DRAGON: Deep Bidirectional Language-Knowledge Pretraining

NeurIPS 2022

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Chris Manning, Percy Liang*, Jure Leskovec* Stanford University

Foundation Model Pretraining

:

Text & KG offer complementary information

Text & Pretrained Language Model (LM)

- Broad coverage (e.g. <u>Gao+2020</u>)
- Captures rich context

Knowledge Graph (KG)

- Latent, structured relations
- Multihop reasoning (e.g. <u>Yasunaga+2021</u>)

Goal: Combine text & KG for pretraining

Text

- Broad coverage (e.g. <u>Gao+2020</u>)
- Captures rich context

Joint Pretraining

Knowledge Graph (KG)

- Latent, structured relations
- Multihop reasoning (e.g. <u>Yasunaga+2021</u>)

WikipediA

Language-Knowledge Foundation Model

Proposed Method: DRAGON

Raw data

Pretrain

Proposed Method: DRAGON

Raw data

Pretrain

(1) Text-KG Input

Motivation

 Informative pair of (text, local KG): Text can contextualize the KG KG can ground the text

ldea

- Given text corpus and KG, sample a text segment and retrieve a relevant knowledge subgraph by entity linking
 - \Rightarrow Aligned pairs of (text, local KG)

(2) Deep Bidirectional Cross-Modal Model

ldea

- Use the **GreaseLM** encoder (Transformer+GNN)
- Fuse text tokens & KG nodes bidirectionally for multiple layers

(3) Bidirectional Self-Supervision

Idea: Pretrain with two self-supervised reasoning tasks

Masked LM

KG Link Prediction

Proposed Method: DRAGON

Raw data

Pretrain

Experiments

	General domain	Biomedical domain
Pretraining data	Text: <u>BookCorpus</u> (6GB) KG: <u>ConceptNet</u> (800K nodes, 2M edges)	Text: <u>PubMed</u> (20GB) KG: <u>UMLS</u> (300K nodes, 1M edges)
Downstream tasks	Commonsense reasoning (<u>OBQA, RiddleSense, CommonsenseQA,</u> <u>CosmosQA, HellaSwag</u> , <u>PIQA, SIQA, aNLI, ARC</u>)	Biomedical reasoning (PubMedQA, BioASQ, MedQA-USMLE)
Baseline: LM	RoBERTa (<u>Liu+2019</u>)	BioLinkBERT (<u>Yasunaga+2022</u>)
Baseline: LM finetuned with KG	RoBERTa + <u>GreaseLM</u>	BioLinkBERT + <u>GreaseLM</u>

Ours (DRAGON): LM pretrained with KG

Performance

DRAGON makes consistent improvement across tasks and domains

Commonsense reasoning tasks

(e.g. OBQA, RiddleSense)

Biomedical reasoning tasks

(e.g. PubMedQA, MedQA)

Benefit 1: Complex Reasoning

Large gains on QA examples involving complex reasoning

Benefit 1: Complex Reasoning

Negation + Conjunction

Conjunction

In DRAGON, KG serves as scaffold for performing structured reasoning

Benefit 1: Complex Reasoning

Pretraining with KG helps extrapolate to harder test examples that need multi-step reasoning.

Benefit 2: Low-Resource QA

Large gains on few-shot and low-resource QA

⇒ Intuition: self-supervision helps learn more knowledgec

Key Design Choices: Modeling

Cross-modal fusion for text+KG

- Bidirectional interaction (DRAGON)
- Concatenate representations at end

KG structure

•Use graph and GNN (DRAGON)

•Convert to sentence and add to text

Accuracy on OBQA

72.0%

Accuracy on OBQA

Key Design Choices: Self-Supervision

Pretraining objective

- Joint MLM + LinkPred (DRAGON)
- MLM only
- LinkPred only

Accuracy on OBQA

LinkPred head

- DistMult (Final DRAGON)
- •<u>TransE</u> •RotatE

⇒ All help

Accuracy on OBQA

Summary

DRAGON: Pretrain a foundation model jointly on text & KG

Approach

- Deeply bidirectional model for the two modalities to interact
- Self-supervised objective to learn joint reasoning over text and KG at scale

Result

 Improved performance on knowledge- and reasoning-intensive applications (e.g. low-resource QA, multi-step reasoning)

Thanks!

We thank the members of the Stanford SNAP / P-Lambda / NLP groups, and the project MOWGLI team, as well as our anonymous reviewers. Funded in part by DARPA MCS.

Paper: Deep Bidirectional Language-Knowledge Graph Pretraining. NeurIPS 2022.

Code: https://github.com/michiyasunaga/DRAGON

