words

inside and around a name. Many named entity recognition implementations are

based on this model. Recently Support Vector Machines were also applied to

this task with good performance reported[7].

2.1.2 Entity Relation Detection

In addition to Named Entities, there are also other mentions of an entity in

text, such as nominal or pronominal mentions. In the sample text in section

2.1, there are mentions like “Bert-Olof Svanholm”, “Mr. Svanholm” and “He”.

They all refer to the same person. In this thesis, the term “entity” refers to the

real world referent of a mention. So in the example above, all three mentions

refer to the same entity. Mentions of an entity can be names (Named Entities),

nominals or pronouns.

After all the mentions in a text have been identified, we need to recognize

their relations. The first issue is coreference, which is to classify mentions

into entities. After coreference resolution, the three mentions above should be

represented by one person entity named by “Bert-Olof Svanholm”.

Another type of relation is the association between mentions (or entities).

In the text Mr. Svanholm is president of ABB Asea Brown Boveri Ltd., there is

person-affiliation relation between Mr. Svanholm and ABB Asea Brown Boveri

Ltd.; in the text Centre College in Danville, KY there is a located-in relation

13

between the entities Centre College and Danville, KY.

Recognition of relations between entities can help us to connect events. In

the disease outbreak domain, for example, this is particularly useful because

events are inclusive. There could be initial report about an outbreak in a state,

and then follow-ups about its spread in cities or neighboring states. Then

recognizing the physical relations about locations will be crucial to relate events.

Relation detection finds relations between two entities in the same sentence.

Miller et al. (2000)[43] proposed a statistical parsing model to generate cus-

tomized relation tags between entities, which indicate the existence of relations.

Roth and Yih (2002)[47] described a probabilistic approach which related the

identification of entities and relations using global inference. There is also dis-

criminative approach[57][20] in which kernels are developed to predict relations.

These approaches will be covered in more detail in chapter 8.

Entity relations are also domain dependent and this is still a developing area.

New topics may arise along with the ongoing research.

2.1.3 Event Extraction

This task includes extraction of an event and all of its arguments. For example,

for a terrorist attack event, we expect to extract the time, location, perpetrator,

target, damage, victims, etc. An event often spans several sentences, so we may

need inference to figure out all the slots of an event. Logic and real world

knowledge are often needed in this process.

As stated in section 2.1, extraction of an event is a challenging task given

the variations of human language. Many approaches have been proposed and

tried for this tasks, including rule-based approaches[22][6], symbolic learning

14

Project Year Domain

MUC-1 1987 Navy Operations

MUC-2 1989 Navy Operations

MUC-3 1991 Terrorism in Latin America

MUC-4 1992 Terrorism in Latin America

MUC-5 1993 Corporate Joint Venture and Microelectronics

MUC-6 1995 Corporate Management Succession

MUC-7 1998 Airplane Crashes/Rocket Launches

Table 2.2: List of the Message Understanding Conferences.

approaches[21][45][11] and statistical approaches[16][42]. We will explain them

in detail in chapter 3.

2.2 The MUCs

The MUCs (Message Understanding Conferences)[1][2][3][4][5], sponsored by the

U.S. Government, were the first attempt to standardize the task of Information

Extraction and establish benchmark corpora. Starting with the first MUC in

1987, there were seven MUC evaluations carried out in a ten years span. These

evaluations greatly promoted the research in information extraction. Table 2.1

lists the year and topics (domains) of each evaluation.

The goal of the MUC program was to provide a platform on which various IE

approaches can be compared. In each evaluation, training data, test data and

a scoring metric were provided to participants. Later evaluations were designed

to be carried out with a real scenario constraint: for MUC-6 and 7, an IE

15

system had to be developed within a month on a new domain. Each participant

had to finish the development of their IE system and submit the result on test

data within a month from the time training data is released. Then results

from all participants were scored and ranked. There were also post-evaluation

conferences to discuss the results, to identify new issues which emerged and to

improve the understanding of information extraction research.

The MUCs were a great impetus to research in information extraction. Many

new problems were identified and separated, such as named entity recognition

and entity relation detection. The only downside is that due to the competitive

nature of the evaluations, participating systems tended to converge to a few

best performing approaches.

2.3 ACE Evaluations

The ACE (Automatic Content Extraction) evaluation program 1 is a successor

to the MUCs. After the development of IE in the MUCs, the tasks of information

extraction and their difficulties became better understood by researchers. So

the ACE program aims to form solid foundations for each component technology

of information extraction and eventually lead to the extraction of content from

text at event or higher level. Therefore the tasks of information extraction

have been tackled in a bottom-up fashion. The ACE program started with

the building blocks of content extraction, such as named entity recognition and

entity coreference resolution, and is stepping up to entity relation detection and

event extraction.

1Task description: http://www.itl.nist.gov/iad/894.01/tests/ace/

ACE guidelines: http://www.ldc.upenn.edu/Projects/ACE/

16

Year Tasks Languages

2000 EDT pilot study English

2001 EDT, RDC English

2002 EDT, RDC English

2003 EDT, RDC English, Chinese, Arabic

2004 EDR, RDR English, Chinese, Arabic

Table 2.3: List of the ACE evaluations. EDT and RDC are abbreviations of

“Entity Detection and Tracking” and “Relation Detection and Characteriza-

tion”

The ACE evaluations largely follow the scheme of the MUCs. Its devel-

opment cycle includes specifying the tasks, developing training and test data,

carrying out an evaluation and discussing the results from all participating sites.

One difference from the MUC evaluations is that it is multi-source and multi-

lingual. Each evaluation includes text from newswire documents and broadcast

news transcripts, and some include text derived from OCR; it covers several lan-

guages: the latest evaluations included tasks in English, Chinese and Arabic.

Table 2.2 lists the tasks and languages of the ACE evaluations.

The EDT (Entity Detection and Tracking)2 task is to detect mentions of

an entity including proper names, nominals and pronouns in selected seman-

tic classes. All mentions detected in a document are grouped into entities by

coreference resolution. The classes of interest cover the common types in news

documents, such as names of persons, organizations, facilities and so on. The

2The EDT and RDC tasks were relabeled EDR (Entity Detection and Recognition) and

RDR (Relation Detection and Recognition) for 2004.

17

RDC (Relation Detection and Characterization) task is to find predefined rela-

tions between entities, such as an employee-of relation between a person and a

organization.

The tasks of ACE are being improved each time the evaluation is done. So

the specification of each task and types of objects involved vary year by year.

From the year 2005, the ACE project is making efforts to extract events in text.

2.4 Other Flavors of IE Research

The sections above survey IE research including supervised learning methods

on free text. There are also other flavors of IE research, but they are not the

focus of this thesis.

1) Unsupervised approach. Compared to hard-to-get annotated data, the

amount of unannotated text is several orders of magnitude larger. Many ap-

proaches have been proposed to use this kind of text along with a small set of

annotated data. The basic idea is to use the annotated domain data as seeds

and extend the findings by exploring similar contexts in general text. The learn-

ing algorithms that have been applied include bootstrapping, active learning,

co-training, etc. Unsupervised learning has also been a large research area in

information extraction.

2) There is also research on extracting information from structured data,

like HTML pages. Since a large amount of information on the web exists in

organized forms like HTML pages, extracting this kind of information is very

useful and practical. Text in this domain is structured or semi-structured, so

syntax analysis is not so crucial as in extraction from free text. Similarity among

structures of text is good clue to extract and classify information.

18

Chapter 3

Classical IE Approaches

In this thesis, Information Extraction is used in a narrow sense, that is to refer

to deriving events from a selected domain and presenting the information in

predefined templates. Event structure is defined by a template that usually

contains named entities and other properties of the event.

Most of the classical IE approaches include three basic steps, preprocess-

ing, finding pieces of evidence and merging them into events. Since there have

been so many IE systems developed, it is not easy to classify them into dis-

tinct categories. This chapter will follow the general trend of natural language

technology, which is a transition from pure hand-crafting to automated opti-

mization, to introduce the IE models. These models will be roughly put into

three categories: cascaded finite state models, example-based learning models

and statistical models. In the following sections of this chapter, representative

systems of each category will be discussed.

19

3.1 Cascaded finite state models

These are the dominant rule-based systems in Information Extraction. The idea

of these models is that the “facts” relevant to an event can be described using

patterns composed of syntactic constructs. With this idea the system consists

of two major modules: a domain-independent syntactic analyzer to structure

the input text, and a domain-dependent semantic analyzer to collect pieces of

“facts” using patterns.

Both modules can be implemented using finite state rules designed by hand.

So the core part of these models is a system of cascaded rules. The first module

is syntactic processing which contains rules to parse the text input. This can be

either full parsing or partial parsing, and the latter is often preferred due to its

robustness. The second module extracts facts using higher level patterns based

on the result of the syntactic processing.

After the two modules, a reference resolver is needed to merge the “facts”

into events and to resolve the missing slots.

1. The FASTUS system[6] used cascaded finite state automata to recog-

nize complex word(names, dates, etc), basic phrases and complex phrases.

Anything that is not recognized as one of these phrases was ignored, which

makes the whole system robust on inputs. Domain events were also en-

coded in finite state machines, where the input symbols were phrases. A

merging procedure operating on the whole text combined domain events

into full events after resolving corefered entities.

2. The Proteus system[22] used cascaded finite state transducers to detect

management succession events. At a low syntactic level, transducers were

20

generated to find proper names, noun groups and verb groups; at a higher

syntactic and semantic level, transducers were defined to account for ba-

sic events. For example start-job(person, position) could match the text

“IBM named Harriet Smith president” and “succeed(person1, person2)”

could match the text “He succeeds Mr. Ray”. Then a merging proce-

dure combined these event pieces using coreference and logical correlations

among them.

3. The LaSIE-II system[27] included finite state recognition of domain-

specific lexical patterns, partial parsing using a restricted context-free

grammar and quasi-logical form (QLF) representation of sentence seman-

tics. The cascaded syntactic parser could identify names and phrases. It

produced a parse tree of a sentence: if full parsing failed, the best partial

parse result is given. Then the parsing result of a sentence is mapped to

a QLF representation.

Semantic concept nodes were mapped from predefined constructs. There

were three types of concept nodes in its top level ontology: objects, events

and attributes, which represented either domain specific knowledge or

general world knowledge. The lexical patterns matched an event in the

text and generated hypothetical domain slots. For instance, the match of

a launch event pattern could generate slots of a vehicle, a payload, a date

and a launch site. Then a discourse analyzer unified the concept nodes

and resolved the hypothesized event slots.

The finite state models have demonstrated remarkable performance. For

example, the Proteus system rivaled other systems in the MUC-6 evaluation.

However, developing and managing rules by hand requires high human expertise.

21

The domain specific rules can not be easily reused for a new domain. Shifting

the system to a new domain is comparable to the work of developing a new

system.

3.2 Example-based Learning Models

The motivation of example-base learning models is to reduce human effort in

building or shifting an IE system. Instead of creating patterns by hand, these

models derive rules via generalization of examples. The learning process starts

with patterns from specific examples (tagged text segments) and the syntactic

structure of the surrounding text. Then it tries to generalize the patterns in-

ductively by relaxing constraints and merging patterns. This process continues

until no more generalization can be done without introducing too many errors.

The result is a set of generalized patterns. The learning procedure is automatic

or semi-automatic once the initial examples are given.

1. AutoSlog[44] learns a dictionary of patterns called concept nodes or con-

cepts from text to match phrases for single slot. Each pattern has an

anchor word, most often the head verb, to activate it. An example of a

concept node is

<subject> passive-verb

with an anchor word bombed. When the concept node is activated and

matched, it produces the target name of the bombing, which is the con-

tent of subject. AutoSlog could propose concept nodes from annotated

examples using the 13 predefined concept types; however, it did not try to

22

generalize the concept nodes and it also required human review to verify

the learned concepts.

2. CRYSTAL[53] used inductive learning to generate a concept dictionary

from pre-annotated training data. Each concept is a typed case frame

along with constraints, usually syntactic constituents including subject,

verb phrase, object and prepositional phrase. Constraints can be general-

ized from head words to semantic classes. It started from initial concept

nodes, which could be as specific as word sequences, and tried to unify two

similar concept nodes by relaxing the constraints. The merged concept

was verified against the whole corpus. This process continued until no

unification can be executed.

The verification can be relaxed by setting an error bound parameter to

make the learning process robust. The parameter also determined the

trade-off between precision and recall of the learned patterns. The ex-

pressive power of this algorithm depends on the structure of the concept

nodes and on the sophistication of the preprocessor which generates text

segments as initial clues.

3. RAPIER[11] used a generalization algorithm similar to Inductive Logic

Programming to derive symbolic rules for extraction of posted computer

jobs. It only assumed simple syntactic preprocessing such as tokeniza-

tion and Part-of-Speech tagging. The three parts of a rule are pre-filler,

filler and post-filler, which form a linear sequence of words, POS tags

or semantic classes. The learning algorithm is a bottom-up process: it

started from a random pair of rules and kept compressing the rules as

their least-general generalization (LGG). This process terminated when

23

the number of unsuccessful rule compression attempts exceeded a given

threshold. The experimental performance on job postings was reported

comparable to CRYSTAL. However, the target domain was constrained

text. It is not clear how this algorithm would perform on free form text

like news articles.

To get good coverage, the amount of training data is a crucial factor for

these learning models. For example, the performance of CRYSTAL dropped

substantially when the training set size was reduced from 1000 to 100 articles,

simply because many morphological variations were not covered in the small

corpus.

