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Abstract

The number of unbalanced interior nodes of divide-and-conquer trees on n leaves is
known to form a sequence of dilations of the Takagi function on dyadic rationals. We
use this fact to derive identities on the Takagi function and on the Hamming weight of
an integer in terms of the Takagi function.

1 Introduction

The Takagi function is a widely-studied self-similar continuous nowhere-differentiable func-
tion on [0, 1], identified by Takagi in 1901 [11]. It has connections to many areas of mathe-
matics, including number theory, combinatorics, probability theory, and analysis, and many
people have studied this function over the past century. Two recent comprehensive surveys
on the subject have been published: one by Lagarias [8], and one by Allaart and Kawamura
[1]. The On-Line Encyclopedia of Integer Sequences (OEIS) sequence A268289 [10] is also
related to the Takagi function. There are a number of identities linking this sequence with
the Takagi function [8; 1, 2].
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There is an interesting connection between binary trees representing divide-and-conquer
calculations and the Takagi function, shown by Coronado et al. [4]: the number of unbalanced
interior nodes of a divide-and-conquer tree is a sequence of dilations of the Takagi function
on dyadic rationals.

In this paper we derive several formulas for counting such nodes on a divide-and-conquer
tree, and use the dilations to extend them to identities on the Takagi function on dyadic
rationals. These identities are in Section 5, and include the following;:

e Recursive and closed formulas for the Takagi function on dyadic rationals. The re-
cursive formulas are in Theorems 24 and 26, and the closed are in Theorems 25 and
27.

e A formula for the Hamming weight of an integer in terms of the Takagi function on
dyadic rationals, in Theorem 28, derived from the formulas for counting D-nodes. As
a consequence, we provide another proof of Trollope’s theorem on cumulative binary
digit sums [12] in Corollary 30, and give three succinct forms of the cumulative binary
digit sum in Corollary 31.

2 Notation

We assume throughout the paper that n > 0 is an integer, and use the following represen-
tations. If additional assumptions are made in individual theorems on these variables, we
state them explicitly; otherwise, the definitions in use are as stated in Notation 1.

Notation 1. A positive integer n may be represented as:
o n = 2% 4 r with integers k£ and r such that £ > 0 and 0 < r < 2F.
e n=2.(1+x), with an integer k¥ > 0 and a dyadic rational z with 0 <z < 1.

on = Zf:o n; - 2', where k = |logy(n)| (binary decomposition). This may also be
represented as n = ngng_1 - - - No.

Lemma 2. Let n,k,r,x be as in Notation 1. Then v = g5 and 1 +1x = 5.

3 The Takagi function and divide-and-conquer trees

The Takagi function, shown in Figure 1(d), is a continuous nowhere-differentiable function
on [0,1]. We recast the original definition of the Takagi function on dyadic rationals from
[11] to be consistent with notation and numbering convenient to the study of binary trees.



Definition 3 (Takagi function). [11] Let n be an integer. The Takagi function on dyadic
rationals is defined as

i—1
Z N—j, if ng_; = 0;
J=0

=1

i—1
1 — an_j, if Np—; = 1,
J=0

where n; = 0 for every negative integer .

Theorem 8 gives a simple formula for the dilations of the Takagi function on dyadic
rationals in [0,1], in terms of certain interior nodes of full binary trees, called D-nodes.

Definition 4 (S-nodes and D-nodes). [9] An interior node of a rooted full binary tree
is called an S-node if its two subtrees have the Same number of leaves, and a D-node if its
subtrees have Different numbers of leaves. Such a labeling gives an S D-tree.

The SD-tree was defined to express the notion of balance in a binary commutative non-
associative product [9].

The next lemma is true because an n-leaf binary tree has n — 1 interior nodes [6], and
these are partitioned into S-and D-nodes.

Lemma 5. Let a(n) be the number of S-nodes in a binary tree having n leaves. Then the
number of D-nodes is n — 1 — a(n).

Definition 6 (Divide-and-conquer tree). A divide-and-conquer tree is a full binary tree
in which the number of leaf descendants of the left and right children of any node differ by
at most 1.

The binary tree generated is thus as balanced as it can be. At every level, the leaf descen-
dants of an interior node are evenly or almost evenly divided between the left and the right
branches. There is only one divide-and-conquer tree on n leaves, up to tree isomorphism.

