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Abstract

We develop the notion of Exposure-Resilient Cryptography. While standard crypto-
graphic definitions and constructions do not guarantee any security even if a tiny
fraction of the secret entity (e.g., cryptographic key) is compromised, the objective of
Exposure-Resilient Cryptography is to build information structures such that almost
complete (intentional or unintentional) exposure of such a structure still protects the
secret information embedded in this structure.

The key to our approach is a new primitive of independent interest, which we
call an Ezposure-Resilient Function (ERF) — a deterministic function whose output
appears random (in a perfect, statistical or computational sense) even if almost all
the bits of the input are known. ERF’s by themselves efficiently solve the partial
exposure of secrets in the setting where the secret is simply a random value, like in
the private-key cryptography. They can also be viewed as very secure pseudorandom
generators and have many other applications.

To solve the general partial exposure of secrets, we use the (generalized) notion
of an All-Or-Nothing Transform (AONT) introduced by Rivest [51] and refined by
Boyko [16]: an invertible (randomized) transformation 7" which, nevertheless, reveals
“no information” about z even if almost all the bits of T'(x) are known. By applying
an AONT to the secret entity (of arbitrary structure), we obtain security against
almost total exposure of secrets. AONT’s have also many other diverse applications
in the design of block ciphers, secret sharing and secure communication. To date,
however, the only known analyses of AONT candidates were made in the random
oracle model (by Boyko [16]).

In this thesis we construct ERF’s and AONT’s with nearly optimal parameters in
the standard model (without random oracles), in the perfect, statistical and compu-
tational settings (the latter based only on one-way functions). We also show close
relationship between and examine many additional properties of what we hope will
become important cryptographic primitives — Exposure-Resilient Functions and All-
Or-Nothing Transforms.

Thesis Supervisor: Madhu Sudan
Title: Associate Professor
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Chapter 1

Introduction and Our Results

SECRET KEYS. In very general terms, cryptography can be defined as a branch of
computer science aimed to protect the disclosure of secret information to unautho-
rized parties. The exact meaning of “disclosure”, “secret information”, “unauthorized
parties” and many other related terms varies dramatically from application to appli-
cation, and crucially depends on the exact cryptographic model we use to abstract
the reality. However, most cryptographic models can be described in terms of the

following pieces (only the first of which will be relevant to the subsequent discussion):

1. A bunch of secret entities (usually called keys) known only to “legitimate users”.
We notice that we do not restrict our attention to so called “cryptographic” keys,
like secret keys for encryption, signatures, identification, etc. For example, a
“secret key” can be a confidential document, a secret technology, a patent, a
piece of proprietary software, a copyrighted audio/video recording, a database
of employee salaries, records of financial transactions, etc. For the lack of a
better term, all of the above secret entities will be called “secret keys”. For
simplicity, we will also assume that there is only a single key that needs to be

kept secret.
2. The desired functionality of the system (by legitimate users).

3. The (often somehow limited) capabilities of the “illegitimate users” (typically
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assumed to be coordinated by a single entity, called the adversary).
4. Finally, the security claim we can make about our system.

In the above generic description, the thing concerning us the most will be the implicit,
but nevertheless fundamental assumption that the secret key has to be kept completely
hidden from the adversary.! This assumption is so basic and so “obviously needed”
for any reasonable notion of security, that one may wonder why to even bring it up.

But what happens if this most basic assumption breaks down?

THE PROBLEM OF KEY EXPOSURE. Namely, what happens if the secrecy of our key
becomes (partially) compromised? After a brief initial surprise of being asked such
an obvious question, the equally obvious answers (stated in the order of information

content) would be:
e “I don’t know”.
e “Well... make sure it does not”.
e “This is outside the model of conventional cryptography”.

e “Good luck...” (meaning “you are doomed”, as the adversary knows the same

information as the legitimate user).

While these (reasonable) answers might suggest that this is a strange question to
ask, it has been noted that key exposure is one of the greatest threats to security in
practice (see [7]). For a concrete recent example, at the Rump session of CRYPTO ’98
van Someren [58] illustrated a breathtakingly simple attack by which keys stored in
the memory of a computer could be identified and extracted, by looking for regions of
memory with high entropy. Within weeks of the appearance of the followup paper [55],
a new generation of computer viruses emerged that tried to use these ideas to steal

secret keys [25]. More abstractly, one can imagine very sophisticated attacks to break

! Aside from the information that the adversary can get from his “legal interaction” with the
system. But this is taken into account when defining the security of the system.
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the security of a given system, but getting the secret key, if possible, would be the

most trivial way to completely demolish any security claim!?

PRrREVIOUS SOLUTIONS. The most widely considered solutions to the problem of key
exposure are distribution of keys across multiple servers via secret sharing [54, 38, 13]
and protection using specialized hardware. Instantiations of the key distribution
paradigm include threshold cryptosystems [22] and proactive cryptosystems [35]. Dis-
tribution across many systems, however, is quite costly. Such an option may be avail-
able to large organizations, but is not realistic for the average user. Similarly, the use
of specially protected hardware (such as smartcards) can also be costly, inconvenient,
or inapplicable in many contexts.

Another approach to the problem of key exposure is that of forward-security (or,
protection from the exposure of “past” keys) considered by Diffie et al. [23] in the
context of key exchange, and by Anderson [3], Bellare and Miner [7] and Abdalla and
Reyzin [2] in the context of signature schemes. In these works the secret key is being
dynamically updated (without affecting the public information). The objective is to
prevent an adversary that gains current secret keys from being able to decrypt past
messages or forge signatures on messages “dated” in the past. Inevitably, however, the

system can no longer be used in the future once the current keys have been exposed.

PArTIAL KEY EXPOSURE. As we pointed out, secrecy of keys is a fundamental
assumption of conventional cryptography. While partial solutions exist, not much
can be done since the adversary has the same information as the legitimate user
after the secret has been exposed. Instead, we will look at a slight relaxation of this
question, which looks considerably more hopeful. Namely, we assume that out secret
is not completely exposed. Rather, the adversary learns most, but not all of the secret.

For example, imagine using a smartcard to protect our key. While it is quite
reasonable to assume that the smartcard is tamper-resistant enough not to leak the

entire key, it might be a bit too dangerous to be confident that not even a small

2As a famous Russian philosopher Koz'ma Prutkov said: “Zri v koren’ ” (“look into the root”).
Two common interpretations of this amazingly deep phrase are “seek the obvious” and “get to the
bottom of things”. See [47] for more information about Koz’ma Prutkov.
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part of the key can be extracted. Or imagine sending a sensitive information over
some communication channel, which is believed to be secure (so that no encryption
is performed, or the parties did not have a chance to exchange keys yet). However,
the adversary manages to partially break into the channel and overhear some portion
of the communication. Alternatively, the channel is known to be reliable for the
authorized parties, and is known to be somewhat noisy to the adversary. While
encryption would be a good solution, it could be an overkill since we can exploit the
noise introduced to the adversary. Another situation would be when the adversary is
trying to copy a large confidential document, but the intrusion detection system cut
the transmission in the middle. Yet another example would be a large file copied to
several floppy disks (it is too large to fit onto one disk), and one of these disks being
lost, stolen or copied.

In the same vein, we may purposely (e.g., for security reasons) split the key
into physical shares (rather than using space-inefficient conventional secret sharing
schemes), and to store these shares in different parts of memory (or even on different
machines). But then we cannot in general argue the security since leaking even one
physical share may make the underlying application insecure. It would be nice to
find a way to make this simple approach work. Alternatively, a natural idea would
be to use a conventional secret sharing scheme to split the key into shares, and then
attempt to provide protection by storing these shares instead of storing the secret
key directly. However, secret sharing schemes only guarantee security if the adver-
sary misses at least one share in its entirety. Unfortunately, each share must be fairly
large (about as long as the security parameter). Hence, even if an adversary only
learns a small fraction of all the bits, it could be that it learns a few bits from each

of the shares, and hence the safety of the secret can no longer be guaranteed.?

EXPOSURE-RESILIENT CRYPTOGRAPHY. In fact, standard cryptographic definitions

and constructions do not guarantee security even if a tiny fraction of the secret key is

3Indeed, our techniques provide, for certain parameters, highly efficient “gap” secret sharing
schemes, where the size of secret shares can be as small as one bit! Inevitably, however, there is a
gap between the number of people who can reconstruct the secret and the number of people who
“get no information” about the secret.
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ezposed. Indeed, many constructions become provably insecure (the simplest example
would be the “one-time pad” encryption), while the security of others becomes unclear
(and a complete mess to verify!). In other words, conventional cryptographic systems
are not (and should not be!) designed so as to tolerate partial key exposure. In this
thesis we develop the notion of Fxposure-Resilient Cryptography, one of whose main
goal is to identify and to build general cryptographic primitives which are oblivious
to the cryptographic system we are using, but can make any such system provably
secure against almost total key exposure. More generally than this, the objective of
Exposure-Resilient Cryptography will be to build information structures such that al-
most complete (intentional or unintentional) exposure of such a structure still protects
certain secret information embedded in this structure. In particular, once we define
more precisely the cryptographic primitives we develop, these primitives will prove
very useful in many applications beyond the problem of partial key exposure. These
applications include secret sharing, secure communication, secret-key exchange, more
secure and efficient block ciphers, remotely keyed encryption, coin-flipping, fair in-
formation exchange and others (see Section 3). In other words, the techniques for
solving the problem of partial key exposure will prove useful in may other areas,
making Exposure-Resilient Cryptography a general useful tool.

Without further delay, we are now ready to introduce the main primitives for
Exposure-Resilient Cryptography: All-Or-Nothing Transforms and Ezposure-Resilient

Functions.

ALL-OR-NOTHING TRANSFORMS. Recently Rivest [51], motivated by different se-
curity concerns arising in the context of block ciphers, introduced an intriguing prim-
itive called the All-Or-Nothing Transform (AONT ). Rivest’s work was refined and
extended by Boyko [16], whose definition we informally present below. An AONT is

an efficiently computable randomized transformation 7" on strings such that:
e For any string z, given (all the bits of) T'(z), one can efficiently recover x.

e There exists some threshold ¢ such that any polynomial-time adversary that

(adaptively) learns all but ¢ bits of T'(x) obtains “no information” about x.
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Output | | ial output |
Inverse Adversary
Input 2 ? 2 ? ?

Figure 1-1: All-Or-Nothing Transform.

This is informally illustrated in Figure 1-1.

We observe that the AONT solves the problem of partial key exposure: rather than
storing a secret key directly, we store the AONT applied to the secret key. If we can
build an AONT where the threshold value /¢ is very small compared to the size of the
output of the AONT, we obtain security against almost total exposure. Notice that
this methodology applies to secret keys with arbitrary structure, and thus protects
all kinds of cryptographic systems. We also consider more general AONT’s that have
a two-part output: a public output that doesn’t need to be protected (but is used for
inversion), and a secret output that has the exposure-resilience property stated above.
Such a notion would also provide the kind of protection we seek to achieve, suffices for
all known applications of AONT, and allows us much more flexibility. Thus, we refer to
the traditional notion of AONT as secret-only. As mentioned above, AONT has many
other applications, such as enhancing the security of block-ciphers [51, 21, 16], hash
functions [57], secure communication [10], making fixed-blocksize encryption schemes
more efficient [37, 41, 4], gap secret sharing schemes [51, 17] and others [52, 16]. We

will survey these and other applications later.
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rsary

Output | K ? ? ? ?

Figure 1-2: Exposure-Resilient Function.

EXPOSURE-RESILIENT FUNCTIONS. The key to our approach and our main con-
ceptual contribution is the new notion of an Ezposure-Resilient Function (ERF) — a
deterministic function whose output appears random even if almost all the bits of the
input are revealed. This is informally illustrated in Figure 1-2.

We demonstrate that the notion of ERF is very useful and interesting in its own
right. Consider for example an ERF with an output that is longer than its input —
this can be seen a particularly strong kind of pseudorandom generator, where the
generator’s output remains pseudorandom even if most of the seed is known. ERF’s
provide an alternative solution to AONT for the partial key exposure problem, since
(at least, in principle) we can assume that our secret key is a truly random string R
(say, the randomness used to generate the actual secret key). In such a case, we choose
and store a random value r and use ERF(r) in place of R. In many settings (such
as in private-key cryptography) this alternative is much more efficient than AONT.
Another application of ERF’s is for protecting against gradual key erposure, where no
bound on the amount of information the adversary obtains is assumed; instead, we
assume only a bound on the rate at which that the adversary gains information. We

will later show other applications of exposure-resilient functions.

Our REsuLTS. We give natural and simple definitions for ERF’s and AONT’s in the
perfect, statistical and computational settings (i.e., achieving ideal, unconditional

with a negligible error and computational security, respectively). We then derive
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essentially optimal results concerning ERF’s and AONT’s in each of these settings.

These results can be briefly summarized as follows.

e LiMITATIONS OF PERFECT ERF’s AND AONT’s. We show that perfect ERF’s
imply perfect AONT’s with the “same parameters”. Unfortunately, we prove
that perfect AONT’s (and thus ERF’s) have very strong combinatorial limita-
tions. In essence, even if we allow exponential size output of the AONT, the
enemy must miss at least half of the output in order to not learn anything about
the input! The result is interesting in its own right and shows the impossibility
of certain “balanced” colorings of the hypercube. It also generalizes the lower

bound of Friedman [28] and further settles the conjectures of Chor et al. [20].

e CONSTRUCTION OF PERFECT ERF’S AND AONT’s. On a positive side, we can
almost match our lower bound (for both ERF’s and AONT’s) with a general

construction of [20, 10] that uses linear binary error-correcting codes.

e OPTIMAL STATISTICAL ERF. We build an unconditionally secure ERF whose
output of size k is statistically close to uniform provided one misses only ¢ =
k + o(k) bits of the input (whose size can be arbitrarily large compared to ¢).
This is optimal up to the lower order term, since we show that no uncondition-
ally secure ERF’s exist when k < ¢. Thus, statistical ERF’s can achieve much
better exposure-resilience than perfect ERF’s, and their only limitation is the
limited output size (at most ¢). This statistical construction is one of our main
technical contribution, and it uses very powerful combinatorial objects called

strong randomness extractors.

e COMPUTATIONAL ERF’S = ONE-WAY FUNCTIONS. Furthermore, we show that
any computationally secure ERF with £ < ¢ implies the existence of one-way
functions, which is nearly the best we can hope to show due to the unconditional

construction above.

e COMPUTATIONAL ERF’S FROM ONE-WAY FUNCTIONS. We show how to con-

struct, from any one-way function, for any ¢ > 0, an ERF mapping an input of
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n bits to an output of any size polynomial in n, such that as long as any n® bits
of the input remain unknown, the output will be pseudorandom. This can be
viewed as an extremely strong pseudorandom generator, and shows that we can
achieve essentially any conceivable setting of parameters in the computational

setting.

AONT’s FrOM ERF’s. We give a simple “universal” construction of an AONT
based on any ERF, which works in any setting (in particular, statistical and
computational). Moreover, when used with the best ERF’s in the corresponding

setting, we get nearly optimal AONT’s, as we explain below.

OPTIMAL STATISTICAL AONT’S. In the statistical setting, we get an AONT
with resilience ¢ = k + o(k) (where k is the size of the input, and the secret
part can be arbitrarily large compared to ¢), which is optimal up to the lower
order term since we show that ¢ > k for any statistical AONT. In fact, we
can even get a secret-only AONT with ¢ = O(k) still. Again, these results
dramatically beat our impossibility result for perfect AONT’s, and show a large

gap in exposure-resilience between the perfect and the statistical settings.

CoMPUTATIONAL AONT’S = ONE-WAY FUNCTIONS. Furthermore, the exis-
tence of computational AONT with ¢ < k, where k is the size of the input,
implies the existence of one-way functions. This is nearly the best we can hope

to show due to the statistical construction above.

CoMPUTATIONAL AONT’S FROM ANY ONE-WAY FUNCTION. If k is the length
of the input, we get a public output of length k, a secret output of essentially
arbitrary size s, and achieve resilience ¢ = s¢ (for any ¢ > 0). For example,
setting s = k we can achieve nearly optimal total output size 2k, secret and

public parts of size k and very good resilience ¢ = k°.

TOWARDS SECRET-ONLY AONT. We give another construction of a secret-only
AONT based on any length-preserving function f such that both [z — f(z)]
and [z — f(x) & x| are ERF’s. This construction is similar to the OAEP

19



construction of Bellare and Rogaway [8] (which was shown to be an AONT in the
random oracle model* by Boyko [16]), and so our analysis makes a step towards
abstracting the properties of the random oracle needed to make the OAEP work
as an AONT. It also has the advantage of being secret-only (without separate

public and secret outputs) while retaining a relatively short output length.

e WORST-CASE/AVERAGE-CASE AONT’s. We also show a structural result that
a seemingly weaker “average-case” definition of AONT is almost equivalent to
the standard “worst-case” definition of AONT, by giving an efficient transfor-

mation that achieves this goal.

e ADAPTIVELY SECURE ERF’S AND AONT’s. Finally, we consider the notion of
adaptively secure ERF’s and AONT’s. Contrary to the “non-adaptive” notions
we discussed above, where the adversary decides in advance which bits of the
stored secret he is going to observe (as long as he misses ¢ bits), here we allow
the adversary to access the secret adaptively “one-bit-at-a-time”,i.e. to base its
decision of which bits to read depending on the information that he gathered so
far. We call the ERF’s and AONT’s resilient against such adversaries adaptively
secure. It turns out that it is significantly more challenging to build adaptively
secure ERF’s and AONT’s. In particular, some of our “non-adaptive” construc-
tions above do not work against adaptive adversaries. Based on the ideas of
Trevisan and Vadhan [62], we overcome these difficulties and give efficient prob-
abilistic constructions of adaptively secure ERF’s and AONT’s with essentially
the same (and even slightly better) parameters than in the regular non-adaptive

setting.

To reiterate our results, we show that perfect AONT’s and ERF’s, while conceptu-
ally attractive, cannot achieve the exposure-resilience we ultimately desire. On the
other hand, statistical ERF’s and AONT’s can achieve excellent exposure-resilience.

However, they are limited in terms of requiring that the adversary misses at least as

#In this idealized model all the participants have public access to a certified truly random function.
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many bits as the amount of information or randomness we are trying to hide. Fi-
nally, we show that in the computational setting we can overcome even this limitation
and achieve essentially any desirable setting of parameters — all based only on the
existence of one-way functions. In fact, for “interesting” settings of parameters, com-
putational ERF’s, AONT’s and one-way functions are “equivalent”. Finally, we show
that all the above results and implications can be extended to the adaptive setting,
except our main constructions become probabilistic.

In addition to the above results, we examine many additional properties and
applications of what we hope will become important cryptographic primitives —

Exposure-Resilient Functions and All-Or-Nothing Transforms.

PrEVIOUS WORK. Until this work, the only known analysis of an AONT candidate
was carried out by Boyko [16],> who showed that Bellare and Rogaway’s Optimal
Asymmetric Encryption Padding (OAEP) [8] yields an AONT in the Random Oracle
model. Boyko’s work was the first formal treatment of the AONT, stimulated a
lot of subsequent research and achieved essentially the best possible AONT’s in the
Random Oracle model. However, analysis in the Random Oracle model provides only
a limited security guarantee for real-life schemes where the random oracle is replaced
with an actual hash function [18]. Subsequent to our work, Desai [21] gave another
provable construction of an AONT (based on the original informal construction of
Rivest [51]) and analyzed it in the so called “ideal cipher model”.® This construction
also achieves a somewhat weaker security notion than the one we consider here, even
though this notion is strong enough for several important applications of the AONT.
Thus, our work gives the first provable constructions for AONT’s with essentially
optimal resilience in the standard model, based either on no assumptions, or only on
the minimal computational assumption that one-way functions exist.

Vazirani [63] defined a notion later called a t-resilient function, which turns out to

®Though for a much weaker definition of security than the one we study here, Stinson [60] has
given an elegant construction for AONT with security analysis in the standard setting. As observed
by [16], however, this construction does not achieve the kind of security considered here.

61.e., all the participants have access to a keyed family of independent random permutations.
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be equivalent to our notion of perfect ERF’s.” A t-resilient function is a function whose
output is truly random even if the adversary can fiz any t of the inputs to the function.
Chor et al. [20] and, independently, Bennett et al. [10] considered this notion in a
much greater detail. In particular, a very nice construction for t-resilient functions
was given by [20, 10] based on error-correcting codes. We use this construction when
talking about perfect ERF’s, and then extend it to constructing perfect AONT’s,
as was also implicitly done by [10]. Chor et al. [20] gave some initial impossibility
results for ¢-resilient functions (which, as we said, are equivalent to perfect ERF’s) and
conjectured that much more general impossibility results hold. In particular (viewed
in terms of ERF’s), the adversary must essentially miss at least half of the input
bits in order for the output to be random (which was the fundamental limitation of
their coding theory construction that we mentioned). This conjecture stood for some
time and was finally affirmatively resolved by Friedman [28] (another proof was later
given by [11]). Our impossibility result for perfect AONT’s non-trivially extends this
conjecture (since we show that perfect ERF’s imply perfect AONT’s) and subsumes
the results of [28, 11], whose techniques do not apply to our more general setting.
Kurosawa et al. [39] considered a slightly relaxed notion of almost t-resilient func-
tions. An almost t-resilient function is a function whose output is “very close” to
uniform even if the adversary can fix any t of the inputs to the function. As we will
see, this notion stands somewhere “in between” the notions of perfect and statistical
ERF’s, and turns out to be essentially equivalent to our notion of adaptively secure
statistical ERF.® Kurosawa et al. somewhat improved the parameters achieved by [20]
in constructing (regular) ¢-resilient functions, but their construction still requires the
adversary to fix at most half of the input bits. While the considerable complexity of
this construction, coupled with the pessimistic parameters it achieves, might suggest
that almost ¢-resilient functions share the same strong limitations as regular ¢-resilient

functions (i.e., perfect ERF’s), we will show that this is not the case. More specifi-

"If n is the size of the input and ¢ = n — ¢, then t-resilient function is the same as ¢-ERF.
8 Almost t-resilient functions are slightly stricter, but our construction of adaptively secure sta-
tistical ERF’s will actually achieve it.
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cally, using our construction of adaptively secure statistical ERF’s we will allow the
adversary to fix t &~ (n — k) input bits, where n is the size of the input and k is
the size of the output, which is easily seen to be the best possible. Even though our
construction is probabilistic (contrary to that of [39]), it succeeds with overwhelming
probability and shows that almost t-resilient functions are much more powerful than
regular ¢-resilient functions.

Finally, we already mentioned the works of [23, 3, 7, 2, 1] on forward-security.
These works prevent an adversary that gains current secret keys from being able
to decrypt past messages or forge signatures on messages “dated” in the past. In
contrast, our work deals with providing security for both the future as well as the

past, but assuming that not all of the secret key is compromised.

ORGANIZATION OF THE THESIS. In Chapter 2 we define some preliminaries and some
general results that we will use. In particular, we will examine the notions of semantic
security and indistinguishability, define some important cryptographic basics, like
one-way functions and pseudorandom generators, talk about error-correcting codes,
introduce randomness extractors and t-wise independent functions, and state some
basic facts from linear algebra and Fourier analysis. Some of the results are new and
of independent interest. For example, we give a simple generic proof that semantic
security is equivalent to indistinguishability, substantially simplifying (albeit for a
slightly weaker but equally natural definition of semantic security) the original proof
of Goldwasser and Micali [33].

In Chapter 3 we formally define our main gadgets: Exposure-Resilient Functions
and All-Or-Nothing Transforms. We give simple definitions in the perfect, statistical
and computational settings, and also distinguish between non-adaptive and adaptive
ERF’s and AONT’s. We then compare ERF’s and AONT’s with each other and with
some other fundamental notions like pseudorandom generators and error-correcting
codes. We also talk in detail about many applications of ERF’s and AONT’s, some of
which are new.

Chapter 4 talks in detail about constructions and limitations of Exposure-Resilient
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Functions. We start with the perfect setting, where we use the construction of [20, 10]
via error-correcting codes, and the lower bound of Friedman [28] to show that our
construction is tight. Then we move to the statistical setting, and show how to use
randomness extractors to obtain an efficient and nearly optimal construction of ERF’s,
which is one of our main contributions. Next we move to the computational setting
and show how to combine pseudorandom generators with our statistical construction
to get optimal computational ERF’s. Finally, we move to the adaptive setting and
observe that our statistical construction of regular ERF’s is not adaptively secure.
However, we give a probabilistic construction of adaptively secure ERF’s achieving
the same optimal parameters as our non-adaptive construction.

In Chapter 5 we construct and examine the properties of All-Or-Nothing Trans-
forms. A large part of this chapter will be devoted to perfect AONT’s. In particular, to
comparing them with perfect ERF’s and proving the lower bound on perfect AONT’s
(which extends the lower bound of Friedman [28] on perfect ERF’s). We will then
give a simple construction of AONT’s using ERF’s, which will yield essentially optimal
AONT’s. Next we will suggest a secret-only AONT construction which is a special
case of the OAEP construction of [8], which may serve as the first step in abstracting
the properties of the random oracles that make OAEP an AONT. After that we give a
surprisingly non-trivial proof that AONT’s with “interesting” parameters imply one-
way functions, which, combined with the previous results, shows that “interesting”
computational ERF’s, AONT’s and one-way functions are all equivalent. The chapter
concludes with a structural result showing the “worst-case/average-case” equivalence
of AONT’s.

