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Exposure-Resilient CryptographybyYevgeniy DodisSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon August 25, 2000, in partial ful�llment of therequirements for the degree ofDo
tor of PhilosophyAbstra
tWe develop the notion of Exposure-Resilient Cryptography. While standard 
rypto-graphi
 de�nitions and 
onstru
tions do not guarantee any se
urity even if a tinyfra
tion of the se
ret entity (e.g., 
ryptographi
 key) is 
ompromised, the obje
tive ofExposure-Resilient Cryptography is to build information stru
tures su
h that almost
omplete (intentional or unintentional) exposure of su
h a stru
ture still prote
ts these
ret information embedded in this stru
ture.The key to our approa
h is a new primitive of independent interest, whi
h we
all an Exposure-Resilient Fun
tion (ERF) { a deterministi
 fun
tion whose outputappears random (in a perfe
t, statisti
al or 
omputational sense) even if almost allthe bits of the input are known. ERF's by themselves eÆ
iently solve the partialexposure of se
rets in the setting where the se
ret is simply a random value, like inthe private-key 
ryptography. They 
an also be viewed as very se
ure pseudorandomgenerators and have many other appli
ations.To solve the general partial exposure of se
rets, we use the (generalized) notionof an All-Or-Nothing Transform (AONT) introdu
ed by Rivest [51℄ and re�ned byBoyko [16℄: an invertible (randomized) transformation T whi
h, nevertheless, reveals\no information" about x even if almost all the bits of T (x) are known. By applyingan AONT to the se
ret entity (of arbitrary stru
ture), we obtain se
urity againstalmost total exposure of se
rets. AONT's have also many other diverse appli
ationsin the design of blo
k 
iphers, se
ret sharing and se
ure 
ommuni
ation. To date,however, the only known analyses of AONT 
andidates were made in the randomora
le model (by Boyko [16℄).In this thesis we 
onstru
t ERF's and AONT's with nearly optimal parameters inthe standard model (without random ora
les), in the perfe
t, statisti
al and 
ompu-tational settings (the latter based only on one-way fun
tions). We also show 
loserelationship between and examine many additional properties of what we hope willbe
ome important 
ryptographi
 primitives | Exposure-Resilient Fun
tions and All-Or-Nothing Transforms.Thesis Supervisor: Madhu SudanTitle: Asso
iate Professor
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Chapter 1
Introdu
tion and Our Results
Se
ret Keys. In very general terms, 
ryptography 
an be de�ned as a bran
h of
omputer s
ien
e aimed to prote
t the dis
losure of se
ret information to unautho-rized parties. The exa
t meaning of \dis
losure", \se
ret information", \unauthorizedparties" and many other related terms varies dramati
ally from appli
ation to appli-
ation, and 
ru
ially depends on the exa
t 
ryptographi
 model we use to abstra
tthe reality. However, most 
ryptographi
 models 
an be des
ribed in terms of thefollowing pie
es (only the �rst of whi
h will be relevant to the subsequent dis
ussion):1. A bun
h of se
ret entities (usually 
alled keys) known only to \legitimate users".We noti
e that we do not restri
t our attention to so 
alled \
ryptographi
" keys,like se
ret keys for en
ryption, signatures, identi�
ation, et
. For example, a\se
ret key" 
an be a 
on�dential do
ument, a se
ret te
hnology, a patent, apie
e of proprietary software, a 
opyrighted audio/video re
ording, a databaseof employee salaries, re
ords of �nan
ial transa
tions, et
. For the la
k of abetter term, all of the above se
ret entities will be 
alled \se
ret keys". Forsimpli
ity, we will also assume that there is only a single key that needs to bekept se
ret.2. The desired fun
tionality of the system (by legitimate users).3. The (often somehow limited) 
apabilities of the \illegitimate users" (typi
ally11



assumed to be 
oordinated by a single entity, 
alled the adversary).4. Finally, the se
urity 
laim we 
an make about our system.In the above generi
 des
ription, the thing 
on
erning us the most will be the impli
it,but nevertheless fundamental assumption that the se
ret key has to be kept 
ompletelyhidden from the adversary.1 This assumption is so basi
 and so \obviously needed"for any reasonable notion of se
urity, that one may wonder why to even bring it up.But what happens if this most basi
 assumption breaks down?The Problem of Key Exposure. Namely, what happens if the se
re
y of our keybe
omes (partially) 
ompromised? After a brief initial surprise of being asked su
han obvious question, the equally obvious answers (stated in the order of information
ontent) would be:� \I don't know".� \Well... make sure it does not".� \This is outside the model of 
onventional 
ryptography".� \Good lu
k..." (meaning \you are doomed", as the adversary knows the sameinformation as the legitimate user).While these (reasonable) answers might suggest that this is a strange question toask, it has been noted that key exposure is one of the greatest threats to se
urity inpra
ti
e (see [7℄). For a 
on
rete re
ent example, at the Rump session of CRYPTO '98van Someren [58℄ illustrated a breathtakingly simple atta
k by whi
h keys stored inthe memory of a 
omputer 
ould be identi�ed and extra
ted, by looking for regions ofmemory with high entropy. Within weeks of the appearan
e of the followup paper [55℄,a new generation of 
omputer viruses emerged that tried to use these ideas to stealse
ret keys [25℄. More abstra
tly, one 
an imagine very sophisti
ated atta
ks to break1Aside from the information that the adversary 
an get from his \legal intera
tion" with thesystem. But this is taken into a

ount when de�ning the se
urity of the system.12



the se
urity of a given system, but getting the se
ret key, if possible, would be themost trivial way to 
ompletely demolish any se
urity 
laim!2Previous Solutions. The most widely 
onsidered solutions to the problem of keyexposure are distribution of keys a
ross multiple servers via se
ret sharing [54, 38, 13℄and prote
tion using spe
ialized hardware. Instantiations of the key distributionparadigm in
lude threshold 
ryptosystems [22℄ and proa
tive 
ryptosystems [35℄. Dis-tribution a
ross many systems, however, is quite 
ostly. Su
h an option may be avail-able to large organizations, but is not realisti
 for the average user. Similarly, the useof spe
ially prote
ted hardware (su
h as smart
ards) 
an also be 
ostly, in
onvenient,or inappli
able in many 
ontexts.Another approa
h to the problem of key exposure is that of forward-se
urity (or,prote
tion from the exposure of \past" keys) 
onsidered by DiÆe et al. [23℄ in the
ontext of key ex
hange, and by Anderson [3℄, Bellare and Miner [7℄ and Abdalla andReyzin [2℄ in the 
ontext of signature s
hemes. In these works the se
ret key is beingdynami
ally updated (without a�e
ting the publi
 information). The obje
tive is toprevent an adversary that gains 
urrent se
ret keys from being able to de
rypt pastmessages or forge signatures on messages \dated" in the past. Inevitably, however, thesystem 
an no longer be used in the future on
e the 
urrent keys have been exposed.Partial Key Exposure. As we pointed out, se
re
y of keys is a fundamentalassumption of 
onventional 
ryptography. While partial solutions exist, not mu
h
an be done sin
e the adversary has the same information as the legitimate userafter the se
ret has been exposed. Instead, we will look at a slight relaxation of thisquestion, whi
h looks 
onsiderably more hopeful. Namely, we assume that out se
retis not 
ompletely exposed. Rather, the adversary learns most, but not all of the se
ret.For example, imagine using a smart
ard to prote
t our key. While it is quitereasonable to assume that the smart
ard is tamper-resistant enough not to leak theentire key, it might be a bit too dangerous to be 
on�dent that not even a small2As a famous Russian philosopher Koz'ma Prutkov said: \Zri v koren' " (\look into the root").Two 
ommon interpretations of this amazingly deep phrase are \seek the obvious" and \get to thebottom of things". See [47℄ for more information about Koz'ma Prutkov.13



part of the key 
an be extra
ted. Or imagine sending a sensitive information oversome 
ommuni
ation 
hannel, whi
h is believed to be se
ure (so that no en
ryptionis performed, or the parties did not have a 
han
e to ex
hange keys yet). However,the adversary manages to partially break into the 
hannel and overhear some portionof the 
ommuni
ation. Alternatively, the 
hannel is known to be reliable for theauthorized parties, and is known to be somewhat noisy to the adversary. Whileen
ryption would be a good solution, it 
ould be an overkill sin
e we 
an exploit thenoise introdu
ed to the adversary. Another situation would be when the adversary istrying to 
opy a large 
on�dential do
ument, but the intrusion dete
tion system 
utthe transmission in the middle. Yet another example would be a large �le 
opied toseveral 
oppy disks (it is too large to �t onto one disk), and one of these disks beinglost, stolen or 
opied.In the same vein, we may purposely (e.g., for se
urity reasons) split the keyinto physi
al shares (rather than using spa
e-ineÆ
ient 
onventional se
ret sharings
hemes), and to store these shares in di�erent parts of memory (or even on di�erentma
hines). But then we 
annot in general argue the se
urity sin
e leaking even onephysi
al share may make the underlying appli
ation inse
ure. It would be ni
e to�nd a way to make this simple approa
h work. Alternatively, a natural idea wouldbe to use a 
onventional se
ret sharing s
heme to split the key into shares, and thenattempt to provide prote
tion by storing these shares instead of storing the se
retkey dire
tly. However, se
ret sharing s
hemes only guarantee se
urity if the adver-sary misses at least one share in its entirety. Unfortunately, ea
h share must be fairlylarge (about as long as the se
urity parameter). Hen
e, even if an adversary onlylearns a small fra
tion of all the bits, it 
ould be that it learns a few bits from ea
hof the shares, and hen
e the safety of the se
ret 
an no longer be guaranteed.3Exposure-Resilient Cryptography. In fa
t, standard 
ryptographi
 de�nitionsand 
onstru
tions do not guarantee se
urity even if a tiny fra
tion of the se
ret key is3Indeed, our te
hniques provide, for 
ertain parameters, highly eÆ
ient \gap" se
ret sharings
hemes, where the size of se
ret shares 
an be as small as one bit! Inevitably, however, there is agap between the number of people who 
an re
onstru
t the se
ret and the number of people who\get no information" about the se
ret. 14



exposed. Indeed, many 
onstru
tions be
ome provably inse
ure (the simplest examplewould be the \one-time pad" en
ryption), while the se
urity of others be
omes un
lear(and a 
omplete mess to verify!). In other words, 
onventional 
ryptographi
 systemsare not (and should not be!) designed so as to tolerate partial key exposure. In thisthesis we develop the notion of Exposure-Resilient Cryptography, one of whose maingoal is to identify and to build general 
ryptographi
 primitives whi
h are obliviousto the 
ryptographi
 system we are using, but 
an make any su
h system provablyse
ure against almost total key exposure. More generally than this, the obje
tive ofExposure-Resilient Cryptography will be to build information stru
tures su
h that al-most 
omplete (intentional or unintentional) exposure of su
h a stru
ture still prote
ts
ertain se
ret information embedded in this stru
ture. In parti
ular, on
e we de�nemore pre
isely the 
ryptographi
 primitives we develop, these primitives will provevery useful in many appli
ations beyond the problem of partial key exposure. Theseappli
ations in
lude se
ret sharing, se
ure 
ommuni
ation, se
ret-key ex
hange, morese
ure and eÆ
ient blo
k 
iphers, remotely keyed en
ryption, 
oin-
ipping, fair in-formation ex
hange and others (see Se
tion 3). In other words, the te
hniques forsolving the problem of partial key exposure will prove useful in may other areas,making Exposure-Resilient Cryptography a general useful tool.Without further delay, we are now ready to introdu
e the main primitives forExposure-Resilient Cryptography: All-Or-Nothing Transforms and Exposure-ResilientFun
tions.All-Or-Nothing Transforms. Re
ently Rivest [51℄, motivated by di�erent se-
urity 
on
erns arising in the 
ontext of blo
k 
iphers, introdu
ed an intriguing prim-itive 
alled the All-Or-Nothing Transform (AONT). Rivest's work was re�ned andextended by Boyko [16℄, whose de�nition we informally present below. An AONT isan eÆ
iently 
omputable randomized transformation T on strings su
h that:� For any string x, given (all the bits of) T (x), one 
an eÆ
iently re
over x.� There exists some threshold ` su
h that any polynomial-time adversary that(adaptively) learns all but ` bits of T (x) obtains \no information" about x.15
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Figure 1-1: All-Or-Nothing Transform.This is informally illustrated in Figure 1-1.We observe that the AONT solves the problem of partial key exposure: rather thanstoring a se
ret key dire
tly, we store the AONT applied to the se
ret key. If we 
anbuild an AONT where the threshold value ` is very small 
ompared to the size of theoutput of the AONT, we obtain se
urity against almost total exposure. Noti
e thatthis methodology applies to se
ret keys with arbitrary stru
ture, and thus prote
tsall kinds of 
ryptographi
 systems. We also 
onsider more general AONT's that havea two-part output: a publi
 output that doesn't need to be prote
ted (but is used forinversion), and a se
ret output that has the exposure-resilien
e property stated above.Su
h a notion would also provide the kind of prote
tion we seek to a
hieve, suÆ
es forall known appli
ations of AONT, and allows us mu
h more 
exibility. Thus, we refer tothe traditional notion of AONT as se
ret-only. As mentioned above, AONT has manyother appli
ations, su
h as enhan
ing the se
urity of blo
k-
iphers [51, 21, 16℄, hashfun
tions [57℄, se
ure 
ommuni
ation [10℄, making �xed-blo
ksize en
ryption s
hemesmore eÆ
ient [37, 41, 4℄, gap se
ret sharing s
hemes [51, 17℄ and others [52, 16℄. Wewill survey these and other appli
ations later.16
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Figure 1-2: Exposure-Resilient Fun
tion.Exposure-Resilient Fun
tions. The key to our approa
h and our main 
on-
eptual 
ontribution is the new notion of an Exposure-Resilient Fun
tion (ERF) | adeterministi
 fun
tion whose output appears random even if almost all the bits of theinput are revealed. This is informally illustrated in Figure 1-2.We demonstrate that the notion of ERF is very useful and interesting in its ownright. Consider for example an ERF with an output that is longer than its input |this 
an be seen a parti
ularly strong kind of pseudorandom generator, where thegenerator's output remains pseudorandom even if most of the seed is known. ERF'sprovide an alternative solution to AONT for the partial key exposure problem, sin
e(at least, in prin
iple) we 
an assume that our se
ret key is a truly random string R(say, the randomness used to generate the a
tual se
ret key). In su
h a 
ase, we 
hooseand store a random value r and use ERF(r) in pla
e of R. In many settings (su
has in private-key 
ryptography) this alternative is mu
h more eÆ
ient than AONT.Another appli
ation of ERF's is for prote
ting against gradual key exposure, where nobound on the amount of information the adversary obtains is assumed; instead, weassume only a bound on the rate at whi
h that the adversary gains information. Wewill later show other appli
ations of exposure-resilient fun
tions.Our Results. We give natural and simple de�nitions for ERF's and AONT's in theperfe
t, statisti
al and 
omputational settings (i.e., a
hieving ideal, un
onditionalwith a negligible error and 
omputational se
urity, respe
tively). We then derive17



essentially optimal results 
on
erning ERF's and AONT's in ea
h of these settings.These results 
an be brie
y summarized as follows.� Limitations of Perfe
t ERF's and AONT's. We show that perfe
t ERF'simply perfe
t AONT's with the \same parameters". Unfortunately, we provethat perfe
t AONT's (and thus ERF's) have very strong 
ombinatorial limita-tions. In essen
e, even if we allow exponential size output of the AONT, theenemy must miss at least half of the output in order to not learn anything aboutthe input! The result is interesting in its own right and shows the impossibilityof 
ertain \balan
ed" 
olorings of the hyper
ube. It also generalizes the lowerbound of Friedman [28℄ and further settles the 
onje
tures of Chor et al. [20℄.� Constru
tion of Perfe
t ERF's and AONT's. On a positive side, we 
analmost mat
h our lower bound (for both ERF's and AONT's) with a general
onstru
tion of [20, 10℄ that uses linear binary error-
orre
ting 
odes.� Optimal Statisti
al ERF. We build an un
onditionally se
ure ERF whoseoutput of size k is statisti
ally 
lose to uniform provided one misses only ` =k + o(k) bits of the input (whose size 
an be arbitrarily large 
ompared to `).This is optimal up to the lower order term, sin
e we show that no un
ondition-ally se
ure ERF's exist when k < `. Thus, statisti
al ERF's 
an a
hieve mu
hbetter exposure-resilien
e than perfe
t ERF's, and their only limitation is thelimited output size (at most `). This statisti
al 
onstru
tion is one of our mainte
hni
al 
ontribution, and it uses very powerful 
ombinatorial obje
ts 
alledstrong randomness extra
tors.� Computational ERF's ) one-way fun
tions. Furthermore, we show thatany 
omputationally se
ure ERF with k < ` implies the existen
e of one-wayfun
tions, whi
h is nearly the best we 
an hope to show due to the un
onditional
onstru
tion above.� Computational ERF's from one-way fun
tions. We show how to 
on-stru
t, from any one-way fun
tion, for any " > 0, an ERF mapping an input of18



n bits to an output of any size polynomial in n, su
h that as long as any n� bitsof the input remain unknown, the output will be pseudorandom. This 
an beviewed as an extremely strong pseudorandom generator, and shows that we 
ana
hieve essentially any 
on
eivable setting of parameters in the 
omputationalsetting.� AONT's from ERF's. We give a simple \universal" 
onstru
tion of an AONTbased on any ERF, whi
h works in any setting (in parti
ular, statisti
al and
omputational). Moreover, when used with the best ERF's in the 
orrespondingsetting, we get nearly optimal AONT's, as we explain below.� Optimal Statisti
al AONT's. In the statisti
al setting, we get an AONTwith resilien
e ` = k + o(k) (where k is the size of the input, and the se
retpart 
an be arbitrarily large 
ompared to `), whi
h is optimal up to the lowerorder term sin
e we show that ` � k for any statisti
al AONT. In fa
t, we
an even get a se
ret-only AONT with ` = O(k) still. Again, these resultsdramati
ally beat our impossibility result for perfe
t AONT's, and show a largegap in exposure-resilien
e between the perfe
t and the statisti
al settings.� Computational AONT's ) one-way fun
tions. Furthermore, the exis-ten
e of 
omputational AONT with ` < k, where k is the size of the input,implies the existen
e of one-way fun
tions. This is nearly the best we 
an hopeto show due to the statisti
al 
onstru
tion above.� Computational AONT's from any one-way fun
tion. If k is the lengthof the input, we get a publi
 output of length k, a se
ret output of essentiallyarbitrary size s, and a
hieve resilien
e ` = s� (for any � > 0). For example,setting s = k we 
an a
hieve nearly optimal total output size 2k, se
ret andpubli
 parts of size k and very good resilien
e ` = k�.� Towards se
ret-only AONT. We give another 
onstru
tion of a se
ret-onlyAONT based on any length-preserving fun
tion f su
h that both [x 7! f(x)℄and [x 7! f(x) � x℄ are ERF's. This 
onstru
tion is similar to the OAEP19




onstru
tion of Bellare and Rogaway [8℄ (whi
h was shown to be an AONT in therandom ora
le model4 by Boyko [16℄), and so our analysis makes a step towardsabstra
ting the properties of the random ora
le needed to make the OAEP workas an AONT. It also has the advantage of being se
ret-only (without separatepubli
 and se
ret outputs) while retaining a relatively short output length.� Worst-
ase/Average-
ase AONT's. We also show a stru
tural result thata seemingly weaker \average-
ase" de�nition of AONT is almost equivalent tothe standard \worst-
ase" de�nition of AONT, by giving an eÆ
ient transfor-mation that a
hieves this goal.� Adaptively Se
ure ERF's and AONT's. Finally, we 
onsider the notion ofadaptively se
ure ERF's and AONT's. Contrary to the \non-adaptive" notionswe dis
ussed above, where the adversary de
ides in advan
e whi
h bits of thestored se
ret he is going to observe (as long as he misses ` bits), here we allowthe adversary to a

ess the se
ret adaptively \one-bit-at-a-time", i.e. to base itsde
ision of whi
h bits to read depending on the information that he gathered sofar. We 
all the ERF's and AONT's resilient against su
h adversaries adaptivelyse
ure. It turns out that it is signi�
antly more 
hallenging to build adaptivelyse
ure ERF's and AONT's. In parti
ular, some of our \non-adaptive" 
onstru
-tions above do not work against adaptive adversaries. Based on the ideas ofTrevisan and Vadhan [62℄, we over
ome these diÆ
ulties and give eÆ
ient prob-abilisti
 
onstru
tions of adaptively se
ure ERF's and AONT's with essentiallythe same (and even slightly better) parameters than in the regular non-adaptivesetting.To reiterate our results, we show that perfe
t AONT's and ERF's, while 
on
eptu-ally attra
tive, 
annot a
hieve the exposure-resilien
e we ultimately desire. On theother hand, statisti
al ERF's and AONT's 
an a
hieve ex
ellent exposure-resilien
e.However, they are limited in terms of requiring that the adversary misses at least as4In this idealized model all the parti
ipants have publi
 a

ess to a 
erti�ed truly random fun
tion.20



many bits as the amount of information or randomness we are trying to hide. Fi-nally, we show that in the 
omputational setting we 
an over
ome even this limitationand a
hieve essentially any desirable setting of parameters | all based only on theexisten
e of one-way fun
tions. In fa
t, for \interesting" settings of parameters, 
om-putational ERF's, AONT's and one-way fun
tions are \equivalent". Finally, we showthat all the above results and impli
ations 
an be extended to the adaptive setting,ex
ept our main 
onstru
tions be
ome probabilisti
.In addition to the above results, we examine many additional properties andappli
ations of what we hope will be
ome important 
ryptographi
 primitives |Exposure-Resilient Fun
tions and All-Or-Nothing Transforms.Previous Work. Until this work, the only known analysis of an AONT 
andidatewas 
arried out by Boyko [16℄,5 who showed that Bellare and Rogaway's OptimalAsymmetri
 En
ryption Padding (OAEP) [8℄ yields an AONT in the Random Ora
lemodel. Boyko's work was the �rst formal treatment of the AONT, stimulated alot of subsequent resear
h and a
hieved essentially the best possible AONT's in theRandom Ora
le model. However, analysis in the Random Ora
le model provides onlya limited se
urity guarantee for real-life s
hemes where the random ora
le is repla
edwith an a
tual hash fun
tion [18℄. Subsequent to our work, Desai [21℄ gave anotherprovable 
onstru
tion of an AONT (based on the original informal 
onstru
tion ofRivest [51℄) and analyzed it in the so 
alled \ideal 
ipher model".6 This 
onstru
tionalso a
hieves a somewhat weaker se
urity notion than the one we 
onsider here, eventhough this notion is strong enough for several important appli
ations of the AONT.Thus, our work gives the �rst provable 
onstru
tions for AONT's with essentiallyoptimal resilien
e in the standard model, based either on no assumptions, or only onthe minimal 
omputational assumption that one-way fun
tions exist.Vazirani [63℄ de�ned a notion later 
alled a t-resilient fun
tion, whi
h turns out to5Though for a mu
h weaker de�nition of se
urity than the one we study here, Stinson [60℄ hasgiven an elegant 
onstru
tion for AONT with se
urity analysis in the standard setting. As observedby [16℄, however, this 
onstru
tion does not a
hieve the kind of se
urity 
onsidered here.6I.e., all the parti
ipants have a

ess to a keyed family of independent random permutations.21



be equivalent to our notion of perfe
t ERF's.7 A t-resilient fun
tion is a fun
tion whoseoutput is truly random even if the adversary 
an �x any t of the inputs to the fun
tion.Chor et al. [20℄ and, independently, Bennett et al. [10℄ 
onsidered this notion in amu
h greater detail. In parti
ular, a very ni
e 
onstru
tion for t-resilient fun
tionswas given by [20, 10℄ based on error-
orre
ting 
odes. We use this 
onstru
tion whentalking about perfe
t ERF's, and then extend it to 
onstru
ting perfe
t AONT's,as was also impli
itly done by [10℄. Chor et al. [20℄ gave some initial impossibilityresults for t-resilient fun
tions (whi
h, as we said, are equivalent to perfe
t ERF's) and
onje
tured that mu
h more general impossibility results hold. In parti
ular (viewedin terms of ERF's), the adversary must essentially miss at least half of the inputbits in order for the output to be random (whi
h was the fundamental limitation oftheir 
oding theory 
onstru
tion that we mentioned). This 
onje
ture stood for sometime and was �nally aÆrmatively resolved by Friedman [28℄ (another proof was latergiven by [11℄). Our impossibility result for perfe
t AONT's non-trivially extends this
onje
ture (sin
e we show that perfe
t ERF's imply perfe
t AONT's) and subsumesthe results of [28, 11℄, whose te
hniques do not apply to our more general setting.Kurosawa et al. [39℄ 
onsidered a slightly relaxed notion of almost t-resilient fun
-tions. An almost t-resilient fun
tion is a fun
tion whose output is \very 
lose" touniform even if the adversary 
an �x any t of the inputs to the fun
tion. As we willsee, this notion stands somewhere \in between" the notions of perfe
t and statisti
alERF's, and turns out to be essentially equivalent to our notion of adaptively se
urestatisti
al ERF.8 Kurosawa et al. somewhat improved the parameters a
hieved by [20℄in 
onstru
ting (regular) t-resilient fun
tions, but their 
onstru
tion still requires theadversary to �x at most half of the input bits. While the 
onsiderable 
omplexity ofthis 
onstru
tion, 
oupled with the pessimisti
 parameters it a
hieves, might suggestthat almost t-resilient fun
tions share the same strong limitations as regular t-resilientfun
tions (i.e., perfe
t ERF's), we will show that this is not the 
ase. More spe
i�-7If n is the size of the input and ` = n� t, then t-resilient fun
tion is the same as `-ERF.8Almost t-resilient fun
tions are slightly stri
ter, but our 
onstru
tion of adaptively se
ure sta-tisti
al ERF's will a
tually a
hieve it. 22




ally, using our 
onstru
tion of adaptively se
ure statisti
al ERF's we will allow theadversary to �x t � (n � k) input bits, where n is the size of the input and k isthe size of the output, whi
h is easily seen to be the best possible. Even though our
onstru
tion is probabilisti
 (
ontrary to that of [39℄), it su

eeds with overwhelmingprobability and shows that almost t-resilient fun
tions are mu
h more powerful thanregular t-resilient fun
tions.Finally, we already mentioned the works of [23, 3, 7, 2, 1℄ on forward-se
urity.These works prevent an adversary that gains 
urrent se
ret keys from being ableto de
rypt past messages or forge signatures on messages \dated" in the past. In
ontrast, our work deals with providing se
urity for both the future as well as thepast, but assuming that not all of the se
ret key is 
ompromised.Organization of the Thesis. In Chapter 2 we de�ne some preliminaries and somegeneral results that we will use. In parti
ular, we will examine the notions of semanti
se
urity and indistinguishability, de�ne some important 
ryptographi
 basi
s, likeone-way fun
tions and pseudorandom generators, talk about error-
orre
ting 
odes,introdu
e randomness extra
tors and t-wise independent fun
tions, and state somebasi
 fa
ts from linear algebra and Fourier analysis. Some of the results are new andof independent interest. For example, we give a simple generi
 proof that semanti
se
urity is equivalent to indistinguishability, substantially simplifying (albeit for aslightly weaker but equally natural de�nition of semanti
 se
urity) the original proofof Goldwasser and Mi
ali [33℄.In Chapter 3 we formally de�ne our main gadgets: Exposure-Resilient Fun
tionsand All-Or-Nothing Transforms. We give simple de�nitions in the perfe
t, statisti
aland 
omputational settings, and also distinguish between non-adaptive and adaptiveERF's and AONT's. We then 
ompare ERF's and AONT's with ea
h other and withsome other fundamental notions like pseudorandom generators and error-
orre
ting
odes. We also talk in detail about many appli
ations of ERF's and AONT's, some ofwhi
h are new.Chapter 4 talks in detail about 
onstru
tions and limitations of Exposure-Resilient23



Fun
tions. We start with the perfe
t setting, where we use the 
onstru
tion of [20, 10℄via error-
orre
ting 
odes, and the lower bound of Friedman [28℄ to show that our
onstru
tion is tight. Then we move to the statisti
al setting, and show how to userandomness extra
tors to obtain an eÆ
ient and nearly optimal 
onstru
tion of ERF's,whi
h is one of our main 
ontributions. Next we move to the 
omputational settingand show how to 
ombine pseudorandom generators with our statisti
al 
onstru
tionto get optimal 
omputational ERF's. Finally, we move to the adaptive setting andobserve that our statisti
al 
onstru
tion of regular ERF's is not adaptively se
ure.However, we give a probabilisti
 
onstru
tion of adaptively se
ure ERF's a
hievingthe same optimal parameters as our non-adaptive 
onstru
tion.In Chapter 5 we 
onstru
t and examine the properties of All-Or-Nothing Trans-forms. A large part of this 
hapter will be devoted to perfe
t AONT's. In parti
ular, to
omparing them with perfe
t ERF's and proving the lower bound on perfe
t AONT's(whi
h extends the lower bound of Friedman [28℄ on perfe
t ERF's). We will thengive a simple 
onstru
tion of AONT's using ERF's, whi
h will yield essentially optimalAONT's. Next we will suggest a se
ret-only AONT 
onstru
tion whi
h is a spe
ial
ase of the OAEP 
onstru
tion of [8℄, whi
h may serve as the �rst step in abstra
tingthe properties of the random ora
les that make OAEP an AONT. After that we give asurprisingly non-trivial proof that AONT's with \interesting" parameters imply one-way fun
tions, whi
h, 
ombined with the previous results, shows that \interesting"
omputational ERF's, AONT's and one-way fun
tions are all equivalent. The 
hapter
on
ludes with a stru
tural result showing the \worst-
ase/average-
ase" equivalen
eof AONT's.Finally, Chapter 6 has some 
on
luding thoughts.