Notation 7. The number of D-nodes in a divide-and-conquer tree is denoted by d(n).

Theorem 8 is the same as Corollary 4 of Coronado et al. [4] but is stated here in terms of
D-nodes and Takagi’s original definition. It is also closely related to Baruchel’s proposition
3.3 [2]. We show several examples of these dilations in Figure 1.

Theorem 8. [/] Let §(n) be the number of D-nodes in a divide-and-conquer tree onn = 2~ +r
leaves, with 0 < r < 2¥. Let 7(z) be the Takagi function on x, with 0 < x < 1. Then

T<7’> 5(2F + )
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(a) y = 6(1;5(—;-1:) (b)y= % (c)y= 6(2356:{%) (d) Takagi curve.

Figure 1: Divide-and-conquer dilations of the Takagi function on the dyadic ra-
tionals. Subfigures (a), (b) and (c) show examples of the dilations y = % =7 (%)
from Theorem 8, where d(n) is the number of D-nodes on a divide-and-conquer tree on n
leaves. Here, k = 4,6, and 8, and z is an integer with 0 < z < 2*. These may be visually
compared to Subfigure (d), showing the continuous, self-similar, nowhere-differentiable Tak-
agi (blancmange) curve on [0,1]. (The blancmange curve image in Subfigure (d) is taken

from Wiki Commons.)

4 D-nodes in divide-and-conquer trees

In this section, we develop several identities on d(n), the number of D-nodes in a divide-and-
conquer tree. The first subsection is general, and the second develops identities in terms of
s1(n), the Hamming weight of n. We will then apply Theorem 8 to these in Section 5, for
some quick identities on the Takagi function.

4.1 Counting D-nodes in a divide-and-conquer tree

We state here formulas for the number of D-nodes in a divide-and-conquer form with n
leaves. The number of D-nodes corresponds to OEIS sequence A296062 [10], as noted by
Coronado et al. [4].

Theorem 9. [// The number of D-nodes in a divide-and-conquer SD-tree with n leaf nodes
18

26(m), if n = 2m,;
0(n)=<dm)+d(m+1)+1, ifn=2m+1;
0, ifn =1

The following corollary applies to n when n is not a power of 2.

Corollary 10. Let n = 2% +r, where 0 < r < 2%, and let p; be the position of the smallest
non-0 bit in r. The number of D-nodes in a divide-and-conquer SD-tree with n leaf nodes
satisfies the equation

5(n) = %(5(71 484 1) 41— pr


https://oeis.org/A296062

Proof. If r =2d + 1 is odd, then p; = 0, and

§(n) =622 +d)+1)

=02 4 d) + 52 P4 d+1)+ 1 (by Theorem 9)
— %(2 SR d) 42002 +d+ 1)+ 1

_ %(5(2’6 +2d) + 6(2F + 24+ 2)) + 1 (by Theorem 9)
_ %((5(n—1)+(5(n+1))+1—0

= 20—+t 1)+ 1 pr

Now let » = 2d be even. First, we use what has been shown for n odd:

S —1) = %(5(71 ) b 6(n) +1 = %5(71 _o)+ %5(71) 41,

and
d(n+1)= %(5(77,) +dn+2)+1= %5(77, +2)+ %5(71) + 1.
Thus .
d(n—1)+d(n+1)=4d(n) + 5(5(71 —2)+4d(n+2)) + 2,
and

S(n—1)+5(n+1)—2—d(n) = %(5@ ) 4 6(n+2)).

(1)

Now we apply induction on k, noting that the smallest non-0 bit in 2 = (2871 +d) is (p; — 1):

5(n) = 6(2(2" 1 +a))

=20(2""" + d) (by Theorem 9)
=2. (%(5(2’“—1 +d—1)+5@ " +d+1)+1—(p1 — 1)) (by induction)
= %(2-5(2k1+d—1)—0—2~(5(2k1+d+1))+2—(2-p1—2)

= %(5(2’“ +2d—2)+ 62" +2d+2)+2—(2-p1 —2) (by Theorem 9)
= %((5(n—2)+5(n+2))+4—2~p1
—5(n—1)+dn+1)—2-6(n)+4—-2-p (by Equation (1))

=0n—1)+0(n+1)—0(n)+2—-2-p.

