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Let’s say that an m×n matrix xij of 0s and 1s is a Baxter matrix if it has the following properties: (i) Every
row is nonzero. (ii) Every column is nonzero. (iii) At least one of the regions Akl, Bkl, Ckl, Dkl is zero, for
each 1 ≤ k < m and 1 ≤ l < n. (iv) At least one of the regions A′kl, B

′
kl, C

′
kl, D

′
kl is zero, for each 1 ≤ k < m

and 1 ≤ l < n. In this definition

Akl = {xi(l+1) | 1 ≤ i ≤ k}, Bkl = {xkj | 1 ≤ j ≤ l}, Ckl = {x(k+1)j | l < j ≤ n}, Dkl = {xil | k < i ≤ m};

A′kl = {xil | 1 ≤ i ≤ k}, B′kl = {x(k+1)j | 1 ≤ j ≤ l}, C ′kl = {xkj | l < j ≤ n}, D′
kl = {xi(l+1) | k < i ≤ m};

these regions form subsets of rows {k, k+1} and columns {l, l+1} that make a “pinwheel,” illustrated here
for k = 3, l = 4, m = 5, n = 7:

x11 x12 x13 x14 x15 x16 x17

x21 x22 x23 x24 x25 x26 x27

x31 x32 x33 x34 x35 x36 x37

x41 x42 x43 x44 x45 x46 x47

x51 x52 x53 x54 x55 x56 x57

A34

↓

B34 →

← C34

↑
D34

x11 x12 x13 x14 x15 x16 x17

x21 x22 x23 x24 x25 x26 x27

x31 x32 x33 x34 x35 x36 x37

x41 x42 x43 x44 x45 x46 x47

x51 x52 x53 x54 x55 x56 x57

A′34
↓

B′34 →

← C ′34

↑
D′

34

For example, the reader may verify that the 5× 7 matrix

⎛
⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 1
0 0 0 1 1 0 0
0 1 0 0 0 1 0

⎞
⎟⎟⎟⎠

is almost, but not quite, a Baxter matrix. It satisfies all of the conditions except that A′34, B
′
34, C

′
34, D

′
34

are nonzero—and it is one of exactly 41990 matrices with that peculiar property!
Notice that the left-right and top-down reflection of any Baxter matrix is also a Baxter matrix. And so

is the transpose.
It turns out that there are 69 Baxter matrices of size 3× 3. Here’s the complete set:

001
001
110

001
001
111

001
010
100

001
010
101

001
010
110

001
011
100

001
011
110

001
100
010

001
100
110

001
101
010

001
110
001

001
110
010

001
110
100

001
111
001

001
111
010

001
111
100

010
001
100

010
001
110

010
010
101

010
010
111

010
011
100

010
011
110

010
100
001

010
100
011

010
101
001

010
101
010

010
101
100

010
110
001

010
110
011

010
111
001

010
111
010

010
111
100

011
001
100

011
010
100

011
010
110

011
100
010

011
100
100

011
110
010

011
110
100

100
001
010

100
001
011

100
010
001

100
010
011

100
010
101

100
011
001

100
011
010

100
011
100

100
100
011

100
100
111

100
101
010

100
110
001

100
110
011

100
111
001

100
111
010

100
111
100

101
010
001

101
010
010

101
010
100

101
010
101

110
001
001

110
001
010

110
010
001

110
010
011

110
011
001

110
011
010

110
100
001

111
001
001

111
010
010

111
100
100

Three of them have 8-fold symmetry. Sixteen of them have no symmetry whatsoever.
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The first natural question that you might ask about Baxter matrices is, perhaps, why that name might
be appropriate. Don’t worry; I’ll explain that soon.

The next natural question is to count them, in order to check with OEIS [1] whether they are equivalent
to anything that has already been well studied. According to the statistics for m and n up to 7, the answer
seems to be that these matrices are a newfangled notion:

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
m = 1 1 1 1 1 1 1 1
m = 2 1 6 14 24 36 50 66
m = 3 1 14 69 203 463 903 1585
m = 4 1 24 203 972 3324 9074 21168
m = 5 1 36 463 3324 16355 61267 188153
m = 6 1 50 903 9074 61267 306352 1219598
m = 7 1 66 1585 21168 188153 1219598 6175181

Except for the first two rows and the first two columns, the sequences in this table (including the diagonals
and antidiagonals) haven’t previously been published.