Finally, Chapter 6 has some concluding thoughts.
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Chapter 2

Preliminaries

How TO READ THIS CHAPTER. This chapter tuned out to be somewhat longer and
more detailed than was originally planned. In fact, some of the general results we
present in this chapter will be used only once in the later chapters. In addition, some
of the results are presented with a higher level of generality than is actually needed
in subsequent applications. So why did not we define such preliminaries “in-place”
or without this extra generality? The answer to this question is that such results
are of independent interest to be treated separately. For example, this applies to our
treatment of semantic security/indistinguishability and deterministic extractors. In
addition, treating such results “in-place” would be actually more confusing, making
some of the later results either “come out from the sky” (i.e., without a clear reason
of what actually happened), or to look unnecessarily technical and complicated.

As a result, however, the reader might get a little bit overwhelmed with the
amount of diverse information presented here, and even distracted from the main
topics studied in subsequent chapters. As a compromise, we suggest that the reader

follows the following general guidelines.

e Section 2.1 (basic notation), Section 2.2 (distributions), Section 2.4 (basic cryp-
tography) and Section 2.5 (private-key encryption) are quite basic and used

extensively. Therefore, they should be at least skimmed right away.

e Section 2.6 (error-correcting codes) is used only in Section 4.1 when constructing

25



perfect ERF’s (and slightly in Section 5.1.1). It could be better to skip it first.

e Section 2.7 (strong extractors) is used only in Section 4.2 when constructing

statistical ERF’s. It could be better to skip it first.

e Section 2.8 (deterministic extractors) is used only in Section 4.4.1 when con-

structing adaptively secure statistical ERF’s. It could be better to skip it first.

e Section 2.9 (Fourier analysis) is used only in Section 5.1.4 when proving the

lower bound on perfect AONT’s. It could be better to skip it first.

e Finally, Section 2.3 (semantic security vs. indistinguishability) is mainly used
in Section 3.3 to justify that the simple definition of an AONT that we use is
actually much stronger than it seems at first. As such, this section is not really
needed in order to follow our presentation. It is up to the reader whether to
read it right away, in Section 3.3, or to skip it altogether. We recommend to
read (or skim) this section right away (possibly skipping the proofs) since it is

quite simple.

As a short summary, Sections 2.6-2.9 can be easily skipped upon the first reading.

2.1 Basic Notation and Terminology

For a randomized algorithm F and an input z, we denote by F'(x) the output dis-
tribution of F' on z, and by F(z;r) we denote the output string when using the
randomness . We write m = poly(k) to indicate that m is polynomially bounded
in k. Recall that a function u(k) is called negligible if for any polynomial p(k) there
exists ko such that for all k& > ky we have p(k) < 1/p(k). We often write negl(k) to
indicate some negligible function of k£, without giving it an explicit name. We denote
by x €gr D a process of selecting x from the domain D uniformly at random. We
denote by PPT a probabilistic polynomial time algorithm, and given such an A, we
denote by y < A(x) sampling an output y when running A on input z. We let 1%

denote the string of 1’s of length k. When a PPT algorithm is given 1* as the input,
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this suggests that A is allowed to work in time polynomial in k. We will often omit
1%, however, when the security parameter k is clear. Unless otherwise specified, we
will consider security against nonuniform adversaries.

Let {j} denote the set of size- subsets of [n] = {1...n}. For L € {}}, y € {0,1}",
let [y]z denote y restricted to its (n — £) bits not in L. We denote by & the bit-wise
exclusive OR operator, and by (a,...,ax) the k-tuple of ay,...,a;. Given vectors
x,y € {0,1}", we will denote their inner product modulo 2 as z - y. We also denote

by GF(q) a finite field on ¢ elements, where ¢ is a prime power.

2.2 Distributions and Indistinguishability

We denote by Uy, the uniform distribution on {0,1}*. The distribution induced by a
function f : {0,1}" — {0,1}* is its output distribution over {0,1}* when the input
was chosen uniformly at random in {0,1}". A family of distributions p = {py} is
called efficiently samplable if there exists a PPT algorithm that on input 1*¥ outputs
a random sample from p;. Often, when the security parameter k is clear or implicit,
we simply say that the distribution p is efficiently samplable.
We recall that the statistical difference (also called statistical distance) between
two random variables X and Y on a finite set D, denoted || X — Y|, is defined to be
max | Pr[X € S]—Pr[Y € 5] ‘ = 1-Z:‘PI“[X =a|—Pr[Y =q] (2.1)
SCD 2 -
Definition 1 Let k be the security parameter and A = {Ay}, B = {By} be two

ensembles of probability distributions. We say that A and B are

e perfectly indistinguishable, denoted A = B, if distributions A and By are
tdentical for all k.

e statistically indistinguishable, denoted A =, B, if the statistical distance || Ay —
By || is a negligible function of k.

e computationally indistinguishable, denoted A =. B, if for any PPT algorithm
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D (called the distinguisher) we have that

[Pr(D(Ay) = 1) - Pr(D(B,) = 1)| = negl(k)

where the probability is taken over the coin tosses of D and the random choices
of A and By. The absolute value above is called the advantage of D in distin-
guishing A from B, denoted Advy(A, B).

Sometimes when the security parameter is implicit, we will sometimes slightly
abuse the terminology and identify the ensembles A and B with the corresponding
probability distributions Ay and Bj. And when the statement can hold for any of the
above choices (or the choice is clear from the context), we simply write A ~ B.

We notice that the notions of statistical and perfect indistinguishability can be
cast into the same framework as that of computational indistinguishability. Namely,
if we relax the requirement that D is polynomial time bounded, we exactly get the
definition of statistical indistinguishability, while if in addition we require that the
advantage of D is always 0, we get perfect indistinguishability. This suggests the
following methodology for proving statements of the form A ~ B = A’ ~ B’, when it
can hold for any choice of ~. Namely, we assume that there exists a distinguisher D’
having advantage €’ in distinguishing A’ from B’. We construct then a distinguisher
D, whose complexity is polynomial in that of D', and that distinguishes A from B
with advantage £. Then if € > ¢ - (&')" for some positive constants ¢ and ¢, we have
proven our implication. In particular, if D’ is polynomially bounded, then so is D, if
g’ > 0, then so is ¢, and if ¢’ > 1/p(k) for some polynomial p and for infinitely many

k, then so is e (for a different polynomial ¢).
We start from the following useful fact.

Lemma 1 Let o, 3 be two (possibly dependent) random variables taking values in
{0,1}. Let D be the following experiment: observe a and 3. If o = (3, then flip a
coin, else output o (=1 — (). Let 7y be the output of D. Then

+ - [Prla =1) = Pr(f =1)]

N =

1
2
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Proof: We use the fact that for any X and Y, Pr(X AY)+Pr(XAY) = Pr(X).

Pr(y=1) = Pr(azl/\ﬁzo)‘i‘%'[Pr(a:l/\ﬁz1)+Pr(a:OA5:0)]
_ %.[Pr(a:1/\B:0)+Pr(a:1/\5:1)]+
%.[Pr(a:1A620)+Pr(a:0/\ﬁ:0)]
_ %-[Pr(a:1)+Pr(ﬁ:0)]
1 1
= 5-|-§-[Pr(oz:1)—P1"(f3:1)]

Lemma 2 Let A and B be any two (ensembles of ) probability distributions. Let R
be chosen uniformly at random and let C' be chosen according to a distribution p, both

independently from A and B. Then the following are equivalent:
(1) (A, B) ~ (A, R).
(2) (A,B,C) ~ (A, B® C,C), for any efficiently samplable p.
(3) (A,B,C) ~ (A,B® C,C), for uniform p.

Proof:

(1) = (2). Assume (2) is false for some efficiently samplable p, so there is an adversary
F distinguishing (A, B,C) from (A, B® C,C) with advantage ¢. We construct a
distinguisher D that distinguishes (A, B) from (A, R). D gets as input (A4, X). It
generates C' according to p, sets a = F(A,X,C), f = F(A, X @ C,C). Then D

proceeds as in Lemma 1. Thus,

+ - [Pr(a=1)—Pr(B =1)]

N~ N~
N =D =

+ = [Pr(F(A,X,0) =1) — Pr(F(A, X & C,C) = 1)]

When X = B, the difference above is at least €, by the assumption on F. Thus,
Pr(y=1)> 1 +¢.
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When X = R, both R and R @& C are uniform and independent of C'. Thus,
Pr(F(A,X,C) =1) =Pr(F(A, X ®C,C) =1), and so Pr(y = 1) = 1. Hence, D is
a good distinguisher indeed.

(2) = (3) is trivial.

(3) = (1). Let R = B@ C. If C is uniform and independent from A and B, then
so is R. If there is an adversary that can distinguish (A, B) from (A, R), then there
is an adversary distinguishing (A, B, C') from (A, B® C,C) = (A, R, C), that simply
ignores the extra information C' and runs the original adversary on the first two
components. ]

Typically, we will only use the following simple corollary of the above.

Corollary 1 Let A and B be any two (ensembles of ) probability distributions. Let R
be chosen uniformly at random, and let xy and x, be any two fized strings (independent

of the random variables above). Then
(A,B) = (A,R) = (w0,71,A, B®xo) =~ (10,71, A, BO 1)
Proof: Call C'=xy & x;. Since z¢ and z; are fixed, we get

(A,B) ~ (A,R) = (wx9,71,A, B) =~ (xo,21,4, R)

= (xg,71,A, B® xy) =~ (29,21, A, R)

= (xg,71,A, B® xy,C) = (xo, 21, A, B® 1o D (19 ® 21),C)
= (xg,71,A, B® xy) ~ (w9, 71, A, BD x1)

The only non-trivial implication is the second to last one that uses Lemma 2 with

C:JI()@ZEL |

INDISTINGUISHABILITY RELATIVE TO AN ORACLE. In some applications we would
like to say that A and B are indistinguishable, even if some side information is leaked
to the distinguisher D. Typically, we place some restrictions on the type of side

information, but allow the distinguisher to choose which particular side information
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of this types he wants to see. Typically, this is modeled by letting D have “oracle
access” to some function or some process (that depends on A and B or the way
A and B were generated). For example, when talking about security of encryption
schemes, we might allow D to have oracle access to the decryption oracle, allowing D
to decrypt any messages of his choice under minimal restriction that D cannot decrypt
the “target ciphertext”. It is easy to see that the notion of indistinguishability and

all the simple results we talked about relativize to this setting.

2.3 Semantic Security vs. Indistinguishability

Here we define and prove the equivalence of the notions of semantic security and in-
distinguishability, originally introduced by Goldwasser and Micali [33] in a particular
context of encryption. We define these notions in a much more general context of
any “experiment”. As a result, we show that these notions and their equivalence have
nothing to do with encryption schemes, computational assumptions or anything else.
Rather, this is just a basic fact about equivalence of two probabilistic experiments.
Because we abstract away all the unnecessary complications, the proof of equivalence
we present is very simple (despite its generality), and seems to be much simpler and
understandable than most similar proofs that appeared in the literature.

Our general setup is the following. Assume we have some PPT experiment! E
that takes a k-bit string x and transforms it into some y. We want to say that “y

gives no information about z”.

Definition 2 We say that PPT experiment E s semantically secure in the com-
putational sense if for any efficiently samplable D on {0,1}*, any polynomial time
computable binary relation R and any PPT adversary A, there exists a PPT B such
that if X < D, Y < E(X), a < A(Y,1%), b + B(1%), we get that

Pr(R(X,a) =1) < Pr(R(X,b) = 1) + negl(k) (2.2)

Tt is easy to see that the results we present do not hold in the computational setting if E is not
polynomial time computable.
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As usual, for the statistical setting we relax A, B, D, R from being polynomial time,

and in the perfect setting we also require the advantage of A to be 0.

In other words, the odds of A (when given Y') producing a such that R(X,a) is
satisfied are only negligibly more than the odds of B (when given nothing!) producing
b satisfying R (X, b). Thus, whatever “useful information” about X one can get from

Y, one can get without Y as well.

Definition 3 We say ezperiment E is indistinguishable for any two inputs if for any

xg, 1 € {0,1}%, we have
<$0,$1,E($0)> ~ (xg,xl,E(x1)> (23)

Indistinguishability simply says that the adversary cannot distinguish the experiment
performed on any fixed xy and x;. We notice that the above condition is equivalent
to saying that if ¢ is chosen at random from {0, 1}, y <— E(z;), then no adversary can

guess ¢ given y significantly better than with probability % Indeed,

Pr(A(zg, z1,y) =1i) = % [Pr(A(xg, z1,E(xg)) = 0) + Pr(A(xg, 21, E(x1)) = 1)]

= % + % [Pr(A(zo, 21, E(21)) = 1) — Pr(A(xo, 21, E(20)) = 1)]

We will use this observation below.
Theorem 1 The notions of semantic security and indistinguishability are equivalent.

Proof:  For simplicity, let us concentrate on the more interesting computational
case. First, assume E is semantically secure. Take any zy,x; (wlog, assume that
xog # x1, since otherwise E(zg) = E(z1)). Let D be the uniform distribution on
{0, 21}, and R(x,7) = 1 if and only if © = x;. Notice, D and R are describable just
by x¢ and ;. Assume x < {xg, 21}, i.e. x = z; for a random i € {0,1}. Notice that
for any B, since B is not given any information about ¢ and succeeds only when he

outputs b = i (since zp # 1), we get that Pr(B(zo,,) = i) = 5. Hence, semantic
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security here implies that for any PPT A we get that if y <— E(z;), then
. 1
Pr(A(xo, 71,y) =) < B + negl(k)

As we argued, this is equivalent to the definition of indistinguishability on zy and ;.

Let us show the converse. Assume that E is not semantically secure for some poly-
nomial time D, R and A having advantage € over any PPT B. Let good be the
probability that A succeeds, i.e. that when X <— D, Y < E(X), a < A(Y), we get
R(X,a) = 1. And let bad denote the probability that when in addition we pick a
brand new X' <— D, we get R(X’,a) = 1. First, we claim that

good —bad > ¢ (2.4)

Indeed, we only need to construct a PPT B that achieves success probability bad.
For that we consider B who himself samples X < D, makes Y + E(X), and outputs
a < A(Y) (here we use that D and E are polynomial time). Clearly, when we sample
brand new X' <~ D, the success probability of B is exactly bad.

Recall that we need to find x,z; and adversary F' who can distinguish E(z)

from E(z1). We start from F' (here we use that R is polynomial time).

F(xo,21,y):
1. Let a < A(y), a« = R(xy,a), f = R(zo,a).

2. If a = 3, then output a random coin flip.

3. Otherwise (« =1 — f3), output «.

In other words, F' uses A to produce a “witness” a. Since A is supposedly good in
producing “relevant” witnesses, a should be “more likely” to satisfy R(z;,a) than
R(z1_i,a). And this is exactly what F' checks. He computes both R(zy,a) and
R(z1,a). If the results are the same, F' did not learn anything, so he flips a coin.
Otherwise, he outputs that single i that “produced” R(z;,a) = 1. Let us turn this

intuition into a formal argument.
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We analyze the behavior of F' when X, and X; are sampled independently from
D and Y =Y < E(X;). We notice that in this setting we exactly have Pr(a = 1) =
good and Pr( = 1) = bad. Thus, by Lemma 1 and Equation (2.4) we get

1 1
Pr(F(Xo, X1, Y1) =1) = 5+ 5(Pr(a=1) = Pr(5=1))
1 1
= §+§(good—bad)
> L€
- 2 2

In particular, since the above holds on average over X, and X, there exist some

particular o and x; such that we get

Pr(F(zg, 1, E(zy)) =1) > = +

DN |
DN ™

Since the algorithm F' is symmetric in zy and ', this means that

Pr(F(zg, 21, E(x)) =1) <

DN =
NN

Overall, Pr(F(xy,zo, E(z1)) = 1) — Pr(F(zy, 20, E(x)) = 1) > €. [ ]

ExAMPLES. The notion of public-key encryption is a special case, where the ex-
periment E samples a pair (pk, sk) of a random public and secret keys, computes
encryption z of z, and returns y = (pk, z). The same holds for private-key encryp-
tion, except there is no public key above (see Section 2.5). We will also have another
definition of All-Or-Nothing Transforms in Section 3.3 that would fall into this cate-

gory, justifying the usefulness of this general view.

USEFULNESS. The usefulness of the above equivalence is in the following. Semantic
security is somewhat messy to define and to verify. However, it captures very well
our intuition that E(z) does not convey any information about x. On the other
hand, indistinguishability of any two inputs is a much simpler condition to verify and
to work with. However, it is not immediately clear if it really says that E(x) does

not convey any information about x. So the equivalence asserts that intuitive and
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convenient definitions actually coincide. As the result, it is much more customary to

work with indistinguishability.

VARIATIONS. There are several variations of the notion of semantic security, all of
which turn out to be equivalent because of the equivalence above. For example,
we could relax the definition by replacing a relation R with only a function f and
target the adversary to produce a such that f(X) = a. Since indistinguishability
corresponds to having a relation which is actually a function (i.e., f(x;) = i), the
equivalence follows. Also, rather than requiring that for any A there is some B, we
could run A twice: first time on the correct Y, and second time on a brand new
Y’ < E(X'), where X' <— D. The definition then says that A did not learn anything
because for any D and R he could not even see the difference when the correct X was
replaced by a brand new X'. This captures our intuition of semantic security slightly
less and starts to remind the indistinguishability definition. But the equivalence is
clear since the B we constructed in the proof really simulates the run of A on a brand
new Y’, which is exactly what we are doing. A slight advantage of that definition,
though, is that we do not need to restrict D and E to polynomial time, which is not
that important.

Another traditional definition (originated all the way in [33]) is to say that the
best B could do anyway without the knowledge of X, is to produce a fixed b5
maximizing the probability of satisfying R (X, b,4,) when X is chosen from D. Calling
this maximum probability p(R, D), we say that the probability of A’s success is at
most p(R, D) + negl(k). In some sense, this could be slightly unfair since PPT B
may not be able to produce the required b,,q, (in polynomial time). But, first of all,
since we chose to have non-uniform adversaries and the adversaries depend on R,
we could hardwire this b,,,,. Alternatively, the notions are again equivalent since in
the indistinguishability based definition we had p(R, D) = % which B can achieve
by outputting a random coin. Again, this modification has a slight advantage of not
requiring D and E to be polynomial time. To summarize, there are several small

variations of the definitions, all of which turn out to be equivalent, justifying the
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“universality” of our notion.

EXPERIMENTS WITH A SETUP. Sometimes the definition of the experiment E can be
split up into two natural phases: the setup phase, and the actual experiment phase.
A classical example is public-key encryption, where the setup can chose a random
public/private key pair, and the actual experiment just encrypts the given message
(see [42] for more details on definitions of public-key encryption). In this case we
might want to let the adversary observe the “public part” of the setup, and based on
that try to come up with: a) some zy and x; that he claims to distinguish for the case
of indistinguishability, or b) distribution D and relation R (which are automatically
polynomial time in the computational setting) that he can “defeat” for the case of
semantic security. Clearly (at least for non-uniform adversaries), if the experiment
with the setup is secure, combining the setup and the experiment into a single “super-
experiment” is also secure, but the converse is false in general (as it is easy to see).
The reason is that the “public information” from the setup may help the adversary
to select xy and x; (or D and R), that he cannot select at the very beginning.
However, the equivalence between semantic security and indistinguishability still holds
for experiments with the setup.

We already remarked that setup has a natural meaning for public-key encryption
(and results in a stronger definition). For private-key encryption the setup can be
defined as the process of choosing a secret key, but there is no public output, so
there is no reason to do the setup separately. For the definition of an All-Or-Nothing
Transform that we give later, there is no natural meaning for the setup (except for

an “empty” setup).

2.4 Cryptographic Basics: OWF, PRG and PRF

We now define some basic cryptographic notions. We refer the reader to [29] for a
more detailed exposition, references and proofs of some of the basic facts presented

here.
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Definition 4 A polynomial time computable function g : {0,1}* — {0,1}* is called a
one-way function (OWF) if for any PPT adversary A, if x is chosen at random from
{0, 1}*, we have

Pr(A(g(z),1%) € g™ (g())) = negl(k) (2.5)

In other words, g is easy to compute but hard to invert on a random input x. A relax-
ation of the notion of a OWF is a notion of a weak OWF, where for some polynomial

p(k) the condition 2.5 is replaced by

Pr(A(g(x), 1¥) € g™ (g())) < 1 - ]ﬁ (2.6)

In other words, no adversary succeeds with probability negligibly close to 1, so ¢ is
“slightly” hard to invert. A folklore result that we will use later is that existence of

weak OWF’s imply the existence of regular OWF’s.

Definition 5 A deterministic polynomial time computable function®* G : {0,1}F —
{0,1}™*) s called a pseudorandom generator (PRG) stretching from k to m(k) bits

(where m(k) > k) if the following are computationally indistinguishable:
(G(r) | m €r {0,1}") = (R | R €g {0,1}"")

In other words, G(r) for a random r € {0,1}* (this r is called a seed of G) is indis-
tinguishable to a PPT algorithm from a truly random R € {0,1}™*). The following
important result (the hard part of which was proved by [34]) shows that “OWF’s <=
PRG’s”.

Theorem 2 OWF’s exist <= PRG’s stretching to k+1 bits exist <= PRG’s stretch-

ing to m(k) bits exist for any polynomial m(k) > k.

One of the consequences is that we can talk about PRG’s “in general” without

worrying about the particular stretch factor. Finally, we introduce another classical

2Technically speaking, ensemble of functions: one for each k.
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notion of pseudorandom function (PRF) families. For that we need to define the
notion of an algorithm A having an oracle access to some function f. By that we
mean that at any point during its execution, A can learn in a single step the value

f(x) for any x of A’s choice in the domain of f. We denote such an A by A/,

Definition 6 A function family® F = {F, : {0,1}* — {0,1}}F | s € {0,1}*}, is
called a pseudorandom function family (PRF family), if each Fs is polynomial time

computable, and for any PPT A, we have
| Pr(A™=(1%) = 1) — Pr(A" (1) = 1)| = negl (k)

The first probability is taken over a random choice of the seed s € {0,1}* and random
coins of A, while the second — over coins of A and the choice of a totally random

function F' from {0,1}* to {0, 1}*.

In other words, no PPT A can distinguish between having an oracle access to a
pseudorandom function Fy (where only the seed s is chosen at random), form having
access to a truly random function F' (where each F'(z) is random for each z € {0, 1}%).
Thus, a singly exponential function family F is indistinguishable from a doubly ex-
ponential family of all functions. The following generalization of Theorem 2 is one of
the fundamental results in cryptography unifying the notions of OWF’s, PRG’s and
PRF’s and suggesting that a lot of cryptography can be built on a single assumption:

existence of one-way functions.

Theorem 3 OWF s exist <= PRG’s exist <= PRF families exist.

2.5 Symmetric-Key Encryption

We briefly review the notion of private-key cryptography, in particular, symmetric-key

encryption. Here two parties share a secret key and wish to perform secure encryption.

3 Again, technically speaking we have an ensemble of such families: one for each k. Also, the
choice of domain and range to be {0,1}* is arbitrary, any domain and range with description of a
point polynomial in &k will work as well.
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First, let us give the simplest possible definition of private-key encryption.

Definition 7 A symmetric-key (or private-key) encryption scheme C is given by three
PPT algorithms (Gen, Enc,Dec). Gen, on input 1%, generates a secret key sk. Given
x € {0,1}*, the encryption algorithm Encg,(x) generates a (random) encryption y of
x. The decryption algorithm Dec is deterministic, and for any y € Encg(z), we have
Decsi(y) = x. Encryption scheme C is called indistinguishable for two inputs if for

any xo, 1 € {0, 1}*, we have

<JIO, Xy, EnCsk($0)> ~ <.’E0, Xy, Encsk(xl)) (27)

We see that the definition follows the general paradigm of Section 2.3. In partic-
ular, one can define an equivalent semantic security definition. We now give a few

classical examples.

ONE-TIME PAD. This is the first “cryptographic scheme” ever proposed by Shan-
non [56]. Here the secret key is a random string R of length &, and the encryption
of x € {0,1}* is just x @ R. This scheme is clearly perfectly secure. However, the
length of the secret key is the same as the length of the message. It is easy to show

that this is unavoidable if we wish to achieve perfect secrecy [56].

PSEUDORANDOM ONE-TIME PAD. This is one of the first applications of pseudoran-
dom generators. Assume we have a PRG G stretching from n to k bits. The key is a
random 7 € {0,1}" we encrypt x € {0, 1}* by a pseudorandom “one-time pad” G(r),
i.e. Enc(z; r) = x @ G(r). Here the length of the key, n, could be much smaller
than the length of the message, k. Also, the security is necessarily computational and

follows immediately from Corollary 1 and the definition of a PRG.

We notice that the definition of indistinguishability gurantees security of encrypting
a single message, but nothing really is guaranteed about encrypting more messages.
In fact, the one-time pad encryptions above are clearly bad if one is to use them twice
(that is why they are called “one-time”) on x and z': the XOR of the encryptions

reveals © @ 2’. A more interesting definition arises if we allow the adversary (who
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has to distinguish encryptions of zy and z1) to have oracle access to the encryption
oracle. That is, he can obtain encryptions of any messages of his choice. The following
generalization of the “one-time pad” schemes above is well known to achieve such

security.