So
2.-0(n)=0n—1)+dn+1)+2—-2-py,
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and
5(n) = %(5(71 )4+ 1) 41— pr

]

Theorem 11. The number of D-nodes in a divide-and-conquer S D-tree with n leaf nodes is

[logy(n)] -1 ; :
(n mod 2°), if n; = 0;
(n) ; (n), where \j(n) {21 C(nmod 2), ifnmi—1. (2)
An explicit form is
[logy(n)]—1 ' 4
S(n)= > (ni-2' 4 (=1)" - (nmod 2')). (3)
i=0

Proof. Because every SD-tree is a full complete binary tree, there are 2¢ nodes at level i
except for the bottom level. At each level, the descendant leaf nodes are almost evenly
divided between the nodes: at the i*" level, 2/ — (n mod 2¢) nodes have L%J leaf descendants,
and (n mod 2°) of these nodes have | 2| + 1 leaf descendants.

Consider the binary representation of the number n where the bits are ordered from least
significant to most significant. A node in a divide-and-conquer tree is an D-node if and only

if it has an odd number of leaf descendants. If n; is 0, then |Z] is even and (n mod 27)

nodes have an odd number of descendants. If n; is 1, then || is odd, and 2 — (n mod 27)

nodes have an odd number of descendants. So the number of D-nodes at level 7 is

n mod 2¢, if n; is 0;
Bi(n) = ; ; . .
2" — (nmod 2'), if n; is 1.

Equation (2) is obtained by summing across the levels.
So the number of D-nodes at level i is

n; - 2"+ (=1)" - (n mod 2°).
Equation (3) is obtained by summing across the levels. O

An extensive analysis of solutions to divide-and-conquer recurrences is provided in [5].
Theorem 11 might be obtained from Theorem 9 using the methods in that paper. Instead
we prove Theorem 11 directly by analyzing D-nodes.

4.2 Counting D-nodes on a divide-and-conquer tree in terms of
Hamming weight

We begin this section with some simple lemmas on Hamming weight used throughout this
section that appear in many papers. They can be seen by inspection.
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Definition 12 (Hamming weight). The Hamming weight of n, Zf:o n;, is the number of
1s in the binary expansion of n, and is denoted in this paper by s;(n).

Lemma 13. The Hamming weight si(n) = s1(r) + 1.

Lemma 14. If n is even, then si(n +1) = s;(n) + 1.

Lemma 15. Ifn is odd, then s;(n —1) = s;(n) — 1.

Lemma 16. If r < 2871 is odd, then s1(28 —r) =1+ k — s1(r).

Proof. The binary representation of 2¥ is 1 0...0, where there are k 0s following the leading
1. Let the binary representation of 7 be 0 0 r,_o--- 71 1, since r < 287! is odd. Subtracting
r from 2% gives 0 1 7,3 --- 71 1, where 7; is the negation of r;. The lemma follows. O

We use the above lemmas to prove a series of assertions on the D-nodes of a tree with n
leaves.

Lemma 17. Let n = 28 +r, with r odd and 0 < r < 2¥. Let X be as in Theorem 11, with
0<i<k. Then

Proof. For 0 < i < k, all bits of 7 and (r — 1) besides the 0'! are the same, since r is odd.

Thus

(n mod 2°) — ((n — 1) mod 2) = 1, if n; =0;

A= {mi ~(nmod ) — (2~ ((n— 1) mod 29) = —1, if m =1

The next lemma follows from Theorem 9 by induction.
Lemma 18. Let 0 <r < 2F. Then §(28 —r) = 6(2% +r).
Lemma 19. Let n > 0 be even. Then

d(n+1)=4d(n)+ |logy(n)] —2-s1(n) + 2.

Proof. Let n = 2F 4 r, with 0 < r < 2¥, and let n have binary expansion ninj_i - - - ng. Now
n is even, so |logy(n)| = |logy(n + 1)].

k—1 k—1
dn+1)—=¥d6n)=>» XNn+1)— Z Ai(n) (by Theorem 11)
=3+ 1) = M)



k—1

= Xo(n+1) = Ao(n) + > _(Ai(n+ 1) = Xi(n)).

i=1

Since n is even, ng = 0, s0 Ag(n + 1) — Xo(n) = (2° = 0) — 0 = 1.
There are s;(n) — 1 = (sy(n+ 1) — 2) 1s in the 15 through (k — 1)*® bits of n + 1. Thus
there are ((k — 1) — (s1(n + 1) — 2)) Os in 1°* through (k — 1)™ bits of (n + 1). So
) —

dn+1)—=dn)=1-1-(s;(n+1
=k—2-s1(n+1)+
=k—2-(s1(n)+ 1) +4 (by Lemma 14)
=k—2-s1(n)+2
= [logy(n)| — 2+ s1(n) + 2.

