
LM-Critic:
Language Models for Unsupervised Grammatical Error Correction

Michihiro Yasunaga, Jure Leskovec, Percy Liang
Stanford University

{myasu,jure,pliang}@cs.stanford.edu

Abstract

Training a model for grammatical error correc-
tion (GEC) requires a set of labeled ungram-
matical / grammatical sentence pairs, but man-
ually annotating such pairs can be expensive.
Recently, the Break-It-Fix-It (BIFI) framework
has demonstrated strong results on learning to
repair a broken program without any labeled ex-
amples, but this relies on a perfect critic (e.g.,
a compiler) that returns whether an example is
valid or not, which does not exist for the GEC
task. In this work, we show how to leverage a
pretrained language model (LM) in defining an
LM-Critic, which judges a sentence to be gram-
matical if the LM assigns it a higher probability
than its local perturbations. We apply this LM-
Critic and BIFI along with a large set of unla-
beled sentences to bootstrap realistic ungram-
matical/grammatical pairs for training a correc-
tor. We evaluate our approach on GEC datasets
across multiple domains (CoNLL-2014, BEA-
2019, GMEG-wiki and GMEG-yahoo) and
show that it outperforms existing methods in
both the unsupervised setting (+7.7 F0.5) and
the supervised setting (+0.5 F0.5).

1 Introduction

Grammatical error correction (GEC) is the task
of fixing grammatical errors in text, such as typos,
tense and article mistakes. Recent works cast GEC
as a translation problem, using encoder-decoder
models to map bad (ungrammatical) sentences
into good (grammatical) sentences (Yuan and
Briscoe, 2016; Xie et al., 2016; Ji et al., 2017;
Chollampatt and Ng, 2018; Junczys-Dowmunt
et al., 2018). These methods rely on a combination
of human-labeled data (i.e., 〈bad, good〉 pairs)
(Nicholls, 2003; Yannakoudakis et al., 2011; Bryant
et al., 2019) and synthetic data, which are generated
by corrupting good sentences into 〈synthetic bad,
good〉 pairs (Awasthi et al., 2019; Kiyono et al.,
2019). Human-labeled pairs are representative
of real human errors but are expensive to obtain,
while synthetic pairs are cheap but are unrealistic,
deviating from the distribution of grammatical

(a) Grammatical error correction (GEC) via LM-Critic

She like cats.
✘ Bad (ungrammatical)

✓ Good (grammatical)
Critic

Sentence

Bad

FixerShe like cats. She likes cats.

Good

LM-Critic

GEC system

(b) Idea behind LM-Critic: Local optimum criterion

Figure 1: Illustration of LM-Critic. (a) In this work, we train
a fixer for grammatical error correction (GEC) by leveraging
LM-Critic that assesses the grammaticality. (b) LM-Critic
deems a sentence to be grammatical if a pretrained language
model (e.g., GPT2) assigns it a higher probability than
candidates in its local neighborhood (e.g., edit distance 1).

errors humans make (Grundkiewicz et al., 2019).
How to obtain inexpensive yet realistic paired data
to improve GEC remains a key challenge, especially
in domains or languages with no labeled GEC data
(Napoles et al., 2019; Náplava and Straka, 2019).

Break-It-Fix-It (BIFI; Yasunaga and Liang
(2021)) is a recent method to obtain realistic paired
data from unlabeled data, which has shown promise
in the task of source code repair. The idea of BIFI
is that using an initial fixer (e.g., trained on syn-
thetic data) and a critic that tells if an input is bad
or good (e.g., compiler, which checks if code has an
error), BIFI iteratively trains the fixer and a breaker
to generate better paired data. Specifically, BIFI (1)
applies the fixer to bad examples and keeps outputs
accepted by the critic, (2) trains a breaker on the re-

sulting paired data and uses it to generate more pairs,
and (3) trains the fixer on the pairs generated in Step
(1) and (2). This way, BIFI adapts the fixer to more
realistic distributions of 〈bad, good〉 pairs, only us-
ing unlabeled data. However, BIFI is not directly
applicable to GEC because it requires an oracle critic
(e.g., compiler), which does not exist for GEC.

In this work, we propose LM-Critic, a simple ap-
proximate critic for assessing grammaticality (§3),
and apply it with BIFI to learn GEC from unlabeled
data (§4). Specifically, motivated by recent progress
in large language models (LMs) (e.g., GPT2, GPT3;
Radford et al. (2019); Brown et al. (2020)) and an
intuition that a good LM assigns a higher probability
to grammatical sentences than ungrammatical
counterparts, we use an LM’s probability to define
a critic for grammaticality. A naive approach is to
deem a sentence as grammatical if its probability
exceeds an absolute threshold, but this does not
work in practice, e.g., LMs may assign a high prob-
ability just because the sentence has more common
words. We hence compare probabilities in local
neighborhood of sentences. Concretely, LM-Critic
is defined by two components, an LM (e.g., GPT2)
and a neighborhood function (e.g., edit distance
1), and deems a sentence to be grammatical if the
LM assigns it the highest probability in its local
neighborhood (Figure 1; local optimum criterion).
Using this LM-Critic, we apply BIFI to the GEC
task. Notably, our approach, both the LM-Critic
and GEC learning, does not require labeled data.

We evaluate our proposed approach on GEC
benchmarks across multiple domains, CoNLL-2014
(Ng et al., 2014), BEA-2019 (Bryant et al., 2019),
GMEG-yahoo, and GMEG-wiki (Napoles et al.,
2019). We achieve strong performance in the
unsupervised setting (i.e., no labeled data), out-
performing the baseline fixer trained on synthetic
data by 7.7 F0.5 on average. We also evaluate in
the supervised setting, where we take the state-
of-the-art model GECToR (Omelianchuk et al.,
2020) as the baseline fixer, and further fine-tune
it by applying our approach using unlabeled data.
We achieve 65.8 / 72.9 F0.5 on CoNLL-2014 /
BEA-2019, outperforming GECToR by 0.5 F0.5.
Our results also suggest that while existing BIFI
assumed access to an oracle critic (i.e., compiler),
an approximate critic (i.e., LM-Critic) can also help
to improve model learning.