But generating a good amount of initial training data requires substantial

manual work. So the example-based learning models did not solve the porta-

bility problem completely. It shifted the human work from developing rules to

tagging examples.

The patterns used by these models were predefined by templates, which

confines the expressive power of patterns. The design of pattern templates also

requires human knowledge and it may be domain specific.

3.3 Statistical Models

Statistical event models were inspired by statistical parsing, which can produce

multiple sentence structure alternatives along with their probabilities. Instead

of separating syntactic and semantic patterns, statistical models tried to use an

integrated model at sentence level to predict syntactically related units. There

is no need to derive patterns, except that specially designed labels had to be

inserted into a normal grammar to represent the semantic relations.

24

However, statistical parsing requires large amount of training data and la-

beling parse trees manually from text is an expensive process. In practice, the

statistical models were only tried on small subtasks of IE, such as entity relation

detection. There has been no attempt to model events in a sentence.

1. The SIFT system[42] developed by BBN used a statistical parser aug-

mented with semantic labels to detect named entities and relations among

them. A probabilistic cross-sentence model was also deployed to recog-

nize long distance relations. The sentence model was trained from the

Penn Treebank as general knowledge. The domain data was hand-labeled

trees augmented with named entities and their relations, for instance the

location-of relation between a company name and a location.

To implement this, additional semantic nodes and labels were inserted

into a regular parse tree. The resulting parser could then produce a spe-

cial parse tree which may contain the semantic information indicated by

the special tags. The cross-sentence model was a binary decision model

that used features to determine if two entities in different sentences are

corefered. Since there were few instances of cross-sentence relations, its

effect on the whole system was not significant.

2. Collins et al. (1997)[16] used a carefully designed PCFG grammar to

model events. The model treated words irrelevant to any event as noise.

The target domain was MUC-6 management succession. All the events

were divided into seven categories according to the appearance of names

in template. For example, {OUT, POST} represented an event category

that a person leaves a position. There were five non-terminal leaves in

the grammar, namely IN, OUT, POST, IND(indicator word) and NOISE.

25

The CFG grammar productions were generated manually from training

data, and probabilities for them were estimated using MLE.

The slot f-score of this model was 77.5% with indicator words labeled in

test sentence. It is not clear how this model compares to other systems

because it assumed specially annotated test data.

3.4 Limitations of Traditional Models

Most of these approaches are based on generative models. They assume that

events occur in text in certain patterns and these patterns can be discovered and

expressed by a metalanguage. However this assumption may not be completely

right and it has limitations.

The pattern discovery and matching of these approaches have to be based on

deep processing of text. That’s because only at the syntax level can patterns be

effectively generalized. Even though shallower levels of information (e.g. word

sequence) may still be helpful, incorporating them would make patterns too

complicated to manipulate. So they are ignored by most of the models.

Another issue is that deep processing is not very accurate. It depends on

shallower processing results which may contain errors. For example the state-of-

the-art performance of sentence parsing is about 88%. The 10% errorful results

are irrecoverable for approaches based solely on parsing.

26

Chapter 4

Kernel-based Learning

This section covers the basics of Kernel Methods and Support Vector Machines

and their applications in Information Extraction and Natural Language Process-

ing. Since we only focus on their applications, the complete Machine Learning

theories behind them are not covered. We only focus on their intuition and

applications. References are given for deeper theoretical interests.

To apply supervised learning models to a task, the common way involves a

feature generation process to transform an object into a feature vector of real

values. Then the training or testing procedure can be carried out in the real

vector space. A typical classification problem can be formalized as this: given

a set of labeled real vectors

(X1, y1), (X2, y2), . . . , (Xn, yn),

find a function f(X,W) that satisfies yi = f(Xi,W), in which Xi (1 ≤ i ≤ n) is

a vector (x1, ..., xN); yi is the class label of Xi and W contains the parameters

of function f . In a two class problem, yi could be either -1 or +1, while in a

multi-class classification problem, yi could be an integer representing the class

27

of Xi. In this chapter, we only focus on the two class classification problems.

A multi-class problem can be reduced to two class problems using schemes like

one-against-all or pairwise classification.

4.1 Linear Classifier

Given X = (1, x1, ..., xN), a linear classifier or Perceptron[38][46] is a function

f with parameter W = (w0, w1, ..., wN), such that

y = sign(f(X,W)) = sign(< W,X >) = sign(
N

∑

i=0

(wixi)). (4.1)

sign(x) is the sign function that gives +1 when x ≥ 0 and -1 when x < 0.

So f(X,W) = 0 is a hyperplane that separates the two classes. The extra

dimension (dimension 0) in X and W is to accommodate the scalar distance

from the origin to the hyperplane. So to determining function f is equivalent

to to finding the vector W .

Given labeled training data S = (X1, y1), (X2, y2), . . . , (Xn, yn), the iterative

learning procedure in table 4.1 produces the weight vector W in f .

It can be proved that if the examples are separable in a two class classification

problem, the Perceptron learning procedure terminates within a finite number

of iterations.

In non-separable cases, since there will always be classification errors in

training, a stopping criterion has to be set to terminate the learning procedure.

Such a criterion could be a threshold that specifies the number of tolerable

training errors.

From the training procedure we can derive that

W =
n

∑

i=i

αiyiXi.

28

W(0) := (0,..., 0);

repeat

for each (Xi, yi) in S do

if yi < W (t), Xi >< 0

W(t+1) := W(t) + yiXi;

end if

end for

until no mistakes found within the for loop

Table 4.1: The iterative learning procedure of Perceptron

To get W we only need to compute αi, i = 1, ...n. To classify a new example

X, the prediction would be

sign(
n

∑

i=i

αiyi < Xi, X >).

This is called the dual form, in which the primal variables are eliminated

and everything is represented by Xi. In the next section we will show that this

can be generalized to form a kernel space.

The Perceptron training procedure terminates when it finds the first suc-

cessful separation hyperplane (or the first hyperplane that satisfies the stopping

criterion). So the separation it produces may not reflect the actual distribution

of the examples correctly. Therefore the chances are good that even when the

training performance is good, the classifier may not do well on unseen exam-

ples. This problem is more severe in non-separable cases, in which the resulting

hyperplane can be very skewed from the real example distribution.

Some real problems could be linearly separable, such as using bag-of-words to

29

classify text. But lots of others are linearly non-separable problems. Since linear

classifiers do not generalize very well on unseen examples, their application is

very limited.

However, in the next section we will see that a simple improvement to the

linear classifier resulted in a much more powerful model, the Support Vector

Machine.

4.2 Support Vector Machine

Although the Support Vector Machine (SVM)[8][18][55][19] arrived via a theo-

retical path associated with Structural Risk Minimization (SRM), its basic idea

is rather simple. Instead of producing any successful separation hyperplane, a

Support Vector Machine finds the one that separates the examples with largest

margin.

In the separable case, a Support Vector Machine assumes that given a set

of labeled examples :

S = (X1, y1), (X2, y2), . . . , (Xn, yn),

where yi ∈ {−1,+1} is the class label of Xi, there exist two parallel hyperplanes

p1: < W,X > +b = 1 and p2: < W,X > +b = −1 bounding each class of

examples. Figure 1 illustrates the case in two dimensions. (A Perceptron could

produce any hyperplane between p1 and p2.)

The two classes of examples satisfy either < W,X > +b ≥ 1 or < W,X >

+b ≤ −1. We can combine the two constraints as one:

yi(< W,Xi > +b) ≥ 1 1 ≤ i ≤ n (4.2)

30

||

2

W

p1

p2

p0

Margin

Figure 4.1: Separable case in Support Vector Machine

An SVM produces the hyperplane p0: < W,X > +b = 0, whose margin to

p1 or p2 is the largest among hyperplanes. Intuitively p0 may best reflect the

separation of all the examples, either seen or unseen.

Since the margin (or distance between p1 and p2 in Figure 4.1) is 2/‖W‖

maximizing the margin is equivalent to minimizing a loss function LP (W) =

‖W‖2, subject to the separation constraints (4.2).

To solve the optimization problem, we can use the following Lagrangian:

L(W, b, ~α) =
1

2
‖W‖2 −

n
∑

i=1

αi(yi(< W,Xi > +b) − 1). (4.3)

At the optimal point, we have the following equations:

∂L

∂b
=

n
∑

i=1

αiyi = 0 (4.4)

and

∂L

∂W
= W −

n
∑

i=1

αiyiXi = 0 (4.5)

From (4.5) we can see that W =
∑n

i=1 αiyiXi also has a dual form. Com-

bining all the equations we can get the following optimization problem:

31

max~α

n
∑

i=1

αi −
1

2

n
∑

i,j=1

yiyjαiαj < Xi, Xj >

subject to αi ≥ 0, 1 ≤ i ≤ n

n
∑

i=1

αiyi = 0.

This is a quadratic optimization problem. The gram matrix is formed by the

inner products of examples {Xi}, so it is symmetric and positive semi-definite.

Then the search space for W is concave, which guarantees a unique solution no

matter how many examples are involved.

In the non-separable case, classification errors have to be allowed in training.

The constraints in (4.2) are relaxed by slack variables ξi (ξi > 0). This is shown

in 4.6.

yi(< W,Xi > +b) ≥ 1 − ξi (4.6)

When 0 < ξi < 1, example Xi still gets classified correctly, although it falls

into the margin area between p1 and p2. When ξi > 1, example Xi would

fall onto the other side of p0, thus we will see a training error on it. Figure 2

illustrates the non-separable case for SVMs.

This allows the learning of SVMs to ignore noisy examples on the boundary

of each class and fit the separation hyperplane to the real distribution of ex-

amples. This also happens even when examples are separable. So an SVM can

produce good generalization based on all examples rather than examples on the

class boundaries.

In the non-separable case, the loss function is a trade-off between minimizing

training error and the margin. The problem can be formalized as

32

ξi

||

2

W

p1

p2

p0

Margin

ξj

Figure 4.2: Non-separable case in Support Vector Machine

minimizing LP (W, ξ̄) = ‖W‖2 + C
∑n

i=1 ξi

subject to

yi(< W,Xi > +b) ≥ 1 − ξi 1 ≤ i ≤ n,

where C determines the trade-off between the margin and training errors.

The optimization of SVMs has many interpretations. In the SRM theory,

this can be explained by the trade-off between training errors and generaliza-

tion ability of an SVM. The margin of an SVM determines its generalization

ability. Maximizing the margins reduces the VC dimension of the SVM, thus

increasing its capacity or generalization ability. In SVM training, we don’t want

the classifier to overfit the training data by simply minimizing training errors,

nor do we want it to make too many errors to represent the training data at all

just for better generalization. In real applications, the way to find an optimal

point in this trade-off is to use validation data to determine C.

As a computing problem on large matrices, many efficient solutions have

been proposed. One popular solution is SMO (Sequential Minimal Optimiza-

tion), which breaks the big problem into small two dimensional analytical prob-

33

lems. There are also many efficient SVM implementations available for research

purposes, such as SVMlight[30] and libSVM [12].

4.3 SVM in NLP

SVM’s generalization ability in high dimensional feature space makes it a good

model for NLP tasks. Many NLP problems involve lots of lexical or syntactic

features. Traditional learning models can not handle large number of features,

so feature selection has to be applied to eliminate most of the features. We

may lose useful information about the original text by doing this. However,

with SVM, it is possible to use all the features and let the classifier decide the

separation criteria of examples.

In text classification, all the words in a document and their frequencies are

usually taken as features. So the feature space dimension could be tens of

thousands. Many of the features are relevant so they can not be easily removed.

Joachims[31] gave a theorectical analysis of using SVM to classify text. In his

experiment on the benchmark Reuters dataset, the average performance was a

few percent better than k-NN.

Other applications were also reported using SVM’s that produced state-of-

the-art performance. Such applications include NP chunking and NE recogni-

tion. Kudo et al. (2001)[34] applied SVM to NP chunking, in which each word

in a sentence was classified by SVM to decide its chunk label. Features of a

word include the two preceeding and succeeding words, their Parts-of-Speech

and the chunk labels of the two preceeding words. Pairwise classification was

used to decide between two chunk labels. The final prediction is the label voted

from pairwise classifications. The experimental result on base NP chunking

34

outperformed previous approaches.

SVMs were also applied to Named Entity (NE) recognition. Yamada et

al. (2001)[56] applied the previous SVM chunking scheme to do Japanese NE

detection. In Isozaki et al. (2002)[28], redundant character morphological in-

formation (n-best results of a statistical morphological analyzer) was used as

input to an SVM to recognize NE in Japanese. The result on the IREX NE

extraction task was better than the previously reported methods.

Mayfield et al. (2003)[37] developed a language independent NE recognizer

using SVM. The input features include word compositional information, position

of the word in the sentence or document and other information from a statistical

Part-of-Speech tagger. The experimental results on English and German were

reported better than a basic HMM NE recognizer.

There also other SVM applications in NLP which involves kernels. They

will be covered in section 4.6.

4.4 Kernel Space

In the dual form of the Perceptron algorithm or Support Vector Machine, W is

a linear combination of Xi:

W =
n

∑

i=i

αiyiXi

Then the original problem of finding W is converted to determining αi. To

classify unseen examples (test phase),

y = sign(f(X,W)) =sign(< W,X > +b)

=sign(
N

∑

i=0

(αiyi < Xi, X >) + b).