24



Chapter 2
Preliminaries
How to read this 
hapter. This 
hapter tuned out to be somewhat longer andmore detailed than was originally planned. In fa
t, some of the general results wepresent in this 
hapter will be used only on
e in the later 
hapters. In addition, someof the results are presented with a higher level of generality than is a
tually neededin subsequent appli
ations. So why did not we de�ne su
h preliminaries \in-pla
e"or without this extra generality? The answer to this question is that su
h resultsare of independent interest to be treated separately. For example, this applies to ourtreatment of semanti
 se
urity/indistinguishability and deterministi
 extra
tors. Inaddition, treating su
h results \in-pla
e" would be a
tually more 
onfusing, makingsome of the later results either \
ome out from the sky" (i.e., without a 
lear reasonof what a
tually happened), or to look unne
essarily te
hni
al and 
ompli
ated.As a result, however, the reader might get a little bit overwhelmed with theamount of diverse information presented here, and even distra
ted from the maintopi
s studied in subsequent 
hapters. As a 
ompromise, we suggest that the readerfollows the following general guidelines.� Se
tion 2.1 (basi
 notation), Se
tion 2.2 (distributions), Se
tion 2.4 (basi
 
ryp-tography) and Se
tion 2.5 (private-key en
ryption) are quite basi
 and usedextensively. Therefore, they should be at least skimmed right away.� Se
tion 2.6 (error-
orre
ting 
odes) is used only in Se
tion 4.1 when 
onstru
ting25



perfe
t ERF's (and slightly in Se
tion 5.1.1). It 
ould be better to skip it �rst.� Se
tion 2.7 (strong extra
tors) is used only in Se
tion 4.2 when 
onstru
tingstatisti
al ERF's. It 
ould be better to skip it �rst.� Se
tion 2.8 (deterministi
 extra
tors) is used only in Se
tion 4.4.1 when 
on-stru
ting adaptively se
ure statisti
al ERF's. It 
ould be better to skip it �rst.� Se
tion 2.9 (Fourier analysis) is used only in Se
tion 5.1.4 when proving thelower bound on perfe
t AONT's. It 
ould be better to skip it �rst.� Finally, Se
tion 2.3 (semanti
 se
urity vs. indistinguishability) is mainly usedin Se
tion 3.3 to justify that the simple de�nition of an AONT that we use isa
tually mu
h stronger than it seems at �rst. As su
h, this se
tion is not reallyneeded in order to follow our presentation. It is up to the reader whether toread it right away, in Se
tion 3.3, or to skip it altogether. We re
ommend toread (or skim) this se
tion right away (possibly skipping the proofs) sin
e it isquite simple.As a short summary, Se
tions 2.6{2.9 
an be easily skipped upon the �rst reading.2.1 Basi
 Notation and TerminologyFor a randomized algorithm F and an input x, we denote by F (x) the output dis-tribution of F on x, and by F (x; r) we denote the output string when using therandomness r. We write m = poly(k) to indi
ate that m is polynomially boundedin k. Re
all that a fun
tion �(k) is 
alled negligible if for any polynomial p(k) thereexists k0 su
h that for all k > k0 we have �(k) < 1=p(k). We often write negl(k) toindi
ate some negligible fun
tion of k, without giving it an expli
it name. We denoteby x 2R D a pro
ess of sele
ting x from the domain D uniformly at random. Wedenote by PPT a probabilisti
 polynomial time algorithm, and given su
h an A, wedenote by y  A(x) sampling an output y when running A on input x. We let 1kdenote the string of 1's of length k. When a PPT algorithm is given 1k as the input,26



this suggests that A is allowed to work in time polynomial in k. We will often omit1k, however, when the se
urity parameter k is 
lear. Unless otherwise spe
i�ed, wewill 
onsider se
urity against nonuniform adversaries.Let fǹg denote the set of size-` subsets of [n℄ = f1 : : : ng. For L 2 fǹg, y 2 f0; 1gn,let [y℄�L denote y restri
ted to its (n� `) bits not in L. We denote by � the bit-wiseex
lusive OR operator, and by ha1; : : : ; aki the k-tuple of a1; : : : ; ak. Given ve
torsx; y 2 f0; 1gn, we will denote their inner produ
t modulo 2 as x � y. We also denoteby GF (q) a �nite �eld on q elements, where q is a prime power.2.2 Distributions and IndistinguishabilityWe denote by Uk the uniform distribution on f0; 1gk. The distribution indu
ed by afun
tion f : f0; 1gn ! f0; 1gk is its output distribution over f0; 1gk when the inputwas 
hosen uniformly at random in f0; 1gn. A family of distributions p = fpkg is
alled eÆ
iently samplable if there exists a PPT algorithm that on input 1k outputsa random sample from pk. Often, when the se
urity parameter k is 
lear or impli
it,we simply say that the distribution p is eÆ
iently samplable.We re
all that the statisti
al di�eren
e (also 
alled statisti
al distan
e) betweentwo random variables X and Y on a �nite set D, denoted kX � Y k, is de�ned to bemaxS�D ���Pr [X 2 S℄� Pr [Y 2 S℄ ��� = 12 �X� ���Pr [X = �℄� Pr [Y = �℄ ��� (2.1)De�nition 1 Let k be the se
urity parameter and A = fAkg, B = fBkg be twoensembles of probability distributions. We say that A and B are� perfe
tly indistinguishable, denoted A � B, if distributions Ak and Bk areidenti
al for all k.� statisti
ally indistinguishable, denoted A �=� B, if the statisti
al distan
e kAk�Bkk is a negligible fun
tion of k.� 
omputationally indistinguishable, denoted A �=
 B, if for any PPT algorithm27



D (
alled the distinguisher) we have thatjPr(D(Ak) = 1)� Pr(D(Bk) = 1)j = negl(k)where the probability is taken over the 
oin tosses of D and the random 
hoi
esof Ak and Bk. The absolute value above is 
alled the advantage of D in distin-guishing A from B, denoted AdvD(A;B).Sometimes when the se
urity parameter is impli
it, we will sometimes slightlyabuse the terminology and identify the ensembles A and B with the 
orrespondingprobability distributions Ak and Bk. And when the statement 
an hold for any of theabove 
hoi
es (or the 
hoi
e is 
lear from the 
ontext), we simply write A � B.We noti
e that the notions of statisti
al and perfe
t indistinguishability 
an be
ast into the same framework as that of 
omputational indistinguishability. Namely,if we relax the requirement that D is polynomial time bounded, we exa
tly get thede�nition of statisti
al indistinguishability, while if in addition we require that theadvantage of D is always 0, we get perfe
t indistinguishability. This suggests thefollowing methodology for proving statements of the form A � B ) A0 � B0, when it
an hold for any 
hoi
e of �. Namely, we assume that there exists a distinguisher D0having advantage "0 in distinguishing A0 from B0. We 
onstru
t then a distinguisherD, whose 
omplexity is polynomial in that of D0, and that distinguishes A from Bwith advantage ". Then if " � 
 � ("0)t for some positive 
onstants 
 and t, we haveproven our impli
ation. In parti
ular, if D0 is polynomially bounded, then so is D, if"0 > 0, then so is ", and if "0 > 1=p(k) for some polynomial p and for in�nitely manyk, then so is " (for a di�erent polynomial q).We start from the following useful fa
t.Lemma 1 Let �, � be two (possibly dependent) random variables taking values inf0; 1g. Let D be the following experiment: observe � and �. If � = �, then 
ip a
oin, else output � (= 1� �). Let 
 be the output of D. ThenPr(
 = 1) = 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄28



Proof: We use the fa
t that for any X and Y , Pr(X ^ Y ) + Pr(X ^ Y ) = Pr(X).Pr(
 = 1) = Pr(� = 1 ^ � = 0) + 12 � [Pr(� = 1 ^ � = 1) + Pr(� = 0 ^ � = 0)℄= 12 � [Pr(� = 1 ^ � = 0) + Pr(� = 1 ^ � = 1)℄ +12 � [Pr(� = 1 ^ � = 0) + Pr(� = 0 ^ � = 0)℄= 12 � [Pr(� = 1) + Pr(� = 0)℄= 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄
Lemma 2 Let A and B be any two (ensembles of) probability distributions. Let Rbe 
hosen uniformly at random and let C be 
hosen a

ording to a distribution p, bothindependently from A and B. Then the following are equivalent:(1) hA;Bi � hA;Ri.(2) hA;B;Ci � hA;B � C;Ci, for any eÆ
iently samplable p.(3) hA;B;Ci � hA;B � C;Ci, for uniform p.Proof:(1)) (2). Assume (2) is false for some eÆ
iently samplable p, so there is an adversaryF distinguishing hA;B;Ci from hA;B � C;Ci with advantage ". We 
onstru
t adistinguisher D that distinguishes hA;Bi from hA;Ri. D gets as input hA;Xi. Itgenerates C a

ording to p, sets � = F (A;X;C), � = F (A;X � C;C). Then Dpro
eeds as in Lemma 1. Thus,Pr(
 = 1) = 12 + 12 � [Pr(� = 1)� Pr(� = 1)℄= 12 + 12 � [Pr(F (A;X;C) = 1)� Pr(F (A;X � C;C) = 1)℄When X = B, the di�eren
e above is at least ", by the assumption on F . Thus,Pr(
 = 1) � 12 + "2 . 29



When X = R, both R and R � C are uniform and independent of C. Thus,Pr(F (A;X;C) = 1) = Pr(F (A;X � C;C) = 1), and so Pr(
 = 1) = 12 . Hen
e, D isa good distinguisher indeed.(2)) (3) is trivial.(3) ) (1). Let R = B � C. If C is uniform and independent from A and B, thenso is R. If there is an adversary that 
an distinguish hA;Bi from hA;Ri, then thereis an adversary distinguishing hA;B;Ci from hA;B � C;Ci = hA;R;Ci, that simplyignores the extra information C and runs the original adversary on the �rst two
omponents.Typi
ally, we will only use the following simple 
orollary of the above.Corollary 1 Let A and B be any two (ensembles of) probability distributions. Let Rbe 
hosen uniformly at random, and let x0 and x1 be any two �xed strings (independentof the random variables above). ThenhA;Bi � hA;Ri ) hx0; x1; A; B � x0i � hx0; x1; A; B � x1iProof: Call C = x0 � x1. Sin
e x0 and x1 are �xed, we gethA;Bi � hA;Ri ) hx0; x1; A; Bi � hx0; x1; A; Ri) hx0; x1; A; B � x0i � hx0; x1; A; Ri) hx0; x1; A; B � x0; Ci � hx0; x1; A; B � x0 � (x0 � x1); Ci) hx0; x1; A; B � x0i � hx0; x1; A; B � x1iThe only non-trivial impli
ation is the se
ond to last one that uses Lemma 2 withC = x0 � x1.Indistinguishability Relative to an Ora
le. In some appli
ations we wouldlike to say that A and B are indistinguishable, even if some side information is leakedto the distinguisher D. Typi
ally, we pla
e some restri
tions on the type of sideinformation, but allow the distinguisher to 
hoose whi
h parti
ular side information30



of this types he wants to see. Typi
ally, this is modeled by letting D have \ora
lea

ess" to some fun
tion or some pro
ess (that depends on A and B or the wayA and B were generated). For example, when talking about se
urity of en
ryptions
hemes, we might allow D to have ora
le a

ess to the de
ryption ora
le, allowing Dto de
rypt any messages of his 
hoi
e under minimal restri
tion thatD 
annot de
ryptthe \target 
iphertext". It is easy to see that the notion of indistinguishability andall the simple results we talked about relativize to this setting.2.3 Semanti
 Se
urity vs. IndistinguishabilityHere we de�ne and prove the equivalen
e of the notions of semanti
 se
urity and in-distinguishability, originally introdu
ed by Goldwasser and Mi
ali [33℄ in a parti
ular
ontext of en
ryption. We de�ne these notions in a mu
h more general 
ontext ofany \experiment". As a result, we show that these notions and their equivalen
e havenothing to do with en
ryption s
hemes, 
omputational assumptions or anything else.Rather, this is just a basi
 fa
t about equivalen
e of two probabilisti
 experiments.Be
ause we abstra
t away all the unne
essary 
ompli
ations, the proof of equivalen
ewe present is very simple (despite its generality), and seems to be mu
h simpler andunderstandable than most similar proofs that appeared in the literature.Our general setup is the following. Assume we have some PPT experiment1 Ethat takes a k-bit string x and transforms it into some y. We want to say that \ygives no information about x".De�nition 2 We say that PPT experiment E is semanti
ally se
ure in the 
om-putational sense if for any eÆ
iently samplable D on f0; 1gk, any polynomial time
omputable binary relation R and any PPT adversary A, there exists a PPT B su
hthat if X  D, Y  E(X), a A(Y; 1k), b B(1k), we get thatPr(R(X; a) = 1) � Pr(R(X; b) = 1) + negl(k) (2.2)1It is easy to see that the results we present do not hold in the 
omputational setting if E is notpolynomial time 
omputable. 31



As usual, for the statisti
al setting we relax A, B, D, R from being polynomial time,and in the perfe
t setting we also require the advantage of A to be 0.In other words, the odds of A (when given Y ) produ
ing a su
h that R(X; a) issatis�ed are only negligibly more than the odds of B (when given nothing!) produ
ingb satisfying R(X; b). Thus, whatever \useful information" about X one 
an get fromY , one 
an get without Y as well.De�nition 3 We say experiment E is indistinguishable for any two inputs if for anyx0; x1 2 f0; 1gk, we have hx0; x1;E(x0)i � hx0; x1;E(x1)i (2.3)Indistinguishability simply says that the adversary 
annot distinguish the experimentperformed on any �xed x0 and x1. We noti
e that the above 
ondition is equivalentto saying that if i is 
hosen at random from f0; 1g, y  E(xi), then no adversary 
anguess i given y signi�
antly better than with probability 12 . Indeed,Pr(A(x0; x1; y) = i) = 12 [Pr(A(x0; x1;E(x0)) = 0) + Pr(A(x0; x1;E(x1)) = 1)℄= 12 + 12 [Pr(A(x0; x1;E(x1)) = 1)� Pr(A(x0; x1;E(x0)) = 1)℄We will use this observation below.Theorem 1 The notions of semanti
 se
urity and indistinguishability are equivalent.Proof: For simpli
ity, let us 
on
entrate on the more interesting 
omputational
ase. First, assume E is semanti
ally se
ure. Take any x0; x1 (wlog, assume thatx0 6= x1, sin
e otherwise E(x0) = E(x1)). Let D be the uniform distribution onfx0; x1g, and R(x; i) = 1 if and only if x = xi. Noti
e, D and R are des
ribable justby x0 and x1. Assume x fx0; x1g, i.e. x = xi for a random i 2 f0; 1g. Noti
e thatfor any B, sin
e B is not given any information about i and su

eeds only when heoutputs b = i (sin
e x0 6= x1), we get that Pr(B(x0; x1) = i) = 12 . Hen
e, semanti
32



se
urity here implies that for any PPT A we get that if y  E(xi), thenPr(A(x0; x1; y) = i) � 12 + negl(k)As we argued, this is equivalent to the de�nition of indistinguishability on x0 and x1.Let us show the 
onverse. Assume that E is not semanti
ally se
ure for some poly-nomial time D, R and A having advantage " over any PPT B. Let good be theprobability that A su

eeds, i.e. that when X  D, Y  E(X), a  A(Y ), we getR(X; a) = 1. And let bad denote the probability that when in addition we pi
k abrand new X 0  D, we get R(X 0; a) = 1. First, we 
laim thatgood� bad � " (2.4)Indeed, we only need to 
onstru
t a PPT B that a
hieves su

ess probability bad.For that we 
onsider B who himself samples X  D, makes Y  E(X), and outputsa A(Y ) (here we use that D and E are polynomial time). Clearly, when we samplebrand new X 0  D, the su

ess probability of B is exa
tly bad.Re
all that we need to �nd x0; x1 and adversary F who 
an distinguish E(x0)from E(x1). We start from F (here we use that R is polynomial time).F (x0; x1; y):1. Let a A(y), � = R(x1; a), � = R(x0; a).2. If � = �, then output a random 
oin 
ip.3. Otherwise (� = 1� �), output �.In other words, F uses A to produ
e a \witness" a. Sin
e A is supposedly good inprodu
ing \relevant" witnesses, a should be \more likely" to satisfy R(xi; a) thanR(x1�i; a). And this is exa
tly what F 
he
ks. He 
omputes both R(x0; a) andR(x1; a). If the results are the same, F did not learn anything, so he 
ips a 
oin.Otherwise, he outputs that single i that \produ
ed" R(xi; a) = 1. Let us turn thisintuition into a formal argument. 33



We analyze the behavior of F when X0 and X1 are sampled independently fromD and Y = Y1  E(X1). We noti
e that in this setting we exa
tly have Pr(� = 1) =good and Pr(� = 1) = bad. Thus, by Lemma 1 and Equation (2.4) we getPr(F (X0; X1; Y1) = 1) = 12 + 12(Pr(� = 1)� Pr(� = 1))= 12 + 12(good� bad)� 12 + "2In parti
ular, sin
e the above holds on average over X0 and X1, there exist someparti
ular x0 and x1 su
h that we getPr(F (x0; x1;E(x1)) = 1) � 12 + "2Sin
e the algorithm F is symmetri
 in x0 and x1, this means thatPr(F (x0; x1;E(x0)) = 1) � 12 � "2Overall, Pr(F (x1; x0;E(x1)) = 1)� Pr(F (x1; x0;E(x0)) = 1) � ".Examples. The notion of publi
-key en
ryption is a spe
ial 
ase, where the ex-periment E samples a pair (pk; sk) of a random publi
 and se
ret keys, 
omputesen
ryption z of x, and returns y = (pk; z). The same holds for private-key en
ryp-tion, ex
ept there is no publi
 key above (see Se
tion 2.5). We will also have anotherde�nition of All-Or-Nothing Transforms in Se
tion 3.3 that would fall into this 
ate-gory, justifying the usefulness of this general view.Usefulness. The usefulness of the above equivalen
e is in the following. Semanti
se
urity is somewhat messy to de�ne and to verify. However, it 
aptures very wellour intuition that E(x) does not 
onvey any information about x. On the otherhand, indistinguishability of any two inputs is a mu
h simpler 
ondition to verify andto work with. However, it is not immediately 
lear if it really says that E(x) doesnot 
onvey any information about x. So the equivalen
e asserts that intuitive and34




onvenient de�nitions a
tually 
oin
ide. As the result, it is mu
h more 
ustomary towork with indistinguishability.Variations. There are several variations of the notion of semanti
 se
urity, all ofwhi
h turn out to be equivalent be
ause of the equivalen
e above. For example,we 
ould relax the de�nition by repla
ing a relation R with only a fun
tion f andtarget the adversary to produ
e a su
h that f(X) = a. Sin
e indistinguishability
orresponds to having a relation whi
h is a
tually a fun
tion (i.e., f(xi) = i), theequivalen
e follows. Also, rather than requiring that for any A there is some B, we
ould run A twi
e: �rst time on the 
orre
t Y , and se
ond time on a brand newY 0  E(X 0), where X 0  D. The de�nition then says that A did not learn anythingbe
ause for any D and R he 
ould not even see the di�eren
e when the 
orre
t X wasrepla
ed by a brand new X 0. This 
aptures our intuition of semanti
 se
urity slightlyless and starts to remind the indistinguishability de�nition. But the equivalen
e is
lear sin
e the B we 
onstru
ted in the proof really simulates the run of A on a brandnew Y 0, whi
h is exa
tly what we are doing. A slight advantage of that de�nition,though, is that we do not need to restri
t D and E to polynomial time, whi
h is notthat important.Another traditional de�nition (originated all the way in [33℄) is to say that thebest B 
ould do anyway without the knowledge of X, is to produ
e a �xed bmaxmaximizing the probability of satisfyingR(X; bmax) whenX is 
hosen fromD. Callingthis maximum probability p(R; D), we say that the probability of A's su

ess is atmost p(R; D) + negl(k). In some sense, this 
ould be slightly unfair sin
e PPT Bmay not be able to produ
e the required bmax (in polynomial time). But, �rst of all,sin
e we 
hose to have non-uniform adversaries and the adversaries depend on R,we 
ould hardwire this bmax. Alternatively, the notions are again equivalent sin
e inthe indistinguishability based de�nition we had p(R; D) � 12 whi
h B 
an a
hieveby outputting a random 
oin. Again, this modi�
ation has a slight advantage of notrequiring D and E to be polynomial time. To summarize, there are several smallvariations of the de�nitions, all of whi
h turn out to be equivalent, justifying the35



\universality" of our notion.Experiments with a setup. Sometimes the de�nition of the experiment E 
an besplit up into two natural phases: the setup phase, and the a
tual experiment phase.A 
lassi
al example is publi
-key en
ryption, where the setup 
an 
hose a randompubli
/private key pair, and the a
tual experiment just en
rypts the given message(see [42℄ for more details on de�nitions of publi
-key en
ryption). In this 
ase wemight want to let the adversary observe the \publi
 part" of the setup, and based onthat try to 
ome up with: a) some x0 and x1 that he 
laims to distinguish for the 
aseof indistinguishability, or b) distribution D and relation R (whi
h are automati
allypolynomial time in the 
omputational setting) that he 
an \defeat" for the 
ase ofsemanti
 se
urity. Clearly (at least for non-uniform adversaries), if the experimentwith the setup is se
ure, 
ombining the setup and the experiment into a single \super-experiment" is also se
ure, but the 
onverse is false in general (as it is easy to see).The reason is that the \publi
 information" from the setup may help the adversaryto sele
t x0 and x1 (or D and R), that he 
annot sele
t at the very beginning.However, the equivalen
e between semanti
 se
urity and indistinguishability still holdsfor experiments with the setup.We already remarked that setup has a natural meaning for publi
-key en
ryption(and results in a stronger de�nition). For private-key en
ryption the setup 
an bede�ned as the pro
ess of 
hoosing a se
ret key, but there is no publi
 output, sothere is no reason to do the setup separately. For the de�nition of an All-Or-NothingTransform that we give later, there is no natural meaning for the setup (ex
ept foran \empty" setup).2.4 Cryptographi
 Basi
s: OWF, PRG and PRFWe now de�ne some basi
 
ryptographi
 notions. We refer the reader to [29℄ for amore detailed exposition, referen
es and proofs of some of the basi
 fa
ts presentedhere. 36



De�nition 4 A polynomial time 
omputable fun
tion g : f0; 1g� ! f0; 1g� is 
alled aone-way fun
tion (OWF) if for any PPT adversary A, if x is 
hosen at random fromf0; 1gk, we have Pr(A(g(x); 1k) 2 g�1(g(x))) = negl(k) (2.5)In other words, g is easy to 
ompute but hard to invert on a random input x. A relax-ation of the notion of a OWF is a notion of a weak OWF, where for some polynomialp(k) the 
ondition 2.5 is repla
ed byPr(A(g(x); 1k) 2 g�1(g(x))) < 1� 1p(k) (2.6)In other words, no adversary su

eeds with probability negligibly 
lose to 1, so g is\slightly" hard to invert. A folklore result that we will use later is that existen
e ofweak OWF's imply the existen
e of regular OWF's.De�nition 5 A deterministi
 polynomial time 
omputable fun
tion2 G : f0; 1gk !f0; 1gm(k) is 
alled a pseudorandom generator (PRG) stret
hing from k to m(k) bits(where m(k) > k) if the following are 
omputationally indistinguishable:hG(r) j r 2R f0; 1gki �=
 hR j R 2R f0; 1gm(k)iIn other words, G(r) for a random r 2 f0; 1gk (this r is 
alled a seed of G) is indis-tinguishable to a PPT algorithm from a truly random R 2 f0; 1gm(k). The followingimportant result (the hard part of whi
h was proved by [34℄) shows that \OWF's()PRG's".Theorem 2 OWF's exist() PRG's stret
hing to k+1 bits exist() PRG's stret
h-ing to m(k) bits exist for any polynomial m(k) > k.One of the 
onsequen
es is that we 
an talk about PRG's \in general" withoutworrying about the parti
ular stret
h fa
tor. Finally, we introdu
e another 
lassi
al2Te
hni
ally speaking, ensemble of fun
tions: one for ea
h k.37



notion of pseudorandom fun
tion (PRF) families. For that we need to de�ne thenotion of an algorithm A having an ora
le a

ess to some fun
tion f . By that wemean that at any point during its exe
ution, A 
an learn in a single step the valuef(x) for any x of A's 
hoi
e in the domain of f . We denote su
h an A by Af .De�nition 6 A fun
tion family3 F = fFs : f0; 1gk ! f0; 1gk j s 2 f0; 1gkg, is
alled a pseudorandom fun
tion family (PRF family), if ea
h Fs is polynomial time
omputable, and for any PPT A, we havejPr(AFs(1k) = 1)� Pr(AF (1k) = 1)j = negl(k)The �rst probability is taken over a random 
hoi
e of the seed s 2 f0; 1gk and random
oins of A, while the se
ond | over 
oins of A and the 
hoi
e of a totally randomfun
tion F from f0; 1gk to f0; 1gk.In other words, no PPT A 
an distinguish between having an ora
le a

ess to apseudorandom fun
tion Fs (where only the seed s is 
hosen at random), form havinga

ess to a truly random fun
tion F (where ea
h F (x) is random for ea
h x 2 f0; 1gk).Thus, a singly exponential fun
tion family F is indistinguishable from a doubly ex-ponential family of all fun
tions. The following generalization of Theorem 2 is one ofthe fundamental results in 
ryptography unifying the notions of OWF's, PRG's andPRF's and suggesting that a lot of 
ryptography 
an be built on a single assumption:existen
e of one-way fun
tions.Theorem 3 OWF's exist () PRG's exist () PRF families exist.2.5 Symmetri
-Key En
ryptionWe brie
y review the notion of private-key 
ryptography, in parti
ular, symmetri
-keyen
ryption. Here two parties share a se
ret key and wish to perform se
ure en
ryption.3Again, te
hni
ally speaking we have an ensemble of su
h families: one for ea
h k. Also, the
hoi
e of domain and range to be f0; 1gk is arbitrary, any domain and range with des
ription of apoint polynomial in k will work as well. 38