2 Problem setup

The task of grammatical error correction (GEC)
is to map an ungrammatical sentence xbad into a
grammatical version of it, xgood (one that has the

same intended meaning). A GEC model (fixer) f
aims to learn this mapping, typically using a paired
dataset Dpair = {(xbad

(i),xgood
(i))}. In particular,

we call it labeled if the pairs are human-annotated.
In contrast, we call unlabeled data a set of raw
sentencesDunlabel ={x(i)}. For simplicity, we use
“good”/“bad” to mean grammatical/ungrammatical
interchangeably. Unlike a fixer, which maps xbad
to xgood, a critic cmerely assesses whether an input
is good or bad: for a sentence x,

c(x)=

{
1 if x is good
0 if x is bad.

(1)

Given unlabeled data x’s (some of which are
good, some of which are bad), and a language model
(LM), which returns a probability distribution p(x)
over sentencesx, we aim to define the critic (§3; LM-
Critic) and use that to obtain the fixer (§4; BIFI).

3 LM-Critic

The core of our approach to GEC is a critic, which
returns whether a sentence is good (grammatical) or
bad (ungrammatical). Motivated by recent progress
in large pretrained LMs (e.g., GPT2, GPT3; Radford
et al. (2019); Brown et al. (2020)), we aim to use an
LM’s probability score to define a critic for gram-
maticality. Specifically, we propose a criterion that
deems a sentence to be good if it has the highest prob-
ability within its local neighborhood (local optimum
criterion; §3.1). We implement this criterion using a
pretrained LM and a sentence perturbation function
(LM-Critic; §3.2). We then do an intrinsic study on
how well LM-Critic works in practice (§3.3).

3.1 Local optimum criterion of grammaticality
Our starting point is the idea that a good LM assigns
a higher probability to grammatical sentences than
ungrammatical ones. With this idea, a naive way
to judge grammaticality might be to find a threshold
(δ) for the absolute probability, and let the critic be:

AbsThr-Critic(x)=
{
1 if p(x)>δ
0 otherwise.

(2)

However, this does not work in practice. In Figure
1, for instance, “Alice likes cats” (4th sentence) is
grammatical but has a lower probability (according
to GPT2) than “Better that it” (2nd sentence), which
is ungrammatical. This is because the two sentences
have different meanings and are not directly compa-
rable. We also empirically find that this critic based
on absolute threshold does not work well (§3.3.3).

This observation motivates us to compare
sentences with the same intended meaning, and
leads to the following two refined intuitions.

Intuition 1 (Correlation of grammaticality and
probability). For a grammatical sentence, xgood,
and an ungrammatical version of it (with the same
intended meaning), xbad, we have

p(xbad)<p(xgood). (3)

Intuition 2 (Local neighborhood of sentences).
Assume for simplicity that every sentence has
exactly one grammatical version of it (i.e., if the
sentence is grammatical, itself; if not, its corrected
version).1 For each sentence x, there is a set
of sentences, B(x) (local neighborhood), that
consists of the grammatical version and all other
ungrammatical versions of x.

Assuming the above two intuitions, we obtain the
following criterion for judging grammaticality,
where the idea is to compare sentences within the
meaning-preserving local neighborhood.

Local optimum criterion of grammaticality.
For each sentence x, we letB(x) be its local neigh-
borhood as defined in Intuition 2. We then have

x is grammatical iff x=argmax
x′∈B(x)

p(x′). (4)

The justification is as follows. If x is grammatical,
then by Intuition 1, x has a higher probability than
any other sentences in B(x), as they are ungram-
matical; hence, we have the RHS of iff. On the other
hand, if x is ungrammatical, then by Intuition 1, the
grammatical version of x has a higher probability
than x, which contradicts with the RHS of iff.

The idea is to deem a sentence to be grammatical
if it has the highest probability within its meaning-
preserving local neighborhood (Figure 1). We will
next describe how to implement this criterion in
practice.

3.2 Implementation of LM-Critic

We implement LM-Critic by approximating the
local optimum criterion. First, for the sentence prob-
ability p(x), we use a pretrained LM’s probability
score. As obtaining the ground-truth local neighbor-
hoodB(x) is difficult, we aim to get an approximate,
B̂(x): we implement a sentence perturbation func-
tion b, and let B̂(x) be samples from b(x). To check
the grammaticality of a sentence, we apply the local

1We acknowledge that this assumption may not hold in
some cases, e.g., an ungrammatical sentence may have no
correction (“asdfghgfdsa”—just a random typo?) or multiple
corrections (“The cat sleep.”—change “sleep” to the present
tense or past?). We accept this assumption considering that
it is often sufficient in common GEC datasets, and leave the
relaxation of the assumption for future work.

optimum criterion (Eq 4) using B̂(x):

LM-Critic(x)=

1 if x=argmax
x′∈B̂(x)

p(x′)

0 otherwise.
(5)

There are three decisions for implementing
LM-Critic: choice of a pretrained LM, perturbation
function b, and sampling method of perturbations.

Pretrained LM. We experiment with various
sizes of GPT2 models (Radford et al., 2019)—
GPT2 (117M parameters), GPT2-medium (345M),
GPT2-large (774M), GPT2-xl (1.6B). These LMs
were trained on a large set of web text (40GB).

Perturbation function. We study three variants:

• ED1. Given a sentence, we generate edit-distance
one (ED1) perturbations in the character space.
Following prior works in typo generation (Pruthi
et al., 2019; Jones et al., 2020), we randomly in-
sert a lowercase letter, delete a character, replace
a character, or swap two adjacent characters.
• ED1 + Word-level heuristics (all). ED1 can

cover most of the character-level typos but may
not cover word-level grammatical errors, such as
missing an article. Besides ED1, here we include
heuristics for word-level perturbations used in
Awasthi et al. (2019), which randomly inserts,
deletes, or replaces a word based on its dictionary.
Please refer to Awasthi et al. for more details.
• ED1 + Word-level heuristics. We noticed

that the above word-level heuristics include
perturbations that may alter the meaning of the
original sentence (e.g., deleting/inserting “not”).
Therefore, we remove such heuristics here.

Sampling perturbations. As the output space
of the perturbation function b is large, we obtain
samples from b(x) to be B̂(x). We experiment with
random sampling with sizes of 100, 200 and 400,
motivated by the finding that with the GPT2 models,
a batch size of 100 sentences can fit into a single
GPU of 11GB memory. Other (potentially more
efficient) sampling methods include gradient-based
sampling which picks perturbation sentences in
a direction that increases the sentence probability
(analogous to adversarial perturbations; Szegedy
et al. (2013); Wallace et al. (2019)), but we focus
on random sampling in this work.