“STANDARD” SYMMETRIC-KEY ENCRYPTION. F = {F, : {0,1}f — {0,1}F | s €
{0,1}*} be a PRF family. We select a random shared secret key s € {0,1}* and

encrypt x by a pair (z @ Fy(R), R), where R is chosen at random from {0, 1}*.

Beside their simplicity, we notice the following important feature of the above ex-
amples: the secret key is a uniform random value, i.e. does not have any special
structure like representing a k-bit prime, etc. We remark that there are many other
such examples in private-key cryptography where a secret is just a random value:
pseudorandom permutations, block ciphers, messages authentication codes, various
keyed hash functions. In fact, even in the public-key cryptography we frequently have
simple systems where the secret is just a random value. For example, various schemes
based on the Discrete Logarithm or the Diffie-Hellman Assumptions (e.g., [26, 53])
pick a random x and publish its exponent. When defining exposure-resilient func-
tions in Section 3.1, we will see how to make all these systems “exposure-resilient”

(see Section 3.2).

2.6 Linear Error-Correcting Codes

An error-correcting code is a deterministic mapping from k-bit strings to n-bit strings
(the latter called codewords) such that any two codewords are very different from
each other, i.e. very “far apart” in terms of the Hamming distance.* Thus, even if
one misses or has corrupted a relatively few bits of some codeword, it is possible to

recover these bits.

“The Hamming distance between z,y € {0,1}" is the number of coordinates they differ in. The
Hamming weight of € {0,1}" is the number of non-zero coordinates of z, i.e. its Hamming
disntance from 0.
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We will consider binary linear [n, k,d| error-correcting codes. Such a code can be
seen as a linear transformation from {0,1}* to {0,1}" (where these are viewed as
vector spaces over GF'(2)). Thus, such a code can be described by a k x n generator
matriz M over GF(2). For any vector v € {0, 1}" (which is viewed as a column vector,
i.e. a kx 1 matrix, and v' denotes the corresponding 1 x k row vector), the codeword
corresponding to v is v M. A code is said to have minimum distance d if for every
two distinct vectors u,v € {0,1}*, "M and v' M differ on at least d coordinates.
Note that by linearity, this is equivalent to requiring that every non-zero codeword
has at least d non-zero components.

A code is said to be asymptotically good if n = O(k) and d = Q(n) (i.e., the three
parameters n, k, and d differ by multiplicative constants). The ratio k/n is called
the rate of the code, while d/n is called the relative distance. A standard result in
coding theory shows that a random linear code (corresponding to a random M) is
asymptotically good with high probability (provided the rate and relative distance
are not very large constants). Many explicit constructions for asymptotically good
codes (e.g., the Justesen code) exist.

We remark on two well-known bounds on error-correcting codes. First, it is always
the case that £ < n — d+ 1 (Singleton bound). Second, d < n/2 for k > logn. In
other words, the distance cannot be more than n/2. On the positive side, we can
make d arbitrarily close to n/2 (i.e., (3 —¢&)n for any £ > 0) at the expense of making
n large compared to block-length &.°

Finally, we mention the famous “parity” linear code, called the Hadamard code,®
stretching k bits to n = 2¥ — 1 bits. Here a k-bit message u = u, ... uy, is encoded into
(2% —1)-long bit message ¢ by taking all (28 —1) non-empty XOR'’s of the u;’s. Namely,

for each non-empty J C [k], the bit ¢, of the encoding is ®;cju;. Viewed another way,

°For example, n = poly(k) if we use the so called Reed-Solomon code concatenated with the
Hadamard code described below, n = O(k/e?) if we use the so called algebraic-geometric code
concatenated with the Hadamard code, and n = k/e? if we use a random code. Also, the Hadamard
code by itself hasn =2F — 1 and d = (n +1)/2.

In coding theory lingo, this is also known as the “dual” of another famous code — the hamming
code — which is a perfect code of distance 3. Thus, the corresponding generator matrix M is simply
the “parity check” matrix of the hamming code.
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for every non-zero a € {0, 1}*, the a-th coordinate of ¢ is the inner product modulo 2
of u and a: c¢(a) = u-a. We omit a = 0% (i.e., J = () since it always produces 0 as a
parity, so it is not useful for decoding purposes. The Hadamard code is clearly linear
and its generator matrix M is obtained by writing column-by-column all (2% — 1)
non-zero k-bit strings. It has distance 2871 = (n + 1)/2 since if u # o, exactly 2F~1
subsets J have c; # ¢, (equivalently, exactly 2¥=! vectors a have (u — u') - a = 1).
For the proofs of these results and further information on error-correcting codes,

see [40].

2.7 Strong Extractors

Extractors were first formally introduced in a seminal paper by Nisan and Zucker-
man [46]. An exztractor is a family of hash functions H such that when a function
h; is chosen at random from H (by choosing a random i), and is applied to a ran-
dom variable X that has “enough randomness” in it, the resulting random variable
Y = h;(X) is statistically close to the uniform distribution. A strong extractor has an
extra property that Y is close to the uniform distribution even when the random in-
dex i (used in specifying h;) is revealed! (Perhaps the best known example of a strong
extractor is given in the Leftover Hash Lemma of [36], where standard 2-universal
hash families are shown to be strong extractors.) This is illustrated in Figure 2-1.
We now define the notion of extractor more precisely. We say that random variable
X distributed over {0, 1}" has min-entropy m if for all z € {0,1}", Pr(X =xz) < 2™,
High min-entropy will turn out to be a good formal indicator for X having “a lot of

randomness” .

Definition 8 ([46]) A family of efficiently computable hash functions H = {h; :
{0,1}" — {0,1}* | i € {0,1}?} is called a strong (m, €)-extractor, if for any random
variable X over {0,1}" that has min-entropy m, if i is chosen uniformly at random

from {0,1}¢ and R is chosen uniformly at random from {0,1}*, the following two
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source X random source X random
randomness m|| bits i randomness m|| bits i

Extractor Strong Extractor

= uniform = uniform random
Y=h(X) Y=h (X) bits i

Figure 2-1: Extractors and Strong Extractors.

distributions are within statistical distance € from each other:

(i, hi(X)) = (i, R) (2.8)

Throughout, we will only talk about efficient extractor families H. That is, given any

i € {0,1} and x € {0,1}", one can efficiently (i.e., in time poly(n)) compute h;(z).

Thus, investing enough true randomness, namely the amount needed to select
a random member of H, one can “extract” something statistically close to a truly
random string from the randomness in a given distribution X. Much work has been
done in developing this area (e.g. [46, 32, 59, 64, 45, 61, 50, 49]). In particular, it
turns out that one can extract almost all the randomness in X by investing very few
truly random bits (i.e. having small H).

We will use the following efficiently constructible families of strong extractors

developed by [59, 49].

Theorem 4 ([59, 49]) For any n, m and ¢ such that n > m > 2log(1/¢), there exist
efficient strong (m, )-extractor families H = {h; : {0,1}* — {0,1}* | i € {0,1}¢}

satisfying:
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1. k=m —2log(1/e) — O(1) and d = 4(m — log(1/e)) + O(logn). [59]
2. k= (1-68)m—0(log(1/¢)) and d = O(log® n+log(1/e)) (V const. 6 > 0). [49]

3. k=m —2log(1/e) — O(1) and d = O((log® n + log(1/¢)) logm). [49]
(provided € > exp(—n/(log" n)°08" ™)) which will hold in our applications).

Notice that if a source has min-entropy m, we cannot hope to extract more than m
(even statistically close to) random bits, i.e. we must have k£ < m. In fact, [48] show
that £ < m—2log(1/¢)4+0O(1). The remarkable fact about the above extractor families
is that they really almost achieve this seemingly impossible bound for any X having
min-entropy m. However, in the first extractor the amount of extra-randomness d is
roughly 4m, so we invest more truly random bits than the amount of random bits
that we extract! Of course, the catch is that we do not “lose” the extra-randomness,
so the extractor is still very useful. On the other hand, the last two extractors are
much more randomness efficient (provided m is large enough).

For more information on these topics, see the excellent survey articles [44, 45].

2.8 Deterministic Extractors and t-wise Indepen-
dent Functions

In the previous section we saw that we can extract almost all the randomness from
any distribution of min-entropy m by investing very few extra truly random bits. On
the other hand, it would be very desirable not to invest any additional randomness
at all, i.e. to have just a single deterministic function f : {0,1}* — {0,1}* that
would extract all the randomness from our source X. However, it is very easy to see
that this task is too ambitious.” In other words, we cannot hope that one function

f will be good for all sources with min-entropy m, and therefore have to invest some

"For example, concentrate all the mass of X uniformly on the preimages of 2™+*=" “most fre-
quent” points in the range of f. There are at least 2™ such preimages, so X has min-entropy at
least m. On the other hand, f(X) can induce a distribution statistically close to uniform on {0, 1}*
onlyifm+k—n>k—1ie. m>n—1,s0 X was almost uniform to begin with.
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extra randomness. However, in many applications we have some set X of “allowed”
sources of min-entropy m, and we only need f to extract randomness from sources
X € X (and do not “care” about other sources; we will see an example of this later
in Section 4.4). In this section we discuss how to construct such f culminating in
Theorem 6 and Corollary 3. While written with the current emphasis for the first time,
all the ideas of this section were largely suggested to us by Trevisan and Vadhan [62],

who were the first to consider “general-purpose” deterministic extractors.

2.8.1 Deterministic and d-sure Extractors

TOWARDS DETERMINISTIC EXTRACTORS. As we observed, it is conceivable to have
this single deterministic f “tuned up” to work just for the sources in X. Such f is
called a deterministic extractor for X. Unfortunately, the explicit constructions of
such f for a given X often turn out to be difficult. Therefore, we settle for the next
best option. We will design an efficiently samplable family of hash function F such
that when f is chosen at random from this family, f will be a good (deterministic)
extractor for every X € X with high probability. Moreover, we will not use anything
about X except for its cardinality |X| and the fact that every X € X has min-entropy
m. In other words, for any X of min-entropy m, with high probability (much better
than 1/|X|) a random f in F will be a good extractor function for X. Then we will
simply take the union bound over all X € X. This justifies the following definition

and its immediate corollary.

Definition 9 (implicit in [62]) A family of efficiently computable hash functions
F={fi: {0,1}* = {0,1}* | i € {0,1}¢} is called a S-sure (m, ¢)-extractor, if for
any random variable X over {0,1}" that has min-entropy m, with probability at least
(1—=9) over the choice of random f = f; from F, we have that the distribution induced
by f(X) is e-close to the uniform distribution over {0,1}*.

Corollary 2 For any collection X of distributions of min-entropy m over {0,1}", if

F={f;:{0,1}" = {0,1}*} is a 6-sure (m, €)-extractor, then with probability at least
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(1 —|X[0) a random f = f; chosen from F will be a deterministic extractor (with

statistical deviation €) for all X € X.

Thus, we are interested in constructing d-sure extractors, where o will be really small
(typically, much smaller than €), so that we can take a large union bound over all

sources in X.

COMPARING WITH REGULAR EXTRACTORS. It is interesting to compare this defini-
tion of F with the definition of a strong (m,¢)-extractor H from Section 2.7. It is
easy to check that if F is a d-sure (m, €)-extractor, then it is also a strong (m, € + 0)-
extractor. In some sense, we “fine-tuned” ¢ into € and 0. On the other hand, for any
e and 0 satisfying € = €4, a strong (m, e)-extractor H is also a d-sure (m, €)-extractor.
However, the usage of F is typically very different from that of H. H is designed to
work for all X, but for each particular X we have to invest extra randomness and
sample a brand new hash function h € H. F is designed to work for arbitrary but
fixed collection X of sources of min-entropy m. We sample a function f € F only
once and with overwhelming probability this particular f will be a good deterministic
extractor for all X € X. In other words, once we have chosen f we do not invest any
more randomness later, no matter how many times and which sources X € X are
given to us (however, there is a negligible chance that our f is “bad”).

As we said, the above is achieved by making ¢ very small (much smaller than
1/]X|) and implies that we cannot make the size of F very small. In the very least,
we must have |F| > |X|, since we have to take the union bound over all X € X.
Since |X'| is often exponential in n, we need at least poly(n) random bits to sample
f from F, which is much more than the polylogarithmic number of bits that were
sufficient for regular extractors. Thus, even though it would be nice to minimize the
number of bits to describe f € F, a more immediate concern will be to make sure
that the number of bits is polynomial in n, so that f is efficiently describable and
computable.

To summarize, a strong (m, €)-extractor H is designed to work for any distribution

X (with min-entropy m) and the emphasis is to use very few extra random bits, since
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we have to use new random bits for every such X. A d-sure (m, €)-extractor is designed
to work for a particular (albeit arbitrary) collection of sources X' (of min-entropy m
each), and the emphasis is to be able to efficiently sample a single f from F that will

be a good deterministic extractor for all X € X.

2.8.2 t-wise Independent Function Families

We will give a simple efficient construction of §-sure (m, €)-extractor families based
on the construction and the analysis of [62], but first we need to recall the notion of

t-wise independence.

Definition 10 A collection of random wvariables Yi,..., Yy over some space S is
said to be t-wise independent if for any t distinct indices i1, ...,1; we have that the
variables Y, ..., Y, are independent® from each other. A family F of functions from
{0,1}™ to {0,1}* is said to be t-wise independent if when a function f is chosen
from F at random, the values of f are t-wise independent, i.e. the random variables

{f(z) |z €{0,1}"} are t-wise independent over {0, 1}F.

When talking about t-wise independent families of function we will always ad-
ditionally assume that for any = € {0,1}", the distribution of f(z) is uniform over
{0,1}*. In other words, any ¢ values of f are independent and uniform. There exist
efficient t-wise independent function families from n to k& < n bits, where it takes
O(tn) random bits to describe a function in F (see [19]). The simplest such family is
a family of polynomials of degree ¢ over GF'(2™) “truncated” to k bits. In other words,
given a polynomial p of degree ¢t over GF(2") and a point x € GF(2"), we evaluate
p(x) over GF(2") and output the first k£ bits of the canonical n-bit representation
of the answer. The ¢-wise independence follows from the fact that any ¢ values of a
random polynomial of degree ¢ are independent and random.

We will need the following “tail inequality” for the sum of ¢-wise independent ran-

dom variables proven by Bellare and Rompel [9]. There they estimate Pr[|Y — E[Y]| >

8Le., Pr(Yi, =y1 A ... AY;, =y) =Pr(Yi, = 1) -...-Pr(Y;, = y), for any yy,...,y:.
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Al, where Y is the sum of ¢-wise independent variables. We will only be interesting
in A = e- E[Y], where € < 1. In this case it is easy to trace the proof of Lemma 2.3

(and Lemma A.5 that is used to prove it) of [9] and get the following result.

Theorem 5 ([9]) Let t be an even integer, and assume Yi,...,Yy are t-wise inde-
pendent random variables in the interval [0,1]. Let Y =Y, +...+ Yy, p=E[Y] and

e < 1. Then

NE
Pr(Y — 4l > ) < G, (7) 2.9)

where the constant Cy < 3 and in fact Cy < 1 fort > 8.

2.8.3 t-wise Independent Functions as Extractors

We now argue that any family of t-wise independent functions is a very good d-sure

(m, €)-extractor family. For that we need the following crucial lemma.

Lemma 3 Let F be a family of t-wise independent functions (for event > 8) from n
to k bits, let X be a distribution over {0,1}" of min-entropy m, and let y € {0, 1}*.

Assume for some a > 0
1
kE<m— <2log—+logt+2a> (2.10)
€

Let f be chosen at random from F and x be chosen according to X. Then

Pr(f(z) = y) — ~

z 9k

1
> e —> < 27 (2.11)

p
fe.l;-' ( 2k

In other words, for any y € {0,1}%, if f is chosen from F then with overwhelming
probability we have that the probability that f(X) =1y is 5z (1t €).

Proof: Let p, denotes the probability that X = z and let ¢ denote the random
variable (only over the choice of f) which equals to the probability (over the choice

of x given f) that f(z) =y, i.e.

a= D P lywey

ze€{0,1}"
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where I ¢(;)—y} is an indicator variable which is 1 if f(z) =y and 0 otherwise. Since
for any « the value of f(z) is uniform over {0,1}*, we get that E;[I(su)—y] = 27,
and thus E;[q] = 27*. Notice also that the variables I{s(;)—y} are t-wise independent,
since f is chosen at random from a family of t-wise independent functions. And finally
notice that since X has min-entropy m, we have that all p, < 27™.

Thus, if we let Q, = 2™ - p; - I{f(x)=y}, and Q = er{o,l}” Q. = 2™Mq, we get
that the variables ), are t-wise independent, all reside in the interval [0, 1], and

E[Q] = 2"E[q] = 2™ *. Now we can apply the tail inequality given in Theorem 5

and obtain:
Prilg— 2 >e L] = p [|Q —2m7F| > €. 2m7F]
r k| Z €| T fr > €
t t
t 2 1 2
S <m> - <2mk210gl10gt>
S 27005
where the last inequality follows from Equation (2.10). [ ]

The above lemma almost immediately suggests that a family of ¢-wise independent
functions is a good d-sure extractor. Indeed, if we take a union bound over all
y € {0,1}*, we get that with probability at least (1 — 2¥=9%) all y have Pr (f(X) =
y) = 3 (1 £ €), which easily implies that f(X) is e-close to uniform on {0, 1}*. Thus,
to make F §-sure, we need 28~ < §. Since we will have k& < m anyway, it suffices
to have at < m + log %. We set a = 1 for simplicity” and get ¢t = m + log %, while £
could be set to m — (2log £ +1logt +O(1)) > m — (2log £ + loglog 5 +logm + O(1)).

Thus, we proved

Theorem 6 Fiz any n, m, € and 0. Set

1 1 1
t:m+logg , k:m—(2log—+loglog5—|—logm—|—0(1)>
€

9In fact, the “optimal” choice of a is log(m + log %), but this will not make much difference.

49



Then any family F of t-wise independent functions from n bits to k bits is a d-sure

(m, €)-extractor.

We see two crucial features of this result that make it extremely useful. First, ¢
is logarithmic in 1/§, which means that we can afford to have exponentially small ¢
and still have efficient F. On the other hand, the “entropy loss” for k (the expression
subtracted from m) is logarithmic in 1/€ and doubly logarithmic in 1/6. Thus, § can
be exponentially smaller than e. This means that we can set € to a desirable level
(say, only slightly negligible in n) and again can easily afford to make § exponentially
small. In particular, if we take any collection X of M distributions of min-entropy m,
we can apply Corollary 2 with 6 = 1/M? (we also replace « in the proof of Theorem 6
from 1 to 2 to get rid of the factor of 2 in log(1/d) = 2log M), and easily handle

exponentially large M:

Corollary 3 Fiz anyn, m, €, M and any collection X of M distributions over {0, 1}"

of min-entropy m each. Define
1
t=m+logM , k=m— <2log— —|—logm—|—loglogM—|—O(1)>
€

and let F be any family of t-wise independent functions from n bits to k bits. Then

with probability at least (1 — ﬁ) a random function f € F will be a good deterministic
extractor for X, i.e. f(X) will be e-close to uniform over {0,1}* for any X € X. In

particular, such deterministic f exists.

Interestingly enough, one can check that we would get almost the same bound
on k if we were to choose the function f completely at random (using exponentially
many random bits, and making it infeasible to use). Thus, efficiently samplable and
computable family of ¢-wise independent functions (where we can make ¢ reasonably

small) does essentially as well as a family of all functions.
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2.9 Quadratic Forms and Fourier Analysis

In this section we give some background from linear algebra. Further explanation
can be found in many textbooks, e.g. M. Artin’s Algebra. In this section most of the
arithmetic will be over the reals, and we will try to use boldface when talking about
vectors in R™, to separate them from vectors over {0,1}™ which we talked about
earlier. Let u = {uy,...,un}, v = {v1,...,v,} be two vectors in R™. We will use

the notation (u,v) =u’

v =) _.u;v; to denote the inner product of u and v, and let
lul|? = (u,u) = 3, u? denote the square of the Euclidean norm of u.

Recall that a set of vectors {vi,...,v,} forms an orthonormal basis of R™, if
(vi,v;j)is 0 for i # j and is 1 for i = j (this automatically implies that these vectors
are linearly independent and span R™).

Finally, recall that a non-zero vector v is an eigenvector of a square m X m matrix

A corresponding to an eigenvalue A, if Av = Av.

QUADRATIC FORMS. A quadratic form (over R) in m variables is a multivariate
polynomial where each term has degree exactly 2. One can always write it as a
map from real-valued vectors to real numbers such that a vector w € R™ maps to
w Qw = ZZ}ZI w;w;Q; ;, where @ is a symmetric m x m matrix (i.e., Q;; = Q).
For example, when () is the identity matrix, we get w'Qw = > w? = |[|w]||%

Now a symmetric matrix will always have m real eigenvalues (counted with multi-
plicity) and, moreover, it will always be diagonalizable over R (see Artin for a proof).
Explicitly, this means that we can find an orthonormal basis {vy,...,v,;} of R™ and

a set of eigenvalues \; € R such that Qv; = \;v; for all 7. In addition,

Fact 1 For any vector u, the orthonormality of the v;’s implies
u'Qu=> MNuv;)* and [juf®=(u,u)=> (u,v;)
i=1 i

Assume now that (u,v;) = 0 for all 7 corresponding to the large eigenvalues of Q).
Then the Fourier decomposition above allows us to obtain the following upper bound

on u' Qu.
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Corollary 4 Let \y > Ay > ... > A\, be the eigenvalues of (). And assume that

(u,vi) =...=(u,v;) =0 for some j > 0. Then
0 Qu < Ao - ull? 212)

In particular, for any u we have u' Qu < \; - [[ul?.

Proof: By Fact 1,

u'Qu="> N(u,v;)* =D N(u,vi)> < Njq D (1, vi)? = Ny ul?
i i>j i>j
|
We notice that the Corollary above follows from a more general Courant-Fischer
theorem, which states that in fact A\; 11 = maxyey, %, where Uj is the space of all

vectors orthogonal to the first j eigenvectors vy,...,v;.

FouriER DECOMPOSITION OF THE HYPERCUBE. We will be using a particular
matrix A — the adjacency matrix of an n-dimensional hypercube H = {0,1}". That

is, A is a 2" x 2" dimensional 0-1 matrix, with entries

4 1 if z and y differ in exactly one position
Ty =
0 otherwise

We consider A as an operator on the 2"-dimensional vector space V consisting
of vectors with positions indexed by the strings in H. Typically, we will use u(y) to
refer to position y € H in the vector u.

For two strings in y,z in {0,1}", let y - z denote their inner product modulo 2,
i.e. the parity of the number of positions on which they are both 1. We denote by
weight(z) the number of positions of z which are equal to 1. We need the following

fact explicitly telling us the eigenvectors and the eigenvalues of A.

Fact 2 A has an orthonormal basis of eigenvectors {v, : z € {0,1}"}, where the
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eigenvalue of v, is A\, =n — 2 - weight(z), and the value of v, at position y is

The basis {v,} is often called the Fourier basis related to the matrix A. The coeffi-
cients (u,v,) are then called the Fourier coefficients of u. From the above fact and

from Corollary 4, we get the following useful lemma.

Lemma 4 Assume {v, : z € {0,1}"} are the eigenvectors of A as above, and let u

be a vector orthogonal to all the v,’s corresponding to z with weight(z) < t. Then
u' Au < (n—2t) - [|ul?

In particular, for any u we have u' Au < n - [Jul|%.
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Chapter 3

Definitions and Discussion

In this section, we define and discuss the central concepts in our study: Exposure-
Resilient Functions (ERF’s) and All-Or-Nothing Transforms (AONT’s). Our defini-
tions are extremely natural and simple. We also show that ERF’s and AONT’t have
numerous applications in many different areas, making them indeed fundamental

cryptographic primitives.

3.1 Exposure-Resilient Functions

An ERF is a function such that if its input is chosen at random, and an adversary
learns all but ¢ bits of the input, for some threshold value /, then the output of the

function will still appear (pseudo) random to the adversary (see Figure 1-2). Formally,

Definition 11 A polynomial time computable function f : {0,1}" — {0, 1}* is (-ERF
(exposure-resilient function) if for any L € {Z} and for a randomly chosenr € {0,1}",

R € {0,1}*, the following distributions are indistinguishable:

([rle, £(r)) = ([r]e, R) (3.1)
Here = can refer to perfect, statistical or computational indistinguishability.

The definition states that an ERF transforms n random bits into & (pseudo) ran-

dom bits, such that even learning all but ¢ bits of the input, leaves the output in-
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distinguishable from a random value. There are three parameters of interest here: ¢,
n, and k. All of them are very important. First of all, the smaller ¢ is, the harder
is to satisfy the condition above, since fewer bits are left unknown to the adversary.
Thus, we wish to make ¢ as small as possible for a given n. Secondly, k is the number
of pseudorandom bits that we get out when the adversary does not see ¢ bits of the
input, which we would like to make as large as possible. Thus, there are two measures
of interest: the fraction of ¢ with respect to n, which we would like to be as small
as possible (this shows the “exposure-resilience”); and the size of k with respect to ¢,

which we want to be as large as possible (this shows the “randomness efficiency”).