First, let us give the simplest possible de�nition of private-key en
ryption.De�nition 7 A symmetri
-key (or private-key) en
ryption s
heme C is given by threePPT algorithms (Gen;En
;De
). Gen, on input 1k, generates a se
ret key sk. Givenx 2 f0; 1gk, the en
ryption algorithm En
sk(x) generates a (random) en
ryption y ofx. The de
ryption algorithm De
 is deterministi
, and for any y 2 En
sk(x), we haveDe
sk(y) = x. En
ryption s
heme C is 
alled indistinguishable for two inputs if forany x0; x1 2 f0; 1gk, we havehx0; x1;En
sk(x0)i � hx0; x1;En
sk(x1)i (2.7)We see that the de�nition follows the general paradigm of Se
tion 2.3. In parti
-ular, one 
an de�ne an equivalent semanti
 se
urity de�nition. We now give a few
lassi
al examples.One-time pad. This is the �rst \
ryptographi
 s
heme" ever proposed by Shan-non [56℄. Here the se
ret key is a random string R of length k, and the en
ryptionof x 2 f0; 1gk is just x � R. This s
heme is 
learly perfe
tly se
ure. However, thelength of the se
ret key is the same as the length of the message. It is easy to showthat this is unavoidable if we wish to a
hieve perfe
t se
re
y [56℄.Pseudorandom one-time pad. This is one of the �rst appli
ations of pseudoran-dom generators. Assume we have a PRG G stret
hing from n to k bits. The key is arandom r 2 f0; 1gn we en
rypt x 2 f0; 1gk by a pseudorandom \one-time pad" G(r),i.e. En
(x; r) = x � G(r). Here the length of the key, n, 
ould be mu
h smallerthan the length of the message, k. Also, the se
urity is ne
essarily 
omputational andfollows immediately from Corollary 1 and the de�nition of a PRG.We noti
e that the de�nition of indistinguishability gurantees se
urity of en
ryptinga single message, but nothing really is guaranteed about en
rypting more messages.In fa
t, the one-time pad en
ryptions above are 
learly bad if one is to use them twi
e(that is why they are 
alled \one-time") on x and x0: the XOR of the en
ryptionsreveals x � x0. A more interesting de�nition arises if we allow the adversary (who39



has to distinguish en
ryptions of x0 and x1) to have ora
le a

ess to the en
ryptionora
le. That is, he 
an obtain en
ryptions of any messages of his 
hoi
e. The followinggeneralization of the \one-time pad" s
hemes above is well known to a
hieve su
hse
urity.\Standard" symmetri
-key en
ryption. F = fFs : f0; 1gk ! f0; 1gk j s 2f0; 1gkg be a PRF family. We sele
t a random shared se
ret key s 2 f0; 1gk anden
rypt x by a pair hx� Fs(R); Ri, where R is 
hosen at random from f0; 1gk.Beside their simpli
ity, we noti
e the following important feature of the above ex-amples: the se
ret key is a uniform random value, i.e. does not have any spe
ialstru
ture like representing a k-bit prime, et
. We remark that there are many othersu
h examples in private-key 
ryptography where a se
ret is just a random value:pseudorandom permutations, blo
k 
iphers, messages authenti
ation 
odes, variouskeyed hash fun
tions. In fa
t, even in the publi
-key 
ryptography we frequently havesimple systems where the se
ret is just a random value. For example, various s
hemesbased on the Dis
rete Logarithm or the DiÆe-Hellman Assumptions (e.g., [26, 53℄)pi
k a random x and publish its exponent. When de�ning exposure-resilient fun
-tions in Se
tion 3.1, we will see how to make all these systems \exposure-resilient"(see Se
tion 3.2).2.6 Linear Error-Corre
ting CodesAn error-
orre
ting 
ode is a deterministi
 mapping from k-bit strings to n-bit strings(the latter 
alled 
odewords) su
h that any two 
odewords are very di�erent fromea
h other, i.e. very \far apart" in terms of the Hamming distan
e.4 Thus, even ifone misses or has 
orrupted a relatively few bits of some 
odeword, it is possible tore
over these bits.4The Hamming distan
e between x; y 2 f0; 1gn is the number of 
oordinates they di�er in. TheHamming weight of x 2 f0; 1gn is the number of non-zero 
oordinates of x, i.e. its Hammingdisntan
e from 0. 40



We will 
onsider binary linear [n; k; d℄ error-
orre
ting 
odes. Su
h a 
ode 
an beseen as a linear transformation from f0; 1gk to f0; 1gn (where these are viewed asve
tor spa
es over GF (2)). Thus, su
h a 
ode 
an be des
ribed by a k� n generatormatrixM over GF (2). For any ve
tor v 2 f0; 1gk (whi
h is viewed as a 
olumn ve
tor,i.e. a k�1 matrix, and v> denotes the 
orresponding 1�k row ve
tor), the 
odeword
orresponding to v is v>M . A 
ode is said to have minimum distan
e d if for everytwo distin
t ve
tors u; v 2 f0; 1gk, u>M and v>M di�er on at least d 
oordinates.Note that by linearity, this is equivalent to requiring that every non-zero 
odewordhas at least d non-zero 
omponents.A 
ode is said to be asymptoti
ally good if n = O(k) and d = 
(n) (i.e., the threeparameters n, k, and d di�er by multipli
ative 
onstants). The ratio k=n is 
alledthe rate of the 
ode, while d=n is 
alled the relative distan
e. A standard result in
oding theory shows that a random linear 
ode (
orresponding to a random M) isasymptoti
ally good with high probability (provided the rate and relative distan
eare not very large 
onstants). Many expli
it 
onstru
tions for asymptoti
ally good
odes (e.g., the Justesen 
ode) exist.We remark on two well-known bounds on error-
orre
ting 
odes. First, it is alwaysthe 
ase that k � n � d + 1 (Singleton bound). Se
ond, d � n=2 for k > logn. Inother words, the distan
e 
annot be more than n=2. On the positive side, we 
anmake d arbitrarily 
lose to n=2 (i.e., (12 � ")n for any " > 0) at the expense of makingn large 
ompared to blo
k-length k.5Finally, we mention the famous \parity" linear 
ode, 
alled the Hadamard 
ode,6stret
hing k bits to n = 2k�1 bits. Here a k-bit message u = u1 : : : uk is en
oded into(2k�1)-long bit message 
 by taking all (2k�1) non-empty XOR's of the ui's. Namely,for ea
h non-empty J � [k℄, the bit 
J of the en
oding is �i2Jui. Viewed another way,5For example, n = poly(k) if we use the so 
alled Reed-Solomon 
ode 
on
atenated with theHadamard 
ode des
ribed below, n = O(k="3) if we use the so 
alled algebrai
-geometri
 
ode
on
atenated with the Hadamard 
ode, and n = k="2 if we use a random 
ode. Also, the Hadamard
ode by itself has n = 2k � 1 and d = (n+ 1)=2.6In 
oding theory lingo, this is also known as the \dual" of another famous 
ode | the hamming
ode | whi
h is a perfe
t 
ode of distan
e 3. Thus, the 
orresponding generator matrix M is simplythe \parity 
he
k" matrix of the hamming 
ode.41



for every non-zero a 2 f0; 1gk, the a-th 
oordinate of 
 is the inner produ
t modulo 2of u and a: 
(a) = u � a. We omit a = 0k (i.e., J = ;) sin
e it always produ
es 0 as aparity, so it is not useful for de
oding purposes. The Hadamard 
ode is 
learly linearand its generator matrix M is obtained by writing 
olumn-by-
olumn all (2k � 1)non-zero k-bit strings. It has distan
e 2k�1 = (n + 1)=2 sin
e if u 6= u0, exa
tly 2k�1subsets J have 
J 6= 
0J (equivalently, exa
tly 2k�1 ve
tors a have (u� u0) � a = 1).For the proofs of these results and further information on error-
orre
ting 
odes,see [40℄.2.7 Strong Extra
torsExtra
tors were �rst formally introdu
ed in a seminal paper by Nisan and Zu
ker-man [46℄. An extra
tor is a family of hash fun
tions H su
h that when a fun
tionhi is 
hosen at random from H (by 
hoosing a random i), and is applied to a ran-dom variable X that has \enough randomness" in it, the resulting random variableY = hi(X) is statisti
ally 
lose to the uniform distribution. A strong extra
tor has anextra property that Y is 
lose to the uniform distribution even when the random in-dex i (used in spe
ifying hi) is revealed! (Perhaps the best known example of a strongextra
tor is given in the Leftover Hash Lemma of [36℄, where standard 2-universalhash families are shown to be strong extra
tors.) This is illustrated in Figure 2-1.We now de�ne the notion of extra
tor more pre
isely. We say that random variableX distributed over f0; 1gn has min-entropym if for all x 2 f0; 1gn, Pr(X = x) � 2�m.High min-entropy will turn out to be a good formal indi
ator for X having \a lot ofrandomness".De�nition 8 ([46℄) A family of eÆ
iently 
omputable hash fun
tions H = fhi :f0; 1gn ! f0; 1gk j i 2 f0; 1gdg is 
alled a strong (m; ")-extra
tor, if for any randomvariable X over f0; 1gn that has min-entropy m, if i is 
hosen uniformly at randomfrom f0; 1gd and R is 
hosen uniformly at random from f0; 1gk, the following two
42
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Figure 2-1: Extra
tors and Strong Extra
tors.distributions are within statisti
al distan
e " from ea
h other:hi; hi(X)i �=� hi; Ri (2.8)Throughout, we will only talk about eÆ
ient extra
tor families H. That is, given anyi 2 f0; 1gd and x 2 f0; 1gn, one 
an eÆ
iently (i.e., in time poly(n)) 
ompute hi(x).Thus, investing enough true randomness, namely the amount needed to sele
ta random member of H, one 
an \extra
t" something statisti
ally 
lose to a trulyrandom string from the randomness in a given distribution X. Mu
h work has beendone in developing this area (e.g. [46, 32, 59, 64, 45, 61, 50, 49℄). In parti
ular, itturns out that one 
an extra
t almost all the randomness in X by investing very fewtruly random bits (i.e. having small H).We will use the following eÆ
iently 
onstru
tible families of strong extra
torsdeveloped by [59, 49℄.Theorem 4 ([59, 49℄) For any n, m and " su
h that n > m > 2 log(1="), there existeÆ
ient strong (m; ")-extra
tor families H = fhi : f0; 1gn ! f0; 1gk j i 2 f0; 1gdgsatisfying: 43



1. k = m� 2 log(1=")�O(1) and d = 4(m� log(1=")) +O(logn). [59℄2. k = (1� Æ)m�O(log(1=")) and d = O(log2 n+ log(1=")) (8 
onst. Æ > 0). [49℄3. k = m� 2 log(1=")�O(1) and d = O((log2 n+ log(1=")) logm). [49℄(provided " > exp(�n=(log� n)O(log� n)), whi
h will hold in our appli
ations).Noti
e that if a sour
e has min-entropy m, we 
annot hope to extra
t more than m(even statisti
ally 
lose to) random bits, i.e. we must have k � m. In fa
t, [48℄ showthat k � m�2 log(1=")+O(1). The remarkable fa
t about the above extra
tor familiesis that they really almost a
hieve this seemingly impossible bound for any X havingmin-entropy m. However, in the �rst extra
tor the amount of extra-randomness d isroughly 4m, so we invest more truly random bits than the amount of random bitsthat we extra
t! Of 
ourse, the 
at
h is that we do not \lose" the extra-randomness,so the extra
tor is still very useful. On the other hand, the last two extra
tors aremu
h more randomness eÆ
ient (provided m is large enough).For more information on these topi
s, see the ex
ellent survey arti
les [44, 45℄.2.8 Deterministi
 Extra
tors and t-wise Indepen-dent Fun
tionsIn the previous se
tion we saw that we 
an extra
t almost all the randomness fromany distribution of min-entropy m by investing very few extra truly random bits. Onthe other hand, it would be very desirable not to invest any additional randomnessat all, i.e. to have just a single deterministi
 fun
tion f : f0; 1gn ! f0; 1gk thatwould extra
t all the randomness from our sour
e X. However, it is very easy to seethat this task is too ambitious.7 In other words, we 
annot hope that one fun
tionf will be good for all sour
es with min-entropy m, and therefore have to invest some7For example, 
on
entrate all the mass of X uniformly on the preimages of 2m+k�n \most fre-quent" points in the range of f . There are at least 2m su
h preimages, so X has min-entropy atleast m. On the other hand, f(X) 
an indu
e a distribution statisti
ally 
lose to uniform on f0; 1gkonly if m+ k � n > k � 1, i.e. m > n� 1, so X was almost uniform to begin with.44



extra randomness. However, in many appli
ations we have some set X of \allowed"sour
es of min-entropy m, and we only need f to extra
t randomness from sour
esX 2 X (and do not \
are" about other sour
es; we will see an example of this laterin Se
tion 4.4). In this se
tion we dis
uss how to 
onstru
t su
h f 
ulminating inTheorem 6 and Corollary 3. While written with the 
urrent emphasis for the �rst time,all the ideas of this se
tion were largely suggested to us by Trevisan and Vadhan [62℄,who were the �rst to 
onsider \general-purpose" deterministi
 extra
tors.2.8.1 Deterministi
 and Æ-sure Extra
torsTowards Deterministi
 Extra
tors. As we observed, it is 
on
eivable to havethis single deterministi
 f \tuned up" to work just for the sour
es in X . Su
h f is
alled a deterministi
 extra
tor for X . Unfortunately, the expli
it 
onstru
tions ofsu
h f for a given X often turn out to be diÆ
ult. Therefore, we settle for the nextbest option. We will design an eÆ
iently samplable family of hash fun
tion F su
hthat when f is 
hosen at random from this family, f will be a good (deterministi
)extra
tor for every X 2 X with high probability. Moreover, we will not use anythingabout X ex
ept for its 
ardinality jX j and the fa
t that every X 2 X has min-entropym. In other words, for any X of min-entropy m, with high probability (mu
h betterthan 1=jX j) a random f in F will be a good extra
tor fun
tion for X. Then we willsimply take the union bound over all X 2 X . This justi�es the following de�nitionand its immediate 
orollary.De�nition 9 (impli
it in [62℄) A family of eÆ
iently 
omputable hash fun
tionsF = ffi : f0; 1gn ! f0; 1gk j i 2 f0; 1gdg is 
alled a Æ-sure (m; �)-extra
tor, if forany random variable X over f0; 1gn that has min-entropy m, with probability at least(1�Æ) over the 
hoi
e of random f = fi from F , we have that the distribution indu
edby f(X) is �-
lose to the uniform distribution over f0; 1gk.Corollary 2 For any 
olle
tion X of distributions of min-entropy m over f0; 1gn, ifF = ffi : f0; 1gn ! f0; 1gkg is a Æ-sure (m; �)-extra
tor, then with probability at least45



(1 � jX jÆ) a random f = fi 
hosen from F will be a deterministi
 extra
tor (withstatisti
al deviation �) for all X 2 X .Thus, we are interested in 
onstru
ting Æ-sure extra
tors, where Æ will be really small(typi
ally, mu
h smaller than �), so that we 
an take a large union bound over allsour
es in X .Comparing with regular extra
tors. It is interesting to 
ompare this de�ni-tion of F with the de�nition of a strong (m; ")-extra
tor H from Se
tion 2.7. It iseasy to 
he
k that if F is a Æ-sure (m; �)-extra
tor, then it is also a strong (m; �+ Æ)-extra
tor. In some sense, we \�ne-tuned" " into � and Æ. On the other hand, for any� and Æ satisfying " = �Æ, a strong (m; ")-extra
tor H is also a Æ-sure (m; �)-extra
tor.However, the usage of F is typi
ally very di�erent from that of H. H is designed towork for all X, but for ea
h parti
ular X we have to invest extra randomness andsample a brand new hash fun
tion h 2 H. F is designed to work for arbitrary but�xed 
olle
tion X of sour
es of min-entropy m. We sample a fun
tion f 2 F onlyon
e and with overwhelming probability this parti
ular f will be a good deterministi
extra
tor for all X 2 X . In other words, on
e we have 
hosen f we do not invest anymore randomness later, no matter how many times and whi
h sour
es X 2 X aregiven to us (however, there is a negligible 
han
e that our f is \bad").As we said, the above is a
hieved by making Æ very small (mu
h smaller than1=jX j) and implies that we 
annot make the size of F very small. In the very least,we must have jFj � jX j, sin
e we have to take the union bound over all X 2 X .Sin
e jX j is often exponential in n, we need at least poly(n) random bits to samplef from F , whi
h is mu
h more than the polylogarithmi
 number of bits that weresuÆ
ient for regular extra
tors. Thus, even though it would be ni
e to minimize thenumber of bits to des
ribe f 2 F , a more immediate 
on
ern will be to make surethat the number of bits is polynomial in n, so that f is eÆ
iently des
ribable and
omputable.To summarize, a strong (m; ")-extra
torH is designed to work for any distributionX (with min-entropy m) and the emphasis is to use very few extra random bits, sin
e46



we have to use new random bits for every su
hX. A Æ-sure (m; �)-extra
tor is designedto work for a parti
ular (albeit arbitrary) 
olle
tion of sour
es X (of min-entropy mea
h), and the emphasis is to be able to eÆ
iently sample a single f from F that willbe a good deterministi
 extra
tor for all X 2 X .2.8.2 t-wise Independent Fun
tion FamiliesWe will give a simple eÆ
ient 
onstru
tion of Æ-sure (m; �)-extra
tor families basedon the 
onstru
tion and the analysis of [62℄, but �rst we need to re
all the notion oft-wise independen
e.De�nition 10 A 
olle
tion of random variables Y1; : : : ; YN over some spa
e S issaid to be t-wise independent if for any t distin
t indi
es i1; : : : ; it we have that thevariables Yi1; : : : ; Yit are independent8 from ea
h other. A family F of fun
tions fromf0; 1gn to f0; 1gk is said to be t-wise independent if when a fun
tion f is 
hosenfrom F at random, the values of f are t-wise independent, i.e. the random variablesff(x) j x 2 f0; 1gng are t-wise independent over f0; 1gk.When talking about t-wise independent families of fun
tion we will always ad-ditionally assume that for any x 2 f0; 1gn, the distribution of f(x) is uniform overf0; 1gk. In other words, any t values of f are independent and uniform. There existeÆ
ient t-wise independent fun
tion families from n to k � n bits, where it takesO(tn) random bits to des
ribe a fun
tion in F (see [19℄). The simplest su
h family isa family of polynomials of degree t over GF (2n) \trun
ated" to k bits. In other words,given a polynomial p of degree t over GF (2n) and a point x 2 GF (2n), we evaluatep(x) over GF (2n) and output the �rst k bits of the 
anoni
al n-bit representationof the answer. The t-wise independen
e follows from the fa
t that any t values of arandom polynomial of degree t are independent and random.We will need the following \tail inequality" for the sum of t-wise independent ran-dom variables proven by Bellare and Rompel [9℄. There they estimate Pr[jY � E[Y ℄j >8I.e., Pr(Yi1 = y1 ^ : : : ^ Yit = yt) = Pr(Yi1 = y1) � : : : � Pr(Yit = yt), for any y1; : : : ; yt.47



A℄, where Y is the sum of t-wise independent variables. We will only be interestingin A = � � E[Y ℄, where � � 1. In this 
ase it is easy to tra
e the proof of Lemma 2.3(and Lemma A.5 that is used to prove it) of [9℄ and get the following result.Theorem 5 ([9℄) Let t be an even integer, and assume Y1; : : : ; YN are t-wise inde-pendent random variables in the interval [0; 1℄. Let Y = Y1 + : : :+ YN , � = E[Y ℄ and� < 1. Then Pr(jY � �j � ��) � Ct � � t�2��t=2 (2.9)where the 
onstant Ct < 3 and in fa
t Ct < 1 for t � 8.2.8.3 t-wise Independent Fun
tions as Extra
torsWe now argue that any family of t-wise independent fun
tions is a very good Æ-sure(m; ")-extra
tor family. For that we need the following 
ru
ial lemma.Lemma 3 Let F be a family of t-wise independent fun
tions (for even t � 8) from nto k bits, let X be a distribution over f0; 1gn of min-entropy m, and let y 2 f0; 1gk.Assume for some � > 0 k � m� �2 log 1� + log t + 2�� (2.10)Let f be 
hosen at random from F and x be 
hosen a

ording to X. ThenPrf2F �����Prx (f(x) = y)� 12k ���� � � � 12k� � 2��t (2.11)In other words, for any y 2 f0; 1gk, if f is 
hosen from F then with overwhelmingprobability we have that the probability that f(X) = y is 12k (1� �).Proof: Let px denotes the probability that X = x and let q denote the randomvariable (only over the 
hoi
e of f) whi
h equals to the probability (over the 
hoi
eof x given f) that f(x) = y, i.e.q = Xx2f0;1gn px � Iff(x)=yg48



where Iff(x)=yg is an indi
ator variable whi
h is 1 if f(x) = y and 0 otherwise. Sin
efor any x the value of f(x) is uniform over f0; 1gk, we get that Ef [Iff(x)=yg℄ = 2�k,and thus Ef [q℄ = 2�k. Noti
e also that the variables Iff(x)=yg are t-wise independent,sin
e f is 
hosen at random from a family of t-wise independent fun
tions. And �nallynoti
e that sin
e X has min-entropy m, we have that all px � 2�m.Thus, if we let Qx = 2m � px � Iff(x)=yg, and Q = Px2f0;1gn Qx = 2mq, we getthat the variables Qx are t-wise independent, all reside in the interval [0; 1℄, andE[Q℄ = 2mE[q℄ = 2m�k. Now we 
an apply the tail inequality given in Theorem 5and obtain:
Prf �����q � 12k ���� � � � 12k� = Prf ���Q� 2m�k�� � � � 2m�k�� � t�2 � 2m�k� t2 = � 12m�k�2 log 1��log t� t2� 2��twhere the last inequality follows from Equation (2.10).The above lemma almost immediately suggests that a family of t-wise independentfun
tions is a good Æ-sure extra
tor. Indeed, if we take a union bound over ally 2 f0; 1gk, we get that with probability at least (1� 2k��t) all y have Prx(f(X) =y) = 12k (1� �), whi
h easily implies that f(X) is �-
lose to uniform on f0; 1gk. Thus,to make F Æ-sure, we need 2k��t � Æ. Sin
e we will have k < m anyway, it suÆ
esto have �t � m + log 1Æ . We set � = 1 for simpli
ity9 and get t = m + log 1Æ , while k
ould be set to m� (2 log 1� + log t+O(1)) � m� (2 log 1� + loglog 1Æ + logm+O(1)).Thus, we provedTheorem 6 Fix any n, m, � and Æ. Sett = m+ log 1Æ ; k = m� �2 log 1� + loglog 1Æ + logm +O(1)�9In fa
t, the \optimal" 
hoi
e of � is log(m+ log 1Æ ), but this will not make mu
h di�eren
e.49



Then any family F of t-wise independent fun
tions from n bits to k bits is a Æ-sure(m; �)-extra
tor.We see two 
ru
ial features of this result that make it extremely useful. First, tis logarithmi
 in 1=Æ, whi
h means that we 
an a�ord to have exponentially small Æand still have eÆ
ient F . On the other hand, the \entropy loss" for k (the expressionsubtra
ted from m) is logarithmi
 in 1=� and doubly logarithmi
 in 1=Æ. Thus, Æ 
anbe exponentially smaller than �. This means that we 
an set � to a desirable level(say, only slightly negligible in n) and again 
an easily a�ord to make Æ exponentiallysmall. In parti
ular, if we take any 
olle
tion X ofM distributions of min-entropy m,we 
an apply Corollary 2 with Æ = 1=M2 (we also repla
e � in the proof of Theorem 6from 1 to 2 to get rid of the fa
tor of 2 in log(1=Æ) = 2 logM), and easily handleexponentially large M :Corollary 3 Fix any n, m, �,M and any 
olle
tion X ofM distributions over f0; 1gnof min-entropy m ea
h. De�net = m + logM ; k = m� �2 log 1� + logm+ loglogM +O(1)�and let F be any family of t-wise independent fun
tions from n bits to k bits. Thenwith probability at least (1� 1M ) a random fun
tion f 2 F will be a good deterministi
extra
tor for X , i.e. f(X) will be �-
lose to uniform over f0; 1gk for any X 2 X . Inparti
ular, su
h deterministi
 f exists.Interestingly enough, one 
an 
he
k that we would get almost the same boundon k if we were to 
hoose the fun
tion f 
ompletely at random (using exponentiallymany random bits, and making it infeasible to use). Thus, eÆ
iently samplable and
omputable family of t-wise independent fun
tions (where we 
an make t reasonablysmall) does essentially as well as a family of all fun
tions.
50



2.9 Quadrati
 Forms and Fourier AnalysisIn this se
tion we give some ba
kground from linear algebra. Further explanation
an be found in many textbooks, e.g. M. Artin's Algebra. In this se
tion most of thearithmeti
 will be over the reals, and we will try to use boldfa
e when talking aboutve
tors in Rm , to separate them from ve
tors over f0; 1gm whi
h we talked aboutearlier. Let u = fu1; : : : ; umg, v = fv1; : : : ; vmg be two ve
tors in Rm . We will usethe notation hu;vi = u>v =Pi uivi to denote the inner produ
t of u and v, and letkuk2 = hu;ui =Pi u2i denote the square of the Eu
lidean norm of u.Re
all that a set of ve
tors fv1; : : : ;vmg forms an orthonormal basis of Rm , ifhvi;vji is 0 for i 6= j and is 1 for i = j (this automati
ally implies that these ve
torsare linearly independent and span Rm).Finally, re
all that a non-zero ve
tor v is an eigenve
tor of a square m�m matrixA 
orresponding to an eigenvalue �, if Av = �v.Quadrati
 forms. A quadrati
 form (over R) in m variables is a multivariatepolynomial where ea
h term has degree exa
tly 2. One 
an always write it as amap from real-valued ve
tors to real numbers su
h that a ve
tor w 2 Rm maps tow>Qw =Pmi;j=1wiwjQi;j, where Q is a symmetri
 m �m matrix (i.e., Qi;j = Qj;i).For example, when Q is the identity matrix, we get w>Qw =Piw2i = kwk2.Now a symmetri
 matrix will always have m real eigenvalues (
ounted with multi-pli
ity) and, moreover, it will always be diagonalizable over R (see Artin for a proof).Expli
itly, this means that we 
an �nd an orthonormal basis fv1; : : : ;vmg of Rm anda set of eigenvalues �i 2 R su
h that Qvi = �ivi for all i. In addition,Fa
t 1 For any ve
tor u, the orthonormality of the vi's impliesu>Qu = mXi=1 �ihu;vii2 and kuk2 = hu;ui =Xi hu;vii2Assume now that hu;vii = 0 for all i 
orresponding to the large eigenvalues of Q.Then the Fourier de
omposition above allows us to obtain the following upper boundon u>Qu. 51



Corollary 4 Let �1 � �2 � : : : � �m be the eigenvalues of Q. And assume thathu;v1i = : : : = hu;vji = 0 for some j � 0. Thenu>Qu � �j+1 � kuk2 (2.12)In parti
ular, for any u we have u>Qu � �1 � kuk2.Proof: By Fa
t 1,u>Qu =Xi �ihu;vii2 =Xi>j �ihu;vii2 � �j+1Xi>j hu;vii2 = �j+1kuk2
We noti
e that the Corollary above follows from a more general Courant-Fis
hertheorem, whi
h states that in fa
t �j+1 = maxu2Uj u>Qukuk2 , where Uj is the spa
e of allve
tors orthogonal to the �rst j eigenve
tors v1; : : : ;vj.Fourier De
omposition of the Hyper
ube. We will be using a parti
ularmatrix A | the adja
en
y matrix of an n-dimensional hyper
ube H = f0; 1gn. Thatis, A is a 2n � 2n dimensional 0-1 matrix, with entriesAx;y = 8<: 1 if x and y di�er in exa
tly one position0 otherwiseWe 
onsider A as an operator on the 2n-dimensional ve
tor spa
e V 
onsistingof ve
tors with positions indexed by the strings in H. Typi
ally, we will use u(y) torefer to position y 2 H in the ve
tor u.For two strings in y; z in f0; 1gn, let y � z denote their inner produ
t modulo 2,i.e. the parity of the number of positions on whi
h they are both 1. We denote byweight(z) the number of positions of z whi
h are equal to 1. We need the followingfa
t expli
itly telling us the eigenve
tors and the eigenvalues of A.Fa
t 2 A has an orthonormal basis of eigenve
tors fvz : z 2 f0; 1gng, where the52



eigenvalue of vz is �z = n� 2 � weight(z), and the value of vz at position y isvz(y) = 1p2n � (�1)z�y (2.13)The basis fvzg is often 
alled the Fourier basis related to the matrix A. The 
oeÆ-
ients hu;vzi are then 
alled the Fourier 
oeÆ
ients of u. From the above fa
t andfrom Corollary 4, we get the following useful lemma.Lemma 4 Assume fvz : z 2 f0; 1gng are the eigenve
tors of A as above, and let ube a ve
tor orthogonal to all the vz's 
orresponding to z with weight(z) < t. Thenu>Au � (n� 2t) � kuk2In parti
ular, for any u we have u>Au � n � kuk2.
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Chapter 3
De�nitions and Dis
ussion
In this se
tion, we de�ne and dis
uss the 
entral 
on
epts in our study: Exposure-Resilient Fun
tions (ERF's) and All-Or-Nothing Transforms (AONT's). Our de�ni-tions are extremely natural and simple. We also show that ERF's and AONT't havenumerous appli
ations in many di�erent areas, making them indeed fundamental
ryptographi
 primitives.3.1 Exposure-Resilient Fun
tionsAn ERF is a fun
tion su
h that if its input is 
hosen at random, and an adversarylearns all but ` bits of the input, for some threshold value `, then the output of thefun
tion will still appear (pseudo) random to the adversary (see Figure 1-2). Formally,De�nition 11 A polynomial time 
omputable fun
tion f : f0; 1gn ! f0; 1gk is `-ERF(exposure-resilient fun
tion) if for any L 2 fǹg and for a randomly 
hosen r 2 f0; 1gn,R 2 f0; 1gk, the following distributions are indistinguishable:h[r℄�L; f(r)i � h[r℄�L; Ri (3.1)Here � 
an refer to perfe
t, statisti
al or 
omputational indistinguishability.The de�nition states that an ERF transforms n random bits into k (pseudo) ran-dom bits, su
h that even learning all but ` bits of the input, leaves the output in-54



distinguishable from a random value. There are three parameters of interest here: `,n, and k. All of them are very important. First of all, the smaller ` is, the harderis to satisfy the 
ondition above, sin
e fewer bits are left unknown to the adversary.Thus, we wish to make ` as small as possible for a given n. Se
ondly, k is the numberof pseudorandom bits that we get out when the adversary does not see ` bits of theinput, whi
h we would like to make as large as possible. Thus, there are two measuresof interest: the fra
tion of ` with respe
t to n, whi
h we would like to be as smallas possible (this shows the \exposure-resilien
e"); and the size of k with respe
t to `,whi
h we want to be as large as possible (this shows the \randomness eÆ
ien
y").Adaptively Se
ure ERF. In the de�nition of ERF above, the adversary has to\de
ide in advan
e" whi
h (n � `) bits he is going to observe. This is 
apturedby requiring the se
urity for all �xed sets L of 
ardinality `. However, in manysituations (e.g., the problem of gradual key exposure explained in the next se
tion),the adversary has more power. Namely, he 
an de
ide whi
h (n� `) bits of the se
retto learn adaptively based on the information that he has learned so far. In the mostextreme 
ase, the adversary would de
ide whi
h bits to observe \one-bit-at-a-time".As we will see, this adversary is indeed mu
h more powerful than the stati
 adversarywho de
ides on the subset L of bits to \miss" in advan
e. But now we just de�neformally the 
orresponding notion of adaptively se
ure `-ERF that would prote
t evenagainst su
h adaptive adversaries.First, an adversary A having ora
le a

ess to a string r is said to be `-bounded ifhe is allowed to adaptively read all but some ` bits of r one-bit-at-a-time, dependingon his input and the bits of r that he read so far. We denote su
h an adversary byAr(�).De�nition 12 A polynomial time 
omputable fun
tion f : f0; 1gn ! f0; 1gk is a(perfe
t, statisti
al or 
omputational) adaptive `-ERF (adaptive exposure-resilientfun
tion) if for any `-bounded adversary A, when r is 
hosen at random from f0; 1gn
55



and R is 
hosen at random from f0; 1gk,jPr(Ar(f(r)) = 1)� Pr(Ar(R) = 1)j � "where� In the perfe
t setting " = 0.� In the statisti
al setting " = negl(n).� In the 
omputational setting " = negl(n) for any PPT A.Thus, in the above de�nition A would try to adaptively examine (n� `) bits of rto determine at least something about f(r). And if f is an `-ERF, no `-bounded Awould su

eed in distinguishing f(r) from a random string.We observe that in the perfe
t setting this de�nition is equivalent to that of anordinary perfe
t `-ERF. Indeed, no matter how, why and whi
h (n� `) bits of r wereexamined by A, on
e the remaining ` bits of r are 
hosen at random, the de�nitionof perfe
t `-ERF says that f(r) is truly random over f0; 1gk (even 
onditioned on theobserved (n � `) bits). Thus, adaptivity does not help the adversary in the perfe
tsetting (be
ause the de�nition of a perfe
t ERF is by itself very strong!). As we willsee, in the statisti
al setting there is a very big di�eren
e between the adaptive andthe non-adaptive notions: if not that mu
h with the parameters a
hieved, but withthe diÆ
ulty of 
onstru
ting adaptive ERF's as 
ompared to ordinary ERF's. Andon
e we have good statisti
al ERF's, 
omputational ERF's will be easy to 
onstru
tboth in the stati
 and in the adaptive settings.Computational ERF vs. PRG. Assume we have a (
omputational) `-ERF f :f0; 1gn ! f0; 1gk, where k > n. This 
an be viewed as a parti
ularly strong form of apseudorandom generator (PRG, see Se
tion 2.4). In other words, not only f stret
hesn random bits into k pseudorandom bits, but the k output bits remain pseusorandomeven when any (n� `) bits of the seed are revealed. Thus, su
h ERF 
an be 
alled an\exposure-resilient PRG". Not surprisingly, we will use regular PRG's as one of thebuilding blo
ks in 
onstru
ting su
h 
omputational ERF's.56