The advantage of LM-Critic is that as LMs can
be trained on a wide range of unlabeled corpora, it is
unsupervised and usable in various domains of text.

300 250 200 150 100 50 0
log p(x)

De
ns

ity

Grammatical
Ungrammatical

Figure 2: Probability of grammatical (green) and ungrammat-
ical (red) sentences, computed by a pretrained LM (GPT2).

Pretrained LM How often p(xbad)<p(xgood)?

GPT2 94.7%
GPT2-medium 95.0%
GPT2-large 95.9%
GPT2-xl 96.0%

Table 1: How well sentence probability returned by pretrained
LMs correlates with grammaticality empirically.

3.3 Empirical analysis

We study how well our LM-Critic works in practice.
We prepare an evaluation data for judging grammat-
icality in §3.3.1. We first perform a simple check
to make sure that LMs’ probability score correlates
with grammaticality (§3.3.2). We then study the
performance of LM-Critic judging grammaticality
(§3.3.3). The analysis we conduct in this section
is just an intrinsic evaluation of LM-Critic. Our
main goal is to use LM-Critic with BIFI for learning
GEC, which we describe and evaluate in §4.

3.3.1 Evaluation data
To gain insights into how well LM-Critic judges
grammaticality, we prepare a simple evaluation
data consisting of (xbad,xgood) sentence pairs. As
experimenting with multiple datasets is desired in
GEC (Mita et al., 2019), we construct a combined
evaluation set from the dev sets of multiple GEC
benchmarks, GMEG-wiki (Napoles et al., 2019),
GMEG-yahoo, and BEA-2019 (Bryant et al., 2019),
which span the domains of Wikipedia, Yahoo!An-
swers, and essay/learner English. Specifically, we
sampled∼600 labeled pairs of (xbad,xgood) in total
from the three benchmarks. We filter out examples
where xbad=xgood in this process. We acknowledge
that while we use annotated (xbad,xgood) pairs for
the evaluation here, this does not fully match the
way LM-Critic will be used in BIFI (§4), where the
critic is run on unlabeled sentences; our study here
is just to gain intrinsic insights into LM-Critic.

3.3.2 Analysis of LM probability
Using the evaluation data, we first make sure
that pretrained LMs’ probability correlates with
grammaticality. Figure 2 shows a histogram for
the probability log p(x) of grammatical (green)
and ungrammatical (red) sentences computed by

Perturbation
Recognize “Good” Recognize “Bad”

P R F0.5 P R F0.5

ED1 58.7 90.1 63.1 78.8 36.8 64.2
ED1 + word(all) 69.7 10.2 32.2 51.5 95.5 56.7
ED1 + word 68.4 75.5 69.7 72.7 65.1 71.1

Sample size
Recognize “Good” Recognize “Bad”

P R F0.5 P R F0.5

100 68.4 75.5 69.7 72.7 65.1 71.1
200 71.3 71.5 71.4 71.4 71.3 71.4
400 72.6 68.7 71.8 70.3 74.0 71.0

Pretrained LM
Recognize “Good” Recognize “Bad”

F0.5 F0.5

GPT2 69.7 71.1
GPT2-medium 69.9 71.0
GPT2-large 70.3 71.3
GPT2-xl 69.9 71.0

Table 2: Performance of LM-Critic, when using different
choices of a perturbation function, sample size, and pretrained
LM described in §3.2. (Top) We set the LM to be GPT2 and the
perturbation sample size to be 100, and vary the perturbation
function b. “ED1 + word” achieves the best F0.5. Henceforth,
we use this perturbation function. (Middle) We set the LM to
be GPT2 and vary the perturbation sample size. Increasing the
sampling size improves the performance slightly. (Bottom)
We vary the LM. Increasing the LM size makes slight or no
improvement in F0.5 on the dataset we used.

Examples of p(xbad)>p(xgood)

(Comma)
xbad: The video was filmed on January 22 and is set to premiere on February 22.
xgood: The video was filmed on January 22, and is set to premiere on February 22.

(Quotation)
xbad: Uprising is a 1980 roots reggae album by Bob Marley & The Wailers.
xgood: “Uprising” is a 1980 roots reggae album by Bob Marley & The Wailers.

(British spelling)
xbad: The blast could be heard across the whole city centre.
xgood: The blast could be heard across the whole city center.

Examples of p(x′)>p(xgood), x
′∈B̂(xgood)

(Singular/plural)
x′: They are affiliated to either the state boards or to national education boards.
xgood: They are affiliated to either the state board or to national education boards.

(Tense)
x′: As well as touring Europe, they tour with such acts as Green Day.
xgood: As well as touring Europe, they toured with such acts as Green Day.

Table 3: Failure cases of LM-Critic. (Top) GPT2 assigns
a higher probability to bad sentences. (Bottom) our neigh-
borhood function (“ED1 + word”) includes sentences with a
higher LM probability than the original good sentence.

GPT2. In Table 1, we study how often pretrained
LMs actually assign a higher probability to xgood
than xbad on the evaluation pairs (xbad,xgood). We
find that the LMs satisfy p(xbad)<p(xgood) about
94% of the time, with a slight increase when using
a larger model (from GPT2 to GPT2-xl). We find
that the remaining pairs with p(xbad) > p(xgood)
consist mostly of cases where xgood adds commas
or quotations to xbad (see Table 3 top for examples).

3.3.3 Performance of LM-Critic
In §3.3.2 we simply made sure that pretrained LMs’
probability correlates with grammaticality. Here we
study LM-Critic’s performance of judging bad/good

sentences, on the evaluation set {(xbad
(i),xgood

(i))}.
We treat the label of xbad’s and xgood’s to be “bad”
and “good”, respectively, and measure the precision
(P), recall (R), F0.5 of LM-Critic recognizing “bad”
and “good”. Denoting the critic as c, precision and
recall for “bad” are defined as

P(bad)=
|{x : c(x)=0}| ∩ |{xbad}|

|{x : c(x)=0}|
, (6)

R(bad)=
|{x : c(x)=0}| ∩ |{xbad}|

|{xbad}|
. (7)

P(good) and R(good) are defined similarly. F0.5 score is
a combined metric of P and R that is commonly used
in grammatical error detection/correction literature.

