
Graph-based Neural Multi-Document Summarization

Michihiro Yasunaga1 Rui Zhang1 Kshitijh Meelu1

Ayush Pareek2 Krishnan Srinivasan1 Dragomir Radev1

1Department of Computer Science, Yale University
2The LNM Institute of Information Technology

{michihiro.yasunaga,r.zhang,kshitijh.meelu}@yale.edu
{ayush.original}@gmail.com

{krishnan.srinivasan,dragomir.radev}@yale.edu

Abstract

We propose a neural multi-document sum-
marization (MDS) system that incorpo-
rates sentence relation graphs. We employ
a Graph Convolutional Network (GCN)
on the relation graphs, with sentence em-
beddings obtained from Recurrent Neural
Networks as input node features. Through
multiple layer-wise propagation, the GCN
generates high-level hidden sentence fea-
tures for salience estimation. We then use
a greedy heuristic to extract salient sen-
tences while avoiding redundancy. In our
experiments on DUC 2004, we consider
three types of sentence relation graphs
and demonstrate the advantage of combin-
ing sentence relations in graphs with the
representation power of deep neural net-
works. Our model improves upon tradi-
tional graph-based extractive approaches
and the vanilla GRU sequence model with
no graph, and it achieves competitive re-
sults against other state-of-the-art multi-
document summarization systems.

1 Introduction
Document summarization aims to produce fluent
and coherent summaries covering salient informa-
tion in the documents. Many previous summa-
rization systems employ an extractive approach by
identifying and concatenating the most salient text
units (often whole sentences) in the document.

Traditional extractive summarizers produce the
summary in two steps: sentence ranking and
sentence selection. First, they utilize human-
engineered features such as sentence position and
length (Radev et al., 2004a), word frequency
and importance (Nenkova et al., 2006; Hong and
Nenkova, 2014), among others, to rank sentence

salience. Then, they select summary-worthy sen-
tences using a range of algorithms, such as graph
centrality (Erkan and Radev, 2004), constraint op-
timization via Integer Linear Programming (Mc-
Donald, 2007; Gillick and Favre, 2009; Li et al.,
2013), or Support Vector Regression (Li et al.,
2007) algorithms. Optionally, sentence reordering
(Lapata, 2003; Barzilay et al., 2001) can follow to
improve coherence of the summary.

Recently, thanks to their strong representation
power, neural approaches have become popular in
text summarization, especially in sentence com-
pression (Rush et al., 2015) and single-document
summarization (Cheng and Lapata, 2016). Despite
their popularity, neural networks still have issues
when dealing with multi-document summarization
(MDS). In previous neural multi-document sum-
marizers (Cao et al., 2015, 2017), all the sentences
in the same document cluster are processed inde-
pendently. Hence, the relationships between sen-
tences and thus the relationships between differ-
ent documents are ignored. However, Christensen
et al. (2013) demonstrates the importance of con-
sidering discourse relations among sentences in
multi-document summarization.

This work proposes a multi-document summa-
rization system that exploits the representational
power of deep neural networks and the sentence
relation information encoded in graph representa-
tions of document clusters. Specifically, we apply
Graph Convolutional Networks (Kipf and Welling,
2017) on sentence relation graphs. First, we dis-
cuss three different techniques to produce sentence
relation graphs, where nodes represent sentences
in a cluster and edges capture the connections be-
tween sentences. Given a relation graph, our sum-
marization model applies a Graph Convolutional
Network (GCN), which takes in sentence embed-
dings from Recurrent Neural Networks as input
node features. Through multiple layer-wise prop-



agation, the GCN generates high-level hidden fea-
tures for each sentence that incorporate the graph
information. We then obtain sentence salience
estimations via a regression on top, and extract
salient sentences in a greedy manner while avoid-
ing redundancy.

We evaluate our model on the DUC 2004 multi-
document summarization (MDS) task. Our model
shows a clear advantage over traditional graph-
based extractive summarizers, as well as a base-
line GRU model that does not use any graph, and
achieves competitive results with other state-of-
the-art MDS systems. This work provides a new
gateway to incorporating graph-based techniques
into neural summarization.