35

From the dual form we can see that the only operator involved in training

and test is the inner product between two examples. Mathematically this inner

product operator can be replaced by a binary function K(Xi, Xj) which pro-

duces a real value. As long as the Gram matrix V = {vij}n×n = {K(Xi, Xj)}n×n

is symmetric and positive semi-definite, it can be seen as a new inner product

defined on {Xi}. If a function K(Xi, Xj) has these properties, it is called a

kernel function or just kernel.

The nice thing about kernel functions is that their domain does not have to

be vectors, they can be the original objects. As long as a function satisfies the

conditions, it becomes a valid kernel.

For a kernel function K(X1, X2) there exists an implicit mapping

Φ : ℓ 7→ FN

X 7→ Φ(X)

such that K(X1, X2) =< Φ(X1),Φ(X2) >. Φ maps the X in the original object

domain ℓ to a high dimensional vector in space FN . N could be a very large

number or even infinity. For a polynomial kernel K(X,Y) = (< X, Y >)2,

where X = (x1, x2), Y = (y1, y2) are vectors,

K(X,Y) =(x1y1)
2 + 2x1y1x2y2 + (x2y2)

2

= < (x2
1,
√

2x1x2, x
2
2), (y

2
1,
√

2y1y2, y
2
2) >

So Φ(X) = Φ((x1, x2)) = (x2
1,
√

2x1x2, x
2
2)

This can be seen as a way of creating high-order features from the original

feature space with very little computational cost. The dimension of the new

36

Polynomial K(x, y) = (k(x, y) + c)d

Redial Basis Function(RBF) K(x, y) = exp(−‖x− y‖2/2σ2)

Sigmoidal K(x, y) = tanh(κk(x, y) + θ)

Inv. multiquadric K(x, y) = 1/
√

‖x− y‖2 + c2

Table 4.2: List of common kernels. k(x, y) can be either a normal inner product

on a vector space or a user-defined kernel function on an object domain. ‖x−y‖2

can be computed as k(x, x) − 2k(x, y) + k(y, y).

feature space depends on the function itself. A polynomial kernel

Kp(xi, xj) = (< xi, xj > +1)d

applied to vectors creates a new feature space of dimension md where each

feature is a combination of no more than d original features. For example,

when d = 5 and m = 256, the dimension of the new feature space is O(240),

which is a tremendous number. But the computation of this kernel is trivial.

For some kernels, the kernel space can not be represented by a finite number

of features. For instance a Gaussian kernel

φp(xi, xj) = e−‖xi−xj‖
2/2σ2

.

The dimension of its underlying vector space is infinite.

There is a well-known caveat of using a large number of features named the

“Curse of Dimensionality”: when the dimension of the example space increases,

the number of samples we need to estimate the example distribution increases

exponentially. So even though kernels can introduce many more features, the

limited number of examples in any real applications may limit the effectiveness

of training a classifier. Fortunately, it can be proved that the complexity of a

37

Support Vector Machine depends mainly on its margin, not the dimension of

the example space. So we can control the complexity of an SVM by controlling

its margin during training. It has been shown that it is possible to train an

SVM effectively on normal size of data with millions of features.

Table 4.2 lists some common kernels which have been applied in various

domains. The values of variables x and y in kernel K need not to be a feature

vector, they can be the original object in domain ℓ, such as images or text

documents. The kernel matches two objects directly and produces a similarity

value. K can be either an implementation that integrates the normal procedure

of feature generation and inner product computation, or just a comparison of

two objects with a customized similarity metrics. As long as K satisfies the

conditions, it forms a valid kernel. The custom kernels on the object domain

are of the most interest to us. Most of the kernels designed in this thesis are of

this type.

4.5 Kernel Properties

Kernel functions have many nice properties. Most of them can be derived from

the properties of positive semi-definite matrices. The following properties are

of interest to IE applications.

1. Closed under scalar product. If K(x, y) is a kernel on X × Y , α is a real

scalar, then αK(x, y) is a kernel.

2. Closed under sum. If K1(x, y) and K2(x, y) are kernels on X×Y , the sum

K1(x, y)+K2(x, y) is a kernel. With the previous property, the kernel set

is closed under linear combination.

38

3. Closed under product. If K1(x, y) and K2(x, y) are kernels on X ×Y , the

product K1(x, y)×K2(x, y) is a kernel. With the previous properties, the

kernel set is closed under polynomial transformation.

4. Closed under tensor product. If K1(x, y) is a kernel on X×Y and K2(u, v)

is a kernel on U × V , then

K1 ⊗K2((x, u), (y, v)) = K1(x, y) ×K2(u, v)

is a kernel on (X × U) × (Y × V).

5. Closed under direct sum. If K1(x, y) is a kernel on X × Y and K2(u, v) is

a kernel on U × V , then

K1 ⊕K2((x, u), (y, v)) = K1(x, y) +K2(u, v)

is a kernel on (X × U) × (Y × V).

Property 1 through 3 apply to kernels within the same domain. Property 4

and 5 are combinations of kernels from different domains. These are often useful

when we need to integrate kernels representing different syntactic sources. For

instance, when the new kernel sums a word trigram kernel on sentence S and

a tree kernel on parse tree T of sentence S, its domain is S × T , the direct

sum of the word sequence and parse tree of the sentence. Property 4 is a linear

combination. If we see the two individual kernels representing features from two

domains, then the resulting kernel simply adds up all the features; Property 5

is high order extension similar to a polynomial kernel, but operates on two

different domains. In terms of features, the resulting kernel produces all feature

pairs from each domain.

39

With all five properties, we can apply polynomial combination to any finite

number of kernels from any domain and the result is still a valid kernel on a new

domain. The new domain could be nested direct sums of the original domains.

For information extraction tasks, we can develop kernels to represent syn-

tactic information from different processing levels of text, such as tokenization,

chunking or parsing. Then the properties of kernels provide flexible ways to

combine and extend them. This forms the theoretical basis of the approach

proposed in this thesis.

4.6 Kernel Applications in NLP

The inputs to NLP applications are structures like word sequences, trees or

graphs. Most NLP applications involve finding syntactic patterns from these

structures. A traditional way to tackle this problem often involves human knowl-

edge to identify smaller pieces as features and then apply a learning algorithm

on the features. Obviously, this could be insufficient due to the limitation of

human observation over large amounts of data.

With kernel functions things can be much easier. All we need is a kernel

function to match two structured objects and produce a similarity value. As

long as the kernel is mathematically valid, it can be plugged into any learning

algorithm which has dual form representations.

Several types of kernels have been designed for general NLP structures, such

as the string kernel[36] for word sequences and convolution kernel[26] for any

discrete structures. There are also customized kernels designed for specific tasks,

such as the subtree kernel[14], dependency graph kernels[15][20] and relation

kernel[57].

40

4.6.1 String Kernel

The string kernel was originally designed to improve document classification.

The prior approaches (Salton et al. 1975[49] and Joachims 1998[31]) were based

on word vectors, in which each occurring word and its frequency in a document

is considered as a feature. But the ordering of words is ignored. To address

this problem, Lodhi et al. (2001)[36] designed a string kernel on word sequences

which considers either contiguous or non-contiguous subsequences of words as

features. The kernel was defined as the following:

Definition 1 (String subsequence kernel) Let Σ be a finite alphabet.

A string is a finite sequence of characters from Σ, including the

empty sequence. For strings s, t, we denote by |s| the length of the

string s = s1...s|s|, and by st the string obtained by concatenating

the strings s and t. The string s[i : j] is the substring si . . . sj

of s. We say that u is a subsequence of s, if there exist indices

i = (i1, . . . , i|u|), with 1 ≤ i1 < . . . < i|u| ≤ |s|, such that uj = sij

, for j = 1, . . . , |u|, or u = s[i] for short. The length l(i) of the

subsequence in s is i|u|− i1 +1. We denote by Σn the set of all finite

strings of length n, and by Σ∗ the set of all strings

Σ∗ =
∞
⋃

n=0

Σn

We now define feature spaces Fn = RΣn

. The feature mapping φ

for a string s is given by defining the u coordinate φu(s) for each

u ∈ Σn. We define φu(s) =
∑

i:u=s[i] λ
l(i), for some λ ≤ 1. These

features measure the number of occurrences of subsequences in the

string s weighting them according to their lengths. Hence, the inner

41

product of the feature vectors for two strings s and t give a sum over

all common subsequences weighted according to their frequency of

occurrence and lengths

Kn(s, t) =
∑

u∈Σn

(φu(s)φu(t) =
∑

u∈Σn

∑

i:u=s[i]

λl(i)
∑

j:u=t[j]

λl(j)

=
∑

u∈Σn

∑

i:u=s[i]

∑

j:u=t[j]

λl(i)+l(j).

The decay factor λ is used to penalize the gaps in the subsequence. When the

length of the gaps is n, the penalty for the value is λn. For a long subsequence

with long gaps in it, the weight assigned to it would be exponentially low. So

they would not affect the result very much. This is reasonable considering there

is more noise in combinations of long distance words. The penalty of gaps can

be adjusted by λ: a larger value of λ extends the size of the window allowing

gaps.

It can be shown that using dynamic programming kernel Kn(s, t) can be

computed in O(|s||t|) time. This is interesting considering that the number of

features it represents is exponential in the sequence size.

This kernel was experimented with text categorization on the benchmark

Reuters dataset. The result of the contiguous kernel was slightly better than

just using word features; part of the reason could be the geometric decay factor

that might not capture the long distance word dependency very well.

4.6.2 Convolution Kernel for Natural Language

Collins et al. (2001)[15] proposed a kernel for common NLP tasks, such as tag-

ging and parsing, based on convolution kernels[Haussler 1999]. The tree kernel

42

counts common subtrees between two parse trees: K(T1, T2) =< ~h(T1),~h(T2) >,

where h(T) = (t1, ..., td) is a vector containing all the d subtrees in tree T . Then

for two trees with N1 and N2 nodes

K(T1, T2) =

d1
∑

i=1

d2
∑

j=1

titj

=

N1
∑

i=1

N2
∑

j=1

C(ni, nj),

where C(ni, nj) is a function that counts common subtrees rooted at node ni

in T1 and nj in T2. The computation of K(T1, T2) takes O(N1N2) time using

dynamic programming.

Since there are an exponential number of subtrees in a tree, K(T, T) on two

identical trees would produce a huge value. To avoid this problem, a penalty

factor λ has to be used to down-weight large subtrees. Then

K(T1, T2) =

d1
∑

i=1

d2
∑

j=1

λsizeititj.

They also proposed a linear model to transform the ranking problems in

Natural Language Processing to margin-based classification problems. The ba-

sic idea is to use classification to separate the correct answer (not necessarily the

one with best score) from other candidates. Each candidate xi is represented

by a kernel h(xi). Then a standard kernel-based classifier with slight modifica-

tion can be used. This scheme was tried with Voted Perceptron for reranking

parsing alternatives. The performance improved from 74% of a standard PCFG

to around 80%.

43

4.6.3 Other Kernels

There are many other kernels designed for a specific task. Zelenko (2003)[57]

designed a kernel called a relation kernel on shallow parse trees to extract re-

lations between entities, such as a person-affiliation relation between a person

and organization. This kernel is a recursive match of trees from the root down

to the leaves. At each node, a subsequence kernel similar to string kernels is

used to match sequences of child nodes. This kernel produced good performance

on extraction of two types of entity relations.

Suzuki et al. 2003[54] described a kernel for Hierarchical Directed Acyclic

Graph (HDAG). It is a convolutional kernel which allows approximate match

of components between two HDAGs. Each node in a HDAG is associated with

attributes. The features for each HDAG are attribute sequences on a node

path. Nodes can be skipped for inexact match. The kernel performed better

than a string kernel or dependency graph kernel in experiment on question

classification.

There is a general algorithm named Rational Kernel[17] that subsumes the

previous two kernels and the string kernels. It is defined on finite state automa-

tons or transducers. It can be applied to a lattice structure produced during a

Viterbi search.

4.6.4 Comments about Convolution Kernels in NLP

Most of the kernels designed for NLP tasks are descendents of convolution ker-

nels. They match the similarity of two discrete structures by counting common

subcomponents of them. If two large components match, then all the smaller

components within them match also. The similarity value produced by the

44

kernel is exponential in the size of the common component. So an example is

similar to itself in exponential magnitude, while comparing with a different ex-

ample, the similarity is a constant number. Collins et al. (2001)[14] shows that

for the subtree kernel, the difference can be 106 vs. 100 in magnitude. Using a

penalty factor λ (0 < λ < 1) does not solve this problem completely. It reduces

the value differences, but there is not good justification about the weighting

scheme.

In terms of the kernel matrix, the diagonal values would be much larger

than other entries. This may cause overfitting in learning, in which the model

tends to memorize the examples in the training data and would not recognize

an unseen example unless it is very similar to a seen example. In terms of

performance, overfitting incurs high precision but low recall. This problem was

addressed by Schoelkopf et al. (2002)[50]. A element-wise transformation is

proposed to reduce the value difference, for example by applying a polynomial

kernel with a degree 0 ≤ p ≤ 1. However, it is not clear how the resulting kernel

space relates to the original one after the non-linear mapping. The solution does

not work very well in general case.

On the other hand, the same problem in feature-based kernels is tolerable.

For these kernels the number of features is a low order polynomial of the size

of the objects, e.g. the number of words in a sentence or number of nodes in

a parse tree. The diagonal values are linear in the number of features. Thus

the difference between values on the diagonal and other entries is small. In our

experiments, overfitting is not a big issues for these kernels.

In the work presented in the following chapters, most of the kernels are

feature-based kernels.