It’s not hard to see why there are n2 + 3n− 4 Baxter matrices of size 2× n, when n ≥ 2: The columns
can’t all be

(
1
1

)
. Solutions in which a column of the form

(
0
1

)
occurs before

(
1
0

)
have five types, either

(i)
(
0
1

)k(1
0

)n−k
, with 0 < k < n; or (ii)

(
0
1

)k(1
0

)l(0
1

)n−k−l
, with k > 0, l > 0, k + l < n; or (iii)

(
1
1

)(
1
0

)n−1
; or

(iv)
(
0
1

)k(1
1

)(
0
1

)n−1−k
, with 0 < k < n; or (v)

(
0
1

)k(1
1

)(
1
0

)n−1−k
, with 0 < k < n − 1. An equal number of

solutions have
(
1
0

)
before

(
0
1

)
. So the total comes to (2n− 2) + (n− 1)(n− 2) + 2 + (2n− 2) + (2n− 4).

The smallest number of 1s in an m × n Baxter matrix is obviously max{m,n}. And the number of
matrices actually attaining this minimum is comparatively small, with respect to the total number:

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
m = 1 1 1 1 1 1 1 1
m = 2 1 2 6 12 20 30 42
m = 3 1 6 6 32 100 240 490
m = 4 1 12 32 22 172 744 2364
m = 5 1 20 100 172 92 956 5328
m = 6 1 30 240 744 956 422 5492
m = 7 1 42 490 2364 5328 5492 2074

Notice that when m = n, a minimum-1s matrix has just one 1 in every row and in every column; hence
it’s a permutation matrix. And aha! The diagonal counts in this array belong to the well-known sequence
A001181, 〈1, 2, 6, 22, 92, 422, 2074, . . .〉, which enumerates Baxter permutations . A permutation matrix is a

Baxter matrix if and only if the corresponding permutation is a Baxter permutation.

Indeed, that fact follows immediately from the definition of Baxter permutations, which can be phrased
in the following way: Represent the permutation p1 . . . pn in two-line form, with i above pi for 1 ≤ i ≤ n.
The permutation is non-Baxter if and only if its two-line form has four column entries

( < l

k + 1

) ( l

< k

) ( l + 1

> k + 1

) (> l + 1

k

)

or four column entries (< l

k

) ( l

> k + 1

) ( l+ 1

< k

) (> l + 1

k + 1

)
.

And we can represent any 0–1 matrix in two-line form, with a column i above j whenever xij = 1. Such a
matrix is non-Baxter if and only if its two-line form has four column entries

( ≤ l

k + 1

) ( l

≤ k

) ( l + 1

≥ k + 1

) (≥ l + 1

k

)

or four column entries (≤ l

k

) ( l

≥ k + 1

) ( l+ 1

≤ k

) (≥ l + 1

k + 1

)
.
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What about the maximum number of 1s? It appears that this is exactly m + n − 1! At least, that’s
true when m and n are at most 7. Here are the counts of maximum-1s Baxter matrices:

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
m = 1 1 1 1 1 1 1 1
m = 2 1 4 8 12 16 20 24
m = 3 1 8 26 55 96 149 214
m = 4 1 12 55 156 354 688 1198
m = 5 1 16 96 354 1037 2533 5383
m = 6 1 20 149 688 2533 7632 19522
m = 7 1 24 214 1198 5383 19522 59020

Again they’re fairly small compared to the total. And again they’re not (yet) in OEIS.
From this data I’m willing to conjecture that m + n − 1 is truly the maximum. (And also that some

other interesting structure, still waiting to be discovered, will lead to a proof.)