2 Related Work
2.1 Graph-based MDS

Graph-based MDS models have traditionally em-
ployed surface level (Erkan and Radev, 2004; Mi-
halcea and Tarau, 2005; Wan and Yang, 2006) or
deep level (Pardo et al., 2006; Antiqueira et al.,
2009) approaches based on topological features
and the number of nodes (Albert and Barabási,
2002). Efforts have been made to improve de-
cision making of these systems by using dis-
course relationships between sentences (Radev,
2000; Radev et al., 2001). Erkan and Radev (2004)
introduce LexRank to compute sentence impor-
tance based on the eigenvector centrality in the
connectivity graph of inter-sentence cosine simi-
larity. Mei et al. (2010) propose DivRank to bal-
ance the prestige and diversity of the top ranked
vertices in information networks and achieve im-
proved results on MDS. Christensen et al. (2013)
build multi-document graphs to identify pairwise
ordering constraints over the sentences by ac-
counting for discourse relationships between sen-
tences (Mann and Thompson, 1988). In our work,
we build on the Approximate Discourse Graph
(ADG) model (Christensen et al., 2013) and ac-
count for macro level features in sentences to im-
prove sentence salience prediction.

2.2 Summarization Using Neural Networks

Neural networks have recently been popular for
text summarization (Kågebäck et al., 2014; Rush
et al., 2015; Yin and Pei, 2015; Cao et al., 2016;
Wang and Ling, 2016; Cheng and Lapata, 2016;
Nallapati et al., 2016, 2017; See et al., 2017). For
example, Rush et al. (2015) introduce a neural
attention feed-forward network-based model for

sentence compression. Wang and Ling (2016)
employ encoder-decoder RNNs to effectively pro-
duce short abstractive summaries for opinions.
Cao et al. (2016) develop a query-focused sum-
marization system called AttSum which deals
with saliency ranking and relevance ranking using
query-attention-weighted CNNs.

Very recently, thanks to large scale news article
datasets (Hermann et al., 2015), Cheng and Lapata
(2016) train an extractive summarization system
with attention-based encoder-decoder RNNs to se-
quentially label summary-worth sentences in sin-
gle documents. Moreover, See et al. (2017), adopt-
ing an abstractive approach, augment the stan-
dard attention-based encoder-decoder RNNs with
the ability to copy words from the source text via
pointing and to keep track of what has been sum-
marized. These models (Cheng and Lapata, 2016;
See et al., 2017) achieve state-of-the-art perfor-
mance on single-document summarization tasks.
However, scaling up these RNN sequence-to-
sequence approaches to the multi-document sum-
marization task has not been successful, 1) due to
the lack of large multi-document summarization
datasets needed to train the computationally ex-
pensive sequence-to-sequence model, and 2) be-
cause of the inadequacy of RNNs to capture the
complex discourse relations across multiple docu-
ments. Our multi-document summarization model
resolves these issues 1) by breaking down the sum-
marization task into salience estimation and sen-
tence selection that do not require an expensive
decoder architecture, and 2) by utilizing sentence
relation graphs.

3 Method
Given a document cluster, our method extracts
sentences as a summary in two steps: sentence
salience estimation and sentence selection. Figure
1 illustrates our architecture for sentence salience
estimation. Given a document cluster, we first
build a sentence relation graph, where interact-
ing sentence nodes are connected by edges. For
each sentence, we apply an RNN with Gated Re-
current Units (GRUsent) (Cho et al., 2014; Chung
et al., 2014) and extract the last hidden state as the
sentence embedding. We then apply Graph Con-
volutional Networks (Kipf and Welling, 2017) on
the sentence relation graph with the sentence em-
beddings as the input node features, to produce
final sentence embeddings that reflect the graph
representation. Thereafter, a second level GRU



pdfcrowd.comPRO version Are you a developer? Try out the HTML to PDF API

 w1

 h1  h2

 w2

 h3

 w3

 h4

.