45

Chapter 5

A Discriminative Model

5.1 Motivation

To address the problems existing in prior IE approaches, a new discriminative

model based on the kernel method is proposed here. It incorporates different

levels of syntactic information to find useful clues for an IE task. The idea

is that an IE model should not commit itself to only deep analysis. Shallow

information, such as word collocations, may also give us important clues.

From chapter 4, we can see that kernel functions can match objects directly.

Kernels can be seen as representations of objects using large number of features.

In this model, we will design kernels to represent each level of processing result

and combine them using kernel properties. Many classifiers can be used with

kernels. The most popular ones are SVM (Support Vector Machines), KNN

(k-Nearest-Neighbors), and voted perceptrons.

Support Vector Machines are linear classifiers that produce a separating

hyperplane with largest margin. This property gives it good generalization

ability in high-dimensional spaces, making it a good classifier for our approach

46

where using all the levels of linguistic clues could result in a huge number of

features. Given all the levels of features incorporated in kernels and training

data with target examples labeled, an SVM can pick up the features that best

separate the targets from other examples, no matter which level these features

are from. In cases where an error occurs in one processing result (especially deep

processing) and the features related to it become noisy, an SVM may pick up

clues from other sources which are not so noisy. This forms the basic idea of our

approach. Therefore under this scheme we can overcome errors introduced by

one processing level; more particularly, we expect accurate low level information

to help with less accurate deep level information.

5.2 The Kernel-based Model

This discriminative framework makes no assumption about the text structure of

events. Instead, kernels are used to represent syntactic information from various

syntactic sources. The structure of this model is shown in Figure 5.1.

In this model, text is first extracted from input documents (usually articles

in SGML format). Then it is preprocessed at different levels. The preprocess-

ing modules include a part-of-speech tagger, name tagger, sentence parser and

GLARF dependency analyzer, but are not limited to these. Other general or

custom tools can also be included.

The triangles in the diagram are kernels that encode the corresponding syn-

tactic processing result. Individual kernels can be combined into composite

kernels as input to a classifier. In the training phase, targets are labeled in

the text as examples to train the classifier. In the test phase, unlabeled text is

processed in the same way as training data. Candidate examples are generated

47

Preprocessing Post-processing SVM / KNN

Sent
Parser

Name
Tagger

Glarf
Parser

POS
Tagger

SGML
Parser Text

Documents
Input

 Other
Analyzer

XML
Generator

Output
C

lassifier
Results

Figure 5.1: Infrastructure of the discriminative model

from the text based on the preprocessing results. Then the classifier can make

predictions on candidates to identify the targets. The main kernel we propose

to use is based on the dependency analysis produced by GLARF[39], mostly due

to its ability to capture more regularizations in text. Chapter 6 will introduce

features of GLARF and show examples of its outputs.

Most IE tasks are multi-class classification. After each classifier makes pre-

dictions, post-processing can be applied to resolve conflicts or to improve the

predictions using other heuristics. The final result is outputted in XML.

5.3 Syntactic Kernels

To make use of syntactic information from different levels, we can develop kernel

functions or syntactic kernels to represent a certain level of syntactic structure.

48

The possible syntactic kernels include

1. Sequence kernels: representing sequence level information, such as bag-of-

words, n-grams or a string kernel.

2. Phrase kernels: representing information at an intermediate level, such as

kernels based on multiword expressions, chunks or shallow parse trees.

3. Parsing kernels: representing detailed syntactic structure of a sentence,

such as kernels based on parse trees or dependency graphs.

These kernels can be used alone or combined with each other using the

properties of kernels. They can also be combined with general kernels like

polynomial or RBF kernels to generate a high-order, non-linear decision surface.

This can be done either on individual kernels or on the composite kernel.

In practice each kernel can be tested for the task as the sole input to a

classifier, to determine if this level of information is helpful or not. After figuring

out all the useful kernels, we can try to combine them to make a composite kernel

as final input to the classifier. The way to combine them and the parameters

in combination can be determined using validation data.

Since the preprocessing modules are standard analyzers, once a kernel is de-

veloped for a certain level of information, it could be reused when the underlying

domain changes.

5.4 Applications

Many information extraction tasks can be implemented by this model, such as

named entity recognition, entity relation detection and slot filler detection for

49

events. In this thesis, experiments are carried out on entity relation detection

and slot filler recognition.

50

Chapter 6

GLARF: The Dependency

Analyzer

The Treebank-based parsers currently exhibit the best performance among

parsers. They produce consistent tagging following the specification of Penn

Treebank II (PTB-2). However, for applications like information extraction,

PTB-2 parsing does not provide detailed information about grammatical rela-

tions. For example, it doesn’t provide information about object, indirect object,

appositives, etc.

In section 2.1, examples are given to illustrate some of the common gram-

matical phenomena an information extraction application has to consider. Such

phenomena may include passive verbs, nominalizations, clause structures and

conjunctions. Based on PTB-2 parsing results, an information extraction ap-

proach has to generate separate patterns to cover each case, which makes it

difficult to generalize when training data is sparse.

GLARF[39] (Grammatical and Logical Argument Representation Frame-

work) is a deep text analyzer which aims to capture more regularizations based

51

on PTB-2 parsing. It recognizes noncanonical constructions (passives, conjunc-

tions, filler-gap constructions, etc) and represents them in terms of canonical

forms (simple declarative clauses). GLARF implementations can produce re-

sults in different forms. In our experiments, the dependency triples in the form

of (ROLE FUNCTOR, ARGUMENT) were used. An example of this depen-

dency triple is

(OBJ named, Harriet_Smith),

which can be derived from “IBM named Harriet Smith president” or “Harriet

Smith was named president by IBM”. OBJ is the type of this predicate argu-

ment relation, and ”Harriet Smith” is the object of “named”.

GLARF produces logical relations instead of surface relations. For the sen-

tence “Harriet Smith was named president by IBM”, the dependency (OBJ

named, Harriet Smith) is a logical relation.

The GLARF analysis of a sentence can be assembled into a dependency

graph, where each typed predicate-argument relation is represented by a la-

beled dependency arc. GLARF can also include base form nouns and verbs

where words are normalized by morphological analysis. For a verb, “named”,

“naming” and “names” would be represented by one base form “name”. For

a noun, its singular form is produced as the base form. With this result, it is

possible for an application to cover different word forms with one pattern.

6.1 Example

Here are examples of the GLARF analysis of two sentences.

Sentence (1):

52

He succeeds Robert L. Purdum, 58, who retired.

Parse tree:

(S1

(S (NP (PRP He))

(VP (VBZ succeeds)

(NP (NP (NNP Robert) (NNP L.) (NNP Purdum))

(, ,)

(NP (CD 58))

(, ,)

(SBAR (WHNP (WP who)) (S (VP (VBD retired))))))

(. .)))

GLARF output:

(SBJ succeed, He)

(OBJ succeed, Robert L. Purdum)

(APPOSITE Robert L. Purdum, 58)

(RELATIVE Robert L. Purdum, who)

(SENT who, retired)

(SBJ retire, Robert L. Purdum)

Sentence (2):

The deadlock in Palestinian-Israeli talks is exacerbated by the worse vi-

olence in four years.

Parse tree:

53

(S1

(S (NP (NP (DT The) (NN deadlock))

(PP (IN in)

(NP (NNP Palestinian-Israeli) (NNS talks))))

(VP (AUX is)

(VP (VBN exacerbated)

(PP (IN by)

(NP (NP (DT the) (JJS worst) (NN violence))

(PP (IN in) (NP (CD four) (NNS years)))))))

(. .)))

GLARF output:

(T-POS deadlock, The)

(ADV deadlock, in)

(OBJ in, talks)

(N-POS talks, Palestinian-Israeli)

(SBJ exacerbated, violence)

(COMP exacerbated, by)

(OBJ exacerbated, deadlock)

(AUX1 exacerbated, is)

(T-POS violence, the)

(A-POS violence, worst)

(DGCOMP violence, in)

(OBJ in, years)

(T-POS years, four)

54

Chapter 7

Kernel Slot Filler Detection

7.1 Introduction

Traditional IE approaches try to generate patterns for events by various means

using training data. For example, the FASTUS (Appelt et al., 1996)[6] and

Proteus (Grishman, 1996)[22] systems, which performed well for MUC-6, used

hand-written rules for event patterns. The symbolic learning systems, like Au-

toSlog (Riloff, 1993)[44] and CRYSTAL (Fisher et al., 1996)[21], generated pat-

terns automatically from specific examples (text segments) using generalization

and predefined pattern templates. There are also statistical approaches (Miller

et al., 1998[42]; Collins et al., 1997[16]) trying to encode event patterns in sta-

tistical CFG grammars. All of these approaches assume events occur in text

in certain patterns. However this assumption may not be completely correct

and it limits the syntactic information considered by these approaches for find-

ing events, such as information on global features from levels other than deep

processing. When training data is limited, these approaches may also be less

effective in their ability to generate reliable patterns.

55

Chapter 5 proposed a new approach to overcome these problems. It makes

no prior assumption about the syntactic structure an event may assume; instead,

it considers all syntactic features in the target text and uses a discriminative

classifier to decide that automatically. Discriminative classifiers make no at-

tempt to resolve the structure of the target classes. They only care about the

decision boundary to separate the classes. In our case, we only need criteria

to predict event elements from text using the syntactic features provided. This

seems a more suitable solution for IE where training data is often sparse.

This chapter presents an implementation (ARES: Automated Recognition

of Event Slots)[58] of the framework proposed in chapter 5 to find slot fillers

for the MUC-6 events. The event domain is corporate management succession.

We will develop kernels at two levels: word sequences and predicate-argument

dependencies. Two tasks will be used for evaluation: detecting event occurrence

in sentence and finding slot fillers of an event. We will show that a simple bag-

of-words model can give us reliable information about event occurrence. When

combining with deep level kernels, word n-grams information also helps.

The classifier we chose to use is Support Vector Machine, mostly due to its

ability to work in high dimensional feature spaces. The experimental results of

this approach show that it can outperform a hand-crafted rule system in slot

filler detection in the management succession domain.

7.2 Related Work

There have been a number of SVM applications in NLP using particular levels

of syntactic information. Lodhi et al. (2002)[36] compared a word-based string

kernel and n-gram kernels at the sequence level for a text categorization task.

56

The experimental results showed that the n-gram kernels performed quite well

for the task. Although string kernels can capture common word subsequences

with gaps, its geometric penalty factor may not be suitable for weighting the

long distance features. Collins et al. (2001)[14] suggested kernels on parse

trees and other structures for general NLP tasks. These kernels count small

subcomponents multiple times so that in practice one has to be careful to avoid

overfitting. This can be achieved by limiting the matching depth or using a

penalty factor to downweight large components.

Zelenko et al. (2003)[57] devised a kernel on shallow parse trees to detect

relations between named entities, such as the person-affiliation relation between

a person name and an organization name. The so-called relation kernel matches

from the roots of two trees and continues recursively to the leaf nodes if the

types of two nodes match.

All the kernels used in these works were applied to a particular syntactic

level. This chapter presents an approach for information extraction that uses

kernels to combine information from different levels and automatically identify

which information contributes to the task. This framework can also be applied

to other NLP tasks.

Chieu et al. (2003)[13] reported a feature-based SVM system (ALICE) to

extract MUC-4 events of terrorist attacks. The Alice-ME system demonstrated

performance competitive with rule-based systems. The features used by Alice

are mainly from parsing. Comparing with ALICE, our system uses kernels

on dependency graphs to replace explicit features, an approach which is fully

automatic and requires no enumeration of features. The model we proposed can

combine information from different syntactic levels in principled ways. In our

experiments, we used both word sequence information and parsing level syntax

57

information. The training data for ALICE contains 1700 documents, while for

our system it is just 100 documents. When data is sparse, it is more difficult

for an automatic system to outperform a rule-based system that incorporates

general knowledge.

7.3 Event and Slot Kernels

Here we will introduce the kernels used by ARES for event occurrence detection

(EOD) and slot filler detection (SFD).

7.3.1 Event Occurrence Detection Kernels

In Information Extraction, one interesting issue is event occurrence detection,

which is determining whether a sentence contains an event occurrence or not.

If this information is given, it would be much easier to find the relevant entities

for an event from the current sentence or surrounding sentences. Traditional

approaches do matching (for slot filling) on all sentences, even though most of

them do not contain any event at all. Event occurrence detection is similar to

sentence level information retrieval, so simple models like bag-of-words or n-

grams could work well. We tried two kernels to do this, one is a sequence level

n-gram kernel and the other is a GLARF-based kernel that matches syntactic

details between sentences. In the following formula, we will use an identity

function I(x, y) that gives 1 when x ≡ y and 0 otherwise, where x and y are

strings or vectors of strings.

1. N-gram kernel

58

It counts common n-grams between two sentences. Given two sentences:

S1 =< w1, w2, ..., wn >, and S2 =< w1, w2, ..., wm >, a bigram kernel

ψbi(S1, S2) =
n−1
∑

i=1

m−1
∑

j=1

(I(wi, wj) + (I(< wi, wi+1 >,< wj, wj+1 >))

Here kernels are inclusive, so the bigram kernel includes both bigrams and

unigrams. For the unigram kernel a stop list is used to remove words other

than nouns, verbs, adjectives and adverbs.

2. Glarf kernel

This kernel is based on the GLARF dependency result. Given the triple

outputs of two sentences produced by GLARF: G1 = < ri, pi, ai >, 1 ≤

i ≤ N1 and G2 = < rj, pj, aj >, 1 ≤ j ≤ N2, where ri, pi, ai correspond to

the role label, predicate word and argument word respectively in GLARF

output. This kernel matches the labels, predicate words and argument

words of two triples respectively.