Baseline critic. First, as a baseline, we evaluate
the critic based on absolute threshold, described
in Eq 2. We set the threshold δ as the average
probability of all good and bad sentences in the
evaluation data. This method achieves 54.3 F0.5

(bad)

and 56.0 F0.5
(good), using GPT2.

Proposed LM-Critic. Table 2 shows the results
of our proposed LM-Critic, using different choices
of a perturbation function, sample size, and
pretrained LM. Recall that LM-Critic predicts
“bad” correctly if it finds a perturbed sentence with
higher probability, and predicts “good” correctly
if the input has the highest probability among the
sampled perturbations.

• Perturbation function b (top table). We set the
pretrained LM to be GPT2 and the perturbation
sample size to be 100, and vary the perturbation
function. We find that when the perturbation
space is small (“ED1”), LM-Critic may make
false predictions of “good”, leading to low P(good)

and low R(bad). When the perturbation space
is large (“ED1 + word(all)”), LM-Critic may
make false predictions of “bad”, leading to low
R(good) and low P(bad). “ED1 + word” is the most
balanced and achieves the best F0.5; henceforth,
we use this perturbation method for all our
experiments. Overall, our LM-Critic outperforms
the baseline critic by substantial margins.
• Sample size of perturbations (middle table).

We set the LM to be GPT2 and vary the pertur-
bation sample size. Increasing the sample size
tends to improve P(good) and R(bad), and improve
the overall F0.5 performance slightly.
• Pretrained LM (bottom table). We vary the

LM. Increasing the LM size makes slight or no
improvement in F0.5 on the dataset we used.

We also analyze when LM-Critic fails. When
LM-Critic predicts a false “good” (labeled “bad”

but predicted “good”), it is commonly because of
p(xbad) > p(xgood) (as described in §3.3.2; Table
3 top), or perturbation sampling not hitting a better
version of the input xbad. When LM-Critic predicts
a false “bad” (labeled “good” but predicted “bad”),
it is because some perturbation x′ ∈ B̂(xgood)
yields p(x′) > p(xgood). Common examples are
the change of tense or singular /plural (see Table
3 bottom for examples). This indicates that even
if we use a conservative edit-distance like ED1,
there may be unnecessary perturbations (tense,
singular/plural) that pretrained LMs prefer, which
is a limitation of our current LM-Critic.

The analysis done in this section is an intrinsic
evaluation of LM-Critic. Our main goal is to use
LM-Critic with BIFI for learning GEC, which we
describe in §4. While LM-Critic is not perfect
in itself as we have seen in this section (it is an
approximate critic), we will show that it is helpful
for obtaining realistic paired data to improve the
downstream GEC performance. Henceforth, we
use the “ED1 + word” perturbation, a sample size
of 100, and GPT2 for our LM-Critic.

4 Learning GEC with LM-Critic

Break-It-Fix-It (BIFI; Yasunaga and Liang (2021))
is an existing method that uses a critic to obtain
realistic paired data from unlabeled data. BIFI was
originally studied in the source code repair task
where an oracle critic (e.g., compiler) exists, but
there is no oracle critic in GEC. Here, we propose to
apply BIFI to the GEC task by using LM-Critic as
the critic (§4.1), and evaluate this approach on GEC
benchmarks (§4.2). The difference from the original
BIFI is that our task is GEC rather than code repair,
and we use an approximate critic (i.e., LM-Critic)
instead of an oracle critic (i.e., compiler).

4.1 Approach
Our goal is to learn a fixer f that maps an ungram-
matical sentence xbad into the grammatical version
xgood. A common method to obtain paired data for
GEC from unlabeled text is to heuristically corrupt
good sentences (synthetic data) (Awasthi et al.,
2019; Kiyono et al., 2019). However, such synthetic
errors do not match the distributions of real
grammatical errors humans make, which may result
in accuracy drops (Daume III and Marcu, 2006). To
mitigate this mismatch, BIFI aims to obtain more
realistic paired data and train the fixer on it.

Specifically, BIFI takes as inputs:
• Critic c, for which we use LM-Critic
• Unlabeled data Dunlabel. Using the critic c,

examples in Dunlabel can be split into bad ones

Dbad={x |x∈Dunlabel, c(x)=0} and good ones
Dgood={y |y∈Dunlabel, c(y)=1}
• Initial fixer f0, which could be trained on

synthetic data (unsupervised setting; §4.2.2) or
labeled data (supervised setting; §4.2.3)

and improves the fixer by performing a cycle of
data generation and training: (1) we apply the fixer
f to the bad examplesDbad, which consists of real
grammatical errors made by humans, and use the
critic to assess if the fixer’s output is good—if good,
we keep the pair; (2) we train a breaker b on the
resulting paired data—consequently, the breaker
can generate more realistic errors than the initial
synthetic data; (3) we apply the breaker to the good
examples Dgood; (4) we finally train the fixer on
the newly-generated paired data in (1) and (3). This
cycle can be iterated to improve the fixer and the
breaker simultaneously. Formally, BIFI does the
following in each round k (=1,2,...,K):

P(f)
k ={(x, fk−1(x)) |x∈Dbad, c(fk−1(x))=1} (8)

bk=TRAINgood→bad(P(f)
k) (9)

P(b)
k ={(bk(y), y) |y∈Dgood, c(bk(y))=0} (10)

fk=TRAINbad→good(P(f)
k ∪P(b)

k), (11)

where each equation corresponds to the steps (1)–(4)
in the description above. TRAINgood→bad(P) trains
an encoder-decoder model that maps “good”-side
examples to “bad”-side examples in paired data
P , and TRAINbad→good(P) does the reverse. Red
font indicates the use of critic. The key intuition
of BIFI is that thanks to the critic, (i) we can
extract Dbad from the unlabeled data Dunlabel and
incorporate realistic grammatical errors into our
data (as opposed to the synthetic data), and (ii) we
can verify if the “bad”-side and “good”-side of the
generated pairs are actually “bad” and “good” (Eq
8, 10; red font), which improves the correctness
of generated training data compared to vanilla
backtranslation (Sennrich et al., 2016; Lample et al.,
2018). We refer readers to Yasunaga and Liang
(2021) for more details.