Sentences

GRUsent

Sentence Relation Graph

 h0

Graph Convolutional Networks Salience Estimation

 h1  h2  h1  h2 h0

CSentence 
Embedding

Cluster 
Embedding

Estimated Scores

GRUdoc

Cluster

 h0

GRUdoc

doc1
d1s1

d1s2

doc2
d2s1

d2s2

Figure 1: Illustration of our architecture for sentence salience estimation. In this example, there are two
documents in the cluster and each document has two sentences. Sentences are processed by the GRUsent

to get input sentence embeddings. The GCN takes the input sentence embeddings and the sentence
relation graph, and outputs high-level hidden features for individual sentences. GRUdoc produces the
cluster embedding from the output sentence embeddings. The salience is estimated from the output
sentence embeddings and the cluster embedding. wi: the word embedding for i-th word. hi: the hidden
state of GRU at i-th step.

(GRUdoc) produces the entire cluster embedding
by sequentially connecting the final sentence em-
beddings. We estimate the salience of each sen-
tence from the final sentence embeddings and the
cluster embedding. Finally, based on the estimated
salience scores, we select sentences in a greedy
way until reaching the length limit.

3.1 Graph Representation of Clusters

To best evaluate the architecture, we consider
three graph representation methods to model sen-
tence relationships within clusters. First, as prior
methods in representing document clusters often
adhere to the standard of cosine similarity (Erkan
and Radev, 2004), our initial baseline approach
naturally used this representation. Specifically, we
add an edge between two sentences if the tf-idf co-
sine similarity measure between them, using the
bag-of-words model, is above a threshold of 0.2.

Secondly, the G-Flow system (Christensen et al.,
2013) utilizes discourse relations between sen-
tences to create its graph representations: Approx-
imate Discourse Graph (ADG). The ADG con-
structs edges between sentences by counting dis-
course relation indicators such as deverbal noun
references, event / entity continuations, discourse
markers, and co-referent mentions. These features
allow characterization of sentence relationships,
rather than simply their similarity.

While G-Flow’s ADG provides many improve-
ments from baseline graph representations, it suf-
fers several disadvantages that diminish its ability

Personalization Features

• Position in Document
• From 1st 3 Sentences?
• No. of Proper Nouns
• > 20 Tokens in Sentence?
• Sentence Length
• No. of Co-referent Verb Mentions
• No. of Co-referent Common Noun Mentions
• No. of Co-referent Proper Noun Mentions

Table 1: List of features that were input to the re-
gression function in obtaining sentence personal-
ization scores.

to aid salience prediction when given to the neu-
ral network. Specifically, the ADG lacks much di-
versity in its assigned edge weights. Because the
weights are discretely incremented, they are multi-
ples of 0.5; many edge weights are 1.0. While the
presence of an edge provides a remarkable amount
of underlying knowledge on the discourse rela-
tionships, edge weights can further include infor-
mation about the strength — and, similarly, im-
portance — of these relationships. We hope to
improve the edge weights by making them more
diverse, while infusing more information in the
weights themselves. In doing so, we contribute
our Personalized Discourse Graph (PDG). To ad-
vance the ADG’s performance in providing pre-
dictors for sentence salience, we apply a multi-
plicative effect to the ADG’s edge weights via sen-
tence personalization.



A baseline sentence personalization score s(v),
which can be viewed as weighting of sentences,
is calculated for every sentence v to account for
surface features in each sentence. These features,
listed in Table 1, are used as input for linear re-
gression, as per Christensen et al. (2013). The re-
gression is applied to each sentence to obtain the
personalization score, s(v). For each sentence, its
incoming edge weights in the original ADG are
then transformed by the personalization scores and
normalized over all the incoming edges. That is,
for directed edge (u, v) ∈ E, the weight is

wPDG(u, v) =
wADG(u, v)s(u)∑

u′∈V wADG(u′, v)s(u′)
(1)

The inclusion of the sentence personalization
scores allows the PDG to account for macro-level
features in each sentence, augmenting information
for salience estimation. To provide more clarity,
we include a figure of the PDG in later sections.

Although it may be possible to incorporate the
sentence personalization features later into the
salience estimation network, we chose to encode
them in the PDG to improve the edge weight dis-
tribution of sentence relation graphs and to make
our salience estimation architecture methodically
consistent. Additionally, in order to maintain con-
sistency between graph representations, follow-
ing two modifications are made to the discourse
graphs. First, the directed edges of both the ADG
and PDG are made undirected by averaging the
edges weights in both directions. Second, edge
weights are rescaled to a maximum edge weight
of 1 prior to being fed to the GCN.