ψg(G1, G2) =

N1
∑

i=1

N2
∑

j=1

(I(< ri, pi, ai >,< rj, pj, aj >) + αI(pi, pj) + βI(ai, aj))

The matches of predicate and argument words can give us partial score

when two triples do not match exactly, which is often true given the sparse

data. In EOD experiments, α and β were set to 1.

59

7.3.2 Slot Filler Detection Kernels

Slot filler detection (SFD) is the task of determining which named entities fill a

slot in some event template. Two kernels were proposed for SFD: the first one

matches local contexts of two target NEs, while the second one combines the

first one with an n-gram EOD kernel.

1. ψ1
SFD(E1, E2) : This kernel was also defined on a GLARF dependency

graph (DG), a directed graph constructed from its typed predicate-argument

outputs. The arcs labeled with roles go from predicate words to argument

words. This kernel matches local context surrounding a name in a GLARF

dependency graph. In preprocessing, all the names of the same type are

translated into one symbol, such as *PER* for all person names. The

matching starts from two example nodes (NE nodes of the same type) in

the two DG’s and recursively goes from these nodes to their successors

and predecessors, until the words associated with nodes do not match. In

our experiment, the matching depth was set to 2. Each node n contains a

predicate word w and relation pairs {< ri, ai >}, 1 ≤ i ≤ p representing

its p arguments and the roles associated with them.

A matching function C(n1, n2) on two nodes is defined as
p1

∑

i=1

p2
∑

j=1

(I(< ri, ai >,< rj, aj >) + I(ri, rj))

Then a recursive kernel ψ(n1, n2) on two nodes is defined as

C(n1, n2) +

ki≡kj
∑

ki∈Succ(n1)
kj∈Succ(n2)

ψ(ki, kj) +

ki≡kj
∑

ki∈Pred(n1)
kj∈Pred(n2)

ψ(ki, kj),

where ki ≡ kj is true if the predicate words associated with them match.

Functions Succ(n) and Pred(n) give the successor or predecessor node set

60

of a node n. The computation of ψ(n1, n2) is similar to a breadth-first

graph traversal algorithm. Each node is visited only once. If a node is

visited before, ψ simply returns 0.

The reason for setting a depth limit is that it covers most of the local

syntax around a node. In most cases the match of ψ(n1, n2), n1 6= n2

stops within two steps.

Then we define

ψ1
SFD(E1, E2) = ψ(E1, E2),

where E1 and E2 are the entity nodes we are interested in two dependency

graphs. The proof that ψ1
SFD is a kernel is provided in appendix A.

2. ψ2
SFD(< S1, E1 >,< S2, E2 >): This kernel combines linearly the n-gram

event kernel and the slot kernel above, in the hope that the general event

occurrence information provided by the EOD kernel can help the slot

kernel to ignore NEs in sentences that do not contain any event occurrence.

ψ2
SFD(< S1, E1 >,< S2, E2 >) = αψtri(S1, S2) + βψ1

SFD(E1, E2),

where α, β were set to be 1 in our experiments. The Glarf event kernel

was not used, simply because it uses information from the same source as

ψ1
SFD(E1, E2). The n-gram kernel was chosen to be the trigram kernel,

which gives us the best EOD performance among n-gram kernels. We also

tried the dependency graph kernel proposed by Collins et al. (2001)[14],

but it did not give us a better result.

61

7.4 Experiments

7.4.1 Corpus

The experiments with ARES were done on the MUC-6 corporate management

succession domain using the official training data and, for the final experiment,

the official test data as well. The training data was split into a training set (80%)

and validation set (20%). In ARES, the text was preprocessed by the Proteus

NE tagger and Charniak sentence parser. Then the GLARF processor produced

dependency graphs based on the parse trees and NE results. All the names were

transformed into symbols representing their types, such as *PERSON* for all

person names. The reason is that we think the name itself does not provide a

significant clue; the only thing that matters is what type of name occurs at a

certain position.

Two tasks have been tried: one is EOD (event occurrence detection) on

sentences; the other is SFD (slot filler detection) on named entities, including

person names and job titles. EOD is to determine whether a sentence contains

an event or not. This would give us general information about sentence level

event occurrences. SFD is to find name fillers for event slots. The slots we

experimented with were the person name and job title slots in MUC-6. We used

the SVM package SVMlight in our experiments, embedding our own kernels as

custom kernels.

7.4.2 EOD Experiments

In this experiment, ARES was trained on the official MUC-6 training data to do

event occurrence detection. The data contains 1940 sentences, of which 158 are

62

Kernel Precision Recall F-score

Unigram(ψuni) 66.0% 66.5% 66.3%

Bigram(ψbi) 73.9% 60.3% 66.4%

Trigram(ψtri) 77.5% 61.5% 68.6%

GLARF(ψg) 77.5% 63.9% 70.1%

Mix(ψg + ψtri) 81.5% 66.4% 73.2%

Table 7.1: EOD performance of ARES using different kernels

labeled as positive instances (contain an event). 5-fold cross validation was used

so that the training and test set contain 80% and 20% of the data respectively.

Three kernels defined in the previous section were tried. Table 7.1 shows the

performance of each kernel. Three n-gram kernels were tested: unigram, bigram

and trigram. Subsequences longer than trigrams were also tried, but did not

yield better results.

The results show that the trigram kernel performed the best among n-gram

kernels. GLARF kernel did better than n-gram kernels, which is reasonable

because it incorporates detailed syntax of a sentence. But generally speaking,

the n-gram kernels alone performed fairly well for this task, which indicates that

low level text processing can also provide useful information. The mix kernel

that combines the trigram kernel with GLARF kernel gave the best performance,

which might indicate that the low level information provides additional clues or

helps to overcome errors in deep processing.

63

7.4.3 SFD Experiments

The slot filler detection (SFD) task is to find the named entities in text that

can fill the corresponding slots of an event. We treat job title as a named entity

throughout this chapter, although it is not included in the traditional MUC

named entity set. The slots we used for evaluation were PERSON IN (the

person who took a position), PERSON OUT (the person who left a position)

and POST (the position involved). We generated the two person slots from

the official MUC-6 templates and the corresponding filler strings in text were

labeled. Three SVM predictors were trained to find name fillers of each slot.

Two experiments have been tried on MUC-6 training data using 5-fold cross

validation.

The first experiment of ARES used the slot kernel alone, relying solely on

local context around a NE. From the performance table (Table 7.2), we can see

that local context can give a fairly good clue for finding PERSON IN and POST,

but not for PERSON OUT. The main reason is that local context might be not

enough to determine a PERSON OUT filler. It often requires inference or other

semantic information. For example, the sentence ”Aaron Spelling, the com-

pany’s vice president, was named president.”, indicates that ”Aaron Spelling”

left the position of vice president, therefore it should be a PERSON OUT. But

the sentence ”Aaron Spelling, the company’s vice president, said ”, which is

very similar to first one in syntax, has no such indication at all. In complicated

cases, a person can even hold two positions at the same time.

In this experiment, the SVM predictor considered all the names identified

by the NE tagger; however, most of the sentences do not contain an event

occurrence at all, so NEs in these sentences should be ignored no matter what

64

Accuracy Precision Recall F-score

PER IN 63.6% 62.5% 63.1%

PER OUT 54.8% 54.2% 54.5%

POST 64.4% 55.2% 59.4%

Table 7.2: SFD performance of ARES with ψ1
SFD(E1, E2)

their local context is. To achieve this we need general information about event

occurrence, and this is just what the EOD kernel can provide. In our second

experiment, we tested the kernel ψ2
SFD(< S1, E1 >,< S2, E2 >), which is a linear

combination of the trigram EOD kernel and the SFD kernel. Table 7.3 shows

the performance of the combination kernel, from which we can see that there is

clear performance improvement for all three slots. For PER OUT, the unigram

EOD kernel was used. This is because the filling of many PER OUT slots

requires inference using world knowledge, such as when a person is promoted,

he leaves his old position. In this case, the syntax around names is not very

useful. The unigram EOD kernel was chosen by validation. It seemed to work

better than the trigram kernel on PER OUT.

In this experiment, we also tried to use the mix EOD kernel which gives

the best performance, but it did not yield a better result. The reason we think

is that the GLARF EOD kernel and SFD kernel are from the same syntactic

source, so the information was repeated.

Since 5-fold cross validation was used, ARES was trained on 80% of the

MUC-6 training data in these two experiments.

65

Accuracy Precision Recall F-score

PER IN 86.6% 60.5% 71.2%

PER OUT 69.2% 58.2% 63.2%

POST 68.5% 68.9% 68.7%

Table 7.3: SFD performance of ARES with ψ2
SFD(< S1, E1 >,< S2, E2 >)

Accuracy Precision Recall F-score

PER IN 77.3% 62.2% 68.9%

PER OUT 58.9% 69.7% 63.9%

POST 77.1% 71.5% 73.6%

Table 7.4: Slot performance of ARES on the MUC-6 test data

7.4.4 Comparison with MUC-6 System

This experiment was done on the official MUC-6 training and test data, which

contain 50K words and 40K words respectively. ARES used the official corpora

as training and test sets. In the training data, all the slot fillers were manually

labeled. We compared the performance of ARES with the NYU Proteus system,

a rule-based system that performed well for MUC-6. To score the performance

for these three slots, we generated the slot-filler pairs as keys for a document

from the official MUC-6 templates and removed duplicate pairs. The scorer

matches the filler string in the response file of ARES to the keys. The response

result for Proteus was extracted in the same way from its template output. Table

7.4. shows the result of ARES using the combination kernel in the previous

experiment.

Table 5 shows the test result of the Proteus system. Comparing the num-

66

Accuracy Precision Recall F-score

PER IN 85.7% 51.2% 64.1%

PER OUT 78.4% 58.6% 67.1%

POST 83.3% 59.7% 69.5%

Table 7.5: Slot performance of the rule-based Proteus system for MUC-6

bers we can see that for slot PERSON IN and POST, ARES outperformed the

Proteus system by a few points. The result is promising considering that this

model is fully automatic and does not involve any post-processing. As for the

PERSON OUT slot, the performance of ARES was not as good. As we have

discussed before, relying purely on syntax might not help us much; we may need

an inference model to resolve this problem.

7.5 Examples

In this section we will show some examples where adding the EOD trigram kernel

helped the local SFD kernel. The sentence of an example contrains preprocessed

tokens where all the automatically recognized NEs were transformed into special

symbols (their NE type). Strings in parenthesis indicate the original names. For

example in *PER*(Gary), *PER* is the token seen by the classifier and Gary

is the original name in text.

Example (1):

Sentence (token sequence):

Dollar Time said *PER*(Gary) de Luca, 40 years old, the company ’s

POST(chief operating officer), was named *POST*(president).

67

GLARF output:

(SBJ, said, Dollar Time)

(COMP, said, named)

(RED-RELATIVE, Luca, old)

(APPOSITE, Luca, *POST*)

(N-POS, Luca, *PER*)

(SBJ, old, Luca)

(T-POS, years, 40)

(T-POS, *POST*, company)

(T-POS, company, the)

(SUFFIX, company, ’s)

(COMP, named, *POST*)

(OBJ, named, Luca)

(AUX, named, was)

The token sequence of this example contains errors from the NE tagger. de

Luca was not recognized as part of the person name and Dollar Time was not

recognized as an organization name. The target here was to classify *PER* as

a positive PERSON IN.

The prediction of kernel ψ1
SFD(E1, E2) on *PER* is −0.99906068, which is

negative. Due to the NE error, GLARF failed to produce dependencies between

PER(Gary) and was named *POST*. But the prediction of kernel ψ2
SFD is

0.35327107, which is correct.

Intuitively the token sequence was named *POST* helped kernel ψ2
SFD to

make the correct prediction because it occurs a lot in training data in the context

of positive examples. After replacing the word named with a dummy word and

running the classifier again with the modified sentence, the prediction of kernel

68

ψ2
SFD turned to be −0.29386523. So the long distance information from kernel

ψtri(S1, S2) helped the classifier to get the right answer.

Example (2):

Sentence (token sequence):

Mr. *PER*(Walsh), 51, who remains *POST*(chairman), will be on

indefinite medical leave.

GLARF output:

(RELATIVE *PER*, who)

(APPOSITE *PER*, 51)

(SBJ be, *PER*)

(SBJ *POST*, *PER*)

(PRD remains, *POST*)

(SENT who, remains)

(AUX be, will)

(OBJ on, leave)

(ADV be, on)

(A-POS leave, medical)

(A-POS leave, indefinite)

The target of this example was to classify *PER*(Walsh) as a negative

PERSON IN. The prediction of kernel ψ1
SFD(E1, E2) on *PER* is 0.68899627,

which is wrong. Actually if a sentence contains a similar relative clause, the

target is often classified wrong by kernel ψ1
SFD(E1, E2). The reason might be

that this kind of structure often occurs in positive examples in training data.

The prediction of kernel ψ2
SFD(< S1, E1 >,< S2, E2 >) is −0.22528701,

which is correct. So the global information of words avoided the false alarm. To

69

see which words are critical, we first replaced the words indefinite, medical and

leave with dummy words, then the prediction of ψ2
SFD became −0.01907587,

which is still correct, but with much less confidence. By replacing words re-

mains, indefinite, medical and leave, the prediction is 0.050356181, which is

wrong. The analysis shows that these words were associated with negative pre-

dictions. They came into play in the composite kernel to make the prediction

correct. (There might also be other words that made similar contributions.)