4.2 Experiments
We study our proposed approach (BIFI with LM-
Critic) on GEC benchmarks, in both unsupervised
and supervised settings.

4.2.1 Evaluation data
We evaluate on four GEC benchmarks, CoNLL-
2014 test (Ng et al., 2014), BEA-2019 dev / test
(Bryant et al., 2019), GMEG-yahoo and GMEG-
wiki tests (Napoles et al., 2019), which span do-
mains of essay/learner English, Wikipedia, and Ya-

hoo!Answers. For CoNLL-2014, we use the official
M2 scorer (Dahlmeier and Ng, 2012), and for others
we use the ERRANT metric (Bryant et al., 2017).
We describe the training data separately for unsuper-
vised (§4.2.2) and supervised (§4.2.3) settings.

4.2.2 Unsupervised setting
Setup and data. We consider the setup with no
labeled training data. Existing GEC works (e.g.,
Awasthi et al. (2019); Omelianchuk et al. (2020))
prepare synthetic paired data by heuristically cor-
rupting sentences from the One-billion-word corpus
(Chelba et al., 2013). We follow the same procedure,
and train an encoder-decoder Transformer (Vaswani
et al., 2017) on this synthetic data to be our baseline
fixer. The size of the synthetic data is 9M pairs.

We then apply the BIFI training on top of the
baseline fixer. As our unlabeled data to be used
for BIFI, we want text that is likely to contain both
ungrammatical and grammatical sentences. Hence,
we take 10M sentences in total from the Yahoo!An-
swers corpus (Zhang et al., 2015) and the Wikipedia
histories data (Grundkiewicz and Junczys-
Dowmunt, 2014) for which we take sentences prior
to revisions.2 This unlabeled data is in the domains
of two of our benchmarks (GMEG-wiki and GMEG-
yahoo) but not of CoNLL-2014 and BEA-2019.

Implementation details. The encoder-decoder
Transformer architecture has 12 layers, 16 attention
heads and hidden state size of 768. The model
parameters are initialized with the BART-base
release (Lewis et al., 2020), and then optimized by
Adam (Kingma and Ba, 2015), with batch size of
512 sequences, learning rate 0.0001, and gradient
clipping 1.0 (Pascanu et al., 2013), on a single GTX
Titan X GPU. For generation, we use beam search
with beam size 10. We run the BIFI algorithm for
K=1 round. The total training time takes 2 days.

Results. Table 4 shows the results on the four
GEC benchmarks. “Transformers” is our baseline
fixer, trained on the synthetic paired data. Our pro-
posed approach (“+BIFI”) outperforms the baseline
by substantial margins across the benchmarks, e.g.,
+8 F0.5 on GMEG-wiki and yahoo.

Since our method (“+BIFI”) uses more (unla-
beled) data than the baseline (“Transformer”), to
be fully fair, we also conduct an experiment that
controls the amount of training data seen by the
model: Specifically, we apply BIFI to the baseline
fixer without the critic, i.e., the model sees the
same amount of newly-generated paired data as

2This is not paired data, as we only take sentences pre
revision, not post revision.

GEC system
CoNLL-2014 (test) BEA-2019 (dev) GMEG-wiki (test) GMEG-yahoo (test)

P R F0.5 P R F0.5 P R F0.5 P R F0.5

Transformer 59.2 29.2 49.1 44.2 17.9 34.1 52.1 26.5 43.7 44.4 36.9 42.7
+ BIFI with no critic 58.2 29.9 48.9 43.8 18.7 34.5 53.5 27.4 44.9 45.1 38.5 43.6
+ BIFI (ours) 64.4 35.6 55.5 51.6 24.7 42.4 57.9 33.6 50.6 53.7 47.1 52.2

Table 4: GEC results in the unsupervised setting (§4.2.2). “Transformers” is trained on synthetic paired data as in Awasthi
et al. (2019). If we train it on more realistic paired data generated by BIFI (bottom row), it achieves improved results.

GEC system Ens.
CoNLL-2014 (test) BEA-2019 (test)

P R F0.5 P R F0.5

GPT3 (175B) with prompting 62.4 25.0 48.0 50.8 38.2 47.6

Zhao et al. (2019) 67.7 40.6 59.8 - - -
Awasthi et al. (2019) 66.1 43.0 59.7 - - -
Kiyono et al. (2019) 67.9 44.1 61.3 65.5 59.4 64.2

Zhao et al. (2019) X 74.1 36.3 61.3 - - -
Awasthi et al. (2019) X 68.3 43.2 61.2 - - -
Grundkiewicz et al. (2019) X - - 64.2 72.3 60.1 69.5
Kiyono et al. (2019) X 72.4 46.1 65.0 74.7 56.7 70.2
Kantor et al. (2019) X - - - 78.3 58.0 73.2

GECToR (Omelianchuk et al., 2020) 77.5 40.1 65.3 79.2 53.9 72.4

GECToR (our base) 77.5 40.1 65.3 79.2 53.9 72.4
+ BIFI (ours) 78.0 40.6 65.8 79.4 55.0 72.9

Table 5: GEC results in the supervised setting with labeled data available
(§4.2.3). “Ens.” indicates an ensemble system.

0 1k 10k 100k 1,000k
Labeled training data

40

50

GE
C

re
su

lt
 F

0.
5

no BIFI
BIFI

Figure 3: GEC results (y-axis) when varying
the amount of labeled data available for
training (x-axis). BIFI is particularly helpful
in low-resource regimes.

“+BIFI” but they are not verified by LM-Critic. This
system (“+BIFI with no critic”) did not improve
on the baseline much. These results indicate that
the paired data generated by BIFI with LM-Critic
is indeed more realistic and helpful than the initial
synthetic data or pairs generated without LM-Critic.

The improved results in this unsupervised setting
suggest that our approach is especially useful in
domains with no labeled GEC data for training (e.g.,
GMEG-wiki and yahoo; CoNLL-2014 and BEA-
2019 have labeled data, which we use in §4.2.3).

Our results also suggest that while existing BIFI
assumed access to an oracle critic (i.e., compiler),
an approximate critic (i.e., LM-Critic) can also help
to improve model learning. Our conjecture is that as
long as the LM-Critic is better than random guessing
(e.g., 70 F0.5 as shown in §3.3.3), it is useful for im-
proving the quality of GEC training data generated
in BIFI (Eq 8, 10), which in turns improves GEC per-
formance. An interesting future direction is to use
the breaker learned in BIFI (Eq 9 for the perturbation
function in LM-Critic (§3.2) to further improve the
critic, which may in turn help BIFI as well as GEC
performance, creating a positive loop of learning.