ADAPTIVELY SECURE ERF. In the definition of ERF above, the adversary has to
“decide in advance” which (n — ¢) bits he is going to observe. This is captured
by requiring the security for all fized sets L of cardinality ¢. However, in many
situations (e.g., the problem of gradual key exposure explained in the next section),
the adversary has more power. Namely, he can decide which (n — ¢) bits of the secret
to learn adaptively based on the information that he has learned so far. In the most
extreme case, the adversary would decide which bits to observe “one-bit-at-a-time”.
As we will see, this adversary is indeed much more powerful than the static adversary
who decides on the subset L of bits to “miss” in advance. But now we just define
formally the corresponding notion of adaptively secure (-ERF that would protect even
against such adaptive adversaries.

First, an adversary A having oracle access to a string r is said to be ¢-bounded if
he is allowed to adaptively read all but some ¢ bits of r one-bit-at-a-time, depending

on his input and the bits of r that he read so far. We denote such an adversary by

A"(:)-

Definition 12 A polynomial time computable function f : {0,1}" — {0,1}* is a
(perfect, statistical or computational) adaptive (-ERF (adaptive exposure-resilient

function) if for any (-bounded adversary A, when r is chosen at random from {0, 1}"
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and R is chosen at random from {0,1}*,

[Pr(A(f(r)) = 1) — Pr(A'(R) = )| < ¢

where

e In the perfect setting € = 0.
e In the statistical setting € = negl(n).

e In the computational setting € = negl(n) for any PPT A.

Thus, in the above definition .4 would try to adaptively examine (n — ¢) bits of r
to determine at least something about f(r). And if f is an ¢-ERF, no ¢-bounded A
would succeed in distinguishing f(r) from a random string.

We observe that in the perfect setting this definition is equivalent to that of an
ordinary perfect (-ERF. Indeed, no matter how, why and which (n — ¢) bits of r were
examined by A, once the remaining ¢ bits of r are chosen at random, the definition
of perfect (-ERF says that f(r) is truly random over {0, 1}* (even conditioned on the
observed (n — ¢) bits). Thus, adaptivity does not help the adversary in the perfect
setting (because the definition of a perfect ERF is by itself very strong!). As we will
see, in the statistical setting there is a very big difference between the adaptive and
the non-adaptive notions: if not that much with the parameters achieved, but with
the difficulty of constructing adaptive ERF’s as compared to ordinary ERF’s. And
once we have good statistical ERF’s, computational ERF’s will be easy to construct

both in the static and in the adaptive settings.

COMPUTATIONAL ERF vs. PRG. Assume we have a (computational) (-ERF f :
{0,1}" — {0,1}*, where k > n. This can be viewed as a particularly strong form of a
pseudorandom generator (PRG, see Section 2.4). In other words, not only f stretches
n random bits into k£ pseudorandom bits, but the k output bits remain pseusorandom
even when any (n — {) bits of the seed are revealed. Thus, such ERF can be called an
“exposure-resilient PRG”. Not surprisingly, we will use regular PRG’s as one of the

building blocks in constructing such computational ERF’s.
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3.2 Applications of ERF

PROTECTING RANDOM SECRETS. As an immediate general application to the partial
key-exposure problem, (-ERF f: {0,1}" — {0, 1}* allows one to represent a random
secret R € {0,1}* in an “exposure-resilient” way. Namely, instead of storing and
using R as the secret, we pick and store a random r € {0,1}", but use f(r) as our
secret. Since f(r) and R are indistinguishable, our underlying application is not going
“to know the difference”. In fact, even if the adversary learns all but ¢ bits of r, the
secret f(r) is still indistinguishable from a random value.

On a theoretical level, we can almost always assume that our secret is a truly
random string (for example, the random coins of the key generation algorithm). Thus,
in principle (-ERF’s can solve the general partial key exposure problem. In practice,
however, this is going to be efficient only if a “natural representation” of the secret
is a truly random string. As we saw in Section 2.5, this indeed often happens in the
setting of private-key cryptography (and sometimes even in public-key cryptography),

and gives rise to many more specific applications, some of which we describe next.

EXPOSURE-RESILIENT PRG’S AND ONE-TIME PAD. As another immediate applica-
tion which we already observed at the end of last section, ERF’s allow us to obtain a
much stronger form of pseudorandom generator (especially when k > n), which not
only stretches n bits to k bits, but remains pseudorandom even when any (n —{) bits
of the seed are revealed. As a natural extension of the above application, we can apply
it to the one-time private-key encryption. Recall that one-time pad encryption over
{0, 1}* chooses a random shared secret key r € {0,1}" and encrypts = € {0,1}* by a
pseudorandom “one-time pad” G(r) (where G is a PRG), i.e. Enc(z; r) = x & G(r).
We can make it resilient to the partial key exposure by replacing a PRG G with a
ERF f.

EXPOSURE-RESILIENT PRF’S AND SYMMETRIC ENCRYPTION. For the next several
application, we assume for convenience that ERF f : {0,1}* — {0,1}* is length-

preserving (we will show in Section 4.3 how to build them based on any one-way
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function). Using such f, we show how to obtain ezposure-resilient form of a pseudo-
random function family. Let F = {F, | s € {0,1}*} be a regular PRF family. Defin-
ing Fy, = Fy(y), we get a new pseudorandom function family F = {F} | s € {0, 1}¥},
which remains pseudorandom even when all but ¢ bits of the seed s are known. We
apply this again to private-key cryptography. Recall that a classical private-key en-
cryption scheme selects a random shared key s € {0,1}* and encrypts z by a pair
(r ® Fs(R), R), where R is chosen at random. Again, replacing F by an exposure-
resilient PRF, we obtain resilience against partial key exposure. Here our new secret

key is s € {0, 1}*, but f(s) is used as an index to a regular PRF.

OTHER EXAMPLES OF RANDOM KEYS. As we pointed in Section 2.5, there are many
other natural examples where the secret key is just a random string: message authen-
tication codes, pseudorandom permutations and block ciphers, keyed hash functions,

many discrete-log based cryptosystems.

GRADUAL EXPOSURE OF RANDOM KEYS. In fact, we can achieve security even
against what we call the gradual key exposure problem in the setting with shared
random keys. Namely, assume several parties (say, two) want to share a secret key
which is just a k-bit random value. And consider a situation where the adversary
is able to learn more and more bits of the secret key over time. We do not place
any upper bound on the amount of information the adversary learns, but instead
assume only that the rate at which the adversary can gain information is bounded.
For example, suppose that every week the adversary somehow learns at most b bits
of our secret R. As before, let us let us strore a random r € {0,1}* and use f(r) in
place of R. We know that as long as the adversary misses ¢ bits of r, the system is
secure.! However, pretty soon (in about (k — ¢)/b weeks) there is a danger that the
adversary may know more than (k — ¢) bits of r, which would make f(r) no longer
“completely secret”. To circumvent thsi problem and to avoid ever changing the
secret key, it seems sufficient that both parties periodically (say, with period slightly
less than (k — ¢)/b weeks) update their stored key by setting 7,6 = f(roq). Since at

!Here it makes more sense to talk about adaptively secure ERF’s.
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Secret: f(r;) f(ry) firs)

Store! r; ———= r,=g(r;)) —> r3=g(r,)

Time

Figure 3-1: Gradual exposure of random keys, or how to maintain a random secret.

the time of each update the adversary did not know at least ¢ bits of our current key
r, the value f(r) is still pseudorandom, and thus secure. This idea “almost works”.
The problem is that after we changed our “stored” key from r to f(r), and once
the adversary starts learning the bits of f(r), he gets the bits of the “actual” key f(r)
we used several weeks ago. For some applications, where old transactions are quickly
erased or become irrelevant, this might be good, but in general we definitionely do
not want the adversary to learn information about our old keys. In some sense, the
only thing we achieved is shifting the immediate problem of key exposure by (k—¢)/b
weeks. Luckily, there is a simple fix that makes this idea work as we initially intended.
Namely, assume we have a length-doubling (-ERF f : {0,1}* — {0,1}?* (again, we
will show in Section 4.3 how to build them). Call f the length-preserving function
returning the first k£ bits of f, and by g — the one returning the last k& bits of f Now
we store a random 7 and use f(r) as our actual secret. However, at the time we need
to synchronously update our key (say, in (k — ¢)/b weeks), we replace r by g(r). Now
at the time of each update the adversary misses at least ¢ bits of our current secret, so
he has no information about both f(r) and ¢(r). Moreover, even when he later learns
some information about our new secret g(r) (even all of it), he still gets no information
about f(r), i.e. the actual secret used in all the current transactions. Hence, parties
agree on a random secret key only once, even if the adversary continuously learns
more and more of the (current) secret! This mechanism is illustarted in Figure 4-2,
where the timeline shows what is being currently stored, and what is used as a current

“actual” secret.
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MAINTAINING A (PSEUDO)RANDOM SECRET. The solution above has another appli-
cation. Namely, it allows one party to maintain a (pseudo)random secret that keeps
changing (while staying pseudorandom to the adversary), despite the adversary able
to continuously learn more and more bits of whatever we store (but at a bounded
rate). As before, we store r, use f(r) as our maintained pseudorandom secret, and
before the adversary learns too many bits of 7, we let 7,0, = g(7014). We will see one

application of this is Section 3.4.

AGREEING ON A SECRET KEY. This is one of the applications of ¢-resilient functions
(e.g., perfect ERF’s) suggested by [10], which extends to any ERF. Assume that two
parties Alice and Bob want to agree on a random string of length k. Ordinarily,
Alice can choose a random string R and send it to Bob. Unfortunately, there is an
eavesdropper Eve who can listens to the communication channel and may learn some
of the bits transmitted by Alice. Alice and Bob do not know which bits were observed
by Eve, but they know that with high probability Eve did not learn more than a o
fraction of the transmitted bits. Assume we have an (-ERF f: {0,1}" — {0, 1}* with
¢/n < 1—46. Then Alice can pick a random r € {0,1}" and send it to Bob. The
actual shared random string will f(r), about which Eve will have “no information”

since he misses at least (1 — §)n > ¢ bits of r.

COIN-FLIPPING IN SYNCHRONOUS NETWORKS WITH BROADCAST. This is one of
the original motivations of Chor et al. [20] . Unfortunately, if only applies to perfect
(-ERF’s. Consider a synchronous network where n players wish to collectively flip a
random k-bit string, and only a broadcast channel? is available for communication.
Assume also that up to (n — ¢) of the players can be faulty, and our protocol should
be resilient against that. The simplest possible solution would be for each player i to
flip a random bit r; and to broadcast it to all the other players. The resulting k-bit
output will be f(ry,...,r,) for some fixed f: {0,1}"* — {0, 1}*. It is easy to see that

the protocol is resilient to any ¢ faulty players if and only if f is a perfect ¢-ERF (i.e.,

2This means that a player can send a message to all other players, and all the players are assured
of getting the same message.
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(n — ¢)-resilient function of [20]).

We also remark that while this application does not apply to statistical and com-
putational ERF’s; it does apply to their stronger counter-parts. Namely, we can use
almost (n — ¢)-resilient functions of [39] (the output will then be statistically close
to uniform) that we construct in Section 4.4.1. Alternatively, if we use what we call
computational (n — ¢)-resilient functions (that we define and construct in Remark 1),
the resulting output will be computationally close to uniform. Overall, we can say
that this application applies to (perfect, statistical or computational) (n — ¢)-resilient
functions, that is: a) the adversary can fix any (n — ¢) bits of r to any string he
desires, b) the remaining ¢ bits of r are set at random, and ¢) the resulting output
f(r) is still “close” to a random k-bit string (where the meaning of “close” depends

on the notion of (n — ¢)-resilient function we use).

ALL-OR-NOTHING-TRANSFORMS. Finally, in Section 5 we show how to construct

AONT’s using ERF’s.

3.3 All-Or-Nothing Transforms

Definition 13 A randomized polynomial time computable function T : {0,1}F —

{0,1}* x {0,1}? is £-AONT (all-or-nothing transform) if

1. T is efficiently invertible, i.e. there is a polynomial time machine I such that

for any x € {0,1}* and any y = (y1,y2) € T(x), we have I(y) = x.

2. For any L € {Z}, any xo, 1 € {0, 1}*¥ we have

(zo, 1, [T(20)]z) = (o, 21, [T(21)]1) (3.2)

In other words, the random variables in {[T (z)]; | x € {0,1}*} are all indistin-
guishable from each other. Here = can refer to perfect, statistical or computa-

tional indistinguishability.
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If T(x) = (y1,y2), we call y; the secret output and y, the public output of T. If p =0
(there is no public output), we call T a secret-only ¢-AONT.

The above definition is “indistinguishability” based and follows the general method-
ology from Section 2.3. Indeed, for each fixed L the experiment on x consists simply
of outputting [7'(z)]z. In particular, one can make the equivalent “semantic security”
based definition, where the adversary, given z = [T'(x)]; (where x is picked according
to some distribution D), cannot compute [ satisfying some relation R(z, §) “signif-
icantly better” than without z at all. Thus, all-or-nothing transforms allow one to
“encode” any x in such a form that the encoding is easily invertible, and yet, an
adversary learning all but ¢ bits of the (secret part of the) encoding “cannot extract
any useful information” about x. We also remark that Boyko [16] gave two sepa-
rate definitions of semantic security and indistinguishability for AONT (with random
oracles), and proved essentially identical theorems for both of his definitions. The
general equivalence of the definitions (together with the efficiency of both reductions
in Section 2.3) shows that one of these proofs was not necessary, and further justifies

the usefulness of Theorem 1.

COMPARISON WITH EARLIER DEFINITIONS. The definition given above generalizes
and simplifies (because there are no random oracles) the formal definition for secret-
only AONT given by Boyko [16] (refining an earlier definition of Rivest [51]) in a
setting with a random oracle. In particular, while previous definitions were restricted
to secret-only AONT, our definition allows one to split the output y into two sections:
a secret part y; and a public part y,. The public part y, requires no protection —
that is, it is used only for inversion and can be revealed to the adversary in full.
The security guarantee states that as long as ¢ bits of the secret output y, remain
hidden (while all the bits of y» can be revealed), the adversary should have “no
information” about the input. We also observe that if y = (y;,y,) and L € {Z}, we
have notationally that [y]; = ([y1]z,y2). This is informally illustrated in Figure 3-2
and should be compared with the special case of secret-only AONT from Figure 1-1.

We note that our generalized notion of AONT solves the problem of partial key
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Figure 3-2: All-Or-Nothing Transform (with secret and public outputs).

exposure and also remains equally applicable to all the other known uses of the secret-
only AONT. In addition, we will argue that it gives us more flexibility and also allows
us to characterize the security of our constructions more precisely. More specifically,
the motivations for potentially having a public part is the following. In the earlier
definitions of AONT (which were secret-only), it is implicitly assumed that all parts of
the transform are “equally important” and should have the same protection against
the attacker. In reality, different parts of the transform serve different purposes for
the decoding process. Some of them could be used just for the decoding process (so
that the mapping is invertible), but are not important to keep secret against the
attacker, while others are really the ones that do all the cryptographic work, and
thus, should be kept secret.

For example, we could have a transform of output length 2k, where, as long as
the adversary does not learn vk bits from the first half of the transform, we are
completely secure, but become totally insecure if the adversary learns the entire first
half. This seems like a very reasonable solution to the key leakage problem; we will

simply protect as hard as we can the first half of the transform, while the second half
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we might as well publish. However, in the standard setting we must set ¢ = k + vk
to ensure that the adversary misses at least vk bits of the first half. This seems to
be an artificial setting for ¢, indicating that more than half of the transform should
be kept hidden. Common sense tells us that the real answer is ¢ = v/k, because first
and second half serve different purposes, and we are secure as long as vk bits of the
first half remain hidden. To summarize, in our definition public part is only used to
decode x back (in conjunction with the secret part), but we really do not care about
protecting it. It is only the secret part that is important to protect.

We now argue that this generalized notion allow us more flexibility than before.
First of all, it allows reasonable AONT constructions, as in the example above, to
have small 7, as they should. Secondly, while without the public part, the size of the
secret part had to be at least the size of the message, now it can be much smaller
(at the expense of the public part). Thus, the public part may be stored on some
insecure device with fast access time (like public cache), while secret part may be
stored further away in some well protected memory (like a smartcard), and still give
us a guarantee that small accidental leakage will not compromise the security. In
addition, we will see that more general AONT’s (with the public part) seem to be
more efficient and much easier to construct than the corresponding AONT’s with only
a secret part. We also point again that our generalized notion of AONT naturally
suffices for all the applications of AONT that we are aware of.

We also remark that the special case of perfect AONT’s was implicitly mentioned

by Bennett et al. [10]. See Section 5.1.

PREVIOUS CONSTRUCTIONS. Boyko [16] showed that, in the random oracle model, the
following so called “optimal asymmetric encryption padding” (OAEP) construction
of [8] is a (secret-only) -AONT (where ¢ can be chosen to be super-logarithmic in the
security parameter). Let G : {0,1}" — {0,1}* and H : {0,1}* — {0,1}" be random
oracles (where n is any number greater than ¢). The randomness of 7" is r < {0, 1}".

Define T'(z; r) = (u, t), where

u = G(r)dx (3.3)



n bits k bits
Input’ X | r ‘ Coin Flips

Output ’ u | t ‘

Inverse’ X | r ‘

Figure 3-3: Optimal Asymmetric Encryption Padding.

t = Hu)er (3.4)

We note that the inverse I(u,t) = G(H (u) ®t)®wu. This construction is illustrated
in Figure 3-3. We also remark that Boyko’s work was the first formal treatment of
the AONT, stimulated a lot of subsequent research and achieved essentially the best
possible AONT’s in the Random Oracle model. No provable constructions of AONT

based on standard assumptions were previously known.

ADAPTIVELY SECURE AONT. As for the definition of ERF, we can talk about adap-
tively secure AONT ’s. In other words, in the ordinary AONT’s the adversary has to
“decide in advance” which (s —¢) bits of the (secret part of) the output he is going to
observe. This is captured by requiring the security for all fized sets L of cardinality ¢.
While interesting and non-trivial to achieve, in many applications the adversary po-
tentially has the power to choose which bits to observe adaptively. Namely, the choice
of which bit(s) to observe next may partially depend on which bits the adversary has

already observed. For example, if a secret is a large document, the adversary may
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try to first steal the first couple of pages that have the table of contents. Based on
that, the adversary will know which parts of the document are really important, and
then target his attention to stealing the few “important” pages, whose identity the
adversary would not know if he could only steal several pages “in one shot”. Taken to
the most extreme, we can allow this adaptive adversary to read the bits of the secret
“one-bit-at-a-time”, as long as he misses at least ¢ bits.

As before when talking about ERF’s, we will capture this by having an ¢-bounded
adversary A, who will have oracle access to a string y = (y,,y,) (which could be
generated by some probabilistic experiment). A can read entire “public” part y, and
is allowed to adaptively read all but some ¢ bits of the “secret” part y, one-bit-at-a-

time (possible based on his regular input). As before, we denote such an adversary

by AY(-).

Definition 14 A randomized polynomial time computable function T : {0,1}F —
{0,1}5x{0,1}? is a (perfect, statistical or computational) adaptive (-AONT (adaptive

all-or-nothing transform) if

1. T is efficiently invertible, v.e. there is a polynomial time machine I such that

for any x € {0, 1}* and any y = (y1,y2) € T(x), we have I(y) = x.

2. For any x, 1 € {0,1}* and any (-bounded adversary A,
‘Pr(AT(xO)(xo,xl) = 1) — Pr(AY@) (59, 2) = )| <e

where

e In the perfect setting € = 0.
e In the statistical setting ¢ = negl(s + p).

e In the computational setting € = negl(s + p) for any PPT A.

Equivalently, in the above definition we can have A adaptively examine some bits

of T'(z;) to determine at least something about a randomly chosen i. And if T is
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an (-AONT, no /-bounded A would succeed in predicting ¢ correctly with probability
significantly more than 1/2.

Again, we observe that in the perfect setting this definition is equivalent to that
of an ordinary perfect /-~AONT. Thus, adaptivity does not help the adversary in the
perfect setting (because the definition of a perfect AONT is by itself very strong!). As
with ERF’s, however, in the statistical and computational settings there is a very big

difference between the adaptive and the non-adaptive notions.

AONT’s vs. ERF’s. The notions of ERF and AONT are closely related with the
following crucial difference. In ERF, the “secret” is a (pseudo) random value f(r).
ERF allows one to represent this random secret in an “exposure-resilient” way by
storing r instead. Thus, the security is “average-case”, which allows us to have a
deterministic f. In AONT, the secret is an arbitrary x, which can be represented in
an “exposure-resilient” way by storing 7'(z) instead. Thus, the security is “worst-
case”, and, as a result, AONT must be randomized. To summarize, ERF allows one
to represent a random secret in an exposure-resilient way, while AONT allows this for
any secret. We remark that ERF’s can be much more efficient that AONT’s for the
case of (pseudo) random secrets; for example, we will show that in the computational
setting we can store the value r that is shorter than the length of the actual secret
f(r), which is impossible to achieve with AONT’s due to their invertibility. These
issues are summarized once again in Table 3.1 (see also Figures 1-1 and 1-2).

We also remark that perfect AONT’s and ERF’s are related even more closely, with

AONT being more general. See Section 5.1 for more on this relation.

AONT’s vs. ERROR-CORRECTING CODES. It is also interesting to compare the no-
tion of an AONT with a somewhat opposite notion of an error-correcting code (ECC).
Recall, an error-correcting code of minimal distance 2d deterministically stretches k
input bits to n output bits (called the encoding of the input), such that erasing any
d bits of the output still allows one to recover the k-bit input. In particular, ob-
serving any (n — d) bits of the output allows one to recover the input. Thus, the

larger the distance 2d is (and one always tries to maximize the distance when con-
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Issue AONT’s ERF’s

Secret Any z (pseudo)Random ERF(r)

Store AONT (z) Random r
Function (must be) Randomized Deterministic
Security “Worst-Case” “Average-Case”
Length |AONT (z)| > |z| Can have |r| < |ERF(r)]
Common Store secret in an “exposure-resilient” way

Table 3.1: Comparison of AONT’s and ERF’s.

structing ECC’s), the less “exposure-resilient” the ECC is. And this is what we want
from ECC’s, since their main use is to tolerate a lot of errors in the encoding. In
contrast, the objective of an AONT is to give no information about the input when
one misses just few bits of the output. Namely, missing any few bits of the (secret
part of the) output gives no information about the input. Thus, a good AONT would
be terrible for error-correction purposes and vice versa. Curiously enough, though,

in Section 5.1.1 we will construct perfect AONT’s using some good ECC’s.

3.4 Applications of AONT

In the applications below, let = be the “secret entity” (clear from each application),

T be an (-AONT and y = (y1, y2) < T'(x).

PARTIAL KEY EXPOSURE. This is our original motivation. Given a secret x, our can
store y instead. This way, the adversary who can learn all but ¢ bits of (the secret
part of) y has no information about the “actual” secret x. This works for secrets of
arbitrary structure and applies as a black-box to any cryptographic application. The
price we pay is a slight storage blow-up (which is inevitable since we should be able

to recover x from y), and the computation of x from y that we have to perform when
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we use x. If the underlying AONT is efficient and not very long, while the application
is very “intensive”, this extra-work will not be significant, but the system becomes

“exposure-resilient” .

GRADUAL KEY EXPOSURE OF ANY KEYS. This is a similar scenario to the gradual
key exposure of random key, that was considered in Section 3.2. There two parties
wanted to maintain a common random key despite the adversary learning more and
more bits of whatever we store (but doing so at a limited rate). We presented a
solution to that problem where the parties synchronously update their current key
using a good ERF. Now assume that one party (this clearly extends to more parties)
has a particular secret x, and the adversary, as before, can learn more and more bits
of the secret, but at a bounded rate. We do not want to ever change = despite this
capability of the adversary. As in the regular key-exposure setting above, we simply
store the AONT y of z. However, after there is a danger that the adversary knows all
but ¢ bit of (the secret part of) y, we erase y and store a brand new AONT ¥ of z,
and so on. In other words, we store a brand new AONT of x for the period of time
when it is safe, and then simply redo it from scratch. Again, we choose our secret x
only once and maintain it for an arbitrarily long period of time!

Notice the differences with the solution for the shared random keys. There we kept
changing our current key, while maintaining it pseudorandom. Since the key changes
over time, this makes sense only for two or more parties, and the difficulty was for
the parties to synchronously do “the same thing”, so that they still share the same
(pseudorandom) secret. Here the philosophy is not to ever change a specific secret x
despite the gradual key exposure. Thus, it makes sense even for one party and does
not require any synchronization: the parties can apply the AONT to x independently
with different local randomness and at different times. In particular, we can solve the
gradual key exposure for random secrets using the same methodology and without
ever (synchronously) changing the (random) secret.

On the other hand, the solution for shared secret keys can also be easily modified

to solve gradual key exposure of any secret x (even for one player). Namely, we
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noticed in Section 3.2 that the solution allowed us to maintain a random secret r that
keeps changing (while staying pseudorandom), but the adversary has no information
about the “current” r. Well, in addition to “storing” this r, we also store x @r (which
allows us to reconstruct x from r and x@r). Moreover, x @1 can even be made public.
Now, each time we change r we also change x @ r accordingly. Despite conceptually
being slightly more difficult than the solution using AONT’s, it has the advantage of
being randomness efficient. In other words, after we select the initial random bits to
store r, we do not need any more random bits (e.g., to compute a brand new AONT)

in order to “maintain” z.