Let’s try counting the Baxter matrices in which all row sums are 1:

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
m = 1 1 0 0 0 0 0 0
m = 2 1 2 0 0 0 0 0
m = 3 1 6 6 0 0 0 0
m = 4 1 12 32 22 0 0 0
m = 5 1 20 100 172 92 0 0
m = 6 1 30 240 744 956 422 0
m = 7 1 42 490 2364 5328 5492 2074

These may be called the Baxter words , of length m on an n-letter alphabet. When m = n they’re the Baxter
permutations, of course; otherwise they seem to be previously unknown. When m = 4 and n = 3 the 32
Baxter words are

1123, 1132, 1213, 1223, 1231, 1232, 1233, 1321, 1322, 1323, 1332, 2113, 2123, 2132, 2133, 2213,

2231, 2311, 2312, 2321, 2331, 3112, 3121, 3122, 3123, 3211, 3212, 3213, 3221, 3231, 3312, 3321.

Finally, how about Baxter matrices in which every row sum is 2? These might be called Baxter graphs,
on n vertices and with possibly-repeated edges labeled from 1 to m. According to the conjecture above, they
exist only when m < n ≤ 2m. The statistics for m ≤ 7 are 1; 2, 4; 3, 24, 26; 8, 98, 284, 214; 19, 374, 1922,
3496, 2030; 44, 1342, 10620, 33398, 44674, 21174; 111, 4596, 51904, 245684, 554500, 589092, 236410. (In
this list there m counts for each fixed m, shown for n = m+ 1, m+ 2, . . . , 2m.)

Mathematical nomenclature. Something often goes wrong when a mathematical idea is named after a
mathematician. We might learn that another person actually had discovered the subject long before (as in
the case of Fibonacci numbers or Catalan numbers); or we might find that the eponymous mathematician
had never actually considered the topic (as in the case of the Lambert function or the Pochhammer symbol).
My drastic decision to propose the names Baxter matrices, Baxter words, and Baxter graphs clearly falls
into the latter category. (In fact, Glen Baxter actually defined a different set of permutations; what we now
call Baxter permutations were originally called reduced Baxter permutations. See [2] and [3].)

So why have I chosen those names?
When I first realized that we get an interesting class of matrices by simply replacing ‘<’ by ‘≤’ in the

definition of Baxter permutations, I tried to imagine what name another person would have chosen for the
concept, in a hypothetical paper that might have already been in print. So I googled the phrase “Baxter
matrix”—and got only references to the Yang–Baxter matrix equation. I also googled “Baxter words”—
and got only references to Rota–Baxter words. In both cases I ran into concepts from orthogonally different
aspects of Baxter’s research.

The connection between Baxter matrices and Baxter permutations is however quite strong, and time
has shown that Baxter permutations correspond to a wide variety of other important concepts such as
“floorplans.” (See, for example, [4].) I certainly would never have thought of the concept if it hadn’t been
for Baxter’s pioneering work.

Thus I’m quite comfortable with the terminology suggested above.
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Open problems. The topic of Baxter matrices clearly raises a number of questions that cry out to be
answered, including the following:

1. If the first element of a Baxter permutation is removed and the remaining elements are renumbered, the
result is a Baxter permutation. Suppose we delete the first row of a Baxter matrix, and remove any columns
that have become empty. Is the result a Baxter matrix? What other operations preserve Baxterhood?
(Consider, for example, splitting a row of weight > 1 into two adjacent rows.)

2. Prove (or disprove) that every m × n Baxter matrix has fewer than m + n 1s. Nikolai Beluhov has
rephrased this conjecture in a particularly appealing way: “Show that every m × n matrix with at least
m+ n nonzero entries contains a pinwheel with four nonzero arms.”

3. Find formulas by which the numbers tabulated above for small m and n can be computed rapidly. Also
count the m× n Baxter matrices of weight t, for max{m,n} ≤ t < m+ n.

4. Find the asymptotic behavior of the quantities in question 3.

5. Baxter matrices of a given size are partially ordered by inclusion (that is, by requiring that xij ≤ x′ij
for all i and j). Study the minimal and maximal elements of this partial ordering. (For example, when

m = n = 3, the weight-4 matrices
001
100
110

,
011
001
100

,
100
001
011

,
110
100
001

are maximal;
001
001
110

,
011
100
100

,
100
100
011

,
110
001
001

and
001
110
001

,
010
010
101

,
100
011
100

,
101
010
010

and

010
101
010

are minimal.)

6. What happens when other classes of permutations, defined by pattern exclusion, are extended to matrices
in a similar way?
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