) 1-((k—=1)—(s1(n+1)—2)) (by Lemma 17)

Lemma 20. Let n =2 +r >0 be odd. Then
d(n+1)=4d(n)+ |logy(n)] —2-s1(n) + 2.

Proof. Let n = 2% 4+ r, with 0 < r < 2*. We proceed by moving from n and n + 1 to the
symmetric m = 2¥1 — (r + 1) (which is even) and m + 1 = 281 — r (which is odd), by
Lemma 18. We then apply Lemma 19, and move back to n and n 4 1, again by Lemma 18.

d(n+1)=4d(m) (by Lemma 18)
=d6(m+1) — ([logy(m)] —2 - s1(m) + 2), (by Lemma 19)
=o0(m+1)—(k—2-s,(m)+2)
=d(n)— (k—2-s1(m)+2) (by Lemma 16)
=d0n)—(k—=2-(sy(m+1)—1)+2) (by Lemma 14)
=0(n) — (k—2-5(2"" —7r) +4)
=d(n) — (k 2-24+k—s1(r))+4) (by Lemma 16)
=0n)—(k—=2-2+k—(s1(n)—1))+4) (by Lemma 13)
=0(n)+k—2-s51(n)+2
=0(n) + [logy(n)| —2-s1(n) + 2.

O
We then have a general recurrence relation for 6(n), following from Lemmas 19 and 20.

Theorem 21. The number of D-nodes, 6(n + 1), in a divide-and-conquer tree with n + 1
leaf nodes satisfies the equation

d(n+1)=4dn)+ |logy(n)] —2-s1(n) + 2.

8



Repeated application of Theorem 9 (for even sub-sums) and Lemma 19 (for odd) gives rise
to Theorem 22, another explicit formula for the number of D-nodes in a divide-and-conquer
tree.

Theorem 22. The number of D-nodes, (n), in a divide-and-conquer tree with n + 1 leaf
nodes satisfies the equation

k—1 k
S(n)=> 2 (k—i—2-) ni+4),
i=0 Jj=t
or alternatively
k—1
d(n) = ZQi n - (k—i—2-s1(|n/2°]) +4).
i=0

Proof. Let n have binary expansion ngyng_1 - - -ng. We proceed by induction, noting that the
theorem is true for n = 1 and n = 2.
If n is even, the quotient n/2 has binary expansion ngng_i ---n1, SO

k—1 k
d(n/2) = Z 27 e (k—i—2- Z n; + 4) (by induction)
i=1 j=i
k—1

k
1 ; ,
=32 2 -ni-(k—z—Q-ZniqLél),
Jj=i

and
d(n) =20(n/2) (by Theorem 9)
= k
:2-5221-ni~(l€—z’—2-;n¢+4)
k-1 k
= 2i~ni~(/€—i—2-2ni+4). (since ng = 0)
i=0 j=i

If n is odd then ng = 1 and n — 1 has binary expansion mgmys_1 - - - mg, where m; = n; for
1 <i<k,and my =0. Then

d(n)=0dn—1)+ (|logy(n —1)] —=2-s1(n—1) +2) (by Theorem 21)
=0n—1)+(k—2-s1(n—1)+2)
k-1 k
:Z2i~mi- (k—i—2~2mi+4)+(/<:—2~31(n—1)+2) (by induction)

9



—ZZi-mi-(k—i—Q-imi—i—él)+(k—2-51(n—1)+2)
:ZZi-ni-(k—i—2-ini+4)+(k—2-31(n—1)+2)
:Z2i-ni~(k—i—2-ini+4)+(k—2-(31(n)—1)+2) (by Lemma 15)
:ZQi-ni~(k—i—2-ini+4)+(k—2~ini+4)
:ZZi-ni~(k—i—2-ini—|—4)+((k—O)—Q-ini—i—él)

k—1 k
:ZQi-ni~(k—i—2-Zni+4). (since 2" - ng = 1)
i=0 J=i

Theorem 21 also gives a corollary on the Hamming weight of n.
Corollary 23. The Hamming weight of n, s1(n), satisfies the equation

o(n) = d(n+1) + [logy(n)]

1.
5 +

s1(n) =

5 From D-nodes to the Takagi function

In this section, we take the identities on D-nodes on a divide-and-conquer tree from Section 4
and apply Theorem 8 to obtain identities on the Takagi function.