3.2 Graph Convolutional Networks

We apply Graph Convolutional Networks (GCN)
from Kipf and Welling (2017) on top of the sen-
tence relation graph. In this subsection, we ex-
plain in detail the formulation of GCN, and how
GCN produces the final sentence embeddings.

The goal of GCN is to learn a function f(X,A)
that takes as input:

• A ∈ RN×N , the adjacency matrix of graph G,
where N is the number of nodes in G.

• X ∈ RN×D, the input node feature matrix,
whereD is the dimension of input node feature
vectors.

and outputs high-level hidden features for each
node, Z ∈ RN×F , that encapsulate the graph
structure. F is the dimension of output feature

vectors. The function f(X,A) takes a form of
layer-wise propagation based on neural networks.
We compute the activation matrix in the (l + 1)th

layer as H(l+1), starting from H0 = X . The out-
put of L-layer GCN is Z = f(X,A) = H(L).

To introduce the formulation, consider a simple
form of layer-wise propagation:

H(l+1) = σ
(
AH(l)W (l)

)
(2)

where σ is an activation function such as ReLU(·)
= max(0, ·). W (l) is the parameter to learn in the
lth layer. Eq 2 has two limitations. First, mul-
tiplying by A means that for each node, we sum
up the feature vectors of all neighboring nodes but
not the node itself. We fix this by adding self-loops
in the graph. Second, since A is not normalized,
multiplying by A will change the scale of feature
vectors. To overcome this, we apply a symmet-
ric normalization by using D−

1
2AD−

1
2 where D

is the node degree matrix. These two renormaliza-
tion tricks result in the following propagation rule:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(3)

where Ã = A + IN is the adjacency matrix of
the graph G with added self-loops (IN is the iden-
tity matrix). D̃ is the degree matrix with D̃ii =∑

j Ãij . Kipf and Welling (2017) also provide a
theoretical justification of Eq 3 as a first-order ap-
proximation of spectral graph convolution (Ham-
mond et al., 2011; Defferrard et al., 2016).

As an example, if we have a two-layer GCN,
we first calculate Â = D̃−

1
2 ÃD̃−

1
2 in a pre-

processing step, and then produce

Z = f(X,A) = σ
(
Â σ

(
ÂXW (0)

)
W (1)

)
3.3 Sentence Embeddings

As the input node featuresX of GCN, we use sen-
tence embeddings calculated by GRUsent.

Given a document cluster C with N sentences
(s1, s2, ..., sN ) in total, for each sentence si of L
words (w1, w2, ..., wL), GRUsent recurrently up-
dates hidden states at each time step t:

hsent
t = GRUsent(hsent

t−1 ,wt) (4)

where wt is the word embedding for wt, hsent
t is

the hidden state of GRUsent. h0 is initialized as a
zero vector, and the input sentence embedding xi

is the last hidden state:

xi = hsent
L (5)



All sentence embeddings from the given document
cluster are grouped as the node feature matrix X:

X =


xT
1

xT
2
...

xT
N

 (6)

X is fed into GCN subsequently to obtain the final
sentence embeddings si that incorporate the graph
representation of sentence relationships:

Z = f(X,A) =


sT1

sT2
...

sTN

 (7)

3.4 Cluster Embedding

Additionally, in order to have a global view of
the entire document cluster, we apply a second-
level RNN, GRUdoc, to encode the entire docu-
ment cluster. Given a document cluster C with M
documents (d1, d2, ..., dM ), for document di with
|di| sentences, GRUdoc first builds the document
embedding di on top of sentence embeddings:

hdoc
t = GRUdoc(hdoc

t−1, st) (8)

di = hdoc
|di| (9)

where st is the sentence embedding in the docu-
ment di. In Eq 9, we extract the last hidden state
as the document embedding for di. In Eq 10, we
average over document embeddings to produce the
cluster embedding C:

C =
1

M

M∑
i=1

di (10)

All the GRUs we used are forward. We also exper-
imented with backward GRUs and bi-directional
GRUs, but neither of them meaningfully improved
upon forward GRUs.