3.2 Appli
ations of ERFProte
ting random se
rets. As an immediate general appli
ation to the partialkey-exposure problem, `-ERF f : f0; 1gn ! f0; 1gk allows one to represent a randomse
ret R 2 f0; 1gk in an \exposure-resilient" way. Namely, instead of storing andusing R as the se
ret, we pi
k and store a random r 2 f0; 1gn, but use f(r) as ourse
ret. Sin
e f(r) and R are indistinguishable, our underlying appli
ation is not going\to know the di�eren
e". In fa
t, even if the adversary learns all but ` bits of r, these
ret f(r) is still indistinguishable from a random value.On a theoreti
al level, we 
an almost always assume that our se
ret is a trulyrandom string (for example, the random 
oins of the key generation algorithm). Thus,in prin
iple `-ERF's 
an solve the general partial key exposure problem. In pra
ti
e,however, this is going to be eÆ
ient only if a \natural representation" of the se
retis a truly random string. As we saw in Se
tion 2.5, this indeed often happens in thesetting of private-key 
ryptography (and sometimes even in publi
-key 
ryptography),and gives rise to many more spe
i�
 appli
ations, some of whi
h we des
ribe next.Exposure-Resilient PRG's and one-time pad. As another immediate appli
a-tion whi
h we already observed at the end of last se
tion, ERF's allow us to obtain amu
h stronger form of pseudorandom generator (espe
ially when k > n), whi
h notonly stret
hes n bits to k bits, but remains pseudorandom even when any (n� `) bitsof the seed are revealed. As a natural extension of the above appli
ation, we 
an applyit to the one-time private-key en
ryption. Re
all that one-time pad en
ryption overf0; 1gk 
hooses a random shared se
ret key r 2 f0; 1gn and en
rypts x 2 f0; 1gk by apseudorandom \one-time pad" G(r) (where G is a PRG), i.e. En
(x; r) = x �G(r).We 
an make it resilient to the partial key exposure by repla
ing a PRG G with aERF f .Exposure-Resilient PRF's and symmetri
 en
ryption. For the next severalappli
ation, we assume for 
onvenien
e that ERF f : f0; 1gk ! f0; 1gk is length-preserving (we will show in Se
tion 4.3 how to build them based on any one-way57



fun
tion). Using su
h f , we show how to obtain exposure-resilient form of a pseudo-random fun
tion family. Let F = fFs j s 2 f0; 1gkg be a regular PRF family. De�n-ing ~Fs = Ff(s), we get a new pseudorandom fun
tion family ~F = f ~Fs j s 2 f0; 1gkg,whi
h remains pseudorandom even when all but ` bits of the seed s are known. Weapply this again to private-key 
ryptography. Re
all that a 
lassi
al private-key en-
ryption s
heme sele
ts a random shared key s 2 f0; 1gk and en
rypts x by a pairhx� Fs(R); Ri, where R is 
hosen at random. Again, repla
ing F by an exposure-resilient PRF, we obtain resilien
e against partial key exposure. Here our new se
retkey is s 2 f0; 1gk, but f(s) is used as an index to a regular PRF.Other examples of random keys. As we pointed in Se
tion 2.5, there are manyother natural examples where the se
ret key is just a random string: message authen-ti
ation 
odes, pseudorandom permutations and blo
k 
iphers, keyed hash fun
tions,many dis
rete-log based 
ryptosystems.Gradual exposure of random keys. In fa
t, we 
an a
hieve se
urity evenagainst what we 
all the gradual key exposure problem in the setting with sharedrandom keys. Namely, assume several parties (say, two) want to share a se
ret keywhi
h is just a k-bit random value. And 
onsider a situation where the adversaryis able to learn more and more bits of the se
ret key over time. We do not pla
eany upper bound on the amount of information the adversary learns, but insteadassume only that the rate at whi
h the adversary 
an gain information is bounded.For example, suppose that every week the adversary somehow learns at most b bitsof our se
ret R. As before, let us let us strore a random r 2 f0; 1gk and use f(r) inpla
e of R. We know that as long as the adversary misses ` bits of r, the system isse
ure.1 However, pretty soon (in about (k � `)=b weeks) there is a danger that theadversary may know more than (k � `) bits of r, whi
h would make f(r) no longer\
ompletely se
ret". To 
ir
umvent thsi problem and to avoid ever 
hanging these
ret key, it seems suÆ
ient that both parties periodi
ally (say, with period slightlyless than (k� `)=b weeks) update their stored key by setting rnew = f(rold). Sin
e at1Here it makes more sense to talk about adaptively se
ure ERF's.58
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1Figure 3-1: Gradual exposure of random keys, or how to maintain a random se
ret.the time of ea
h update the adversary did not know at least ` bits of our 
urrent keyr, the value f(r) is still pseudorandom, and thus se
ure. This idea \almost works".The problem is that after we 
hanged our \stored" key from r to f(r), and on
ethe adversary starts learning the bits of f(r), he gets the bits of the \a
tual" key f(r)we used several weeks ago. For some appli
ations, where old transa
tions are qui
klyerased or be
ome irrelevant, this might be good, but in general we de�nitionely donot want the adversary to learn information about our old keys. In some sense, theonly thing we a
hieved is shifting the immediate problem of key exposure by (k�`)=bweeks. Lu
kily, there is a simple �x that makes this idea work as we initially intended.Namely, assume we have a length-doubling `-ERF ~f : f0; 1gk ! f0; 1g2k (again, wewill show in Se
tion 4.3 how to build them). Call f the length-preserving fun
tionreturning the �rst k bits of ~f , and by g | the one returning the last k bits of ~f . Nowwe store a random r and use f(r) as our a
tual se
ret. However, at the time we needto syn
hronously update our key (say, in (k� `)=b weeks), we repla
e r by g(r). Nowat the time of ea
h update the adversary misses at least ` bits of our 
urrent se
ret, sohe has no information about both f(r) and g(r). Moreover, even when he later learnssome information about our new se
ret g(r) (even all of it), he still gets no informationabout f(r), i.e. the a
tual se
ret used in all the 
urrent transa
tions. Hen
e, partiesagree on a random se
ret key only on
e, even if the adversary 
ontinuously learnsmore and more of the (
urrent) se
ret! This me
hanism is illustarted in Figure 4-2,where the timeline shows what is being 
urrently stored, and what is used as a 
urrent\a
tual" se
ret. 59



Maintaining a (pseudo)random se
ret. The solution above has another appli-
ation. Namely, it allows one party to maintain a (pseudo)random se
ret that keeps
hanging (while staying pseudorandom to the adversary), despite the adversary ableto 
ontinuously learn more and more bits of whatever we store (but at a boundedrate). As before, we store r, use f(r) as our maintained pseudorandom se
ret, andbefore the adversary learns too many bits of r, we let rnew = g(rold). We will see oneappli
ation of this is Se
tion 3.4.Agreeing on a se
ret key. This is one of the appli
ations of t-resilient fun
tions(e.g., perfe
t ERF's) suggested by [10℄, whi
h extends to any ERF. Assume that twoparties Ali
e and Bob want to agree on a random string of length k. Ordinarily,Ali
e 
an 
hoose a random string R and send it to Bob. Unfortunately, there is aneavesdropper Eve who 
an listens to the 
ommuni
ation 
hannel and may learn someof the bits transmitted by Ali
e. Ali
e and Bob do not know whi
h bits were observedby Eve, but they know that with high probability Eve did not learn more than a Æfra
tion of the transmitted bits. Assume we have an `-ERF f : f0; 1gn ! f0; 1gk with`=n � 1 � Æ. Then Ali
e 
an pi
k a random r 2 f0; 1gn and send it to Bob. Thea
tual shared random string will f(r), about whi
h Eve will have \no information"sin
e he misses at least (1� Æ)n � ` bits of r.Coin-Flipping in Syn
hronous Networks with Broad
ast. This is one ofthe original motivations of Chor et al. [20℄ . Unfortunately, if only applies to perfe
t`-ERF's. Consider a syn
hronous network where n players wish to 
olle
tively 
ip arandom k-bit string, and only a broad
ast 
hannel2 is available for 
ommuni
ation.Assume also that up to (n� `) of the players 
an be faulty, and our proto
ol shouldbe resilient against that. The simplest possible solution would be for ea
h player i to
ip a random bit ri and to broad
ast it to all the other players. The resulting k-bitoutput will be f(r1; : : : ; rn) for some �xed f : f0; 1gn! f0; 1gk. It is easy to see thatthe proto
ol is resilient to any ` faulty players if and only if f is a perfe
t `-ERF (i.e.,2This means that a player 
an send a message to all other players, and all the players are assuredof getting the same message. 60



(n� `)-resilient fun
tion of [20℄).We also remark that while this appli
ation does not apply to statisti
al and 
om-putational ERF's, it does apply to their stronger 
ounter-parts. Namely, we 
an usealmost (n � `)-resilient fun
tions of [39℄ (the output will then be statisti
ally 
loseto uniform) that we 
onstru
t in Se
tion 4.4.1. Alternatively, if we use what we 
all
omputational (n� `)-resilient fun
tions (that we de�ne and 
onstru
t in Remark 1),the resulting output will be 
omputationally 
lose to uniform. Overall, we 
an saythat this appli
ation applies to (perfe
t, statisti
al or 
omputational) (n� `)-resilientfun
tions, that is: a) the adversary 
an �x any (n � `) bits of r to any string hedesires, b) the remaining ` bits of r are set at random, and 
) the resulting outputf(r) is still \
lose" to a random k-bit string (where the meaning of \
lose" dependson the notion of (n� `)-resilient fun
tion we use).All-Or-Nothing-Transforms. Finally, in Se
tion 5 we show how to 
onstru
tAONT's using ERF's.3.3 All-Or-Nothing TransformsDe�nition 13 A randomized polynomial time 
omputable fun
tion T : f0; 1gk !f0; 1gs � f0; 1gp is `-AONT (all-or-nothing transform) if1. T is eÆ
iently invertible, i.e. there is a polynomial time ma
hine I su
h thatfor any x 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x.2. For any L 2 fs̀g, any x0; x1 2 f0; 1gk we havehx0; x1; [T (x0)℄�Li � hx0; x1; [T (x1)℄�Li (3.2)In other words, the random variables in f[T (x)℄�L j x 2 f0; 1gkg are all indistin-guishable from ea
h other. Here � 
an refer to perfe
t, statisti
al or 
omputa-tional indistinguishability. 61



If T (x) = (y1; y2), we 
all y1 the se
ret output and y2 the publi
 output of T . If p = 0(there is no publi
 output), we 
all T a se
ret-only `-AONT.The above de�nition is \indistinguishability" based and follows the general method-ology from Se
tion 2.3. Indeed, for ea
h �xed L the experiment on x 
onsists simplyof outputting [T (x)℄�L. In parti
ular, one 
an make the equivalent \semanti
 se
urity"based de�nition, where the adversary, given z = [T (x)℄�L (where x is pi
ked a

ordingto some distribution D), 
annot 
ompute � satisfying some relation R(x; �) \signif-i
antly better" than without z at all. Thus, all-or-nothing transforms allow one to\en
ode" any x in su
h a form that the en
oding is easily invertible, and yet, anadversary learning all but ` bits of the (se
ret part of the) en
oding \
annot extra
tany useful information" about x. We also remark that Boyko [16℄ gave two sepa-rate de�nitions of semanti
 se
urity and indistinguishability for AONT (with randomora
les), and proved essentially identi
al theorems for both of his de�nitions. Thegeneral equivalen
e of the de�nitions (together with the eÆ
ien
y of both redu
tionsin Se
tion 2.3) shows that one of these proofs was not ne
essary, and further justi�esthe usefulness of Theorem 1.Comparison with earlier definitions. The de�nition given above generalizesand simpli�es (be
ause there are no random ora
les) the formal de�nition for se
ret-only AONT given by Boyko [16℄ (re�ning an earlier de�nition of Rivest [51℄) in asetting with a random ora
le. In parti
ular, while previous de�nitions were restri
tedto se
ret-only AONT, our de�nition allows one to split the output y into two se
tions:a se
ret part y1 and a publi
 part y2. The publi
 part y2 requires no prote
tion |that is, it is used only for inversion and 
an be revealed to the adversary in full.The se
urity guarantee states that as long as ` bits of the se
ret output y1 remainhidden (while all the bits of y2 
an be revealed), the adversary should have \noinformation" about the input. We also observe that if y = (y1; y2) and L 2 fs̀g, wehave notationally that [y℄�L = ([y1℄�L; y2). This is informally illustrated in Figure 3-2and should be 
ompared with the spe
ial 
ase of se
ret-only AONT from Figure 1-1.We note that our generalized notion of AONT solves the problem of partial key62
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ret and publi
 outputs).exposure and also remains equally appli
able to all the other known uses of the se
ret-only AONT. In addition, we will argue that it gives us more 
exibility and also allowsus to 
hara
terize the se
urity of our 
onstru
tions more pre
isely. More spe
i�
ally,the motivations for potentially having a publi
 part is the following. In the earlierde�nitions of AONT (whi
h were se
ret-only), it is impli
itly assumed that all parts ofthe transform are \equally important" and should have the same prote
tion againstthe atta
ker. In reality, di�erent parts of the transform serve di�erent purposes forthe de
oding pro
ess. Some of them 
ould be used just for the de
oding pro
ess (sothat the mapping is invertible), but are not important to keep se
ret against theatta
ker, while others are really the ones that do all the 
ryptographi
 work, andthus, should be kept se
ret.For example, we 
ould have a transform of output length 2k, where, as long asthe adversary does not learn pk bits from the �rst half of the transform, we are
ompletely se
ure, but be
ome totally inse
ure if the adversary learns the entire �rsthalf. This seems like a very reasonable solution to the key leakage problem; we willsimply prote
t as hard as we 
an the �rst half of the transform, while the se
ond half63



we might as well publish. However, in the standard setting we must set ` = k +pkto ensure that the adversary misses at least pk bits of the �rst half. This seems tobe an arti�
ial setting for `, indi
ating that more than half of the transform shouldbe kept hidden. Common sense tells us that the real answer is ` = pk, be
ause �rstand se
ond half serve di�erent purposes, and we are se
ure as long as pk bits of the�rst half remain hidden. To summarize, in our de�nition publi
 part is only used tode
ode x ba
k (in 
onjun
tion with the se
ret part), but we really do not 
are aboutprote
ting it. It is only the se
ret part that is important to prote
t.We now argue that this generalized notion allow us more 
exibility than before.First of all, it allows reasonable AONT 
onstru
tions, as in the example above, tohave small `, as they should. Se
ondly, while without the publi
 part, the size of these
ret part had to be at least the size of the message, now it 
an be mu
h smaller(at the expense of the publi
 part). Thus, the publi
 part may be stored on someinse
ure devi
e with fast a

ess time (like publi
 
a
he), while se
ret part may bestored further away in some well prote
ted memory (like a smart
ard), and still giveus a guarantee that small a

idental leakage will not 
ompromise the se
urity. Inaddition, we will see that more general AONT's (with the publi
 part) seem to bemore eÆ
ient and mu
h easier to 
onstru
t than the 
orresponding AONT's with onlya se
ret part. We also point again that our generalized notion of AONT naturallysuÆ
es for all the appli
ations of AONT that we are aware of.We also remark that the spe
ial 
ase of perfe
t AONT's was impli
itly mentionedby Bennett et al. [10℄. See Se
tion 5.1.Previous 
onstru
tions. Boyko [16℄ showed that, in the random ora
le model, thefollowing so 
alled \optimal asymmetri
 en
ryption padding" (OAEP) 
onstru
tionof [8℄ is a (se
ret-only) `-AONT (where ` 
an be 
hosen to be super-logarithmi
 in these
urity parameter). Let G : f0; 1gn ! f0; 1gk and H : f0; 1gk ! f0; 1gn be randomora
les (where n is any number greater than `). The randomness of T is r  f0; 1gn.De�ne T (x; r) = hu; ti, where u = G(r)� x (3.3)64
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 En
ryption Padding.t = H(u)� r (3.4)We note that the inverse I(u; t) = G(H(u)�t)�u. This 
onstru
tion is illustratedin Figure 3-3. We also remark that Boyko's work was the �rst formal treatment ofthe AONT, stimulated a lot of subsequent resear
h and a
hieved essentially the bestpossible AONT's in the Random Ora
le model. No provable 
onstru
tions of AONTbased on standard assumptions were previously known.Adaptively Se
ure AONT. As for the de�nition of ERF, we 
an talk about adap-tively se
ure AONT's. In other words, in the ordinary AONT's the adversary has to\de
ide in advan
e" whi
h (s� `) bits of the (se
ret part of) the output he is going toobserve. This is 
aptured by requiring the se
urity for all �xed sets L of 
ardinality `.While interesting and non-trivial to a
hieve, in many appli
ations the adversary po-tentially has the power to 
hoose whi
h bits to observe adaptively. Namely, the 
hoi
eof whi
h bit(s) to observe next may partially depend on whi
h bits the adversary hasalready observed. For example, if a se
ret is a large do
ument, the adversary may65



try to �rst steal the �rst 
ouple of pages that have the table of 
ontents. Based onthat, the adversary will know whi
h parts of the do
ument are really important, andthen target his attention to stealing the few \important" pages, whose identity theadversary would not know if he 
ould only steal several pages \in one shot". Taken tothe most extreme, we 
an allow this adaptive adversary to read the bits of the se
ret\one-bit-at-a-time", as long as he misses at least ` bits.As before when talking about ERF's, we will 
apture this by having an `-boundedadversary A, who will have ora
le a

ess to a string y = (ys; yp) (whi
h 
ould begenerated by some probabilisti
 experiment). A 
an read entire \publi
" part yp andis allowed to adaptively read all but some ` bits of the \se
ret" part ys one-bit-at-a-time (possible based on his regular input). As before, we denote su
h an adversaryby Ay(�).De�nition 14 A randomized polynomial time 
omputable fun
tion T : f0; 1gk !f0; 1gs�f0; 1gp is a (perfe
t, statisti
al or 
omputational) adaptive `-AONT (adaptiveall-or-nothing transform) if1. T is eÆ
iently invertible, i.e. there is a polynomial time ma
hine I su
h thatfor any x 2 f0; 1gk and any y = (y1; y2) 2 T (x), we have I(y) = x.2. For any x0; x1 2 f0; 1gk and any `-bounded adversary A,��Pr(AT (x0)(x0; x1) = 1)� Pr(AT (x1)(x0; x1) = 1)�� � "where� In the perfe
t setting " = 0.� In the statisti
al setting " = negl(s+ p).� In the 
omputational setting " = negl(s+ p) for any PPT A.Equivalently, in the above de�nition we 
an have A adaptively examine some bitsof T (xi) to determine at least something about a randomly 
hosen i. And if T is66



an `-AONT, no `-bounded A would su

eed in predi
ting i 
orre
tly with probabilitysigni�
antly more than 1=2.Again, we observe that in the perfe
t setting this de�nition is equivalent to thatof an ordinary perfe
t `-AONT. Thus, adaptivity does not help the adversary in theperfe
t setting (be
ause the de�nition of a perfe
t AONT is by itself very strong!). Aswith ERF's, however, in the statisti
al and 
omputational settings there is a very bigdi�eren
e between the adaptive and the non-adaptive notions.AONT's vs. ERF's. The notions of ERF and AONT are 
losely related with thefollowing 
ru
ial di�eren
e. In ERF, the \se
ret" is a (pseudo) random value f(r).ERF allows one to represent this random se
ret in an \exposure-resilient" way bystoring r instead. Thus, the se
urity is \average-
ase", whi
h allows us to have adeterministi
 f . In AONT, the se
ret is an arbitrary x, whi
h 
an be represented inan \exposure-resilient" way by storing T (x) instead. Thus, the se
urity is \worst-
ase", and, as a result, AONT must be randomized. To summarize, ERF allows oneto represent a random se
ret in an exposure-resilient way, while AONT allows this forany se
ret. We remark that ERF's 
an be mu
h more eÆ
ient that AONT's for the
ase of (pseudo) random se
rets; for example, we will show that in the 
omputationalsetting we 
an store the value r that is shorter than the length of the a
tual se
retf(r), whi
h is impossible to a
hieve with AONT's due to their invertibility. Theseissues are summarized on
e again in Table 3.1 (see also Figures 1-1 and 1-2).We also remark that perfe
t AONT's and ERF's are related even more 
losely, withAONT being more general. See Se
tion 5.1 for more on this relation.AONT's vs. Error-Corre
ting Codes. It is also interesting to 
ompare the no-tion of an AONT with a somewhat opposite notion of an error-
orre
ting 
ode (ECC).Re
all, an error-
orre
ting 
ode of minimal distan
e 2d deterministi
ally stret
hes kinput bits to n output bits (
alled the en
oding of the input), su
h that erasing anyd bits of the output still allows one to re
over the k-bit input. In parti
ular, ob-serving any (n � d) bits of the output allows one to re
over the input. Thus, thelarger the distan
e 2d is (and one always tries to maximize the distan
e when 
on-67



Issue AONT's ERF'sSe
ret Any x (pseudo)Random ERF(r)Store AONT(x) Random rFun
tion (must be) Randomized Deterministi
Se
urity \Worst-Case" \Average-Case"Length jAONT(x)j � jxj Can have jrj < jERF(r)jCommon Store se
ret in an \exposure-resilient" wayTable 3.1: Comparison of AONT's and ERF's.stru
ting ECC's), the less \exposure-resilient" the ECC is. And this is what we wantfrom ECC's, sin
e their main use is to tolerate a lot of errors in the en
oding. In
ontrast, the obje
tive of an AONT is to give no information about the input whenone misses just few bits of the output. Namely, missing any few bits of the (se
retpart of the) output gives no information about the input. Thus, a good AONT wouldbe terrible for error-
orre
tion purposes and vi
e versa. Curiously enough, though,in Se
tion 5.1.1 we will 
onstru
t perfe
t AONT's using some good ECC's.3.4 Appli
ations of AONTIn the appli
ations below, let x be the \se
ret entity" (
lear from ea
h appli
ation),T be an `-AONT and y = (y1; y2) T (x).Partial Key Exposure. This is our original motivation. Given a se
ret x, our 
anstore y instead. This way, the adversary who 
an learn all but ` bits of (the se
retpart of) y has no information about the \a
tual" se
ret x. This works for se
rets ofarbitrary stru
ture and applies as a bla
k-box to any 
ryptographi
 appli
ation. Thepri
e we pay is a slight storage blow-up (whi
h is inevitable sin
e we should be ableto re
over x from y), and the 
omputation of x from y that we have to perform when68



we use x. If the underlying AONT is eÆ
ient and not very long, while the appli
ationis very \intensive", this extra-work will not be signi�
ant, but the system be
omes\exposure-resilient".Gradual key exposure of any keys. This is a similar s
enario to the gradualkey exposure of random key, that was 
onsidered in Se
tion 3.2. There two partieswanted to maintain a 
ommon random key despite the adversary learning more andmore bits of whatever we store (but doing so at a limited rate). We presented asolution to that problem where the parties syn
hronously update their 
urrent keyusing a good ERF. Now assume that one party (this 
learly extends to more parties)has a parti
ular se
ret x, and the adversary, as before, 
an learn more and more bitsof the se
ret, but at a bounded rate. We do not want to ever 
hange x despite this
apability of the adversary. As in the regular key-exposure setting above, we simplystore the AONT y of x. However, after there is a danger that the adversary knows allbut ` bit of (the se
ret part of) y, we erase y and store a brand new AONT y0 of x,and so on. In other words, we store a brand new AONT of x for the period of timewhen it is safe, and then simply redo it from s
rat
h. Again, we 
hoose our se
ret xonly on
e and maintain it for an arbitrarily long period of time!Noti
e the di�eren
es with the solution for the shared random keys. There we kept
hanging our 
urrent key, while maintaining it pseudorandom. Sin
e the key 
hangesover time, this makes sense only for two or more parties, and the diÆ
ulty was forthe parties to syn
hronously do \the same thing", so that they still share the same(pseudorandom) se
ret. Here the philosophy is not to ever 
hange a spe
i�
 se
ret xdespite the gradual key exposure. Thus, it makes sense even for one party and doesnot require any syn
hronization: the parties 
an apply the AONT to x independentlywith di�erent lo
al randomness and at di�erent times. In parti
ular, we 
an solve thegradual key exposure for random se
rets using the same methodology and withoutever (syn
hronously) 
hanging the (random) se
ret.On the other hand, the solution for shared se
ret keys 
an also be easily modi�edto solve gradual key exposure of any se
ret x (even for one player). Namely, we69



noti
ed in Se
tion 3.2 that the solution allowed us to maintain a random se
ret r thatkeeps 
hanging (while staying pseudorandom), but the adversary has no informationabout the \
urrent" r. Well, in addition to \storing" this r, we also store x�r (whi
hallows us to re
onstru
t x from r and x�r). Moreover, x�r 
an even be made publi
.Now, ea
h time we 
hange r we also 
hange x� r a

ordingly. Despite 
on
eptuallybeing slightly more diÆ
ult than the solution using AONT's, it has the advantage ofbeing randomness eÆ
ient. In other words, after we sele
t the initial random bits tostore r, we do not need any more random bits (e.g., to 
ompute a brand new AONT)in order to \maintain" x.Enhan
ing the se
urity of blo
k 
iphers. This was the original motivation ofRivest [51℄. Rivest observed that typi
al en
ryption s
hemes (e.g., most blo
k 
iphers)have a �xed \blo
k length" ` that they operate on. In other words, a (potentially long)message x is split into blo
ks of size ` and ea
h blo
k is en
rypted (independently, orin some kind of \
hain" mode). Unfortunately, in most su
h s
hemes it is possibleto re
over a blo
k of the original message by 
orre
tly de
rypting a single blo
kof the 
iphertext. As a result, the most typi
al atta
k on su
h blo
k 
iphers is abrute-for
e atta
k. The adversary goes through all the keys and tries to de
odethe en
ryption blo
k 
orresponding to a blo
k of the priginal message. If he getssomething \meaningful",3 he knows that the key is 
orre
t and breaks the whole
ipher (in parti
ular, de
rypts the whole message by only looking at a single blo
k).Informally speaking, AONT's seem to allow us to slow down this brute-for
e atta
kby a fa
tor equal to the number of blo
ks b. In parti
ular, it for
es the adversaryto look at all the blo
ks. Namely, we �rst transform x by applying an AONT intoy = (y1; y2). We then send the publi
 part y2 \in the 
lear", and apply the standardblo
k-by-blo
k en
ryption to the se
ret part y1. The re
ipient simply de
rypts allthe blo
ks and re
overs x by inverting the AONT. Now, unless the adversary triesto de
rypt all the blo
ks, no information about x is revealed. Hen
e, the brute-for
e3In pra
ti
e, it typi
ally very easy to see if the de
ryption makes sense. Alternatively, theadversary often 
an make the system en
rypt some message that adversary knows. Then he knowsthe de
ryption and simply tries all possible keys until a mat
h is found.70
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Figure 3-4: AONT's to enhan
e se
urity of blo
k 
iphers.atta
k is indeed slowed down by the fa
tor of b, without 
hanging the size of these
ret key. This is parti
ularly important when the key length is 
onstrained bythe underlying appli
ation to be only marginally se
ure, making it feasible for theadversary to go through all the keys. This paradigm is illustrated in Figure 3-4.Desai [21℄ looked at Rivest's suggestion from a formal standpoint. On the onehand, he formally de�ned the notion of \non-separability of keys" whi
h models theadversary's inability to gain any information about the se
ret key without de
ryptingevery blo
k of the 
iphertext. On the other hand, Desai observed the the \standard"notion of the AONT does not seem to suÆ
e (if used as suggested above) in order toa
hieve non-separability of keys. For example, if the AONT's has a lot of redundan
y4,by de
ripting a blo
k of the 
yphertext it might be easy to tell if the de
ryption ispart of the AONT's output or not. If it is not, the adversary knows that the key heis examining is in
orre
t, and 
an move to the next key very qui
kly. On a positive4whi
h a good AONT should not have, sin
e this de
reases its exposure-resilien
e.71
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Figure 3-5: AONT's to enhan
e eÆ
ien
y of blo
k 
iphers.side, Desai proves that if one uses slightly stronger notion of an AONT (roughly, theoutput of the AONT in inistinguishable from a random string), the resulting blo
k
ipher indeed enjoys non-separability of keys.We remark on extra 
exibility of not restri
ting ourselves to using a se
ret-onlyAONT. Indeed, now the length of y1 
ould be mu
h smaller than the length of x(whi
h is impossible for a se
ret-only AONT), but mu
h larger than `. This waywe need to perform fewer en
ryptions/de
ryptions, while the se
urity is mu
h higherthan earlier. For more eÆ
ien
y 
onsiderations, see the next appli
ation.Enhan
ing the effi
ien
y of blo
k 
iphers. This is a \dual" appli
ation tothe above proposed by Matyas, Peyravian and Roginsky [41℄. As before, instead ofsplitting x into blo
ks, we 
ompute the AONT y = (y1; y2) of x and send the publi
part y2 in the 
lear. Now, however, we en
rypt only one (arbitrary) `-blo
k of y1 andsend all the other bits of y1 in the 
lear. The re
epient de
rypts the single en
ryptionand re
overs x as before. This paradigm is illustrated in Figure 3-5.72



