Retrieval-augmented Multimodal Foundation Models

Michihiro Yasunaga

Stanford University

Al is becoming multimodal

Personal Assistants

Generative Al

Search

Autopilot

Multimodal Foundation Models (Text-to-Image)

DALL•E, **Parti** (text → image; Transformer)

DALL•**E 2, StableDiffusion** (text → image; Diffusion)

TEXT PROMPT

an armchair in the shape of an avocado. . . .

AI-GENERATED IMAGES

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

Multimodal Foundation Models (Image-to-Text)

Flamingo, GPT-4 (image → text; Transformer)

Multimodal Foundation Models (Unify Text & Image)

CM3 (text image; Transformer)

Unified VLM

Text & image generation

Challenge

However, models may lack knowledge and hallucinate.

The Dragon and Tiger Pagodas next to fireworks.

Challenge

Current models' knowledge is bounded by the parameters & training data. Can we allow models to **refer to external memory**?

The Dragon and Tiger Pagodas next to fireworks.

Inspiration: Retrieval-augmented Language Model

9

Inspiration: Retrieval-augmented Language Model

10

Retrieval-augmented multimodal modeling

RA-CM3: Retrieval-augmented multimodal modeling.

Yasunaga, Aghajanyan, Shi, James, Leskovec, Liang, Lewis, Zettlemoyer, and Yih. ICML 2023.

Our Idea: Retrieval-augmented Multimodal Model

Our Idea: Retrieval-augmented Multimodal Model

Text-to-Image

Our Idea: Retrieval-augmented Multimodal Model

Image-to-Text

Technical innovations

- What is an effective multimodal retrieval method?
- How to integrate retrieved items into the generator?

Multimodal Retrieval

Multimodal Retriever

Dense Retriever with Mix-modal Encoder

 $f(query, memory) \rightarrow score$

Background: CLIP

CLIP produces text embeddings and image embeddings in shared vector space

Multimodal Retriever

Dense Retriever with Mix-modal Encoder

Multimodal Retriever

Strategy for Retrieval

Relevance

The retrieved items should be relevant to query

Cosine similarity score + Maximum Inner Product Search

Diversity (for training)

If simply take items of top scores, may include duplicate images/text This can cause the generator to overfit or learn repetitive generation

Diversity is crucial in multimodal setting

- Multimodal dataset often contains duplicate images across docs
- Each image takes many tokens (1024), so can significantly hurt model training

Can improve FID score by 5 points

Avoid redundant items

Skip candidate item if it is too similar to query or items already retrieved

Query dropout

- Drop some tokens of query used in retrieval (e.g. 20% of tokens)
- This further increases diversity and serves as regularization

Multimodal Generator

Generator: Retrieval-Augmented CM3

Causal masked language model (CM3) **Transformer** Retrieved item 1 Retrieved item 2 **Main input** Labrador retriever sitting on bench. Labrador sitting on bench near water. Labrador retriever sitting by water. Each image is tokenized into 1024 tokens using VQ-VAE

Train the Generator Efficiently

Loss = (LM loss for main input) + $\alpha \cdot$ (LM loss for retrieved items)

- Existing retrieval augmented LMs: $\alpha = 0$
- Our method: $\alpha > 0$ ($\alpha = 0.1$ works the best)

 α > 0 has effect like increasing batch size without extra forward compute, increasing training efficiency.

$\alpha > 0$ is crucial in multimodal setting

- Each image takes many tokens (1024)
- If $\alpha = 0$, we are throwing away a lot of compute

Can reduce training time by 50%

Retrieval Augmented Multimodal Model

Comparison with related models

Model	Image Generation	Text Generation	Retrieval
DALL-E, StableDiffusion, Imagen, etc.	✓	-	-
kNN-diffusion, Re-Imagen, etc.	V	-	V
Flamingo, GPT-4, etc.	ŧ	V	-
MuRAG, Re-ViLM, REVEAL, SmallCap, etc.	ŧ	V	V
СМЗ	✓	✓	-
RA-CM3 (Ours)	✓	✓	V