ENHANCING THE SECURITY OF BLOCK CIPHERS. This was the original motivation of
Rivest [51]. Rivest observed that typical encryption schemes (e.g., most block ciphers)
have a fixed “block length” ¢ that they operate on. In other words, a (potentially long)
message x is split into blocks of size ¢ and each block is encrypted (independently, or
in some kind of “chain” mode). Unfortunately, in most such schemes it is possible
to recover a block of the original message by correctly decrypting a single block
of the ciphertext. As a result, the most typical attack on such block ciphers is a
brute-force attack. The adversary goes through all the keys and tries to decode
the encryption block corresponding to a block of the priginal message. If he gets
something “meaningful”,® he knows that the key is correct and breaks the whole
cipher (in particular, decrypts the whole message by only looking at a single block).

Informally speaking, AONT’s seem to allow us to slow down this brute-force attack
by a factor equal to the number of blocks b. In particular, it forces the adversary
to look at all the blocks. Namely, we first transform x by applying an AONT into
y = (y1,y2). We then send the public part yo “in the clear”, and apply the standard
block-by-block encryption to the secret part y;. The recipient simply decrypts all
the blocks and recovers x by inverting the AONT. Now, unless the adversary tries

to decrypt all the blocks, no information about x is revealed. Hence, the brute-force

3In practice, it typically very easy to see if the decryption makes sense. Alternatively, the
adversary often can make the system encrypt some message that adversary knows. Then he knows
the decryption and simply tries all possible keys until a match is found.
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Figure 3-4: AONT’s to enhance security of block ciphers.

attack is indeed slowed down by the factor of b, without changing the size of the
secret, key. This is particularly important when the key length is constrained by
the underlying application to be only marginally secure, making it feasible for the
adversary to go through all the keys. This paradigm is illustrated in Figure 3-4.
Desai [21] looked at Rivest’s suggestion from a formal standpoint. On the one
hand, he formally defined the notion of “non-separability of keys” which models the
adversary’s inability to gain any information about the secret key without decrypting
every block of the ciphertext. On the other hand, Desai observed the the “standard”
notion of the AONT does not seem to suffice (if used as suggested above) in order to
achieve non-separability of keys. For example, if the AONT’s has a lot of redundancy*,
by decripting a block of the cyphertext it might be easy to tell if the decryption is
part of the AONT’s output or not. If it is not, the adversary knows that the key he

is examining is incorrect, and can move to the next key very quickly. On a positive

“which a good AONT should not have, since this decreases its exposure-resilience.
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Figure 3-5: AONT’s to enhance efficiency of block ciphers.

side, Desai proves that if one uses slightly stronger notion of an AONT (roughly, the
output of the AONT in inistinguishable from a random string), the resulting block
cipher indeed enjoys non-separability of keys.

We remark on extra flexibility of not restricting ourselves to using a secret-only
AONT. Indeed, now the length of y; could be much smaller than the length of x
(which is impossible for a secret-only AONT), but much larger than ¢. This way
we need to perform fewer encryptions/decryptions, while the security is much higher

than earlier. For more efficiency considerations, see the next application.

ENHANCING THE EFFICIENCY OF BLOCK CIPHERS. This is a “dual” application to
the above proposed by Matyas, Peyravian and Roginsky [41]. As before, instead of
splitting x into blocks, we compute the AONT y = (yy,y2) of x and send the public
part y, in the clear. Now, however, we encrypt only one (arbitrary) ¢-block of y; and
send all the other bits of y; in the clear. The recepient decrypts the single encryption

and recovers x as before. This paradigm is illustrated in Figure 3-5.
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If the encryption is really secure, the adversary gets no information about x un-
less he decrypts the single encrypted block. As the result, we securely encrypted a
long message by performing an actual enctypion of only a single short message (of
length ¢). This is particularly useful in several situations. The obvious such situa-
tion is when the “base” block encryption is slow or expensive to perform. Another
such situation is when the base encryption greatly expands the output (in particular,
significantly more in proportion to the AONT) [52]. This way the overall output of
our encryption will be considerably less than before. Yet another situation is that of
remotely keyed encrypion, when the part of the system that contains the secret key is
separate (for example, it resides on a smartcard), and bandwidth considerations make
it prohibitive to send the entire long message to be encrypted block by block [14, 37].
Now, irrespective of the length of x, the system needs to encrypt a single short block
which dramatically reduces the communication. This is illustrated in Figure 3-6.°

Comparing the latter two applications, there is a clear efficiency /security tradeoff
that we can exploit if we use AONT in the manner suggested above. The more
blocks of y; we encrypt, the more secure the system is (where in any event it is at
least as secure as the original “naive” block cipher), but the less efficient the system
potentially becomes (where in any event it is almost as efficient as it used to be).
However, essentially any setting of parameter (provided we use a good AONT) will
imporve both the efficiency and the security.

We also remark that these applications require computational AONT’s. Indeed,
they only make sense when ¢ is smaller than the length of the original message x, and

we will show that this is possible only in the computational setting.

“CHAFFING AND WINNOWING”. Another interesting way to encrypt the data using
an AONT and a special kind of message authenticaion code (MAC) way suggested
by Rivest [52]. Namely, assume that the sender and the recipient share a very short

authentication key, which is used by the sender to authenticate the messages sent to

®We remark that Bellare and Boldyreva [4] made a formal “sanity check” and showed that if
we use a semantically secure encryption scheme to encrypt a block of the AONT(x), the resulting
scheme remains semantically secure.
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Figure 3-6: AONT’s to perform remotely keyed encryption.

the receiver. In other words, the sender applies some hash function (MAC) to the
message and the short secret key to get a “tag” for the message. It then sends in
the clear the message and the tag. The recipient can then verify that the tag really
corresponds to the message. On the other hand, we require that the eavesdropper
can neither generate a tag for a given message, nor (which is more important here)
verify if a given tag corresponds to a given message. Very efficient MAC’s satisfying
these properties exist (e.g., [5, 12, 6, 27]), and, in fact, any pseudorandom function
(PRF) will work as well.

As before, we apply an AONT to our message x, send the public part in the clear,
and split the secret part into b blocks of length ¢. Call these block vy,...,v,, and
let t; = tag(v;). The sender picks b random blocks v],...,v; and makes “bogus”
tags t],...,t, which the adversary cannot tell apart from the correct tags, but the
recipient can. Now, for each i the sender sends (in random order) both (i, v;,¢;) and
(i,v},tl). The recipient can “throw away” all the random blocks (since their tags

) ) Y

do not check) and recover the message by inverting the AONT. The adversary, on
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the other hand, has 2° choices of which subset of blocks is “relevant”. It sounds
plausible that unless the adversary tries the unique correct combination, he obtains
no information about the message. This suggested encryption is interesting in a sense
of not performing a “conventional” encryption, and sending all the information “in
the clear” (the problem for the eavedropper is to tell which information is “relevant”).

While an interesting suggestion that might be useful in practice, it was observed
by Bellare and Boldyreva [4] that the security of this encryption does not seem to
follow from the mere definition of an AONT. On the other hand, they showed that if
Rivest’s suggestion is applied on the bit-wise rather than the block-wise level (which
was also one of the suggestions of Rivest), this will indeed produce a good encryp-
tion. More specifically, we send in the clear all the blocks wvs, ..., v, except for the
first block v;. We then split v; into individual bits and for each such bit ¢ send
(c,tag(c)), (1 — ¢, “garbage”) in random order. Viewed from a different angle, this
is yet another application of the paradigm of Matyas [41] to apply an AONT to the
message and to encrypt only the first block (see Figure 3-5). In this case the encryp-
tion of the first block is performed by using Rivest’s “chaffing and winnowing” (which

was shown to be a semantically secure encryption by Bellare and Boldyreva [4]).

GAP SECRET SHARING. This connection was noticed by Rivest [51], even though for
a much weaker definition of an AONT. Consider an -AONT with public output of
size p and secret output of size s. We can interpret this as being a kind of “gap” secret
sharing scheme. For some secret x, we apply the AONT to obtain a secret output y;
and a public output ys. Here, we think of y, as being a common public share that is
being unprotected. We interpret the bits of y, as being tiny shares that are only 1 bit
long, with one share given to each of the s parties. We are guaranteed that if all the
players cooperate, by the invertability of the AONT they can recover the secret x. On
the other hand, if (s — ¢) or fewer of the players collude, they gain “no information”
about the secret. We call this a “gap” secret sharing scheme because there is a gap
between the number of players needed to reconstruct the secret and the number of

players that cannot gain any information. Note that such a gap is unavoidable when
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the shares are smaller than the security parameter. Notice also that by splitting
(in an arbitrary way) our s 1-bit shares into n = s/¢ groups of size ¢ each, we get
a traditional (n — 1,n)-secret sharing scheme, where all n participants can recover
the secret, but no information is leaked even if one ¢-bit share is missing. While it is
quite easy to construct such “threshold” schemes (especially, (n— 1, n)-secret sharing;
e.g., [54, 38]), our setting is considerably more difficult since the shares are only 1-bit

long, and we should be secure against any coalition of (s — ¢) players.

SECURE COMMUNICATION. This application is similar to the application of the ERF’s
for establishing a shared random key in Section 3.2. As in that case, Eve learns some
of the bits that Alice sends to Bob, Alice knows that he learns at most a fraction ¢ of
the bits, but does not know which. To send a k-bit message x, Alice simply applies
an AONT to z and sends the result y to Bob. Bob recovers x by inverting the AONT.
Eve, on the other had, gets no information about z provided ¢/s < 1 — ¢ (where s is

the length of the secret part of the AONT).

SIMULTANEOUS AND FAIR MESSAGE EXCHANGE. This informal application was sug-
gested by Boyko [16]. Assume Alice and Bob want to simultaneously exchange secrets
x, and xp of the same length over an asynchronous communication channel. However,
none of them wants to send his or her secret first. Here we assume that the players are
honest except they can stop the protocol at any point of their choice. Alternatively,
one can think that there is a danger that the communication channel is not reliable
and may fail at an arbitrary point during the protocol. Thus, Alice and Bob do not
want to have a point in the protocol where one of them reveals significantly more
about his or her secret than the other. Here is a nice solution using AONT’s. Alice
and Bob compute AONT’s of their secrets: y, = T'(z,), y» = T'(zp). They exchange
the public parts first in any order. Then they start exchanging the secret parts of
Y, and y, bit by bit. Assuming informally that the only attack on the AONT is the
exhaustive search over the bits not yet received, at any point the search space of Alice

and Bob differ by at most a factor of 2.
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Chapter 4

Exposure-Resilient Functions (ERF)

In this section we give constructions of exposure-resilient functions (ERF’s). First,
we describe perfect ERF’s and their limitations. In particular, ¢/ must be at least
n/2 for k > logn. Then, on our way to building computational ERF’s with very
strong parameters, we build statistical ERF’s, achieving essentially the best possible
parameters (i.e. ¢ ~ k for any k) and surpassing the impossibility results for perfect
ERF’s. This construction is perhaps our main technical contribution and uses strong
randomness extractors defined is Section 2.7. The construction also demonstrates an
exponential separation between perfect and statistical ERF’s. Indeed, in the perfect
setting we are limited to have ¢ > n /2, while here we can achieve ¢ ~ k, which can be
just slightly super-logarithmic! Finally, we show how to combine our statistical con-
struction with standard pseudorandom generators to construct computational ERF’s
(from n to k bits) based on any one-way function that achieve any ¢ = (n¢) and
any k = poly(n) (in fact, we show that such ERF’s are equivalent to the existence of
one-way functions). Our main results about ERF’s are summarized in the following

theorem:
Theorem 7 Assume { > n® (for some arbitrary € > 0). Then
1. There is no perfect (-ERF f:{0,1}™ — {0, 1}* with ¢ < n/2 and k > logn.

2. There exist statistical (-ERF’s f : {0,1}" — {0,1}* with k = ¢ — o(¢), and no
statistical (-ERF’s with k > ¢.
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3. If ¢ < k < poly(n), computational (-ERF’s f : {0,1}" — {0,1}* exist iff one-

way functions exist.

We will also consider a more challenging question of constructing adaptive ERF’s.
We mentioned that in the perfect setting they are equivalent to ordinary ERF’s. It
will also be clear that we can construct computationally secure adaptive ERF’s from
statistically secure adaptive ERF’s in the same way as for ordinary ERF’s (using
pseudorandom generators). Therefore, the main difficulty in constructing adaptively
secure ERF’s will be in the statistical setting. Unfortunately, our statistical constru-
cion of ordinary ERF’s will not work in the adaptive setting. However, we show a
very efficient probabilistic construction of statistical adaptive ERF’s. Namely, we will
construct an efficiently samplable and computable family of functions, such that a
random function in this family will be a good statistical adaptive ERF with over-
whelming probability. Once this function is chosen, it never has to be changed again
and can be published. Similar to the non-adaptive setting, we will be able to achieve
essentially optimal £ = k even in the adaptive statistical setting. Overall, we show the
existence as well as an efficient probabilistic construction of optimal adaptive ERF’s
(with essentially the same parameters and implications as in the non-adaptive case

summarized in the theorem above).

4.1 Perfect ERF

Here we require that ([r]z, f(r)) = ([r]z, R). Since the distributions are identical,
this is equivalent to saying that no matter how one sets any (n — ¢) bits of r (i.e.
sets [r|z), as long as the remaining ¢ bits of r are set at random, the output f(r)
is still perfectly uniform over {0,1}*. This turns out to be exactly the notion of the
so called (n — {¢)-resilient functions considered in [20, 10]. As an example, if k£ = 1,
the exclusive OR of all n input bits is a trivial perfect 1-ERF (or an (n — 1)-resilient

function). As we will see, for larger values of k it is much harder to construct perfect

ERF’s.
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4.1.1 Construction

Using binary linear error correcting codes (see Section 2.6), one can construct the

following perfect ¢(-ERF.

Theorem 8 ([20, 10]) Let M be a k x n matriz. Define f(r) = Mr, where r €
{0,1}™. Then f is a perfect (-ERF if and only if M is the generator matriz for a

binary error-correcting code of distance d > n — €+ 1.

Proof: Every codeword is a linear combination of some rows of M (i.e., codewords
are of the form u" M for u € {0,1}*). The distance properties of the code imply that
the rows of M are linearly independent, and furthermore that every non-trivial linear
combination of the rows creates a codeword of Hamming weight at least d (i.e., having
at least d non-zero coordinates). Hence, even after removing any (d — 1) columns of
M, the resulting £ “punctured” rows of M are still linearly independent (as they
cannot produce the zero vector). Therefore, the remaining n — (d — 1) columns have
rank k and, as such, span the entire {0, 1}*. In other words, the code generated by M
has distance d if and only if any (n — d + 1) columns of M span {0, 1}*.

Now assume that the adversary reads some (n — ¢) bits of a randomly chosen
r € {0,1}". This means that Mr is equal to some particular vector yo (known to the
adversary) plus the “punctured” matrix M’ (obtained by removing (n—¢) columns of
M) multiplied by a random ¢-bit vector r' (formed by ¢ random bits of  not observed
by the adversary). Then f is an (-ERF if and only if (yo + M'r') is random in {0, 1}*
which happens if and only if M’ has full rank k. Thus, f is an (-ERF if and only if
any { columns of M span {0,1}*. The lemma follows by comparing the above two
equivalences. [

Applying this result to any asymptotically good (recall, this means n = O(k) and
d = Q(n)) linear code (e.g., the Justesen code), we can get £ = (1 —e)n, k = dn,
where € and § are (very small) constants.

Recall also that by the Singleton bound, we have (for any code) k < n —d + 1.
Thus, we get k <n—(n—¢+1)+ 1=/, as expected. Also, it is known that d < n/2
for k > logn. This implies that we are limited to have ¢ > n/2. On the other hand,
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we mentioned in Section 2.6 that at the expense of making n large compared to £,
we can achieve £ = n — d + 1 to be arbitrarily close to n/2, but can never cross it.
We show now that this is not a limitation of our particular construction, but rather

an inherent limitation of perfect ERF’s.

4.1.2 Strong Impossibility Result

We observe that perfect /-ERF can potentially exist only for £ > k. Optimistically, we
might expect to indeed achieve ¢ = O(k). However, already for k = 2 Chor et al. [20]
show that we must have ¢ > n/3, i.e. at least third of the input should remain secret
in order to get just 2 random bits! Friedman [28] and later Bierbrauer et al. [11]

generalized this result to any k& showing that

Theorem 9 ([28]) If f:{0,1}"* — {0,1}* is a perfect (-ERF, then

k-1 1 »n n
(>14n- 2 2o 4.1
T 2+< 2(2k—1)> (4.1)

n

5, 0 at least half of the input has to remain

In particular, for k > logn we get £ >

secret!

We remark that this result of Friedman was a big breakthrough, affirmatively
resolving a famous conjecture posed by [20]. In Section 5.1 we will non-trivially
extend this impossibility result to a much more general setting of perfect AONT’s.
But now we illustrate its tightness. Notice, the bound in Equation (4.1) changes
non-trivially only for k£ < logn. For k > logn the bound stays around ¢ > n/2. This
is not surprising, since we can indeed essentially achieve it by using Theorem 8 with
a binary code of distance arbitrarily close to n/2, say d = n(3 — §). Such codes exits
and can achieve k as large as nd?. And in any event, for k > logn we have £ > n/2
which is quite a strong lower bound. Therefore, it suffices to show the tightness for
k <logn, and we start from k ~ logn; namely, n = 2¥ — 1. In this case we show the

tightness by applying Theorem 8 to the Hadamard code introduced in Section 2.6.

The Hadamard code indeed stretches from k bits to n = 2% — 1 bits and has distance
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2%=1 By Theorem 8, we get

ok=1 _ 1

l=n—d+1=2F_—1-92F141=01_-1 R
n + + +n ST

matching the bound in Equation (4.1). We remark on the explicit form of this function
f {0,121 — {0,1}%. For i = 1...k, let B; be the subset of all j € [n] whose
i-th digit in their binary expansion is equal to 1. Then the i-th bit of f(ry,...,r,) is

simply @jep,r;.

For smaller k, i.e. k < logn, split the n input bits into n/(2¥ — 1) blocks of size
(28 —1).} We apply the above (2871)-ERF to each of the blocks, and output the XOR,

n
2k —1

of the results. Now, if the adversary misses 1 + - (2¥71 — 1) input bits, he misses
251 bits from at least one of n/(2% — 1) blocks. Therefore, the entire k-bit output of

this block is random, and thus, the overall XOR. Hence,

Lemma 5 ([20]) For k < logn, there exist (optimal) perfect (-ERF’s f : {0,1}" —

{0, 1}*, where
211 n

n
“””'ﬁ‘f(“%)

4.2 Statistical ERF

We saw that perfect ERF cannot achieve ¢ < n/2. Breaking this barrier will be crucial
in achieving the level of security we ultimately desire from (computational) ERF’s. In
this section, we show that by relaxing the requirement only slightly to allow negligible
statistical deviation, we are able to obtain ERF’s for essentially any value of ¢ (with
respect to n) such that we obtain an output size k = Q(¢) (in fact, even ¢ — o(¢)).
Note that is is the best we can hope to achieve (up to the lower order term) in the

statistical setting due to the following simple lemma:

Lemma 6 Assume f:{0,1}" — {0,1}* is a statistical (-ERF with statistical devia-

tion € < % Then ¢ > k.

'Here we assume for simplicity that (2% — 1) divides n. If not, we have to take “floors”.
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Proof: Assume ¢ < k. Take any L, say L = [¢|]. We describe a simple (compu-
tationally unbounded) distinguisher D which distinguishes ([r]z, f(r)) from ([r]z, R)
with probability at least % > ¢, a contradiction. Given ([r|z, B), D tries all possible
2¢ completions ' for r, and for each of them checks if f(r') = B. If the equality
holds at least once, D accepts. Clearly, D always accepts when B = f(r), as he
will eventually try ' = r. If B = R, a random string of length k, D succeeds with
probability at most 267 < %, since there are at most 2¢ possible values f(r') that he

tries. The claim follows. ]

We notice that our result (achieving k& = Q(¢) or even ¢ — o(¢)) is indeed quite
surprising. It says that if » € {0,1}" is chosen at random, no matter which (n — ¢)
input bits of r are observed, the value of f(r) (which is k& = Q(¢) bits long) is
statistically close to the uniform distribution over {0,1}*. For example, no non-
trivial function of the output bits can depend on only (n — ¢) input bits. We see that
we need some very special machinery to solve this problem. It turns out that we need

strong extractors, as defined in Section 2.7.

4.2.1 Intuition

The intuition behind our construction is as follows. Notice that after the adversary
observes (n — ) bits of the input (no matter how it chose those bits), the input
can still be any of the 2¢ completions of the input with equal probability. In other
words, conditioned on any observation made by the adversary, the probability of any
particular string being the input is at most 27¢. Thus, if we apply a sufficiently good
extractor to the input, we have a chance to extract almost ¢ bits statistically close to
uniform — exactly what we need. The problem is that we need some small amount
of true randomness to select the hash function in the extractor family. However, if
this amount of randomness is small enough (say, sufficiently smaller than ¢, call it d),
we can take it from the input itself! Hence, we view the first d bits of r (which we
will call i) as the randomness used to select the hash function h;, and the rest of r

we call z. The output of our function will be h;(z). Then observing (n — £) bits of r
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264 equally likely possible values of o (since |i| = d). Now, provided

leaves at least
our extractor is good enough, we indeed obtain k & (¢ — d) bits statistically close to
uniform (in particular, if d = o(¢), we will get k = ¢ — o({)!).

A few important remarks are in place before we give precise parameters. First, the
adversary may choose to learn the entire i (i.e. it knows h;). This is not a problem
since we are using a strong extractor, i.e. the output is random even if one knows
the true randomness used. Secondly, unlike the perfect ERF setting, where it was
equivalent to let the adversary set (n — f) input bits in any manner it wants, here
the entire input (including ) must be chosen uniformly at random (and then possibly
observed by the adversary). For example, Kurosawa et al. [39] consider almost (n—/)-
resilient functions, which are “in between” perfect and statistical /-ERF’s. And the
distinction was exactly this: they required that for every setting of the (n — £) bits
of r, the value f(r) is statistically close (in fact, even slightly stronger that this) to
random when the remaining ¢ bits are chosen at random. In our case, this has to
happen only “on average” over the setting of (n — /) bits known to the adversary.
Partially because of that, the construction of [39], while somewhat better than the
construction of perfect ERF’s given in Theorem 8, still requires ¢ > n/2.2 We, on the

other hand, are able to achieve essentially optimal ¢ = k + o(k).

4.2.2 Construction using Strong Extractors

Theorem 10 Assume H = {h; : {0,1}" — {0,1}* | i € {0,1}¢} is a strong (m,¢)-
extractor, and assume

m+d</ (4.2)

Then there exist efficiently computable statistical (-ERF’s f : {0,1}" — {0, 1}* with

statistical deviation €.

Proof: Define f : {0,1}" — {0,1}* as follows. Given r € {0,1}", let i € {0,1}¢
be the first d bits of r, and let = € {0,1}" be equal to r except the first d bits of

2Nevertheless, we later show in Section 4.4 that one can have almost (n — £)-resilient functions
with ¢ ~ k, substantially improving the results of [39] (but our construction is probabilistic).
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Figure 4-1: Statistical ERF from a Strong Extractor.

are fixed to 0 (we call the last (n — d) bits of « the valid bits of z). Let f(r) = hy(x).
This simple construction and the sketch of its analysis are illustrated in Figure 4-1.
We now argue that f is an (-ERF with statistical deviation . Pick any L € {;}.
Let r be chosen at random from {0,1}", and define 7 and = as above. Notice that
i and = are independent since we set the first d bits of x to 0. Assume we give the
adversary A the value [r];. Let w be the valid bits of x in L (i.e., unknown to A),
and z be the remaining valid bits of v (i.e., deducible from [r]z). Notationally we will
write = w o z. First, since there are (n — d) valid bits of x and at most (n — /) of
them could be given in [r|z, we get that jw| > (n—d) — (n—¢) = {—d > m. In other
words, A misses at least m valid bits of . Also notice that z and ¢ subsume [r]z, so

it suffices to show (recalling that f(r) = h;(x)) that for a random R € {0, 1}*,
<i7 2 hl(‘r» = <i7 Zy R>

We will show a slightly stronger statement that this holds for any fized z = zy (but

not 7). To summarize, i, w and R are chosen at random, z is set to w o zy, and we
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want to show that

<i7 hz(x» g6 <i7 R>

We are almost done now. Since |w| > m and w was chosen at random, we have
T = w o 2y has min-entropy at least m. The above result now follows from the
facts that # is a strong (m,e)-extractor family, ¢ is independent from z, and x has
min-entropy at least m. [ ]
The above Theorem gives a very simple connection between extractors and exposure-
resilient functions. Since good extractors allow us to almost achieve £ =~ m, in order
to have k =~ ¢ Equation (4.2) requires d to be very small. Thus, the most important
requirement on A is that the hash function in H should be describable by a very short
random string. Luckily, strong extractors given in Theorem 4 have this property and

yield the following result.
Theorem 11 There exist statistical (-ERF f: {0,1}" — {0, 1}* satisfying:
1. k=1/6, for any w(logn) < ¢ < n.
2. k=(1-06)¢, for any w(log’n) < ¢ <n (and any constant § > 0).
8. k=1L0—o0(l), forany w(log’n -loglogn) < ¢ < n.
Proof: We simply apply Theorem 10 to each of the three extractors from Theorem 4.