4.2.3 Supervised setting

Setup and data. We also consider the common
leaderboard setup that uses labeled training data and
evaluates on CoNLL-2014 and BEA-2019. We take
the state-of-the-art model, GECToR (Omelianchuk
et al., 2020), as our baseline fixer. Following
Omelianchuk et al. (2020), GECToR is first trained
on the synthetic paired data described in §4.2.2, and
is then trained on the labeled data available for the

BEA-2019 task, which is the combination of:
• NUS Corpus of Learner English (NUCLE)

(Dahlmeier et al., 2013)
• Lang-8 Corpus of Learner English (Lang-8)

(Mizumoto et al., 2011; Tajiri et al., 2012)
• FCE dataset (Yannakoudakis et al., 2011)
• Write & Improve + LOCNESS Corpus (W&I +

LOCNESS) (Bryant et al., 2019)
They are all in the domain of CoNLL-2014 and
BEA-2019 (learner/essay English). The total size
of the labeled data is 1M pairs.

We then apply the BIFI training on top of
GECToR. As our unlabeled data to be used for
BIFI, we use 10M sentences taken from Yahoo!
Answers and Wikipedia histories (same as §4.2.2).

Implementation details. We use the same hyper-
parameters and training procedures for GECToR
as in Omelianchuk et al. (2020). We run the BIFI
algorithm forK=1 round. The total training time
takes 4 days, on a single GTX Titan X GPU.

Results. Table 5 shows our results on CoNLL-
2014 test and BEA-2019 test, along with existing
systems on the leaderboard. Our approach
(“+BIFI”) provides an additional boost over our
base model (“GECToR”). This suggests that
BIFI with LM-Critic is helpful not only in the
unsupervised setting but also when a substantial
amount of labeled data (1M pairs) is available.

4.2.4 Analysis
Varying the amount of labeled data. We have
studied GEC results when we have no labeled data
(§4.2.2) and when we use all the labeled data (1M

(a) Pairs generated by synthetic corruption

xbad: We look forward the to better treatments in the future.
xgood: We look forward to better treatments in the future.
xbad: The president-elect stayed away so as not to foregin matters until Bush.
xgood: The president-elect stayed away so as not to complicate matters for Bush.

(b) Pairs generated by BIFI without LM-Critic

xbad: If anyone is interested, here’s the kink.
xgood: If anyone is interested, here’s the kinks.
xbad: If you can’t find a match yourself, horse trader will helps.
xgood: If you can’t find a match yourself, horse traders will help.

(c) Pairs generated by BIFI with LM-Critic (Ours)

xbad: First Light is a award-winning novel by Sunil Gangopadhyay.
xgood: First Light is an award-winning novel by Sunil Gangopadhyay.
xbad: Except latter, the rivers are in underground tubes and not visible.
xgood: Except for the latter, the rivers are in underground tubes and not visible.

Table 6: Examples of paired data generated by (a) synthetic
corruption, (b) BIFI without critic, and (c) BIFI with LM-Critic.
(a) tends to deviate from the type of grammatical errors humans
make. (b) tends to have pairs where xgood is broken (e.g.,
the first pair) or xbad is already grammatical, as pairs are not
verified by a critic. (c) is the most realistic.

(Input) The system is designed to use amplitude comparision for height finding.
(Baseline) The system is designed to use amplitude comparison for height find.
(BIFI) The system is designed to use amplitude comparison for height finding.

(Input) Lugu Lake, set in the subalpine zone in Hengduan is a landscape of
pine-covered ecoregion.

(Baseline) Lugu Lake, set in the subalpine zone in Hengduan, is their landscape of
pine-covered ecoregion.

(BIFI) Lugu Lake, set in the subalpine zone in Hengduan, is a landscape of
pine-covered ecoregion.

Table 7: Examples where the baseline fixer trained with
synthetic data fails but BIFI succeeds. The baseline tends
to make unnecessary edits (e.g., changing verb inflection or
articles, due to heuristics used when generating synthetic data).

pairs) (§4.2.3). Here we analyze the interpolation.
In Figure 3, we show the GEC performance (F0.5)
on the BEA-2019 dev set, when varying the amount
of labeled data available for training from 0 to 1M.
The blue line indicates a Transformer model first
trained on the synthetic data and then trained on
the available labeled data, which is our baseline.
The orange line indicates that this baseline model
is further trained with BIFI. We observe that
BIFI outperforms the baseline consistently and is
particularly helpful in low-resource regimes.

Pairs generated by BIFI. We quantitatively
saw in §4.2.2 that the paired data generated by
BIFI is helpful for learning GEC. Here we provide
qualitative examples to compare the paired data
generated by (a) synthetic corruption, (b) BIFI
without critic, and (c) BIFI with LM-Critic (Table 6).
We observe that (a) tends to deviate from the type
of grammatical errors humans make (e.g., inserting
/replacing words arbitrarily); (b) tends to have pairs
where xgood is broken (e.g., the first pair in Table
6(b)) or xbad is actually grammatical, as pairs are
not verified by a critic; and (c) is the most realistic.

GEC model outputs. In Table 7, we analyze
examples where the baseline fixer trained on

synthetic data (“Transformer”) fails but our model
(“+BIFI”) succeeds. We find that the baseline tends
to make unnecessary edits (e.g., changing verb
inflection or articles), due to the heuristics used
when generating synthetic data. In contrast, BIFI
achieves higher precision.

5 Related work and discussion

Grammatical error correction (GEC). GEC
models are commonly trained from human-labeled
data (Nicholls, 2003; Dahlmeier et al., 2013;
Yannakoudakis et al., 2011; Bryant et al., 2019), or
synthetic data generated by heuristically corrupting
unlabeled sentences (Awasthi et al., 2019; Zhao
et al., 2019; Grundkiewicz et al., 2019; Katsumata
and Komachi, 2019; Omelianchuk et al., 2020).
Several works aim to improve the methods for
generating paired data, such as learning a breaker
from existing labeled data (Lichtarge et al., 2019),
applying backtranslation (Sennrich et al., 2016) to
GEC (Xie et al., 2018; Kiyono et al., 2019), and
synthesizing extra paired data by comparing model
predictions and references (Ge et al., 2018). Differ-
ent from the above works, our method (i) does not re-
quire labeled data (works for both unsupervised and
supervised settings), and (ii) uses LM-Critic to filter
the “bad”-side and “good”-side of generated pairs.