3.5 Salience Estimation

For the sentence si in the cluster C, we calculate
the salience of si as the following, similarly to
the attention mechanism (Bahdanau et al., 2015;
Vinyals et al., 2015):

f(si) = vT tanh(W1C+W2si) (11)

salience(si) =
exp(f(si))∑

sj∈C exp(f(sj))
(12)

where v,W1,W2 are learnable parameters. In
Eq 11, we first calculate the score f(si) by con-
sidering the sentence embedding itself, si, and the
cluster embedding C for the global context of the
multi-document. The score is then normalized as
salience(si) via softmax in Eq 12.

3.6 Training

The model parameters include the parameters
in GRUsent and GRUdoc, the weights in GCN
layers, and the parameters for salience estima-
tion (v,W1,W2). Parameters in GRUsent and
GRUdoc are not shared. The model is trained end-
to-end to minimize the following cross-entropy
loss between the salience prediction and the nor-
malized ROUGE score of each sentence:

L = −
∑
C

∑
si∈C

R(si) log(salience(si)) (13)

R(si) is calculated by R(si) = softmax(α r(si)),
where r(si) is the average of ROUGE-1 and
ROUGE-2 Recall scores of sentence si by mea-
suring with the ground-truth human-written sum-
maries. α is a constant rescaling factor to make the
distribution sharper. The value of α is determined
from the validation data set. αr(si) is then nor-
malized across the cluster via softmax, similarly
to Eq 12.

3.7 Sentence Selection

Given the salience score estimation, we apply a
simple greedy procedure to select sentences. Sen-
tences with higher salience scores have higher pri-
orities. First, we sort sentences in descending or-
der of the salience scores. Then, we select one
sentence from the top of the list and append to the
summary if the sentence is of reasonable length (8-
55 words, as in (Erkan and Radev, 2004)) and is
not redundant. The sentence is redundant if the tf-
idf cosine similarity between the sentence and the
current summary is above 0.5 (Hong and Nenkova,
2014). We select sentences this way until we reach
the length limit.

4 Experiments
In this section, we evaluate our model on bench-
mark MDS data sets, and compare with other
state-of-the-art systems. We aim to show that our
model, by combining sentence relations in graphs
with the representation power of deep neural net-
works, can improve upon other traditional graph-
based extractive approaches and the vanilla GRU
model which does not use any graph. In addition,



DUC’01 DUC’02 DUC’03 DUC’04

# of Clusters 30 59 30 50

# of Documents 309 567 298 500

# of Sentences 24498 16090 7721 13270

Vocabulary Size 28188 22174 13248 18036

Summary Length 100
words

100
words

100
words

665
Bytes

Table 2: Statistics for DUC Multi-Document Sum-
marization Data Sets.

we further study the effect of graph and different
graph representations on the summarization per-
formance and investigate the correlation of graph
structure and sentence salience estimation.

4.1 Data Set and Evaluation

We use the benchmark data sets from the Docu-
ment Understanding Conferences (DUC) contain-
ing clusters of English news articles and human
reference summaries. Table 2 shows the statistics
of the data sets. We use DUC 2001, 2002, 2003
and 2004 containing 30, 59, 30 and 50 clusters
of nearly 10 documents each respectively. Our
model is trained on DUC 2001 and 2002, vali-
dated on 2003, and tested on 2004. For evalu-
ation, we use the ROUGE-1,2 metric with stem-
ming and without removing stop words, as sug-
gested by Owczarzak et al. (2012).

4.2 Experimental Setup

We conduct four experiments on our model: three
using each of the three types of graphs discussed
earlier, and one without using any graph. In the
experiments with graphs, for each document clus-
ter, we tokenize all the documents into sentences
and generate a graph representation of their re-
lations by the three methods: Cosine Similar-
ity Graph, Approximate Discourse Graph (ADG)
from G-Flow, and our Personalized Discourse
Graph (PDG). Note that for the Cosine Similar-
ity Graph, we compute the tf-idf cosine similarity
for every pair of sentences using the bag-of-word
model and add an edge for similarity above 0.2.
The weight of the edge is the value of similarity.
We apply GCNs with the graphs in the final step
of sentence encoding. For the experiment without
any graph, we omit the GCN part and simply use
the GRU sentence and cluster encoders.