1. Take any w(logn) < ¢ < n, set m = ¢/5 and pick any negligible error ¢ such
that w(logn) <log(1l/e) < o(¢). Notice that

d+m =4(m —log(l/e))+ O(logn) + m < dbm = ¢
so we can apply Theorem 10. We get

k=m—2logl/e —O(1) > (/6
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2. Take any w(log®n) < £ < n, pick any § > 0, set ¢ = n=90%®") (e, log(1/c) =
O(log®n)), and m = (1 — 6)¢. Notice that

d+m = O(log’n +log(1/¢)) +m = O(log” n) + (1 — §)¢ < ¢
so we can apply Theorem 10. We get
k= (1—-6)m—O0(log(1/e)) = (1 = 6)*¢ — O(log®n) > (1 — 26)¢

(now replace ¢ by §/2.)

O(logn

3. Take any w(log’n - loglogn) < ¢ < n, set ¢ = n~ ), and m = ( —

O(log® nlog ). Notice that since logm < log/, we get
d+m = O((log* n + log(1/£))logm) +m < O(log> nlogt) +m = ¢
so we can apply Theorem 10. We get
k=m —2log(1/e) — O(1) = £ — O(log*nlogt) = £ — o({)

(the latter follows since ¢ = w(log? n - loglogn).)

]
Note that, in particular, in the first construction we can choose ¢ to be anything
super-logarithmic is n, which is clearly the best we can hope for (if we want to achieve
anegligible error). Indeed, otherwise we could do exhausive search in polynomial time,
so the statistical distance could not be negligible. Seen another way, we can choose n
to be essentially any size larger than ¢, providing excellent security against partial key
exposure. We also remark that we get an exponential separation between perfect and
statistical ERF’s. Indeed, by Theorem 9 in the perfect setting we were limited to have
¢ > n/2, while here we can achieve ¢ & k, which can be slightly super-logarithmic!
Finally notice that our statistical constructions (especially the last one) have es-

sentially the best possible k, since any statistical /-ERF must have k < ¢ by Lemma, 6.

86



Random Input
‘ :9: :9: e

Stat-ERF

Short (statistically)
Random Seed

Long (computationally) Random Output

Figure 4-2: Statitical ERF + PRG = Computational ERF.

4.3 Computational ERF

The only limiting factor of our statistical construction is that the output size is
(inevitably) limitted to k£ < ¢. By finally relaxing our requirement to computational
security, we are able to achieve an arbitrary output size (in addition to essentially
arbitrary exposure-resilience), by using a pseudorandom generator (PRG) as the final
outermost layer of our construction. We also show that any ERF with £ > ¢ implies
the existence of PRG’s (and thus, one-way functions), closing the loop.

We start from the following almost immediate “composition” lemma. In essense,
statistical ERF provide us with good exposire-resilience but limited output size, while
pseudorandom generators stretch short (statistically) random input into a long com-
putationally random output. By combining the two, we get optimal computational

ERF’s, which is also illustrated in Figure 4-2.

Lemma 7 Let m,n = poly(k), f : {0,1}* — {0,1}F be a statistical (-ERF and
G :{0,1}* — {0,1}™ be a PRG. Then g:{0,1}" — {0, 1}™ mapping r — G(f(r)) is
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a computational {-ERF.

Proof: Let L € {Z} Suppose there was a distinguisher D distinguishing between
A = ([r]z,G(f(r))) and B = ([r]z, R) with non-negligible advantage §, where R is
the uniform distribution on {0, 1}". By the properties of f as a statistical /-ERF, and
the fact that statistical difference can only decrease by applying a function (G in our
case), we have that A = ([r];, G(f(r))) and C = ([r]z, G(K)) are within statistical
distance £ of one another, where K is the uniform distribution on {0,1}* and ¢ is
negligible. Thus, D distinguishes C' from B with non-negligible advantage (0 —¢), as
well. Note that in both B and C the second component is independent of the first.
Thus, we can use D to distinguish G(K) from R (with advantage § — ), by simply
picking a random r € {0, 1}", and providing D with [r]z as the first component. This

contradicts the security of the pseudorandom generator G, completing the proof. m

Theorem 12 Assume one-way functions exist. Then for any ¢, any n = poly(¢) and

k = poly(n), there exists a computational (-ERF ¢ : {0,1}" — {0, 1}*.

Proof: Since k = poly({), one-way functions imply (by Theorem 2) the existence
of a PRG G : {0,1}¥/% — {0,1}*. Theorem 11 implies the existence of a statistical
(-ERF f from {0,1}" to {0,1}*/% with negligible statistical deviation. By Lemma 7,
g(r) = G(f(r)) is the desired computational ¢-ERF. u

The above result clearly provides the strongest possible computational construc-
tion we can hope to achieve: we deterministically stretch our input by an arbitrary
amount, and yet the output is psedorandom even when the adversary misses just a
tiniest fraction of input bits of his choice!

Finally, we show the “converse”, i.e. that computational ERF’s with £ > ¢ imply

the existence of pseudorandom generators (and hence one-way functions).

Lemma 8 If there exists an (-ERF f : {0,1}" — {0,1}*, for k > £ (for infinitely

many different values of ¢, n, k), then one-way functions exist.

Proof: Take any L, let r € {0,1}" and R € {0, 1}* be chosen uniformly at random,
and let A = ([r]z, f(r)), B = ([r]z, R). From the proof of Lemma 6, the statistical
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distance between A and B is at least 1/2 (intuitively, A has at most n “bits of
randomness”, while B has n — {4+ k > n + 1 “bits of randomness”). By the result of
Goldreich [30], the existence of a pair of efficiently samplable distributions that are
computationally indistinguishable but statistically far apart, implies the existence of

pseudorandom generators, and hence one-way functions. [

Theorem 7 now follows by combining Theorem 9, Theorem 11, Lemma 6, Theorem 12

and Lemma 8.

4.4 Adaptively Secure ERF

We now address the question of constructing adaptively secure ERF’s, where the ad-
versary can adaptively decide which (n — ¢) bits of the input to examine. As we
have pointed out, in the perfect setting adaptively and non-adaptively secure ERF’s
are the same thing. In particular, all the limitations of perfect ERF’s still hold. On
the other hand, it is very easy to see that Lemma 7 holds in the adaptive setting as
well. Namely, if we have a statistical adaptive /-ERF f from n bits to k£ bits, and
a pseudorandom generator G from k bits to m bits, then the composition G(f(-))
is a computational adaptive (-ERF from n bits to m bits (the proof is identical to
that of Lemma 7). Since in the statistical setting we will be able to achieve ¢ ~ k
(at least existentially), we would get computational adaptive (-ERF’s with the same
parameters as in the regular non-adaptive setting (e.g., the anolog of Theorem 12
will hold). Thus, the main interesting setup we have to consider is that of statistical

adaptive ERF’s.

4.4.1 Statistical Adaptive ERF

We will present an efficient probabilistic construction of statistical adaptive ERF’s

with ¢ ~ k.3 In other words, we will achieve the same (essentially optimal) bound

3As an indirect consequence of our construction, we will construct the so called almost (n — £)-
resilient functions that dramatically beat the parameters achieved for these functions by Kurosawa
et al. [39]. However, our construction will be probabilistic.
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as we had with ordinary ERF’s. In particular, such adaptively secure ERF’s exist and
are very efficient to evaluate (ones we have found one). This should be contrasted
with choosing a truly random function. One can show that a truly random function
is indeed a great adaptive ERF (which is already interesting), but it would require an
exponential number of bits to store and exponential time to evaluate. In contrast,
the representation of the functions we construct will be very short, and they can
be evaluated in almost linear time in n. The only drawback, however, is that we
cannot give an explicit functon that is guaranteed to work. Rather, we give a family
of functions most of which are guaranteed to be great adaptive /-ERF, but we cannot
prove this about any specific finction in this family. In practice, however, one can
pick such a function at random once and for all, and be sure almost certainly that it

works.

VARIOUS NOTIONS OF ADAPTIVE ERF’s. Having said this, let us turn back to statis-
tical adaptive ERF’s. One can think about at least the following four scenarios for an
adaptive adversary A, stated in terms of requiring more and more from our function
f:{0,1}* — {0, 1}*. (We stress again that the adversary A below is computationally

unbounded.)

S1. r € {0,1}" is chosen at random. A can adaptively learn one-bit-at-a-time any
(n—£) bits of r, call them w. A is then given a challenge Z which is either f(r)
or a totally random R € {0,1}*. A has to distinguish between these two cases

with non-negligible advantage.

S2. r € {0,1}" is chosen at random. A is then given a challenge Z which is either
f(r) or a totally random R € {0,1}*. Based on Z, A can adaptively learn
one-bit-at-a-time any (n — ¢) bits of r, call them w. A has to distinguish if
Z = f(r) or Z = R with non-negligible advantage.

S3. A chooses any set L € {}} and any w € {0,1}"*. A requests that [r]; is set
to w. The remaining ¢ bits of r in L are set ar random. A is then given a

challenge Z which is either f(r) or a totally random R € {0,1}*. A has to
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distinguish these two cases with non-negligible advantage. Put another way, A
loses if for any L € {j} and any w € {0, 1}, the distribution induced by f(r)
when [r|; = w and the other ¢ bits of r chosen at random, is statistically close

to the uniform on {0, 1}*.

S4. A chooses any set L € {} and any w € {0,1}"“. A requests that [r] is set to
w. The remaining ¢ bits of  in L are set ar random and Y = f(r) is evaluated.
A wins if there exists y € {0,1}* such that Pr(Y = y) in this experiment does
not lie within 27%(1 & ¢), where € is negligible. Put another way, A loses if
for any L € {}}, any w € {0,1}" * and any y € {0,1}*, the probability that
f(r) = y when [r]; = w and the other ¢ bits of r chosen at random, is within

27%(1 + €) (for negligible ¢).

Our “official” Definition 12 of adaptive ERF is that satisfying scenario S2. Let us
briefly summarize the above four variants. Variant S1 allows the adversary to adap-
tively choose which (n — £) bits to learn before he sees anything else. In applications
where adaptive security is important, however, A will typically have some partial
information about f(r) through the use of the system where f(r) is the secret key.
Therefore, our definition settled for version S2, where the adversary chooses which
bits to see after he obseves the challenge (either f(r) or R). Versions S3 and S4 have
a different flavor. Here not the entire r is chosen at random. Rather the adversary
fixes any (n — £) bits of r to some string w. The remaining bits are set at random,
and we still want f(r) to be “really random”: in variant S3 to be statistically close to
uniform and in variant S4 to hit every single y € {0, 1}* with probability roughly 27F.
We can view the setups S3 and S4 as requiring that on any ¢-dimensional subcube
(i.e., the set of r satisfying [r]; = w for a fixed L and w) of {0,1}" the distribution
induced by f(r) is close to uniform in the £! and £ norms respectively.

While it is clear that version S2 is stronger than S1 and version S4 is stronger
than S3, let us show the only non-trivial implication that version S3 is stronger than
S2. Assume f does not satisfy S2. This means that if ¢ € {0,1}, 7, R are chosen at
random, Z is set to f(r) if i =0 and to R if ¢ = 1, and A is given Z, A can predict
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¢ well. In particular, this holds on average over all the random choices above. By
conditioning over the value w € {0,1}"~¢ of the ¢ positions L that A observes, there
exist some particular L € {3} and w € {0,1}"%, such that conditioned on [r]; = w
and the fact that A would choose to examine [r];, A would distinguish f(r) from
R. Therefore, in the experiment where [r]; is set to w, the remainder of r is set at
random, R is set at random, and A behaves at random as before, provided that A
chose to examine [r]; and saw [r]; = w, we would have that A distinguishes f(r)
from R (i.e., guesses 7 well). But then this L, w and “A conditioned on L and w”
contradict definition S3. In other words, when [r]; = w, the remaining bits of r are set
at random and Z is set to f(r) or R, our new adversary A’ will run A as many times
as he needs to until A finally choses to examine positions in L (and thus, necessarily
observes [r]; = w). When this happens, he outputs whatever A does for its guess,
completing the proof. To summarize this in a different way, the definition S3 requires
[ to be good for every possible L and [r];, and therefore subsumes anything that A

could possibly see in the scenario S2.

COMPARING WITH NON-ADAPTIVE ERF. We show that scenario S4 is still much
weaker than the notion of a perfect ERF (which requires € = 0, i.e. to induce per-
fectly uniform distribution on every subcube given by L and w), while scenario S1
is still much stronger than our non-adaptive notion of statistical ERF (which works
for any fized L). Thus, we really have a hierarchy of refinements between perfect and
statistical ERF’s. The first claim (about perfect ERF and those satisfying scenario
S4) is shown later in this section by being able to achieve ¢ ~ k even in the sce-
nario S4 (which is impossible with perfect ERF’s by Theorem 9). This also shows an
exponential gap between (adaptive) perfect and adaptive statistical ERF’s.

The second separation between non-adaptive statistical ERF and those satisfying
scnario S1 we argue now. We do it by noticing that, unfortunately, our construction
of statistical ERF’s in Section 4.2 (using strong extractors) does not satisfy even the
weakest adaptive notion S1. Indeed, the definition of a strong extractor requires that

the hash function is chosen completely independently of the random source. In our
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construction the randomness used to generate the hash function is part of the input.
For any fixed L, since the input r is chosen at random, the hash function A is indeed
independent from our source X (the remaining (n — d) input bits, where d is the
length of the seed to the extractor). When the adversary is adaptive, however, he
may choose to first learn the first d bits that define the hash function h. Only then
will he choose which other bits of r to read. Therefore, the source X (of min-entropy
m = { —d) that the adversary creates is dependent on the choice of the hash function
h, so we cannot say that h will extract almost m random bits. And, indeed, in all
the strong extractor families that we used, the output bits produced need not be
random if the adversary can choose the random variable X after the choice of the
hash function is made. Therefore, a new idea is needed to deal with adaptive ERF’s.
This idea will be to use d-sure (m, €)-extractors defined in Section 2.8 for a very small
0, so that with high probability out hash function works for all possible choices of the

adversary.

4.4.2 Construction using t-wise Independent Functions

As we said, we will satisfy the strongest adaptive definition S4 above. So not only
we will achieve adaptive security as stated in the scenario S2 (and our Definition 12
of adaptive ERF), but our f will actually induce an almost “perfect uniform dis-
tribution”: for each subcube given by L € {j} and w € {0,1}", the number of
preimages of every single y € {0,1}* will be within 2°7%(1 & ¢) for a negligible e.
More importantly, we will acheive the output size k = £ — o(¥).

We notice that the variant S4 was exactly the notion of ERF considered by Kuro-
sawa et al. [39], who called such functions e-almost (n — {)-resilient functions. They
give a complicated explicit construction which is slightly better than what is possible
with perfect ERF’s, but still required the adversary to miss at least half of the input:
¢ > n/2. While it might seem from that result that maybe one really cannot hope
to achieve very good parameters under such a strong definition, we show that this is
not the case; that we can achieve ¢ =~ k. However, our construction is probabilistic

(but efficient).
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Fix any L € {j} and w € {0,1}"*. Pick a random r such that [r]; = w. For
notational convenience, denote this » by X = X (L, w). Even though when we know
L and w, it is trivial to extract ¢ bits out of X, we pretend that we do not know
them and only know that X has min-entropy ¢. Then, if we apply a good enough
extractor to X, we should be able to extract almost ¢ random bits out of it. As
before, the problem with this is that we need some extra randomness to pick a hash
function from the extractor family. However, there are “only” M = (Z”) 2"t choices
of L and w. So if a random function in our extractor family can be good (with high
probability) for all these M choices, we will be done. But this is exactly the notion
of d-sure (¢, €)-extractors considered in Section 2.8!

In particular, we showed in Section 2.8 that for any family of ¢-wise independent
functions (for a high enough ¢), a random function from this family will succeed
to extract almost all the randomness from a lot of sources of min-entropy ¢. More
specifically, we can apply Corollary 3 to our situation. The number of random sources
is M = (2)2”4 < 227 all of them have min-entropy ¢, so we can achieve t =
(+log M = O(n) and k = {—(2log £+loglog M +log {+O(1)) = {—2log £ —O(logn).
Notice, however, that a-priori this only satisfies the notion S3, since it just achieves
statistical deviation from uniform equal €. But a closer look at the proof of Corollary 3
(from Lemma 3) shows that we simply take a union bound over all y € {0,1}*, so we
in fact achieve the strongest notion S4.

In fact, it will be more convenient to go directly through Lemma 3 to achieve
slightly stronger parameters, even though the above parameters are already good.
Let us set t = n/logn to be our independence index, m = ¢ to be our min-entropy,

a = 3logn, and
1 1
k=10—-2log— —logt —2a > ¢ —2log— — Tlogn
€ €

Then we get that for any w € {0,1}" * and and L € {}}, if we set [r]; = w and
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choose the remaining bits of r at random,

Pr(f(r) = y) — 5

Pr (
fer
Now we take a union bound over 2¥ possible y, and M = (2) 2"~¢ possible settings of

some (n — £) bits of r, and get the probability of error at most (},)2"~2~273" < 27",

Hence, we have shown

Theorem 13 Fiz any n, ¢ and €. Let F be a family of t-wise independent functions

from n bits to k bits, where t = n/logn and

k=10—-2log (1> — O(logn)
€

Then with probability at least (1 —27") a random function f sampled from F will be
a statistical adaptive (-ERF with error € satisfying the strongest adaptive notion S4.
Namely, for every L € {3}, w € {0, 1} and y € {0,1}*, the number of r satisfying
(7] = w and f(r) =y is within the interval 2°7%(1 £ ¢€).

Corollary 5 For any ¢ = w(logn), there exists efficient statistical adaptive (-ERF
40,13 — {0,1}F with k = € — o(0).

Notice that the parameters we achieve are even marginally better than what we
had in the statistical construction in Theorem 11. The catch is, of course, that
the latter is an explicit construction, while the former is a probabilistic (albeit very

efficient) construction. This raises the following interesting question.

Question 1 Can we explicitly construct an adaptively secure statistical ERF achiev-

ing L = k (or even having just £ <n/2)?

Notice that from an existential point of view, the result of Corollary 5 says that

such adaptive ERF’s exist (and can be easily sampled).

Remark 1 We already noticed that by applying a pseudorandom generator to the

output of an adaptively secure statistical /-ERF, we get a computationally secure
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adaptive (-ERF (with a much larger output size), obtaining a probabilistic analog of
Theorem 12. In fact, since our statistical adaptive ERF’s satisfy the strong notion S4
(actually, even notion S3 suffices for this comment), we can say the following stronger
statement about the resulting computational ERF: for any L and w € {0,1}"*, if
the adversary fizes [r]; = w, then by setting the remaining ¢ bits of r at random,
the resulting k-bit output will be computationally indistinguishable from uniform.
Following the terminology of [20, 39], we can call such functions computationally

(n — 0)-resilient.
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Chapter 5

All-Or-Nothing Transforms (AONT)

As we pointed out, no AONT constructions with analysis outside the random oracle
model were known. We give several such constructions. We start by considering
perfect AONT’s. We show that they are much more general than perfect ERF’s. Yet,
we non-trivially extend the the lower bound of Theorem 9 for perfect ERF’s and
show a more general impossibility result for perfect AONT’s. Namely, the adversary
must miss at least half of the (secret) output of the AONT. We show that the ques-
tion of constructing perfect AONT’s is equivalent to a question of finding “balanced”

4

weighted colorings of the n-dimensional hypercube, and then show that no “very bal-
anced” such colorings exist by taking a surprising recourse into quadratic forms and
Fourier analysis. Thus, similar to ERF’s, perfect AONT’s have strong combinatorial
limitations.

We then give a very simple “universal” construction of AONT’s using ERF’s (which
works in any setting and even in the adaptive case!). This yields the first construc-
tion of AONT s outside the random oracle model, and, moreover, the statistical and
computational AONT’s that we construct have essentially the best possible parame-
ters, dramatically beating the impossibility result for perfect AONT’s. In particular,
the statistical construction achieves an (-AONT with ¢ ~ k (and even a secret-only
(-AONT with ¢ = O(k)), showing an exponential separation between the perfect and

the statistical settings. The computational construction (from any one-way function)

also implies that for the interesting settings of parameters (essentially, ¢ < k), the
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existence of /~AONT’s, /-ERF’s and one-way functions are all equivalent. The other
construction we give can be viewed as the special case of the OAEP construction
of Bellare and Rogaway [8] which was shown to yield an AONT in the Random Or-
acle model [16]. Thus, this construction can be viewed as the first step towards
abstracting the properties of the random oracle that suffice for this construction to
be an AONT. Finally, we give a “worst-case/average-case” reduction for AONT’s that

shows it suffices to design AONT’s that are secure only for random wxy, x.

5.1 Perfect AONT

We first consider perfect -AONT’s and show that they have strong combinatorial
limitations. Since our main result will be an impossibility result, in this section we
will ignore the restrictions which involve efficiency of the computations, even though
all our constructions will be efficient. Thus, our lower bounds holds in a purely
combinatorial setting and under no computational restrictions, which makes them
only stronger.

First, we observe that it suffices to restrict our attention to secret-only (-AONT’s,
since the public part can be ignored. Indeed, the definition of a perfect /-AONT
T : {0,1}* — {0,1}* x {0,1}? implies that all the distributions (z,[y1]z,ye) are
identically distributed for any z € {0,1}* and L € {Z} In particular, for any fixed
72 € {0,1}7 (that is possible as a valid public part) we get that all the conditional
distibutions (x, [y1|z | y2 = yo) are the same. Let us fix any such possible g5. Then,
T':{0,1}* — {0,1}* that simply outputs a random y; such that (y;, %) € T'(x) is a
secret-only (~-AONT (it might not be efficiently computable, but we said that we do
not worry about the efficiency this section). Therefore, we restrict our attention to
secret-only (-AONT’s 7' : {0,1}F — {0,1}" (we switch from s to n for convenience),

and will typically omit the phrase “secret-only” in this section.
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5.1.1 Perfect (secret-only) AONT vs. perfect ERF

We start by showing that perfect AONT’s seem to be sufficiently more general than
perfect ERF’s. Namely, a perfect /-ERF immediately implies a perfect /~AONT, but
the converse does nor appear to hold. We will also derive an alternative definition of
a perfect AONT that will closely resemble the definition of a perfect ERF and simplify

the subsequent discussion.

Lemma 9 Assume f:{0,1}" — {0,1}* is (-ERF. Then there exists a (secret-only)
(-AONT T : {0,1}* — {0, 1} (which might not be efficiently computable).

Proof:  Given z € {0,1}*, define T(z) to be a random r € {0,1}" such that
f(r) = x. In other words, T'(z) is a random inverse r € f~1(x). First of all, such an
r always exists since f must be surjective (otherwise, f(r) cannot induce a uniform
distribution on {0,1}* for a random r). Take any L € {j}. The fact that f is a
perfect ERF means that when r is chosen at random, the conditional distribution of
f(r) given [r]z is uniform. In particular, for any = € {0,1}* and any w € {0,1}"¢
we get that the number of 7 such that [r]; = w and f(r) = z is the same (namely,
2¢=F). Therefore, the value r for T'(z) can be chosen by first choosing a random
w € {0,1}"* (which is done independently of x) and then choosing a random r such
that [r]; = w and f(r) = x. But since the adversary only observes w which was
chosen independently of z, he indeed gets no information about z from w = [r|;,

completing the proof. [

CoNsTRUCTIONS OF AONT rrOM ERF. In particular, we can apply Theorem 8 to
obtain perfect (secret-only) AONT’s. Namely, let M be the k X n generator matrix
of a linear error-correcting code of distance d. Then the following randomized trans-
formation 7" : {0,1}* — {0,1}" is an ¢-AONT, for ¢ = n —d + 1. Given z, we find
a random solution r € {0,1}" to the linear system Mr = z and let T'(z) = r. We
note that such 7' is efficiently computable. In fact, the generic solution to Mr = x is
always given by (n — k) “free bits” of r that can be set arbitrarily, while the other

k bits are fixed linear combinations of the “free bits”. Thus, 1" can be represented
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as a fixed linear transformation given by some n x (n — k) matrix P. We simply
choose (n — k) random bits ¢ (corresponding to the “free bits”) and output r = Pt.
In particular, we can achive both k and (n — /) to be (small) constant factors of n by
taking any assymptotically good code M. We can also push 7 to be arbitrarily close
to n/2 by making k significantly smaller than n (by a large constant factor), but can
never cross n/2 this way (unless k£ < logn). Finally, the upper bound of Lemma 5

holds as well.

ERF’s FROM “UNIFORM” AONT’s. We remark that perfect AONT’s seem to be much
more general than perfect ERF’s. Given a perfect AONT, one might try to define an
ERF using the inverse map I of. Unfortunately, this seems to work only in very
special cases and to fail dramatically with general AONT’s. For example, not every
r € {0,1}" has to be a possible image of some z € {0,1}* under 7', so I may not be
even defined for many r € {0,1}" (for the simplest possible example, take any AONT
and add a “dummy” 0 at the end). More generally, the probabilities that T'(x) = r
can be potentially very complicated functions of « and r (even irrational!), so even if
I was “defined” everywhere, the map I(r) has “no reason” to be an ERF.