7.6 Discussion and Further Work

This chapter describes an implementation of the discriminative approach pro-

posed in this thesis is to find slot fillers for MUC-6 events. In our experiment,

it outperformed a hand-crafted system on sparse data by combining different

levels of syntactic clues. The result shows that low level syntactic information

can also come into play in finding event occurrences or slot fillers. So it should

not be ignored by IE tasks.

For slot filler detection, several classifiers were trained to find names for each

slot and these classifiers make independent decisions. However, entity slots in

events are often strongly correlated, for example the PER IN and POST slots for

management succession events. They often appear in pairs in a sentence. Since

these classifiers take the same input and produce different results, correlation

models can be used to integrate these classifiers so that the identification of slot

fillers might benefit each other.

It is also possible to experiment with the tasks that are more difficult for

pattern matching, such as determining the On-the-job status property in the

management succession domain or the Stage-of-execution property for the ter-

70

rorist attack domain. For these “implicit” slots, it is difficult to pick up a

specific syntax pattern as a reliable indication. For example a passive form verb

“bombed” could imply the attack was successful. It would be interesting to

try this kernel approach with multiple levels of information to see what kind of

clues the classifier picks up.

Since events often span multiple sentences, another direction is to explore

cross-sentence models, which is also difficult for traditional approaches. For our

approach the division into sentences is not a critical factor. It is possible to

extend the kernel from one sentence to multiple sentences. Probably we can

explore the correlation between NE’s in adjacent sentences.

It is also possible to run each classifier on a different range of text. For some

slots we can expect to rely on local syntactic clues, such as for the PERSON IN

slot in MUC-6; while for others, such as the Stage-of-execution slot, we may like

to use features from a whole paragraph.

71

Chapter 8

Entity Relation Detection

8.1 Introduction

Information extraction subsumes a broad range of tasks, including the extraction

of entities, relations and events from various text sources, such as newswire

documents and broadcast transcripts. One such task, relation detection, finds

instances of predefined relations between pairs of entities, such as a Located-In

relation between the entities Centre College and Danville, KY in the phrase

Centre College in Danville, KY. The “entities” are the individuals of selected

semantic types (such as people, organizations, countries) which are referred to

in the text.

Prior approaches to this task (Miller et al., 2000[43]; Zelenko et al., 2003[57])

have relied on partial or full syntactic analysis. Syntactic analysis can find rela-

tions not readily identified based on sequences of tokens alone. Even “deeper”

representations, such as logical syntactic relations or predicate-argument struc-

ture, can in principle capture additional generalizations and thus lead to the

identification of additional instances of relations. However, a general problem

72

in Natural Language Processing is that as the processing gets deeper, it becomes

less accurate. Algorithms based solely on deeper representations inevitably suf-

fer from the errors in computing these representations. On the other hand, low

level processing such as tokenization will be more accurate, and may also con-

tain useful information missed by deep processing of text. Systems based on a

single level of representation are forced to choose between shallower representa-

tions, which will have fewer errors, and deeper representations, which may be

more general.

Based on these observations, we proposed a discriminative model in chapter

5 to combine information from different syntactic sources using a kernel SVM.

Chapter 7 showed that adding sentence level word trigrams as global information

to local dependency context boosted the performance of finding slot fillers for

management succession events. This chapter describes another implementation

of this approach to identify entity relations.

In this experiment syntactic information from sentence tokenization, pars-

ing and deep dependency analysis is combined using kernel methods. At each

level, kernel functions (or kernels) are developed to represent the syntactic in-

formation. Five kernels have been developed for this task, including two at the

surface level, one at the parsing level and two at a deep dependency level.

Our experiments show that each level of processing may contribute useful

clues for this task, including surface information like word bigrams. Adding

kernels one by one continuously improves performance. The experiments were

carried out on the ACE RDR (Relation Detection and Recognition) task with

hand-annotated entities. Using SVM as a classifier along with the full composite

kernel produced the best performance on this task. This chapter will also show

a comparison of SVM and KNN (k Nearest Neighbors) under different kernel

73

setups.

8.2 Prior Work

Collins et al. (1997)[16] and Miller et al. (2000)[43] used statistical parsing

models to extract relational facts from text. Both of these models rely on a

single level of linguistic analysis, and so are vulnerable to errors in this level.

Collins et al. (1997)[16] addressed a simplified task within a confined context

in a target sentence.

Zelenko et al. (2003)[57] described a recursive kernel based on shallow parse

trees to detect person-affiliation and organization-location relations, in which

a relation example is the least common subtree containing two entity nodes.

The kernel matches nodes starting from the roots of two subtrees and going

recursively to the leaves. For each pair of nodes, a subsequence kernel on their

child nodes is invoked, which matches either contiguous or non-contiguous sub-

sequences of node. Compared with full parsing, shallow parsing is more reliable.

But this model is based solely on the output of shallow parsing so it is still vul-

nerable to irrecoverable parsing errors. In their experiments, incorrectly parsed

sentences were eliminated.

Culotta and Sorensen (2004)[20] described a slightly generalized version of

this kernel based on dependency trees. Since their kernel is a recursive match

from the root of a dependency tree down to the leaves where the entity nodes

reside, a successful match of two relation examples requires their entity nodes

to be at the same depth of the tree. This is a strong constraint on the matching

of syntax so it is not surprising that the model has good precision but very

low recall. In their solution a bag-of-words kernel was used to compensate

74

for this problem. In our approach, more flexible kernels are used to capture

regularization in syntax, and more levels of syntactic information are considered.

Kambhatla (2004)[32] described a Maximum Entropy model using features

from various syntactic sources, but the number of features they used is limited

and the selection of features has to be a manual process1. In our model, we

use kernels to incorporate more syntactic information and let a Support Vector

Machine decide which clue is crucial. Some of the kernels are extended to

generate high order features. We think a discriminative classifier trained with

all the available syntactic features should do better on the sparse data.

8.3 ACE RDR Task

ACE (Automatic Content Extraction) is a research and development program

in information extraction sponsored by the U.S. Government. The 2004 eval-

uation defined seven major types of relations between seven types of enti-

ties. The entity types are PER (Person), ORG (Organization), FAC (Fa-

cility), GPE (Geo-Political Entity: countries, cities, etc.), LOC (Location),

WEA (Weapon) and VEH (Vehicle). Each mention of an entity has a men-

tion type: NAM (proper name), NOM (nominal) or PRO (pronoun); for ex-

ample George W. Bush, the president and he respectively. The seven relation

types are EMP-ORG (Employment/Membership/Subsidiary), PHYS (Physi-

cal), PER-SOC (Personal/Social), GPE-AFF (GPE-Affiliation), Other-AFF

1Kambhatla also evaluated his system on the ACE relation detection task, but the results

are reported for the 2003 task, which used different relations and different training and test

data, and did not use hand-annotated entities, so they cannot be readily compared to our

results.

75

Frequency Type Example

1631 EMP-ORG the CEO of Microsoft

1216 PHYS a military base in Germany

529 GPE-AFF U.S. businessman

365 PER-SOC a spokesman for the senator

279 DISC many of these people

212 ART the makers of the Kursk

142 Other-AFF Cuban-American people

Table 8.1: ACE relation types and examples. The heads of two entity arguments

in a relation are marked. Types are listed in decreasing order of frequency of

occurrence in the ACE corpus.

That's because Israel was expected to retaliate against
Hezbollah forces in areas controlled by Syrian troops.

PHYS PHYS EMP-ORG

Figure 8.1: Example sentence from nwire text with three relations

(Person/ORG Affiliation), ART (Agent-Artifact) and DISC (Discourse). There

are also 27 relation subtypes defined by ACE, but here we only focus on detec-

tion of relation types. Table 8.1 lists examples of each relation type.

Figure 8.1 shows a sample newswire sentence, in which three relations are

marked.

In this sentence, we expect to find a PHYS relation between Hezbollah forces

and areas, a PHYS relation between Syrian troops and areas and an EMP-

ORG relation between Syrian troops and Syrian. In our approach, input text is

preprocessed by the Charniak sentence parser (including tokenization and POS

76

tagging) and the GLARF (Meyers et al., 2001)[39] dependency analyzer.

8.4 Kernels

In this section, the kernels used for the RDR task will be formally defined.

8.4.1 Definitions

In our model, kernels incorporate information from tokenization, parsing and

deep dependency analysis. A relation candidate R is defined as

R = (arg1, arg2, seq, link, path),

where arg1 and arg2 are the two entity arguments which may be related; seq =

(t1, t2, ..., tn) is a token vector that covers the arguments and intervening words;

link = (t1, t2, ..., tm) is also a token vector, generated from seq and the parse tree;

path is a dependency path connecting arg1 and arg2 in the dependency graph

produced by GLARF. path can be empty if no such dependency path exists.

The difference between link and seq is that link only retains the “important”

words in seq in terms of syntax. For example, all noun phrases occurring in seq

are replaced by their heads. Words and constituent types in a stop list, such as

time expressions, are also removed. A token T is defined as a string triple,

T = (word, pos, base),

where word, pos and base are strings representing the word, part-of-speech

and morphological base form of T . Entity is a token augmented with other

attributes,

E = (tk, type, subtype,mtype),

77

where tk is the token associated with E; type, subtype and mtype are strings

representing the entity type, subtype and mention type of E. The subtype con-

tains more specific information about an entity. For example, for a GPE entity,

the subtype tells whether it is a country name, city name and so on. Mention

type includes NAM, NOM and PRO.

It is worth pointing out that we always treat an entity as a single token:

for a nominal, it refers to its head, such as boys in the two boys ; for a proper

name, all the words are connected into one token, such as Bashar Assad. So in

a relation example R whose seq is (t1, t2, ..., tn), it is always true that arg1 = t1

and arg2 = tn. For names, the base form of an entity is its ACE type(person,

organization, etc.). To introduce dependencies, we define a dependency token

to be a token augmented with a vector of dependency arcs,

DT = (word, pos, base, dseq),

where dseq = (arc1, ..., arcn). A dependency arc is

ARC = (w, dw, label, e),

where w is the current token; dw is a token connected by a dependency to w; and

label and e are the role label and direction of this dependency arc respectively.

From now on we upgrade the type of tk in arg1 and arg2 to be dependency

tokens. Finally, path is a vector of dependency arcs,

path = (arc1, ..., arcl),

where l is the length of the path and arci (1 ≤ i ≤ l) satisfies arc1.w = arg1.tk,

arci+1.w = arci.dw and arcl.dw = arg2.tk. So path is a chain of dependencies

connecting the two arguments in R.

78

N-POS OBJ

arg1 arg2 SBJ
OBJ

path

in

seq

link

areas controlled by Syrian troops

areas controlled by troops

COMP

Figure 8.2: Illustration of a relation example R. The link sequence is gener-

ated from seq by removing some unimportant words based on syntax. The

dependency links are generated by GLARF.

Figure 8.2 shows a relation example generated from the text “ in areas

controlled by Syrian troops”. In this relation example R, arg1 is ((“areas”,

“NNS”, “area”, dseq), “LOC”, “Region”, “NOM”), and arg1.dseq is ((OBJ,

areas, in, 1), (OBJ, areas, controlled, 1)). arg2 is ((“troops”, “NNS”, “troop”),

“ORG”, “Government”, “NOM”) and arg2.dseq = ((A-POS, troops, Syrian,

0), (SBJ, troops, controlled, 1)). path is ((OBJ, areas, controlled, 1), (SBJ,

controlled, troops, 0)). The value 0 in a dependency arc indicates forward

direction from w to dw, and 1 indicates backward direction. The seq and link

sequences of R are shown in Figure 8.2.

Some relations occur only between very restricted types of entities, but this

is not true for every type of relation. For example, PER-SOC is a relation

mainly between two person entities, while PHYS can happen between any type

of entity and a GPE or LOC entity.

79

8.4.2 Syntactic Kernels

In this section we will describe the kernels designed for different syntactic sources

and explain the intuition behind them.

We define two kernels to match relation examples at surface level. Using the

notation just defined, we can write the two surface kernels as follows:

1. Argument

ψ1(R1, R2) =
∑

i=1,2

KE(R1.argi, R2.argi),

where KE is a kernel that matches two entities,

KE(E1, E2) =KT (E1.tk, E2.tk) + I(E1.type, E2.type)+

I(E1.subtype, E2.subtype) + I(E1.mtype, E2.mtype)

and

KT (T1, T2) = I(T1.word, T2.word)+I(T1.pos, T2.pos)+I(T1.base, T2.base)

KT is a kernel that matches two tokens. I(x, y) is a binary string match op-

erator that gives 1 if x = y and 0 otherwise. Kernel ψ1 matches attributes

of two entity arguments respectively, such as type, subtype and lexical

head of an entity. This is based on the observation that there are type

constraints on the two arguments. For instance PER-SOC is a relation

mostly between two person entities. So the attributes of the entities are

crucial clues. Lexical information is also important to distinguish relation

types. For instance, in the phrase U.S. president there is an EMP-ORG

relation between president and U.S., while in a U.S. businessman there is

a GPE-AFF relation between businessman and U.S.

80

2. Bigram kernel

ψ2(R1, R2) = Kseq(R1.seq, R2.seq),

where

Kseq(seq, seq
′)

=
∑

0≤i<seq.len

∑

0≤j<seq′.len

(KT (tki, tk
′
j) +KT (< tki, tki+1 >,< tk′j, tk

′
j+1 >))

Operator < t1, t2 > concatenates strings in token t1 and t2 to produce a

new token. So ψ2 is a kernel that simply matches unigrams and bigrams

between the seq sequences of two relation examples. The information this

kernel provides is faithful to the text.