We use 300-dimensional pre-trained word2vec
embeddings (Mikolov et al., 2013) as input to
GRUsent in Eq 4. The word embeddings are fine-
tuned during training. We use three GCN hidden

R-1 R-2

SVR (Li et al., 2007) 36.18 9.34

CLASSY11 (Conroy et al., 2011) 37.22 9.20

CLASSY04 (Conroy et al., 2004) 37.62 8.96

GreedyKL (Haghighi and Vanderwende, 2009) 37.98 8.53

TsSum (Conroy et al., 2006) 35.88 8.15

G-Flow (Christensen et al., 2013) 35.30 8.27

FreqSum (Nenkova et al., 2006) 35.30 8.11

Centroid (Radev et al., 2004b) 36.41 7.97

Cont. LexRank (Erkan and Radev, 2004) 35.95 7.47

RegSum (Hong and Nenkova, 2014) 38.57 9.75

GRU 36.64±0.11 8.47

GRU+GCN: Cosine Similarity Graph 37.33±0.23 8.78

GRU+GCN: ADG from G-Flow 37.41±0.32 8.97

GRU+GCN: Personalized Discourse Graph 38.23±0.22 9.48

Table 3: ROUGE Recalls on DUC 2004. We show
mean (and standard deviation for R-1) over 10 re-
peated trials for each of our experiments.

layers (L = 3). The hidden states in GRUsent,
GCN hidden layers, and GRUdoc are all 300-
dimensional vectors (D = F = 300).

The rescaling factor α in the objective func-
tion (Eq 13) is chosen as 40 from {10, 20, 30,
40, 50, 100} based on the validation performance.
The objective function is optimized using Adam
(Kingma and Ba, 2015) stochastic gradient de-
scent with a learning rate of 0.001 and a batch size
of 1. We use gradient clipping with a maximum
gradient norm of 1.0. The model is validated ev-
ery 10 iterations, and the training is stopped early
if the validation performance does not improve for
10 consecutive steps. We trained using a single
Tesla K80 GPU. For all the experiments, the train-
ing took approximately 30 minutes until a stop.

4.3 Results

Table 3 summarizes our results. First we take our
simple GRU model as the baseline of the RNN-
based regression approach. As seen from the table,
the addition of Cosine Similarity Graph on top of
the GRU clearly boosts the performance. Further-
more, the addition of ADG from G-Flow gives a
slighly better performance. Our Personalized Dis-
course Graph (PDG) enhances the R-1 score by
more than 1.50. The improvement indicates that
the combination of graphs and GCNs processes
sentence relations across documents better than
the vanilla RNN sequence models.

To gain a global view of our performance,
we also compare our result with other baseline
multi-document summarizers and the state-of-the-



PDG ADG Cosine
Similarity

No
Graph

Num of Iterations 200 280 310 250

Train Cost 4.286 5.460 5.458 5.310

Validation Cost 4.559 5.077 5.099 5.214

Table 4: Training statistics for the four experi-
ments. The first row shows the number of itera-
tions the model took to reach the best validation
result before an early stop. The train cost and val-
idation cost at that time step are shown in the sec-
ond row and third row, respectively. All the values
are the average over 10 repeated trials.

art systems related to our regression method. We
compute ROUGE scores from the actual output
summary of each system. We run the G-Flow
code released by Christensen et al. (2013) to get
the output summary of the G-Flow system. The
output summary of other systems are compiled in
Hong et al. (2014). To ensure fair comparison, we
use ROUGE-1.5.5 with the same parameters as in
Hong et al. (2014) across all methods: -n 2 -m -l
100 -x -c 95 -r 1000 -f A -p 0.5 -t 0.

From Table 3, we observe that our GCN sys-
tem significantly outperforms the commonly used
baselines and traditional graph approaches such
as Centroid, LexRank, and G-Flow. This indi-
cates the advantage of the representation power
of neural networks used in our model. Our sys-
tem also exceeds CLASSY04, the best peer sys-
tem in DUC 2004, and Support Vector Regres-
sion (SVR), a widely used regression-based sum-
marizer. We remain at a comparable level to Reg-
Sum, the state-of-the-art multi-document summa-
rizer using regression. The major difference is
that RegSum performs regression on word level
and estimates the salience of each word through a
rich set of word features, such as frequency, gram-
mar, context, and hand-crafted dictionaries. Reg-
Sum then computes sentence salience based on the
word scores. On the other hand, our model simply
works on sentence level, spotlighting sentence re-
lations encoded as a graph. Incorporating more
word-level features into our discourse graphs may
be an interesting future direction to explore.