To see this from a different angle, AONT’s constructed from ERF’s via Lemma 9
satisfy a very “regular” condition that for every = € {0, 1}* and every w € {0,1}"*
there are exactly 2% possible images r such that [r]; = w and z € T~'(r), each of
which is selected with a uniform probability by 7. We call such AONT’s uniform.
More specifically, a uniform AONT 7 : {0, 1}¥ — {0,1}" has the following form: we
partition {0, 1}" into 2* disjoint subsets S, ..., Sor, and every x € {0, 1}* is mapped
to a uniformly random element of S,. Not surprisingly, for these very strict and

special cases of AONT’s the converse of Lemma 9 holds.

Lemma 10 Assume T : {0,1}* — {0,1}" is a uniform (-AONT. Then there exists
(efficiently computable) (-ERF f:{0,1}" — {0, 1}*.

Proof: Define f(r) = I(r), where I is the (efficiently computable) inversion map
for T. Let us fix any L € {}}, pick a random z € {0,1}* and compute r + T'(z).

Uniformity of 7" implies that we induce a uniform distribution on r. The fact that T'
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is an /-AONT implies that observing [r|; gives no information on z. But this means
that we can first pick a random r, let the adversary observe [r]z, then compute
x = I(r) = f(r), and this will induce a uniform distribution on . This is exactly the

definition of an /-ERF. ]

Corollary 6 Perfect uniform (-AONT T : {0,1}* — {0,1}" emist iff perfect (-ERF
f:{0,1}" — {0, 1}F emist.

ANOTHER VIEW OF PERFECT AONT’S. We now restate the above comparison be-
tween (perfect) AONT’s and ERF’s in a slightly different way. Recall that the definition
of a perfect AONT T says that for any xg,z; € {0, 1} we have [T'(z)]z = [T'(x1)]z.
We claim that the following is an equivalent definition of a perfect! AONT (again, we

ignore the efficiency considerations here).

Definition 15 A randomized function T : {0,1}* — {0,1}" is a perfect .-AONT if
T is invertible (i.e., there is an inverse transformation I such that for any x € {0, 1}F
and any r € T(x), we have I(r) = x) and for any L € {}j} and for a randomly chosen
z € {0,1}*, R € {0,1}*, the following distributions are identical:

The definition above says that observing [T(x)]; does not give any information
about a randomly chosen x. Put another way, the conditional distribution of x given

[T(x)]f is still uniform.

Lemma 11 The above definition of perfect AONT is equivalent to the original Defi-
nition 13 of (secret-only) perfect AONT.

Proof: Assume 7 satisfies the original definition, i.e. the distributions [T'(z)|; are

all the same (irrespective of ). Call this distribution p. But then, when x is chosen

! Notice, this equivalence does not hold for the statistical and the computational settings.
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at random, the distribution of [T'(x)] is still p, so it gives no information about z.
Thus, the conditional distribution on x is the same as we started from, i.e. uniform.

Conversely, assume 1" satisfies the new definition. Take any a € {0,1}* and any
w € {0,1}"¢ that happens with non-zero probability as the value of [T'(z)]; when
x is chosen at random. Since the conditional distribution of x after any conceivable
observation w of [T'(x)]z is uniform, we know that Pr,7(z = a | [T(x)]; = w) = 27

By Bayes’ law, we can rewrite this probability as

Pr,(z = a) - Pr o ([T(7)]
Prx,T([ (1‘)]

—wlz=a) Pr([T(a)

_ gk, lt = w)
w) Pro([T'(2)

w)

ll

27k =

Iz =

Hence, we get Pry([T'(a)]; = w) = Pryo([I'(2)]; = w), which is independent of a.
This is exactly the original defintion of a perfect AONT. ]

Now given an AONT T, define the probability distribution D on {0,1}" by D(r) =
Pr,r(T'(x) = r), i.e. the probability that 7'(xz) = r when x is chosen at random from

{0, 1}".
Claim 1 The distribution D and the inverse transformation I uniquely define T'.

Proof:  Indeed, let S, = {r | I(r) = x}? be the set of images of x under T,
and let D, be the conditional distribution on r € S, induced by D (i.e., D,(r) =
D(r)/ > es, D(1') for r € S,). Then the invertibility of T and the definition of D
immediately imply that T'(z) simply samples r € S, according to the distribution D,.
Thus, we can replace T by a pair (D, I). [ ]

Also notice that the invertibility of 7" implies that if we sample r € {0,1}" ac-
cording to D and let z = I(r), we get a uniform distribution on z € {0, 1}*. Namely,
instead of sampling a random z € {0,1}* and computing r < T'(z), we can sample
r according to D and compute x = I(r). Applying this to Definition 15, we get yet
another equivalent definition of a perfect AONT, which now really resembles that of

a perfect ERF.

?Because D(r) = 0 for all r that are not images of any = € {0, 1}*, it does not really matter what
is the value of I on such “impossible” r. Say, we fix it to the all-zero string.
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Definition 16 A transformation T, uniquely given by a distribution D on {0,1}"
and a deterministic function I : {0,1}" — {0,1}* (as in Claim 1), is an (-AONT, if
when r is sampled according to D and R is chisen uniformly from {0,1}*, we have
for any L € {}}:

([r)es 1) = (s R) (5.1)

Notice that Equation (5.1) is exactly the same as Equation (3.1) in the definition
of a perfect ERF f: {0,1}" — {0, 1}*, except the uniform distribution on r is replaced
by the distribution D. Thus, we see a crystal-clear relation between perfect AONT’s
and ERF’s. For a perfect ERF we choose r uniformly at random from {0, 1}", while
for a perfect AONT we allow to have an arbitrary distribution D on r (as long as
Equation (5.1) is satisfied). In other words, in designing perfect AONT’s we have an
extra degree of freedeom in picking the distribution D in addition to the function
I:40,1}* — {0,1}*, while an ERF f : {0,1}" — {0, 1}* restricts D to be uniform.
In this latter case of D being the uniform distribution, the resulting AONT is exactly
what we called a uniform AONT earlier (where we partition {0,1}" into sets S, and
let T'(z) be a uniformly random element of S,). This again shows that ERF’s are

equivalent to uniform AONT’s (Corollary 6).

5.1.2 Impossibility Result

We have seen that ERF’s have strong limitations, given by Theorem 9, i.e. ¢ >
n/2+1—n/(2(2¥ — 1)). Moreover, this bound is tight by Lemma 5. We have also
seen that AONT’s immediately imply ERF’s with the same parameters, while the
converse holds only for very special kinds of uniform AONT’s, and does not appear to
hold in general. The natural question comes up if perfect AONT’s nevertheless share
the same combinatirial limitation as perfect ERF’s (and uniform AONT’s).

We notice that the proofs of Friedman [28] and Bierbrauer et al. [11] of Theorem 9
fail once we go to general AONT’s, since they strongly use the “uniformity” of ERF’s
accross different /-dimensional subcubes. Still, we are able to show that the exact

analogs of Theorem 9 and the bound in Equation (4.1) do hold for general perfect

103



(-AONT. In fact, we show that the only /-AONT’s that can potentially achieve these
bounds are in fact uniform. In other words, non-uniform perfect AONT’s do not
seem to bring a significant advantage, despite their generality. While a very broad
idea of our proof is the same as that of [28], our proof is significantly more involved
and requires more care. And, of course, it subsumes the result of Theorem 9 due to
Lemma 9 (i.e., that perfect ERF’s imply perfect AONT’s). In addition, Lemmas 5 and
9 show that this result is tight, and is in fact achived by a uniform AONT.

Theorem 14 If T : {0,1}F — {0,1}" is a perfect (-AONT, then

211 n n
(>14n-— ="y (1o 5.2
T 2+< 2(2k—1)> (5.2)

In particular, for n < 2F we get £ > 2, so at least half of the output of T has to

927
remain secret even if T exponentially expands its input! Moreover, the above bound

can be achieved only by a uniform ¢(-AONT.

As we will see, the proof will follow from the impossibility of certain weighted

“balanced” colorings of an n-dimensional hypercube.

5.1.3 Balanced Colorings of the Hypercube

In this section, we point out a natural relation between perfect AONT’s and certain
weighted “balanced” colorings of the hypercube H = {0, 1}". Recall that in the graph
of the hypercube two strings y, z € {0,1}" are adjacent if and only if they differ in a
single position.

For our purposes, a coloring C of a graph with ¢ colors is any map which associates
a color from {1,...,c} to each node in the graph.® In a weighted coloring, the nodes
that are colored are also assigned a non-negative real weight. Sometimes, for obvious
reasons, we will call the nodes of weight 0 uncolored, despite them having assigned

a nominal color. We will denote the weight of node y by x(y). We will also define

30ften one considers colorings such that no pair of adjacent nodes has the same color. We do
not impose such restrictions on the colorings we study.
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the weight vector x; of each color ¢ by assigning x;(y) = x(y) if y has color 4, and 0
otherwise. We notice that for any given y € H, x;(y) > 0 for at most one color i, and
also Y x; = x. A coloring where all the nodes are uncolored is called empty. Since
we will never talk about such colorings and the absolute magnitude of the weights
will not be important, we agree on the normalization condition that the sum of all
the weights is 1, i.e. >° ., x(y) = 1. A uniform coloring is the one where all the
nodes are assigned the same weight (i.e., x(y) = 27" for all y).

We will be interested in the properties of colorings on subcubes of the hypercube.
Recall that a subcube is the subgraph obtained by fixing some of the n positions
and letting the others take on all possible values. More formally, given a set of ¢
positions L € {7} and some assignment a € {0,1}"* to the remaining variables not
in L, the subcube Hp, is the set of nodes r such that r agrees with a on L, i.e.
7]z = a. Clearly, |Hy 4| = 2¢. The dimension of a subcube is ¢ = |L| — the number

of variables left unfixed.

Definition 17 We say a weighted coloring of the hypercube is {-balanced if, within
every subcube of dimension £, each color has the same weight. That is, for each L

and a, Zyeﬂm Xi(y) is the same for all colors i.

We notice that the empty coloring trivially satisfies this condition, and that is
the reason why we exclude it from our consideration. On the other hand, a balanced
coloring is allowed to contain many ¢-dimensional subcubes which are completely
uncolored (as long as not all of them are uncolored), since each color has the same

(zero) weight in such subcubes.

Remark 2 If a coloring is ¢-balanced, it is also ¢'-balanced for any ¢’ > /, since an

¢" dimensional subcube is the disjoint union of ¢/-dimensional ones.

We study balanced colorings since they capture the combinatorial properties of

(-AONT’s and /-ERF’s. We get the following equivalences.

Lemma 12 Ignoring computational efficiency, we have that the existence of the fol-

lowing are equivalent in the perfect setting:
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1. (-AONT ’s from k bits to n bits.

2. l-balanced weighted colorings of n-dimensional hypercube using 2% colors.
The following are similarly equivalent in the perfect setting:

1. uniform /-AONT ’s from k bits to n bits.

2. L-ERF’s from n to k bits.

3. uniform (-balanced colorings of n-dimensional hypercube using 2 colors.

Proof: We ignore (-ERF’s in the proof since we know that they are (combinatorially)
equivalent to uniform /-AONT’s by Corollary 6. We will also use a more convenient
Definition 16 of an .~AONT given in terms of the inverse map I : {0,1}"* — {0, 1}* and
the distribution D on {0,1}" induced by T and the uniform distribution on {0, 1}*.

Now the equivalence between AONT’s and weighted colorings is almost immediate.
The function I corresponds to assigning a color I(y) to a node y € #H, while the
distribution D corresponds to assigning a weight D(y) to a node y € H. Clearly, the
resulting coloring is uniform if and only if the AONT is uniform (i.e., the distribution
D is uniform).

It remains to check the balancedness property. But this again immediately follows
from Definition 16 of a perfect AONT. In one direction, the definition of an AONT
says that for any “non-empty” (i.e., Pryp([y|f = a) > 0) subcube H , of H, we have
that the distribution induced by I(y) conditional on y € #,, , is uniform (when y is
chosen according to D). But the conditional probability of I(y) = i is proportional to
the total weight of nodes of color 7 in this subcube. So having a uniform distribution
on I(y) is equivalent to saying that each color has the same weight in #,. The
converse direction is the same. ]

We now restate our lower bound on perfect AONT’s in Theorem 14 in terms of
weighted (-balanced colorings of the hypercube with ¢ = 2F colors (we prove the

theorem for general c).
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Theorem 15 For any (non-empty) (-balanced weighted coloring of the n-dimensional

25+ (- t)

Moreover, equality can hold only if the coloring is uniform and no two adjacent nodes

hypercube using c colors,

of positive weight have the same color.

We believe that the above theorem is interesting in its own right. It says that once
the number of colors is at least 3, it is impossible to find a ¢-coloring (even weighted!)
of the hypercube such that all /-dimensional subcubes are “equi-colored”, unless ¢ is

very large.

5.1.4 Proof of the Lower Bound (Theorem 15)

We will work in the 2"-dimensional vector space V' consisting of vectors with positions
indexed by the strings in ‘H, and will crucially use the algebraic facts about quadratic
forms and Fourier analysis described in Section 2.9. In some sense, it might appear
surprising to use real analysis to prove a combinatorial fact, but it turns out that the
balancedness property of our coloring is best utilized when we consider an appropriate
algebraic expression and bound it in two different ways.

Consider a non-empty ¢-balanced weighted coloring x of the hypercube using ¢
colors. Let x; be the characteristic weight vector corresponding to color i (i.e. x;(y)
is the weight of y when y has color i and 0 otherwise). As we will show, y;’s have
some nice properties which capture the balancedness of the coloring x. In particular,
we know that for any colors ¢ and j and for any /-dimensional subcube of H, the sum
of the components of x; and of x; are the same in this subcube. Hence, if we consider
the difference (x; —x;), we get that the sum of its coordinates over any ¢-dimensional
subcube is 0.

Now it turns out that a natural way to exploit the above property is to consider the
quantity (x; — x;) " A(xi — x;), where A is the adjacency matrix of the n-dimensional
hypercube (see Section 2.9). As suggested in Section 2.9, we can bound this quantity

by calculating the Fourier coefficients of (x; — x;) corresponding to large eigenvalues.
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We get the following lemma:

Lemma 13 For any i # j, we have

(xi — x5) TADG — x5) < 20—n—=2) - [xi — x4 (5.3)

We postpone the proof of this crucial lemma until the the end of the proof, and
now just use it to prove our theorem. First, note that the lemma above only gives us
information on two colors. To simultaneously use the information from all pairs, we

consider the sum over all pairs ¢, 7, that is

A (i —x5) Al — x) (5.4)

2
We will give upper and lower bounds for this quantity (Claims 2 and 3, respec-
tively), and use these bounds to prove our theorem. We first give the upper bound,

based on Lemma 13.

Claim 2
A<2@20-n=-2)(c=1)-> [Ixl (5.5)

Proof: =~ We can ignore the terms of A when 7 = j since then (x; — x;) is the 0

vector. Using Lemma 13 we get an upper bound:

> = x) A —x) < @0=n=2)> |lxi — Xl

2 i#]
Now the vectors y; have disjoint supports (since each y € H is assigned only one
color), so we have ||x; — x;||* = I|xil|* + ||x;||>. Substituting into the equation above,
I

we see that each ||x;||* appears 2(c — 1) times (recall that ¢ is the number of colors).

Hence we get the desired result:

D06 =) Al = x0) < (20— n=2) 20 1) - 3|l

i’j
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Second, we can expand this sum directly to obtain a lower bound.

Claim 3
A> =2 |l (5.6)

Proof: Since A is symmetric we have x;' Ax; = XjTAXi. Then:
D la—x) A0 —xi) = D ( Aa+x) Axg — 2x Axg)

2,J 2%}
= 2> X/ A — 20> X Ax;
[

Let us try to bound this last expression. On one hand, we know that y, Ay; > 0
since it is a product of matrices and vectors with non-negative entries. On the other

hand, we can rewrite the last term as a product:

S (£0) 4(2x)

This quantity, however, we can bound using the fact that the maximum eigenvalue

of Aisn (see Lemma 4 in Section 2.9). We get

(1) 4 (5] =]

Since the vectors x; have disjoint support (again, each node y is assigned a unique

2

ZXi
i

||2 —

color), they are orthogonal and so || >, x:||> = Y., |Ixi||*. Combining these results,

we get the desired lower bound:

D 0= x) A= x) 2 0=2n- > [l = =20 ) Il

()

Combining the lower and the upper bounds of Claims 2 and 3, we get

220—n—=2)(c=1)- Y [l = =20y |l
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Now since the coloring x is non-empty, we have > [|x;||* > 0. Dividing the inequality

above by this sum gives us 2(2¢ — n — 2)(¢ — 1) > —2n. This implies that

25+ ()

which was exactly what we had to prove.

Proof of Lemma 13. It remains to prove Lemma 13, i.e.

(xi —x) "A(G —x5) < (20—n—2) - ||xi — x5

By Lemma 4 in Section 2.9 and the explicit form of the eigenvalues of A (Fact 2),
it is sufficient show that all the Fourier coefficients of (x; — x;) which correspond
to eigenvalues A\, > 20 —n = n — 2(n — () are 0. In other words, that (x; — x;) is
orthogonal to all the eigenvectors v, whose eigenvalues are at least (n — 2(n — ¢)),
i.e. weight(z) < n — {. But recall that on any subcube of dimension at least ¢, the
components of (x; — x;) sum to 0! This turns out to be exactly the fact we need
to in order to show that (v,, x; — x;) = 0 whenever A\, > 2¢ — n, and thus to prove

Lemma 13.

Claim 4 For any z € {0,1}" with weight(z) <n —{ (i.e. A\, > 2{ —n), we have

<VZJX’i - X]> =0

Proof: Pick any vector z = (21,...,2,) € {0,1}" with weight(z) < n — ¢, and let
S be the support of z, i.e. S ={j:2; =1}. Note that |S| < n — (. Also, recall that

v.(y) = \/127 -(=1)*¥ (see Fact 2). Now consider any assignment a to the variables of

S. By letting the remaining variables take on all possible values, we get some subcube
of the hypercube, call it H,.

One the one hand, note that v, is constant (either 1/v/2" or —1/4/27) on that
subcube, since if y and 3’ differ only on positions not in S, we will have z-y = 2z -3/

Call this value C,. On the other hand, since the coloring is ¢-balanced and since
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|S| < n—4¢, the subcube #, has dimension at least ¢ and so we know that both colors
i and j have equal weight on #H,. Thus summing the values of (x; — x;) over this
subcube gives 0.

Using the above two observations, we can easily show that (x; — x;,v,) is 0 by

rewriting the inner product as a sum over all assignments to the variables in S:

(G —xinve) = Y valaly) —xswl= (Z vz(y)[xi(y)—xj(y)])

YyEHq

= > Ca- (Z xily) = > Xj(y)> => Co-0=0

yEHq YyEHaq

yeEH assignments a

EQUALITY CONDITIONS. As we proved Theorem 15 (and also Theorem 14), we
might wonder which colorings can meet the bound of the theorem. Interestingly,
such colorings are very structured, as we can see by tracing down our proof. Namely,
consider the lower bound proved in Claim 3, i.e. that 33, ;(xi — x;) " A(xi — xj) <
—2n Y, |Ixil|>. Going over the proof, we see that equality can occur only if two
conditions occur.

On the one hand, we must have y Ax; = 0 for all colors i. An easy calculation
shows that x, Ax; is 0 only when there is no edge of non-zero weight connecting two
nodes of color ¢. Thus, this condition implies that the coloring is in fact a c-coloring
in the traditional sense of complexity theory: no two adjacent nodes will have the
same color.

One the other hand, the inequality (>, xi) A xi) < n- || Y, x:l|* must be
tight. This can only hold if the vector x = . x; is parallel to (1,1,...,1) since that
is the only eigenvector with the largest eigenvalue n. But this means that all the

weights x(y) are the same, i.e. that the coloring must be uniform.

EXTENDING THE BOUND TO LARGER ALPHABETS. Although the problem of con-
structing AONT’s is usually stated in terms of bits, it is natural in many appli-

cations (e.g., secret-sharing) to consider larger alphabets, namely to consider T :
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{0,...,¢—1} — {0,...,¢ — 1}". All the notions from the “binary” case naturally
extend to general alphabets as well, and so does our lower bound. However, the lower
bound we obtain is mostly interesting when the alphabet size ¢ is relatively small
compared to n. In particular, the threshold n/2, which is so crucial in the binary
case (when we are trying to encode more than logn bits), becomes n/q (recall, ¢ is the
size of the alphabet). This threshold becomes meaningless when ¢ > n which is not
surprising at all, since in this case we can use Shamir’s secret sharing [54] (provided
q is the prime power) and achieve ¢ = k which is “incomparable” to n (and could be
as small as 1). We also remark that the bound we state is tight if ¢* < n and can be
achieved similarly to the binary case by using the analog of the Hadamard code over

the alphabet of size .

Theorem 16 Let T : {0,...,q — 1}¥ = {0,...,q — 1}™ be a perfect (-AONT. Then

n qg—1 n
()
q q q¢"—1

In particular, ¢ > n/q when ¢* > n. Moreover, equality can only hold only for a

uniform AONT.

Similarly to the binary case, we can also find a natural connection between such
perfect .~AONT’s and weighted ¢-balanced colorings of the “multi-grid” {0,...,¢—1}"
with ¢ = ¢* colors. And again, the bound of Theorem 15 extends here as well an

becomes

As we said, we can use the same techniques as in our previous proof, with the
following minor changes. We now work with the graph {0,...,¢ — 1}", which has an
edge going between every pair of words that differ in a single position. For arithmetic
purposes, we think of the nodes in this graph as vectors in Zg. If we let w be a primitive

t

¢"™® oot of unity in C (e.g. w = €*™/7), then an orthonormal basis of the adjacency

matrix of our graph is given by the ¢"-dimensional vectors v, for z € {1,...,¢}",
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where

v.(y) = e WY
and now z - y is the standard dot product modulo q. The eigenvalue of v, is A\, =
n(q — 1) — qj where j = weight(z) (number of non-zero coordinates).

We define x; exactly as before. Claim 4 still holds (i.e. the Fourier coefficients
of (x; — x;) corresponding to large eigenvalues are 0). Constructing upper and lower

bounds as above, we eventually get
(@0 —n—q)c—1)> lxll* > —nlg— 1)) lIxill®

which implies the desired inequality. Equality conditions are the same.

This completes our study of perfect AONT’s, and brings us back to the problem of

constructing statistical and computational AONT’s, which we do next.

5.2 Simple “Universal” Construction using ERF

We view the process of creating /-AONT as that of one-time private-key encryption,
similarly to the application in Section 3.2. Namely, we look at the simplest possible
one-time private-key encryption scheme — the one-time pad, which is unconditionally
secure. Here the secret key is a random string R of length k, and the encryption of
x € {0,1}* is just x ® R. We simply replace R by f(r) where f is -ERF and r is our

new secret. We obtain the following theorem.

Theorem 17 Let f : {0,1}* — {0,1}* be a computational (statistical, perfect) (-
ERF. Define T : {0,1}F — {0,1}" x {0,1}* (that uses n random bits r) as follows:
T(x; r)=(r,f(r)®x). Then T is computational (statistical, perfect) (-AONT with

secret part v and public part f(r) ® x.

Proof: Take any L € {}}, and z,z; € {0,1}*. We have to show that

(wo, 21, 1], f(r) © 20) = (w0, 21, [1]L, f(r) © 1)
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This immediately follows from Corollary 1 and the definition of ERF (Equation (3.1)).
u
Notice that the size of the secret part s = n and size of the public part p = k. As an

immediate corollary of Theorems 7 and 17, we have:

Theorem 18 Assume { < s < poly(¢). There exist probabilistic transformations
T : {0,1}% — {0,1}* x {0,1}* (with secret output of length s and public output of
length k) such that

1. T is a statistical -AONT with k =€ — o({), or

2. T is a computational (-AONT with any k < poly(s).

ON THE LENGTH OF THE PUBLIC PART. We notice that the length of the public
part is k — the size of the message. Having a public output length necessarily equal
to the size of the input seems to be a bit restrictive, but is actually quite natural.

We can view the public part as the

masked original message”. It takes exactly as
much space for the application as the secret x used to take, and requires no protection
(even though protection does not “hurt”). The size of the new secret part s is now a
parameter that can be chosen pretty much arbitrarily (especially in the computational
setting) depending on the level of security we desire to achieve. This level of security
is now directly proportional to the extra-space that we use. To summarize, there is a

very clear tradeoff between the amount of extra-space used and the exposure-resilience

achieved.

STATISTICAL AONT. Looking at the statistical construction, we get that k = ¢ —o(¢)
and s can be an arbitrary polynomial in ¢. For example, we can set ¢ = s to achieve
excellent exposure-resilience. The only drawback is that k¥ < £. Unfortunately, similar
to the case of ERF, this is unavoidable due to the following simple lemma, that also

shows that our statistical construction is nearly optimal up to the lower order term.