3. Link sequence kernel

ψ3(R1, R2) = Klink(R1.link,R2.link)

=
∑

0≤i<min len

KT (R1.link.tki, R2.link.tki),

where min len is the length of the shorter link sequence in R1 and R2.

ψ3 is a kernel that matches token by token between the link sequences of

two relation examples. Since relations often occur in a short context, we

expect many of them have similar link sequences.

4. Dependency path kernel

ψ4(R1, R2) = Kpath(R1.path,R2.path),

where

Kpath(path, path
′) =

∑

0≤i<path.len

∑

0≤j<path′.len

(I(arci.label, arc
′
j.label)+

KT (arci.dw, arc
′
j.dw)) × I(arci.e, arc

′
j.e)

81

Intuitively the dependency path connecting two arguments could provide

a high level of syntactic regularization. However, a complete match of two

dependency paths is infrequent. So this kernel matches the component

arcs in two dependency paths in a pairwise fashion. Two arcs can match

only when they are in the same direction. In cases where two paths do

not match exactly, this kernel can still tell us how similar they are. In

our experiments we placed an upper bound on the length of dependency

paths for which we computed a nonzero kernel.

5. Local dependency

ψ5(R1, R2) =
∑

i=1,2

KD(R1.argi.dseq, R2.argi.dseq),

where

KD(dseq, dseq′) =
∑

0≤i<dseq.len

∑

0≤j<dseq′.len

(I(arci.label, arc
′
j.label)+

KT (arci.dw, arc
′
j.dw)) × I(arci.e, arc

′
j.e)

This kernel matches the local dependency context around the relation

arguments. This can be helpful especially when the dependency path

between arguments does not exist. We also hope the dependencies on each

argument may provide some useful clues about the entity or connection

of the entity to the context outside of the relation example.

8.4.3 Composite Kernels

Having defined all the kernels representing shallow and deep processing results,

we can define composite kernels to combine and extend the individual kernels.

82

1. Polynomial extension

Φ1(R1, R2) = (ψ1 + ψ2) + (ψ1 + ψ3)
2/4

This kernel combines the argument kernel ψ1 and link kernel ψ3 and applies

a degree 2 polynomial kernel to extend them. This is equivalent to adding

pairs of features as new features. Intuitively this introduces new features

like: the subtype of the first argument is a country name and the word of

the second argument is president, which could be a good clue for an EMP-

ORG relation. The polynomial kernel is down weighted by a normalization

factor because we do not want the high order features to overwhelm the

original ones. In our experiment, using polynomial kernels with degree

higher than 2 did not produce better results.

2. Full kernel

Φ2(R1, R2) = Φ1 + αψ4 + βψ5 + γψ2

This is the final kernel we used for this task, which is a combination of

all the previous kernels. In our experiments, we set all the scalar factors

to 1. Different values were tried, but keeping the original weight for each

kernel yielded the best results for this task.

All the individual kernels we designed are explicit. Each kernel can be seen

as a matching of features and these features are enumerable on the given data.

So it is clear that they are all valid kernels. Since the kernel function set is closed

under linear combination and polynomial extension, the composite kernels are

also valid. The reason we propose to use a feature-based kernel is that we

can have a clear idea of what syntactic clues it represents and what kind of

83

information it misses. This is important when developing or refining kernels,

so that we can make them generate complementary information from different

syntactic processing results.

8.5 Experiments

Experiments were carried out on the ACE RDR (Relation Detection and Recog-

nition) task using hand-annotated entities, provided as part of the ACE evalua-

tion. The ACE corpora contain documents from two sources: newswire (nwire)

documents and broadcast news transcripts (bnews). In this section we will

compare performance of different kernel setups trained with SVM, as well as

different classifiers including KNN and SVM with the same kernel setup. The

SVM package we used is SVM light. The training parameters were chosen using

cross-validation. One-against-all classification was applied to each pair of enti-

ties in a sentence. When SVM predictions conflict on a relation example, the

one with larger margin will be selected as final answer.

8.5.1 Corpus

The ACE RDR training data contains 348 documents, 125K words and 4400

relations. It consists of both nwire and bnews documents. Evaluation of kernels

was done on the training data using 5-fold cross-validation. We also evaluated

the full kernel setup with SVM on the official test data, which is about half the

size of the training data. All the data is preprocessed by the Charniak parser

and GLARF dependency analyzer. Then relation examples are generated based

these results.

84

Kernel Precision Recall F-score

A argument (ψ1) 52.96% 58.47% 55.58%

B A + link (ψ1 + ψ3) 58.77% 71.25% 64.41%*

C B-poly (Φ1) 66.98% 70.33% 68.61%*

D C + dep (Φ1 + ψ4 + ψ5) 69.10% 71.41% 70.23%*

E D + bigram (Φ2) 69.23% 70.50% 70.35%

F argument+dep (ψ1 + ψ4 + ψ5) 57.86% 68.50% 62.73%

Table 8.2: SVM performance on incremental kernel setups. Each setup adds one

level of kernel(s) to the previous one except setup F. Performance was evaluated

on the ACE training data with 5-fold cross-validation. F-scores marked by *

are significantly better than the previous setup (at 95% confidence level)

8.5.2 Results

Table 8.2 shows the performance of the SVM on different kernel setups. The

kernel setups in this experiment are incremental. From this table we can see

that adding kernels continuously improves the performance, which indicates

they provide additional clues to the previous setup. The argument kernel treats

the two arguments as independent entities. The link sequence kernel introduces

the syntactic connection between arguments, so adding it to the argument ker-

nel boosted the performance. Setup F shows the performance of adding only

dependency kernels to the argument kernel. The performance is not as good as

setup B, indicating that dependency information alone is not as crucial as the

link sequence.

Another observation is that adding the bigram kernel in the presence of all

other levels of kernels improved both precision and recall, indicating that it

85

helped in both correcting errors in other processing results and providing sup-

plementary information missed by other levels of analysis. In another experi-

ment evaluated on the nwire data only (about half of the training data), adding

the bigram kernel improved F-score 0.5% and this improvement is statistically

significant.

Table 8.3 shows the performance of SVM and KNN (k Nearest Neighbors) on

different kernel setups. For KNN, k was set to 3. In the first setup of KNN, the

two kernels which seem to contain most of the important information are used.

It performs quite well when compared with the SVM result. The other two tests

are based on the full kernel setup. For the two KNN experiments, adding more

kernels (features) does not help. The reason might be that all kernels (features)

were weighted equally in the composite kernel Φ2 and this may not be optimal

for KNN. Another reason is that the polynomial extension of kernels does not

have any benefit in KNN because it is a monotonic transformation of similarity

values. So the results of KNN on kernel (ψ1 + ψ3) and Φ1 would be exactly the

same. We also tried different k for KNN and k = 3 seems to be the best choice

in either case.

For the four major types of relations SVM does better than KNN, probably

due to SVM’s generalization ability in the presence of large number of features.

For the last three types with many fewer examples, performance of SVM is not

as good as KNN. The reason we think is that training of SVM on these types

is not sufficient. We tried different training parameters for the types with fewer

examples, but no dramatic improvement obtained.

We also evaluated our approach on the official ACE RDR test data and

obtained very competitive scores. The primary scoring metric 2 for the ACE

2http://www.nist.gov/speech/tests/ace/ace04/software.htm

86

Type KNN (ψ1 + ψ3) KNN (Φ2) SVM(ψ1 + ψ3) SVM(Φ1) SVM (Φ2)

EMP-ORG 75.43% 72.66% 70.12% 75.99% 77.76%

PHYS 62.19 % 61.97% 62.36% 65.08% 66.37%

GPE-AFF 58.67% 56.22% 54.50% 59.90% 62.13%

PER-SOC 65.11% 65.61% 69.44% 71.60% 73.46%

DISC 68.20% 62.91% 58.06% 61.44% 66.24%

ART 69.59% 68.65% 66.51% 68.35% 67.68%

Other-AFF 51.05% 55.20% 43.06% 45.89% 46.55%

Average 67.44% 65.69% 64.41% 68.61% 70.35%

Table 8.3: Performance of SVM and KNN (k=3) on different kernel setups.

Types are ordered in decreasing order of frequency of occurrence in the ACE

corpus. For SVM, the same training parameters were used for all 7 types.

evaluation is a ’value’ score, which is computed by deducting from 100 a penalty

for each missing and spurious relation; the penalty depends on the types of the

arguments to the relation. The value scores produced by the ACE scorer for

nwire and bnews test data are 71.7 and 68.0 respectively. The value score on all

data is 70.1. The scorer also reports an F-score based on full or partial match

of relations to the keys. The unweighted F-score for this test produced by the

ACE scorer on all data is 76.0%. For this evaluation we used nearest neighbor

to determine argument ordering and relation subtypes.

The classification scheme in our experiments is one-against-all. It turned out

there is not so much confusion between relation types. The confusion matrix of

predictions is fairly clean. We also tried pairwise classification, and it did not

help much.

87

8.5.3 Examples

One interesting point in the experiment results is that the bigram kernel helped

in the presence of all other kernels. Here we will show some examples to see

the difference. Here Φ2 represents the full composite kernel and Φ−bi represents

Φ2 − ψ2.

Example (1):

Sentence (token sequence):

She is survived by two sons.

Target: PER-SOC

The relation example R = {

arg1=((“She”, “PRO”, “she”), “PER”, “”, “PRO”)

arg1.dseq = ((OBJ survived She))

arg2 = ((“sons”, “NNS”, “son”), “PER”, “”, “NOM”)

arg2.dseq = ((SBJ survived sons), (T-POS sons two))

link = (She is survived by sons)

path = ((OBJ She survived) (SBJ survived sons))

}

For this example, Φ−bi gives a wrong negative prediction, but the prediction

of Φ2 is positive. The relation here is implied by the context. It is very difficult

to extract this relation by syntax. However, it is likely that the words “She” and

“two sons” from the bigram kernel (including unigrams) pushed the prediction

value to be positive.

Example (2):

Sentence (token sequence):

88

His office, clients and nearly everyone else he knows use America Online’s

messaging system.

Target: No-Relation

The relation example R = {

arg1=((“His”, “PRO”, “he”), “PER”, “”, “PRO”)

arg1.dseq = ((T-POS office His), (T-POS clients His), (T-POS everyone

His))

arg2 = ((“everyone”, “NN”, “everyone”), “PER”, “”, “NOM”)

arg2.dseq = ((CONJ and everyone), (SBJ knows everyone), (ADV every-

one nearly), (ADV everyone else), (T-POS everyone His))

link = (office , clients and nearly)

path = ((T-POS His everyone))

}

For this example, the sentence parser failed to produce the correct structure

of the sentence. It recognized His office, clients and nearly everyone else as a

noun phrase. The parse tree was not well-formed. Therefore GLARF produced

wrong dependencies like (T-POS His everyone) and (SBJ knows everyone).

The prediction of Φ−bi is positive for PER-SOC, which is wrong. The predic-

tion of Φ2 is negative, which is correct. For this example, the type of everyone

is PER (PERSON) and the dependency context is (T-POS His everyone). This

context is very similar to cases like His wife or His lawyer, which contain PER-

SOC relation. So the prediction using syntax is positive as PER-SOC. However,

the word information from the bigram kernel pushed the prediction to be neg-

ative and disqualified this prediction.

It is worth to point out that Φ−bi predicted no PER-SOC relation exists for

89

example “His office”, which is correct. The difference from the example above

is that here office is of type “ORG”. So there is no confusion in this case.

Both Φ−bi and Φ2 predicted PER-SOC relation in example “His office,

clients”. Even though this relation is not annotated in the key file, it seems

to be a valid prediction.

8.6 Discussion

In this chapter, we have shown that using kernels to combine information from

different syntactic sources performed well on the entity relation detection task.

Our experiments show that each level of syntactic processing contains useful

information for the task. Combining them may provide complementary infor-

mation to overcome errors arising from linguistic analysis. Especially, low level

information obtained with high reliability helped with the other deep processing

results.

The design feature of our approach should be best employed when the pre-

processing errors at each level are independent, namely when there is no de-

pendency between the preprocessing modules. The model was tested on text

with annotated entities, but its design is generic. It can work with noisy entity

detection input from an automatic tagger. With all the existing information

from other processing levels, this model can also be expected to recover from

errors in entity tagging.

90

8.7 Further Work

1) In the ACE task, all mentions are classified into entity chains according to

their coreference relations. So mentions “George W. Bush”, “the U.S. president”

and “He” should be classified as one entity. For the relation detection task, the

same relation may occur more than once in a document with different context.

Combining the detected relations at different places can help us to correct the

conflicts or retrieve the missed relations.

Relations reflect real world knowledge and some types of relations are per-

sistent within a corpus, such as the presidency of “George W. Bush”. It is also

possible to develop a model to do cross-document validation of relation findings,

which should give a better coverage of relation occurrences.

Recognizing mentions in text has been shown to be a more difficult problem

than recognizing named entities, mostly because there is more ambiguity asso-

ciated with mentions. For example the nominal mention “the one” can refer to

a wide range of entities.

This model can be easily extended to use an automatic mention recognition

result. We can generate relation examples from both recognized mentions and

mention candidates. Then we can run the relation detection algorithm to pro-

duce relations. By examining relation arguments, we may be able to correct

some of the mention recognition errors.