4.4 Discussion

As shown in Table 3, our graph-based models
outperform the vanilla GRU model, which has
no graph. Additionally, for the three graphs we
consider, PDG improves R-1 score by 0.82 over
ADG, and ADG outperforms the Cosine Similar-
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Figure 1: Learning curves of the four experiments based on the validation costs.
Note that the vertical axis is only displaying the interval 4.0 - 7.0.

1 Introduction

1

Figure 2: Visualization of the learning curves for
the four experiments. The vertical axis displays
the validation costs in the interval 4.0 - 7.0.

PDG ADG Cosine
Similarity

Number of nodes 265 265 265

Number of edges 1023 1050 884

Average edge weight 0.075 0.295 0.359

Average node degree 0.171 5.136 2.260

ρ of degree and salience 0.136 0.113 0.093

Table 5: Characteristics of the three graph repre-
sentations, averaged over the clusters (i.e. graphs)
in DUC 2004. Note that max edge weight in all
three representations is 1.0 due to rescaling for
consistency. The degree of each node is calculated
as the sum of edge weights.

ity Graph by 0.08 on the R-1 score. While the Co-
sine Similarity Graph encodes general word-level
connections between sentences, discourse graphs,
especially our personalized version, specialize in
representing the narrative and logical relations be-
tween sentences. Therefore, we hypothesize that
the PDG provides a more informative guide to es-
timating the importance of each sentence. In an at-
tempt to better understand the results and validate
the effect of sentence relation graphs (especially
of the PDG), we have conducted the analysis that
follows.

Training Statistics. We compare the learning
curves of the four different settings: GRU without
any graph, GRU+GCN with the Cosine Similarity
Graph, GRU+GCN with ADG, and GRU+GCN
with PDG (see Table 4 & Figure 2). Without a
graph, the model converges faster and achieves
lower training cost than the Cosine Similarity
Graph and ADG. This is most likely due to the
simplicity of the architecture, but it is also less
generalizable, yielding a higher validation cost
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Figure 3: Visualization of the relationship between salience score and node degree for the three graph
representation methods. Cluster d30011t from DUC 2004 is chosen as an example.

than the models with graphs. For the three graph
methods, ADG converges faster and has better
validation performance than the Cosine Similar-
ity Graph. PDG converges even faster than “No
Graph” and achieves the lowest training cost and
validation cost amongst all methods. This shows
that the PDG has particularly strong representation
power and generalizability.

Graph Statistics. We also analyze the charac-
teristics of the three graph representation methods
on DUC 2004 document clusters. Table 5 summa-
rizes the following basic statistics: the number of
nodes (i.e. sentences), the number of edges, av-
erage edge weight, and average node degree per
graph. We include the correlation between node
degree and salience, as well.

As seen from the table, PDG and ADG have ap-
proximately the same number of edges. This is
expected since the PDG is built by transforming
the edge weights in ADG. The Cosine Similarity
Graph has slightly fewer edges, simply due to the
implemented threshold.

Moreover, note that the ADG has significantly
higher average edge weight and node degree as
compared to the PDG. These values reflect the
discrete nature of the ADG’s edge assignment —
further evidence of this can be seen in Figure 3.
Because the ADG’s raw edge weight assignment
is done by increments of 0.5, the average node
degree tends to be significantly large. This mo-
tivated the construction of our PDG, which cor-
rects for this by coercing the average edge weight
and node degree to be more diverse and, conse-
quently, smaller (after rescaling). The process of
including sentence personalization scores in edge
weight assignments of the PDG leads to a select
number of edges gaining markedly large distinc-
tion. This aids the GCN in identifying the most
important edge connections along with the affili-

ated sentences.