If the en
ryption is really se
ure, the adversary gets no information about x un-less he de
rypts the single en
rypted blo
k. As the result, we se
urely en
rypted along message by performing an a
tual en
typion of only a single short message (oflength `). This is parti
ularly useful in several situations. The obvious su
h situa-tion is when the \base" blo
k en
ryption is slow or expensive to perform. Anothersu
h situation is when the base en
ryption greatly expands the output (in parti
ular,signi�
antly more in proportion to the AONT) [52℄. This way the overall output ofour en
ryption will be 
onsiderably less than before. Yet another situation is that ofremotely keyed en
rypion, when the part of the system that 
ontains the se
ret key isseparate (for example, it resides on a smart
ard), and bandwidth 
onsiderations makeit prohibitive to send the entire long message to be en
rypted blo
k by blo
k [14, 37℄.Now, irrespe
tive of the length of x, the system needs to en
rypt a single short blo
kwhi
h dramati
ally redu
es the 
ommuni
ation. This is illustrated in Figure 3-6.5Comparing the latter two appli
ations, there is a 
lear eÆ
ien
y/se
urity tradeo�that we 
an exploit if we use AONT in the manner suggested above. The moreblo
ks of y1 we en
rypt, the more se
ure the system is (where in any event it is atleast as se
ure as the original \naive" blo
k 
ipher), but the less eÆ
ient the systempotentially be
omes (where in any event it is almost as eÆ
ient as it used to be).However, essentially any setting of parameter (provided we use a good AONT) willimporve both the eÆ
ien
y and the se
urity.We also remark that these appli
ations require 
omputational AONT's. Indeed,they only make sense when ` is smaller than the length of the original message x, andwe will show that this is possible only in the 
omputational setting.\Chaffing and Winnowing". Another interesting way to en
rypt the data usingan AONT and a spe
ial kind of message authenti
aion 
ode (MAC) way suggestedby Rivest [52℄. Namely, assume that the sender and the re
ipient share a very shortauthenti
ation key, whi
h is used by the sender to authenti
ate the messages sent to5We remark that Bellare and Boldyreva [4℄ made a formal \sanity 
he
k" and showed that ifwe use a semanti
ally se
ure en
ryption s
heme to en
rypt a blo
k of the AONT(x), the resultings
heme remains semanti
ally se
ure. 73
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Figure 3-6: AONT's to perform remotely keyed en
ryption.the re
eiver. In other words, the sender applies some hash fun
tion (MAC) to themessage and the short se
ret key to get a \tag" for the message. It then sends inthe 
lear the message and the tag. The re
ipient 
an then verify that the tag really
orresponds to the message. On the other hand, we require that the eavesdropper
an neither generate a tag for a given message, nor (whi
h is more important here)verify if a given tag 
orresponds to a given message. Very eÆ
ient MAC's satisfyingthese properties exist (e.g., [5, 12, 6, 27℄), and, in fa
t, any pseudorandom fun
tion(PRF) will work as well.As before, we apply an AONT to our message x, send the publi
 part in the 
lear,and split the se
ret part into b blo
ks of length `. Call these blo
k v1; : : : ; vb, andlet ti = tag(vi). The sender pi
ks b random blo
ks v01; : : : ; v0b and makes \bogus"tags t01; : : : ; t0b whi
h the adversary 
annot tell apart from the 
orre
t tags, but there
ipient 
an. Now, for ea
h i the sender sends (in random order) both hi; vi; tii andhi; v0i; t0ii. The re
ipient 
an \throw away" all the random blo
ks (sin
e their tagsdo not 
he
k) and re
over the message by inverting the AONT. The adversary, on74



the other hand, has 2b 
hoi
es of whi
h subset of blo
ks is \relevant". It soundsplausible that unless the adversary tries the unique 
orre
t 
ombination, he obtainsno information about the message. This suggested en
ryption is interesting in a senseof not performing a \
onventional" en
ryption, and sending all the information \inthe 
lear" (the problem for the eavedropper is to tell whi
h information is \relevant").While an interesting suggestion that might be useful in pra
ti
e, it was observedby Bellare and Boldyreva [4℄ that the se
urity of this en
ryption does not seem tofollow from the mere de�nition of an AONT. On the other hand, they showed that ifRivest's suggestion is applied on the bit-wise rather than the blo
k-wise level (whi
hwas also one of the suggestions of Rivest), this will indeed produ
e a good en
ryp-tion. More spe
i�
ally, we send in the 
lear all the blo
ks v2; : : : ; vb ex
ept for the�rst blo
k v1. We then split v1 into individual bits and for ea
h su
h bit 
 sendh
; tag(
)i; h1� 
; \garbage"i in random order. Viewed from a di�erent angle, thisis yet another appli
ation of the paradigm of Matyas [41℄ to apply an AONT to themessage and to en
rypt only the �rst blo
k (see Figure 3-5). In this 
ase the en
ryp-tion of the �rst blo
k is performed by using Rivest's \
haÆng and winnowing" (whi
hwas shown to be a semanti
ally se
ure en
ryption by Bellare and Boldyreva [4℄).Gap se
ret sharing. This 
onne
tion was noti
ed by Rivest [51℄, even though fora mu
h weaker de�nition of an AONT. Consider an `-AONT with publi
 output ofsize p and se
ret output of size s. We 
an interpret this as being a kind of \gap" se
retsharing s
heme. For some se
ret x, we apply the AONT to obtain a se
ret output y1and a publi
 output y2. Here, we think of y2 as being a 
ommon publi
 share that isbeing unprote
ted. We interpret the bits of y2 as being tiny shares that are only 1 bitlong, with one share given to ea
h of the s parties. We are guaranteed that if all theplayers 
ooperate, by the invertability of the AONT they 
an re
over the se
ret x. Onthe other hand, if (s� `) or fewer of the players 
ollude, they gain \no information"about the se
ret. We 
all this a \gap" se
ret sharing s
heme be
ause there is a gapbetween the number of players needed to re
onstru
t the se
ret and the number ofplayers that 
annot gain any information. Note that su
h a gap is unavoidable when75



the shares are smaller than the se
urity parameter. Noti
e also that by splitting(in an arbitrary way) our s 1-bit shares into n = s=` groups of size ` ea
h, we geta traditional (n � 1; n)-se
ret sharing s
heme, where all n parti
ipants 
an re
overthe se
ret, but no information is leaked even if one `-bit share is missing. While it isquite easy to 
onstru
t su
h \threshold" s
hemes (espe
ially, (n�1; n)-se
ret sharing;e.g., [54, 38℄), our setting is 
onsiderably more diÆ
ult sin
e the shares are only 1-bitlong, and we should be se
ure against any 
oalition of (s� `) players.Se
ure 
ommuni
ation. This appli
ation is similar to the appli
ation of the ERF'sfor establishing a shared random key in Se
tion 3.2. As in that 
ase, Eve learns someof the bits that Ali
e sends to Bob, Ali
e knows that he learns at most a fra
tion Æ ofthe bits, but does not know whi
h. To send a k-bit message x, Ali
e simply appliesan AONT to x and sends the result y to Bob. Bob re
overs x by inverting the AONT.Eve, on the other had, gets no information about x provided `=s � 1� Æ (where s isthe length of the se
ret part of the AONT).Simultaneous and fair message ex
hange. This informal appli
ation was sug-gested by Boyko [16℄. Assume Ali
e and Bob want to simultaneously ex
hange se
retsxa and xb of the same length over an asyn
hronous 
ommuni
ation 
hannel. However,none of them wants to send his or her se
ret �rst. Here we assume that the players arehonest ex
ept they 
an stop the proto
ol at any point of their 
hoi
e. Alternatively,one 
an think that there is a danger that the 
ommuni
ation 
hannel is not reliableand may fail at an arbitrary point during the proto
ol. Thus, Ali
e and Bob do notwant to have a point in the proto
ol where one of them reveals signi�
antly moreabout his or her se
ret than the other. Here is a ni
e solution using AONT's. Ali
eand Bob 
ompute AONT's of their se
rets: ya = T (xa), yb = T (xb). They ex
hangethe publi
 parts �rst in any order. Then they start ex
hanging the se
ret parts ofya and yb bit by bit. Assuming informally that the only atta
k on the AONT is theexhaustive sear
h over the bits not yet re
eived, at any point the sear
h spa
e of Ali
eand Bob di�er by at most a fa
tor of 2. 76



Chapter 4
Exposure-Resilient Fun
tions (ERF)
In this se
tion we give 
onstru
tions of exposure-resilient fun
tions (ERF's). First,we des
ribe perfe
t ERF's and their limitations. In parti
ular, ` must be at leastn=2 for k > logn. Then, on our way to building 
omputational ERF's with verystrong parameters, we build statisti
al ERF's, a
hieving essentially the best possibleparameters (i.e. ` � k for any k) and surpassing the impossibility results for perfe
tERF's. This 
onstru
tion is perhaps our main te
hni
al 
ontribution and uses strongrandomness extra
tors de�ned is Se
tion 2.7. The 
onstru
tion also demonstrates anexponential separation between perfe
t and statisti
al ERF's. Indeed, in the perfe
tsetting we are limited to have ` > n=2, while here we 
an a
hieve ` � k, whi
h 
an bejust slightly super-logarithmi
! Finally, we show how to 
ombine our statisti
al 
on-stru
tion with standard pseudorandom generators to 
onstru
t 
omputational ERF's(from n to k bits) based on any one-way fun
tion that a
hieve any ` = 
(n�) andany k = poly(n) (in fa
t, we show that su
h ERF's are equivalent to the existen
e ofone-way fun
tions). Our main results about ERF's are summarized in the followingtheorem:Theorem 7 Assume ` � n� (for some arbitrary � > 0). Then1. There is no perfe
t `-ERF f : f0; 1gn ! f0; 1gk with ` � n=2 and k > logn.2. There exist statisti
al `-ERF's f : f0; 1gn ! f0; 1gk with k = ` � o(`), and nostatisti
al `-ERF's with k > `. 77



3. If ` < k � poly(n), 
omputational `-ERF's f : f0; 1gn ! f0; 1gk exist i� one-way fun
tions exist.We will also 
onsider a more 
hallenging question of 
onstru
ting adaptive ERF's.We mentioned that in the perfe
t setting they are equivalent to ordinary ERF's. Itwill also be 
lear that we 
an 
onstru
t 
omputationally se
ure adaptive ERF's fromstatisti
ally se
ure adaptive ERF's in the same way as for ordinary ERF's (usingpseudorandom generators). Therefore, the main diÆ
ulty in 
onstru
ting adaptivelyse
ure ERF's will be in the statisti
al setting. Unfortunately, our statisti
al 
onstru-
ion of ordinary ERF's will not work in the adaptive setting. However, we show avery eÆ
ient probabilisti
 
onstru
tion of statisti
al adaptive ERF's. Namely, we will
onstru
t an eÆ
iently samplable and 
omputable family of fun
tions, su
h that arandom fun
tion in this family will be a good statisti
al adaptive ERF with over-whelming probability. On
e this fun
tion is 
hosen, it never has to be 
hanged againand 
an be published. Similar to the non-adaptive setting, we will be able to a
hieveessentially optimal ` � k even in the adaptive statisti
al setting. Overall, we show theexisten
e as well as an eÆ
ient probabilisti
 
onstru
tion of optimal adaptive ERF's(with essentially the same parameters and impli
ations as in the non-adaptive 
asesummarized in the theorem above).4.1 Perfe
t ERFHere we require that h[r℄�L; f(r)i � h[r℄�L; Ri. Sin
e the distributions are identi
al,this is equivalent to saying that no matter how one sets any (n � `) bits of r (i.e.sets [r℄�L), as long as the remaining ` bits of r are set at random, the output f(r)is still perfe
tly uniform over f0; 1gk. This turns out to be exa
tly the notion of theso 
alled (n � `)-resilient fun
tions 
onsidered in [20, 10℄. As an example, if k = 1,the ex
lusive OR of all n input bits is a trivial perfe
t 1-ERF (or an (n� 1)-resilientfun
tion). As we will see, for larger values of k it is mu
h harder to 
onstru
t perfe
tERF's. 78



4.1.1 Constru
tionUsing binary linear error 
orre
ting 
odes (see Se
tion 2.6), one 
an 
onstru
t thefollowing perfe
t `-ERF.Theorem 8 ([20, 10℄) Let M be a k � n matrix. De�ne f(r) = Mr, where r 2f0; 1gn. Then f is a perfe
t `-ERF if and only if M is the generator matrix for abinary error-
orre
ting 
ode of distan
e d � n� `+ 1.Proof: Every 
odeword is a linear 
ombination of some rows of M (i.e., 
odewordsare of the form u>M for u 2 f0; 1gk). The distan
e properties of the 
ode imply thatthe rows ofM are linearly independent, and furthermore that every non-trivial linear
ombination of the rows 
reates a 
odeword of Hamming weight at least d (i.e., havingat least d non-zero 
oordinates). Hen
e, even after removing any (d� 1) 
olumns ofM , the resulting k \pun
tured" rows of M are still linearly independent (as they
annot produ
e the zero ve
tor). Therefore, the remaining n� (d� 1) 
olumns haverank k and, as su
h, span the entire f0; 1gk. In other words, the 
ode generated by Mhas distan
e d if and only if any (n� d+ 1) 
olumns of M span f0; 1gk.Now assume that the adversary reads some (n � `) bits of a randomly 
hosenr 2 f0; 1gn. This means that Mr is equal to some parti
ular ve
tor y0 (known to theadversary) plus the \pun
tured" matrixM 0 (obtained by removing (n�`) 
olumns ofM) multiplied by a random `-bit ve
tor r0 (formed by ` random bits of r not observedby the adversary). Then f is an `-ERF if and only if (y0+M 0r0) is random in f0; 1gk,whi
h happens if and only if M 0 has full rank k. Thus, f is an `-ERF if and only ifany ` 
olumns of M span f0; 1gk. The lemma follows by 
omparing the above twoequivalen
es.Applying this result to any asymptoti
ally good (re
all, this means n = O(k) andd = 
(n)) linear 
ode (e.g., the Justesen 
ode), we 
an get ` = (1 � ")n, k = Æn,where " and Æ are (very small) 
onstants.Re
all also that by the Singleton bound, we have (for any 
ode) k � n � d + 1.Thus, we get k � n� (n� `+1)+1 = `, as expe
ted. Also, it is known that d � n=2for k > logn. This implies that we are limited to have ` � n=2. On the other hand,79



we mentioned in Se
tion 2.6 that at the expense of making n large 
ompared to k,we 
an a
hieve ` = n � d + 1 to be arbitrarily 
lose to n=2, but 
an never 
ross it.We show now that this is not a limitation of our parti
ular 
onstru
tion, but ratheran inherent limitation of perfe
t ERF's.4.1.2 Strong Impossibility ResultWe observe that perfe
t `-ERF 
an potentially exist only for ` � k. Optimisti
ally, wemight expe
t to indeed a
hieve ` = O(k). However, already for k = 2 Chor et al. [20℄show that we must have ` � n=3, i.e. at least third of the input should remain se
retin order to get just 2 random bits! Friedman [28℄ and later Bierbrauer et al. [11℄generalized this result to any k showing thatTheorem 9 ([28℄) If f : f0; 1gn ! f0; 1gk is a perfe
t `-ERF, then` � 1 + n � 2k�1 � 12k � 1 = n2 + �1� n2(2k � 1)� (4.1)In parti
ular, for k > logn we get ` > n2 , so at least half of the input has to remainse
ret!We remark that this result of Friedman was a big breakthrough, aÆrmativelyresolving a famous 
onje
ture posed by [20℄. In Se
tion 5.1 we will non-triviallyextend this impossibility result to a mu
h more general setting of perfe
t AONT's.But now we illustrate its tightness. Noti
e, the bound in Equation (4.1) 
hangesnon-trivially only for k � logn. For k > logn the bound stays around ` > n=2. Thisis not surprising, sin
e we 
an indeed essentially a
hieve it by using Theorem 8 witha binary 
ode of distan
e arbitrarily 
lose to n=2, say d = n(12 � Æ). Su
h 
odes exitsand 
an a
hieve k as large as nÆ2. And in any event, for k > logn we have ` > n=2whi
h is quite a strong lower bound. Therefore, it suÆ
es to show the tightness fork � logn, and we start from k � logn; namely, n = 2k � 1. In this 
ase we show thetightness by applying Theorem 8 to the Hadamard 
ode introdu
ed in Se
tion 2.6.The Hadamard 
ode indeed stret
hes from k bits to n = 2k � 1 bits and has distan
e80



2k�1. By Theorem 8, we get` = n� d+ 1 = 2k � 1� 2k�1 + 1 = 2k�1 = 1 + n � 2k�1 � 12k � 1mat
hing the bound in Equation (4.1). We remark on the expli
it form of this fun
tionf : f0; 1g2k�1 ! f0; 1gk. For i = 1 : : : k, let Bi be the subset of all j 2 [n℄ whosei-th digit in their binary expansion is equal to 1. Then the i-th bit of f(r1; : : : ; rn) issimply �j2Birj.For smaller k, i.e. k < logn, split the n input bits into n=(2k � 1) blo
ks of size(2k� 1).1 We apply the above (2k�1)-ERF to ea
h of the blo
ks, and output the XORof the results. Now, if the adversary misses 1 + n2k�1 � (2k�1� 1) input bits, he misses2k�1 bits from at least one of n=(2k � 1) blo
ks. Therefore, the entire k-bit output ofthis blo
k is random, and thus, the overall XOR. Hen
e,Lemma 5 ([20℄) For k � logn, there exist (optimal) perfe
t `-ERF's f : f0; 1gn !f0; 1gk, where ` = 1 + n � 2k�1 � 12k � 1 = n2 + �1� n2(2k � 1)�4.2 Statisti
al ERFWe saw that perfe
t ERF 
annot a
hieve ` < n=2. Breaking this barrier will be 
ru
ialin a
hieving the level of se
urity we ultimately desire from (
omputational) ERF's. Inthis se
tion, we show that by relaxing the requirement only slightly to allow negligiblestatisti
al deviation, we are able to obtain ERF's for essentially any value of ` (withrespe
t to n) su
h that we obtain an output size k = 
(`) (in fa
t, even ` � o(`)).Note that is is the best we 
an hope to a
hieve (up to the lower order term) in thestatisti
al setting due to the following simple lemma:Lemma 6 Assume f : f0; 1gn ! f0; 1gk is a statisti
al `-ERF with statisti
al devia-tion " < 12 . Then ` � k.1Here we assume for simpli
ity that (2k � 1) divides n. If not, we have to take \
oors".81



Proof: Assume ` < k. Take any L, say L = [`℄. We des
ribe a simple (
ompu-tationally unbounded) distinguisher D whi
h distinguishes h[r℄�L; f(r)i from h[r℄�L; Riwith probability at least 12 > ", a 
ontradi
tion. Given h[r℄�L; Bi, D tries all possible2` 
ompletions r0 for r, and for ea
h of them 
he
ks if f(r0) = B. If the equalityholds at least on
e, D a

epts. Clearly, D always a

epts when B = f(r), as hewill eventually try r0 = r. If B = R, a random string of length k, D su

eeds withprobability at most 2`�k � 12 , sin
e there are at most 2` possible values f(r0) that hetries. The 
laim follows.We noti
e that our result (a
hieving k = 
(`) or even ` � o(`)) is indeed quitesurprising. It says that if r 2 f0; 1gn is 
hosen at random, no matter whi
h (n � `)input bits of r are observed, the value of f(r) (whi
h is k = 
(`) bits long) isstatisti
ally 
lose to the uniform distribution over f0; 1gk. For example, no non-trivial fun
tion of the output bits 
an depend on only (n� `) input bits. We see thatwe need some very spe
ial ma
hinery to solve this problem. It turns out that we needstrong extra
tors, as de�ned in Se
tion 2.7.4.2.1 IntuitionThe intuition behind our 
onstru
tion is as follows. Noti
e that after the adversaryobserves (n � `) bits of the input (no matter how it 
hose those bits), the input
an still be any of the 2` 
ompletions of the input with equal probability. In otherwords, 
onditioned on any observation made by the adversary, the probability of anyparti
ular string being the input is at most 2�`. Thus, if we apply a suÆ
iently goodextra
tor to the input, we have a 
han
e to extra
t almost ` bits statisti
ally 
lose touniform | exa
tly what we need. The problem is that we need some small amountof true randomness to sele
t the hash fun
tion in the extra
tor family. However, ifthis amount of randomness is small enough (say, suÆ
iently smaller than `, 
all it d),we 
an take it from the input itself ! Hen
e, we view the �rst d bits of r (whi
h wewill 
all i) as the randomness used to sele
t the hash fun
tion hi, and the rest of rwe 
all x. The output of our fun
tion will be hi(x). Then observing (n� `) bits of r82



leaves at least 2`�d equally likely possible values of x (sin
e jij = d). Now, providedour extra
tor is good enough, we indeed obtain k � (`� d) bits statisti
ally 
lose touniform (in parti
ular, if d = o(`), we will get k = `� o(`)!).A few important remarks are in pla
e before we give pre
ise parameters. First, theadversary may 
hoose to learn the entire i (i.e. it knows hi). This is not a problemsin
e we are using a strong extra
tor, i.e. the output is random even if one knowsthe true randomness used. Se
ondly, unlike the perfe
t ERF setting, where it wasequivalent to let the adversary set (n � `) input bits in any manner it wants, herethe entire input (in
luding i) must be 
hosen uniformly at random (and then possiblyobserved by the adversary). For example, Kurosawa et al. [39℄ 
onsider almost (n�`)-resilient fun
tions, whi
h are \in between" perfe
t and statisti
al `-ERF's. And thedistin
tion was exa
tly this: they required that for every setting of the (n � `) bitsof r, the value f(r) is statisti
ally 
lose (in fa
t, even slightly stronger that this) torandom when the remaining ` bits are 
hosen at random. In our 
ase, this has tohappen only \on average" over the setting of (n � `) bits known to the adversary.Partially be
ause of that, the 
onstru
tion of [39℄, while somewhat better than the
onstru
tion of perfe
t ERF's given in Theorem 8, still requires ` > n=2.2 We, on theother hand, are able to a
hieve essentially optimal ` = k + o(k).4.2.2 Constru
tion using Strong Extra
torsTheorem 10 Assume H = fhi : f0; 1gn ! f0; 1gk j i 2 f0; 1gdg is a strong (m; ")-extra
tor, and assume m+ d � ` (4.2)Then there exist eÆ
iently 
omputable statisti
al `-ERF's f : f0; 1gn ! f0; 1gk withstatisti
al deviation ".Proof: De�ne f : f0; 1gn ! f0; 1gk as follows. Given r 2 f0; 1gn, let i 2 f0; 1gdbe the �rst d bits of r, and let x 2 f0; 1gn be equal to r ex
ept the �rst d bits of x2Nevertheless, we later show in Se
tion 4.4 that one 
an have almost (n � `)-resilient fun
tionswith ` � k, substantially improving the results of [39℄ (but our 
onstru
tion is probabilisti
).83
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Figure 4-1: Statisti
al ERF from a Strong Extra
tor.are �xed to 0 (we 
all the last (n� d) bits of x the valid bits of x). Let f(r) def= hi(x).This simple 
onstru
tion and the sket
h of its analysis are illustrated in Figure 4-1.We now argue that f is an `-ERF with statisti
al deviation ". Pi
k any L 2 fǹg.Let r be 
hosen at random from f0; 1gn, and de�ne i and x as above. Noti
e thati and x are independent sin
e we set the �rst d bits of x to 0. Assume we give theadversary A the value [r℄�L. Let w be the valid bits of x in L (i.e., unknown to A),and z be the remaining valid bits of v (i.e., dedu
ible from [r℄�L). Notationally we willwrite x = w Æ z. First, sin
e there are (n � d) valid bits of x and at most (n � `) ofthem 
ould be given in [r℄�L, we get that jwj � (n�d)� (n� `) = `�d � m. In otherwords, A misses at least m valid bits of x. Also noti
e that z and i subsume [r℄�L, soit suÆ
es to show (re
alling that f(r) = hi(x)) that for a random R 2 f0; 1gk,hi; z; hi(x)i �=� hi; z; RiWe will show a slightly stronger statement that this holds for any �xed z = z0 (butnot i). To summarize, i, w and R are 
hosen at random, x is set to w Æ z0, and we84