Automatic text evaluation. Popular metrics
used to assess the quality of text in GEC include
GLEU (Napoles et al., 2015, 2017), M2 (Dahlmeier
and Ng, 2012), ERRANT (Bryant et al., 2017)
and I-measure (Felice and Briscoe, 2015). While
these methods require reference text to compare to,
LM-Critic does not. Several prior works also study
reference-less methods to assess grammaticality
of text: Wan et al. (2005); Mutton et al. (2007);
Vadlapudi and Katragadda (2010) use part-of-
speech (POS) tagger or parser predictions to score
grammaticality; Napoles et al. (2016); Warstadt
et al. (2018); Katinskaia et al. (2019); Niu and Penn
(2020) train grammatical error detection (GED) or
acceptability judgement systems. However, these
works require POS taggers, parsers or GED systems
trained on labeled data, which may not scale or
generalize well beyond the domain of training data.
In contrast, LM-Critic only requires an LM, which
is unsupervised and can be pretrained on various
domains of unlabeled corpora.

Pretrained LM for text evaluation. Several
works use pretrained LMs for text evaluation. For
reference-based metrics, Zhang et al. (2020) use an
LM’s embeddings to measure the similarity between
input text and reference text. For reference-less

metrics, several works (Kann et al., 2018; Stahlberg
et al., 2019) use an LM’s probability as a fluency
score of text. While this provides a continuous score
for fluency, it in itself cannot classify grammatical
/ ungrammatical sentences. Our LM-Critic goes
a step further to consider the local optimum
criterion for classifying grammaticality. The reason
we want a classifier (critic) is that we work on
unsupervised learning of GEC. In the unsupervised
setting, there is a distributional shift problem—the
synthetically-generated paired data does not match
the distribution of grammatical errors humans make.
BIFI is a solution for obtaining realistic paired
data in an unsupervised way, but it requires a critic.
This led us to design a critic for GEC in this work.
We note that LM-Critic is not meant to replace
existing evaluation metrics for GEC, but rather is
an approximate critic to assess grammaticality and
help the learning of GEC.

Separately, several works (Tenney et al., 2019;
Hewitt and Manning, 2019; Yasunaga and Lafferty,
2019; Cao et al., 2020) induce grammar or syntactic
structures from LMs, suggesting that LMs can
learn about grammaticality in an unsupervised
way. As this capacity is likely to grow with the
size of LMs (Radford et al., 2019; Brown et al.,
2020; Kaplan et al., 2020), we think that how to
leverage pretrained LMs for GEC will become an
increasingly important research problem.

6 Conclusion

We presented LM-Critic, a method that uses a
pretrained language model (LM) as a critic for as-
sessing sentence grammaticality. Using LM-Critic
and the BIFI algorithm, we learn grammatical error
correction (GEC) by generating realistic training
data from unlabeled text. Notably, our approach
does not require labeled data, and can also be
viewed as an unsupervised method to turn a (GPT2-
scale) pretrained LM into an actual GEC system.
Using multiple GEC datasets, we showed that our
approach achieves strong performance on unsuper-
vised GEC, suggesting the promise of our method
for domains and languages with no labeled GEC
data. We hope this work opens up research avenues
in LM-based critics and unsupervised GEC.

Acknowledgments

We thank Pang Wei Koh, Tianyi Zhang, Rodrigo
Castellon, members of the Stanford P-Lambda,
SNAP and NLP groups, as well as our anonymous
reviewers for valuable feedback. This work was
supported in part by a Funai Foundation Scholarship
and NSF CAREER Award IIS-1552635.

Reproducibility

Code and data are available at
https://github.com/michiyasunaga/
LM-Critic.
Experiments are available at
https://worksheets.
codalab.org/worksheets/
0x94456a63e1ee4ccfaabdc7f6a356cc82.

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduc-
tion. In Empirical Methods in Natural Language
Processing (EMNLP).

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-
shot learners. In Advances in Neural Information
Processing Systems (NeurIPS).

Christopher Bryant, Mariano Felice, Øistein E Ander-
sen, and Ted Briscoe. 2019. The bea-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of
NLP for Building Educational Applications.

Christopher Bryant, Mariano Felice, and Edward
Briscoe. 2017. Automatic annotation and evaluation
of error types for grammatical error correction. In
Association for Computational Linguistics (ACL).

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-
pervised parsing via constituency tests. In Empirical
Methods in Natural Language Processing (EMNLP).

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2013. One billion word benchmark for measuring
progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In
North American Chapter of the Association for
Computational Linguistics (NAACL).

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In
Proceedings of the eighth workshop on innovative
use of NLP for building educational applications.

Hal Daume III and Daniel Marcu. 2006. Domain
adaptation for statistical classifiers. Journal of
artificial Intelligence research.

https://github.com/michiyasunaga/LM-Critic
https://github.com/michiyasunaga/LM-Critic
https://worksheets.codalab.org/worksheets/0x94456a63e1ee4ccfaabdc7f6a356cc82
https://worksheets.codalab.org/worksheets/0x94456a63e1ee4ccfaabdc7f6a356cc82
https://worksheets.codalab.org/worksheets/0x94456a63e1ee4ccfaabdc7f6a356cc82

Mariano Felice and Ted Briscoe. 2015. Towards a
standard evaluation method for grammatical error
detection and correction. In North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Tao Ge, Furu Wei, and Ming Zhou. 2018. Fluency
boost learning and inference for neural grammatical
error correction. In Association for Computational
Linguistics (ACL).

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2014. The wiked error corpus: A corpus of corrective
wikipedia edits and its application to grammatical
error correction. In International Conference on
Natural Language Processing.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications.

John Hewitt and Christopher D Manning. 2019. A struc-
tural probe for finding syntax in word representations.
In North American Chapter of the Association for
Computational Linguistics (NAACL).

Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen
Gong, Steven Truong, and Jianfeng Gao. 2017. A
nested attention neural hybrid model for grammatical
error correction. In Association for Computational
Linguistics (ACL).