Node Degree and Salience. In Table 5, we also
calculate the correlation coefficient ρ, per graph,
between the degree of each sentence node and its
salience score. We observe that all the graph rep-
resentations show positive correlation between the
node degree and the salience score. Moreover, the
order of correlation strength is PDG > ADG > Co-
sine Similarity Graph. Though node degree is a
simple measure of these graphs, this observation
supports our hypothesis on the efficacy of sentence
relation graphs, particularly of PDGs, to provide a
guide to salience estimation. 1

As a case study to illustrate our observation, we
chose one cluster (d30011t) from DUC 2004. Fig-
ure 3 shows the scatter plots of the node degree
and salience score of each sentence.

Visualization of the PDG. Finally, to demon-
strate the functionality of the PDG and comple-
ment our discussion from Section 3.1, we visual-
ize the PDG on cluster d30011t with the salience
score on each node in Figure 4 (also see Figure 5
for the actual sentences).

From the visualization, it can be observed that
the nodes representing salient sentences (such as
(d6, s8), (d6, s7), and (d2, s4)) tend to have higher
degrees in the PDG. We can also observe that
the PDG represents edges which connect nodes
of sentences from different documents, in contrast
with the traditional sequence model.

From Figure 5, we note that the most salient
sentence (d6, s8) actually describes much of the
reference summary. As an example of discourse
relation, (d6, s7) and (d2, s4), the two nodes con-
nected to (d6, s8), provide the background for

1 However, we shall add that simply selecting sentences
of highest node degrees in PDGs did not itself produce good
summaries, compared to our GCN model. Hence, we utilize
the graph representations specifically as inputs to the GCN.



Figure 4: Visualization of the PDG on cluster d30011t. Each node is a sentence, with label (DocumentID,
SentenceID). The node color represents the salience score (see the color bar). For simplicity, we only
display edges of weight above 0.03. Best viewed in color.

Reference Summary (truncated): Malaysian 
Prime Minister Mahathir Mohamad ruled adroitly 
for 17 years until September 1998 when he 
suddenly reversed his economic policy and fired 
his popular deputy and heir apparent, Anwar 
Ibrahim. Anwar organized a political opposition, 
leading Mahathir to arrest him. (...) Anwar 
remained in custody as lawyers appealed. (...)
Sent-label (6,8): Anwar was ... after two weeks 
of nationwide rallies at which he called for 
government reform and Mahathir's resignation, 
he was arrested ....
Sent-label (6,7): The two had differed over 
economic policy and Anwar has said Mahathir 
feared he was a threat to his 17-year rule.
Sent-label (2,4): Mahathir and Anwar had 
differed over economic policy and Anwar says 
Mahathir feared him as an alternative leader.
Sent-label (0,22): Before his arrest, Anwar 
designated his wife,  Azizah Ismail, as the leader 
of his new ``reform'' movement.

Figure 5: Reference summary and illustrative sen-
tences from cluster d30011t.

(d6, s8), even though they do not share many
words in common with it. On the other hand,
(d0, s22), which is only connected with (d2, s4), is
not salient as it does not provide a central message
for the summary.

5 Conclusion

In this paper, we presented a novel multi-document
summarization system that exploits the represen-
tational power of neural networks and graph rep-
resentations of sentence relationships. On top of
a simple GRU model as an RNN-based regression

baseline, we build a Graph Convolutional Network
(GCN) architecture applied on a Personalized Dis-
course Graph. Our model, unlike traditional RNN
models, can capture sentence relations across doc-
uments and demonstrates improved salience pre-
diction and summarization, achieving competitive
performance with current state-of-the-art systems.
Furthermore, through multiple analyses, we have
validated the efficacy of sentence relation graphs,
particularly of PDG, to help to learn the salience
of sentences. This work shows the promise of the
GCN models and of discourse graphs applied to
processing multi-document inputs.

Acknowledgements
We would like to thank Mirella Lapata, the mem-
bers of the Sapphire Project (University of Michi-
gan and IBM), as well as all the anonymous re-
viewers for their helpful suggestions on this work.
This material is based in part upon work supported
by IBM under contract 4915012629. Any opin-
ions, findings, conclusions, or recommendations
expressed herein are those of the authors and do
not necessarily reflect the views of IBM.

References
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