Lemma 14 If T : {0,1}* — {0,1}* x {0,1}? is a statistical {-AONT with statistical

deviation £ < %, then k < .
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Proof: The proof is very similar to that of Lemma 6. Assume k£ > (. Take
any L € {j}, say L = [{]. To show that there exist o, x; € {0,1}* contradicting
Equation (3.2), we show that Equation (3.2) does not hold for random xy and x;
by constructing a (computationally unbounded) distinguisher D who, given random
xo and x, can successfully distinguish [T'(z¢)]z from [T'(z1)]z. Given (zg,x;,w), D
simply tries out all possible 2¢ completions of w and inverts them using I. If he ever
got x1 back, he outputs 1, otherwise he outputs 0. Clearly, D always outputs 1 when w
corresponds to z;. When w corresponds to xy, there are only 2¢ possible completions,
and each can be inverted in only one way. Since z; is chosen at random for {0, 1},
the probability that any of these inversions is equal to z; is at most 2% < % Thus,

the advantage of D is at least % > ¢, a contradiction. ]

CoMPUTATIONAL AONT. As with ERF’s, the computational construction allows us
to achieve the number of missing bits, ¢, to be arbitrarily small compared to the
input length k, beating the limitations of statistical AONT’s. In essence, we can
choose pretty much arbitrary ¢ and s given the input size k. For example, we can set
¢ = s to have an excellent exposure-resilience. We can also make the total output
size N = s + k to be dominated by the input size k, if we choose s = o(k). This
seems to be the best setting from a theoretical point of view. Namely, if s = o(k) and
¢ = s, we get that the total output size is k + o(k), while the exposure-resilience is

as small as we can wish.

SECRET-ONLY STATISTICAL AONT. Observe that any /-AONT with public and secret
outputs of length p and s, respectively, also gives a secret-only ¢'-AONT with output
size N = s+p and ¢’ = {+p (since if the adversary misses ¢+ p bits of the output, he
must miss at least ¢ bits of the secret output). Let us apply this to our construction,
where p = k. In the statistical setting, we obtain ¢ = 2k+o0(k) = O(k) and essentially
any total output size N = s + k > ¢'. In fact, applying the first part of Theorem 11
to Theorem 17 and uniting the public and secret parts of the resulting /-AONT, we
get
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Corollary 7 For any w(logN) < { < N there exists a statistical secret-only (-AONT
T:{0,1}F — {0, 1}, where k = Q(0).

Up to a small constant factor (which can be made as small as 2 if we relax

¢ = w(log® N loglog V), this is the best we can hope to achieve by Lemma 14.

SECRET-ONLY COMPUTATIONAL AONT. Let us turn now to the computational set-
ting and get a secret-only AONT out of it. We see that ¢/ = ¢+ k and N = s + £k,
as before, and we can achieve essentially any N > ¢'. In particular, we can still have
excellent exposure-resilience ¢/ = N°¢, but now the output size N = (£')1/¢ > kl/e
is large compared to the input length k. Thus, if we make the total output size N
small, we have only moderate exposure-resilience, and if we want to have very good
exposure-resilience, we have to make the total output size large. As we demonstrated,
these problems disappear if we have a public part, and there is really no reason not
to. However, from a theoretic and aesthetic points of view, the following question is

important to resolve:

Question 2 Are there computational secret-only (-AONT ’s from k bits to N bits such
that N = O(k) and ¢ = N¢, for any € > 0 (or even only { = o(k))?

We do not give a full answer to this question, but reduce it to the question of

constructing a plausible function, which described in Section 5.3.

ADAPTIVE AONT. We notice that Theorem 17 easily generalizes to the adaptive
setting, where the adversary can adaptively choose which (s — £) bits of the secret
part to observe, as stated in Definition 14. This follows from the fact that Corol-
lary 1 clearly relativizes to the setting with the oracle, who can provide the adversary
any (s — ) bits of the secret output. In particular, using the efficient probabilistic
construction of adaptive /-ERF’s from Section 4.4, we get a probabilistic construction
of statistical and computational adaptive AONT’s with the same (and even slightly
better) parameters as we did in the non-adaptive setting above. For example, in the

statistical setting we can achieve adaptive /-AONT’s with ¢ ~ k, and even secret-only
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adaptive /-AONT’s with ¢ = O(k). This and Theorem 14 also show an exponential

separation between statistical and perfect adaptive AONT’s.

5.3 Towards secret-only AONT

We also give another construction of an AONT based on any length-preserving func-
tion f such that both [r — f(r)] and [r — f(r) @ r] are ERF’s. The construction
has the advantage of achieving secret-only AONT’s, while retaining a relatively short
output length, and would provide a positive answer to Question 2 if one constructs a
function f as above. It can also be viewed as the speacial case of the OAEP construc-
tion of [8] in the Random Oracle model, and can be viewed as the first step towards
abstracting the properties of random oracles that make this construction work as an

AONT.

REMOVING RANDOM ORACLES FROM OAEP. Recall that the OAEP construction
of Bellare and Rogaway [8] sets T'(z; r) = (u,t), where u = G(r) ® x, t = H(u) ® r,
and G : {0,1}" — {0,1}* and H : {0,1}* — {0,1}" are some functions (e.g.,
random oracles; see Figure 3-3). Boyko [16] formally showed that this is indeed an
(-AONT (where ¢ can be super-logarithmic in the security parameter). Let us try
to develop some informal intuition of why this construction works; in particular, to
separate the properties of G and H that are essential (and hopefully sufficient) for
this construction to be an AONT (so that we can try to replace random oracles by
constructive functions). We look at the two extreme cases.

First, assume we know u completely and miss £ bits of ¢. Then we miss £ bits of
r, since r = H(u) @ t. Note that x = G(r) ® u, so in order to “miss x completely”, G
must have the property that missing ¢ bits of G’s random input r makes the output
pseudorandom (random oracle clearly satisfies this). But this is ezactly the notion
of an /-ERF! Thus, G must be an ERF, and this seems sufficient to handle the case
when we miss ¢ bits of ¢.

Now assume that we know ¢ completely and miss ¢ bits of u. Assume for a second

that H is a random oracle. Then, since r = H(u) @ t, we are essentially missing r
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completely. But from the previous argument about GG, we know that even missing ¢
bits of r leaves x completely unknown. Thus, random oracle H achieves even more
than we need. In some sense, as long as H does not “unhide” information we miss
about u, we will miss at least ¢ bits of r. In other words, assume H satisfies an
informally stated property that missing ¢ of its input bits implies “missing” at least ¢
of its output bits. Then missing ¢ bits of v implies missing ¢ bits of r, which implies
missing entire G(r), which implies missing = completely. So we ask the question
of which H satisfy this informal property? Clearly, the easiest one is the identity

function (assuming n = k).

OUR CONSTRUCTION. The above informal reasoning has led us to analyze the fol-
lowing construction, which is a special case of the OAEP construction with n = k,

and H being the identity function.

u = f(r)dx (5.7)

t = udr (5.8)

where f : {0,1}* — {0,1}F. Thus, T(x; r) = (f(r)®x, (f(r) ®r) ® ), and the
inverse is I(u,t) = u @ f(u @ t). This construction is illustrated in Figure 5-1 (and

should be again compared with the original OAEP construction in Figure 3-3).

Theorem 19 Assume f is such that both f(r) and (f(r) @ r) are length-preserving
computational -ERFs. Then T above is a computational secret-only 2¢-AONT .

Proof: Let N = 2k be the size of the output, Ly = {1... ¢}, Ly = {¢{+1...2¢}. Take
any L € {évg} and any zg, z; € {0,1}*. It must be the case that either [LNL,| > ¢ or
|L N Ly| > ¢. Thus, it suffices to show the security when we either know ¢ completely
and miss ¢ bits of u, or when we know u completely and miss ¢ bits of t. Hence, it

suffices to assume that |L| = ¢ and consider the two cases separately.

1) L C Ly. Then we must show that

(2o, 21, [f(r) @ @olz, (f(r) ® 1) ® o) = (w0, 21, [f(r) ®an]z, (f(r) ©7) © 1)
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Figure 5-1: OAEP with H being the identity function and G being an ERF f.

Since [f(r)®x;]l; ®[f(r)®r®z;|; = [r]z (for both i =0and i =1), and (A, B,C) ~
(A,D,E) iff (A,B,C @ B) ~ (A, D, E @ D), the above is the same as

(w0, w1, [rlz, (F(r) @ 1) ® wo) = (w0, w1, [r]z, (f(r) @ 1) ® 1)

The result now immediately follows from Corollary 1 and the fact that f(r) @ r is an

(-ERF (i.e., it satisfies Equation (3.1)).

2) L C Ly. The proof is identical to above with the roles of f(r) and (f(r) ® r)
interchanged. In particular, the result follows from the fact that f(r) is an ¢-ERF. m

We note that random oracle f clearly satisfies the conditions of the above Theorem.
Thus, our analysis makes a step towards abstracting the properties of the random
oracle needed to make the OAEP work as an AONT. We believe that the assump-
tion of Theorem 19 is quite reasonable, even though we leave open the question of
constructing such f based on standard assumptions. We also remark that non-trivial

length-preserving ERF’s can exist only in the computational sense, since ¢ > k for
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any statistical ERF (by Lemma 6).

5.4 Computational AONT implies OWFs

We have seen in Lemma 14 that statistical /-AONT’s can exist only for k£ < ¢. We
now show a strong dual statement that once ¢ < k, computational /-AONT’s in fact

imply the existence of one-way finctions.

Theorem 20 Assume we have a computational (-AONT T : {0,1}* — {0,1}* x

{0,1}? where £ < k. Then one-way functions ezist.

Proof: To show that OWF’s exist it is sufficient to show that weak OWF’s exist [29]
(see also Section 2.4). Fix L = [{] C [s]. Define

9(900,901,[7:7“) = <=700,$1, [?J]L>

where y = T'(xp; 7). Intuitively, it might seem that the fact that g is a weak OWF
should follow immediately from the fact that 7" is an AONT. Namely, to invert g
on a random input the adversary needs to determine b correctly, which he cannot do
significantly better than guessing, by the security of the AONT. While this intuition
is somewhat correct in its spirit, there are some problems that have to be overcome.
First, to “successfully invert” ¢ the adversary does not have to come up with the
preimage that we “started from”. In particular, it could be that for most zg,x1,b,r
we started from, it is possible to achieve the same output with g, 1,1 — b and some
other randomness 7’ (so that the adversary does not necessarily have to produce b to
succeed). To rule out this possibility, we will use the fact that ¢ < k and that T is
wnvertible. Secondly, it will not be immeditely clear why the fact that b is hard to
guess implies that ¢ is a weak OWF, but this will follow from a careful analysis, which
we present now.

Assume that ¢ is a not weak OWF. Then there is an inverter A such that when
xg, 21, b,r are chosen at random, y = T'(xy; 1), 2 = [y]z, (I;, 7y = Axg,1,2), § =

T(xy; 7), 2 = [§]z, we have Pr(z = 2) > 3.
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To show that there exist xy,x; breaking the indistinguishability property of T,
we construct a distinguisher F' for 7" that has non-negligible advantage for random
xg, 1 € {0,1}*. Hence, the job of F is the following. g, x1, b, r are chosen at
random, and we set y = T'(xp; r), 2 = [y|z. Then F is given the challenge z together
with xy and x;. Now, F' has to predict b correctly with probability non-negligibly
more than 1/2. We let F' run A(z,x1,2) to get b, 7. Now, F sets § = T(zz; 7),
% = [j];. If indeed Z = z (i.e. A succedeed), F outputs b as its guess, else it flips a
coin.

Let B be the event that A succeeds inverting. From the way we set up the
experiment, we know that Pr(B) > %. Also, if B does not happen, F flips a coin
and succeeds with probability 1/2. So assume A succeeds inverting. Call U the event
that when g, 1, b, r are chosen at random, [T (zp; 7)|z € [T(x1 p)]z, i-e. there exists
some 1’ such that [T'(x1_y; r')]z = 2z (equivalently, g(xo,z1,1—0b,r") = g(xg, 21,b,7)).
If U does not happen and A succeeded inverting, we know that b="> (i.e., F' succeeds
with probability 1), as (1 — b) is an impossible answer. On the other hand, if U does
happen and A succeeds inverting, we claim that F' succeeds with probability exactly
1/2, which we argue next.

Indeed, conditioned on B A U, our experiment can be view as follows. Let D
be the distribution on z induced by choosing a random x and setting z < [T'(2)]z,
and let D, be the conditional distribution on = induced by choosing y this way. We
first choose z <— D, and then independently sample brand new gy, z; < D,. Notice,
no bit b is generated yet! Then we give xy,z1,y to F, who passes them to A. If A
succeeds inverting (outputs b and 7 s.t. z = [T(x3; 7]z), we let F output b as before.
Otherwise, we repeat the whole experiment from scratch. Only after we finished this
experiment (i.e. A eventually succeeded) do we choose at random the “right” bit b. It
is easy to see that this experiment is completely equivalent to our original experiment
conditioned on B A U (provided the latter has non-zero probability). On the other

hand, since b is generated afterwards, Pr(b = b) = 5 indeed.
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Combining the above observations and using Pr(X AY) > Pr(X) — Pr(Y), we get:

Pr(b=10) > %Pr(ﬁ) +Pr(BAU) + % Pr(BAU)
= 43 PBAD)
> %—F%-(Pr(B)—Pr(U))
1 1 (3
[ §+§<Z—PY(U)>

To get a contradiction, we show that Pr(U) < 2% which is at most 3 < 2 since
¢ < k. 'To show this, observe that U measures the probability of the event that
when we choose x,2',r at random and set z = [T'(z; r)|;, there is some r' such
that z = [T'(2'; r')];. However, for any fixed setting of z, there are only 2¢ possible
completions y € {0,1}**?. And for each such completion y, invertibility of 7" implies
that there could be at most one ' € T~!(y). Hence, for any setting of z, at most 2°
out of 2% possible 2’ have a chance to have the corresponding r’. Since 2’ was chosen
at random, Pr(U) < 2% indeed. ]

We note that the result is essentially optimal (up to the lower order term), since
by Theorem 18 there are statistical AONT’s with ¢ = k + o(k). In fact, merging
the secret and public parts of such an (~-AONT (the latter having length k) gives a

statistical secret-only ('-~AONT with ¢' = ¢ + k = O(k) still, as stated in Corollary 7.

5.5 Worst-case/Average-case Equivalence of AONT

In the definition of AONT we require that Equation (3.2) holds for any xy, x;. This
implies (and is equivalent) to saying that it holds if one is to choose zy, x; according
to any distribution ¢(zg, z1). A natural such distribution is the uniform distribution,
which selects random and independent zg,z; € {0,1}¥. We call an AONT secure
against (possibly only) the uniform distribution an average-case AONT. Note, for
instance, the proofs of Theorem 20 and Lemma 14 work for average-case AONT’s as

well, since we used random xy and x; in both proofs. Thus, statistical average-case
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(-AONT’s are impossible for £ < k and computational average-case (-AONT’s imply
OWF’s if / < k.

A natural question to ask is whether average-case AONT’s imply (regular) AONT’s
with comparable parameters, which can be viewed as the worst-case/average case
equivalence. We notice that in the perfect setting an average-case AONT is also a
worst-case AONT (for example, this follows from the equivalent Definition 15 of a
perfect AONT), so there is nothing to show here. Perhaps surprisingly, we show
that up to a constant factor, the worst-case and the average-case notions are indeed
identical in the statistical and the computational settings, as well. Below we assume
without loss of generality that our domain {0,1}* is a finite field (e.g. GF(2F)), so

that addition and multiplication are defined.

Theorem 21 Let T : {0,1}* — {0,1}* x {0,1}? be an average-case (statistical or
computational) (-AONT. Then the following T' : {0,1}F — {0,1}* x {0,1}* is
a (statistical or computational) 4¢-AONT, where a1, as, b are chosen uniformly at

random from {0,1}* subject to a; + ay #0 (as part of the randomness of T"):
T'(2") = (T'(a1), T(a2), T(b), T((ar + az) - " + b))

In the above output, we separately concatenate secret and public outputs of T. In

particular, if T is secret-only, then so is T".

Proof: First, since 7' is invertible and a; + ao # 0, we have that 7" is invertible
(invert all four components and recover z'). Before arguing that 7" is an -AONT, let
us define some terminology. Given an output of 7" of the form y' = (t,,t9, t3,t4), we
let the quadruple (ay, as,b, z), where a; = I(t1), az = I(t2), b = I(t3) and z = I(t4),
be the effective inputs of 3y (while the actual input ' = (z —b)/(a; +as)). In general,
a, will typically stand for the first effective input to 1", ay — for the second, b — for
the third, and z — for the last.

Assume now that 7" is not an .~-AONT, that is for some L' € {jfg}, zp, o) € {0, 1}"
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(obviously, zj # ) we have

<x67 xlla [T'(%)]E') ’7‘8 <x67 xllv [Tl(xg)]f/>

And assume that an adversary A’ distinguishes the above two distributions. First,
let us define a subset L € {Z} that would contradict the fact that 7" is an average-case
¢-AONT. We construct L by looking at which part of the output of 7" has the most
bits in L'. Formally, let L; = {m € [¢(] | m+ (j — 1)¢ € L'}, j = 1,2,3,4. Since
|L'| = 44, some |L;| > £. We let L be any (-element subset of this L;. Thus, if j =1
the adversary misses “L-bits” of T'(ay), if j = 2 — of T'(ay), if j =3 — of T'(b), and
if j=4—of T'(2).

Let zg,z; be selected at random from {0,1}*, i €x {0,1}, w < [T'(2;)]z, and we

have to construct an adversary A (that would use A’) that can determine ¢ with prob-

1

5 when given (xo, 2, w). Here is a general strategy

ability non-trivially better than
of A. He will implicitly (i.e., as a thought experiment pretending that he knows %)
create y' in such a way that irrespective of i being 0 or 1, y’ will correspond to z} (i.e.,
I'(y') = 2%). In addition, 3" will be (statistically close to) a random output of T"(z}).
However, A would be able to ezplicitly compute w' = [y'];, using his input w. By
handing this w' to the assumed good distinguisher A’, A would be able to determine
i as well as A" does. Thus, A succeeds in “blindly translating” w to the right w'.
Before showing how to (implicitly) construct y', we see what relations it should
satisfy. Let (aq,aq,b, z) be the effective inputs of 4. Since they should correspond to

x%, we must have

(a1 +ag)-z;+b=2z (5.9)

Moreover, (a, as, b, z) should be (statistically close to) random satisfying the corre-
sponding equation above (subject to a; + as # 0). To implicitly compute y', A will
implicitly set one of aj,as,b,z to x; (which one depends on j that “produced” L;
namely, set a; = x; if |L1| > ¢, set ay = x; if |Lo| > ¢, etc). Assume for concreteness
that j = 1 and so a; = z;. The remaining three parameters (in our case, as,b,z) A

will compute explicitly in such a way that it does not matter whether i is 0 or 1 (as
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long as the implicit parameter, here a, is equal to x;). Assuming A can succeed in
doing so, we will be done since he can explicitly produce w' = (w, T (as), T(b), T(z)).
Similar technique holds for j = 2,3, 4.

We now show how this can indeed be done for any j.

e |L;| > ¢. We know that

(SL’B, xlla [T(al)]fn T(a2)7 T(b)v T((al + a2) ’ 556 + b)> %

(x0, 2y, [T(ar)]z, T(az), T(b), T((ar + az) - 7y + b))

Clearly, we should (implicitly) make a; = x; (which is random since w; is ran-
dom). In order to explicitly set as, b, z in an identical manner independent of 4,

we solve the linear system in a, and d (d is to be interpreted as z — b)

(LL‘[]"‘GQ)'LL‘:] = d

(.’L’1+CL2)'.’L’,1 = d

This system is always solvable since z{, # x|. Moreover, ay and d are random
and independent of each other for a random choice of xy and x;. We then pick
random b, z such that z — b = d. We note that xy 4+ ay or x; + ay are 0 with
only negligibly small probability (since the resulting ay is random), so we can
ignore this case happening for the statistical or computational settings. Then we
immediately observe that by construction, (x;, as, b, z) satisfy (z;4+as)-2;+b = 2.
Moreover, this is a random quadruple of inputs to 7" used in computing 7" (z})
(technically, statistically close to it). Hence, we can explicitly produce w' =
(w,T(az2),T(b),T(2)) and, by the previous argument, obtain a contradiction to
the fact that 1" is an average-case -AONT.

e |Ly| > {. This is symmetric to the above with a; and ay interchanged.

125



e |L;| > ¢. We know that

(x0, 2y, T(ar), T(az), [T(0)]z, T((ar+ az) - x5 +b)) #

(x0, 2y, T(ar), T(az), [T'(0)lz, T((ar + az) - 7y + b))

Clearly, we should (implicitly) make b = x; (which is random since z; is random).
In order to set aq,as,z in an identical manner independent of i, we solve the

linear system in a and z (a is to be interpreted as a; + az)

a-ry+To = 2

!/
a-r;+r = 2

This system is always solvable since xj, # 2. Moreover, a and z are random and
independent of each other for a random choice of xy and x;. Also, unless ¢y = x;
(which happens with exponentially small probability), a # 0. Pick random
ai, ag such that a; + ay = a. Then (ay, as, x;, 2) satisty (a; + aq) - ) + z; = 2.
Moreover, this is a random quadruple of inputs to 7" used in computing 7"(z})
(technically, statistically close to it). Hence, we can explicitly produce w' =
(T'(a1),T(a2), w,T(2)) and, by the previous argument, obtain a contradiction

to the fact that 7" is an average-case /-AONT.

e |L4| > ¢. We know that

<$6,$’1, T(a’l)v T(a2)= T(b)= [T((a’l +a2)x6+b)]i> 9‘9
<x{]7x,17 T(al)v T(a2)7 T(b)v [T((al +a2)xll +b)]i>

Clearly, we should (implicitly) make z = x; (which is random since z; is ran-
dom). In order to set a;,as, b in an identical manner independent of 4, we solve

the linear system in a and b (a is to be interpreted as a; + az)

!/
a-xy+b =
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a-ry+b = 1

This system is always solvable since zj, # x|. Moreover, a and b are random and
independent of each other for a random choice of xy and x;. Also, unless ¢y = x;
(which happens with exponentially small probability), ¢ # 0. Pick random
ar, ap such that a; + as = a. Then (ay, as,b, x;) satisty (a1 + ag) - 2} + b = ;.
Moreover, this is a random quadruple of inputs to 7" used in computing 7"(z?})
(technically, statistically close to it). Hence, we can explicitly produce w' =
(T'(a1),T(az2),T(b), w) and, by the previous argument, obtain a contradiction
to the fact that 7T is an average-case (-AONT.
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Chapter 6

Conclusions

We now briefly summarize the contributions of this thesis.

ALL-OR-NOTHING TRANSFORMS. Our main motivation came from the problem
of partial key exposure and related questions. We have proposed to use the All-
Or-Nothing Transform [51], which also has many other applications, as the most
direct way to solve these problems. Up to date, however, there were no provable
constructions of the AONT in the standard model of computation, based on standard
computational assumptions (e.g., without random oracles [16], ideal ciphers [21] and
having strong enough security properties [60]). We gave very natural and simple
definitions of AONT in the perfect, statistical and computational settings, together
with the first provable constructions in all these settings. We have also shown almost
matching lower bounds, making our constructions nearly optimal. In particular, our
lower bound on perfect AONT’s is of independent interest, relates to an interesting
question of balanced colorings of the hypercube, and non-trivially extends the lower

bound of Friedman [28] for such colorings.

EXPOSURE-RESILIENT FUNCTIONS. The key ingredient in our approach is an in-
teresting new primitive which we called an Ezposure-Resilient Function. We demon-
strated that this primitive has natural applications in combating key exposure, and
also has many other applications (for example, it can be viewed as a “super-secure”

pseudorandom generator), making it a very interesting notion in its own right. Simi-
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larly to AONT’s, we have shown how to build essentially optimal ERF’s in the perfect,

statistical and computational settings.

OTHER CONTRIBUTIONS. We have also examined other properties of AONT’s and
ERF’s (e.g., worst-case/average-case equivalence of AONT’s, equivalence of “interest-
ing” computational AONT’s and ERF’s to one-way functions), as well as several other
results of independent interest. For example, we formally written down the notion of
d-sure extractors (which we used in constructing adaptively secure ERF’s; and which
have other applications) suggested to us and implicitly used by Trevisan and Vad-
han [62], and also gave a simple “generic” proof that semantic security is equivalent

to indistinguishability [33].

OPEN PROBLEMS. There are still several interesting questions remaining open. Two
of them are summarized in Questions 1 and 2. Namely, to have an explicit construc-
tion of adaptively secure statistical ERF’s, and to have constructions of secret-only
computational AONT’s with good exposure-resilience and short output length. Some-
what related to the latter problem is the question of designing ERF’s, pseudorandom
generators or pseudorandom functions having “nice properties” with respect to the
exclusive OR operator. For example, we reduced the question of constructing “good”
secret-only AONT’s to the question of constructing a length-preserving ERF f such
that f(z) @ x is also an ERF. Similarly, the “ideal block cipher” construction of De-
sai [21] can be analyized in the standard model if one replaces the ideal cipher with
a pseudorandom function family that remains pseudorandom if some of the outputs

are XORed with the random seed.

EXPOSURE-RESILIENT CRYPTOGRAPHY. To recap everything once again, we ob-
served that standard cryptographic notions and constructions do not guarantee any
security even if a tiny fraction of the secret entity is compromised. We then put for-
ward the notion of Exposure-Resilient Cryptography, which is concerned with building
cryptographic primitives that remain provably secure even if most of the secret is ex-

posed.
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