Theorem 24. Let 1 < r < 28 — 1. Let p; be the position of the smallest non-0 bit in r.

Then . . ) )
T r— T+ — pP1
Proof. Follows from Theorem 8 and Corollary 10. O
r—1 r+1 i i i
We observe that when x = o and y = T Theorem 24 gives rise to a special case
of Boros’ inequality [3]:
T+y 1 T —1y
r(E4Y) < Loty + vl + Y,

10



For this x and y, Equation (4) in the theorem may be restated as follows:

() = L) o) + Y2

so here, equality holds in Boros’ inequality if and only if p; = 0, i.e., r is odd.
Theorem 25. Let r be an integer. The Takagi function on 5 satisfies the equation

k-1 - ‘
r 1 (n mod 2), if ny =0;
) = S-S Nn), where A(n) =4\ |
4 <2k> 2k L= i(n), where Ai(n) {21 — (nmod 2°), ifn, =1

An explicit form is

k—1

T (%) = 21_k . Z(nl 22" 4 (=1)" - (n mod 2%)).

i=0
Proof. Follows from Theorem 11. O]

Theorem 26. Let r be an integer. The Takagi function on gikl satisfies the equation

r+1 r 1
Proof. Follows from Theorem 21. O

Theorem 26 may also be derived from Kriippel’s Proposition 2.1 [7, Formula (2.2)] by
substituting 1 for z, r for k£, and k for ¢ in the statement of the formula.

Theorem 27. Let r be an integer. The Takagi function on o5 satisfies the equation

k—1 k
T<%> :%-22i~ni'(l€—i—2~2ni+4),
i=0 j=i

or alternatively

k—1
r 1 ; , n
) e iz ([g]) -0
Proof. Follows from Theorem 22. O

We end the paper with Theorem 28 on the Hamming weight of binary integers and its
Corollary 30 on the cumulative sum of the weights of integers. Corollary 30 was shown by
Trollope in 1968 [12], but also follows directly from the weight result, so we provide that
proof.

11



Theorem 28. The Hamming weight of n, si(n), satisfies the equation

okl r r+1 k+2
Proof. Follows from Theorem 26. O
Lemma 29. Let Sy(n) = S0 s1(i). If n is a power of 2, then Si(n) = 1 -n-logy(n).

Proof. Exactly half of the bits in the integers between 1 and n — 1 have value 1. O
Corollary 30. [12] Let Sy(n) = Y27~ s1(i). Then

_n-logy(n)

Sl (n) 9

+2F 1 (22 — 7(z) — (1 + ) - logy(1 + 1)).

Proof.

k .
_ 2k + Z s1(7) (by Lemma 29)

2k . J; 0 ARy N
_ 2N ok, (T <_) g (L>) 4 kte (by Theorem 28)

(22 — 7(2)) (by Lemma 2)

(5)

n -logyn _ n n
=2 4 2F 1-<2x—7(x)—§~10g2<§>>

+ 251 (20 — 7(2) — (1 +2) - logy(1 + ). (by Lemma 2)

O
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Finally, Corollary 31 gives three succinct formulas of the cumulative binary digit sum in
terms of the Takagi function and in terms of the number of D-nodes.

Corollary 31. Let n be as in Notation 1, and let Sy(n) = 37~ s1(i). Then

1. Si(n) = 5 - (nk + 2% - (2z — 7(x))),
2. Si(n) =141 (nk+2r—2".7(3%)), and
3. Si(n) = 3 - (nk + 2r — 6(n)).
Proof. Follows from Equation (5) in the proof of Corollary 30, and Theorem 8. ]

The first two subcorollaries of Corollary 31 may also be derived from Kriippel’s Propo-
sition 2.1 (Formula (2.4) [7], by substituting r for n and ¢ for k in the statement of the
formula and using Lemma 2 to obtain Sj(n). The third subcorollary would then follow by
Theorem 8.
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