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy
Liang. 2020. Robust encodings: A framework for
combating adversarial typos. In Association for
Computational Linguistics (ACL).

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction
as a low-resource machine translation task. In
North American Chapter of the Association for
Computational Linguistics (NAACL).

Katharina Kann, Sascha Rothe, and Katja Filippova.
2018. Sentence-level fluency evaluation: References
help, but can be spared! In Conference on Computa-
tional Natural Language Learning (CoNLL).

Yoav Kantor, Yoav Katz, Leshem Choshen, Edo
Cohen-Karlik, Naftali Liberman, Assaf Toledo,
Amir Menczel, and Noam Slonim. 2019. Learning
to combine grammatical error corrections. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Anisia Katinskaia, Sardana Ivanova, Roman Yangarber,
et al. 2019. Multiple admissibility in language
learning: Judging grammaticality using unlabeled
data. In The 7th Workshop on Balto-Slavic Natural
Language Processing Proceedings of the Workshop.

Satoru Katsumata and Mamoru Komachi. 2019. (al-
most) unsupervised grammatical error correction
using synthetic comparable corpus. In Proceedings
of the Fourteenth Workshop on Innovative Use of
NLP for Building Educational Applications.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya
Mizumoto, and Kentaro Inui. 2019. An empirical
study of incorporating pseudo data into grammatical
error correction. In Empirical Methods in Natural
Language Processing (EMNLP).

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018. Unsupervised
machine translation using monolingual corpora
only. In International Conference on Learning
Representations (ICLR).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2020.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. In Association for Computational
Linguistics (ACL).

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019.
Corpora generation for grammatical error correction.
In North American Chapter of the Association for
Computational Linguistics (NAACL).

Masato Mita, Tomoya Mizumoto, Masahiro Kaneko,
Ryo Nagata, and Kentaro Inui. 2019. Cross-corpora
evaluation and analysis of grammatical error correc-
tion models—is single-corpus evaluation enough?
In North American Chapter of the Association for
Computational Linguistics (NAACL).

Tomoya Mizumoto, Mamoru Komachi, Masaaki
Nagata, and Yuji Matsumoto. 2011. Mining revision
log of language learning sns for automated japanese
error correction of second language learners. In
International Joint Conference on Natural Language
Processing (IJCNLP).

Andrew Mutton, Mark Dras, Stephen Wan, and Robert
Dale. 2007. Gleu: Automatic evaluation of sentence-
level fluency. In Association of Computational
Linguistics (ACL).

Jakub Náplava and Milan Straka. 2019. Grammat-
ical error correction in low-resource scenarios.
In Proceedings of the 5th Workshop on Noisy
User-generated Text (W-NUT 2019).

Courtney Napoles, Maria Nădejde, and Joel Tetreault.
2019. Enabling robust grammatical error correction
in new domains: Data sets, metrics, and analyses.
Transactions of the Association for Computational
Linguistics.

Courtney Napoles, Keisuke Sakaguchi, Matt Post,
and Joel Tetreault. 2015. Ground truth for gram-
matical error correction metrics. In Association of
Computational Linguistics (ACL).

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2016. There’s no comparison: Reference-
less evaluation metrics in grammatical error
correction. In Empirical Methods in Natural
Language Processing (EMNLP).

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. Jfleg: A fluency corpus and bench-
mark for grammatical error correction. In European
Chapter of the Association for Computational
Linguistics (EACL).

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Conference on Com-
putational Natural Language Learning (CoNLL).

Diane Nicholls. 2003. The cambridge learner corpus:
Error coding and analysis for lexicography and
elt. In Proceedings of the Corpus Linguistics 2003
conference.

Jingcheng Niu and Gerald Penn. 2020. Grammaticality
and language modelling. In Proceedings of the First
Workshop on Evaluation and Comparison of NLP
Systems.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
Gector–grammatical error correction: Tag, not
rewrite. In Proceedings of the 15th Workshop on
Innovative Use of NLP for Building Educational
Applications.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning (ICML), pages 1310–1318.

Danish Pruthi, Bhuwan Dhingra, and Zachary C
Lipton. 2019. Combating adversarial misspellings
with robust word recognition. In Association for
Computational Linguistics (ACL).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Association for
Computational Linguistics (ACL).

Felix Stahlberg, Christopher Bryant, and Bill Byrne.
2019. Neural grammatical error correction with
finite state transducers. In North American Associa-
tion for Computational Linguistics (NAACL).

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
esl learners using global context. In Association for
Computational Linguistics (ACL).

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Association
for Computational Linguistics (ACL).

Ravikiran Vadlapudi and Rahul Katragadda. 2010. On
automated evaluation of readability of summaries:
Capturing grammaticality, focus, structure and
coherence. In Proceedings of the NAACL HLT 2010
student research workshop.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems (NeurIPS).

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Empirical
Methods in Natural Language Processing (EMNLP).

Stephen Wan, Robert Dale, and Mark Dras. 2005.
Searching for grammaticality: Propagating depen-
dencies in the viterbi algorithm. In Proceedings of
the Tenth European Workshop on Natural Language
Generation (ENLG-05).

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan
Jurafsky, and Andrew Y Ng. 2016. Neural language
correction with character-based attention. arXiv
preprint arXiv:1603.09727.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y
Ng, and Dan Jurafsky. 2018. Noising and denoising
natural language: Diverse backtranslation for gram-
mar correction. In North American Chapter of the
Association for Computational Linguistics (NAACL).

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Association for Computational
Linguistics (ACL).

Michihiro Yasunaga and John D Lafferty. 2019. Top-
iceq: A joint topic and mathematical equation model
for scientific texts. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Michihiro Yasunaga and Percy Liang. 2021. Break-It-
Fix-It: Unsupervised Learning for Program Repair.
In International Conference on Machine Learning
(ICML).

Zheng Yuan and Ted Briscoe. 2016. Grammatical
error correction using neural machine translation.
In North American Chapter of the Association for
Computational Linguistics (NAACL).

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations (ICLR).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text
classification. In Advances in Neural Information
Processing Systems (NeurIPS).

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia,
and Jingming Liu. 2019. Improving grammatical
error correction via pre-training a copy-augmented
architecture with unlabeled data. In North American
Association for Computational Linguistics (NAACL).