want to show that hi; hi(x)i �=� hi; RiWe are almost done now. Sin
e jwj � m and w was 
hosen at random, we havex = w Æ z0 has min-entropy at least m. The above result now follows from thefa
ts that H is a strong (m; ")-extra
tor family, i is independent from x, and x hasmin-entropy at least m.The above Theorem gives a very simple 
onne
tion between extra
tors and exposure-resilient fun
tions. Sin
e good extra
tors allow us to almost a
hieve k � m, in orderto have k � ` Equation (4.2) requires d to be very small. Thus, the most importantrequirement on H is that the hash fun
tion inH should be des
ribable by a very shortrandom string. Lu
kily, strong extra
tors given in Theorem 4 have this property andyield the following result.Theorem 11 There exist statisti
al `-ERF f : f0; 1gn! f0; 1gk satisfying:1. k = `=6, for any !(logn) � ` � n.2. k = (1� Æ)`, for any !(log2 n) � ` � n (and any 
onstant Æ > 0).3. k = `� o(`), for any !(log2 n � loglogn) � ` � n.Proof: We simply apply Theorem 10 to ea
h of the three extra
tors from Theorem 4.1. Take any !(logn) � ` � n, set m = `=5 and pi
k any negligible error " su
hthat !(logn) � log(1=") � o(`). Noti
e thatd+m = 4(m� log(1=")) +O(logn) +m � 5m = `so we 
an apply Theorem 10. We getk = m� 2 log 1="� O(1) � `=6
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2. Take any !(log2 n) � ` � n, pi
k any Æ > 0, set " = n�O(log n) (i.e., log(1=") =O(log2 n)), and m = (1� Æ)`. Noti
e thatd+m = O(log2 n + log(1=")) +m = O(log2 n) + (1� Æ)` < `so we 
an apply Theorem 10. We getk = (1� Æ)m� O(log(1=")) = (1� Æ)2`� O(log2 n) � (1� 2Æ)`(now repla
e Æ by Æ=2.)3. Take any !(log2 n � loglogn) � ` � n, set " = n�O(log n), and m = ` �O(log2 n log `). Noti
e that sin
e logm < log `, we getd+m = O((log2 n+ log(1=")) logm) +m � O(log2 n log `) +m = `so we 
an apply Theorem 10. We getk = m� 2 log(1=")� O(1) = `� O(log2 n log `) = `� o(`)(the latter follows sin
e ` = !(log2 n � loglogn).)Note that, in parti
ular, in the �rst 
onstru
tion we 
an 
hoose ` to be anythingsuper-logarithmi
 is n, whi
h is 
learly the best we 
an hope for (if we want to a
hievea negligible error). Indeed, otherwise we 
ould do exhausive sear
h in polynomial time,so the statisti
al distan
e 
ould not be negligible. Seen another way, we 
an 
hoose nto be essentially any size larger than `, providing ex
ellent se
urity against partial keyexposure. We also remark that we get an exponential separation between perfe
t andstatisti
al ERF's. Indeed, by Theorem 9 in the perfe
t setting we were limited to have` > n=2, while here we 
an a
hieve ` � k, whi
h 
an be slightly super-logarithmi
!Finally noti
e that our statisti
al 
onstru
tions (espe
ially the last one) have es-sentially the best possible k, sin
e any statisti
al `-ERF must have k � ` by Lemma 6.86
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al ERF + PRG ) Computational ERF.4.3 Computational ERFThe only limiting fa
tor of our statisti
al 
onstru
tion is that the output size is(inevitably) limitted to k � `. By �nally relaxing our requirement to 
omputationalse
urity, we are able to a
hieve an arbitrary output size (in addition to essentiallyarbitrary exposure-resilien
e), by using a pseudorandom generator (PRG) as the �naloutermost layer of our 
onstru
tion. We also show that any ERF with k > ` impliesthe existen
e of PRG's (and thus, one-way fun
tions), 
losing the loop.We start from the following almost immediate \
omposition" lemma. In essense,statisti
al ERF provide us with good exposire-resilien
e but limited output size, whilepseudorandom generators stret
h short (statisti
ally) random input into a long 
om-putationally random output. By 
ombining the two, we get optimal 
omputationalERF's, whi
h is also illustrated in Figure 4-2.Lemma 7 Let m;n = poly(k), f : f0; 1gn ! f0; 1gk be a statisti
al `-ERF andG : f0; 1gk ! f0; 1gm be a PRG. Then g : f0; 1gn ! f0; 1gm mapping r 7! G(f(r)) is87



a 
omputational `-ERF.Proof: Let L 2 fǹg. Suppose there was a distinguisher D distinguishing betweenA = h[r℄�L; G(f(r))i and B = h[r℄�L; Ri with non-negligible advantage Æ, where R isthe uniform distribution on f0; 1gm. By the properties of f as a statisti
al `-ERF, andthe fa
t that statisti
al di�eren
e 
an only de
rease by applying a fun
tion (G in our
ase), we have that A = h[r℄�L; G(f(r))i and C = h[r℄�L; G(K)i are within statisti
aldistan
e " of one another, where K is the uniform distribution on f0; 1gk and " isnegligible. Thus, D distinguishes C from B with non-negligible advantage (Æ� "), aswell. Note that in both B and C the se
ond 
omponent is independent of the �rst.Thus, we 
an use D to distinguish G(K) from R (with advantage Æ � "), by simplypi
king a random r 2 f0; 1gn, and providing D with [r℄�L as the �rst 
omponent. This
ontradi
ts the se
urity of the pseudorandom generator G, 
ompleting the proof.Theorem 12 Assume one-way fun
tions exist. Then for any `, any n = poly(`) andk = poly(n), there exists a 
omputational `-ERF g : f0; 1gn ! f0; 1gk.Proof: Sin
e k = poly(`), one-way fun
tions imply (by Theorem 2) the existen
eof a PRG G : f0; 1g`=6 ! f0; 1gk. Theorem 11 implies the existen
e of a statisti
al`-ERF f from f0; 1gn to f0; 1g`=6 with negligible statisti
al deviation. By Lemma 7,g(r) = G(f(r)) is the desired 
omputational `-ERF.The above result 
learly provides the strongest possible 
omputational 
onstru
-tion we 
an hope to a
hieve: we deterministi
ally stret
h our input by an arbitraryamount, and yet the output is psedorandom even when the adversary misses just atiniest fra
tion of input bits of his 
hoi
e!Finally, we show the \
onverse", i.e. that 
omputational ERF's with k > ` implythe existen
e of pseudorandom generators (and hen
e one-way fun
tions).Lemma 8 If there exists an `-ERF f : f0; 1gn ! f0; 1gk, for k > ` (for in�nitelymany di�erent values of `; n; k), then one-way fun
tions exist.Proof: Take any L, let r 2 f0; 1gn and R 2 f0; 1gk be 
hosen uniformly at random,and let A = h[r℄�L; f(r)i, B = h[r℄�L; Ri. From the proof of Lemma 6, the statisti
al88



distan
e between A and B is at least 1=2 (intuitively, A has at most n \bits ofrandomness", while B has n� `+ k � n+ 1 \bits of randomness"). By the result ofGoldrei
h [30℄, the existen
e of a pair of eÆ
iently samplable distributions that are
omputationally indistinguishable but statisti
ally far apart, implies the existen
e ofpseudorandom generators, and hen
e one-way fun
tions.Theorem 7 now follows by 
ombining Theorem 9, Theorem 11, Lemma 6, Theorem 12and Lemma 8.4.4 Adaptively Se
ure ERFWe now address the question of 
onstru
ting adaptively se
ure ERF's, where the ad-versary 
an adaptively de
ide whi
h (n � `) bits of the input to examine. As wehave pointed out, in the perfe
t setting adaptively and non-adaptively se
ure ERF'sare the same thing. In parti
ular, all the limitations of perfe
t ERF's still hold. Onthe other hand, it is very easy to see that Lemma 7 holds in the adaptive setting aswell. Namely, if we have a statisti
al adaptive `-ERF f from n bits to k bits, anda pseudorandom generator G from k bits to m bits, then the 
omposition G(f(�))is a 
omputational adaptive `-ERF from n bits to m bits (the proof is identi
al tothat of Lemma 7). Sin
e in the statisti
al setting we will be able to a
hieve ` � k(at least existentially), we would get 
omputational adaptive `-ERF's with the sameparameters as in the regular non-adaptive setting (e.g., the anolog of Theorem 12will hold). Thus, the main interesting setup we have to 
onsider is that of statisti
aladaptive ERF's.4.4.1 Statisti
al Adaptive ERFWe will present an eÆ
ient probabilisti
 
onstru
tion of statisti
al adaptive ERF'swith ` � k.3 In other words, we will a
hieve the same (essentially optimal) bound3As an indire
t 
onsequen
e of our 
onstru
tion, we will 
onstru
t the so 
alled almost (n � `)-resilient fun
tions that dramati
ally beat the parameters a
hieved for these fun
tions by Kurosawaet al. [39℄. However, our 
onstru
tion will be probabilisti
.89



as we had with ordinary ERF's. In parti
ular, su
h adaptively se
ure ERF's exist andare very eÆ
ient to evaluate (ones we have found one). This should be 
ontrastedwith 
hoosing a truly random fun
tion. One 
an show that a truly random fun
tionis indeed a great adaptive ERF (whi
h is already interesting), but it would require anexponential number of bits to store and exponential time to evaluate. In 
ontrast,the representation of the fun
tions we 
onstru
t will be very short, and they 
anbe evaluated in almost linear time in n. The only drawba
k, however, is that we
annot give an expli
it fun
ton that is guaranteed to work. Rather, we give a familyof fun
tions most of whi
h are guaranteed to be great adaptive `-ERF, but we 
annotprove this about any spe
i�
 �n
tion in this family. In pra
ti
e, however, one 
anpi
k su
h a fun
tion at random on
e and for all, and be sure almost 
ertainly that itworks.Various notions of adaptive ERF's. Having said this, let us turn ba
k to statis-ti
al adaptive ERF's. One 
an think about at least the following four s
enarios for anadaptive adversary A, stated in terms of requiring more and more from our fun
tionf : f0; 1gn ! f0; 1gk. (We stress again that the adversary A below is 
omputationallyunbounded.)S1. r 2 f0; 1gn is 
hosen at random. A 
an adaptively learn one-bit-at-a-time any(n� `) bits of r, 
all them w. A is then given a 
hallenge Z whi
h is either f(r)or a totally random R 2 f0; 1gk. A has to distinguish between these two 
aseswith non-negligible advantage.S2. r 2 f0; 1gn is 
hosen at random. A is then given a 
hallenge Z whi
h is eitherf(r) or a totally random R 2 f0; 1gk. Based on Z, A 
an adaptively learnone-bit-at-a-time any (n � `) bits of r, 
all them w. A has to distinguish ifZ = f(r) or Z = R with non-negligible advantage.S3. A 
hooses any set L 2 fǹg and any w 2 f0; 1gn�`. A requests that [r℄�L is setto w. The remaining ` bits of r in L are set ar random. A is then given a
hallenge Z whi
h is either f(r) or a totally random R 2 f0; 1gk. A has to90



distinguish these two 
ases with non-negligible advantage. Put another way, Aloses if for any L 2 fǹg and any w 2 f0; 1gn�`, the distribution indu
ed by f(r)when [r℄�L = w and the other ` bits of r 
hosen at random, is statisti
ally 
loseto the uniform on f0; 1gk.S4. A 
hooses any set L 2 fǹg and any w 2 f0; 1gn�`. A requests that [r℄�L is set tow. The remaining ` bits of r in L are set ar random and Y = f(r) is evaluated.A wins if there exists y 2 f0; 1gk su
h that Pr(Y = y) in this experiment doesnot lie within 2�k(1 � �), where � is negligible. Put another way, A loses iffor any L 2 fǹg, any w 2 f0; 1gn�` and any y 2 f0; 1gk, the probability thatf(r) = y when [r℄�L = w and the other ` bits of r 
hosen at random, is within2�k(1� �) (for negligible �).Our \oÆ
ial" De�nition 12 of adaptive ERF is that satisfying s
enario S2. Let usbrie
y summarize the above four variants. Variant S1 allows the adversary to adap-tively 
hoose whi
h (n� `) bits to learn before he sees anything else. In appli
ationswhere adaptive se
urity is important, however, A will typi
ally have some partialinformation about f(r) through the use of the system where f(r) is the se
ret key.Therefore, our de�nition settled for version S2, where the adversary 
hooses whi
hbits to see after he obseves the 
hallenge (either f(r) or R). Versions S3 and S4 havea di�erent 
avor. Here not the entire r is 
hosen at random. Rather the adversary�xes any (n � `) bits of r to some string w. The remaining bits are set at random,and we still want f(r) to be \really random": in variant S3 to be statisti
ally 
lose touniform and in variant S4 to hit every single y 2 f0; 1gk with probability roughly 2�k.We 
an view the setups S3 and S4 as requiring that on any `-dimensional sub
ube(i.e., the set of r satisfying [r℄�L = w for a �xed L and w) of f0; 1gn the distributionindu
ed by f(r) is 
lose to uniform in the L1 and L1 norms respe
tively.While it is 
lear that version S2 is stronger than S1 and version S4 is strongerthan S3, let us show the only non-trivial impli
ation that version S3 is stronger thanS2. Assume f does not satisfy S2. This means that if i 2 f0; 1g, r, R are 
hosen atrandom, Z is set to f(r) if i = 0 and to R if i = 1, and A is given Z, A 
an predi
t91



i well. In parti
ular, this holds on average over all the random 
hoi
es above. By
onditioning over the value w 2 f0; 1gn�` of the ` positions L that A observes, thereexist some parti
ular L 2 fǹg and w 2 f0; 1gn�`, su
h that 
onditioned on [r℄�L = wand the fa
t that A would 
hoose to examine [r℄�L, A would distinguish f(r) fromR. Therefore, in the experiment where [r℄�L is set to w, the remainder of r is set atrandom, R is set at random, and A behaves at random as before, provided that A
hose to examine [r℄�L and saw [r℄�L = w, we would have that A distinguishes f(r)from R (i.e., guesses i well). But then this L, w and \A 
onditioned on L and w"
ontradi
t de�nition S3. In other words, when [r℄�L = w, the remaining bits of r are setat random and Z is set to f(r) or R, our new adversary A0 will run A as many timesas he needs to until A �nally 
hoses to examine positions in L (and thus, ne
essarilyobserves [r℄�L = w). When this happens, he outputs whatever A does for its guess,
ompleting the proof. To summarize this in a di�erent way, the de�nition S3 requiresf to be good for every possible L and [r℄�L, and therefore subsumes anything that A
ould possibly see in the s
enario S2.Comparing with non-adaptive ERF. We show that s
enario S4 is still mu
hweaker than the notion of a perfe
t ERF (whi
h requires � = 0, i.e. to indu
e per-fe
tly uniform distribution on every sub
ube given by L and w), while s
enario S1is still mu
h stronger than our non-adaptive notion of statisti
al ERF (whi
h worksfor any �xed L). Thus, we really have a hierar
hy of re�nements between perfe
t andstatisti
al ERF's. The �rst 
laim (about perfe
t ERF and those satisfying s
enarioS4) is shown later in this se
tion by being able to a
hieve ` � k even in the s
e-nario S4 (whi
h is impossible with perfe
t ERF's by Theorem 9). This also shows anexponential gap between (adaptive) perfe
t and adaptive statisti
al ERF's.The se
ond separation between non-adaptive statisti
al ERF and those satisfyings
nario S1 we argue now. We do it by noti
ing that, unfortunately, our 
onstru
tionof statisti
al ERF's in Se
tion 4.2 (using strong extra
tors) does not satisfy even theweakest adaptive notion S1. Indeed, the de�nition of a strong extra
tor requires thatthe hash fun
tion is 
hosen 
ompletely independently of the random sour
e. In our92




onstru
tion the randomness used to generate the hash fun
tion is part of the input.For any �xed L, sin
e the input r is 
hosen at random, the hash fun
tion h is indeedindependent from our sour
e X (the remaining (n � d) input bits, where d is thelength of the seed to the extra
tor). When the adversary is adaptive, however, hemay 
hoose to �rst learn the �rst d bits that de�ne the hash fun
tion h. Only thenwill he 
hoose whi
h other bits of r to read. Therefore, the sour
e X (of min-entropym � `� d) that the adversary 
reates is dependent on the 
hoi
e of the hash fun
tionh, so we 
annot say that h will extra
t almost m random bits. And, indeed, in allthe strong extra
tor families that we used, the output bits produ
ed need not berandom if the adversary 
an 
hoose the random variable X after the 
hoi
e of thehash fun
tion is made. Therefore, a new idea is needed to deal with adaptive ERF's.This idea will be to use Æ-sure (m; �)-extra
tors de�ned in Se
tion 2.8 for a very smallÆ, so that with high probability out hash fun
tion works for all possible 
hoi
es of theadversary.4.4.2 Constru
tion using t-wise Independent Fun
tionsAs we said, we will satisfy the strongest adaptive de�nition S4 above. So not onlywe will a
hieve adaptive se
urity as stated in the s
enario S2 (and our De�nition 12of adaptive ERF), but our f will a
tually indu
e an almost \perfe
t uniform dis-tribution": for ea
h sub
ube given by L 2 fǹg and w 2 f0; 1gn�`, the number ofpreimages of every single y 2 f0; 1gk will be within 2`�k(1 � �) for a negligible �.More importantly, we will a
heive the output size k = `� o(`).We noti
e that the variant S4 was exa
tly the notion of ERF 
onsidered by Kuro-sawa et al. [39℄, who 
alled su
h fun
tions �-almost (n� `)-resilient fun
tions. Theygive a 
ompli
ated expli
it 
onstru
tion whi
h is slightly better than what is possiblewith perfe
t ERF's, but still required the adversary to miss at least half of the input:` > n=2. While it might seem from that result that maybe one really 
annot hopeto a
hieve very good parameters under su
h a strong de�nition, we show that this isnot the 
ase; that we 
an a
hieve ` � k. However, our 
onstru
tion is probabilisti
(but eÆ
ient). 93



Fix any L 2 fǹg and w 2 f0; 1gn�`. Pi
k a random r su
h that [r℄�L = w. Fornotational 
onvenien
e, denote this r by X = X(L;w). Even though when we knowL and w, it is trivial to extra
t ` bits out of X, we pretend that we do not knowthem and only know that X has min-entropy `. Then, if we apply a good enoughextra
tor to X, we should be able to extra
t almost ` random bits out of it. Asbefore, the problem with this is that we need some extra randomness to pi
k a hashfun
tion from the extra
tor family. However, there are \only" M = �ǹ�2n�` 
hoi
esof L and w. So if a random fun
tion in our extra
tor family 
an be good (with highprobability) for all these M 
hoi
es, we will be done. But this is exa
tly the notionof Æ-sure (`; �)-extra
tors 
onsidered in Se
tion 2.8!In parti
ular, we showed in Se
tion 2.8 that for any family of t-wise independentfun
tions (for a high enough t), a random fun
tion from this family will su

eedto extra
t almost all the randomness from a lot of sour
es of min-entropy `. Morespe
i�
ally, we 
an apply Corollary 3 to our situation. The number of random sour
esis M = �ǹ�2n�` < 22n, all of them have min-entropy `, so we 
an a
hieve t =`+logM = O(n) and k = `�(2 log 1�+loglogM+log `+O(1)) = `�2 log 1��O(logn).Noti
e, however, that a-priori this only satis�es the notion S3, sin
e it just a
hievesstatisti
al deviation from uniform equal �. But a 
loser look at the proof of Corollary 3(from Lemma 3) shows that we simply take a union bound over all y 2 f0; 1gk, so wein fa
t a
hieve the strongest notion S4.In fa
t, it will be more 
onvenient to go dire
tly through Lemma 3 to a
hieveslightly stronger parameters, even though the above parameters are already good.Let us set t = n= logn to be our independen
e index, m = ` to be our min-entropy,� = 3 logn, and k = `� 2 log 1� � log t� 2� � `� 2 log 1� � 7 lognThen we get that for any w 2 f0; 1gn�` and and L 2 fǹg, if we set [r℄�L = w and
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hoose the remaining bits of r at random,Prf2F �����Prr (f(r) = y)� 12k ���� � � � 12k� � 2��t = 2�3nNow we take a union bound over 2k possible y, and M = �ǹ�2n�` possible settings ofsome (n� `) bits of r, and get the probability of error at most �ǹ�2n�`2k2�3n � 2�n.Hen
e, we have shownTheorem 13 Fix any n, ` and �. Let F be a family of t-wise independent fun
tionsfrom n bits to k bits, where t = n= logn andk = `� 2 log�1��� O(logn)Then with probability at least (1� 2�n) a random fun
tion f sampled from F will bea statisti
al adaptive `-ERF with error � satisfying the strongest adaptive notion S4.Namely, for every L 2 fǹg, w 2 f0; 1gn�` and y 2 f0; 1gk, the number of r satisfying[r℄�L = w and f(r) = y is within the interval 2`�k(1� �).Corollary 5 For any ` = !(logn), there exists eÆ
ient statisti
al adaptive `-ERFf : f0; 1gn ! f0; 1gk with k = `� o(`).Noti
e that the parameters we a
hieve are even marginally better than what wehad in the statisti
al 
onstru
tion in Theorem 11. The 
at
h is, of 
ourse, thatthe latter is an expli
it 
onstru
tion, while the former is a probabilisti
 (albeit veryeÆ
ient) 
onstru
tion. This raises the following interesting question.Question 1 Can we expli
itly 
onstru
t an adaptively se
ure statisti
al ERF a
hiev-ing ` � k (or even having just ` < n=2)?Noti
e that from an existential point of view, the result of Corollary 5 says thatsu
h adaptive ERF's exist (and 
an be easily sampled).Remark 1 We already noti
ed that by applying a pseudorandom generator to theoutput of an adaptively se
ure statisti
al `-ERF, we get a 
omputationally se
ure95



adaptive `-ERF (with a mu
h larger output size), obtaining a probabilisti
 analog ofTheorem 12. In fa
t, sin
e our statisti
al adaptive ERF's satisfy the strong notion S4(a
tually, even notion S3 suÆ
es for this 
omment), we 
an say the following strongerstatement about the resulting 
omputational ERF: for any L and w 2 f0; 1gn�`, ifthe adversary �xes [r℄�L = w, then by setting the remaining ` bits of r at random,the resulting k-bit output will be 
omputationally indistinguishable from uniform.Following the terminology of [20, 39℄, we 
an 
all su
h fun
tions 
omputationally(n� `)-resilient.
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Chapter 5
All-Or-Nothing Transforms (AONT)
As we pointed out, no AONT 
onstru
tions with analysis outside the random ora
lemodel were known. We give several su
h 
onstru
tions. We start by 
onsideringperfe
t AONT's. We show that they are mu
h more general than perfe
t ERF's. Yet,we non-trivially extend the the lower bound of Theorem 9 for perfe
t ERF's andshow a more general impossibility result for perfe
t AONT's. Namely, the adversarymust miss at least half of the (se
ret) output of the AONT. We show that the ques-tion of 
onstru
ting perfe
t AONT's is equivalent to a question of �nding \balan
ed"weighted 
olorings of the n-dimensional hyper
ube, and then show that no \very bal-an
ed" su
h 
olorings exist by taking a surprising re
ourse into quadrati
 forms andFourier analysis. Thus, similar to ERF's, perfe
t AONT's have strong 
ombinatoriallimitations.We then give a very simple \universal" 
onstru
tion of AONT's using ERF's (whi
hworks in any setting and even in the adaptive 
ase!). This yields the �rst 
onstru
-tion of AONT's outside the random ora
le model, and, moreover, the statisti
al and
omputational AONT's that we 
onstru
t have essentially the best possible parame-ters, dramati
ally beating the impossibility result for perfe
t AONT's. In parti
ular,the statisti
al 
onstru
tion a
hieves an `-AONT with ` � k (and even a se
ret-only`-AONT with ` = O(k)), showing an exponential separation between the perfe
t andthe statisti
al settings. The 
omputational 
onstru
tion (from any one-way fun
tion)also implies that for the interesting settings of parameters (essentially, ` < k), the97



existen
e of `-AONT's, `-ERF's and one-way fun
tions are all equivalent. The other
onstru
tion we give 
an be viewed as the spe
ial 
ase of the OAEP 
onstru
tionof Bellare and Rogaway [8℄ whi
h was shown to yield an AONT in the Random Or-a
le model [16℄. Thus, this 
onstru
tion 
an be viewed as the �rst step towardsabstra
ting the properties of the random ora
le that suÆ
e for this 
onstru
tion tobe an AONT. Finally, we give a \worst-
ase/average-
ase" redu
tion for AONT's thatshows it suÆ
es to design AONT's that are se
ure only for random x0; x1.5.1 Perfe
t AONTWe �rst 
onsider perfe
t `-AONT's and show that they have strong 
ombinatoriallimitations. Sin
e our main result will be an impossibility result, in this se
tion wewill ignore the restri
tions whi
h involve eÆ
ien
y of the 
omputations, even thoughall our 
onstru
tions will be eÆ
ient. Thus, our lower bounds holds in a purely
ombinatorial setting and under no 
omputational restri
tions, whi
h makes themonly stronger.First, we observe that it suÆ
es to restri
t our attention to se
ret-only `-AONT's,sin
e the publi
 part 
an be ignored. Indeed, the de�nition of a perfe
t `-AONTT : f0; 1gk ! f0; 1gs � f0; 1gp implies that all the distributions hx; [y1℄�L; y2i areidenti
ally distributed for any x 2 f0; 1gk and L 2 fs̀g. In parti
ular, for any �xed~y2 2 f0; 1gp (that is possible as a valid publi
 part) we get that all the 
onditionaldistibutions hx; [y1℄�L j y2 = ~y2i are the same. Let us �x any su
h possible ~y2. Then,T 0 : f0; 1gk ! f0; 1gs that simply outputs a random y1 su
h that (y1; ~y2) 2 T (x) is ase
ret-only `-AONT (it might not be eÆ
iently 
omputable, but we said that we donot worry about the eÆ
ien
y this se
tion). Therefore, we restri
t our attention tose
ret-only `-AONT's T : f0; 1gk ! f0; 1gn (we swit
h from s to n for 
onvenien
e),and will typi
ally omit the phrase \se
ret-only" in this se
tion.
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5.1.1 Perfe
t (se
ret-only) AONT vs. perfe
t ERFWe start by showing that perfe
t AONT's seem to be suÆ
iently more general thanperfe
t ERF's. Namely, a perfe
t `-ERF immediately implies a perfe
t `-AONT, butthe 
onverse does nor appear to hold. We will also derive an alternative de�nition ofa perfe
t AONT that will 
losely resemble the de�nition of a perfe
t ERF and simplifythe subsequent dis
ussion.Lemma 9 Assume f : f0; 1gn ! f0; 1gk is `-ERF. Then there exists a (se
ret-only)`-AONT T : f0; 1gk ! f0; 1gn (whi
h might not be eÆ
iently 
omputable).Proof: Given x 2 f0; 1gk, de�ne T (x) to be a random r 2 f0; 1gn su
h thatf(r) = x. In other words, T (x) is a random inverse r 2 f�1(x). First of all, su
h anr always exists sin
e f must be surje
tive (otherwise, f(r) 
annot indu
e a uniformdistribution on f0; 1gk for a random r). Take any L 2 fǹg. The fa
t that f is aperfe
t ERF means that when r is 
hosen at random, the 
onditional distribution off(r) given [r℄�L is uniform. In parti
ular, for any x 2 f0; 1gk and any w 2 f0; 1gn�`we get that the number of r su
h that [r℄�L = w and f(r) = x is the same (namely,2`�k). Therefore, the value r for T (x) 
an be 
hosen by �rst 
hoosing a randomw 2 f0; 1gn�` (whi
h is done independently of x) and then 
hoosing a random r su
hthat [r℄�L = w and f(r) = x. But sin
e the adversary only observes w whi
h was
hosen independently of x, he indeed gets no information about x from w = [r℄�L,
ompleting the proof.Constru
tions of AONT from ERF. In parti
ular, we 
an apply Theorem 8 toobtain perfe
t (se
ret-only) AONT's. Namely, let M be the k � n generator matrixof a linear error-
orre
ting 
ode of distan
e d. Then the following randomized trans-formation T : f0; 1gk ! f0; 1gn is an `-AONT, for ` = n � d + 1. Given x, we �nda random solution r 2 f0; 1gn to the linear system Mr = x and let T (x) = r. Wenote that su
h T is eÆ
iently 
omputable. In fa
t, the generi
 solution to Mr = x isalways given by (n � k) \free bits" of r that 
an be set arbitrarily, while the otherk bits are �xed linear 
ombinations of the \free bits". Thus, T 
an be represented99