91

Chapter 9

Further Development

9.1 Conclusion

This thesis describes a discriminative approach that combines syntactic clues

automatically to do IE tasks. Each level of information is represented by a

kernel and kernels from all levels can be combined into composite kernels in

a principled way. This approach was tried on slot filler detection and entity

relation recognition, both of which produced state-of-the-art performance.

With the properties of kernels, features from different syntactic levels can

come into play naturally. The experimental results show that word sequence

and shallow syntactic information are also helpful for IE tasks. The reliable

information they provide can help to recover from errors in deep analysis of

text. In slot filler detection, word ngrams also provide long distance information

outside of the local context.

In the current framework, it is also possible to extend the sentence model to

a multi-sentence model. Since an event usually spans multiple sentences, infor-

mation in adjacent sentences is often helpful. There has been some attempt[42]

92

to model such cross-sentence information. But for most prior approaches, this

kind of information is not readily useable. In our framework, we can simply

extend the kernels to cover a larger context.

9.2 The Learning Paradigm

Kernel functions have many nice properties. In the work described in this thesis,

only linear combinations and polynomial extensions of kernels have been tried.

There might be other ways to integrate kernels for information extraction tasks.

In the current setup, multiple classifiers are used to identify each category of

target and these classifiers are independent. However, many of these categories

are strongly correlated, for example the “PERSON IN” and “POST IN”. They

can be expected to occur in pairs in a sentence. So the prediction of one classifier

should be a strong clue for the other. There are also exclusive relations: once a

job position is taken by one person, it should not be taken by another person.

In a broader view of learning, we want to see (or use) models that take struc-

tured input and produce structured output so that the correlation in mapping

structures is employed automatically (in a principled way) by the model. Such

models may include conditional random fields[35] or other hybrid models[29].

9.3 Text Analysis

For most IE tasks, training data is sparse. Simple string match is not enough to

capture semantic similarity between words. For example, the words “walk” and

“go” do not match as strings, but they share very similar semantics. One way

to derive this information is to use general-purpose corpora to cluster words

93

into semantic classes. An alternative is to use available resources like WordNet

to measure semantic distance of words.

In terms of dealing with sparse data, another direction is to do deeper

text analysis to capture more regularizations in the data. Such analysis may

include ongoing work like PropBank[33] by University of Pennsylvania and

NomBank[40] by New York University. Analysis based on this work can gen-

erate regularized semantic representations for lexically or syntactically related

sentence structures. Although deeper analysis may even be less accurate, our

framework is designed to handle this. So we can expect them to provide further

improvements in IE performance.

94

Appendix A

Proof: ψ1

SFD is a kernel

First we define node set U = {ni|1 ≤ i ≤ N}, which contains all nodes from all

the dependency graphs in the corpus. C(n1, n2) can be seen as a dot product

between two feature vectors generated from two graph nodes. For each node

the features are {< ri, ai > |ri ∈ R, ai ∈ V } ∪ {ri|ri ∈ R}. R and V here are

the dependency label set and vocabulary set respective. Since dot product is

always a kernel, C(n1, n2) is a kernel.

As specified in chapter 7, ψSFD traverses each dependency graph from an

entity node in a specific order. We can represent the node sequence seen by

ψSFD as (n1, n2, ..., nk) for a graph with k nodes. Suppose m is the maximum

length of all nodes sequences. Then we can assume all node sequences are of

length m: for a sequence having less than m nodes, we pad empty nodes to the

end and make it of length m.

We define C̃(n1, n2) as an extension of C(n1, n2). C̃(n1, n2) = C(n1, n2) if

both n1 and n2 are non-empty, otherwise C̃(n1, n2) = 0. Suppose the gram

matrix formed by C(n1, n2) is A, then the gram matrix B formed by C̃(n1, n2)

95

is




A 0

0 0





Since A is symmetric and positive semi-definite, B is symmetric and positive

semi-definite. So C̃(n1, n2) is a kernel.

Given two graphs G and G′, we can rewrite

ψSFD(E,E ′) =
∑

1≤i≤m

C̃(ni, n
′
i),

where (ni|1 ≤ i ≤ m) and (n′
i|1 ≤ i ≤ m) are the node sequences visited by

ψSFD for graph G and G′. Since the linear combination of kernels is still a

kernel, we can conclude that ψSFD is a kernel. ♦

96

Bibliography

[1] Proceedings of the Third Message Understanding Conference(MUC-3).

Morgan Kaufmann, 1991.

[2] Proceedings of the Fourth Message Understanding Conference(MUC-4).

Morgan Kaufmann, 1992.

[3] Proceedings of the Fifth Message Understanding Conference(MUC-5). Mor-

gan Kaufmann, 1993.

[4] Proceedings of the Sixth Message Understanding Conference(MUC-6). Mor-

gan Kaufmann, 1995.

[5] Proceedings of the Seventh Message Understanding Conference(MUC-7).

1998.

[6] D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama, A. Kehler, D. Mar-

tin, K. Meyers, and M. Tyson. SRI International FASTUS system: MUC-6

test results and analysis. In Proceedings of the Sixth Message Understand-

ing Conference, 1996.

[7] M. Asahara and Y. Matsumoto. Japanese Named Entity Extraction with

Redundant Morphological Analysis. In Proceedings of Human Language

Technology Conference(HLT-NAACL), 2003.

97

[8] I. G. B. Boser and V. Vapnik. An training algorithm for optimal margin

classifiers. In Fifth Annual Workshop on Computational Learning Theory,

1992.

[9] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble: a high-

performance learning name-finder. In Proceedings of the Fifth Conference

on Applied Natural Language Processing, 1997.

[10] A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman. Exploiting di-

verse knowledge sources via maximum entropy in named entity recognition.

In Proceedings of the Sixth Workshop on Very Large Corpora, Montreal,

1998.

[11] M. E. Califf and R. J. Mooney. Relational Learning of Pattern-Match Rules

for Information Extraction. Working Notes of AAAI Spring Symposium

on Applying Machine Learning to Discourse Processing, Menlo Park, CA,

1998.

[12] C.-C. Chang and C.-J. Lin. Training nu-Support Vector Classifiers: Theory

and Algorithms. Neural Computation, 2001.

[13] H. L. Chieu, H. T. Ng, and Y. K. Lee. Closing the Gap: Learning-Based

Information Extraction Rivaling Knowledge-Engineering Methods. In Pro-

ceedings of the 41st Annual Meeting of the Association for Computational

Linguistics, 2003.

[14] M. Collins and N. Duffy. Convolution Kernels for Natural Language. In

Proceedings of Neural Information Processing Systems, 2001.

98

[15] M. Collins and N. Duffy. Parsing with a Single Neuron: Convolution Ker-

nels for Natural Language Problems. In Technical Report UCS-CRL-01-10.

UC Santa Cruz, 2001.

[16] M. Collins and S. Miller. Semantic tagging using a probabilistic context

free grammar. In Proceedings of 6th Workshop on Very Large Corpora,

Montreal, Canada, 15-16 August., 1997.

[17] C. Cortes, P. Haffner, and M. Mohri. Rational Kernels: Theory and Algo-

rithms. Journal of Machine Learning Research (JMLR), 2004.

[18] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning,

1995.

[19] N. Cristianini and J. Shawe-Taylor. An introduction to support vector ma-

chines. Cambridge University Press, 2000.

[20] A. Culotta and J. Sorensen. Dependency Tree Kernels for Relation Extrac-

tion. In Proceedings of the 42nd Annual Meeting of the Association for

Computational Linguistics, 2004.

[21] D. Fisher, S. Soderland, J. McCarthy, F. Feng, and W. Lehnert. Description

of The Umass System As Used For MUC-6. In Proceedings of the Sixth

Message Understanding Conference, 1996.

[22] R. Grishman. The NYU System for MUC-6 or Where’s the Syntax? In

Proceedings of the Sixth Message Understanding Conference, 1996.

[23] R. Grishman. Information Extraction: Techniques and Challenges. In-

formation Extraction (International Summer School SCIE-97), Springer-

Verlag, 1997.

99

[24] R. Grishman. Information Extraction. The Oxford Handbook of Compu-

tational Linguistics, 2003.

[25] Z. S. Harris. Linguistic Transformations for Information Retrieval. In

Proceedings of International Conference on Scientific Information, 1957.

[26] D. Haussler. Convolution Kernels on Discrete Structures. UC Santa Cruz

Technical Report UCS-CRL-99-10, 1999.

[27] K. Humphreys, R. Gaizauskas, S. Azzam, C. Huyck, B. Mitchell, and Y. W.

H. Cunningham. University Of Sheffield: Description Of The LaSIE-II

System As Used For MUC-7. In Proceedings of the Seventh Message Un-

derstanding Conference, 1998.

[28] H. Isozaki and H. Kazawa. Efficient Support Vector Classifiers for Named

Entity Recognition. In Proceedings of the 18th International Conference on

Computational Linguistices, 2002.

[29] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination.

Technical Report of Massachusetts Institute of Technology, Artificial Intel-

ligence Laboratory, 1999.

[30] T. Joachims. Making large-scale support vector machine learning practical.

MIT Press, Cambridge, MA, 1998.

[31] T. Joachims. Text categorization with support vector machines: learning

with many relevant features. In Proceedings of 10th European Conference

on Machine Learning(ECML-98), Chemnitz, DE, 1998.

[32] N. Kambhatla. Combining Lexical, Syntactic and Semantic Features with

Maximum Entropy Models for Extracting Relations. In Proceedings of the

100

42nd Annual Meeting of the Association for Computational Linguistics,

2004.

[33] P. Kingsbury and M. Palmer. From Treebank to PropBank. In Proceedings

of the 3rd International Conference on Language Resources and Evaluation

(LREC), 2002.

[34] T. Kudo and Y. Matsumoto. Chunking with support vector machines. In

Proceedings of NAACL, 2001.

[35] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-

abilistic models for segmenting and labeling sequence data. In Proceedings

of the International Conference on Machine Learning (ICML), 2001.

[36] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins.

Text Classification using String Kernels. Journal of Machine Learning Re-

search, 2002.

[37] J. Mayfield, P. McNamee, and C. Piatko. Named Entity Recognition us-

ing Hundreds of Thousands of Features. In Proceedings of Conference on

Computational Natural Language Learning, 2003.

[38] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 1943.

[39] A. Meyers, R. Grishman, M. Kosaka, and S. Zhao. Covering Treebanks

with GLARF. In ACL/EACL Workshop on Sharing Tools and Resources

for Research and Education, 2001.

101

[40] A. Meyers, R. Reeves, C. Macleod, R. Szekeley, V. Zielinska, and B. Young.

The Cross-Breeding of Dictionaries. Proceedings of LREC-2004, Lisbon,

Portugal, 2004.

[41] A. Mikheev and C. Grover. LTG: Description of the NE recognition system

as used for MUC-7. In Proceedings of the Seventh Message Understanding

Conference, 1998.

[42] S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, and

R. Weischedel. BBN: Description of The SIFT System As Used For MUC-

7. In Proceedings of the Seventh Message Understanding Conference, 1998.

[43] S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. A novel use of statistical

parsing to extract information from text. In Proceedings of the 6th Applied

Natural Language Processing Conference, 2000.

[44] E. Riloff. Automatically constructing a dictionary for information extrac-

tion tasks. In Proceedings of the 11th National Conference on Artificial

Intelligence (AAAI-93), 1993.

[45] E. Riloff. Automatically constructing a dictionary for information ex-

traction tasks. Proceedings of the 11th National Conference on Artificial

Intelligence(AAAI-93), 1993.

[46] F. Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological Review, 1958.

[47] D. Roth and W. tau Yih. Probabilistic reasoning for entity and relation

recognition. In Proceedings of the 18th International Conference on Com-

putational Linguistices, 2002.

102

[48] N. Sager, C. Friedman, and M. Lyman. Medical Language Processing:

Computer Management of Narrative Data. Addision Wesley, 1987.

[49] G. Salton and C. S. Yang. A Vector Space Model for Automatic Indexing.

Communication of the ACM, 1975.

[50] B. Schoelkopf, J. Weston, E. Eskin, C. Leslie, and W. S. Noble. Dealing

with Large Diagonals in Kernel Matrices. Principles of Data Mining and

Knowledge Discovery. Lecture Notes in Computer Science, 2002.

[51] S. Sekine, R. Grishman, and H. Shinnou. A decision tree method for finding

and classifying names in Japanese texts. In Proceedings the Sixth Work-

shop on Very Large Corpora, 1998.

[52] S. Sekine and C. Nobata. Definition, Dictionary and Tagger for Extended

Named Entities. In Proceedings of the Forth International Conference on

Language Resources and Evaluation, 2004.

[53] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. CRYSTAL: Inducing

a Conceptual Dictionary. In Proceedings of the Fourteenth International

Joint Conference on Artificial Intelligence (IJCAI), 1995.

[54] J. Suzuki, T. Hirao, Y. Sasaki, and E. Maeda. Hierarchical Directed Acyclic

Graph Kernel: Methods for Structured Natural Language Data. In Pro-

ceedings of the 41st Annual Meeting of the Association for Computational

Linguistics, 2003.

[55] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience Publication,

1998.

103

[56] H. Yamada, T. Kudoh, and Y. Matsumoto. Japanese named entity ex-

traction using support vector machines (in Japanese). In IPSJ SIG Notes

NL-142-17, 2001.

[57] D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation

extraction. Journal of Machine Learning Research, 2003.

[58] S. Zhao, A. Meyers, and R. Grishman. Discriminative Slot Detection Using

Kernel Methods. In Proceedings of the 20th International Conference on

Computational Linguistices, 2004.

104