Experiments

Train data

LAION (cleaned 150M image-text pairs)
 External memory: LAION

Evaluation

MSCOCO caption2image, image2caption.
 External memory: MSCOCO train set

Model

- Transformer with seq_length 4096 (up to 2 retrieved documents)
- 2.7B parameters trained for 5 days on 256 GPUs
- "Retrieval Augmented CM3 (RA-CM3)"

Baseline

Vanilla CM3 with no retrieval, same size, trained using the same amount of compute

Performance (Text-to-Image)

Retrieval improves caption-to-image generation quality (e.g. RA-CM3 vs CM3)

Model	Model type	#Train images	MSCOCO FID score (↓)	
DALL-E (12B)	Autoregressive	250M	28	
Parti (20B)	Autoregressive	6B	7.2	
Stable Diffusion	Diffusion	1B	~12	
Vanilla CM3	Autoregressive	150M	29	
RA-CM3	Autoregressive	150M	16	

Performance (Image-to-Text)

Retrieval improves image-to-caption generation quality (e.g. RA-CM3 vs CM3)

	Model	#Train images	MSCOCO CIDEr score (†)
	Parti (20B)	6B	0.84
	Flamingo (3B) 4-shot	2.5B	0.85
	Vanilla CM3	150M	0.72
17 points	RA-CM3	150M	0.89

The Dragon and Tiger
Pagodas next to fireworks.

improvement

Performance (Efficiency)

Retrieval improves training efficiency

RA-CM3 outperforms DALL-E while using only 30% of training compute

FID score (↓) vs Training Compute

RA-CM3 Retrieved items

RA-CM3 outputs

Baseline outputs

(Vanilla CM3)

(Stable Diffusion)

French flag

Input: "French flag waving on the moon's surface."

Oriental Pearl tower

Input: "The **Oriental Pearl tower** in oil painting."

RA-CM3 Retrieved items

(Vanilla CM3)

(Stable Diffusion)

Input: "An **Armenian church** during a sunny day."

Statue of Liberty

Washington monument

Input: "Photo of the **Statue of Liberty** standing next to the **Washington monument**."

RA-CM3 Retrieved items

Ming Dynasty vase

RA-CM3 outputs

Baseline outputs

(Vanilla CM3)

(Stable Diffusion)

Input: "A Ming Dynasty vase with orange flowers painted."

Japanese cherry

Input: "The Mount Rushmore with Japanese cherry trees in the front."

RA-CM3 Retrieved items

Callanish standing stones

RA-CM3 outputs

Baseline outputs

(Vanilla CM3)

Input: "Photo of the Callanish standing stones, fireworks in the sky."

Input: "Photo of the Dragon and Tiger Pagodas, the sun is setting behind."

Multimodal In-Context Learning

RA-CM3 In-context

(Demonstrate the style to generate)

RA-CM3 output

Baseline outputs

(Vanilla CM3)

(Stable Diffusion)

Intuition:

After retrieval augmented training, our generator model has learned how to use in-context examples and acquired this in-context learning capability

"Photo of a house taken on an autumn day."

(Demonstrate the style to generate)

"Painting of red roses."

Image Editing

Source image

Masked image

RA-CM3
In-context

RA-CM3 output

RA-CM3

Image Editing

One-shot Image-to-Text

Task

animal Y

P(X), P(Y)

Binary classification

Result

Model	Accuracy
Baseline CM3	0.53
RA-CM3	0.78

Motivation: test the true in-context learning capability of our generator

Few-shot Image-to-Text

Ensemble (e.g. 2)

Result

Model	Number of Ensembles			
	1	2	4	8
Baseline CM3	0.53	0.50	0.56	0.56
RA-CM3	0.78	0.79	0.86	0.9

Takeaway:

- Generator exhibits good in-context learning performance
- Ensemble is an effective method to increase in-context examples

Summary

RA-CM3: The first retrieval-augmented multimodal model that can retrieve and generate both text and images

Result & Impact: Retrieval enables

- Accurate image/text generation ⇒ reduce hallucination
- Efficient training ⇒ reduce cost of training large foundation models
- Multimodal in-context learning (e.g., can prompt using both images and text)

Thak you!

https://cs.stanford.edu/~myasu/