as a �xed linear transformation given by some n � (n � k) matrix P . We simply
hoose (n � k) random bits t (
orresponding to the \free bits") and output r = Pt.In parti
ular, we 
an a
hive both k and (n� `) to be (small) 
onstant fa
tors of n bytaking any assymptoti
ally good 
ode M . We 
an also push ` to be arbitrarily 
loseto n=2 by making k signi�
antly smaller than n (by a large 
onstant fa
tor), but 
annever 
ross n=2 this way (unless k � logn). Finally, the upper bound of Lemma 5holds as well.ERF's from \uniform" AONT's. We remark that perfe
t AONT's seem to be mu
hmore general than perfe
t ERF's. Given a perfe
t AONT, one might try to de�ne anERF using the inverse map I of. Unfortunately, this seems to work only in veryspe
ial 
ases and to fail dramati
ally with general AONT's. For example, not everyr 2 f0; 1gn has to be a possible image of some x 2 f0; 1gk under T , so I may not beeven de�ned for many r 2 f0; 1gn (for the simplest possible example, take any AONTand add a \dummy" 0 at the end). More generally, the probabilities that T (x) = r
an be potentially very 
ompli
ated fun
tions of x and r (even irrational!), so even ifI was \de�ned" everywhere, the map I(r) has \no reason" to be an ERF.To see this from a di�erent angle, AONT's 
onstru
ted from ERF's via Lemma 9satisfy a very \regular" 
ondition that for every x 2 f0; 1gk and every w 2 f0; 1gn�`there are exa
tly 2`�k possible images r su
h that [r℄�L = w and x 2 T�1(r), ea
h ofwhi
h is sele
ted with a uniform probability by T . We 
all su
h AONT's uniform.More spe
i�
ally, a uniform AONT T : f0; 1gk ! f0; 1gn has the following form: wepartition f0; 1gn into 2k disjoint subsets S1; : : : ; S2k , and every x 2 f0; 1gk is mappedto a uniformly random element of Sx. Not surprisingly, for these very stri
t andspe
ial 
ases of AONT's the 
onverse of Lemma 9 holds.Lemma 10 Assume T : f0; 1gk ! f0; 1gn is a uniform `-AONT. Then there exists(eÆ
iently 
omputable) `-ERF f : f0; 1gn! f0; 1gk.Proof: De�ne f(r) = I(r), where I is the (eÆ
iently 
omputable) inversion mapfor T . Let us �x any L 2 fǹg, pi
k a random x 2 f0; 1gk and 
ompute r  T (x).Uniformity of T implies that we indu
e a uniform distribution on r. The fa
t that T100



is an `-AONT implies that observing [r℄�L gives no information on x. But this meansthat we 
an �rst pi
k a random r, let the adversary observe [r℄�L, then 
omputex = I(r) = f(r), and this will indu
e a uniform distribution on x. This is exa
tly thede�nition of an `-ERF.Corollary 6 Perfe
t uniform `-AONT T : f0; 1gk ! f0; 1gn exist i� perfe
t `-ERFf : f0; 1gn ! f0; 1gk exist.Another view of perfe
t AONT's. We now restate the above 
omparison be-tween (perfe
t) AONT's and ERF's in a slightly di�erent way. Re
all that the de�nitionof a perfe
t AONT T says that for any x0; x1 2 f0; 1gk we have [T (x0)℄�L � [T (x1)℄�L.We 
laim that the following is an equivalent de�nition of a perfe
t1 AONT (again, weignore the eÆ
ien
y 
onsiderations here).De�nition 15 A randomized fun
tion T : f0; 1gk ! f0; 1gn is a perfe
t `-AONT ifT is invertible (i.e., there is an inverse transformation I su
h that for any x 2 f0; 1gkand any r 2 T (x), we have I(r) = x) and for any L 2 fǹg and for a randomly 
hosenx 2 f0; 1gk, R 2 f0; 1gk, the following distributions are identi
al:h[T (x)℄�L; xi � h[T (x)℄�L; RiThe de�nition above says that observing [T (x)℄�L does not give any informationabout a randomly 
hosen x. Put another way, the 
onditional distribution of x given[T (x)℄�L is still uniform.Lemma 11 The above de�nition of perfe
t AONT is equivalent to the original De�-nition 13 of (se
ret-only) perfe
t AONT.Proof: Assume T satis�es the original de�nition, i.e. the distributions [T (x)℄�L areall the same (irrespe
tive of x). Call this distribution p. But then, when x is 
hosen1Noti
e, this equivalen
e does not hold for the statisti
al and the 
omputational settings.101



at random, the distribution of [T (x)℄�L is still p, so it gives no information about x.Thus, the 
onditional distribution on x is the same as we started from, i.e. uniform.Conversely, assume T satis�es the new de�nition. Take any a 2 f0; 1gk and anyw 2 f0; 1gn�` that happens with non-zero probability as the value of [T (x)℄�L whenx is 
hosen at random. Sin
e the 
onditional distribution of x after any 
on
eivableobservation w of [T (x)℄�L is uniform, we know that Prx;T (x = a j [T (x)℄�L = w) = 2�k.By Bayes' law, we 
an rewrite this probability as2�k = Prx(x = a) � Prx;T ([T (x)℄�L = w j x = a)Prx;T ([T (x)℄�L = w) = 2�k � PrT ([T (a)℄�L = w)Prx;T ([T (x)℄�L = w)Hen
e, we get PrT ([T (a)℄�L = w) = Prx;T ([T (x)℄�L = w), whi
h is independent of a.This is exa
tly the original de�ntion of a perfe
t AONT.Now given an AONT T , de�ne the probability distributionD on f0; 1gn by D(r) =Prx;T (T (x) = r), i.e. the probability that T (x) = r when x is 
hosen at random fromf0; 1gk.Claim 1 The distribution D and the inverse transformation I uniquely de�ne T .Proof: Indeed, let Sx = fr j I(r) = xg2 be the set of images of x under T ,and let Dx be the 
onditional distribution on r 2 Sx indu
ed by D (i.e., Dx(r) =D(r)=Pr02Sx D(r0) for r 2 Sx). Then the invertibility of T and the de�nition of Dimmediately imply that T (x) simply samples r 2 Sx a

ording to the distribution Dx.Thus, we 
an repla
e T by a pair (D; I).Also noti
e that the invertibility of T implies that if we sample r 2 f0; 1gn a
-
ording to D and let x = I(r), we get a uniform distribution on x 2 f0; 1gk. Namely,instead of sampling a random x 2 f0; 1gk and 
omputing r  T (x), we 
an sampler a

ording to D and 
ompute x = I(r). Applying this to De�nition 15, we get yetanother equivalent de�nition of a perfe
t AONT, whi
h now really resembles that ofa perfe
t ERF.2Be
ause D(r) = 0 for all r that are not images of any x 2 f0; 1gk, it does not really matter whatis the value of I on su
h \impossible" r. Say, we �x it to the all-zero string.102



De�nition 16 A transformation T , uniquely given by a distribution D on f0; 1gnand a deterministi
 fun
tion I : f0; 1gn ! f0; 1gk (as in Claim 1), is an `-AONT, ifwhen r is sampled a

ording to D and R is 
hisen uniformly from f0; 1gk, we havefor any L 2 fǹg: h[r℄�L; I(r)i � h[r℄�L; Ri (5.1)Noti
e that Equation (5.1) is exa
tly the same as Equation (3.1) in the de�nitionof a perfe
t ERF f : f0; 1gn! f0; 1gk, ex
ept the uniform distribution on r is repla
edby the distribution D. Thus, we see a 
rystal-
lear relation between perfe
t AONT'sand ERF's. For a perfe
t ERF we 
hoose r uniformly at random from f0; 1gn, whilefor a perfe
t AONT we allow to have an arbitrary distribution D on r (as long asEquation (5.1) is satis�ed). In other words, in designing perfe
t AONT's we have anextra degree of freedeom in pi
king the distribution D in addition to the fun
tionI : f0; 1gn ! f0; 1gk, while an ERF f : f0; 1gn ! f0; 1gk restri
ts D to be uniform.In this latter 
ase of D being the uniform distribution, the resulting AONT is exa
tlywhat we 
alled a uniform AONT earlier (where we partition f0; 1gn into sets Sx andlet T (x) be a uniformly random element of Sx). This again shows that ERF's areequivalent to uniform AONT's (Corollary 6).5.1.2 Impossibility ResultWe have seen that ERF's have strong limitations, given by Theorem 9, i.e. ` �n=2 + 1 � n=(2(2k � 1)). Moreover, this bound is tight by Lemma 5. We have alsoseen that AONT's immediately imply ERF's with the same parameters, while the
onverse holds only for very spe
ial kinds of uniform AONT's, and does not appear tohold in general. The natural question 
omes up if perfe
t AONT's nevertheless sharethe same 
ombinatirial limitation as perfe
t ERF's (and uniform AONT's).We noti
e that the proofs of Friedman [28℄ and Bierbrauer et al. [11℄ of Theorem 9fail on
e we go to general AONT's, sin
e they strongly use the \uniformity" of ERF'sa

ross di�erent `-dimensional sub
ubes. Still, we are able to show that the exa
tanalogs of Theorem 9 and the bound in Equation (4.1) do hold for general perfe
t103



`-AONT. In fa
t, we show that the only `-AONT's that 
an potentially a
hieve thesebounds are in fa
t uniform. In other words, non-uniform perfe
t AONT's do notseem to bring a signi�
ant advantage, despite their generality. While a very broadidea of our proof is the same as that of [28℄, our proof is signi�
antly more involvedand requires more 
are. And, of 
ourse, it subsumes the result of Theorem 9 due toLemma 9 (i.e., that perfe
t ERF's imply perfe
t AONT's). In addition, Lemmas 5 and9 show that this result is tight, and is in fa
t a
hived by a uniform AONT.Theorem 14 If T : f0; 1gk ! f0; 1gn is a perfe
t `-AONT, then` � 1 + n � 2k�1 � 12k � 1 = n2 + �1� n2(2k � 1)� (5.2)In parti
ular, for n � 2k we get ` > n2 , so at least half of the output of T has toremain se
ret even if T exponentially expands its input! Moreover, the above bound
an be a
hieved only by a uniform `-AONT.As we will see, the proof will follow from the impossibility of 
ertain weighted\balan
ed" 
olorings of an n-dimensional hyper
ube.5.1.3 Balan
ed Colorings of the Hyper
ubeIn this se
tion, we point out a natural relation between perfe
t AONT's and 
ertainweighted \balan
ed" 
olorings of the hyper
ube H = f0; 1gn. Re
all that in the graphof the hyper
ube two strings y; z 2 f0; 1gn are adja
ent if and only if they di�er in asingle position.For our purposes, a 
oloring C of a graph with 
 
olors is any map whi
h asso
iatesa 
olor from f1; : : : ; 
g to ea
h node in the graph.3 In a weighted 
oloring, the nodesthat are 
olored are also assigned a non-negative real weight. Sometimes, for obviousreasons, we will 
all the nodes of weight 0 un
olored, despite them having assigneda nominal 
olor. We will denote the weight of node y by �(y). We will also de�ne3Often one 
onsiders 
olorings su
h that no pair of adja
ent nodes has the same 
olor. We donot impose su
h restri
tions on the 
olorings we study.104



the weight ve
tor �i of ea
h 
olor i by assigning �i(y) = �(y) if y has 
olor i, and 0otherwise. We noti
e that for any given y 2 H, �i(y) > 0 for at most one 
olor i, andalso P�i = �. A 
oloring where all the nodes are un
olored is 
alled empty. Sin
ewe will never talk about su
h 
olorings and the absolute magnitude of the weightswill not be important, we agree on the normalization 
ondition that the sum of allthe weights is 1, i.e. Py2H �(y) = 1. A uniform 
oloring is the one where all thenodes are assigned the same weight (i.e., �(y) = 2�n for all y).We will be interested in the properties of 
olorings on sub
ubes of the hyper
ube.Re
all that a sub
ube is the subgraph obtained by �xing some of the n positionsand letting the others take on all possible values. More formally, given a set of `positions L 2 fǹg and some assignment a 2 f0; 1gn�` to the remaining variables notin L, the sub
ube HL;a is the set of nodes r su
h that r agrees with a on L, i.e.[r℄�L = a. Clearly, jHL;aj = 2`. The dimension of a sub
ube is ` = jLj | the numberof variables left un�xed.De�nition 17 We say a weighted 
oloring of the hyper
ube is `-balan
ed if, withinevery sub
ube of dimension `, ea
h 
olor has the same weight. That is, for ea
h Land a, Py2HL;a �i(y) is the same for all 
olors i.We noti
e that the empty 
oloring trivially satis�es this 
ondition, and that isthe reason why we ex
lude it from our 
onsideration. On the other hand, a balan
ed
oloring is allowed to 
ontain many `-dimensional sub
ubes whi
h are 
ompletelyun
olored (as long as not all of them are un
olored), sin
e ea
h 
olor has the same(zero) weight in su
h sub
ubes.Remark 2 If a 
oloring is `-balan
ed, it is also `0-balan
ed for any `0 > `, sin
e an`0 dimensional sub
ube is the disjoint union of `-dimensional ones.We study balan
ed 
olorings sin
e they 
apture the 
ombinatorial properties of`-AONT's and `-ERF's. We get the following equivalen
es.Lemma 12 Ignoring 
omputational eÆ
ien
y, we have that the existen
e of the fol-lowing are equivalent in the perfe
t setting:105



1. `-AONT's from k bits to n bits.2. `-balan
ed weighted 
olorings of n-dimensional hyper
ube using 2k 
olors.The following are similarly equivalent in the perfe
t setting:1. uniform `-AONT's from k bits to n bits.2. `-ERF's from n to k bits.3. uniform `-balan
ed 
olorings of n-dimensional hyper
ube using 2k 
olors.Proof: We ignore `-ERF's in the proof sin
e we know that they are (
ombinatorially)equivalent to uniform `-AONT's by Corollary 6. We will also use a more 
onvenientDe�nition 16 of an `-AONT given in terms of the inverse map I : f0; 1gn ! f0; 1gk andthe distribution D on f0; 1gn indu
ed by T and the uniform distribution on f0; 1gk.Now the equivalen
e between AONT's and weighted 
olorings is almost immediate.The fun
tion I 
orresponds to assigning a 
olor I(y) to a node y 2 H, while thedistribution D 
orresponds to assigning a weight D(y) to a node y 2 H. Clearly, theresulting 
oloring is uniform if and only if the AONT is uniform (i.e., the distributionD is uniform).It remains to 
he
k the balan
edness property. But this again immediately followsfrom De�nition 16 of a perfe
t AONT. In one dire
tion, the de�nition of an AONTsays that for any \non-empty" (i.e., Pry D([y℄�L = a) > 0) sub
ube HL;a ofH, we havethat the distribution indu
ed by I(y) 
onditional on y 2 HL;a is uniform (when y is
hosen a

ording to D). But the 
onditional probability of I(y) = i is proportional tothe total weight of nodes of 
olor i in this sub
ube. So having a uniform distributionon I(y) is equivalent to saying that ea
h 
olor has the same weight in HL;a. The
onverse dire
tion is the same.We now restate our lower bound on perfe
t AONT's in Theorem 14 in terms ofweighted `-balan
ed 
olorings of the hyper
ube with 
 = 2k 
olors (we prove thetheorem for general 
).
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Theorem 15 For any (non-empty) `-balan
ed weighted 
oloring of the n-dimensionalhyper
ube using 
 
olors, ` � n2 + �1� n2(
� 1)�Moreover, equality 
an hold only if the 
oloring is uniform and no two adja
ent nodesof positive weight have the same 
olor.We believe that the above theorem is interesting in its own right. It says that on
ethe number of 
olors is at least 3, it is impossible to �nd a 
-
oloring (even weighted!)of the hyper
ube su
h that all `-dimensional sub
ubes are \equi-
olored", unless ` isvery large.5.1.4 Proof of the Lower Bound (Theorem 15)We will work in the 2n-dimensional ve
tor spa
e V 
onsisting of ve
tors with positionsindexed by the strings in H, and will 
ru
ially use the algebrai
 fa
ts about quadrati
forms and Fourier analysis des
ribed in Se
tion 2.9. In some sense, it might appearsurprising to use real analysis to prove a 
ombinatorial fa
t, but it turns out that thebalan
edness property of our 
oloring is best utilized when we 
onsider an appropriatealgebrai
 expression and bound it in two di�erent ways.Consider a non-empty `-balan
ed weighted 
oloring � of the hyper
ube using 

olors. Let �i be the 
hara
teristi
 weight ve
tor 
orresponding to 
olor i (i.e. �i(y)is the weight of y when y has 
olor i and 0 otherwise). As we will show, �i's havesome ni
e properties whi
h 
apture the balan
edness of the 
oloring �. In parti
ular,we know that for any 
olors i and j and for any `-dimensional sub
ube of H, the sumof the 
omponents of �i and of �j are the same in this sub
ube. Hen
e, if we 
onsiderthe di�eren
e (�i��j), we get that the sum of its 
oordinates over any `-dimensionalsub
ube is 0.Now it turns out that a natural way to exploit the above property is to 
onsider thequantity (�i��j)>A(�i��j), where A is the adja
en
y matrix of the n-dimensionalhyper
ube (see Se
tion 2.9). As suggested in Se
tion 2.9, we 
an bound this quantityby 
al
ulating the Fourier 
oeÆ
ients of (�i��j) 
orresponding to large eigenvalues.107



We get the following lemma:Lemma 13 For any i 6= j, we have(�i � �j)>A(�i � �j) � (2`� n� 2) � k�i � �jk2 (5.3)We postpone the proof of this 
ru
ial lemma until the the end of the proof, andnow just use it to prove our theorem. First, note that the lemma above only gives usinformation on two 
olors. To simultaneously use the information from all pairs, we
onsider the sum over all pairs i; j, that is� def=Xi;j (�i � �j)>A(�i � �j) (5.4)We will give upper and lower bounds for this quantity (Claims 2 and 3, respe
-tively), and use these bounds to prove our theorem. We �rst give the upper bound,based on Lemma 13.Claim 2 � � 2 (2`� n� 2) (
� 1) �Xi k�ik2 (5.5)Proof: We 
an ignore the terms of � when i = j sin
e then (�i � �j) is the 0ve
tor. Using Lemma 13 we get an upper bound:Xi;j (�i � �j)>A(�i � �j) � (2`� n� 2) �Xi 6=j k�i � �jk2Now the ve
tors �i have disjoint supports (sin
e ea
h y 2 H is assigned only one
olor), so we have k�i � �jk2 = k�ik2 + k�jk2. Substituting into the equation above,we see that ea
h k�ik2 appears 2(
� 1) times (re
all that 
 is the number of 
olors).Hen
e we get the desired result:Xi;j (�i � �j)>A(�i � �j) � (2`� n� 2) � 2(
� 1) �Xi k�ik2108



Se
ond, we 
an expand this sum dire
tly to obtain a lower bound.Claim 3 � � �2n �Xi k�ik2 (5.6)Proof: Sin
e A is symmetri
 we have �>i A�j = �>j A�i. Then:Xi;j (�i � �j)>A(�i � �j) = Xi;j ��>i A�i + �>j A�j � 2�>i A�j�= 2
 �Xi �>i A�i � 2 �Xi;j �>i A�jLet us try to bound this last expression. On one hand, we know that �>i A�i � 0sin
e it is a produ
t of matri
es and ve
tors with non-negative entries. On the otherhand, we 
an rewrite the last term as a produ
t:Xi;j �>i A�j =  Xi �i!>A Xi �i!This quantity, however, we 
an bound using the fa
t that the maximum eigenvalueof A is n (see Lemma 4 in Se
tion 2.9). We get Xi �i!> A  Xi �i! � n � 




Xi �i




2Sin
e the ve
tors �i have disjoint support (again, ea
h node y is assigned a unique
olor), they are orthogonal and so kPi �ik2 = Pi k�ik2. Combining these results,we get the desired lower bound:Xi;j (�i � �j)>A(�i � �j) � 0� 2n �Xi k�ik2 = �2n �Xi k�ik2Combining the lower and the upper bounds of Claims 2 and 3, we get2(2`� n� 2)(
� 1) �Xi k�ik2 � �2n �Xi k�ik2109



Now sin
e the 
oloring � is non-empty, we havePi k�ik2 > 0. Dividing the inequalityabove by this sum gives us 2(2`� n� 2)(
� 1) � �2n. This implies that` � n2 + �1� n2(
� 1)�whi
h was exa
tly what we had to prove.Proof of Lemma 13. It remains to prove Lemma 13, i.e.(�i � �j)>A(�i � �j) � (2`� n� 2) � k�i � �jk2By Lemma 4 in Se
tion 2.9 and the expli
it form of the eigenvalues of A (Fa
t 2),it is suÆ
ient show that all the Fourier 
oeÆ
ients of (�i � �j) whi
h 
orrespondto eigenvalues �z � 2` � n = n � 2(n � `) are 0. In other words, that (�i � �j) isorthogonal to all the eigenve
tors vz whose eigenvalues are at least (n � 2(n � `)),i.e. weight(z) � n � `. But re
all that on any sub
ube of dimension at least `, the
omponents of (�i � �j) sum to 0! This turns out to be exa
tly the fa
t we needto in order to show that hvz; �i � �ji = 0 whenever �z � 2` � n, and thus to proveLemma 13.Claim 4 For any z 2 f0; 1gn with weight(z) � n� ` (i.e. �z � 2`� n), we havehvz; �i � �ji = 0Proof: Pi
k any ve
tor z = (z1; : : : ; zn) 2 f0; 1gn with weight(z) � n� `, and letS be the support of z, i.e. S = fj : zj = 1g. Note that jSj � n� `. Also, re
all thatvz(y) = 1p2n � (�1)z�y (see Fa
t 2). Now 
onsider any assignment a to the variables ofS. By letting the remaining variables take on all possible values, we get some sub
ubeof the hyper
ube, 
all it Ha.One the one hand, note that vz is 
onstant (either 1=p2n or �1=p2n) on thatsub
ube, sin
e if y and y0 di�er only on positions not in S, we will have z � y = z � y0.Call this value Ca. On the other hand, sin
e the 
oloring is `-balan
ed and sin
e110



jSj � n�`, the sub
ube Ha has dimension at least ` and so we know that both 
olorsi and j have equal weight on Ha. Thus summing the values of (�i � �j) over thissub
ube gives 0.Using the above two observations, we 
an easily show that h�i � �j;vzi is 0 byrewriting the inner produ
t as a sum over all assignments to the variables in S:h�i � �j;vzi = Xy2Hvz(y)[�i(y)� �j(y)℄ = Xassignments a Xy2Ha vz(y)[�i(y)� �j(y)℄!= Xa Ca � Xy2Ha �i(y)�Xy2Ha �j(y)! =Xa Ca � 0 = 0
Equality 
onditions. As we proved Theorem 15 (and also Theorem 14), wemight wonder whi
h 
olorings 
an meet the bound of the theorem. Interestingly,su
h 
olorings are very stru
tured, as we 
an see by tra
ing down our proof. Namely,
onsider the lower bound proved in Claim 3, i.e. that Pi;j(�i � �j)>A(�i � �j) ��2nPi k�ik2. Going over the proof, we see that equality 
an o

ur only if two
onditions o

ur.On the one hand, we must have �>i A�i = 0 for all 
olors i. An easy 
al
ulationshows that �>i A�i is 0 only when there is no edge of non-zero weight 
onne
ting twonodes of 
olor i. Thus, this 
ondition implies that the 
oloring is in fa
t a 
-
oloringin the traditional sense of 
omplexity theory: no two adja
ent nodes will have thesame 
olor.One the other hand, the inequality (Pi �i)>A(Pi �i) � n � kPi �ik2 must betight. This 
an only hold if the ve
tor � =Pi �i is parallel to (1; 1; : : : ; 1) sin
e thatis the only eigenve
tor with the largest eigenvalue n. But this means that all theweights �(y) are the same, i.e. that the 
oloring must be uniform.Extending the Bound to Larger Alphabets. Although the problem of 
on-stru
ting AONT's is usually stated in terms of bits, it is natural in many appli-
ations (e.g., se
ret-sharing) to 
onsider larger alphabets, namely to 
onsider T :111



f0; : : : ; q � 1g ! f0; : : : ; q � 1gn. All the notions from the \binary" 
ase naturallyextend to general alphabets as well, and so does our lower bound. However, the lowerbound we obtain is mostly interesting when the alphabet size q is relatively small
ompared to n. In parti
ular, the threshold n=2, whi
h is so 
ru
ial in the binary
ase (when we are trying to en
ode more than logn bits), be
omes n=q (re
all, q is thesize of the alphabet). This threshold be
omes meaningless when q > n whi
h is notsurprising at all, sin
e in this 
ase we 
an use Shamir's se
ret sharing [54℄ (providedq is the prime power) and a
hieve ` = k whi
h is \in
omparable" to n (and 
ould beas small as 1). We also remark that the bound we state is tight if qk � n and 
an bea
hieved similarly to the binary 
ase by using the analog of the Hadamard 
ode overthe alphabet of size q.Theorem 16 Let T : f0; : : : ; q � 1gk ! f0; : : : ; q � 1gn be a perfe
t `-AONT. Then` � nq + �1� q � 1q � nqk � 1�In parti
ular, ` > n=q when qk > n. Moreover, equality 
an only hold only for auniform AONT.Similarly to the binary 
ase, we 
an also �nd a natural 
onne
tion between su
hperfe
t `-AONT's and weighted `-balan
ed 
olorings of the \multi-grid" f0; : : : ; q�1gnwith 
 = qk 
olors. And again, the bound of Theorem 15 extends here as well anbe
omes ` � nq + �1� q � 1q � n
� 1�As we said, we 
an use the same te
hniques as in our previous proof, with thefollowing minor 
hanges. We now work with the graph f0; : : : ; q� 1gn, whi
h has anedge going between every pair of words that di�er in a single position. For arithmeti
purposes, we think of the nodes in this graph as ve
tors in Znq . If we let ! be a primitiveqth root of unity in C (e.g. ! = e2�i=q), then an orthonormal basis of the adja
en
ymatrix of our graph is given by the qn-dimensional ve
tors vz for z 2 f1; : : : ; qgn,112



where vz(y) = 1pqn � !z�yand now z � y is the standard dot produ
t modulo q. The eigenvalue of vz is �z =n(q � 1)� qj where j = weight(z) (number of non-zero 
oordinates).We de�ne �i exa
tly as before. Claim 4 still holds (i.e. the Fourier 
oeÆ
ientsof (�i � �j) 
orresponding to large eigenvalues are 0). Constru
ting upper and lowerbounds as above, we eventually get(q`� n� q)(
� 1)Xi k�ik2 � �n(q � 1)Xi k�ik2whi
h implies the desired inequality. Equality 
onditions are the same.This 
ompletes our study of perfe
t AONT's, and brings us ba
k to the problem of
onstru
ting statisti
al and 
omputational AONT's, whi
h we do next.5.2 Simple \Universal" Constru
tion using ERFWe view the pro
ess of 
reating `-AONT as that of one-time private-key en
ryption,similarly to the appli
ation in Se
tion 3.2. Namely, we look at the simplest possibleone-time private-key en
ryption s
heme | the one-time pad, whi
h is un
onditionallyse
ure. Here the se
ret key is a random string R of length k, and the en
ryption ofx 2 f0; 1gk is just x�R. We simply repla
e R by f(r) where f is `-ERF and r is ournew se
ret. We obtain the following theorem.Theorem 17 Let f : f0; 1gn ! f0; 1gk be a 
omputational (statisti
al, perfe
t) `-ERF. De�ne T : f0; 1gk ! f0; 1gn � f0; 1gk (that uses n random bits r) as follows:T (x; r) = hr; f(r)� xi. Then T is 
omputational (statisti
al, perfe
t) `-AONT withse
ret part r and publi
 part f(r)� x.Proof: Take any L 2 fǹg, and x0; x1 2 f0; 1gk. We have to show thathx0; x1; [r℄�L; f(r)� x0i � hx0; x1; [r℄�L; f(r)� x1i113



This immediately follows from Corollary 1 and the de�nition of ERF (Equation (3.1)).Noti
e that the size of the se
ret part s = n and size of the publi
 part p = k. As animmediate 
orollary of Theorems 7 and 17, we have:Theorem 18 Assume ` � s � poly(`). There exist probabilisti
 transformationsT : f0; 1gk ! f0; 1gs � f0; 1gk (with se
ret output of length s and publi
 output oflength k) su
h that1. T is a statisti
al `-AONT with k = `� o(`), or2. T is a 
omputational `-AONT with any k � poly(s).On the length of the publi
 part. We noti
e that the length of the publi
part is k | the size of the message. Having a publi
 output length ne
essarily equalto the size of the input seems to be a bit restri
tive, but is a
tually quite natural.We 
an view the publi
 part as the \masked original message". It takes exa
tly asmu
h spa
e for the appli
ation as the se
ret x used to take, and requires no prote
tion(even though prote
tion does not \hurt"). The size of the new se
ret part s is now aparameter that 
an be 
hosen pretty mu
h arbitrarily (espe
ially in the 
omputationalsetting) depending on the level of se
urity we desire to a
hieve. This level of se
urityis now dire
tly proportional to the extra-spa
e that we use. To summarize, there is avery 
lear tradeo� between the amount of extra-spa
e used and the exposure-resilien
ea
hieved.Statisti
al AONT. Looking at the statisti
al 
onstru
tion, we get that k = `�o(`)and s 
an be an arbitrary polynomial in `. For example, we 
an set ` = s� to a
hieveex
ellent exposure-resilien
e. The only drawba
k is that k < `. Unfortunately, similarto the 
ase of ERF, this is unavoidable due to the following simple lemma, that alsoshows that our statisti
al 
onstru
tion is nearly optimal up to the lower order term.Lemma 14 If T : f0; 1gk ! f0; 1gs � f0; 1gp is a statisti
al `-AONT with statisti
aldeviation " < 12 , then k � `. 114



Proof: The proof is very similar to that of Lemma 6. Assume k > `. Takeany L 2 fs̀g, say L = [`℄. To show that there exist x0; x1 2 f0; 1gk 
ontradi
tingEquation (3.2), we show that Equation (3.2) does not hold for random x0 and x1by 
onstru
ting a (
omputationally unbounded) distinguisher D who, given randomx0 and x1, 
an su

essfully distinguish [T (x0)℄�L from [T (x1)℄�L. Given hx0; x1; wi, Dsimply tries out all possible 2` 
ompletions of w and inverts them using I. If he evergot x1 ba
k, he outputs 1, otherwise he outputs 0. Clearly,D always outputs 1 when w
orresponds to x1. When w 
orresponds to x0, there are only 2` possible 
ompletions,and ea
h 
an be inverted in only one way. Sin
e x1 is 
hosen at random for f0; 1gk,the probability that any of these inversions is equal to x1 is at most 2`�k � 12 . Thus,the advantage of D is at least 12 > ", a 
ontradi
tion.Computational AONT. As with ERF's, the 
omputational 
onstru
tion allows usto a
hieve the number of missing bits, `, to be arbitrarily small 
ompared to theinput length k, beating the limitations of statisti
al AONT's. In essen
e, we 
an
hoose pretty mu
h arbitrary ` and s given the input size k. For example, we 
an set` = s� to have an ex
ellent exposure-resilien
e. We 
an also make the total outputsize N = s + k to be dominated by the input size k, if we 
hoose s = o(k). Thisseems to be the best setting from a theoreti
al point of view. Namely, if s = o(k) and` = s�, we get that the total output size is k + o(k), while the exposure-resilien
e isas small as we 
an wish.Se
ret-only statisti
al AONT. Observe that any `-AONT with publi
 and se
retoutputs of length p and s, respe
tively, also gives a se
ret-only `0-AONT with outputsize N = s+p and `0 = `+p (sin
e if the adversary misses `+p bits of the output, hemust miss at least ` bits of the se
ret output). Let us apply this to our 
onstru
tion,where p = k. In the statisti
al setting, we obtain `0 = 2k+o(k) = O(k) and essentiallyany total output size N = s + k > `0. In fa
t, applying the �rst part of Theorem 11to Theorem 17 and uniting the publi
 and se
ret parts of the resulting `-AONT, weget 115



Corollary 7 For any !(logN) � ` � N there exists a statisti
al se
ret-only `-AONTT : f0; 1gk ! f0; 1gN , where k = 
(`).Up to a small 
onstant fa
tor (whi
h 
an be made as small as 2 if we relax` = !(log2N loglogN)), this is the best we 
an hope to a
hieve by Lemma 14.Se
ret-only 
omputational AONT. Let us turn now to the 
omputational set-ting and get a se
ret-only AONT out of it. We see that `0 = ` + k and N = s + k,as before, and we 
an a
hieve essentially any N > `0. In parti
ular, we 
an still haveex
ellent exposure-resilien
e `0 = N �, but now the output size N = (`0)1=� > k1=�is large 
ompared to the input length k. Thus, if we make the total output size Nsmall, we have only moderate exposure-resilien
e, and if we want to have very goodexposure-resilien
e, we have to make the total output size large. As we demonstrated,these problems disappear if we have a publi
 part, and there is really no reason notto. However, from a theoreti
 and aestheti
 points of view, the following question isimportant to resolve:Question 2 Are there 
omputational se
ret-only `-AONT's from k bits to N bits su
hthat N = O(k) and ` = N �, for any � > 0 (or even only ` = o(k))?We do not give a full answer to this question, but redu
e it to the question of
onstru
ting a plausible fun
tion, whi
h des
ribed in Se
tion 5.3.Adaptive AONT. We noti
e that Theorem 17 easily generalizes to the adaptivesetting, where the adversary 
an adaptively 
hoose whi
h (s � `) bits of the se
retpart to observe, as stated in De�nition 14. This follows from the fa
t that Corol-lary 1 
learly relativizes to the setting with the ora
le, who 
an provide the adversaryany (s � `) bits of the se
ret output. In parti
ular, using the eÆ
ient probabilisti

onstru
tion of adaptive `-ERF's from Se
tion 4.4, we get a probabilisti
 
onstru
tionof statisti
al and 
omputational adaptive AONT's with the same (and even slightlybetter) parameters as we did in the non-adaptive setting above. For example, in thestatisti
al setting we 
an a
hieve adaptive `-AONT's with ` � k, and even se
ret-only116



adaptive `-AONT's with ` = O(k). This and Theorem 14 also show an exponentialseparation between statisti
al and perfe
t adaptive AONT's.5.3 Towards se
ret-only AONTWe also give another 
onstru
tion of an AONT based on any length-preserving fun
-tion f su
h that both [r 7! f(r)℄ and [r 7! f(r) � r℄ are ERF's. The 
onstru
tionhas the advantage of a
hieving se
ret-only AONT's, while retaining a relatively shortoutput length, and would provide a positive answer to Question 2 if one 
onstru
ts afun
tion f as above. It 
an also be viewed as the spea
ial 
ase of the OAEP 
onstru
-tion of [8℄ in the Random Ora
le model, and 
an be viewed as the �rst step towardsabstra
ting the properties of random ora
les that make this 
onstru
tion work as anAONT.Removing random ora
les from OAEP. Re
all that the OAEP 
onstru
tionof Bellare and Rogaway [8℄ sets T (x; r) = hu; ti, where u = G(r)� x, t = H(u)� r,and G : f0; 1gn ! f0; 1gk and H : f0; 1gk ! f0; 1gn are some fun
tions (e.g.,random ora
les; see Figure 3-3). Boyko [16℄ formally showed that this is indeed an`-AONT (where ` 
an be super-logarithmi
 in the se
urity parameter). Let us tryto develop some informal intuition of why this 
onstru
tion works; in parti
ular, toseparate the properties of G and H that are essential (and hopefully suÆ
ient) forthis 
onstru
tion to be an AONT (so that we 
an try to repla
e random ora
les by
onstru
tive fun
tions). We look at the two extreme 
ases.First, assume we know u 
ompletely and miss ` bits of t. Then we miss ` bits ofr, sin
e r = H(u)� t. Note that x = G(r)� u, so in order to \miss x 
ompletely", Gmust have the property that missing ` bits of G's random input r makes the outputpseudorandom (random ora
le 
learly satis�es this). But this is exa
tly the notionof an `-ERF! Thus, G must be an ERF, and this seems suÆ
ient to handle the 
asewhen we miss ` bits of t.Now assume that we know t 
ompletely and miss ` bits of u. Assume for a se
ondthat H is a random ora
le. Then, sin
e r = H(u) � t, we are essentially missing r117




ompletely. But from the previous argument about G, we know that even missing `bits of r leaves x 
ompletely unknown. Thus, random ora
le H a
hieves even morethan we need. In some sense, as long as H does not \unhide" information we missabout u, we will miss at least ` bits of r. In other words, assume H satis�es aninformally stated property that missing ` of its input bits implies \missing" at least `of its output bits. Then missing ` bits of u implies missing ` bits of r, whi
h impliesmissing entire G(r), whi
h implies missing x 
ompletely. So we ask the questionof whi
h H satisfy this informal property? Clearly, the easiest one is the identityfun
tion (assuming n = k).Our 
onstru
tion. The above informal reasoning has led us to analyze the fol-lowing 
onstru
tion, whi
h is a spe
ial 
ase of the OAEP 
onstru
tion with n = k,and H being the identity fun
tion.u = f(r)� x (5.7)t = u� r (5.8)where f : f0; 1gk ! f0; 1gk. Thus, T (x; r) = hf(r)� x; (f(r)� r)� xi, and theinverse is I(u; t) = u � f(u� t). This 
onstru
tion is illustrated in Figure 5-1 (andshould be again 
ompared with the original OAEP 
onstru
tion in Figure 3-3).Theorem 19 Assume f is su
h that both f(r) and (f(r)� r) are length-preserving
omputational `-ERFs. Then T above is a 
omputational se
ret-only 2`-AONT.Proof: LetN = 2k be the size of the output, L1 = f1 : : : `g, L2 = f`+1 : : : 2`g. Takeany L 2 fN2`g and any x0; x1 2 f0; 1gk. It must be the 
ase that either jL\L1j � ` orjL\L2j � `. Thus, it suÆ
es to show the se
urity when we either know t 
ompletelyand miss ` bits of u, or when we know u 
ompletely and miss ` bits of t. Hen
e, itsuÆ
es to assume that jLj = ` and 
onsider the two 
ases separately.1) L � L1. Then we must show thathx0; x1; [f(r)� x0℄�L; (f(r)� r)� x0i � hx0; x1; [f(r)� x1℄�L; (f(r)� r)� x1i118
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Figure 5-1: OAEP with H being the identity fun
tion and G being an ERF f .Sin
e [f(r)�xi℄�L� [f(r)� r�xi℄�L = [r℄�L (for both i = 0 and i = 1), and hA;B;Ci �hA;D;Ei i� hA;B;C � Bi � hA;D;E �Di, the above is the same ashx0; x1; [r℄�L; (f(r)� r)� x0i � hx0; x1; [r℄�L; (f(r)� r)� x1iThe result now immediately follows from Corollary 1 and the fa
t that f(r)� r is an`-ERF (i.e., it satis�es Equation (3.1)).2) L � L2. The proof is identi
al to above with the roles of f(r) and (f(r) � r)inter
hanged. In parti
ular, the result follows from the fa
t that f(r) is an `-ERF.We note that random ora
le f 
learly satis�es the 
onditions of the above Theorem.Thus, our analysis makes a step towards abstra
ting the properties of the randomora
le needed to make the OAEP work as an AONT. We believe that the assump-tion of Theorem 19 is quite reasonable, even though we leave open the question of
onstru
ting su
h f based on standard assumptions. We also remark that non-triviallength-preserving ERF's 
an exist only in the 
omputational sense, sin
e ` � k for119



any statisti
al ERF (by Lemma 6).5.4 Computational AONT implies OWFsWe have seen in Lemma 14 that statisti
al `-AONT's 
an exist only for k � `. Wenow show a strong dual statement that on
e ` < k, 
omputational `-AONT's in fa
timply the existen
e of one-way �n
tions.Theorem 20 Assume we have a 
omputational `-AONT T : f0; 1gk ! f0; 1gs �f0; 1gp where ` < k. Then one-way fun
tions exist.Proof: To show that OWF's exist it is suÆ
ient to show that weak OWF's exist [29℄(see also Se
tion 2.4). Fix L = [`℄ � [s℄. De�neg(x0; x1; b; r) = hx0; x1; [y℄�Liwhere y = T (xb; r). Intuitively, it might seem that the fa
t that g is a weak OWFshould follow immediately from the fa
t that T is an AONT. Namely, to invert gon a random input the adversary needs to determine b 
orre
tly, whi
h he 
annot dosigni�
antly better than guessing, by the se
urity of the AONT. While this intuitionis somewhat 
orre
t in its spirit, there are some problems that have to be over
ome.First, to \su

essfully invert" g the adversary does not have to 
ome up with thepreimage that we \started from". In parti
ular, it 
ould be that for most x0; x1; b; rwe started from, it is possible to a
hieve the same output with x0; x1; 1� b and someother randomness r0 (so that the adversary does not ne
essarily have to produ
e b tosu

eed). To rule out this possibility, we will use the fa
t that ` < k and that T isinvertible. Se
ondly, it will not be immeditely 
lear why the fa
t that b is hard toguess implies that g is a weak OWF, but this will follow from a 
areful analysis, whi
hwe present now.Assume that g is a not weak OWF. Then there is an inverter A su
h that whenx0; x1; b; r are 
hosen at random, y = T (xb; r), z = [y℄�L, h~b; ~ri = A(x0; x1; z), ~y =T (x~b; ~r), ~z = [~y℄�L, we have Pr(z = ~z) > 34 .120



To show that there exist x0; x1 breaking the indistinguishability property of T ,we 
onstru
t a distinguisher F for T that has non-negligible advantage for randomx0; x1 2 f0; 1gk. Hen
e, the job of F is the following. x0, x1, b, r are 
hosen atrandom, and we set y = T (xb; r), z = [y℄�L. Then F is given the 
hallenge z togetherwith x0 and x1. Now, F has to predi
t b 
orre
tly with probability non-negligiblymore than 1=2. We let F run A(x0; x1; z) to get ~b; ~r. Now, F sets ~y = T (x~b; ~r),~z = [~y℄�L. If indeed ~z = z (i.e. A su

edeed), F outputs ~b as its guess, else it 
ips a
oin.Let B be the event that A su

eeds inverting. From the way we set up theexperiment, we know that Pr(B) � 34 . Also, if B does not happen, F 
ips a 
oinand su

eeds with probability 1=2. So assume A su

eeds inverting. Call U the eventthat when x0; x1; b; r are 
hosen at random, [T (xb; r)℄�L 2 [T (x1�b)℄�L, i.e. there existssome r0 su
h that [T (x1�b; r0)℄�L = z (equivalently, g(x0; x1; 1� b; r0) = g(x0; x1; b; r)).If U does not happen and A su

eeded inverting, we know that ~b = b (i.e., F su

eedswith probability 1), as (1� b) is an impossible answer. On the other hand, if U doeshappen and A su

eeds inverting, we 
laim that F su

eeds with probability exa
tly1=2, whi
h we argue next.Indeed, 
onditioned on B ^ U , our experiment 
an be view as follows. Let Dbe the distribution on z indu
ed by 
hoosing a random x and setting z  [T (x)℄�L,and let Dz be the 
onditional distribution on x indu
ed by 
hoosing y this way. We�rst 
hoose z  D, and then independently sample brand new x0; x1  Dz. Noti
e,no bit b is generated yet! Then we give x0; x1; y to F , who passes them to A. If Asu

eeds inverting (outputs ~b and ~r s.t. z = [T (x~b; ~r℄�L), we let F output ~b as before.Otherwise, we repeat the whole experiment from s
rat
h. Only after we �nished thisexperiment (i.e. A eventually su

eeded) do we 
hoose at random the \right" bit b. Itis easy to see that this experiment is 
ompletely equivalent to our original experiment
onditioned on B ^ U (provided the latter has non-zero probability). On the otherhand, sin
e b is generated afterwards, Pr(~b = b) = 12 indeed.
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Combining the above observations and using Pr(X ^ Y ) � Pr(X)� Pr(Y ), we get:Pr(~b = b) � 12 Pr(B) + Pr(B ^ U) + 12 Pr(B ^ U)= 12 + 12 � Pr(B ^ U)� 12 + 12 � (Pr(B)� Pr(U))� 12 + 12 � �34 � Pr(U)�To get a 
ontradi
tion, we show that Pr(U) � 2`�k, whi
h is at most 12 < 34 sin
e` < k. To show this, observe that U measures the probability of the event thatwhen we 
hoose x; x0; r at random and set z = [T (x; r)℄�L, there is some r0 su
hthat z = [T (x0; r0)℄�L. However, for any �xed setting of z, there are only 2` possible
ompletions y 2 f0; 1gs+p. And for ea
h su
h 
ompletion y, invertibility of T impliesthat there 
ould be at most one x0 2 T�1(y). Hen
e, for any setting of z, at most 2`out of 2k possible x0 have a 
han
e to have the 
orresponding r0. Sin
e x0 was 
hosenat random, Pr(U) � 2`�k indeed.We note that the result is essentially optimal (up to the lower order term), sin
eby Theorem 18 there are statisti
al AONT's with ` = k + o(k). In fa
t, mergingthe se
ret and publi
 parts of su
h an `-AONT (the latter having length k) gives astatisti
al se
ret-only `0-AONT with `0 = `+ k = O(k) still, as stated in Corollary 7.5.5 Worst-
ase/Average-
ase Equivalen
e of AONTIn the de�nition of AONT we require that Equation (3.2) holds for any x0, x1. Thisimplies (and is equivalent) to saying that it holds if one is to 
hoose x0; x1 a

ordingto any distribution q(x0; x1). A natural su
h distribution is the uniform distribution,whi
h sele
ts random and independent x0; x1 2 f0; 1gk. We 
all an AONT se
ureagainst (possibly only) the uniform distribution an average-
ase AONT. Note, forinstan
e, the proofs of Theorem 20 and Lemma 14 work for average-
ase AONT's aswell, sin
e we used random x0 and x1 in both proofs. Thus, statisti
al average-
ase122



`-AONT's are impossible for ` < k and 
omputational average-
ase `-AONT's implyOWF's if ` < k.A natural question to ask is whether average-
ase AONT's imply (regular) AONT'swith 
omparable parameters, whi
h 
an be viewed as the worst-
ase/average 
aseequivalen
e. We noti
e that in the perfe
t setting an average-
ase AONT is also aworst-
ase AONT (for example, this follows from the equivalent De�nition 15 of aperfe
t AONT), so there is nothing to show here. Perhaps surprisingly, we showthat up to a 
onstant fa
tor, the worst-
ase and the average-
ase notions are indeedidenti
al in the statisti
al and the 
omputational settings, as well. Below we assumewithout loss of generality that our domain f0; 1gk is a �nite �eld (e.g. GF (2k)), sothat addition and multipli
ation are de�ned.Theorem 21 Let T : f0; 1gk ! f0; 1gs � f0; 1gp be an average-
ase (statisti
al or
omputational) `-AONT. Then the following T 0 : f0; 1gk ! f0; 1g4s � f0; 1g4p isa (statisti
al or 
omputational) 4`-AONT, where a1, a2, b are 
hosen uniformly atrandom from f0; 1gk subje
t to a1 + a2 6= 0 (as part of the randomness of T 0):T 0(x0) = hT (a1); T (a2); T (b); T ((a1 + a2) � x0 + b)iIn the above output, we separately 
on
atenate se
ret and publi
 outputs of T . Inparti
ular, if T is se
ret-only, then so is T 0.Proof: First, sin
e T is invertible and a1 + a2 6= 0, we have that T 0 is invertible(invert all four 
omponents and re
over x0). Before arguing that T 0 is an `-AONT, letus de�ne some terminology. Given an output of T 0 of the form y0 = ht1; t2; t3; t4i, welet the quadruple ha1; a2; b; zi, where a1 = I(t1), a2 = I(t2), b = I(t3) and z = I(t4),be the e�e
tive inputs of y0 (while the a
tual input x0 = (z� b)=(a1+a2)). In general,a1 will typi
ally stand for the �rst e�e
tive input to T 0, a2 | for the se
ond, b | forthe third, and z | for the last.Assume now that T 0 is not an `-AONT, that is for some L0 2 f 4s4`g, x00; x01 2 f0; 1gk123



(obviously, x00 6= x01) we havehx00; x01; [T 0(x00)℄�L0i 6� hx00; x01; [T 0(x00)℄�L0iAnd assume that an adversary A0 distinguishes the above two distributions. First,let us de�ne a subset L 2 fs̀g that would 
ontradi
t the fa
t that T is an average-
ase`-AONT. We 
onstru
t L by looking at whi
h part of the output of T 0 has the mostbits in L0. Formally, let Lj = fm 2 [`℄ j m + (j � 1)` 2 L0g, j = 1; 2; 3; 4. Sin
ejL0j = 4`, some jLjj � `. We let L be any `-element subset of this Lj. Thus, if j = 1the adversary misses \L-bits" of T (a1), if j = 2 | of T (a2), if j = 3 | of T (b), andif j = 4 | of T (z).Let x0; x1 be sele
ted at random from f0; 1gk, i 2R f0; 1g, w  [T (xi)℄�L, and wehave to 
onstru
t an adversary A (that would use A0) that 
an determine i with prob-ability non-trivially better than 12 when given hx0; x1; wi. Here is a general strategyof A. He will impli
itly (i.e., as a thought experiment pretending that he knows i)
reate y0 in su
h a way that irrespe
tive of i being 0 or 1, y0 will 
orrespond to x0i (i.e.,I 0(y0) = x0i). In addition, y0 will be (statisti
ally 
lose to) a random output of T 0(x0i).However, A would be able to expli
itly 
ompute w0 = [y0℄�L0 using his input w. Byhanding this w0 to the assumed good distinguisher A0, A would be able to determinei as well as A0 does. Thus, A su

eeds in \blindly translating" w to the right w0.Before showing how to (impli
itly) 
onstru
t y0, we see what relations it shouldsatisfy. Let ha1; a2; b; zi be the e�e
tive inputs of y0. Sin
e they should 
orrespond tox0i, we must have (a1 + a2) � x0i + b = z (5.9)Moreover, ha1; a2; b; zi should be (statisti
ally 
lose to) random satisfying the 
orre-sponding equation above (subje
t to a1 + a2 6= 0). To impli
itly 
ompute y0, A willimpli
itly set one of a1; a2; b; z to xi (whi
h one depends on j that \produ
ed" L;namely, set a1 = xi if jL1j � `, set a2 = xi if jL2j � `, et
). Assume for 
on
retenessthat j = 1 and so a1 = xi. The remaining three parameters (in our 
ase, a2; b; z) Awill 
ompute expli
itly in su
h a way that it does not matter whether i is 0 or 1 (as124



long as the impli
it parameter, here a1, is equal to xi). Assuming A 
an su

eed indoing so, we will be done sin
e he 
an expli
itly produ
e w0 = hw; T (a2); T (b); T (z)i.Similar te
hnique holds for j = 2; 3; 4.We now show how this 
an indeed be done for any j.� jL1j � `. We know thathx00; x01; [T (a1)℄�L; T (a2); T (b); T ((a1 + a2) � x00 + b)i 6�hx00; x01; [T (a1)℄�L; T (a2); T (b); T ((a1 + a2) � x01 + b)iClearly, we should (impli
itly) make a1 = xi (whi
h is random sin
e xi is ran-dom). In order to expli
itly set a2; b; z in an identi
al manner independent of i,we solve the linear system in a2 and d (d is to be interpreted as z � b)(x0 + a2) � x00 = d(x1 + a2) � x01 = dThis system is always solvable sin
e x00 6= x01. Moreover, a2 and d are randomand independent of ea
h other for a random 
hoi
e of x0 and x1. We then pi
krandom b; z su
h that z � b = d. We note that x0 + a2 or x1 + a2 are 0 withonly negligibly small probability (sin
e the resulting a2 is random), so we 
anignore this 
ase happening for the statisti
al or 
omputational settings. Then weimmediately observe that by 
onstru
tion, hxi; a2; b; zi satisfy (xi+a2)�x0i+b = z.Moreover, this is a random quadruple of inputs to T used in 
omputing T 0(x0i)(te
hni
ally, statisti
ally 
lose to it). Hen
e, we 
an expli
itly produ
e w0 =hw; T (a2); T (b); T (z)i and, by the previous argument, obtain a 
ontradi
tion tothe fa
t that T is an average-
ase `-AONT.� jL2j � `. This is symmetri
 to the above with a1 and a2 inter
hanged.
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� jL3j � `. We know thathx00; x01; T (a1); T (a2); [T (b)℄�L; T ((a1 + a2) � x00 + b)i 6�hx00; x01; T (a1); T (a2); [T (b)℄�L; T ((a1 + a2) � x01 + b)iClearly, we should (impli
itly)make b = xi (whi
h is random sin
e xi is random).In order to set a1; a2; z in an identi
al manner independent of i, we solve thelinear system in a and z (a is to be interpreted as a1 + a2)a � x00 + x0 = za � x01 + x1 = zThis system is always solvable sin
e x00 6= x01. Moreover, a and z are random andindependent of ea
h other for a random 
hoi
e of x0 and x1. Also, unless x0 = x1(whi
h happens with exponentially small probability), a 6= 0. Pi
k randoma1; a2 su
h that a1 + a2 = a. Then ha1; a2; xi; zi satisfy (a1 + a2) � x0i + xi = z.Moreover, this is a random quadruple of inputs to T used in 
omputing T 0(x0i)(te
hni
ally, statisti
ally 
lose to it). Hen
e, we 
an expli
itly produ
e w0 =hT (a1); T (a2); w; T (z)i and, by the previous argument, obtain a 
ontradi
tionto the fa
t that T is an average-
ase `-AONT.� jL4j � `. We know thathx00; x01; T (a1); T (a2); T (b); [T ((a1 + a2)x00 + b)℄�Li 6�hx00; x01; T (a1); T (a2); T (b); [T ((a1 + a2)x01 + b)℄�LiClearly, we should (impli
itly) make z = xi (whi
h is random sin
e xi is ran-dom). In order to set a1; a2; b in an identi
al manner independent of i, we solvethe linear system in a and b (a is to be interpreted as a1 + a2)a � x00 + b = x0126



a � x01 + b = x1This system is always solvable sin
e x00 6= x01. Moreover, a and b are random andindependent of ea
h other for a random 
hoi
e of x0 and x1. Also, unless x0 = x1(whi
h happens with exponentially small probability), a 6= 0. Pi
k randoma1; a2 su
h that a1 + a2 = a. Then ha1; a2; b; xii satisfy (a1 + a2) � x0i + b = xi.Moreover, this is a random quadruple of inputs to T used in 
omputing T 0(x0i)(te
hni
ally, statisti
ally 
lose to it). Hen
e, we 
an expli
itly produ
e w0 =hT (a1); T (a2); T (b); wi and, by the previous argument, obtain a 
ontradi
tionto the fa
t that T is an average-
ase `-AONT.
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Chapter 6
Con
lusions
We now brie
y summarize the 
ontributions of this thesis.All-Or-Nothing Transforms. Our main motivation 
ame from the problemof partial key exposure and related questions. We have proposed to use the All-Or-Nothing Transform [51℄, whi
h also has many other appli
ations, as the mostdire
t way to solve these problems. Up to date, however, there were no provable
onstru
tions of the AONT in the standard model of 
omputation, based on standard
omputational assumptions (e.g., without random ora
les [16℄, ideal 
iphers [21℄ andhaving strong enough se
urity properties [60℄). We gave very natural and simplede�nitions of AONT in the perfe
t, statisti
al and 
omputational settings, togetherwith the �rst provable 
onstru
tions in all these settings. We have also shown almostmat
hing lower bounds, making our 
onstru
tions nearly optimal. In parti
ular, ourlower bound on perfe
t AONT's is of independent interest, relates to an interestingquestion of balan
ed 
olorings of the hyper
ube, and non-trivially extends the lowerbound of Friedman [28℄ for su
h 
olorings.Exposure-Resilient Fun
tions. The key ingredient in our approa
h is an in-teresting new primitive whi
h we 
alled an Exposure-Resilient Fun
tion. We demon-strated that this primitive has natural appli
ations in 
ombating key exposure, andalso has many other appli
ations (for example, it 
an be viewed as a \super-se
ure"pseudorandom generator), making it a very interesting notion in its own right. Simi-128



larly to AONT's, we have shown how to build essentially optimal ERF's in the perfe
t,statisti
al and 
omputational settings.Other 
ontributions. We have also examined other properties of AONT's andERF's (e.g., worst-
ase/average-
ase equivalen
e of AONT's, equivalen
e of \interest-ing" 
omputational AONT's and ERF's to one-way fun
tions), as well as several otherresults of independent interest. For example, we formally written down the notion ofÆ-sure extra
tors (whi
h we used in 
onstru
ting adaptively se
ure ERF's, and whi
hhave other appli
ations) suggested to us and impli
itly used by Trevisan and Vad-han [62℄, and also gave a simple \generi
" proof that semanti
 se
urity is equivalentto indistinguishability [33℄.Open Problems. There are still several interesting questions remaining open. Twoof them are summarized in Questions 1 and 2. Namely, to have an expli
it 
onstru
-tion of adaptively se
ure statisti
al ERF's, and to have 
onstru
tions of se
ret-only
omputational AONT's with good exposure-resilien
e and short output length. Some-what related to the latter problem is the question of designing ERF's, pseudorandomgenerators or pseudorandom fun
tions having \ni
e properties" with respe
t to theex
lusive OR operator. For example, we redu
ed the question of 
onstru
ting \good"se
ret-only AONT's to the question of 
onstru
ting a length-preserving ERF f su
hthat f(x)� x is also an ERF. Similarly, the \ideal blo
k 
ipher" 
onstru
tion of De-sai [21℄ 
an be analyized in the standard model if one repla
es the ideal 
ipher witha pseudorandom fun
tion family that remains pseudorandom if some of the outputsare XORed with the random seed.Exposure-Resilient Cryptography. To re
ap everything on
e again, we ob-served that standard 
ryptographi
 notions and 
onstru
tions do not guarantee anyse
urity even if a tiny fra
tion of the se
ret entity is 
ompromised. We then put for-ward the notion of Exposure-Resilient Cryptography, whi
h is 
on
erned with building
ryptographi
 primitives that remain provably se
ure even if most of the se
ret is ex-posed. 129
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